1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30
31 /**
32 * struct emif_data - Per device static data for driver's use
33 * @duplicate: Whether the DDR devices attached to this EMIF
34 * instance are exactly same as that on EMIF1. In
35 * this case we can save some memory and processing
36 * @temperature_level: Maximum temperature of LPDDR2 devices attached
37 * to this EMIF - read from MR4 register. If there
38 * are two devices attached to this EMIF, this
39 * value is the maximum of the two temperature
40 * levels.
41 * @node: node in the device list
42 * @base: base address of memory-mapped IO registers.
43 * @dev: device pointer.
44 * @addressing table with addressing information from the spec
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
55 */
56 struct emif_data {
57 u8 duplicate;
58 u8 temperature_level;
59 u8 lpmode;
60 struct list_head node;
61 unsigned long irq_state;
62 void __iomem *base;
63 struct device *dev;
64 const struct lpddr2_addressing *addressing;
65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66 struct emif_regs *curr_regs;
67 struct emif_platform_data *plat_data;
68 struct dentry *debugfs_root;
69 struct device_node *np_ddr;
70 };
71
72 static struct emif_data *emif1;
73 static spinlock_t emif_lock;
74 static unsigned long irq_state;
75 static u32 t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77
78 #ifdef CONFIG_DEBUG_FS
do_emif_regdump_show(struct seq_file * s,struct emif_data * emif,struct emif_regs * regs)79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80 struct emif_regs *regs)
81 {
82 u32 type = emif->plat_data->device_info->type;
83 u32 ip_rev = emif->plat_data->ip_rev;
84
85 seq_printf(s, "EMIF register cache dump for %dMHz\n",
86 regs->freq/1000000);
87
88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93 if (ip_rev == EMIF_4D) {
94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 regs->read_idle_ctrl_shdw_normal);
96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_volt_ramp);
98 } else if (ip_rev == EMIF_4D5) {
99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 regs->dll_calib_ctrl_shdw_normal);
101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_volt_ramp);
103 }
104
105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 regs->ref_ctrl_shdw_derated);
108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 regs->sdram_tim1_shdw_derated);
110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim3_shdw_derated);
112 }
113 }
114
emif_regdump_show(struct seq_file * s,void * unused)115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117 struct emif_data *emif = s->private;
118 struct emif_regs **regs_cache;
119 int i;
120
121 if (emif->duplicate)
122 regs_cache = emif1->regs_cache;
123 else
124 regs_cache = emif->regs_cache;
125
126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127 do_emif_regdump_show(s, emif, regs_cache[i]);
128 seq_putc(s, '\n');
129 }
130
131 return 0;
132 }
133
134 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
135
emif_mr4_show(struct seq_file * s,void * unused)136 static int emif_mr4_show(struct seq_file *s, void *unused)
137 {
138 struct emif_data *emif = s->private;
139
140 seq_printf(s, "MR4=%d\n", emif->temperature_level);
141 return 0;
142 }
143
144 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
145
emif_debugfs_init(struct emif_data * emif)146 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
147 {
148 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
149 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
150 &emif_regdump_fops);
151 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
152 &emif_mr4_fops);
153 return 0;
154 }
155
emif_debugfs_exit(struct emif_data * emif)156 static void __exit emif_debugfs_exit(struct emif_data *emif)
157 {
158 debugfs_remove_recursive(emif->debugfs_root);
159 emif->debugfs_root = NULL;
160 }
161 #else
emif_debugfs_init(struct emif_data * emif)162 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
163 {
164 return 0;
165 }
166
emif_debugfs_exit(struct emif_data * emif)167 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
168 {
169 }
170 #endif
171
172 /*
173 * Calculate the period of DDR clock from frequency value
174 */
set_ddr_clk_period(u32 freq)175 static void set_ddr_clk_period(u32 freq)
176 {
177 /* Divide 10^12 by frequency to get period in ps */
178 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
179 }
180
181 /*
182 * Get bus width used by EMIF. Note that this may be different from the
183 * bus width of the DDR devices used. For instance two 16-bit DDR devices
184 * may be connected to a given CS of EMIF. In this case bus width as far
185 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
186 */
get_emif_bus_width(struct emif_data * emif)187 static u32 get_emif_bus_width(struct emif_data *emif)
188 {
189 u32 width;
190 void __iomem *base = emif->base;
191
192 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
193 >> NARROW_MODE_SHIFT;
194 width = width == 0 ? 32 : 16;
195
196 return width;
197 }
198
199 /*
200 * Get the CL from SDRAM_CONFIG register
201 */
get_cl(struct emif_data * emif)202 static u32 get_cl(struct emif_data *emif)
203 {
204 u32 cl;
205 void __iomem *base = emif->base;
206
207 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
208
209 return cl;
210 }
211
set_lpmode(struct emif_data * emif,u8 lpmode)212 static void set_lpmode(struct emif_data *emif, u8 lpmode)
213 {
214 u32 temp;
215 void __iomem *base = emif->base;
216
217 /*
218 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
219 * Efficient
220 *
221 * i743 DESCRIPTION:
222 * The EMIF supports power-down state for low power. The EMIF
223 * automatically puts the SDRAM into power-down after the memory is
224 * not accessed for a defined number of cycles and the
225 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
226 * As the EMIF supports automatic output impedance calibration, a ZQ
227 * calibration long command is issued every time it exits active
228 * power-down and precharge power-down modes. The EMIF waits and
229 * blocks any other command during this calibration.
230 * The EMIF does not allow selective disabling of ZQ calibration upon
231 * exit of power-down mode. Due to very short periods of power-down
232 * cycles, ZQ calibration overhead creates bandwidth issues and
233 * increases overall system power consumption. On the other hand,
234 * issuing ZQ calibration long commands when exiting self-refresh is
235 * still required.
236 *
237 * WORKAROUND
238 * Because there is no power consumption benefit of the power-down due
239 * to the calibration and there is a performance risk, the guideline
240 * is to not allow power-down state and, therefore, to not have set
241 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
242 */
243 if ((emif->plat_data->ip_rev == EMIF_4D) &&
244 (lpmode == EMIF_LP_MODE_PWR_DN)) {
245 WARN_ONCE(1,
246 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
247 /* rollback LP_MODE to Self-refresh mode */
248 lpmode = EMIF_LP_MODE_SELF_REFRESH;
249 }
250
251 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
252 temp &= ~LP_MODE_MASK;
253 temp |= (lpmode << LP_MODE_SHIFT);
254 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
255 }
256
do_freq_update(void)257 static void do_freq_update(void)
258 {
259 struct emif_data *emif;
260
261 /*
262 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
263 *
264 * i728 DESCRIPTION:
265 * The EMIF automatically puts the SDRAM into self-refresh mode
266 * after the EMIF has not performed accesses during
267 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
268 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
269 * to 0x2. If during a small window the following three events
270 * occur:
271 * - The SR_TIMING counter expires
272 * - And frequency change is requested
273 * - And OCP access is requested
274 * Then it causes instable clock on the DDR interface.
