1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60
61 /*
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
74
75 /*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79 #define RX_PKT_SKB_LEN 512
80
81 /*
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
87 */
88 #define MAX_TX_RECLAIM 32
89
90 /*
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94 #define MAX_RX_REFILL 16U
95
96 /*
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101
102 /*
103 * Period of the Tx queue check timer.
104 */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106
107 /*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110 #define MAX_TIMER_TX_RECLAIM 100
111
112 /*
113 * Timer index used when backing off due to memory shortage.
114 */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117 /*
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
120 */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123 /*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127 #define MAX_IMM_TX_PKT_LEN 256
128
129 /*
130 * Max size of a WR sent through a control Tx queue.
131 */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134 struct rx_sw_desc { /* SW state per Rx descriptor */
135 struct page *page;
136 dma_addr_t dma_addr;
137 };
138
139 /*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 unsigned int mtu)
150 {
151 struct sge *s = &adapter->sge;
152
153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159 /*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169 enum {
170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
173
174 /*
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
180 */
181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
183
184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
186 };
187
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
190
get_buf_addr(const struct rx_sw_desc * d)191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195
is_buf_mapped(const struct rx_sw_desc * d)196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200
201 /**
202 * txq_avail - return the number of available slots in a Tx queue
203 * @q: the Tx queue
204 *
205 * Returns the number of descriptors in a Tx queue available to write new
206 * packets.
207 */
txq_avail(const struct sge_txq * q)208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 return q->size - 1 - q->in_use;
211 }
212
213 /**
214 * fl_cap - return the capacity of a free-buffer list
215 * @fl: the FL
216 *
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
220 */
fl_cap(const struct sge_fl * fl)221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 return fl->size - 8; /* 1 descriptor = 8 buffers */
224 }
225
226 /**
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
229 * @fl: the Free List
230 *
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
233 * threshold.
234 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)235 static inline bool fl_starving(const struct adapter *adapter,
236 const struct sge_fl *fl)
237 {
238 const struct sge *s = &adapter->sge;
239
240 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242
cxgb4_map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 dma_addr_t *addr)
245 {
246 const skb_frag_t *fp, *end;
247 const struct skb_shared_info *si;
248
249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 if (dma_mapping_error(dev, *addr))
251 goto out_err;
252
253 si = skb_shinfo(skb);
254 end = &si->frags[si->nr_frags];
255
256 for (fp = si->frags; fp < end; fp++) {
257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 DMA_TO_DEVICE);
259 if (dma_mapping_error(dev, *addr))
260 goto unwind;
261 }
262 return 0;
263
264 unwind:
265 while (fp-- > si->frags)
266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273
unmap_skb(struct device * dev,const struct sk_buff * skb,const dma_addr_t * addr)274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 const dma_addr_t *addr)
276 {
277 const skb_frag_t *fp, *end;
278 const struct skb_shared_info *si;
279
280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282 si = skb_shinfo(skb);
283 end = &si->frags[si->nr_frags];
284 for (fp = si->frags; fp < end; fp++)
285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290 * deferred_unmap_destructor - unmap a packet when it is freed
291 * @skb: the packet
292 *
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
295 * freed.
296 */
deferred_unmap_destructor(struct sk_buff * skb)297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302
303 /**
304 * free_tx_desc - reclaims Tx descriptors and their buffers
305 * @adap: the adapter
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
309 *
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
312 */
free_tx_desc(struct adapter * adap,struct sge_txq * q,unsigned int n,bool unmap)313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 unsigned int n, bool unmap)
315 {
316 unsigned int cidx = q->cidx;
317 struct tx_sw_desc *d;
318
319 d = &q->sdesc[cidx];
320 while (n--) {
321 if (d->skb) { /* an SGL is present */
322 if (unmap && d->addr[0]) {
323 unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 memset(d->addr, 0, sizeof(d->addr));
325 }
326 dev_consume_skb_any(d->skb);
327 d->skb = NULL;
328 }
329 ++d;
330 if (++cidx == q->size) {
331 cidx = 0;
332 d = q->sdesc;
333 }
334 }
335 q->cidx = cidx;
336 }
337
338 /*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
reclaimable(const struct sge_txq * q)341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 hw_cidx -= q->cidx;
345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347
348 /**
349 * reclaim_completed_tx - reclaims completed TX Descriptors
350 * @adap: the adapter
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
354 *
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
358 */
reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,int maxreclaim,bool unmap)359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 int maxreclaim, bool unmap)
361 {
362 int reclaim = reclaimable(q);
363
364 if (reclaim) {
365 /*
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
368 */
369 if (maxreclaim < 0)
370 maxreclaim = MAX_TX_RECLAIM;
371 if (reclaim > maxreclaim)
372 reclaim = maxreclaim;
373
374 free_tx_desc(adap, q, reclaim, unmap);
375 q->in_use -= reclaim;
376 }
377
378 return reclaim;
379 }
380
381 /**
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 * @adap: the adapter
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
386 *
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
389 * queue locked.
390 */
cxgb4_reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,bool unmap)391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 bool unmap)
393 {
394 (void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)398 static inline int get_buf_size(struct adapter *adapter,
399 const struct rx_sw_desc *d)
400 {
401 struct sge *s = &adapter->sge;
402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 int buf_size;
404
405 switch (rx_buf_size_idx) {
406 case RX_SMALL_PG_BUF:
407 buf_size = PAGE_SIZE;
408 break;
409
410 case RX_LARGE_PG_BUF:
411 buf_size = PAGE_SIZE << s->fl_pg_order;
412 break;
413
414 case RX_SMALL_MTU_BUF:
415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 break;
417
418 case RX_LARGE_MTU_BUF:
419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 break;
421
422 default:
423 BUG();
424 }
425
426 return buf_size;
427 }
428
429 /**
430 * free_rx_bufs - free the Rx buffers on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
434 *
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
437 */
free_rx_bufs(struct adapter * adap,struct sge_fl * q,int n)438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 while (n--) {
441 struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443 if (is_buf_mapped(d))
444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 get_buf_size(adap, d),
446 PCI_DMA_FROMDEVICE);
447 put_page(d->page);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
452 }
453 }
454
455 /**
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 * @adap: the adapter
458 * @q: the SGE free list
459 *
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
462 *
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
465 */
unmap_rx_buf(struct adapter * adap,struct sge_fl * q)466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470 if (is_buf_mapped(d))
471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 d->page = NULL;
474 if (++q->cidx == q->size)
475 q->cidx = 0;
476 q->avail--;
477 }
478
ring_fl_db(struct adapter * adap,struct sge_fl * q)479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= 8) {
482 u32 val = adap->params.arch.sge_fl_db;
483
484 if (is_t4(adap->params.chip))
485 val |= PIDX_V(q->pend_cred / 8);
486 else
487 val |= PIDX_T5_V(q->pend_cred / 8);
488
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
491 */
492 wmb();
493
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
496 * mechanism.
497 */
498 if (unlikely(q->bar2_addr == NULL)) {
499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 val | QID_V(q->cntxt_id));
501 } else {
502 writel(val | QID_V(q->bar2_qid),
503 q->bar2_addr + SGE_UDB_KDOORBELL);
504
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
507 */
508 wmb();
509 }
510 q->pend_cred &= 7;
511 }
512 }
513
set_rx_sw_desc(struct rx_sw_desc * sd,struct page * pg,dma_addr_t mapping)514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 dma_addr_t mapping)
516 {
517 sd->page = pg;
518 sd->dma_addr = mapping; /* includes size low bits */
519 }
520
521 /**
522 * refill_fl - refill an SGE Rx buffer ring
523 * @adap: the adapter
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
527 *
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 * Returns the number of buffers allocated.
534 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 gfp_t gfp)
537 {
538 struct sge *s = &adap->sge;
539 struct page *pg;
540 dma_addr_t mapping;
541 unsigned int cred = q->avail;
542 __be64 *d = &q->desc[q->pidx];
543 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 int node;
545
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 goto out;
549 #endif
550
551 gfp |= __GFP_NOWARN;
552 node = dev_to_node(adap->pdev_dev);
553
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
556
557 /*
558 * Prefer large buffers
559 */
560 while (n) {
561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
565 }
566
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 PAGE_SIZE << s->fl_pg_order,
569 PCI_DMA_FROMDEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 __free_pages(pg, s->fl_pg_order);
572 q->mapping_err++;
573 goto out; /* do not try small pages for this error */
574 }
575 mapping |= RX_LARGE_PG_BUF;
576 *d++ = cpu_to_be64(mapping);
577
578 set_rx_sw_desc(sd, pg, mapping);
579 sd++;
580
581 q->avail++;
582 if (++q->pidx == q->size) {
583 q->pidx = 0;
584 sd = q->sdesc;
585 d = q->desc;
586 }
587 n--;
588 }
589
590 alloc_small_pages:
591 while (n--) {
592 pg = alloc_pages_node(node, gfp, 0);
593 if (unlikely(!pg)) {
594 q->alloc_failed++;
595 break;
596 }
597
598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 PCI_DMA_FROMDEVICE);
600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 put_page(pg);
602 q->mapping_err++;
603 goto out;
604 }
605 *d++ = cpu_to_be64(mapping);
606
607 set_rx_sw_desc(sd, pg, mapping);
608 sd++;
609
610 q->avail++;
611 if (++q->pidx == q->size) {
612 q->pidx = 0;
613 sd = q->sdesc;
614 d = q->desc;
615 }
616 }
617
618 out: cred = q->avail - cred;
619 q->pend_cred += cred;
620 ring_fl_db(adap, q);
621
622 if (unlikely(fl_starving(adap, q))) {
623 smp_wmb();
624 q->low++;
625 set_bit(q->cntxt_id - adap->sge.egr_start,
626 adap->sge.starving_fl);
627 }
628
629 return cred;
630 }
631
__refill_fl(struct adapter * adap,struct sge_fl * fl)632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 GFP_ATOMIC);
636 }
637
638 /**
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
648 *
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
655 * of the SW ring.
656 */
alloc_ring(struct device * dev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata,size_t stat_size,int node)657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 size_t sw_size, dma_addr_t *phys, void *metadata,
659 size_t stat_size, int node)
660 {
661 size_t len = nelem * elem_size + stat_size;
662 void *s = NULL;
663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665 if (!p)
666 return NULL;
667 if (sw_size) {
668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670 if (!s) {
671 dma_free_coherent(dev, len, p, *phys);
672 return NULL;
673 }
674 }
675 if (metadata)
676 *(void **)metadata = s;
677 return p;
678 }
679
680 /**
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
683 *
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
686 */
sgl_len(unsigned int n)687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
696 *
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 * (n-1) is odd ...
704 */
705 n--;
706 return (3 * n) / 2 + (n & 1) + 2;
707 }
708
709 /**
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
712 *
713 * Returns the number of Tx descriptors needed for the supplied number
714 * of flits.
715 */
flits_to_desc(unsigned int n)716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 return DIV_ROUND_UP(n, 8);
720 }
721
722 /**
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
724 * @skb: the packet
725 * @chip_ver: chip version
726 *
727 * Returns whether an Ethernet packet is small enough to fit as
728 * immediate data. Return value corresponds to headroom required.
729 */
is_eth_imm(const struct sk_buff * skb,unsigned int chip_ver)730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 int hdrlen = 0;
733
734 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 chip_ver > CHELSIO_T5) {
736 hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 hdrlen += sizeof(struct cpl_tx_pkt_core);
738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 return 0;
740 } else {
741 hdrlen = skb_shinfo(skb)->gso_size ?
742 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 hdrlen += sizeof(struct cpl_tx_pkt);
744 }
745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 return hdrlen;
747 return 0;
748 }
749
750 /**
751 * calc_tx_flits - calculate the number of flits for a packet Tx WR
752 * @skb: the packet
753 * @chip_ver: chip version
754 *
755 * Returns the number of flits needed for a Tx WR for the given Ethernet
756 * packet, including the needed WR and CPL headers.
757 */
calc_tx_flits(const struct sk_buff * skb,unsigned int chip_ver)758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 unsigned int chip_ver)
760 {
761 unsigned int flits;
762 int hdrlen = is_eth_imm(skb, chip_ver);
763
764 /* If the skb is small enough, we can pump it out as a work request
765 * with only immediate data. In that case we just have to have the
766 * TX Packet header plus the skb data in the Work Request.
767 */
768
769 if (hdrlen)
770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772 /* Otherwise, we're going to have to construct a Scatter gather list
773 * of the skb body and fragments. We also include the flits necessary
774 * for the TX Packet Work Request and CPL. We always have a firmware
775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 * with an embedded TX Packet Write CPL message.
779 */
780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 if (skb_shinfo(skb)->gso_size) {
782 if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 sizeof(struct cpl_tx_tnl_lso);
785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 u32 pkt_hdrlen;
787
788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 skb_headlen(skb));
790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 round_up(pkt_hdrlen, 16);
792 } else {
793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 sizeof(struct cpl_tx_pkt_lso_core);
795 }
796
797 hdrlen += sizeof(struct cpl_tx_pkt_core);
798 flits += (hdrlen / sizeof(__be64));
799 } else {
800 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 }
803 return flits;
804 }
805
806 /**
807 * calc_tx_descs - calculate the number of Tx descriptors for a packet
808 * @skb: the packet
809 * @chip_ver: chip version
810 *
811 * Returns the number of Tx descriptors needed for the given Ethernet
812 * packet, including the needed WR and CPL headers.
813 */
calc_tx_descs(const struct sk_buff * skb,unsigned int chip_ver)814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815 unsigned int chip_ver)
816 {
817 return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 }
819
820 /**
821 * cxgb4_write_sgl - populate a scatter/gather list for a packet
822 * @skb: the packet
823 * @q: the Tx queue we are writing into
824 * @sgl: starting location for writing the SGL
825 * @end: points right after the end of the SGL
826 * @start: start offset into skb main-body data to include in the SGL
827 * @addr: the list of bus addresses for the SGL elements
828 *
829 * Generates a gather list for the buffers that make up a packet.
830 * The caller must provide adequate space for the SGL that will be written.
831 * The SGL includes all of the packet's page fragments and the data in its
832 * main body except for the first @start bytes. @sgl must be 16-byte
833 * aligned and within a Tx descriptor with available space. @end points
834 * right after the end of the SGL but does not account for any potential
835 * wrap around, i.e., @end > @sgl.
836 */
cxgb4_write_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839 const dma_addr_t *addr)
840 {
841 unsigned int i, len;
842 struct ulptx_sge_pair *to;
843 const struct skb_shared_info *si = skb_shinfo(skb);
844 unsigned int nfrags = si->nr_frags;
845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846
847 len = skb_headlen(skb) - start;
848 if (likely(len)) {
849 sgl->len0 = htonl(len);
850 sgl->addr0 = cpu_to_be64(addr[0] + start);
851 nfrags++;
852 } else {
853 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854 sgl->addr0 = cpu_to_be64(addr[1]);
855 }
856
857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858 ULPTX_NSGE_V(nfrags));
859 if (likely(--nfrags == 0))
860 return;
861 /*
862 * Most of the complexity below deals with the possibility we hit the
863 * end of the queue in the middle of writing the SGL. For this case
864 * only we create the SGL in a temporary buffer and then copy it.
865 */
866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867
868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871 to->addr[0] = cpu_to_be64(addr[i]);
872 to->addr[1] = cpu_to_be64(addr[++i]);
873 }
874 if (nfrags) {
875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876 to->len[1] = cpu_to_be32(0);
877 to->addr[0] = cpu_to_be64(addr[i + 1]);
878 }
879 if (unlikely((u8 *)end > (u8 *)q->stat)) {
880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881
882 if (likely(part0))
883 memcpy(sgl->sge, buf, part0);
884 part1 = (u8 *)end - (u8 *)q->stat;
885 memcpy(q->desc, (u8 *)buf + part0, part1);
886 end = (void *)q->desc + part1;
887 }
888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
889 *end = 0;
890 }
891 EXPORT_SYMBOL(cxgb4_write_sgl);
892
893 /* cxgb4_write_partial_sgl - populate SGL for partial packet
894 * @skb: the packet
895 * @q: the Tx queue we are writing into
896 * @sgl: starting location for writing the SGL
897 * @end: points right after the end of the SGL
898 * @addr: the list of bus addresses for the SGL elements
899 * @start: start offset in the SKB where partial data starts
900 * @len: length of data from @start to send out
901 *
902 * This API will handle sending out partial data of a skb if required.
903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
904 * and @len will decide how much data after @start offset to send out.
905 */
cxgb4_write_partial_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,const dma_addr_t * addr,u32 start,u32 len)906 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
907 struct ulptx_sgl *sgl, u64 *end,
908 const dma_addr_t *addr, u32 start, u32 len)
909 {
910 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
911 u32 frag_size, skb_linear_data_len = skb_headlen(skb);
912 struct skb_shared_info *si = skb_shinfo(skb);
913 u8 i = 0, frag_idx = 0, nfrags = 0;
914 skb_frag_t *frag;
915
916 /* Fill the first SGL either from linear data or from partial
917 * frag based on @start.
918 */
919 if (unlikely(start < skb_linear_data_len)) {
920 frag_size = min(len, skb_linear_data_len - start);
921 sgl->len0 = htonl(frag_size);
922 sgl->addr0 = cpu_to_be64(addr[0] + start);
923 len -= frag_size;
924 nfrags++;
925 } else {
926 start -= skb_linear_data_len;
927 frag = &si->frags[frag_idx];
928 frag_size = skb_frag_size(frag);
929 /* find the first frag */
930 while (start >= frag_size) {
931 start -= frag_size;
932 frag_idx++;
933 frag = &si->frags[frag_idx];
934 frag_size = skb_frag_size(frag);
935 }
936
937 frag_size = min(len, skb_frag_size(frag) - start);
938 sgl->len0 = cpu_to_be32(frag_size);
939 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
940 len -= frag_size;
941 nfrags++;
942 frag_idx++;
943 }
944
945 /* If the entire partial data fit in one SGL, then send it out
946 * now.
947 */
948 if (!len)
949 goto done;
950
951 /* Most of the complexity below deals with the possibility we hit the
952 * end of the queue in the middle of writing the SGL. For this case
953 * only we create the SGL in a temporary buffer and then copy it.
954 */
955 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
956
957 /* If the skb couldn't fit in first SGL completely, fill the
958 * rest of the frags in subsequent SGLs. Note that each SGL
959 * pair can store 2 frags.