275 *
276 * WORKAROUND
277 * To avoid the occurrence of the three events, the workaround
278 * is to disable the self-refresh when requesting a frequency
279 * change. Before requesting a frequency change the software must
280 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
281 * frequency change has been done, the software can reprogram
282 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
283 */
284 list_for_each_entry(emif, &device_list, node) {
285 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
286 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
287 }
288
289 /*
290 * TODO: Do FREQ_UPDATE here when an API
291 * is available for this as part of the new
292 * clock framework
293 */
294
295 list_for_each_entry(emif, &device_list, node) {
296 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
297 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
298 }
299 }
300
301 /* Find addressing table entry based on the device's type and density */
get_addressing_table(const struct ddr_device_info * device_info)302 static const struct lpddr2_addressing *get_addressing_table(
303 const struct ddr_device_info *device_info)
304 {
305 u32 index, type, density;
306
307 type = device_info->type;
308 density = device_info->density;
309
310 switch (type) {
311 case DDR_TYPE_LPDDR2_S4:
312 index = density - 1;
313 break;
314 case DDR_TYPE_LPDDR2_S2:
315 switch (density) {
316 case DDR_DENSITY_1Gb:
317 case DDR_DENSITY_2Gb:
318 index = density + 3;
319 break;
320 default:
321 index = density - 1;
322 }
323 break;
324 default:
325 return NULL;
326 }
327
328 return &lpddr2_jedec_addressing_table[index];
329 }
330
331 /*
332 * Find the the right timing table from the array of timing
333 * tables of the device using DDR clock frequency
334 */
get_timings_table(struct emif_data * emif,u32 freq)335 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
336 u32 freq)
337 {
338 u32 i, min, max, freq_nearest;
339 const struct lpddr2_timings *timings = NULL;
340 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
341 struct device *dev = emif->dev;
342
343 /* Start with a very high frequency - 1GHz */
344 freq_nearest = 1000000000;
345
346 /*
347 * Find the timings table such that:
348 * 1. the frequency range covers the required frequency(safe) AND
349 * 2. the max_freq is closest to the required frequency(optimal)
350 */
351 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
352 max = timings_arr[i].max_freq;
353 min = timings_arr[i].min_freq;
354 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
355 freq_nearest = max;
356 timings = &timings_arr[i];
357 }
358 }
359
360 if (!timings)
361 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
362 __func__, freq);
363
364 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
365 __func__, freq, freq_nearest);
366
367 return timings;
368 }
369
get_sdram_ref_ctrl_shdw(u32 freq,const struct lpddr2_addressing * addressing)370 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
371 const struct lpddr2_addressing *addressing)
372 {
373 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
374
375 /* Scale down frequency and t_refi to avoid overflow */
376 freq_khz = freq / 1000;
377 t_refi = addressing->tREFI_ns / 100;
378
379 /*
380 * refresh rate to be set is 'tREFI(in us) * freq in MHz
381 * division by 10000 to account for change in units
382 */
383 val = t_refi * freq_khz / 10000;
384 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
385
386 return ref_ctrl_shdw;
387 }
388
get_sdram_tim_1_shdw(const struct lpddr2_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing)389 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
390 const struct lpddr2_min_tck *min_tck,
391 const struct lpddr2_addressing *addressing)
392 {
393 u32 tim1 = 0, val = 0;
394
395 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
396 tim1 |= val << T_WTR_SHIFT;
397
398 if (addressing->num_banks == B8)
399 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
400 else
401 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
402 tim1 |= (val - 1) << T_RRD_SHIFT;
403
404 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
405 tim1 |= val << T_RC_SHIFT;
406
407 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
408 tim1 |= (val - 1) << T_RAS_SHIFT;
409
410 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
411 tim1 |= val << T_WR_SHIFT;
412
413 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
414 tim1 |= val << T_RCD_SHIFT;
415
416 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
417 tim1 |= val << T_RP_SHIFT;
418
419 return tim1;
420 }
421
get_sdram_tim_1_shdw_derated(const struct lpddr2_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing)422 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
423 const struct lpddr2_min_tck *min_tck,
424 const struct lpddr2_addressing *addressing)
425 {
426 u32 tim1 = 0, val = 0;
427
428 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
429 tim1 = val << T_WTR_SHIFT;
430
431 /*
432 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
433 * to tFAW for de-rating
434 */
435 if (addressing->num_banks == B8) {
436 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
437 } else {
438 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
439 val = max(min_tck->tRRD, val) - 1;
440 }
441 tim1 |= val << T_RRD_SHIFT;
442
443 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
444 tim1 |= (val - 1) << T_RC_SHIFT;
445
446 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
447 val = max(min_tck->tRASmin, val) - 1;
448 tim1 |= val << T_RAS_SHIFT;
449
450 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
451 tim1 |= val << T_WR_SHIFT;
452
453 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
454 tim1 |= (val - 1) << T_RCD_SHIFT;
455
456 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
457 tim1 |= (val - 1) << T_RP_SHIFT;
458
459 return tim1;
460 }
461
get_sdram_tim_2_shdw(const struct lpddr2_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing,u32 type)462 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
463 const struct lpddr2_min_tck *min_tck,
464 const struct lpddr2_addressing *addressing,
465 u32 type)
466 {
467 u32 tim2 = 0, val = 0;
468
469 val = min_tck->tCKE - 1;
470 tim2 |= val << T_CKE_SHIFT;
471
472 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
473 tim2 |= val << T_RTP_SHIFT;
474
475 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
476 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
477 tim2 |= val << T_XSNR_SHIFT;
478
479 /* XSRD same as XSNR for LPDDR2 */
480 tim2 |= val << T_XSRD_SHIFT;
481
482 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
483 tim2 |= val << T_XP_SHIFT;
484
485 return tim2;
486 }
487
get_sdram_tim_3_shdw(const struct lpddr2_timings * timings,const struct lpddr2_min_tck * min_tck,const struct lpddr2_addressing * addressing,u32 type,u32 ip_rev,u32 derated)488 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
489 const struct lpddr2_min_tck *min_tck,
490 const struct lpddr2_addressing *addressing,
491 u32 type, u32 ip_rev, u32 derated)
492 {
493 u32 tim3 = 0, val = 0, t_dqsck;
494
495 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
496 val = val > 0xF ? 0xF : val;
497 tim3 |= val << T_RAS_MAX_SHIFT;
498
499 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
500 tim3 |= val << T_RFC_SHIFT;
501
502 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
503 timings->tDQSCK_max_derated : timings->tDQSCK_max;
504 if (ip_rev == EMIF_4D5)
505 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
506 else
507 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
508
509 tim3 |= val << T_TDQSCKMAX_SHIFT;
510
511 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
512 tim3 |= val << ZQ_ZQCS_SHIFT;
513
514 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
515 val = max(min_tck->tCKESR, val) - 1;
516 tim3 |= val << T_CKESR_SHIFT;
517
518 if (ip_rev == EMIF_4D5) {
519 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
520
521 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
522 tim3 |= val << T_PDLL_UL_SHIFT;
523 }
524
525 return tim3;
526 }
527
get_zq_config_reg(const struct lpddr2_addressing * addressing,bool cs1_used,bool cal_resistors_per_cs)528 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
529 bool cs1_used, bool cal_resistors_per_cs)