960 */
961 while (len) {
962 frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
963 to->len[i & 1] = cpu_to_be32(frag_size);
964 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
965 if (i && (i & 1))
966 to++;
967 nfrags++;
968 frag_idx++;
969 i++;
970 len -= frag_size;
971 }
972
973 /* If we ended in an odd boundary, then set the second SGL's
974 * length in the pair to 0.
975 */
976 if (i & 1)
977 to->len[1] = cpu_to_be32(0);
978
979 /* Copy from temporary buffer to Tx ring, in case we hit the
980 * end of the queue in the middle of writing the SGL.
981 */
982 if (unlikely((u8 *)end > (u8 *)q->stat)) {
983 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
984
985 if (likely(part0))
986 memcpy(sgl->sge, buf, part0);
987 part1 = (u8 *)end - (u8 *)q->stat;
988 memcpy(q->desc, (u8 *)buf + part0, part1);
989 end = (void *)q->desc + part1;
990 }
991
992 /* 0-pad to multiple of 16 */
993 if ((uintptr_t)end & 8)
994 *end = 0;
995 done:
996 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
997 ULPTX_NSGE_V(nfrags));
998 }
999 EXPORT_SYMBOL(cxgb4_write_partial_sgl);
1000
1001 /* This function copies 64 byte coalesced work request to
1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
1003 * data from the FIFO instead of from Host.
1004 */
cxgb_pio_copy(u64 __iomem * dst,u64 * src)1005 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
1006 {
1007 int count = 8;
1008
1009 while (count) {
1010 writeq(*src, dst);
1011 src++;
1012 dst++;
1013 count--;
1014 }
1015 }
1016
1017 /**
1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019 * @adap: the adapter
1020 * @q: the Tx queue
1021 * @n: number of new descriptors to give to HW
1022 *
1023 * Ring the doorbel for a Tx queue.
1024 */
cxgb4_ring_tx_db(struct adapter * adap,struct sge_txq * q,int n)1025 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1026 {
1027 /* Make sure that all writes to the TX Descriptors are committed
1028 * before we tell the hardware about them.
1029 */
1030 wmb();
1031
1032 /* If we don't have access to the new User Doorbell (T5+), use the old
1033 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1034 */
1035 if (unlikely(q->bar2_addr == NULL)) {
1036 u32 val = PIDX_V(n);
1037 unsigned long flags;
1038
1039 /* For T4 we need to participate in the Doorbell Recovery
1040 * mechanism.
1041 */
1042 spin_lock_irqsave(&q->db_lock, flags);
1043 if (!q->db_disabled)
1044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1045 QID_V(q->cntxt_id) | val);
1046 else
1047 q->db_pidx_inc += n;
1048 q->db_pidx = q->pidx;
1049 spin_unlock_irqrestore(&q->db_lock, flags);
1050 } else {
1051 u32 val = PIDX_T5_V(n);
1052
1053 /* T4 and later chips share the same PIDX field offset within
1054 * the doorbell, but T5 and later shrank the field in order to
1055 * gain a bit for Doorbell Priority. The field was absurdly
1056 * large in the first place (14 bits) so we just use the T5
1057 * and later limits and warn if a Queue ID is too large.
1058 */
1059 WARN_ON(val & DBPRIO_F);
1060
1061 /* If we're only writing a single TX Descriptor and we can use
1062 * Inferred QID registers, we can use the Write Combining
1063 * Gather Buffer; otherwise we use the simple doorbell.
1064 */
1065 if (n == 1 && q->bar2_qid == 0) {
1066 int index = (q->pidx
1067 ? (q->pidx - 1)
1068 : (q->size - 1));
1069 u64 *wr = (u64 *)&q->desc[index];
1070
1071 cxgb_pio_copy((u64 __iomem *)
1072 (q->bar2_addr + SGE_UDB_WCDOORBELL),
1073 wr);
1074 } else {
1075 writel(val | QID_V(q->bar2_qid),
1076 q->bar2_addr + SGE_UDB_KDOORBELL);
1077 }
1078
1079 /* This Write Memory Barrier will force the write to the User
1080 * Doorbell area to be flushed. This is needed to prevent
1081 * writes on different CPUs for the same queue from hitting
1082 * the adapter out of order. This is required when some Work
1083 * Requests take the Write Combine Gather Buffer path (user
1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085 * take the traditional path where we simply increment the
1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087 * hardware DMA read the actual Work Request.
1088 */
1089 wmb();
1090 }
1091 }
1092 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1093
1094 /**
1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1096 * @skb: the packet
1097 * @q: the Tx queue where the packet will be inlined
1098 * @pos: starting position in the Tx queue where to inline the packet
1099 *
1100 * Inline a packet's contents directly into Tx descriptors, starting at
1101 * the given position within the Tx DMA ring.
1102 * Most of the complexity of this operation is dealing with wrap arounds
1103 * in the middle of the packet we want to inline.
1104 */
cxgb4_inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * q,void * pos)1105 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1106 const struct sge_txq *q, void *pos)
1107 {
1108 int left = (void *)q->stat - pos;
1109 u64 *p;
1110
1111 if (likely(skb->len <= left)) {
1112 if (likely(!skb->data_len))
1113 skb_copy_from_linear_data(skb, pos, skb->len);
1114 else
1115 skb_copy_bits(skb, 0, pos, skb->len);
1116 pos += skb->len;
1117 } else {
1118 skb_copy_bits(skb, 0, pos, left);
1119 skb_copy_bits(skb, left, q->desc, skb->len - left);
1120 pos = (void *)q->desc + (skb->len - left);
1121 }
1122
1123 /* 0-pad to multiple of 16 */
1124 p = PTR_ALIGN(pos, 8);
1125 if ((uintptr_t)p & 8)
1126 *p = 0;
1127 }
1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1129
inline_tx_skb_header(const struct sk_buff * skb,const struct sge_txq * q,void * pos,int length)1130 static void *inline_tx_skb_header(const struct sk_buff *skb,
1131 const struct sge_txq *q, void *pos,
1132 int length)
1133 {
1134 u64 *p;
1135 int left = (void *)q->stat - pos;
1136
1137 if (likely(length <= left)) {
1138 memcpy(pos, skb->data, length);
1139 pos += length;
1140 } else {
1141 memcpy(pos, skb->data, left);
1142 memcpy(q->desc, skb->data + left, length - left);
1143 pos = (void *)q->desc + (length - left);
1144 }
1145 /* 0-pad to multiple of 16 */
1146 p = PTR_ALIGN(pos, 8);
1147 if ((uintptr_t)p & 8) {
1148 *p = 0;
1149 return p + 1;
1150 }
1151 return p;
1152 }
1153
1154 /*
1155 * Figure out what HW csum a packet wants and return the appropriate control
1156 * bits.
1157 */
hwcsum(enum chip_type chip,const struct sk_buff * skb)1158 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1159 {
1160 int csum_type;
1161 bool inner_hdr_csum = false;
1162 u16 proto, ver;
1163
1164 if (skb->encapsulation &&
1165 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1166 inner_hdr_csum = true;
1167
1168 if (inner_hdr_csum) {
1169 ver = inner_ip_hdr(skb)->version;
1170 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1171 inner_ipv6_hdr(skb)->nexthdr;
1172 } else {
1173 ver = ip_hdr(skb)->version;
1174 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1175 ipv6_hdr(skb)->nexthdr;
1176 }
1177
1178 if (ver == 4) {
1179 if (proto == IPPROTO_TCP)
1180 csum_type = TX_CSUM_TCPIP;
1181 else if (proto == IPPROTO_UDP)
1182 csum_type = TX_CSUM_UDPIP;
1183 else {
1184 nocsum: /*
1185 * unknown protocol, disable HW csum
1186 * and hope a bad packet is detected
1187 */
1188 return TXPKT_L4CSUM_DIS_F;
1189 }
1190 } else {
1191 /*
1192 * this doesn't work with extension headers
1193 */
1194 if (proto == IPPROTO_TCP)
1195 csum_type = TX_CSUM_TCPIP6;
1196 else if (proto == IPPROTO_UDP)
1197 csum_type = TX_CSUM_UDPIP6;
1198 else
1199 goto nocsum;
1200 }
1201
1202 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1203 int eth_hdr_len, l4_len;
1204 u64 hdr_len;
1205
1206 if (inner_hdr_csum) {
1207 /* This allows checksum offload for all encapsulated
1208 * packets like GRE etc..
1209 */
1210 l4_len = skb_inner_network_header_len(skb);
1211 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1212 } else {
1213 l4_len = skb_network_header_len(skb);
1214 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1215 }
1216 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1217
1218 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1219 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1220 else
1221 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1222 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1223 } else {
1224 int start = skb_transport_offset(skb);
1225
1226 return TXPKT_CSUM_TYPE_V(csum_type) |
1227 TXPKT_CSUM_START_V(start) |
1228 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1229 }
1230 }
1231
eth_txq_stop(struct sge_eth_txq * q)1232 static void eth_txq_stop(struct sge_eth_txq *q)
1233 {
1234 netif_tx_stop_queue(q->txq);
1235 q->q.stops++;
1236 }
1237
txq_advance(struct sge_txq * q,unsigned int n)1238 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1239 {
1240 q->in_use += n;
1241 q->pidx += n;
1242 if (q->pidx >= q->size)
1243 q->pidx -= q->size;
1244 }
1245
1246 #ifdef CONFIG_CHELSIO_T4_FCOE
1247 static inline int
cxgb_fcoe_offload(struct sk_buff * skb,struct adapter * adap,const struct port_info * pi,u64 * cntrl)1248 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1249 const struct port_info *pi, u64 *cntrl)
1250 {
1251 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1252
1253 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1254 return 0;
1255
1256 if (skb->protocol != htons(ETH_P_FCOE))
1257 return 0;
1258
1259 skb_reset_mac_header(skb);
1260 skb->mac_len = sizeof(struct ethhdr);
1261
1262 skb_set_network_header(skb, skb->mac_len);
1263 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1264
1265 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1266 return -ENOTSUPP;
1267
1268 /* FC CRC offload */
1269 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1270 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1274 return 0;
1275 }
1276 #endif /* CONFIG_CHELSIO_T4_FCOE */
1277
1278 /* Returns tunnel type if hardware supports offloading of the same.
1279 * It is called only for T5 and onwards.
1280 */
cxgb_encap_offload_supported(struct sk_buff * skb)1281 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1282 {
1283 u8 l4_hdr = 0;
1284 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1285 struct port_info *pi = netdev_priv(skb->dev);
1286 struct adapter *adapter = pi->adapter;
1287
1288 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1289 skb->inner_protocol != htons(ETH_P_TEB))
1290 return tnl_type;
1291
1292 switch (vlan_get_protocol(skb)) {
1293 case htons(ETH_P_IP):
1294 l4_hdr = ip_hdr(skb)->protocol;
1295 break;
1296 case htons(ETH_P_IPV6):
1297 l4_hdr = ipv6_hdr(skb)->nexthdr;
1298 break;
1299 default:
1300 return tnl_type;
1301 }
1302
1303 switch (l4_hdr) {
1304 case IPPROTO_UDP:
1305 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1306 tnl_type = TX_TNL_TYPE_VXLAN;
1307 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1308 tnl_type = TX_TNL_TYPE_GENEVE;
1309 break;
1310 default:
1311 return tnl_type;
1312 }
1313
1314 return tnl_type;
1315 }
1316
t6_fill_tnl_lso(struct sk_buff * skb,struct cpl_tx_tnl_lso * tnl_lso,enum cpl_tx_tnl_lso_type tnl_type)1317 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1318 struct cpl_tx_tnl_lso *tnl_lso,
1319 enum cpl_tx_tnl_lso_type tnl_type)
1320 {
1321 u32 val;
1322 int in_eth_xtra_len;
1323 int l3hdr_len = skb_network_header_len(skb);
1324 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1325 const struct skb_shared_info *ssi = skb_shinfo(skb);
1326 bool v6 = (ip_hdr(skb)->version == 6);
1327
1328 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1329 CPL_TX_TNL_LSO_FIRST_F |
1330 CPL_TX_TNL_LSO_LAST_F |
1331 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1334 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1335 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1336 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1337 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1338
1339 tnl_lso->IpIdOffsetOut = 0;
1340
1341 /* Get the tunnel header length */
1342 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1343 in_eth_xtra_len = skb_inner_network_header(skb) -
1344 skb_inner_mac_header(skb) - ETH_HLEN;
1345
1346 switch (tnl_type) {
1347 case TX_TNL_TYPE_VXLAN:
1348 case TX_TNL_TYPE_GENEVE:
1349 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1352 break;
1353 default:
1354 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1355 break;
1356 }
1357
1358 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1361
1362 tnl_lso->r1 = 0;
1363
1364 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1368 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1369
1370 tnl_lso->IpIdOffset = htons(0);
1371
1372 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1373 tnl_lso->TCPSeqOffset = htonl(0);
1374 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1375 }
1376
write_tso_wr(struct adapter * adap,struct sk_buff * skb,struct cpl_tx_pkt_lso_core * lso)1377 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1378 struct cpl_tx_pkt_lso_core *lso)
1379 {
1380 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1381 int l3hdr_len = skb_network_header_len(skb);
1382 const struct skb_shared_info *ssi;
1383 bool ipv6 = false;
1384
1385 ssi = skb_shinfo(skb);
1386 if (ssi->gso_type & SKB_GSO_TCPV6)
1387 ipv6 = true;
1388
1389 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1390 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1391 LSO_IPV6_V(ipv6) |
1392 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1393 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1395 lso->ipid_ofst = htons(0);
1396 lso->mss = htons(ssi->gso_size);
1397 lso->seqno_offset = htonl(0);
1398 if (is_t4(adap->params.chip))
1399 lso->len = htonl(skb->len);
1400 else
1401 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1402
1403 return (void *)(lso + 1);
1404 }
1405
1406 /**
1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408 * @adap: the adapter
1409 * @eq: the Ethernet TX Queue
1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1411 *
1412 * We're typically called here to update the state of an Ethernet TX
1413 * Queue with respect to the hardware's progress in consuming the TX
1414 * Work Requests that we've put on that Egress Queue. This happens
1415 * when we get Egress Queue Update messages and also prophylactically
1416 * in regular timer-based Ethernet TX Queue maintenance.
1417 */
t4_sge_eth_txq_egress_update(struct adapter * adap,struct sge_eth_txq * eq,int maxreclaim)1418 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1419 int maxreclaim)
1420 {
1421 unsigned int reclaimed, hw_cidx;
1422 struct sge_txq *q = &eq->q;
1423 int hw_in_use;
1424
1425 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1426 return 0;
1427
1428 /* Reclaim pending completed TX Descriptors. */
1429 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1430
1431 hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1432 hw_in_use = q->pidx - hw_cidx;
1433 if (hw_in_use < 0)
1434 hw_in_use += q->size;
1435
1436 /* If the TX Queue is currently stopped and there's now more than half
1437 * the queue available, restart it. Otherwise bail out since the rest
1438 * of what we want do here is with the possibility of shipping any
1439 * currently buffered Coalesced TX Work Request.
1440 */
1441 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1442 netif_tx_wake_queue(eq->txq);
1443 eq->q.restarts++;
1444 }
1445
1446 __netif_tx_unlock(eq->txq);
1447 return reclaimed;
1448 }
1449
cxgb4_validate_skb(struct sk_buff * skb,struct net_device * dev,u32 min_pkt_len)1450 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1451 struct net_device *dev,
1452 u32 min_pkt_len)
1453 {
1454 u32 max_pkt_len;
1455
1456 /* The chip min packet length is 10 octets but some firmware
1457 * commands have a minimum packet length requirement. So, play
1458 * safe and reject anything shorter than @min_pkt_len.
1459 */
1460 if (unlikely(skb->len < min_pkt_len))
1461 return -EINVAL;
1462
1463 /* Discard the packet if the length is greater than mtu */
1464 max_pkt_len = ETH_HLEN + dev->mtu;
1465
1466 if (skb_vlan_tagged(skb))
1467 max_pkt_len += VLAN_HLEN;
1468
1469 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1470 return -EINVAL;
1471
1472 return 0;
1473 }
1474
write_eo_udp_wr(struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len)1475 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1476 u32 hdr_len)
1477 {
1478 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1479 wr->u.udpseg.ethlen = skb_network_offset(skb);
1480 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1481 wr->u.udpseg.udplen = sizeof(struct udphdr);
1482 wr->u.udpseg.rtplen = 0;
1483 wr->u.udpseg.r4 = 0;
1484 if (skb_shinfo(skb)->gso_size)
1485 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1486 else
1487 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1488 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1489 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1490
1491 return (void *)(wr + 1);
1492 }
1493
1494 /**
1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1496 * @skb: the packet
1497 * @dev: the egress net device
1498 *
1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1500 */
cxgb4_eth_xmit(struct sk_buff * skb,struct net_device * dev)1501 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1502 {
1503 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1504 bool ptp_enabled = is_ptp_enabled(skb, dev);
1505 unsigned int last_desc, flits, ndesc;
1506 u32 wr_mid, ctrl0, op, sgl_off = 0;
1507 const struct skb_shared_info *ssi;
1508 int len, qidx, credits, ret, left;
1509 struct tx_sw_desc *sgl_sdesc;
1510 struct fw_eth_tx_eo_wr *eowr;
1511 struct fw_eth_tx_pkt_wr *wr;
1512 struct cpl_tx_pkt_core *cpl;
1513 const struct port_info *pi;
1514 bool immediate = false;
1515 u64 cntrl, *end, *sgl;
1516 struct sge_eth_txq *q;
1517 unsigned int chip_ver;
1518 struct adapter *adap;
1519
1520 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1521 if (ret)
1522 goto out_free;
1523
1524 pi = netdev_priv(dev);
1525 adap = pi->adapter;
1526 ssi = skb_shinfo(skb);
1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528 if (xfrm_offload(skb) && !ssi->gso_size)
1529 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1530 #endif /* CHELSIO_IPSEC_INLINE */
1531
1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533 if (cxgb4_is_ktls_skb(skb) &&
1534 (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb))))
1535 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1536 #endif /* CHELSIO_TLS_DEVICE */
1537
1538 qidx = skb_get_queue_mapping(skb);
1539 if (ptp_enabled) {
1540 if (!(adap->ptp_tx_skb)) {
1541 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1542 adap->ptp_tx_skb = skb_get(skb);
1543 } else {
1544 goto out_free;
1545 }
1546 q = &adap->sge.ptptxq;
1547 } else {
1548 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1549 }
1550 skb_tx_timestamp(skb);
1551
1552 reclaim_completed_tx(adap, &q->q, -1, true);
1553 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1554
1555 #ifdef CONFIG_CHELSIO_T4_FCOE
1556 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1557 if (unlikely(ret == -EOPNOTSUPP))
1558 goto out_free;
1559 #endif /* CONFIG_CHELSIO_T4_FCOE */
1560
1561 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562 flits = calc_tx_flits(skb, chip_ver);
1563 ndesc = flits_to_desc(flits);
1564 credits = txq_avail(&q->q) - ndesc;
1565
1566 if (unlikely(credits < 0)) {
1567 eth_txq_stop(q);
1568 dev_err(adap->pdev_dev,
1569 "%s: Tx ring %u full while queue awake!\n",
1570 dev->name, qidx);
1571 return NETDEV_TX_BUSY;
1572 }
1573
1574 if (is_eth_imm(skb, chip_ver))
1575 immediate = true;
1576
1577 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1578 tnl_type = cxgb_encap_offload_supported(skb);
1579
1580 last_desc = q->q.pidx + ndesc - 1;
1581 if (last_desc >= q->q.size)
1582 last_desc -= q->q.size;
1583 sgl_sdesc = &q->q.sdesc[last_desc];
1584
1585 if (!immediate &&
1586 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1587 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1588 q->mapping_err++;
1589 goto out_free;
1590 }
1591
1592 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1593 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1594 /* After we're done injecting the Work Request for this
1595 * packet, we'll be below our "stop threshold" so stop the TX
1596 * Queue now and schedule a request for an SGE Egress Queue
1597 * Update message. The queue will get started later on when
1598 * the firmware processes this Work Request and sends us an
1599 * Egress Queue Status Update message indicating that space
1600 * has opened up.
1601 */
1602 eth_txq_stop(q);
1603 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1604 }
1605
1606 wr = (void *)&q->q.desc[q->q.pidx];
1607 eowr = (void *)&q->q.desc[q->q.pidx];
1608 wr->equiq_to_len16 = htonl(wr_mid);
1609 wr->r3 = cpu_to_be64(0);
1610 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1611 end = (u64 *)eowr + flits;
1612 else
1613 end = (u64 *)wr + flits;
1614
1615 len = immediate ? skb->len : 0;
1616 len += sizeof(*cpl);
1617 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1618 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1619 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1620
1621 if (tnl_type)
1622 len += sizeof(*tnl_lso);
1623 else
1624 len += sizeof(*lso);
1625
1626 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1627 FW_WR_IMMDLEN_V(len));
1628 if (tnl_type) {
1629 struct iphdr *iph = ip_hdr(skb);
1630
1631 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1632 cpl = (void *)(tnl_lso + 1);
1633 /* Driver is expected to compute partial checksum that
1634 * does not include the IP Total Length.
1635 */
1636 if (iph->version == 4) {
1637 iph->check = 0;
1638 iph->tot_len = 0;
1639 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1640 }
1641 if (skb->ip_summed == CHECKSUM_PARTIAL)
1642 cntrl = hwcsum(adap->params.chip, skb);
1643 } else {
1644 cpl = write_tso_wr(adap, skb, lso);
1645 cntrl = hwcsum(adap->params.chip, skb);
1646 }
1647 sgl = (u64 *)(cpl + 1); /* sgl start here */
1648 q->tso++;
1649 q->tx_cso += ssi->gso_segs;
1650 } else if (ssi->gso_size) {
1651 u64 *start;
1652 u32 hdrlen;
1653
1654 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1655 len += hdrlen;
1656 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1657 FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1658 cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1659 cntrl = hwcsum(adap->params.chip, skb);
1660
1661 start = (u64 *)(cpl + 1);
1662 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1663 hdrlen);
1664 if (unlikely(start > sgl)) {
1665 left = (u8 *)end - (u8 *)q->q.stat;
1666 end = (void *)q->q.desc + left;
1667 }
1668 sgl_off = hdrlen;
1669 q->uso++;
1670 q->tx_cso += ssi->gso_segs;
1671 } else {
1672 if (ptp_enabled)
1673 op = FW_PTP_TX_PKT_WR;
1674 else
1675 op = FW_ETH_TX_PKT_WR;
1676 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1677 FW_WR_IMMDLEN_V(len));
1678 cpl = (void *)(wr + 1);
1679 sgl = (u64 *)(cpl + 1);
1680 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1681 cntrl = hwcsum(adap->params.chip, skb) |
1682 TXPKT_IPCSUM_DIS_F;
1683 q->tx_cso++;
1684 }
1685 }
1686
1687 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1688 /* If current position is already at the end of the
1689 * txq, reset the current to point to start of the queue
1690 * and update the end ptr as well.
1691 */
1692 left = (u8 *)end - (u8 *)q->q.stat;
1693 end = (void *)q->q.desc + left;
1694 sgl = (void *)q->q.desc;
1695 }
1696
1697 if (skb_vlan_tag_present(skb)) {
1698 q->vlan_ins++;
1699 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1700 #ifdef CONFIG_CHELSIO_T4_FCOE
1701 if (skb->protocol == htons(ETH_P_FCOE))
1702 cntrl |= TXPKT_VLAN_V(
1703 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1704 #endif /* CONFIG_CHELSIO_T4_FCOE */
1705 }
1706
1707 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1708 TXPKT_PF_V(adap->pf);
1709 if (ptp_enabled)
1710 ctrl0 |= TXPKT_TSTAMP_F;
1711 #ifdef CONFIG_CHELSIO_T4_DCB
1712 if (is_t4(adap->params.chip))
1713 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1714 else
1715 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1716 #endif
1717 cpl->ctrl0 = htonl(ctrl0);
1718 cpl->pack = htons(0);
1719 cpl->len = htons(skb->len);
1720 cpl->ctrl1 = cpu_to_be64(cntrl);
1721
1722 if (immediate) {
1723 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1724 dev_consume_skb_any(skb);
1725 } else {
1726 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1727 sgl_sdesc->addr);
1728 skb_orphan(skb);
1729 sgl_sdesc->skb = skb;
1730 }
1731
1732 txq_advance(&q->q, ndesc);
1733
1734 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1735 return NETDEV_TX_OK;
1736
1737 out_free:
1738 dev_kfree_skb_any(skb);
1739 return NETDEV_TX_OK;
1740 }
1741
1742 /* Constants ... */
1743 enum {
1744 /* Egress Queue sizes, producer and consumer indices are all in units
1745 * of Egress Context Units bytes. Note that as far as the hardware is
1746 * concerned, the free list is an Egress Queue (the host produces free
1747 * buffers which the hardware consumes) and free list entries are
1748 * 64-bit PCI DMA addresses.
1749 */
1750 EQ_UNIT = SGE_EQ_IDXSIZE,
1751 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1752 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1753
1754 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1755 sizeof(struct cpl_tx_pkt_lso_core) +
1756 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1757 };
1758
1759 /**
1760 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1761 * @skb: the packet
1762 *
1763 * Returns whether an Ethernet packet is small enough to fit completely as
1764 * immediate data.
1765 */
t4vf_is_eth_imm(const struct sk_buff * skb)1766 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1767 {
1768 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1769 * which does not accommodate immediate data. We could dike out all
1770 * of the support code for immediate data but that would tie our hands
1771 * too much if we ever want to enhace the firmware. It would also
1772 * create more differences between the PF and VF Drivers.
1773 */
1774 return false;
1775 }
1776
1777 /**
1778 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1779 * @skb: the packet
1780 *
1781 * Returns the number of flits needed for a TX Work Request for the
1782 * given Ethernet packet, including the needed WR and CPL headers.
1783 */
t4vf_calc_tx_flits(const struct sk_buff * skb)1784 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1785 {
1786 unsigned int flits;
1787
1788 /* If the skb is small enough, we can pump it out as a work request
1789 * with only immediate data. In that case we just have to have the
1790 * TX Packet header plus the skb data in the Work Request.
1791 */
1792 if (t4vf_is_eth_imm(skb))
1793 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1794 sizeof(__be64));
1795
1796 /* Otherwise, we're going to have to construct a Scatter gather list
1797 * of the skb body and fragments. We also include the flits necessary
1798 * for the TX Packet Work Request and CPL. We always have a firmware
1799 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1800 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1801 * message or, if we're doing a Large Send Offload, an LSO CPL message
1802 * with an embedded TX Packet Write CPL message.
1803 */
1804 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1805 if (skb_shinfo(skb)->gso_size)
1806 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1807 sizeof(struct cpl_tx_pkt_lso_core) +
1808 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1809 else
1810 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1811 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1812 return flits;
1813 }
1814
1815 /**
1816 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1817 * @skb: the packet
1818 * @dev: the egress net device
1819 *
1820 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1821 */
cxgb4_vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1822 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1823 struct net_device *dev)
1824 {
1825 unsigned int last_desc, flits, ndesc;
1826 const struct skb_shared_info *ssi;
1827 struct fw_eth_tx_pkt_vm_wr *wr;
1828 struct tx_sw_desc *sgl_sdesc;
1829 struct cpl_tx_pkt_core *cpl;
1830 const struct port_info *pi;
1831 struct sge_eth_txq *txq;
1832 struct adapter *adapter;
1833 int qidx, credits, ret;
1834 size_t fw_hdr_copy_len;
1835 u64 cntrl, *end;
1836 u32 wr_mid;
1837
1838 /* The chip minimum packet length is 10 octets but the firmware
1839 * command that we are using requires that we copy the Ethernet header
1840 * (including the VLAN tag) into the header so we reject anything
1841 * smaller than that ...
1842 */
1843 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1844 sizeof(wr->ethtype) + sizeof(wr->vlantci);
1845 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1846 if (ret)
1847 goto out_free;
1848
1849 /* Figure out which TX Queue we're going to use. */
1850 pi = netdev_priv(dev);
1851 adapter = pi->adapter;
1852 qidx = skb_get_queue_mapping(skb);
1853 WARN_ON(qidx >= pi->nqsets);
1854 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1855
1856 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1857 * transfers have completed.
1858 */
1859 reclaim_completed_tx(adapter, &txq->q, -1, true);
1860
1861 /* Calculate the number of flits and TX Descriptors we're going to
1862 * need along with how many TX Descriptors will be left over after
1863 * we inject our Work Request.
1864 */
1865 flits = t4vf_calc_tx_flits(skb);
1866 ndesc = flits_to_desc(flits);
1867 credits = txq_avail(&txq->q) - ndesc;
1868
1869 if (unlikely(credits < 0)) {
1870 /* Not enough room for this packet's Work Request. Stop the
1871 * TX Queue and return a "busy" condition. The queue will get
1872 * started later on when the firmware informs us that space
1873 * has opened up.
1874 */
1875 eth_txq_stop(txq);
1876 dev_err(adapter->pdev_dev,
1877 "%s: TX ring %u full while queue awake!\n",
1878 dev->name, qidx);
1879 return NETDEV_TX_BUSY;
1880 }
1881
1882 last_desc = txq->q.pidx + ndesc - 1;
1883 if (last_desc >= txq->q.size)
1884 last_desc -= txq->q.size;
1885 sgl_sdesc = &txq->q.sdesc[last_desc];
1886
1887 if (!t4vf_is_eth_imm(skb) &&
1888 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1889 sgl_sdesc->addr) < 0)) {
1890 /* We need to map the skb into PCI DMA space (because it can't
1891 * be in-lined directly into the Work Request) and the mapping
1892 * operation failed. Record the error and drop the packet.
1893 */
1894 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1895 txq->mapping_err++;
1896 goto out_free;
1897 }
1898
1899 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1900 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1901 /* After we're done injecting the Work Request for this
1902 * packet, we'll be below our "stop threshold" so stop the TX
1903 * Queue now and schedule a request for an SGE Egress Queue
1904 * Update message. The queue will get started later on when
1905 * the firmware processes this Work Request and sends us an
1906 * Egress Queue Status Update message indicating that space
1907 * has opened up.
1908 */
1909 eth_txq_stop(txq);
1910 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1911 }
1912
1913 /* Start filling in our Work Request. Note that we do _not_ handle
1914 * the WR Header wrapping around the TX Descriptor Ring. If our
1915 * maximum header size ever exceeds one TX Descriptor, we'll need to
1916 * do something else here.
1917 */
1918 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1919 wr = (void *)&txq->q.desc[txq->q.pidx];
1920 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1921 wr->r3[0] = cpu_to_be32(0);
1922 wr->r3[1] = cpu_to_be32(0);
1923 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1924 end = (u64 *)wr + flits;
1925
1926 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1927 * message with an encapsulated TX Packet CPL message. Otherwise we
1928 * just use a TX Packet CPL message.
1929 */
1930 ssi = skb_shinfo(skb);
1931 if (ssi->gso_size) {
1932 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1933 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1934 int l3hdr_len = skb_network_header_len(skb);
1935 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1936
1937 wr->op_immdlen =
1938 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1939 FW_WR_IMMDLEN_V(sizeof(*lso) +
1940 sizeof(*cpl)));
1941 /* Fill in the LSO CPL message. */
1942 lso->lso_ctrl =
1943 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1944 LSO_FIRST_SLICE_F |
1945 LSO_LAST_SLICE_F |
1946 LSO_IPV6_V(v6) |
1947 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1948 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1949 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1950 lso->ipid_ofst = cpu_to_be16(0);
1951 lso->mss = cpu_to_be16(ssi->gso_size);
1952 lso->seqno_offset = cpu_to_be32(0);
1953 if (is_t4(adapter->params.chip))
1954 lso->len = cpu_to_be32(skb->len);
1955 else
1956 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1957
1958 /* Set up TX Packet CPL pointer, control word and perform
1959 * accounting.
1960 */
1961 cpl = (void *)(lso + 1);
1962
1963 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1964 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1965 else
1966 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1967
1968 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1969 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1970 TXPKT_IPHDR_LEN_V(l3hdr_len);
1971 txq->tso++;
1972 txq->tx_cso += ssi->gso_segs;
1973 } else {
1974 int len;
1975
1976 len = (t4vf_is_eth_imm(skb)
1977 ? skb->len + sizeof(*cpl)
1978 : sizeof(*cpl));
1979 wr->op_immdlen =
1980 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1981 FW_WR_IMMDLEN_V(len));
1982
1983 /* Set up TX Packet CPL pointer, control word and perform
1984 * accounting.
1985 */
1986 cpl = (void *)(wr + 1);
1987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1988 cntrl = hwcsum(adapter->params.chip, skb) |
1989 TXPKT_IPCSUM_DIS_F;
1990 txq->tx_cso++;
1991 } else {
1992 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1993 }
1994 }
1995
1996 /* If there's a VLAN tag present, add that to the list of things to
1997 * do in this Work Request.
1998 */
1999 if (skb_vlan_tag_present(skb)) {
2000 txq->vlan_ins++;
2001 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2002 }
2003
2004 /* Fill in the TX Packet CPL message header. */
2005 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2006 TXPKT_INTF_V(pi->port_id) |
2007 TXPKT_PF_V(0));
2008 cpl->pack = cpu_to_be16(0);
2009 cpl->len = cpu_to_be16(skb->len);
2010 cpl->ctrl1 = cpu_to_be64(cntrl);
2011
2012 /* Fill in the body of the TX Packet CPL message with either in-lined
2013 * data or a Scatter/Gather List.
2014 */
2015 if (t4vf_is_eth_imm(skb)) {
2016 /* In-line the packet's data and free the skb since we don't
2017 * need it any longer.
2018 */
2019 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2020 dev_consume_skb_any(skb);
2021 } else {
2022 /* Write the skb's Scatter/Gather list into the TX Packet CPL
2023 * message and retain a pointer to the skb so we can free it
2024 * later when its DMA completes. (We store the skb pointer
2025 * in the Software Descriptor corresponding to the last TX
2026 * Descriptor used by the Work Request.)
2027 *
2028 * The retained skb will be freed when the corresponding TX
2029 * Descriptors are reclaimed after their DMAs complete.
2030 * However, this could take quite a while since, in general,
2031 * the hardware is set up to be lazy about sending DMA
2032 * completion notifications to us and we mostly perform TX
2033 * reclaims in the transmit routine.
2034 *
2035 * This is good for performamce but means that we rely on new
2036 * TX packets arriving to run the destructors of completed
2037 * packets, which open up space in their sockets' send queues.
2038 * Sometimes we do not get such new packets causing TX to
2039 * stall. A single UDP transmitter is a good example of this
2040 * situation. We have a clean up timer that periodically
2041 * reclaims completed packets but it doesn't run often enough
2042 * (nor do we want it to) to prevent lengthy stalls. A
2043 * solution to this problem is to run the destructor early,
2044 * after the packet is queued but before it's DMAd. A con is
2045 * that we lie to socket memory accounting, but the amount of
2046 * extra memory is reasonable (limited by the number of TX
2047 * descriptors), the packets do actually get freed quickly by
2048 * new packets almost always, and for protocols like TCP that
2049 * wait for acks to really free up the data the extra memory
2050 * is even less. On the positive side we run the destructors
2051 * on the sending CPU rather than on a potentially different
2052 * completing CPU, usually a good thing.
2053 *
2054 * Run the destructor before telling the DMA engine about the
2055 * packet to make sure it doesn't complete and get freed
2056 * prematurely.
2057 */
2058 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2059 struct sge_txq *tq = &txq->q;
2060
2061 /* If the Work Request header was an exact multiple of our TX
2062 * Descriptor length, then it's possible that the starting SGL
2063 * pointer lines up exactly with the end of our TX Descriptor
2064 * ring. If that's the case, wrap around to the beginning
2065 * here ...
2066 */
2067 if (unlikely((void *)sgl == (void *)tq->stat)) {
2068 sgl = (void *)tq->desc;
2069 end = (void *)((void *)tq->desc +
2070 ((void *)end - (void *)tq->stat));
2071 }
2072
2073 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2074 skb_orphan(skb);
2075 sgl_sdesc->skb = skb;
2076 }
2077
2078 /* Advance our internal TX Queue state, tell the hardware about
2079 * the new TX descriptors and return success.
2080 */
2081 txq_advance(&txq->q, ndesc);
2082
2083 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2084 return NETDEV_TX_OK;
2085
2086 out_free:
2087 /* An error of some sort happened. Free the TX skb and tell the
2088 * OS that we've "dealt" with the packet ...