530 {
531 u32 zq = 0, val = 0;
532
533 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
534 zq |= val << ZQ_REFINTERVAL_SHIFT;
535
536 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
537 zq |= val << ZQ_ZQCL_MULT_SHIFT;
538
539 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
540 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
541
542 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
543
544 if (cal_resistors_per_cs)
545 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
546 else
547 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
548
549 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
550
551 val = cs1_used ? 1 : 0;
552 zq |= val << ZQ_CS1EN_SHIFT;
553
554 return zq;
555 }
556
get_temp_alert_config(const struct lpddr2_addressing * addressing,const struct emif_custom_configs * custom_configs,bool cs1_used,u32 sdram_io_width,u32 emif_bus_width)557 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
558 const struct emif_custom_configs *custom_configs, bool cs1_used,
559 u32 sdram_io_width, u32 emif_bus_width)
560 {
561 u32 alert = 0, interval, devcnt;
562
563 if (custom_configs && (custom_configs->mask &
564 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
565 interval = custom_configs->temp_alert_poll_interval_ms;
566 else
567 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
568
569 interval *= 1000000; /* Convert to ns */
570 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
571 alert |= (interval << TA_REFINTERVAL_SHIFT);
572
573 /*
574 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
575 * also to this form and subtract to get TA_DEVCNT, which is
576 * in log2(x) form.
577 */
578 emif_bus_width = __fls(emif_bus_width) - 1;
579 devcnt = emif_bus_width - sdram_io_width;
580 alert |= devcnt << TA_DEVCNT_SHIFT;
581
582 /* DEVWDT is in 'log2(x) - 3' form */
583 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
584
585 alert |= 1 << TA_SFEXITEN_SHIFT;
586 alert |= 1 << TA_CS0EN_SHIFT;
587 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
588
589 return alert;
590 }
591
get_read_idle_ctrl_shdw(u8 volt_ramp)592 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
593 {
594 u32 idle = 0, val = 0;
595
596 /*
597 * Maximum value in normal conditions and increased frequency
598 * when voltage is ramping
599 */
600 if (volt_ramp)
601 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
602 else
603 val = 0x1FF;
604
605 /*
606 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
607 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
608 */
609 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
610 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
611
612 return idle;
613 }
614
get_dll_calib_ctrl_shdw(u8 volt_ramp)615 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
616 {
617 u32 calib = 0, val = 0;
618
619 if (volt_ramp == DDR_VOLTAGE_RAMPING)
620 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
621 else
622 val = 0; /* Disabled when voltage is stable */
623
624 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
625 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
626
627 return calib;
628 }
629
get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings * timings,u32 freq,u8 RL)630 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
631 u32 freq, u8 RL)
632 {
633 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
634
635 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
636 phy |= val << READ_LATENCY_SHIFT_4D;
637
638 if (freq <= 100000000)
639 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
640 else if (freq <= 200000000)
641 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
642 else
643 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
644
645 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
646
647 return phy;
648 }
649
get_phy_ctrl_1_intelliphy_4d5(u32 freq,u8 cl)650 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
651 {
652 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
653
654 /*
655 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
656 * half-delay is not needed else set half-delay
657 */
658 if (freq >= 265000000 && freq < 267000000)
659 half_delay = 0;
660 else
661 half_delay = 1;
662
663 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
664 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
665 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
666
667 return phy;
668 }
669
get_ext_phy_ctrl_2_intelliphy_4d5(void)670 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
671 {
672 u32 fifo_we_slave_ratio;
673
674 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
675 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
676
677 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
678 fifo_we_slave_ratio << 22;
679 }
680
get_ext_phy_ctrl_3_intelliphy_4d5(void)681 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
682 {
683 u32 fifo_we_slave_ratio;
684
685 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
686 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
687
688 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
689 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
690 }
691
get_ext_phy_ctrl_4_intelliphy_4d5(void)692 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
693 {
694 u32 fifo_we_slave_ratio;
695
696 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
697 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
698
699 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
700 fifo_we_slave_ratio << 13;
701 }
702
get_pwr_mgmt_ctrl(u32 freq,struct emif_data * emif,u32 ip_rev)703 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
704 {
705 u32 pwr_mgmt_ctrl = 0, timeout;
706 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
707 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
708 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
709 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
710 u32 mask;
711 u8 shift;
712
713 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
714
715 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
716 lpmode = cust_cfgs->lpmode;
717 timeout_perf = cust_cfgs->lpmode_timeout_performance;
718 timeout_pwr = cust_cfgs->lpmode_timeout_power;
719 freq_threshold = cust_cfgs->lpmode_freq_threshold;
720 }
721
722 /* Timeout based on DDR frequency */
723 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
724
725 /*
726 * The value to be set in register is "log2(timeout) - 3"
727 * if timeout < 16 load 0 in register
728 * if timeout is not a power of 2, round to next highest power of 2
729 */
730 if (timeout < 16) {
731 timeout = 0;
732 } else {
733 if (timeout & (timeout - 1))
734 timeout <<= 1;
735 timeout = __fls(timeout) - 3;
736 }
737
738 switch (lpmode) {
739 case EMIF_LP_MODE_CLOCK_STOP:
740 shift = CS_TIM_SHIFT;
741 mask = CS_TIM_MASK;
742 break;
743 case EMIF_LP_MODE_SELF_REFRESH:
744 /* Workaround for errata i735 */
745 if (timeout < 6)
746 timeout = 6;
747
748 shift = SR_TIM_SHIFT;
749 mask = SR_TIM_MASK;
750 break;
751 case EMIF_LP_MODE_PWR_DN:
752 shift = PD_TIM_SHIFT;
753 mask = PD_TIM_MASK;
754 break;
755 case EMIF_LP_MODE_DISABLE:
756 default:
757 mask = 0;
758 shift = 0;
759 break;
760 }
761 /* Round to maximum in case of overflow, BUT warn! */
762 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
763 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
764 lpmode,
765 timeout_perf,
766 timeout_pwr,
767 freq_threshold);
768 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
769 timeout, mask >> shift);
770 timeout = mask >> shift;
771 }
772
773 /* Setup required timing */
774 pwr_mgmt_ctrl = (timeout << shift) & mask;
775 /* setup a default mask for rest of the modes */
776 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
777 ~mask;
778
779 /* No CS_TIM in EMIF_4D5 */
780 if (ip_rev == EMIF_4D5)
781 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
782
783 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
784
785 return pwr_mgmt_ctrl;
786 }
787
788 /*
789 * Get the temperature level of the EMIF instance:
790 * Reads the MR4 register of attached SDRAM parts to find out the temperature
791 * level. If there are two parts attached(one on each CS), then the temperature
792 * level for the EMIF instance is the higher of the two temperatures.
793 */
get_temperature_level(struct emif_data * emif)794 static void get_temperature_level(struct emif_data *emif)
795 {
796 u32 temp, temperature_level;
797 void __iomem *base;
798
799 base = emif->base;
800
801 /* Read mode register 4 */
802 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
803 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
804 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
805 MR4_SDRAM_REF_RATE_SHIFT;
806
807 if (emif->plat_data->device_info->cs1_used) {
808 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
809 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
810 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
811 >> MR4_SDRAM_REF_RATE_SHIFT;
812 temperature_level = max(temp, temperature_level);
813 }
814
815 /* treat everything less than nominal(3) in MR4 as nominal */
816 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
817 temperature_level = SDRAM_TEMP_NOMINAL;
818
819 /* if we get reserved value in MR4 persist with the existing value */
820 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
821 emif->temperature_level = temperature_level;
822 }
823
824 /*
825 * Program EMIF shadow registers that are not dependent on temperature
826 * or voltage
827 */
setup_registers(struct emif_data * emif,struct emif_regs * regs)828 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
829 {
830 void __iomem *base = emif->base;
831
832 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
833 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
834 writel(regs->pwr_mgmt_ctrl_shdw,
835 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
836
837 /* Settings specific for EMIF4D5 */
838 if (emif->plat_data->ip_rev != EMIF_4D5)
839 return;
840 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
841 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
842 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
843 }
844
845 /*
846 * When voltage ramps dll calibration and forced read idle should
847 * happen more often
848 */
setup_volt_sensitive_regs(struct emif_data * emif,struct emif_regs * regs,u32 volt_state)849 static void setup_volt_sensitive_regs(struct emif_data *emif,
850 struct emif_regs *regs, u32 volt_state)
851 {
852 u32 calib_ctrl;
853 void __iomem *base = emif->base;
854
855 /*
856 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
857 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
858 * is an alias of the respective read_idle_ctrl_shdw_* (members of
859 * a union). So, the below code takes care of both cases
860 */
861 if (volt_state == DDR_VOLTAGE_RAMPING)
862 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
863 else
864 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
865
866 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
867 }
868
869 /*
870 * setup_temperature_sensitive_regs() - set the timings for temperature
871 * sensitive registers. This happens once at initialisation time based
872 * on the temperature at boot time and subsequently based on the temperature
873 * alert interrupt. Temperature alert can happen when the temperature
874 * increases or drops. So this function can have the effect of either
875 * derating the timings or going back to nominal values.
876 */
setup_temperature_sensitive_regs(struct emif_data * emif,struct emif_regs * regs)877 static void setup_temperature_sensitive_regs(struct emif_data *emif,
878 struct emif_regs *regs)
879 {
880 u32 tim1, tim3, ref_ctrl, type;
881 void __iomem *base = emif->base;
882 u32 temperature;
883
884 type = emif->plat_data->device_info->type;
885
886 tim1 = regs->sdram_tim1_shdw;
887 tim3 = regs->sdram_tim3_shdw;
888 ref_ctrl = regs->ref_ctrl_shdw;
889
890 /* No de-rating for non-lpddr2 devices */
891 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
892 goto out;
893
894 temperature = emif->temperature_level;
895 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
896 ref_ctrl = regs->ref_ctrl_shdw_derated;
897 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
898 tim1 = regs->sdram_tim1_shdw_derated;
899 tim3 = regs->sdram_tim3_shdw_derated;
900 ref_ctrl = regs->ref_ctrl_shdw_derated;
901 }
902
903 out:
904 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
905 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
906 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
907 }
908
handle_temp_alert(void __iomem * base,struct emif_data * emif)909 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
910 {
911 u32 old_temp_level;
912 irqreturn_t ret = IRQ_HANDLED;
913 struct emif_custom_configs *custom_configs;
914
915 spin_lock_irqsave(&emif_lock, irq_state);
916 old_temp_level = emif->temperature_level;
917 get_temperature_level(emif);
918
919 if (unlikely(emif->temperature_level == old_temp_level)) {
920 goto out;
921 } else if (!emif->curr_regs) {
922 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
923 goto out;
924 }
925
926 custom_configs = emif->plat_data->custom_configs;
927
928 /*
929 * IF we detect higher than "nominal rating" from DDR sensor
930 * on an unsupported DDR part, shutdown system
931 */
932 if (custom_configs && !(custom_configs->mask &
933 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
934 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
935 dev_err(emif->dev,
936 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
937 __func__, emif->temperature_level);
938 /*
939 * Temperature far too high - do kernel_power_off()
940 * from thread context
941 */
942 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
943 ret = IRQ_WAKE_THREAD;
944 goto out;
945 }
946 }
947
948 if (emif->temperature_level < old_temp_level ||
949 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
950 /*
951 * Temperature coming down - defer handling to thread OR
952 * Temperature far too high - do kernel_power_off() from
953 * thread context
954 */
955 ret = IRQ_WAKE_THREAD;
956 } else {
957 /* Temperature is going up - handle immediately */
958 setup_temperature_sensitive_regs(emif, emif->curr_regs);
959 do_freq_update();
960 }
961
962 out:
963 spin_unlock_irqrestore(&emif_lock, irq_state);
964 return ret;
965 }
966
emif_interrupt_handler(int irq,void * dev_id)967 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
968 {
969 u32 interrupts;
970 struct emif_data *emif = dev_id;
971 void __iomem *base = emif->base;
972 struct device *dev = emif->dev;
973 irqreturn_t ret = IRQ_HANDLED;
974
975 /* Save the status and clear it */
976 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
977 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
978
979 /*
980 * Handle temperature alert
981 * Temperature alert should be same for all ports
982 * So, it's enough to process it only for one of the ports
983 */
984 if (interrupts & TA_SYS_MASK)
985 ret = handle_temp_alert(base, emif);
986
987 if (interrupts & ERR_SYS_MASK)
988 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
989
990 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
991 /* Save the status and clear it */
992 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
993 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
994
995 if (interrupts & ERR_LL_MASK)
996 dev_err(dev, "Access error from LL port - %x\n",
997 interrupts);
998 }
999
1000 return ret;
1001 }
1002
emif_threaded_isr(int irq,void * dev_id)1003 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1004 {