2089 */
2090 dev_kfree_skb_any(skb);
2091 return NETDEV_TX_OK;
2092 }
2093
2094 /**
2095 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2096 * @q: the SGE control Tx queue
2097 *
2098 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2099 * for Tx queues that send only immediate data (presently just
2100 * the control queues) and thus do not have any sk_buffs to release.
2101 */
reclaim_completed_tx_imm(struct sge_txq * q)2102 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2103 {
2104 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2105 int reclaim = hw_cidx - q->cidx;
2106
2107 if (reclaim < 0)
2108 reclaim += q->size;
2109
2110 q->in_use -= reclaim;
2111 q->cidx = hw_cidx;
2112 }
2113
eosw_txq_advance_index(u32 * idx,u32 n,u32 max)2114 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2115 {
2116 u32 val = *idx + n;
2117
2118 if (val >= max)
2119 val -= max;
2120
2121 *idx = val;
2122 }
2123
cxgb4_eosw_txq_free_desc(struct adapter * adap,struct sge_eosw_txq * eosw_txq,u32 ndesc)2124 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2125 struct sge_eosw_txq *eosw_txq, u32 ndesc)
2126 {
2127 struct tx_sw_desc *d;
2128
2129 d = &eosw_txq->desc[eosw_txq->last_cidx];
2130 while (ndesc--) {
2131 if (d->skb) {
2132 if (d->addr[0]) {
2133 unmap_skb(adap->pdev_dev, d->skb, d->addr);
2134 memset(d->addr, 0, sizeof(d->addr));
2135 }
2136 dev_consume_skb_any(d->skb);
2137 d->skb = NULL;
2138 }
2139 eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2140 eosw_txq->ndesc);
2141 d = &eosw_txq->desc[eosw_txq->last_cidx];
2142 }
2143 }
2144
eosw_txq_advance(struct sge_eosw_txq * eosw_txq,u32 n)2145 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2146 {
2147 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2148 eosw_txq->inuse += n;
2149 }
2150
eosw_txq_enqueue(struct sge_eosw_txq * eosw_txq,struct sk_buff * skb)2151 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2152 struct sk_buff *skb)
2153 {
2154 if (eosw_txq->inuse == eosw_txq->ndesc)
2155 return -ENOMEM;
2156
2157 eosw_txq->desc[eosw_txq->pidx].skb = skb;
2158 return 0;
2159 }
2160
eosw_txq_peek(struct sge_eosw_txq * eosw_txq)2161 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2162 {
2163 return eosw_txq->desc[eosw_txq->last_pidx].skb;
2164 }
2165
ethofld_calc_tx_flits(struct adapter * adap,struct sk_buff * skb,u32 hdr_len)2166 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2167 struct sk_buff *skb, u32 hdr_len)
2168 {
2169 u8 flits, nsgl = 0;
2170 u32 wrlen;
2171
2172 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2173 if (skb_shinfo(skb)->gso_size &&
2174 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2175 wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2176
2177 wrlen += roundup(hdr_len, 16);
2178
2179 /* Packet headers + WR + CPLs */
2180 flits = DIV_ROUND_UP(wrlen, 8);
2181
2182 if (skb_shinfo(skb)->nr_frags > 0) {
2183 if (skb_headlen(skb) - hdr_len)
2184 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2185 else
2186 nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2187 } else if (skb->len - hdr_len) {
2188 nsgl = sgl_len(1);
2189 }
2190
2191 return flits + nsgl;
2192 }
2193
write_eo_wr(struct adapter * adap,struct sge_eosw_txq * eosw_txq,struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len,u32 wrlen)2194 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2195 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2196 u32 hdr_len, u32 wrlen)
2197 {
2198 const struct skb_shared_info *ssi = skb_shinfo(skb);
2199 struct cpl_tx_pkt_core *cpl;
2200 u32 immd_len, wrlen16;
2201 bool compl = false;
2202 u8 ver, proto;
2203
2204 ver = ip_hdr(skb)->version;
2205 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2206
2207 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2208 immd_len = sizeof(struct cpl_tx_pkt_core);
2209 if (skb_shinfo(skb)->gso_size &&
2210 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2211 immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2212 immd_len += hdr_len;
2213
2214 if (!eosw_txq->ncompl ||
2215 (eosw_txq->last_compl + wrlen16) >=
2216 (adap->params.ofldq_wr_cred / 2)) {
2217 compl = true;
2218 eosw_txq->ncompl++;
2219 eosw_txq->last_compl = 0;
2220 }
2221
2222 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2223 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2224 FW_WR_COMPL_V(compl));
2225 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2226 FW_WR_FLOWID_V(eosw_txq->hwtid));
2227 wr->r3 = 0;
2228 if (proto == IPPROTO_UDP) {
2229 cpl = write_eo_udp_wr(skb, wr, hdr_len);
2230 } else {
2231 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2232 wr->u.tcpseg.ethlen = skb_network_offset(skb);
2233 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2234 wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2235 wr->u.tcpseg.tsclk_tsoff = 0;
2236 wr->u.tcpseg.r4 = 0;
2237 wr->u.tcpseg.r5 = 0;
2238 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2239
2240 if (ssi->gso_size) {
2241 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2242
2243 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2244 cpl = write_tso_wr(adap, skb, lso);
2245 } else {
2246 wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2247 cpl = (void *)(wr + 1);
2248 }
2249 }
2250
2251 eosw_txq->cred -= wrlen16;
2252 eosw_txq->last_compl += wrlen16;
2253 return cpl;
2254 }
2255
ethofld_hard_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2256 static int ethofld_hard_xmit(struct net_device *dev,
2257 struct sge_eosw_txq *eosw_txq)
2258 {
2259 struct port_info *pi = netdev2pinfo(dev);
2260 struct adapter *adap = netdev2adap(dev);
2261 u32 wrlen, wrlen16, hdr_len, data_len;
2262 enum sge_eosw_state next_state;
2263 u64 cntrl, *start, *end, *sgl;
2264 struct sge_eohw_txq *eohw_txq;
2265 struct cpl_tx_pkt_core *cpl;
2266 struct fw_eth_tx_eo_wr *wr;
2267 bool skip_eotx_wr = false;
2268 struct tx_sw_desc *d;
2269 struct sk_buff *skb;
2270 int left, ret = 0;
2271 u8 flits, ndesc;
2272
2273 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2274 spin_lock(&eohw_txq->lock);
2275 reclaim_completed_tx_imm(&eohw_txq->q);
2276
2277 d = &eosw_txq->desc[eosw_txq->last_pidx];
2278 skb = d->skb;
2279 skb_tx_timestamp(skb);
2280
2281 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2282 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2283 eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2284 hdr_len = skb->len;
2285 data_len = 0;
2286 flits = DIV_ROUND_UP(hdr_len, 8);
2287 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2288 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2289 else
2290 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2291 skip_eotx_wr = true;
2292 } else {
2293 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2294 data_len = skb->len - hdr_len;
2295 flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2296 }
2297 ndesc = flits_to_desc(flits);
2298 wrlen = flits * 8;
2299 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2300
2301 left = txq_avail(&eohw_txq->q) - ndesc;
2302
2303 /* If there are no descriptors left in hardware queues or no
2304 * CPL credits left in software queues, then wait for them
2305 * to come back and retry again. Note that we always request
2306 * for credits update via interrupt for every half credits
2307 * consumed. So, the interrupt will eventually restore the
2308 * credits and invoke the Tx path again.
2309 */
2310 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2311 ret = -ENOMEM;
2312 goto out_unlock;
2313 }
2314
2315 if (unlikely(skip_eotx_wr)) {
2316 start = (u64 *)wr;
2317 eosw_txq->state = next_state;
2318 eosw_txq->cred -= wrlen16;
2319 eosw_txq->ncompl++;
2320 eosw_txq->last_compl = 0;
2321 goto write_wr_headers;
2322 }
2323
2324 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2325 cntrl = hwcsum(adap->params.chip, skb);
2326 if (skb_vlan_tag_present(skb))
2327 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2328
2329 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2330 TXPKT_INTF_V(pi->tx_chan) |
2331 TXPKT_PF_V(adap->pf));
2332 cpl->pack = 0;
2333 cpl->len = cpu_to_be16(skb->len);
2334 cpl->ctrl1 = cpu_to_be64(cntrl);
2335
2336 start = (u64 *)(cpl + 1);
2337
2338 write_wr_headers:
2339 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2340 hdr_len);
2341 if (data_len) {
2342 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2343 if (unlikely(ret)) {
2344 memset(d->addr, 0, sizeof(d->addr));
2345 eohw_txq->mapping_err++;
2346 goto out_unlock;
2347 }
2348
2349 end = (u64 *)wr + flits;
2350 if (unlikely(start > sgl)) {
2351 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2352 end = (void *)eohw_txq->q.desc + left;
2353 }
2354
2355 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2356 /* If current position is already at the end of the
2357 * txq, reset the current to point to start of the queue
2358 * and update the end ptr as well.
2359 */
2360 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2361
2362 end = (void *)eohw_txq->q.desc + left;
2363 sgl = (void *)eohw_txq->q.desc;
2364 }
2365
2366 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2367 d->addr);
2368 }
2369
2370 if (skb_shinfo(skb)->gso_size) {
2371 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2372 eohw_txq->uso++;
2373 else
2374 eohw_txq->tso++;
2375 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2376 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2377 eohw_txq->tx_cso++;
2378 }
2379
2380 if (skb_vlan_tag_present(skb))
2381 eohw_txq->vlan_ins++;
2382
2383 txq_advance(&eohw_txq->q, ndesc);
2384 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2385 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2386
2387 out_unlock:
2388 spin_unlock(&eohw_txq->lock);
2389 return ret;
2390 }
2391
ethofld_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2392 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2393 {
2394 struct sk_buff *skb;
2395 int pktcount, ret;
2396
2397 switch (eosw_txq->state) {
2398 case CXGB4_EO_STATE_ACTIVE:
2399 case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2400 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2401 pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2402 if (pktcount < 0)
2403 pktcount += eosw_txq->ndesc;
2404 break;
2405 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2406 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2407 case CXGB4_EO_STATE_CLOSED:
2408 default:
2409 return;
2410 }
2411
2412 while (pktcount--) {
2413 skb = eosw_txq_peek(eosw_txq);
2414 if (!skb) {
2415 eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2416 eosw_txq->ndesc);
2417 continue;
2418 }
2419
2420 ret = ethofld_hard_xmit(dev, eosw_txq);
2421 if (ret)
2422 break;
2423 }
2424 }
2425
cxgb4_ethofld_xmit(struct sk_buff * skb,struct net_device * dev)2426 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2427 struct net_device *dev)
2428 {
2429 struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2430 struct port_info *pi = netdev2pinfo(dev);
2431 struct adapter *adap = netdev2adap(dev);
2432 struct sge_eosw_txq *eosw_txq;
2433 u32 qid;
2434 int ret;
2435
2436 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2437 if (ret)
2438 goto out_free;
2439
2440 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2441 qid = skb_get_queue_mapping(skb) - pi->nqsets;
2442 eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2443 spin_lock_bh(&eosw_txq->lock);
2444 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2445 goto out_unlock;
2446
2447 ret = eosw_txq_enqueue(eosw_txq, skb);
2448 if (ret)
2449 goto out_unlock;
2450
2451 /* SKB is queued for processing until credits are available.
2452 * So, call the destructor now and we'll free the skb later
2453 * after it has been successfully transmitted.
2454 */
2455 skb_orphan(skb);
2456
2457 eosw_txq_advance(eosw_txq, 1);
2458 ethofld_xmit(dev, eosw_txq);
2459 spin_unlock_bh(&eosw_txq->lock);
2460 return NETDEV_TX_OK;
2461
2462 out_unlock:
2463 spin_unlock_bh(&eosw_txq->lock);
2464 out_free:
2465 dev_kfree_skb_any(skb);
2466 return NETDEV_TX_OK;
2467 }
2468
t4_start_xmit(struct sk_buff * skb,struct net_device * dev)2469 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2470 {
2471 struct port_info *pi = netdev_priv(dev);
2472 u16 qid = skb_get_queue_mapping(skb);
2473
2474 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2475 return cxgb4_vf_eth_xmit(skb, dev);
2476
2477 if (unlikely(qid >= pi->nqsets))
2478 return cxgb4_ethofld_xmit(skb, dev);
2479
2480 if (is_ptp_enabled(skb, dev)) {
2481 struct adapter *adap = netdev2adap(dev);
2482 netdev_tx_t ret;
2483
2484 spin_lock(&adap->ptp_lock);
2485 ret = cxgb4_eth_xmit(skb, dev);
2486 spin_unlock(&adap->ptp_lock);
2487 return ret;
2488 }
2489
2490 return cxgb4_eth_xmit(skb, dev);
2491 }
2492
eosw_txq_flush_pending_skbs(struct sge_eosw_txq * eosw_txq)2493 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2494 {
2495 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2496 int pidx = eosw_txq->pidx;
2497 struct sk_buff *skb;
2498
2499 if (!pktcount)
2500 return;
2501
2502 if (pktcount < 0)
2503 pktcount += eosw_txq->ndesc;
2504
2505 while (pktcount--) {
2506 pidx--;
2507 if (pidx < 0)
2508 pidx += eosw_txq->ndesc;
2509
2510 skb = eosw_txq->desc[pidx].skb;
2511 if (skb) {
2512 dev_consume_skb_any(skb);
2513 eosw_txq->desc[pidx].skb = NULL;
2514 eosw_txq->inuse--;
2515 }
2516 }
2517
2518 eosw_txq->pidx = eosw_txq->last_pidx + 1;
2519 }
2520
2521 /**
2522 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2523 * @dev: netdevice
2524 * @eotid: ETHOFLD tid to bind/unbind
2525 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2526 *
2527 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2528 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2529 * a traffic class.
2530 */
cxgb4_ethofld_send_flowc(struct net_device * dev,u32 eotid,u32 tc)2531 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2532 {
2533 struct port_info *pi = netdev2pinfo(dev);
2534 struct adapter *adap = netdev2adap(dev);
2535 enum sge_eosw_state next_state;
2536 struct sge_eosw_txq *eosw_txq;
2537 u32 len, len16, nparams = 6;
2538 struct fw_flowc_wr *flowc;
2539 struct eotid_entry *entry;
2540 struct sge_ofld_rxq *rxq;
2541 struct sk_buff *skb;
2542 int ret = 0;
2543
2544 len = struct_size(flowc, mnemval, nparams);
2545 len16 = DIV_ROUND_UP(len, 16);
2546
2547 entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2548 if (!entry)
2549 return -ENOMEM;
2550
2551 eosw_txq = (struct sge_eosw_txq *)entry->data;
2552 if (!eosw_txq)
2553 return -ENOMEM;
2554
2555 if (!(adap->flags & CXGB4_FW_OK)) {
2556 /* Don't stall caller when access to FW is lost */
2557 complete(&eosw_txq->completion);
2558 return -EIO;
2559 }
2560
2561 skb = alloc_skb(len, GFP_KERNEL);
2562 if (!skb)
2563 return -ENOMEM;
2564
2565 spin_lock_bh(&eosw_txq->lock);
2566 if (tc != FW_SCHED_CLS_NONE) {
2567 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2568 goto out_free_skb;
2569
2570 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2571 } else {
2572 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2573 goto out_free_skb;
2574
2575 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2576 }
2577
2578 flowc = __skb_put(skb, len);
2579 memset(flowc, 0, len);
2580
2581 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2582 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2583 FW_WR_FLOWID_V(eosw_txq->hwtid));
2584 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2585 FW_FLOWC_WR_NPARAMS_V(nparams) |
2586 FW_WR_COMPL_V(1));
2587 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2588 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2589 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2590 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2591 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2592 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2593 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2594 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2595 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2596 flowc->mnemval[4].val = cpu_to_be32(tc);
2597 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2598 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2599 FW_FLOWC_MNEM_EOSTATE_CLOSING :
2600 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2601
2602 /* Free up any pending skbs to ensure there's room for
2603 * termination FLOWC.
2604 */
2605 if (tc == FW_SCHED_CLS_NONE)
2606 eosw_txq_flush_pending_skbs(eosw_txq);
2607
2608 ret = eosw_txq_enqueue(eosw_txq, skb);
2609 if (ret)
2610 goto out_free_skb;
2611
2612 eosw_txq->state = next_state;
2613 eosw_txq->flowc_idx = eosw_txq->pidx;
2614 eosw_txq_advance(eosw_txq, 1);
2615 ethofld_xmit(dev, eosw_txq);
2616
2617 spin_unlock_bh(&eosw_txq->lock);
2618 return 0;
2619
2620 out_free_skb:
2621 dev_consume_skb_any(skb);
2622 spin_unlock_bh(&eosw_txq->lock);
2623 return ret;
2624 }
2625
2626 /**
2627 * is_imm - check whether a packet can be sent as immediate data
2628 * @skb: the packet
2629 *
2630 * Returns true if a packet can be sent as a WR with immediate data.
2631 */
is_imm(const struct sk_buff * skb)2632 static inline int is_imm(const struct sk_buff *skb)
2633 {
2634 return skb->len <= MAX_CTRL_WR_LEN;
2635 }
2636
2637 /**
2638 * ctrlq_check_stop - check if a control queue is full and should stop
2639 * @q: the queue
2640 * @wr: most recent WR written to the queue
2641 *
2642 * Check if a control queue has become full and should be stopped.
2643 * We clean up control queue descriptors very lazily, only when we are out.
2644 * If the queue is still full after reclaiming any completed descriptors
2645 * we suspend it and have the last WR wake it up.