1005 struct emif_data *emif = dev_id;
1006
1007 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1008 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1009
1010 /* If we have Power OFF ability, use it, else try restarting */
1011 if (pm_power_off) {
1012 kernel_power_off();
1013 } else {
1014 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1015 kernel_restart("SDRAM Over-temp Emergency restart");
1016 }
1017 return IRQ_HANDLED;
1018 }
1019
1020 spin_lock_irqsave(&emif_lock, irq_state);
1021
1022 if (emif->curr_regs) {
1023 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1024 do_freq_update();
1025 } else {
1026 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1027 }
1028
1029 spin_unlock_irqrestore(&emif_lock, irq_state);
1030
1031 return IRQ_HANDLED;
1032 }
1033
clear_all_interrupts(struct emif_data * emif)1034 static void clear_all_interrupts(struct emif_data *emif)
1035 {
1036 void __iomem *base = emif->base;
1037
1038 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1039 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1040 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1041 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1042 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1043 }
1044
disable_and_clear_all_interrupts(struct emif_data * emif)1045 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1046 {
1047 void __iomem *base = emif->base;
1048
1049 /* Disable all interrupts */
1050 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1051 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1052 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1053 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1054 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1055
1056 /* Clear all interrupts */
1057 clear_all_interrupts(emif);
1058 }
1059
setup_interrupts(struct emif_data * emif,u32 irq)1060 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1061 {
1062 u32 interrupts, type;
1063 void __iomem *base = emif->base;
1064
1065 type = emif->plat_data->device_info->type;
1066
1067 clear_all_interrupts(emif);
1068
1069 /* Enable interrupts for SYS interface */
1070 interrupts = EN_ERR_SYS_MASK;
1071 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1072 interrupts |= EN_TA_SYS_MASK;
1073 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1074
1075 /* Enable interrupts for LL interface */
1076 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1077 /* TA need not be enabled for LL */
1078 interrupts = EN_ERR_LL_MASK;
1079 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1080 }
1081
1082 /* setup IRQ handlers */
1083 return devm_request_threaded_irq(emif->dev, irq,
1084 emif_interrupt_handler,
1085 emif_threaded_isr,
1086 0, dev_name(emif->dev),
1087 emif);
1088
1089 }
1090
emif_onetime_settings(struct emif_data * emif)1091 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1092 {
1093 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1094 void __iomem *base = emif->base;
1095 const struct lpddr2_addressing *addressing;
1096 const struct ddr_device_info *device_info;
1097
1098 device_info = emif->plat_data->device_info;
1099 addressing = get_addressing_table(device_info);
1100
1101 /*
1102 * Init power management settings
1103 * We don't know the frequency yet. Use a high frequency
1104 * value for a conservative timeout setting
1105 */
1106 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1107 emif->plat_data->ip_rev);
1108 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1109 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1110
1111 /* Init ZQ calibration settings */
1112 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1113 device_info->cal_resistors_per_cs);
1114 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1115
1116 /* Check temperature level temperature level*/
1117 get_temperature_level(emif);
1118 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1119 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1120
1121 /* Init temperature polling */
1122 temp_alert_cfg = get_temp_alert_config(addressing,
1123 emif->plat_data->custom_configs, device_info->cs1_used,
1124 device_info->io_width, get_emif_bus_width(emif));
1125 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1126
1127 /*
1128 * Program external PHY control registers that are not frequency
1129 * dependent
1130 */
1131 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1132 return;
1133 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1134 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1135 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1136 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1137 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1138 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1139 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1140 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1141 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1142 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1143 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1144 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1145 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1146 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1147 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1148 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1149 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1150 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1151 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1152 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1153 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1154 }
1155
get_default_timings(struct emif_data * emif)1156 static void get_default_timings(struct emif_data *emif)
1157 {
1158 struct emif_platform_data *pd = emif->plat_data;
1159
1160 pd->timings = lpddr2_jedec_timings;
1161 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1162
1163 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1164 }
1165
is_dev_data_valid(u32 type,u32 density,u32 io_width,u32 phy_type,u32 ip_rev,struct device * dev)1166 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1167 u32 ip_rev, struct device *dev)
1168 {
1169 int valid;
1170
1171 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1172 type == DDR_TYPE_LPDDR2_S2)
1173 && (density >= DDR_DENSITY_64Mb
1174 && density <= DDR_DENSITY_8Gb)
1175 && (io_width >= DDR_IO_WIDTH_8
1176 && io_width <= DDR_IO_WIDTH_32);
1177
1178 /* Combinations of EMIF and PHY revisions that we support today */
1179 switch (ip_rev) {
1180 case EMIF_4D:
1181 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1182 break;
1183 case EMIF_4D5:
1184 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1185 break;
1186 default:
1187 valid = 0;
1188 }
1189
1190 if (!valid)
1191 dev_err(dev, "%s: invalid DDR details\n", __func__);
1192 return valid;
1193 }
1194
is_custom_config_valid(struct emif_custom_configs * cust_cfgs,struct device * dev)1195 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1196 struct device *dev)
1197 {
1198 int valid = 1;
1199
1200 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1201 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1202 valid = cust_cfgs->lpmode_freq_threshold &&