2646 */
ctrlq_check_stop(struct sge_ctrl_txq * q,struct fw_wr_hdr * wr)2647 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2648 {
2649 reclaim_completed_tx_imm(&q->q);
2650 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2651 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2652 q->q.stops++;
2653 q->full = 1;
2654 }
2655 }
2656
2657 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2658
cxgb4_selftest_lb_pkt(struct net_device * netdev)2659 int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2660 {
2661 struct port_info *pi = netdev_priv(netdev);
2662 struct adapter *adap = pi->adapter;
2663 struct cxgb4_ethtool_lb_test *lb;
2664 int ret, i = 0, pkt_len, credits;
2665 struct fw_eth_tx_pkt_wr *wr;
2666 struct cpl_tx_pkt_core *cpl;
2667 u32 ctrl0, ndesc, flits;
2668 struct sge_eth_txq *q;
2669 u8 *sgl;
2670
2671 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2672
2673 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2674 sizeof(__be64));
2675 ndesc = flits_to_desc(flits);
2676
2677 lb = &pi->ethtool_lb;
2678 lb->loopback = 1;
2679
2680 q = &adap->sge.ethtxq[pi->first_qset];
2681 __netif_tx_lock(q->txq, smp_processor_id());
2682
2683 reclaim_completed_tx(adap, &q->q, -1, true);
2684 credits = txq_avail(&q->q) - ndesc;
2685 if (unlikely(credits < 0)) {
2686 __netif_tx_unlock(q->txq);
2687 return -ENOMEM;
2688 }
2689
2690 wr = (void *)&q->q.desc[q->q.pidx];
2691 memset(wr, 0, sizeof(struct tx_desc));
2692
2693 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2694 FW_WR_IMMDLEN_V(pkt_len +
2695 sizeof(*cpl)));
2696 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2697 wr->r3 = cpu_to_be64(0);
2698
2699 cpl = (void *)(wr + 1);
2700 sgl = (u8 *)(cpl + 1);
2701
2702 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2703 TXPKT_INTF_V(pi->tx_chan + 4);
2704
2705 cpl->ctrl0 = htonl(ctrl0);
2706 cpl->pack = htons(0);
2707 cpl->len = htons(pkt_len);
2708 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2709
2710 eth_broadcast_addr(sgl);
2711 i += ETH_ALEN;
2712 ether_addr_copy(&sgl[i], netdev->dev_addr);
2713 i += ETH_ALEN;
2714
2715 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2716 CXGB4_SELFTEST_LB_STR);
2717
2718 init_completion(&lb->completion);
2719 txq_advance(&q->q, ndesc);
2720 cxgb4_ring_tx_db(adap, &q->q, ndesc);
2721 __netif_tx_unlock(q->txq);
2722
2723 /* wait for the pkt to return */
2724 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2725 if (!ret)
2726 ret = -ETIMEDOUT;
2727 else
2728 ret = lb->result;
2729
2730 lb->loopback = 0;
2731
2732 return ret;
2733 }
2734
2735 /**
2736 * ctrl_xmit - send a packet through an SGE control Tx queue
2737 * @q: the control queue
2738 * @skb: the packet
2739 *
2740 * Send a packet through an SGE control Tx queue. Packets sent through
2741 * a control queue must fit entirely as immediate data.
2742 */
ctrl_xmit(struct sge_ctrl_txq * q,struct sk_buff * skb)2743 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2744 {
2745 unsigned int ndesc;
2746 struct fw_wr_hdr *wr;
2747
2748 if (unlikely(!is_imm(skb))) {
2749 WARN_ON(1);
2750 dev_kfree_skb(skb);
2751 return NET_XMIT_DROP;
2752 }
2753
2754 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2755 spin_lock(&q->sendq.lock);
2756
2757 if (unlikely(q->full)) {
2758 skb->priority = ndesc; /* save for restart */
2759 __skb_queue_tail(&q->sendq, skb);
2760 spin_unlock(&q->sendq.lock);
2761 return NET_XMIT_CN;
2762 }
2763
2764 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2765 cxgb4_inline_tx_skb(skb, &q->q, wr);
2766
2767 txq_advance(&q->q, ndesc);
2768 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2769 ctrlq_check_stop(q, wr);
2770
2771 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2772 spin_unlock(&q->sendq.lock);
2773
2774 kfree_skb(skb);
2775 return NET_XMIT_SUCCESS;
2776 }
2777
2778 /**
2779 * restart_ctrlq - restart a suspended control queue
2780 * @t: pointer to the tasklet associated with this handler
2781 *
2782 * Resumes transmission on a suspended Tx control queue.
2783 */
restart_ctrlq(struct tasklet_struct * t)2784 static void restart_ctrlq(struct tasklet_struct *t)
2785 {
2786 struct sk_buff *skb;
2787 unsigned int written = 0;
2788 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2789
2790 spin_lock(&q->sendq.lock);
2791 reclaim_completed_tx_imm(&q->q);
2792 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2793
2794 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2795 struct fw_wr_hdr *wr;
2796 unsigned int ndesc = skb->priority; /* previously saved */
2797
2798 written += ndesc;
2799 /* Write descriptors and free skbs outside the lock to limit
2800 * wait times. q->full is still set so new skbs will be queued.
2801 */
2802 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2803 txq_advance(&q->q, ndesc);
2804 spin_unlock(&q->sendq.lock);
2805
2806 cxgb4_inline_tx_skb(skb, &q->q, wr);
2807 kfree_skb(skb);
2808
2809 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2810 unsigned long old = q->q.stops;
2811
2812 ctrlq_check_stop(q, wr);
2813 if (q->q.stops != old) { /* suspended anew */
2814 spin_lock(&q->sendq.lock);
2815 goto ringdb;
2816 }
2817 }
2818 if (written > 16) {
2819 cxgb4_ring_tx_db(q->adap, &q->q, written);
2820 written = 0;
2821 }
2822 spin_lock(&q->sendq.lock);
2823 }
2824 q->full = 0;
2825 ringdb:
2826 if (written)
2827 cxgb4_ring_tx_db(q->adap, &q->q, written);
2828 spin_unlock(&q->sendq.lock);
2829 }
2830
2831 /**
2832 * t4_mgmt_tx - send a management message
2833 * @adap: the adapter
2834 * @skb: the packet containing the management message
2835 *
2836 * Send a management message through control queue 0.
2837 */
t4_mgmt_tx(struct adapter * adap,struct sk_buff * skb)2838 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2839 {
2840 int ret;
2841
2842 local_bh_disable();
2843 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2844 local_bh_enable();
2845 return ret;
2846 }
2847
2848 /**
2849 * is_ofld_imm - check whether a packet can be sent as immediate data
2850 * @skb: the packet
2851 *
2852 * Returns true if a packet can be sent as an offload WR with immediate
2853 * data.
2854 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2855 * However, FW_ULPTX_WR commands have a 256 byte immediate only
2856 * payload limit.
2857 */
is_ofld_imm(const struct sk_buff * skb)2858 static inline int is_ofld_imm(const struct sk_buff *skb)
2859 {
2860 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2861 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2862
2863 if (unlikely(opcode == FW_ULPTX_WR))
2864 return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2865 else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2866 return skb->len <= SGE_MAX_WR_LEN;
2867 else
2868 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2869 }
2870
2871 /**
2872 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2873 * @skb: the packet
2874 *
2875 * Returns the number of flits needed for the given offload packet.
2876 * These packets are already fully constructed and no additional headers
2877 * will be added.
2878 */
calc_tx_flits_ofld(const struct sk_buff * skb)2879 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2880 {
2881 unsigned int flits, cnt;
2882
2883 if (is_ofld_imm(skb))
2884 return DIV_ROUND_UP(skb->len, 8);
2885
2886 flits = skb_transport_offset(skb) / 8U; /* headers */
2887 cnt = skb_shinfo(skb)->nr_frags;
2888 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2889 cnt++;
2890 return flits + sgl_len(cnt);
2891 }
2892
2893 /**
2894 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2895 * @q: the queue to stop
2896 *
2897 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2898 * inability to map packets. A periodic timer attempts to restart
2899 * queues so marked.
2900 */
txq_stop_maperr(struct sge_uld_txq * q)2901 static void txq_stop_maperr(struct sge_uld_txq *q)
2902 {
2903 q->mapping_err++;
2904 q->q.stops++;
2905 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2906 q->adap->sge.txq_maperr);
2907 }
2908
2909 /**
2910 * ofldtxq_stop - stop an offload Tx queue that has become full
2911 * @q: the queue to stop
2912 * @wr: the Work Request causing the queue to become full
2913 *
2914 * Stops an offload Tx queue that has become full and modifies the packet
2915 * being written to request a wakeup.
2916 */
ofldtxq_stop(struct sge_uld_txq * q,struct fw_wr_hdr * wr)2917 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2918 {
2919 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2920 q->q.stops++;
2921 q->full = 1;
2922 }
2923
2924 /**
2925 * service_ofldq - service/restart a suspended offload queue
2926 * @q: the offload queue
2927 *
2928 * Services an offload Tx queue by moving packets from its Pending Send
2929 * Queue to the Hardware TX ring. The function starts and ends with the
2930 * Send Queue locked, but drops the lock while putting the skb at the
2931 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2932 * allows more skbs to be added to the Send Queue by other threads.
2933 * The packet being processed at the head of the Pending Send Queue is
2934 * left on the queue in case we experience DMA Mapping errors, etc.
2935 * and need to give up and restart later.
2936 *
2937 * service_ofldq() can be thought of as a task which opportunistically
2938 * uses other threads execution contexts. We use the Offload Queue
2939 * boolean "service_ofldq_running" to make sure that only one instance
2940 * is ever running at a time ...
2941 */
service_ofldq(struct sge_uld_txq * q)2942 static void service_ofldq(struct sge_uld_txq *q)
2943 __must_hold(&q->sendq.lock)
2944 {
2945 u64 *pos, *before, *end;
2946 int credits;
2947 struct sk_buff *skb;
2948 struct sge_txq *txq;
2949 unsigned int left;
2950 unsigned int written = 0;
2951 unsigned int flits, ndesc;
2952
2953 /* If another thread is currently in service_ofldq() processing the
2954 * Pending Send Queue then there's nothing to do. Otherwise, flag
2955 * that we're doing the work and continue. Examining/modifying
2956 * the Offload Queue boolean "service_ofldq_running" must be done
2957 * while holding the Pending Send Queue Lock.
2958 */
2959 if (q->service_ofldq_running)
2960 return;
2961 q->service_ofldq_running = true;
2962
2963 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2964 /* We drop the lock while we're working with the skb at the
2965 * head of the Pending Send Queue. This allows more skbs to
2966 * be added to the Pending Send Queue while we're working on
2967 * this one. We don't need to lock to guard the TX Ring
2968 * updates because only one thread of execution is ever
2969 * allowed into service_ofldq() at a time.
2970 */
2971 spin_unlock(&q->sendq.lock);
2972
2973 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2974
2975 flits = skb->priority; /* previously saved */
2976 ndesc = flits_to_desc(flits);
2977 credits = txq_avail(&q->q) - ndesc;
2978 BUG_ON(credits < 0);
2979 if (unlikely(credits < TXQ_STOP_THRES))
2980 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2981
2982 pos = (u64 *)&q->q.desc[q->q.pidx];
2983 if (is_ofld_imm(skb))
2984 cxgb4_inline_tx_skb(skb, &q->q, pos);
2985 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2986 (dma_addr_t *)skb->head)) {
2987 txq_stop_maperr(q);
2988 spin_lock(&q->sendq.lock);
2989 break;
2990 } else {
2991 int last_desc, hdr_len = skb_transport_offset(skb);
2992
2993 /* The WR headers may not fit within one descriptor.
2994 * So we need to deal with wrap-around here.
2995 */
2996 before = (u64 *)pos;
2997 end = (u64 *)pos + flits;
2998 txq = &q->q;
2999 pos = (void *)inline_tx_skb_header(skb, &q->q,
3000 (void *)pos,
3001 hdr_len);
3002 if (before > (u64 *)pos) {
3003 left = (u8 *)end - (u8 *)txq->stat;
3004 end = (void *)txq->desc + left;
3005 }
3006
3007 /* If current position is already at the end of the
3008 * ofld queue, reset the current to point to
3009 * start of the queue and update the end ptr as well.
3010 */
3011 if (pos == (u64 *)txq->stat) {
3012 left = (u8 *)end - (u8 *)txq->stat;
3013 end = (void *)txq->desc + left;
3014 pos = (void *)txq->desc;
3015 }
3016
3017 cxgb4_write_sgl(skb, &q->q, (void *)pos,
3018 end, hdr_len,
3019 (dma_addr_t *)skb->head);
3020 #ifdef CONFIG_NEED_DMA_MAP_STATE
3021 skb->dev = q->adap->port[0];
3022 skb->destructor = deferred_unmap_destructor;
3023 #endif
3024 last_desc = q->q.pidx + ndesc - 1;
3025 if (last_desc >= q->q.size)
3026 last_desc -= q->q.size;
3027 q->q.sdesc[last_desc].skb = skb;
3028 }
3029
3030 txq_advance(&q->q, ndesc);
3031 written += ndesc;
3032 if (unlikely(written > 32)) {
3033 cxgb4_ring_tx_db(q->adap, &q->q, written);
3034 written = 0;
3035 }
3036
3037 /* Reacquire the Pending Send Queue Lock so we can unlink the
3038 * skb we've just successfully transferred to the TX Ring and
3039 * loop for the next skb which may be at the head of the
3040 * Pending Send Queue.
3041 */
3042 spin_lock(&q->sendq.lock);
3043 __skb_unlink(skb, &q->sendq);
3044 if (is_ofld_imm(skb))
3045 kfree_skb(skb);
3046 }
3047 if (likely(written))
3048 cxgb4_ring_tx_db(q->adap, &q->q, written);
3049
3050 /*Indicate that no thread is processing the Pending Send Queue
3051 * currently.
3052 */
3053 q->service_ofldq_running = false;
3054 }
3055
3056 /**
3057 * ofld_xmit - send a packet through an offload queue
3058 * @q: the Tx offload queue
3059 * @skb: the packet
3060 *
3061 * Send an offload packet through an SGE offload queue.
3062 */
ofld_xmit(struct sge_uld_txq * q,struct sk_buff * skb)3063 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3064 {
3065 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
3066 spin_lock(&q->sendq.lock);
3067
3068 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
3069 * that results in this new skb being the only one on the queue, start
3070 * servicing it. If there are other skbs already on the list, then
3071 * either the queue is currently being processed or it's been stopped
3072 * for some reason and it'll be restarted at a later time. Restart
3073 * paths are triggered by events like experiencing a DMA Mapping Error
3074 * or filling the Hardware TX Ring.
3075 */
3076 __skb_queue_tail(&q->sendq, skb);
3077 if (q->sendq.qlen == 1)
3078 service_ofldq(q);
3079
3080 spin_unlock(&q->sendq.lock);
3081 return NET_XMIT_SUCCESS;
3082 }
3083
3084 /**
3085 * restart_ofldq - restart a suspended offload queue
3086 * @t: pointer to the tasklet associated with this handler
3087 *
3088 * Resumes transmission on a suspended Tx offload queue.
3089 */
restart_ofldq(struct tasklet_struct * t)3090 static void restart_ofldq(struct tasklet_struct *t)
3091 {
3092 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3093
3094 spin_lock(&q->sendq.lock);
3095 q->full = 0; /* the queue actually is completely empty now */
3096 service_ofldq(q);
3097 spin_unlock(&q->sendq.lock);
3098 }
3099
3100 /**
3101 * skb_txq - return the Tx queue an offload packet should use
3102 * @skb: the packet
3103 *
3104 * Returns the Tx queue an offload packet should use as indicated by bits
3105 * 1-15 in the packet's queue_mapping.
3106 */
skb_txq(const struct sk_buff * skb)3107 static inline unsigned int skb_txq(const struct sk_buff *skb)
3108 {
3109 return skb->queue_mapping >> 1;
3110 }
3111
3112 /**
3113 * is_ctrl_pkt - return whether an offload packet is a control packet
3114 * @skb: the packet
3115 *
3116 * Returns whether an offload packet should use an OFLD or a CTRL
3117 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
3118 */
is_ctrl_pkt(const struct sk_buff * skb)3119 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3120 {
3121 return skb->queue_mapping & 1;
3122 }
3123
uld_send(struct adapter * adap,struct sk_buff * skb,unsigned int tx_uld_type)3124 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3125 unsigned int tx_uld_type)
3126 {
3127 struct sge_uld_txq_info *txq_info;
3128 struct sge_uld_txq *txq;
3129 unsigned int idx = skb_txq(skb);
3130
3131 if (unlikely(is_ctrl_pkt(skb))) {
3132 /* Single ctrl queue is a requirement for LE workaround path */
3133 if (adap->tids.nsftids)
3134 idx = 0;
3135 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3136 }
3137
3138 txq_info = adap->sge.uld_txq_info[tx_uld_type];
3139 if (unlikely(!txq_info)) {
3140 WARN_ON(true);
3141 kfree_skb(skb);
3142 return NET_XMIT_DROP;
3143 }
3144
3145 txq = &txq_info->uldtxq[idx];
3146 return ofld_xmit(txq, skb);
3147 }
3148
3149 /**
3150 * t4_ofld_send - send an offload packet
3151 * @adap: the adapter
3152 * @skb: the packet
3153 *
3154 * Sends an offload packet. We use the packet queue_mapping to select the
3155 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3156 * should be sent as regular or control, bits 1-15 select the queue.
3157 */
t4_ofld_send(struct adapter * adap,struct sk_buff * skb)3158 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3159 {
3160 int ret;
3161
3162 local_bh_disable();
3163 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3164 local_bh_enable();
3165 return ret;
3166 }
3167
3168 /**
3169 * cxgb4_ofld_send - send an offload packet
3170 * @dev: the net device
3171 * @skb: the packet
3172 *
3173 * Sends an offload packet. This is an exported version of @t4_ofld_send,
3174 * intended for ULDs.
3175 */
cxgb4_ofld_send(struct net_device * dev,struct sk_buff * skb)3176 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3177 {
3178 return t4_ofld_send(netdev2adap(dev), skb);
3179 }
3180 EXPORT_SYMBOL(cxgb4_ofld_send);
3181
inline_tx_header(const void * src,const struct sge_txq * q,void * pos,int length)3182 static void *inline_tx_header(const void *src,
3183 const struct sge_txq *q,
3184 void *pos, int length)
3185 {
3186 int left = (void *)q->stat - pos;
3187 u64 *p;
3188
3189 if (likely(length <= left)) {
3190 memcpy(pos, src, length);
3191 pos += length;
3192 } else {
3193 memcpy(pos, src, left);
3194 memcpy(q->desc, src + left, length - left);
3195 pos = (void *)q->desc + (length - left);
3196 }
3197 /* 0-pad to multiple of 16 */
3198 p = PTR_ALIGN(pos, 8);
3199 if ((uintptr_t)p & 8) {
3200 *p = 0;
3201 return p + 1;
3202 }
3203 return p;
3204 }
3205
3206 /**
3207 * ofld_xmit_direct - copy a WR into offload queue
3208 * @q: the Tx offload queue
3209 * @src: location of WR
3210 * @len: WR length
3211 *
3212 * Copy an immediate WR into an uncontended SGE offload queue.
3213 */
ofld_xmit_direct(struct sge_uld_txq * q,const void * src,unsigned int len)3214 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3215 unsigned int len)
3216 {
3217 unsigned int ndesc;
3218 int credits;
3219 u64 *pos;
3220
3221 /* Use the lower limit as the cut-off */
3222 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3223 WARN_ON(1);
3224 return NET_XMIT_DROP;
3225 }
3226
3227 /* Don't return NET_XMIT_CN here as the current
3228 * implementation doesn't queue the request
3229 * using an skb when the following conditions not met
3230 */
3231 if (!spin_trylock(&q->sendq.lock))
3232 return NET_XMIT_DROP;
3233
3234 if (q->full || !skb_queue_empty(&q->sendq) ||
3235 q->service_ofldq_running) {
3236 spin_unlock(&q->sendq.lock);
3237 return NET_XMIT_DROP;
3238 }
3239 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3240 credits = txq_avail(&q->q) - ndesc;
3241 pos = (u64 *)&q->q.desc[q->q.pidx];
3242
3243 /* ofldtxq_stop modifies WR header in-situ */
3244 inline_tx_header(src, &q->q, pos, len);
3245 if (unlikely(credits < TXQ_STOP_THRES))
3246 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3247 txq_advance(&q->q, ndesc);
3248 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3249
3250 spin_unlock(&q->sendq.lock);
3251 return NET_XMIT_SUCCESS;
3252 }
3253
cxgb4_immdata_send(struct net_device * dev,unsigned int idx,const void * src,unsigned int len)3254 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3255 const void *src, unsigned int len)
3256 {
3257 struct sge_uld_txq_info *txq_info;
3258 struct sge_uld_txq *txq;
3259 struct adapter *adap;
3260 int ret;
3261
3262 adap = netdev2adap(dev);
3263
3264 local_bh_disable();
3265 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3266 if (unlikely(!txq_info)) {
3267 WARN_ON(true);
3268 local_bh_enable();
3269 return NET_XMIT_DROP;
3270 }
3271 txq = &txq_info->uldtxq[idx];
3272
3273 ret = ofld_xmit_direct(txq, src, len);
3274 local_bh_enable();
3275 return net_xmit_eval(ret);
3276 }
3277 EXPORT_SYMBOL(cxgb4_immdata_send);
3278
3279 /**
3280 * t4_crypto_send - send crypto packet
3281 * @adap: the adapter
3282 * @skb: the packet
3283 *
3284 * Sends crypto packet. We use the packet queue_mapping to select the
3285 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3286 * should be sent as regular or control, bits 1-15 select the queue.
3287 */
t4_crypto_send(struct adapter * adap,struct sk_buff * skb)3288 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3289 {
3290 int ret;
3291
3292 local_bh_disable();
3293 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3294 local_bh_enable();
3295 return ret;
3296 }
3297
3298 /**
3299 * cxgb4_crypto_send - send crypto packet
3300 * @dev: the net device
3301 * @skb: the packet
3302 *
3303 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3304 * intended for ULDs.
3305 */
cxgb4_crypto_send(struct net_device * dev,struct sk_buff * skb)3306 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3307 {
3308 return t4_crypto_send(netdev2adap(dev), skb);
3309 }
3310 EXPORT_SYMBOL(cxgb4_crypto_send);
3311
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)3312 static inline void copy_frags(struct sk_buff *skb,
3313 const struct pkt_gl *gl, unsigned int offset)
3314 {
3315 int i;
3316
3317 /* usually there's just one frag */
3318 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3319 gl->frags[0].offset + offset,
3320 gl->frags[0].size - offset);
3321 skb_shinfo(skb)->nr_frags = gl->nfrags;
3322 for (i = 1; i < gl->nfrags; i++)
3323 __skb_fill_page_desc(skb, i, gl->frags[i].page,
3324 gl->frags[i].offset,
3325 gl->frags[i].size);
3326
3327 /* get a reference to the last page, we don't own it */
3328 get_page(gl->frags[gl->nfrags - 1].page);
3329 }
3330
3331 /**
3332 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3333 * @gl: the gather list
3334 * @skb_len: size of sk_buff main body if it carries fragments
3335 * @pull_len: amount of data to move to the sk_buff's main body
3336 *
3337 * Builds an sk_buff from the given packet gather list. Returns the
3338 * sk_buff or %NULL if sk_buff allocation failed.
3339 */
cxgb4_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)3340 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3341 unsigned int skb_len, unsigned int pull_len)
3342 {
3343 struct sk_buff *skb;
3344
3345 /*
3346 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3347 * size, which is expected since buffers are at least PAGE_SIZEd.
3348 * In this case packets up to RX_COPY_THRES have only one fragment.
3349 */
3350 if (gl->tot_len <= RX_COPY_THRES) {
3351 skb = dev_alloc_skb(gl->tot_len);
3352 if (unlikely(!skb))
3353 goto out;
3354 __skb_put(skb, gl->tot_len);
3355 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3356 } else {
3357 skb = dev_alloc_skb(skb_len);
3358 if (unlikely(!skb))
3359 goto out;
3360 __skb_put(skb, pull_len);
3361 skb_copy_to_linear_data(skb, gl->va, pull_len);
3362
3363 copy_frags(skb, gl, pull_len);
3364 skb->len = gl->tot_len;
3365 skb->data_len = skb->len - pull_len;
3366 skb->truesize += skb->data_len;
3367 }
3368 out: return skb;
3369 }
3370 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3371
3372 /**
3373 * t4_pktgl_free - free a packet gather list
3374 * @gl: the gather list
3375 *
3376 * Releases the pages of a packet gather list. We do not own the last
3377 * page on the list and do not free it.
3378 */
t4_pktgl_free(const struct pkt_gl * gl)3379 static void t4_pktgl_free(const struct pkt_gl *gl)
3380 {
3381 int n;
3382 const struct page_frag *p;
3383
3384 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3385 put_page(p->page);
3386 }
3387
3388 /*
3389 * Process an MPS trace packet. Give it an unused protocol number so it won't
3390 * be delivered to anyone and send it to the stack for capture.
3391 */
handle_trace_pkt(struct adapter * adap,const struct pkt_gl * gl)3392 static noinline int handle_trace_pkt(struct adapter *adap,
3393 const struct pkt_gl *gl)
3394 {
3395 struct sk_buff *skb;
3396
3397 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3398 if (unlikely(!skb)) {
3399 t4_pktgl_free(gl);
3400 return 0;
3401 }
3402
3403 if (is_t4(adap->params.chip))
3404 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3405 else
3406 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3407
3408 skb_reset_mac_header(skb);
3409 skb->protocol = htons(0xffff);
3410 skb->dev = adap->port[0];
3411 netif_receive_skb(skb);
3412 return 0;
3413 }
3414
3415 /**
3416 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3417 * @adap: the adapter
3418 * @hwtstamps: time stamp structure to update
3419 * @sgetstamp: 60bit iqe timestamp
3420 *
3421 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3422 * which is in Core Clock ticks into ktime_t and assign it
3423 **/
cxgb4_sgetim_to_hwtstamp(struct adapter * adap,struct skb_shared_hwtstamps * hwtstamps,u64 sgetstamp)3424 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3425 struct skb_shared_hwtstamps *hwtstamps,
3426 u64 sgetstamp)
3427 {
3428 u64 ns;
3429 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3430
3431 ns = div_u64(tmp, adap->params.vpd.cclk);
3432
3433 memset(hwtstamps, 0, sizeof(*hwtstamps));
3434 hwtstamps->hwtstamp = ns_to_ktime(ns);
3435 }
3436
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt,unsigned long tnl_hdr_len)3437 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3438 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3439 {
3440 struct adapter *adapter = rxq->rspq.adap;
3441 struct sge *s = &adapter->sge;
3442 struct port_info *pi;
3443 int ret;
3444 struct sk_buff *skb;
3445
3446 skb = napi_get_frags(&rxq->rspq.napi);
3447 if (unlikely(!skb)) {
3448 t4_pktgl_free(gl);
3449 rxq->stats.rx_drops++;
3450 return;
3451 }
3452
3453 copy_frags(skb, gl, s->pktshift);
3454 if (tnl_hdr_len)
3455 skb->csum_level = 1;
3456 skb->len = gl->tot_len - s->pktshift;
3457 skb->data_len = skb->len;
3458 skb->truesize += skb->data_len;
3459 skb->ip_summed = CHECKSUM_UNNECESSARY;
3460 skb_record_rx_queue(skb, rxq->rspq.idx);
3461 pi = netdev_priv(skb->dev);
3462 if (pi->rxtstamp)
3463 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3464 gl->sgetstamp);
3465 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3466 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3467 PKT_HASH_TYPE_L3);
3468
3469 if (unlikely(pkt->vlan_ex)) {
3470 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3471 rxq->stats.vlan_ex++;
3472 }
3473 ret = napi_gro_frags(&rxq->rspq.napi);
3474 if (ret == GRO_HELD)
3475 rxq->stats.lro_pkts++;
3476 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3477 rxq->stats.lro_merged++;
3478 rxq->stats.pkts++;
3479 rxq->stats.rx_cso++;
3480 }
3481
3482 enum {
3483 RX_NON_PTP_PKT = 0,
3484 RX_PTP_PKT_SUC = 1,
3485 RX_PTP_PKT_ERR = 2
3486 };
3487
3488 /**
3489 * t4_systim_to_hwstamp - read hardware time stamp
3490 * @adapter: the adapter
3491 * @skb: the packet
3492 *
3493 * Read Time Stamp from MPS packet and insert in skb which
3494 * is forwarded to PTP application
3495 */
t4_systim_to_hwstamp(struct adapter * adapter,struct sk_buff * skb)3496 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3497 struct sk_buff *skb)
3498 {
3499 struct skb_shared_hwtstamps *hwtstamps;
3500 struct cpl_rx_mps_pkt *cpl = NULL;
3501 unsigned char *data;
3502 int offset;
3503
3504 cpl = (struct cpl_rx_mps_pkt *)skb->data;
3505 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3506 X_CPL_RX_MPS_PKT_TYPE_PTP))
3507 return RX_PTP_PKT_ERR;
3508
3509 data = skb->data + sizeof(*cpl);
3510 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3511 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3512 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3513 return RX_PTP_PKT_ERR;
3514
3515 hwtstamps = skb_hwtstamps(skb);
3516 memset(hwtstamps, 0, sizeof(*hwtstamps));
3517 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3518
3519 return RX_PTP_PKT_SUC;
3520 }
3521
3522 /**
3523 * t4_rx_hststamp - Recv PTP Event Message
3524 * @adapter: the adapter
3525 * @rsp: the response queue descriptor holding the RX_PKT message
3526 * @rxq: the response queue holding the RX_PKT message
3527 * @skb: the packet
3528 *
3529 * PTP enabled and MPS packet, read HW timestamp
3530 */
t4_rx_hststamp(struct adapter * adapter,const __be64 * rsp,struct sge_eth_rxq * rxq,struct sk_buff * skb)3531 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3532 struct sge_eth_rxq *rxq, struct sk_buff *skb)
3533 {
3534 int ret;
3535
3536 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3537 !is_t4(adapter->params.chip))) {
3538 ret = t4_systim_to_hwstamp(adapter, skb);
3539 if (ret == RX_PTP_PKT_ERR) {
3540 kfree_skb(skb);
3541 rxq->stats.rx_drops++;
3542 }
3543 return ret;
3544 }
3545 return RX_NON_PTP_PKT;
3546 }
3547
3548 /**
3549 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3550 * @adapter: the adapter
3551 * @skb: the packet
3552 * @dev: the ingress net device
3553 *
3554 * Read hardware timestamp for the loopback PTP Tx event message
3555 */
t4_tx_hststamp(struct adapter * adapter,struct sk_buff * skb,struct net_device * dev)3556 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3557 struct net_device *dev)
3558 {
3559 struct port_info *pi = netdev_priv(dev);
3560
3561 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3562 cxgb4_ptp_read_hwstamp(adapter, pi);
3563 kfree_skb(skb);
3564 return 0;
3565 }
3566 return 1;
3567 }
3568
3569 /**
3570 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3571 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3572 * @rsp: Response Entry pointer into Response Queue
3573 * @gl: Gather List pointer
3574 *
3575 * For adapters which support the SGE Doorbell Queue Timer facility,
3576 * we configure the Ethernet TX Queues to send CIDX Updates to the
3577 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3578 * messages. This adds a small load to PCIe Link RX bandwidth and,
3579 * potentially, higher CPU Interrupt load, but allows us to respond
3580 * much more quickly to the CIDX Updates. This is important for
3581 * Upper Layer Software which isn't willing to have a large amount
3582 * of TX Data outstanding before receiving DMA Completions.
3583 */
t4_tx_completion_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)3584 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3585 const __be64 *rsp,
3586 const struct pkt_gl *gl)
3587 {
3588 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3589 struct port_info *pi = netdev_priv(rspq->netdev);
3590 struct adapter *adapter = rspq->adap;
3591 struct sge *s = &adapter->sge;
3592 struct sge_eth_txq *txq;
3593
3594 /* skip RSS header */
3595 rsp++;
3596
3597 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3598 */
3599 if (unlikely(opcode == CPL_FW4_MSG &&
3600 ((const struct cpl_fw4_msg *)rsp)->type ==
3601 FW_TYPE_RSSCPL)) {
3602 rsp++;
3603 opcode = ((const struct rss_header *)rsp)->opcode;
3604 rsp++;
3605 }
3606
3607 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3608 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3609 __func__, opcode);
3610 return;
3611 }
3612
3613 txq = &s->ethtxq[pi->first_qset + rspq->idx];
3614 t4_sge_eth_txq_egress_update(adapter, txq, -1);
3615 }
3616
cxgb4_validate_lb_pkt(struct port_info * pi,const struct pkt_gl * si)3617 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3618 {
3619 struct adapter *adap = pi->adapter;
3620 struct cxgb4_ethtool_lb_test *lb;
3621 struct sge *s = &adap->sge;
3622 struct net_device *netdev;
3623 u8 *data;
3624 int i;
3625
3626 netdev = adap->port[pi->port_id];
3627 lb = &pi->ethtool_lb;
3628 data = si->va + s->pktshift;
3629
3630 i = ETH_ALEN;
3631 if (!ether_addr_equal(data + i, netdev->dev_addr))
3632 return -1;
3633
3634 i += ETH_ALEN;
3635 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3636 lb->result = -EIO;
3637
3638 complete(&lb->completion);
3639 return 0;
3640 }
3641
3642 /**
3643 * t4_ethrx_handler - process an ingress ethernet packet
3644 * @q: the response queue that received the packet
3645 * @rsp: the response queue descriptor holding the RX_PKT message
3646 * @si: the gather list of packet fragments
3647 *
3648 * Process an ingress ethernet packet and deliver it to the stack.
3649 */
t4_ethrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)3650 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3651 const struct pkt_gl *si)
3652 {
3653 bool csum_ok;
3654 struct sk_buff *skb;
3655 const struct cpl_rx_pkt *pkt;
3656 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3657 struct adapter *adapter = q->adap;
3658 struct sge *s = &q->adap->sge;
3659 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3660 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3661 u16 err_vec, tnl_hdr_len = 0;
3662 struct port_info *pi;
3663 int ret = 0;
3664
3665 pi = netdev_priv(q->netdev);
3666 /* If we're looking at TX Queue CIDX Update, handle that separately
3667 * and return.
3668 */
3669 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3670 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3671 t4_tx_completion_handler(q, rsp, si);
3672 return 0;
3673 }
3674
3675 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3676 return handle_trace_pkt(q->adap, si);
3677
3678 pkt = (const struct cpl_rx_pkt *)rsp;
3679 /* Compressed error vector is enabled for T6 only */
3680 if (q->adap->params.tp.rx_pkt_encap) {
3681 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3682 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3683 } else {
3684 err_vec = be16_to_cpu(pkt->err_vec);
3685 }
3686
3687 csum_ok = pkt->csum_calc && !err_vec &&
3688 (q->netdev->features & NETIF_F_RXCSUM);
3689
3690 if (err_vec)
3691 rxq->stats.bad_rx_pkts++;
3692
3693 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3694 ret = cxgb4_validate_lb_pkt(pi, si);
3695 if (!ret)
3696 return 0;
3697 }
3698
3699 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3700 tnl_hdr_len) &&
3701 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3702 do_gro(rxq, si, pkt, tnl_hdr_len);
3703 return 0;
3704 }
3705
3706 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3707 if (unlikely(!skb)) {
3708 t4_pktgl_free(si);
3709 rxq->stats.rx_drops++;
3710 return 0;
3711 }
3712
3713 /* Handle PTP Event Rx packet */
3714 if (unlikely(pi->ptp_enable)) {
3715 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3716 if (ret == RX_PTP_PKT_ERR)
3717 return 0;
3718 }
3719 if (likely(!ret))
3720 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3721
3722 /* Handle the PTP Event Tx Loopback packet */
3723 if (unlikely(pi->ptp_enable && !ret &&
3724 (pkt->l2info & htonl(RXF_UDP_F)) &&
3725 cxgb4_ptp_is_ptp_rx(skb))) {
3726 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3727 return 0;
3728 }
3729
3730 skb->protocol = eth_type_trans(skb, q->netdev);
3731 skb_record_rx_queue(skb, q->idx);
3732 if (skb->dev->features & NETIF_F_RXHASH)
3733 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3734 PKT_HASH_TYPE_L3);
3735
3736 rxq->stats.pkts++;
3737
3738 if (pi->rxtstamp)
3739 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3740 si->sgetstamp);
3741 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3742 if (!pkt->ip_frag) {
3743 skb->ip_summed = CHECKSUM_UNNECESSARY;
3744 rxq->stats.rx_cso++;
3745 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3746 __sum16 c = (__force __sum16)pkt->csum;
3747 skb->csum = csum_unfold(c);
3748
3749 if (tnl_hdr_len) {
3750 skb->ip_summed = CHECKSUM_UNNECESSARY;
3751 skb->csum_level = 1;
3752 } else {
3753 skb->ip_summed = CHECKSUM_COMPLETE;
3754 }
3755 rxq->stats.rx_cso++;
3756 }
3757 } else {
3758 skb_checksum_none_assert(skb);
3759 #ifdef CONFIG_CHELSIO_T4_FCOE
3760 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3761 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3762
3763 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3764 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3765 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3766 if (q->adap->params.tp.rx_pkt_encap)
3767 csum_ok = err_vec &
3768 T6_COMPR_RXERR_SUM_F;
3769 else
3770 csum_ok = err_vec & RXERR_CSUM_F;
3771 if (!csum_ok)
3772 skb->ip_summed = CHECKSUM_UNNECESSARY;
3773 }
3774 }
3775
3776 #undef CPL_RX_PKT_FLAGS
3777 #endif /* CONFIG_CHELSIO_T4_FCOE */
3778 }
3779
3780 if (unlikely(pkt->vlan_ex)) {
3781 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3782 rxq->stats.vlan_ex++;
3783 }
3784 skb_mark_napi_id(skb, &q->napi);
3785 netif_receive_skb(skb);
3786 return 0;
3787 }
3788
3789 /**
3790 * restore_rx_bufs - put back a packet's Rx buffers
3791 * @si: the packet gather list
3792 * @q: the SGE free list
3793 * @frags: number of FL buffers to restore
3794 *
3795 * Puts back on an FL the Rx buffers associated with @si. The buffers
3796 * have already been unmapped and are left unmapped, we mark them so to
3797 * prevent further unmapping attempts.