1203 cust_cfgs->lpmode_timeout_performance &&
1204 cust_cfgs->lpmode_timeout_power;
1205
1206 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1207 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1208
1209 if (!valid)
1210 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1211
1212 return valid;
1213 }
1214
1215 #if defined(CONFIG_OF)
of_get_custom_configs(struct device_node * np_emif,struct emif_data * emif)1216 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1217 struct emif_data *emif)
1218 {
1219 struct emif_custom_configs *cust_cfgs = NULL;
1220 int len;
1221 const __be32 *lpmode, *poll_intvl;
1222
1223 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1224 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1225
1226 if (lpmode || poll_intvl)
1227 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1228 GFP_KERNEL);
1229
1230 if (!cust_cfgs)
1231 return;
1232
1233 if (lpmode) {
1234 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1235 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1236 of_property_read_u32(np_emif,
1237 "low-power-mode-timeout-performance",
1238 &cust_cfgs->lpmode_timeout_performance);
1239 of_property_read_u32(np_emif,
1240 "low-power-mode-timeout-power",
1241 &cust_cfgs->lpmode_timeout_power);
1242 of_property_read_u32(np_emif,
1243 "low-power-mode-freq-threshold",
1244 &cust_cfgs->lpmode_freq_threshold);
1245 }
1246
1247 if (poll_intvl) {
1248 cust_cfgs->mask |=
1249 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1250 cust_cfgs->temp_alert_poll_interval_ms =
1251 be32_to_cpup(poll_intvl);
1252 }
1253
1254 if (of_find_property(np_emif, "extended-temp-part", &len))
1255 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1256
1257 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1258 devm_kfree(emif->dev, cust_cfgs);
1259 return;
1260 }
1261
1262 emif->plat_data->custom_configs = cust_cfgs;
1263 }
1264
of_get_ddr_info(struct device_node * np_emif,struct device_node * np_ddr,struct ddr_device_info * dev_info)1265 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1266 struct device_node *np_ddr,
1267 struct ddr_device_info *dev_info)
1268 {
1269 u32 density = 0, io_width = 0;
1270 int len;
1271
1272 if (of_find_property(np_emif, "cs1-used", &len))
1273 dev_info->cs1_used = true;
1274
1275 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1276 dev_info->cal_resistors_per_cs = true;
1277
1278 if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1279 dev_info->type = DDR_TYPE_LPDDR2_S4;
1280 else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1281 dev_info->type = DDR_TYPE_LPDDR2_S2;
1282
1283 of_property_read_u32(np_ddr, "density", &density);
1284 of_property_read_u32(np_ddr, "io-width", &io_width);
1285
1286 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1287 if (density & (density - 1))
1288 dev_info->density = 0;
1289 else
1290 dev_info->density = __fls(density) - 5;
1291
1292 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1293 if (io_width & (io_width - 1))
1294 dev_info->io_width = 0;
1295 else
1296 dev_info->io_width = __fls(io_width) - 1;
1297 }
1298
of_get_memory_device_details(struct device_node * np_emif,struct device * dev)1299 static struct emif_data * __init_or_module of_get_memory_device_details(
1300 struct device_node *np_emif, struct device *dev)
1301 {
1302 struct emif_data *emif = NULL;
1303 struct ddr_device_info *dev_info = NULL;
1304 struct emif_platform_data *pd = NULL;
1305 struct device_node *np_ddr;
1306 int len;
1307
1308 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1309 if (!np_ddr)
1310 goto error;
1311 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1312 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1313 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1314
1315 if (!emif || !pd || !dev_info) {
1316 dev_err(dev, "%s: Out of memory!!\n",
1317 __func__);
1318 goto error;
1319 }
1320
1321 emif->plat_data = pd;
1322 pd->device_info = dev_info;
1323 emif->dev = dev;
1324 emif->np_ddr = np_ddr;
1325 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1326
1327 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1328 emif->plat_data->ip_rev = EMIF_4D;
1329 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1330 emif->plat_data->ip_rev = EMIF_4D5;
1331
1332 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1333
1334 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1335 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1336
1337 of_get_ddr_info(np_emif, np_ddr, dev_info);
1338 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1339 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1340 emif->dev)) {
1341 dev_err(dev, "%s: invalid device data!!\n", __func__);
1342 goto error;
1343 }
1344 /*
1345 * For EMIF instances other than EMIF1 see if the devices connected
1346 * are exactly same as on EMIF1(which is typically the case). If so,
1347 * mark it as a duplicate of EMIF1. This will save some memory and
1348 * computation.
1349 */
1350 if (emif1 && emif1->np_ddr == np_ddr) {
1351 emif->duplicate = true;
1352 goto out;
1353 } else if (emif1) {
1354 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1355 __func__);
1356 }
1357
1358 of_get_custom_configs(np_emif, emif);
1359 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1360 emif->plat_data->device_info->type,
1361 &emif->plat_data->timings_arr_size);
1362
1363 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1364 goto out;
1365
1366 error:
1367 return NULL;
1368 out:
1369 return emif;
1370 }
1371
1372 #else
1373
of_get_memory_device_details(struct device_node * np_emif,struct device * dev)1374 static struct emif_data * __init_or_module of_get_memory_device_details(
1375 struct device_node *np_emif, struct device *dev)
1376 {
1377 return NULL;
1378 }
1379 #endif
1380
get_device_details(struct platform_device * pdev)1381 static struct emif_data *__init_or_module get_device_details(
1382 struct platform_device *pdev)
1383 {
1384 u32 size;
1385 struct emif_data *emif = NULL;
1386 struct ddr_device_info *dev_info;
1387 struct emif_custom_configs *cust_cfgs;
1388 struct emif_platform_data *pd;
1389 struct device *dev;
1390 void *temp;
1391
1392 pd = pdev->dev.platform_data;
1393 dev = &pdev->dev;
1394
1395 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1396 pd->device_info->density, pd->device_info->io_width,
1397 pd->phy_type, pd->ip_rev, dev))) {
1398 dev_err(dev, "%s: invalid device data\n", __func__);
1399 goto error;
1400 }
1401
1402 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1403 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1404 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1405
1406 if (!emif || !temp || !dev_info) {
1407 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1408 goto error;
1409 }
1410
1411 memcpy(temp, pd, sizeof(*pd));
1412 pd = temp;
1413 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1414
1415 pd->device_info = dev_info;
1416 emif->plat_data = pd;
1417 emif->dev = dev;
1418 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1419
1420 /*
1421 * For EMIF instances other than EMIF1 see if the devices connected
1422 * are exactly same as on EMIF1(which is typically the case). If so,
1423 * mark it as a duplicate of EMIF1 and skip copying timings data.
1424 * This will save some memory and some computation later.