3798 *
3799 * This function undoes a series of @unmap_rx_buf calls when we find out
3800 * that the current packet can't be processed right away afterall and we
3801 * need to come back to it later. This is a very rare event and there's
3802 * no effort to make this particularly efficient.
3803 */
restore_rx_bufs(const struct pkt_gl * si,struct sge_fl * q,int frags)3804 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3805 int frags)
3806 {
3807 struct rx_sw_desc *d;
3808
3809 while (frags--) {
3810 if (q->cidx == 0)
3811 q->cidx = q->size - 1;
3812 else
3813 q->cidx--;
3814 d = &q->sdesc[q->cidx];
3815 d->page = si->frags[frags].page;
3816 d->dma_addr |= RX_UNMAPPED_BUF;
3817 q->avail++;
3818 }
3819 }
3820
3821 /**
3822 * is_new_response - check if a response is newly written
3823 * @r: the response descriptor
3824 * @q: the response queue
3825 *
3826 * Returns true if a response descriptor contains a yet unprocessed
3827 * response.
3828 */
is_new_response(const struct rsp_ctrl * r,const struct sge_rspq * q)3829 static inline bool is_new_response(const struct rsp_ctrl *r,
3830 const struct sge_rspq *q)
3831 {
3832 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3833 }
3834
3835 /**
3836 * rspq_next - advance to the next entry in a response queue
3837 * @q: the queue
3838 *
3839 * Updates the state of a response queue to advance it to the next entry.
3840 */
rspq_next(struct sge_rspq * q)3841 static inline void rspq_next(struct sge_rspq *q)
3842 {
3843 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3844 if (unlikely(++q->cidx == q->size)) {
3845 q->cidx = 0;
3846 q->gen ^= 1;
3847 q->cur_desc = q->desc;
3848 }
3849 }
3850
3851 /**
3852 * process_responses - process responses from an SGE response queue
3853 * @q: the ingress queue to process
3854 * @budget: how many responses can be processed in this round
3855 *
3856 * Process responses from an SGE response queue up to the supplied budget.
3857 * Responses include received packets as well as control messages from FW
3858 * or HW.
3859 *
3860 * Additionally choose the interrupt holdoff time for the next interrupt
3861 * on this queue. If the system is under memory shortage use a fairly
3862 * long delay to help recovery.
3863 */
process_responses(struct sge_rspq * q,int budget)3864 static int process_responses(struct sge_rspq *q, int budget)
3865 {
3866 int ret, rsp_type;
3867 int budget_left = budget;
3868 const struct rsp_ctrl *rc;
3869 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3870 struct adapter *adapter = q->adap;
3871 struct sge *s = &adapter->sge;
3872
3873 while (likely(budget_left)) {
3874 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3875 if (!is_new_response(rc, q)) {
3876 if (q->flush_handler)
3877 q->flush_handler(q);
3878 break;
3879 }
3880
3881 dma_rmb();
3882 rsp_type = RSPD_TYPE_G(rc->type_gen);
3883 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3884 struct page_frag *fp;
3885 struct pkt_gl si;
3886 const struct rx_sw_desc *rsd;
3887 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3888
3889 if (len & RSPD_NEWBUF_F) {
3890 if (likely(q->offset > 0)) {
3891 free_rx_bufs(q->adap, &rxq->fl, 1);
3892 q->offset = 0;
3893 }
3894 len = RSPD_LEN_G(len);
3895 }
3896 si.tot_len = len;
3897
3898 /* gather packet fragments */
3899 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3900 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3901 bufsz = get_buf_size(adapter, rsd);
3902 fp->page = rsd->page;
3903 fp->offset = q->offset;
3904 fp->size = min(bufsz, len);
3905 len -= fp->size;
3906 if (!len)
3907 break;
3908 unmap_rx_buf(q->adap, &rxq->fl);
3909 }
3910
3911 si.sgetstamp = SGE_TIMESTAMP_G(
3912 be64_to_cpu(rc->last_flit));
3913 /*
3914 * Last buffer remains mapped so explicitly make it
3915 * coherent for CPU access.
3916 */
3917 dma_sync_single_for_cpu(q->adap->pdev_dev,
3918 get_buf_addr(rsd),
3919 fp->size, DMA_FROM_DEVICE);
3920
3921 si.va = page_address(si.frags[0].page) +
3922 si.frags[0].offset;
3923 prefetch(si.va);
3924
3925 si.nfrags = frags + 1;
3926 ret = q->handler(q, q->cur_desc, &si);
3927 if (likely(ret == 0))
3928 q->offset += ALIGN(fp->size, s->fl_align);
3929 else
3930 restore_rx_bufs(&si, &rxq->fl, frags);
3931 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3932 ret = q->handler(q, q->cur_desc, NULL);
3933 } else {
3934 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3935 }
3936
3937 if (unlikely(ret)) {
3938 /* couldn't process descriptor, back off for recovery */
3939 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3940 break;
3941 }
3942
3943 rspq_next(q);
3944 budget_left--;
3945 }
3946
3947 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3948 __refill_fl(q->adap, &rxq->fl);
3949 return budget - budget_left;
3950 }
3951
3952 /**
3953 * napi_rx_handler - the NAPI handler for Rx processing
3954 * @napi: the napi instance
3955 * @budget: how many packets we can process in this round
3956 *
3957 * Handler for new data events when using NAPI. This does not need any
3958 * locking or protection from interrupts as data interrupts are off at
3959 * this point and other adapter interrupts do not interfere (the latter
3960 * in not a concern at all with MSI-X as non-data interrupts then have
3961 * a separate handler).
3962 */
napi_rx_handler(struct napi_struct * napi,int budget)3963 static int napi_rx_handler(struct napi_struct *napi, int budget)
3964 {
3965 unsigned int params;
3966 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3967 int work_done;
3968 u32 val;
3969
3970 work_done = process_responses(q, budget);
3971 if (likely(work_done < budget)) {
3972 int timer_index;
3973
3974 napi_complete_done(napi, work_done);
3975 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3976
3977 if (q->adaptive_rx) {
3978 if (work_done > max(timer_pkt_quota[timer_index],
3979 MIN_NAPI_WORK))
3980 timer_index = (timer_index + 1);
3981 else
3982 timer_index = timer_index - 1;
3983
3984 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3985 q->next_intr_params =
3986 QINTR_TIMER_IDX_V(timer_index) |
3987 QINTR_CNT_EN_V(0);
3988 params = q->next_intr_params;
3989 } else {
3990 params = q->next_intr_params;
3991 q->next_intr_params = q->intr_params;
3992 }
3993 } else
3994 params = QINTR_TIMER_IDX_V(7);
3995
3996 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3997
3998 /* If we don't have access to the new User GTS (T5+), use the old
3999 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4000 */
4001 if (unlikely(q->bar2_addr == NULL)) {
4002 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4003 val | INGRESSQID_V((u32)q->cntxt_id));
4004 } else {
4005 writel(val | INGRESSQID_V(q->bar2_qid),
4006 q->bar2_addr + SGE_UDB_GTS);
4007 wmb();
4008 }
4009 return work_done;
4010 }
4011
cxgb4_ethofld_restart(struct tasklet_struct * t)4012 void cxgb4_ethofld_restart(struct tasklet_struct *t)
4013 {
4014 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4015 qresume_tsk);
4016 int pktcount;
4017
4018 spin_lock(&eosw_txq->lock);
4019 pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4020 if (pktcount < 0)
4021 pktcount += eosw_txq->ndesc;
4022
4023 if (pktcount) {
4024 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4025 eosw_txq, pktcount);
4026 eosw_txq->inuse -= pktcount;
4027 }
4028
4029 /* There may be some packets waiting for completions. So,
4030 * attempt to send these packets now.
4031 */
4032 ethofld_xmit(eosw_txq->netdev, eosw_txq);
4033 spin_unlock(&eosw_txq->lock);
4034 }
4035
4036 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4037 * @q: the response queue that received the packet
4038 * @rsp: the response queue descriptor holding the CPL message
4039 * @si: the gather list of packet fragments
4040 *
4041 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4042 * free up the descriptors in a tasklet later.
4043 */
cxgb4_ethofld_rx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)4044 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4045 const struct pkt_gl *si)
4046 {
4047 u8 opcode = ((const struct rss_header *)rsp)->opcode;
4048
4049 /* skip RSS header */
4050 rsp++;
4051
4052 if (opcode == CPL_FW4_ACK) {
4053 const struct cpl_fw4_ack *cpl;
4054 struct sge_eosw_txq *eosw_txq;
4055 struct eotid_entry *entry;
4056 struct sk_buff *skb;
4057 u32 hdr_len, eotid;
4058 u8 flits, wrlen16;
4059 int credits;
4060
4061 cpl = (const struct cpl_fw4_ack *)rsp;
4062 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4063 q->adap->tids.eotid_base;
4064 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4065 if (!entry)
4066 goto out_done;
4067
4068 eosw_txq = (struct sge_eosw_txq *)entry->data;
4069 if (!eosw_txq)
4070 goto out_done;
4071
4072 spin_lock(&eosw_txq->lock);
4073 credits = cpl->credits;
4074 while (credits > 0) {
4075 skb = eosw_txq->desc[eosw_txq->cidx].skb;
4076 if (!skb)
4077 break;
4078
4079 if (unlikely((eosw_txq->state ==
4080 CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4081 eosw_txq->state ==
4082 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4083 eosw_txq->cidx == eosw_txq->flowc_idx)) {
4084 flits = DIV_ROUND_UP(skb->len, 8);
4085 if (eosw_txq->state ==
4086 CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4087 eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4088 else
4089 eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4090 complete(&eosw_txq->completion);
4091 } else {
4092 hdr_len = eth_get_headlen(eosw_txq->netdev,
4093 skb->data,
4094 skb_headlen(skb));
4095 flits = ethofld_calc_tx_flits(q->adap, skb,
4096 hdr_len);
4097 }
4098 eosw_txq_advance_index(&eosw_txq->cidx, 1,
4099 eosw_txq->ndesc);
4100 wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4101 credits -= wrlen16;
4102 }
4103
4104 eosw_txq->cred += cpl->credits;
4105 eosw_txq->ncompl--;
4106
4107 spin_unlock(&eosw_txq->lock);
4108
4109 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4110 * if there were packets waiting for completion.
4111 */
4112 tasklet_schedule(&eosw_txq->qresume_tsk);
4113 }
4114
4115 out_done:
4116 return 0;
4117 }
4118
4119 /*
4120 * The MSI-X interrupt handler for an SGE response queue.
4121 */
t4_sge_intr_msix(int irq,void * cookie)4122 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4123 {
4124 struct sge_rspq *q = cookie;
4125
4126 napi_schedule(&q->napi);
4127 return IRQ_HANDLED;
4128 }
4129
4130 /*
4131 * Process the indirect interrupt entries in the interrupt queue and kick off
4132 * NAPI for each queue that has generated an entry.
4133 */
process_intrq(struct adapter * adap)4134 static unsigned int process_intrq(struct adapter *adap)
4135 {
4136 unsigned int credits;
4137 const struct rsp_ctrl *rc;
4138 struct sge_rspq *q = &adap->sge.intrq;
4139 u32 val;
4140
4141 spin_lock(&adap->sge.intrq_lock);
4142 for (credits = 0; ; credits++) {
4143 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4144 if (!is_new_response(rc, q))
4145 break;
4146
4147 dma_rmb();
4148 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4149 unsigned int qid = ntohl(rc->pldbuflen_qid);
4150
4151 qid -= adap->sge.ingr_start;
4152 napi_schedule(&adap->sge.ingr_map[qid]->napi);
4153 }
4154
4155 rspq_next(q);
4156 }
4157
4158 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4159
4160 /* If we don't have access to the new User GTS (T5+), use the old
4161 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4162 */
4163 if (unlikely(q->bar2_addr == NULL)) {
4164 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4165 val | INGRESSQID_V(q->cntxt_id));
4166 } else {
4167 writel(val | INGRESSQID_V(q->bar2_qid),
4168 q->bar2_addr + SGE_UDB_GTS);
4169 wmb();
4170 }
4171 spin_unlock(&adap->sge.intrq_lock);
4172 return credits;
4173 }
4174
4175 /*
4176 * The MSI interrupt handler, which handles data events from SGE response queues
4177 * as well as error and other async events as they all use the same MSI vector.
4178 */
t4_intr_msi(int irq,void * cookie)4179 static irqreturn_t t4_intr_msi(int irq, void *cookie)
4180 {
4181 struct adapter *adap = cookie;
4182
4183 if (adap->flags & CXGB4_MASTER_PF)
4184 t4_slow_intr_handler(adap);
4185 process_intrq(adap);
4186 return IRQ_HANDLED;
4187 }
4188
4189 /*
4190 * Interrupt handler for legacy INTx interrupts.
4191 * Handles data events from SGE response queues as well as error and other
4192 * async events as they all use the same interrupt line.
4193 */
t4_intr_intx(int irq,void * cookie)4194 static irqreturn_t t4_intr_intx(int irq, void *cookie)
4195 {
4196 struct adapter *adap = cookie;
4197
4198 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4199 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4200 process_intrq(adap))
4201 return IRQ_HANDLED;
4202 return IRQ_NONE; /* probably shared interrupt */
4203 }
4204
4205 /**
4206 * t4_intr_handler - select the top-level interrupt handler
4207 * @adap: the adapter
4208 *
4209 * Selects the top-level interrupt handler based on the type of interrupts
4210 * (MSI-X, MSI, or INTx).
4211 */
t4_intr_handler(struct adapter * adap)4212 irq_handler_t t4_intr_handler(struct adapter *adap)
4213 {
4214 if (adap->flags & CXGB4_USING_MSIX)
4215 return t4_sge_intr_msix;
4216 if (adap->flags & CXGB4_USING_MSI)
4217 return t4_intr_msi;
4218 return t4_intr_intx;
4219 }
4220
sge_rx_timer_cb(struct timer_list * t)4221 static void sge_rx_timer_cb(struct timer_list *t)
4222 {
4223 unsigned long m;
4224 unsigned int i;
4225 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4226 struct sge *s = &adap->sge;
4227
4228 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4229 for (m = s->starving_fl[i]; m; m &= m - 1) {
4230 struct sge_eth_rxq *rxq;
4231 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4232 struct sge_fl *fl = s->egr_map[id];
4233
4234 clear_bit(id, s->starving_fl);
4235 smp_mb__after_atomic();
4236
4237 if (fl_starving(adap, fl)) {
4238 rxq = container_of(fl, struct sge_eth_rxq, fl);
4239 if (napi_reschedule(&rxq->rspq.napi))
4240 fl->starving++;
4241 else
4242 set_bit(id, s->starving_fl);
4243 }
4244 }
4245 /* The remainder of the SGE RX Timer Callback routine is dedicated to
4246 * global Master PF activities like checking for chip ingress stalls,
4247 * etc.
4248 */
4249 if (!(adap->flags & CXGB4_MASTER_PF))
4250 goto done;
4251
4252 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4253
4254 done:
4255 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4256 }
4257
sge_tx_timer_cb(struct timer_list * t)4258 static void sge_tx_timer_cb(struct timer_list *t)
4259 {
4260 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4261 struct sge *s = &adap->sge;
4262 unsigned long m, period;
4263 unsigned int i, budget;
4264
4265 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4266 for (m = s->txq_maperr[i]; m; m &= m - 1) {
4267 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4268 struct sge_uld_txq *txq = s->egr_map[id];
4269
4270 clear_bit(id, s->txq_maperr);
4271 tasklet_schedule(&txq->qresume_tsk);
4272 }
4273
4274 if (!is_t4(adap->params.chip)) {
4275 struct sge_eth_txq *q = &s->ptptxq;
4276 int avail;
4277
4278 spin_lock(&adap->ptp_lock);
4279 avail = reclaimable(&q->q);
4280
4281 if (avail) {
4282 free_tx_desc(adap, &q->q, avail, false);
4283 q->q.in_use -= avail;
4284 }
4285 spin_unlock(&adap->ptp_lock);
4286 }
4287
4288 budget = MAX_TIMER_TX_RECLAIM;
4289 i = s->ethtxq_rover;
4290 do {
4291 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4292 budget);
4293 if (!budget)
4294 break;
4295
4296 if (++i >= s->ethqsets)
4297 i = 0;
4298 } while (i != s->ethtxq_rover);
4299 s->ethtxq_rover = i;
4300
4301 if (budget == 0) {
4302 /* If we found too many reclaimable packets schedule a timer
4303 * in the near future to continue where we left off.
4304 */
4305 period = 2;
4306 } else {
4307 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4308 * at the normal period.