1425 */
1426 emif->duplicate = emif1 && (memcmp(dev_info,
1427 emif1->plat_data->device_info,
1428 sizeof(struct ddr_device_info)) == 0);
1429
1430 if (emif->duplicate) {
1431 pd->timings = NULL;
1432 pd->min_tck = NULL;
1433 goto out;
1434 } else if (emif1) {
1435 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1436 __func__);
1437 }
1438
1439 /*
1440 * Copy custom configs - ignore allocation error, if any, as
1441 * custom_configs is not very critical
1442 */
1443 cust_cfgs = pd->custom_configs;
1444 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1445 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1446 if (temp)
1447 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1448 else
1449 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1450 __LINE__);
1451 pd->custom_configs = temp;
1452 }
1453
1454 /*
1455 * Copy timings and min-tck values from platform data. If it is not
1456 * available or if memory allocation fails, use JEDEC defaults
1457 */
1458 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1459 if (pd->timings) {
1460 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1461 if (temp) {
1462 memcpy(temp, pd->timings, size);
1463 pd->timings = temp;
1464 } else {
1465 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1466 __LINE__);
1467 get_default_timings(emif);
1468 }
1469 } else {
1470 get_default_timings(emif);
1471 }
1472
1473 if (pd->min_tck) {
1474 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1475 if (temp) {
1476 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1477 pd->min_tck = temp;
1478 } else {
1479 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1480 __LINE__);
1481 pd->min_tck = &lpddr2_jedec_min_tck;
1482 }
1483 } else {
1484 pd->min_tck = &lpddr2_jedec_min_tck;
1485 }
1486
1487 out:
1488 return emif;
1489
1490 error:
1491 return NULL;
1492 }
1493
emif_probe(struct platform_device * pdev)1494 static int __init_or_module emif_probe(struct platform_device *pdev)
1495 {
1496 struct emif_data *emif;
1497 struct resource *res;
1498 int irq, ret;
1499
1500 if (pdev->dev.of_node)
1501 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1502 else
1503 emif = get_device_details(pdev);
1504
1505 if (!emif) {
1506 pr_err("%s: error getting device data\n", __func__);
1507 goto error;
1508 }
1509
1510 list_add(&emif->node, &device_list);
1511 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1512
1513 /* Save pointers to each other in emif and device structures */
1514 emif->dev = &pdev->dev;
1515 platform_set_drvdata(pdev, emif);
1516
1517 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1518 emif->base = devm_ioremap_resource(emif->dev, res);
1519 if (IS_ERR(emif->base))
1520 goto error;
1521
1522 irq = platform_get_irq(pdev, 0);
1523 if (irq < 0)
1524 goto error;
1525
1526 emif_onetime_settings(emif);
1527 emif_debugfs_init(emif);
1528 disable_and_clear_all_interrupts(emif);
1529 ret = setup_interrupts(emif, irq);
1530 if (ret)
1531 goto error;
1532
1533 /* One-time actions taken on probing the first device */
1534 if (!emif1) {
1535 emif1 = emif;
1536 spin_lock_init(&emif_lock);
1537
1538 /*
1539 * TODO: register notifiers for frequency and voltage
1540 * change here once the respective frameworks are
1541 * available
1542 */
1543 }
1544
1545 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1546 __func__, emif->base, irq);
1547
1548 return 0;
1549 error:
1550 return -ENODEV;
1551 }
1552
emif_remove(struct platform_device * pdev)1553 static int __exit emif_remove(struct platform_device *pdev)
1554 {
1555 struct emif_data *emif = platform_get_drvdata(pdev);
1556
1557 emif_debugfs_exit(emif);
1558
1559 return 0;
1560 }
1561
emif_shutdown(struct platform_device * pdev)1562 static void emif_shutdown(struct platform_device *pdev)
1563 {
1564 struct emif_data *emif = platform_get_drvdata(pdev);
1565
1566 disable_and_clear_all_interrupts(emif);
1567 }
1568
get_emif_reg_values(struct emif_data * emif,u32 freq,struct emif_regs * regs)1569 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1570 struct emif_regs *regs)
1571 {
1572 u32 ip_rev, phy_type;
1573 u32 cl, type;
1574 const struct lpddr2_timings *timings;
1575 const struct lpddr2_min_tck *min_tck;
1576 const struct ddr_device_info *device_info;
1577 const struct lpddr2_addressing *addressing;
1578 struct emif_data *emif_for_calc;
1579 struct device *dev;
1580
1581 dev = emif->dev;
1582 /*
1583 * If the devices on this EMIF instance is duplicate of EMIF1,
1584 * use EMIF1 details for the calculation
1585 */
1586 emif_for_calc = emif->duplicate ? emif1 : emif;
1587 timings = get_timings_table(emif_for_calc, freq);
1588 addressing = emif_for_calc->addressing;
1589 if (!timings || !addressing) {
1590 dev_err(dev, "%s: not enough data available for %dHz",
1591 __func__, freq);
1592 return -1;
1593 }
1594
1595 device_info = emif_for_calc->plat_data->device_info;
1596 type = device_info->type;
1597 ip_rev = emif_for_calc->plat_data->ip_rev;
1598 phy_type = emif_for_calc->plat_data->phy_type;
1599
1600 min_tck = emif_for_calc->plat_data->min_tck;
1601
1602 set_ddr_clk_period(freq);
1603
1604 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1605 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1606 addressing);
1607 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1608 addressing, type);
1609 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1610 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1611
1612 cl = get_cl(emif);
1613
1614 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1615 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1616 timings, freq, cl);
1617 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1618 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1619 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1620 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1621 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1622 } else {
1623 return -1;
1624 }
1625
1626 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1627 regs->pwr_mgmt_ctrl_shdw =
1628 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1629 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1630
1631 if (ip_rev & EMIF_4D) {
1632 regs->read_idle_ctrl_shdw_normal =
1633 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1634
1635 regs->read_idle_ctrl_shdw_volt_ramp =
1636 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1637 } else if (ip_rev & EMIF_4D5) {
1638 regs->dll_calib_ctrl_shdw_normal =
1639 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1640
1641 regs->dll_calib_ctrl_shdw_volt_ramp =
1642 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1643 }
1644
1645 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1646 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1647 addressing);
1648
1649 regs->sdram_tim1_shdw_derated =
1650 get_sdram_tim_1_shdw_derated(timings, min_tck,
1651 addressing);
1652
1653 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1654 min_tck, addressing, type, ip_rev,
1655 EMIF_DERATED_TIMINGS);
1656 }
1657
1658 regs->freq = freq;
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1665 * given frequency(freq):
1666 *
1667 * As an optimisation, every EMIF instance other than EMIF1 shares the
1668 * register cache with EMIF1 if the devices connected on this instance
1669 * are same as that on EMIF1(indicated by the duplicate flag)
1670 *
1671 * If we do not have an entry corresponding to the frequency given, we
1672 * allocate a new entry and calculate the values
1673 *
1674 * Upon finding the right reg dump, save it in curr_regs. It can be
1675 * directly used for thermal de-rating and voltage ramping changes.
1676 */
get_regs(struct emif_data * emif,u32 freq)1677 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1678 {
1679 int i;
1680 struct emif_regs **regs_cache;
1681 struct emif_regs *regs = NULL;
1682 struct device *dev;
1683
1684 dev = emif->dev;
1685 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1686 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1687 return emif->curr_regs;
1688 }
1689
1690 if (emif->duplicate)
1691 regs_cache = emif1->regs_cache;
1692 else
1693 regs_cache = emif->regs_cache;
1694
1695 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1696 if (regs_cache[i]->freq == freq) {
1697 regs = regs_cache[i];
1698 dev_dbg(dev,
1699 "%s: reg dump found in reg cache for %u Hz\n",
1700 __func__, freq);
1701 break;
1702 }
1703 }
1704
1705 /*
1706 * If we don't have an entry for this frequency in the cache create one
1707 * and calculate the values
1708 */
1709 if (!regs) {
1710 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1711 if (!regs)
1712 return NULL;
1713
1714 if (get_emif_reg_values(emif, freq, regs)) {
1715 devm_kfree(emif->dev, regs);
1716 return NULL;
1717 }
1718
1719 /*
1720 * Now look for an un-used entry in the cache and save the
1721 * newly created struct. If there are no free entries
1722 * over-write the last entry
1723 */
1724 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1725 ;
1726
1727 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1728 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1729 __func__);
1730 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1731 devm_kfree(emif->dev, regs_cache[i]);
1732 }
1733 regs_cache[i] = regs;
1734 }
1735
1736 return regs;
1737 }
1738
do_volt_notify_handling(struct emif_data * emif,u32 volt_state)1739 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1740 {
1741 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1742 volt_state);
1743
1744 if (!emif->curr_regs) {
1745 dev_err(emif->dev,
1746 "%s: volt-notify before registers are ready: %d\n",
1747 __func__, volt_state);
1748 return;
1749 }
1750
1751 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1752 }
1753
1754 /*
1755 * TODO: voltage notify handling should be hooked up to
1756 * regulator framework as soon as the necessary support
1757 * is available in mainline kernel. This function is un-used
1758 * right now.
1759 */
volt_notify_handling(u32 volt_state)1760 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1761 {
1762 struct emif_data *emif;
1763
1764 spin_lock_irqsave(&emif_lock, irq_state);
1765
1766 list_for_each_entry(emif, &device_list, node)
1767 do_volt_notify_handling(emif, volt_state);
1768 do_freq_update();
1769
1770 spin_unlock_irqrestore(&emif_lock, irq_state);
1771 }
1772
do_freq_pre_notify_handling(struct emif_data * emif,u32 new_freq)1773 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1774 {
1775 struct emif_regs *regs;
1776
1777 regs = get_regs(emif, new_freq);
1778 if (!regs)
1779 return;
1780
1781 emif->curr_regs = regs;
1782
1783 /*
1784 * Update the shadow registers:
1785 * Temperature and voltage-ramp sensitive settings are also configured
1786 * in terms of DDR cycles. So, we need to update them too when there
1787 * is a freq change
1788 */
1789 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1790 __func__, new_freq);
1791 setup_registers(emif, regs);
1792 setup_temperature_sensitive_regs(emif, regs);
1793 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1794
1795 /*
1796 * Part of workaround for errata i728. See do_freq_update()
1797 * for more details
1798 */
1799 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1800 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1801 }
1802
1803 /*
1804 * TODO: frequency notify handling should be hooked up to
1805 * clock framework as soon as the necessary support is
1806 * available in mainline kernel. This function is un-used
1807 * right now.
1808 */
freq_pre_notify_handling(u32 new_freq)1809 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1810 {
1811 struct emif_data *emif;
1812
1813 /*
1814 * NOTE: we are taking the spin-lock here and releases it
1815 * only in post-notifier. This doesn't look good and
1816 * Sparse complains about it, but this seems to be
1817 * un-avoidable. We need to lock a sequence of events
1818 * that is split between EMIF and clock framework.
1819 *
1820 * 1. EMIF driver updates EMIF timings in shadow registers in the
1821 * frequency pre-notify callback from clock framework
1822 * 2. clock framework sets up the registers for the new frequency
1823 * 3. clock framework initiates a hw-sequence that updates
1824 * the frequency EMIF timings synchronously.
1825 *
1826 * All these 3 steps should be performed as an atomic operation
1827 * vis-a-vis similar sequence in the EMIF interrupt handler
1828 * for temperature events. Otherwise, there could be race
1829 * conditions that could result in incorrect EMIF timings for
1830 * a given frequency
1831 */
1832 spin_lock_irqsave(&emif_lock, irq_state);
1833
1834 list_for_each_entry(emif, &device_list, node)
1835 do_freq_pre_notify_handling(emif, new_freq);
1836 }
1837
do_freq_post_notify_handling(struct emif_data * emif)1838 static void do_freq_post_notify_handling(struct emif_data *emif)
1839 {
1840 /*
1841 * Part of workaround for errata i728. See do_freq_update()
1842 * for more details
1843 */
1844 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1845 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1846 }
1847
1848 /*
1849 * TODO: frequency notify handling should be hooked up to
1850 * clock framework as soon as the necessary support is
1851 * available in mainline kernel. This function is un-used
1852 * right now.
1853 */
freq_post_notify_handling(void)1854 static void __attribute__((unused)) freq_post_notify_handling(void)
1855 {
1856 struct emif_data *emif;
1857
1858 list_for_each_entry(emif, &device_list, node)
1859 do_freq_post_notify_handling(emif);
1860
1861 /*
1862 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1863 * for more details
1864 */
1865 spin_unlock_irqrestore(&emif_lock, irq_state);
1866 }
1867
1868 #if defined(CONFIG_OF)
1869 static const struct of_device_id emif_of_match[] = {
1870 { .compatible = "ti,emif-4d" },
1871 { .compatible = "ti,emif-4d5" },
1872 {},
1873 };
1874 MODULE_DEVICE_TABLE(of, emif_of_match);
1875 #endif
1876
1877 static struct platform_driver emif_driver = {
1878 .remove = __exit_p(emif_remove),
1879 .shutdown = emif_shutdown,
1880 .driver = {
1881 .name = "emif",
1882 .of_match_table = of_match_ptr(emif_of_match),
1883 },
1884 };
1885
1886 module_platform_driver_probe(emif_driver, emif_probe);
1887
1888 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1889 MODULE_LICENSE("GPL");
1890 MODULE_ALIAS("platform:emif");
1891 MODULE_AUTHOR("Texas Instruments Inc");
1892