4309 */
4310 period = TX_QCHECK_PERIOD;
4311 }
4312
4313 mod_timer(&s->tx_timer, jiffies + period);
4314 }
4315
4316 /**
4317 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4318 * @adapter: the adapter
4319 * @qid: the SGE Queue ID
4320 * @qtype: the SGE Queue Type (Egress or Ingress)
4321 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4322 *
4323 * Returns the BAR2 address for the SGE Queue Registers associated with
4324 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4325 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4326 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4327 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4328 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)4329 static void __iomem *bar2_address(struct adapter *adapter,
4330 unsigned int qid,
4331 enum t4_bar2_qtype qtype,
4332 unsigned int *pbar2_qid)
4333 {
4334 u64 bar2_qoffset;
4335 int ret;
4336
4337 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4338 &bar2_qoffset, pbar2_qid);
4339 if (ret)
4340 return NULL;
4341
4342 return adapter->bar2 + bar2_qoffset;
4343 }
4344
4345 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4346 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4347 */
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct net_device * dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd,rspq_flush_handler_t flush_hnd,int cong)4348 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4349 struct net_device *dev, int intr_idx,
4350 struct sge_fl *fl, rspq_handler_t hnd,
4351 rspq_flush_handler_t flush_hnd, int cong)
4352 {
4353 int ret, flsz = 0;
4354 struct fw_iq_cmd c;
4355 struct sge *s = &adap->sge;
4356 struct port_info *pi = netdev_priv(dev);
4357 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4358
4359 /* Size needs to be multiple of 16, including status entry. */
4360 iq->size = roundup(iq->size, 16);
4361
4362 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4363 &iq->phys_addr, NULL, 0,
4364 dev_to_node(adap->pdev_dev));
4365 if (!iq->desc)
4366 return -ENOMEM;
4367
4368 memset(&c, 0, sizeof(c));
4369 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4370 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4371 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4372 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4373 FW_LEN16(c));
4374 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4375 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4376 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4377 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4378 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4379 -intr_idx - 1));
4380 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4381 FW_IQ_CMD_IQGTSMODE_F |
4382 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4383 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4384 c.iqsize = htons(iq->size);
4385 c.iqaddr = cpu_to_be64(iq->phys_addr);
4386 if (cong >= 0)
4387 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4388 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4389 : FW_IQ_IQTYPE_OFLD));
4390
4391 if (fl) {
4392 unsigned int chip_ver =
4393 CHELSIO_CHIP_VERSION(adap->params.chip);
4394
4395 /* Allocate the ring for the hardware free list (with space
4396 * for its status page) along with the associated software
4397 * descriptor ring. The free list size needs to be a multiple
4398 * of the Egress Queue Unit and at least 2 Egress Units larger
4399 * than the SGE's Egress Congrestion Threshold
4400 * (fl_starve_thres - 1).
4401 */
4402 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4403 fl->size = s->fl_starve_thres - 1 + 2 * 8;
4404 fl->size = roundup(fl->size, 8);
4405 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4406 sizeof(struct rx_sw_desc), &fl->addr,
4407 &fl->sdesc, s->stat_len,
4408 dev_to_node(adap->pdev_dev));
4409 if (!fl->desc)
4410 goto fl_nomem;
4411
4412 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4413 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4414 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4415 FW_IQ_CMD_FL0DATARO_V(relaxed) |
4416 FW_IQ_CMD_FL0PADEN_F);
4417 if (cong >= 0)
4418 c.iqns_to_fl0congen |=
4419 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4420 FW_IQ_CMD_FL0CONGCIF_F |
4421 FW_IQ_CMD_FL0CONGEN_F);
4422 /* In T6, for egress queue type FL there is internal overhead
4423 * of 16B for header going into FLM module. Hence the maximum
4424 * allowed burst size is 448 bytes. For T4/T5, the hardware
4425 * doesn't coalesce fetch requests if more than 64 bytes of
4426 * Free List pointers are provided, so we use a 128-byte Fetch
4427 * Burst Minimum there (T6 implements coalescing so we can use
4428 * the smaller 64-byte value there).
4429 */
4430 c.fl0dcaen_to_fl0cidxfthresh =
4431 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4432 FETCHBURSTMIN_128B_X :
4433 FETCHBURSTMIN_64B_T6_X) |
4434 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4435 FETCHBURSTMAX_512B_X :
4436 FETCHBURSTMAX_256B_X));
4437 c.fl0size = htons(flsz);
4438 c.fl0addr = cpu_to_be64(fl->addr);
4439 }
4440
4441 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4442 if (ret)
4443 goto err;
4444
4445 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4446 iq->cur_desc = iq->desc;
4447 iq->cidx = 0;
4448 iq->gen = 1;
4449 iq->next_intr_params = iq->intr_params;
4450 iq->cntxt_id = ntohs(c.iqid);
4451 iq->abs_id = ntohs(c.physiqid);
4452 iq->bar2_addr = bar2_address(adap,
4453 iq->cntxt_id,
4454 T4_BAR2_QTYPE_INGRESS,
4455 &iq->bar2_qid);
4456 iq->size--; /* subtract status entry */
4457 iq->netdev = dev;
4458 iq->handler = hnd;
4459 iq->flush_handler = flush_hnd;
4460
4461 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4462 skb_queue_head_init(&iq->lro_mgr.lroq);
4463
4464 /* set offset to -1 to distinguish ingress queues without FL */
4465 iq->offset = fl ? 0 : -1;
4466
4467 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4468
4469 if (fl) {
4470 fl->cntxt_id = ntohs(c.fl0id);
4471 fl->avail = fl->pend_cred = 0;
4472 fl->pidx = fl->cidx = 0;
4473 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4474 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4475
4476 /* Note, we must initialize the BAR2 Free List User Doorbell
4477 * information before refilling the Free List!
4478 */
4479 fl->bar2_addr = bar2_address(adap,
4480 fl->cntxt_id,
4481 T4_BAR2_QTYPE_EGRESS,
4482 &fl->bar2_qid);
4483 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4484 }
4485
4486 /* For T5 and later we attempt to set up the Congestion Manager values
4487 * of the new RX Ethernet Queue. This should really be handled by
4488 * firmware because it's more complex than any host driver wants to
4489 * get involved with and it's different per chip and this is almost
4490 * certainly wrong. Firmware would be wrong as well, but it would be
4491 * a lot easier to fix in one place ... For now we do something very
4492 * simple (and hopefully less wrong).
4493 */
4494 if (!is_t4(adap->params.chip) && cong >= 0) {
4495 u32 param, val, ch_map = 0;
4496 int i;
4497 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4498
4499 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4500 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4501 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4502 if (cong == 0) {
4503 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4504 } else {
4505 val =
4506 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4507 for (i = 0; i < 4; i++) {
4508 if (cong & (1 << i))
4509 ch_map |= 1 << (i << cng_ch_bits_log);
4510 }
4511 val |= CONMCTXT_CNGCHMAP_V(ch_map);
4512 }
4513 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4514 ¶m, &val);
4515 if (ret)
4516 dev_warn(adap->pdev_dev, "Failed to set Congestion"
4517 " Manager Context for Ingress Queue %d: %d\n",
4518 iq->cntxt_id, -ret);
4519 }
4520
4521 return 0;
4522
4523 fl_nomem:
4524 ret = -ENOMEM;
4525 err:
4526 if (iq->desc) {
4527 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4528 iq->desc, iq->phys_addr);
4529 iq->desc = NULL;
4530 }
4531 if (fl && fl->desc) {
4532 kfree(fl->sdesc);
4533 fl->sdesc = NULL;
4534 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4535 fl->desc, fl->addr);
4536 fl->desc = NULL;
4537 }
4538 return ret;
4539 }
4540
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id)4541 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4542 {
4543 q->cntxt_id = id;
4544 q->bar2_addr = bar2_address(adap,
4545 q->cntxt_id,
4546 T4_BAR2_QTYPE_EGRESS,
4547 &q->bar2_qid);
4548 q->in_use = 0;
4549 q->cidx = q->pidx = 0;
4550 q->stops = q->restarts = 0;
4551 q->stat = (void *)&q->desc[q->size];
4552 spin_lock_init(&q->db_lock);
4553 adap->sge.egr_map[id - adap->sge.egr_start] = q;
4554 }
4555
4556 /**
4557 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4558 * @adap: the adapter
4559 * @txq: the SGE Ethernet TX Queue to initialize
4560 * @dev: the Linux Network Device
4561 * @netdevq: the corresponding Linux TX Queue
4562 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4563 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4564 */
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * netdevq,unsigned int iqid,u8 dbqt)4565 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4566 struct net_device *dev, struct netdev_queue *netdevq,
4567 unsigned int iqid, u8 dbqt)
4568 {
4569 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4570 struct port_info *pi = netdev_priv(dev);
4571 struct sge *s = &adap->sge;
4572 struct fw_eq_eth_cmd c;
4573 int ret, nentries;
4574
4575 /* Add status entries */
4576 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4577
4578 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4579 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4580 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4581 netdev_queue_numa_node_read(netdevq));
4582 if (!txq->q.desc)
4583 return -ENOMEM;
4584
4585 memset(&c, 0, sizeof(c));
4586 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4587 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4588 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4589 FW_EQ_ETH_CMD_VFN_V(0));
4590 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4591 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4592
4593 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4594 * mechanism, we use Ingress Queue messages for Hardware Consumer
4595 * Index Updates on the TX Queue. Otherwise we have the Hardware
4596 * write the CIDX Updates into the Status Page at the end of the
4597 * TX Queue.
4598 */
4599 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4600 FW_EQ_ETH_CMD_VIID_V(pi->viid));
4601
4602 c.fetchszm_to_iqid =
4603 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4604 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4605 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4606
4607 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4608 c.dcaen_to_eqsize =
4609 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4610 ? FETCHBURSTMIN_64B_X
4611 : FETCHBURSTMIN_64B_T6_X) |
4612 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4613 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4614 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4615
4616 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4617
4618 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4619 * currently configured Timer Index. THis can be changed later via an
4620 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4621 * Doorbell Queue mode is currently automatically enabled in the
4622 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4623 */
4624 if (dbqt)
4625 c.timeren_timerix =
4626 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4627 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4628
4629 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4630 if (ret) {
4631 kfree(txq->q.sdesc);
4632 txq->q.sdesc = NULL;
4633 dma_free_coherent(adap->pdev_dev,
4634 nentries * sizeof(struct tx_desc),
4635 txq->q.desc, txq->q.phys_addr);
4636 txq->q.desc = NULL;
4637 return ret;
4638 }
4639
4640 txq->q.q_type = CXGB4_TXQ_ETH;
4641 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4642 txq->txq = netdevq;
4643 txq->tso = 0;
4644 txq->uso = 0;
4645 txq->tx_cso = 0;
4646 txq->vlan_ins = 0;
4647 txq->mapping_err = 0;
4648 txq->dbqt = dbqt;
4649
4650 return 0;
4651 }
4652
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int cmplqid)4653 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4654 struct net_device *dev, unsigned int iqid,
4655 unsigned int cmplqid)
4656 {
4657 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4658 struct port_info *pi = netdev_priv(dev);
4659 struct sge *s = &adap->sge;
4660 struct fw_eq_ctrl_cmd c;
4661 int ret, nentries;
4662
4663 /* Add status entries */
4664 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4665
4666 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4667 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4668 NULL, 0, dev_to_node(adap->pdev_dev));
4669 if (!txq->q.desc)
4670 return -ENOMEM;
4671
4672 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4673 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4674 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4675 FW_EQ_CTRL_CMD_VFN_V(0));
4676 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4677 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4678 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4679 c.physeqid_pkd = htonl(0);
4680 c.fetchszm_to_iqid =
4681 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4682 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4683 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4684 c.dcaen_to_eqsize =
4685 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4686 ? FETCHBURSTMIN_64B_X
4687 : FETCHBURSTMIN_64B_T6_X) |
4688 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4689 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4690 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4691 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4692
4693 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4694 if (ret) {
4695 dma_free_coherent(adap->pdev_dev,
4696 nentries * sizeof(struct tx_desc),
4697 txq->q.desc, txq->q.phys_addr);
4698 txq->q.desc = NULL;
4699 return ret;
4700 }
4701
4702 txq->q.q_type = CXGB4_TXQ_CTRL;
4703 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4704 txq->adap = adap;
4705 skb_queue_head_init(&txq->sendq);
4706 tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4707 txq->full = 0;
4708 return 0;
4709 }
4710
t4_sge_mod_ctrl_txq(struct adapter * adap,unsigned int eqid,unsigned int cmplqid)4711 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4712 unsigned int cmplqid)
4713 {
4714 u32 param, val;
4715
4716 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4717 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4718 FW_PARAMS_PARAM_YZ_V(eqid));
4719 val = cmplqid;
4720 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
4721 }
4722
t4_sge_alloc_ofld_txq(struct adapter * adap,struct sge_txq * q,struct net_device * dev,u32 cmd,u32 iqid)4723 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4724 struct net_device *dev, u32 cmd, u32 iqid)
4725 {
4726 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4727 struct port_info *pi = netdev_priv(dev);
4728 struct sge *s = &adap->sge;
4729 struct fw_eq_ofld_cmd c;
4730 u32 fb_min, nentries;
4731 int ret;
4732
4733 /* Add status entries */
4734 nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4735 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4736 sizeof(struct tx_sw_desc), &q->phys_addr,
4737 &q->sdesc, s->stat_len, NUMA_NO_NODE);
4738 if (!q->desc)
4739 return -ENOMEM;
4740
4741 if (chip_ver <= CHELSIO_T5)
4742 fb_min = FETCHBURSTMIN_64B_X;
4743 else
4744 fb_min = FETCHBURSTMIN_64B_T6_X;
4745
4746 memset(&c, 0, sizeof(c));
4747 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4748 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4749 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4750 FW_EQ_OFLD_CMD_VFN_V(0));
4751 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4752 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4753 c.fetchszm_to_iqid =
4754 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4755 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4756 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4757 c.dcaen_to_eqsize =
4758 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4759 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4760 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4761 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4762 c.eqaddr = cpu_to_be64(q->phys_addr);
4763
4764 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4765 if (ret) {
4766 kfree(q->sdesc);
4767 q->sdesc = NULL;
4768 dma_free_coherent(adap->pdev_dev,
4769 nentries * sizeof(struct tx_desc),
4770 q->desc, q->phys_addr);
4771 q->desc = NULL;
4772 return ret;
4773 }
4774
4775 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4776 return 0;
4777 }
4778
t4_sge_alloc_uld_txq(struct adapter * adap,struct sge_uld_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int uld_type)4779 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4780 struct net_device *dev, unsigned int iqid,
4781 unsigned int uld_type)
4782 {
4783 u32 cmd = FW_EQ_OFLD_CMD;
4784 int ret;
4785
4786 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4787 cmd = FW_EQ_CTRL_CMD;
4788
4789 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4790 if (ret)
4791 return ret;
4792
4793 txq->q.q_type = CXGB4_TXQ_ULD;
4794 txq->adap = adap;
4795 skb_queue_head_init(&txq->sendq);
4796 tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4797 txq->full = 0;
4798 txq->mapping_err = 0;
4799 return 0;
4800 }
4801
t4_sge_alloc_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq,struct net_device * dev,u32 iqid)4802 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4803 struct net_device *dev, u32 iqid)
4804 {
4805 int ret;
4806
4807 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4808 if (ret)
4809 return ret;
4810
4811 txq->q.q_type = CXGB4_TXQ_ULD;
4812 spin_lock_init(&txq->lock);
4813 txq->adap = adap;
4814 txq->tso = 0;
4815 txq->uso = 0;
4816 txq->tx_cso = 0;
4817 txq->vlan_ins = 0;
4818 txq->mapping_err = 0;
4819 return 0;
4820 }
4821
free_txq(struct adapter * adap,struct sge_txq * q)4822 void free_txq(struct adapter *adap, struct sge_txq *q)
4823 {
4824 struct sge *s = &adap->sge;
4825
4826 dma_free_coherent(adap->pdev_dev,
4827 q->size * sizeof(struct tx_desc) + s->stat_len,
4828 q->desc, q->phys_addr);
4829 q->cntxt_id = 0;
4830 q->sdesc = NULL;
4831 q->desc = NULL;
4832 }
4833
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)4834 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4835 struct sge_fl *fl)
4836 {
4837 struct sge *s = &adap->sge;
4838 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4839
4840 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4841 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4842 rq->cntxt_id, fl_id, 0xffff);
4843 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4844 rq->desc, rq->phys_addr);
4845 netif_napi_del(&rq->napi);
4846 rq->netdev = NULL;
4847 rq->cntxt_id = rq->abs_id = 0;
4848 rq->desc = NULL;
4849
4850 if (fl) {
4851 free_rx_bufs(adap, fl, fl->avail);
4852 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4853 fl->desc, fl->addr);
4854 kfree(fl->sdesc);
4855 fl->sdesc = NULL;
4856 fl->cntxt_id = 0;
4857 fl->desc = NULL;
4858 }
4859 }
4860
4861 /**
4862 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4863 * @adap: the adapter
4864 * @n: number of queues
4865 * @q: pointer to first queue
4866 *
4867 * Release the resources of a consecutive block of offload Rx queues.
4868 */
t4_free_ofld_rxqs(struct adapter * adap,int n,struct sge_ofld_rxq * q)4869 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4870 {
4871 for ( ; n; n--, q++)
4872 if (q->rspq.desc)
4873 free_rspq_fl(adap, &q->rspq,
4874 q->fl.size ? &q->fl : NULL);
4875 }
4876
t4_sge_free_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq)4877 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4878 {
4879 if (txq->q.desc) {
4880 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4881 txq->q.cntxt_id);
4882 free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4883 kfree(txq->q.sdesc);
4884 free_txq(adap, &txq->q);
4885 }
4886 }
4887
4888 /**
4889 * t4_free_sge_resources - free SGE resources
4890 * @adap: the adapter
4891 *
4892 * Frees resources used by the SGE queue sets.
4893 */
t4_free_sge_resources(struct adapter * adap)4894 void t4_free_sge_resources(struct adapter *adap)
4895 {
4896 int i;
4897 struct sge_eth_rxq *eq;
4898 struct sge_eth_txq *etq;
4899
4900 /* stop all Rx queues in order to start them draining */
4901 for (i = 0; i < adap->sge.ethqsets; i++) {
4902 eq = &adap->sge.ethrxq[i];
4903 if (eq->rspq.desc)
4904 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4905 FW_IQ_TYPE_FL_INT_CAP,
4906 eq->rspq.cntxt_id,
4907 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4908 0xffff);
4909 }
4910
4911 /* clean up Ethernet Tx/Rx queues */
4912 for (i = 0; i < adap->sge.ethqsets; i++) {
4913 eq = &adap->sge.ethrxq[i];
4914 if (eq->rspq.desc)
4915 free_rspq_fl(adap, &eq->rspq,
4916 eq->fl.size ? &eq->fl : NULL);
4917 if (eq->msix) {
4918 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4919 eq->msix = NULL;
4920 }
4921
4922 etq = &adap->sge.ethtxq[i];
4923 if (etq->q.desc) {
4924 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4925 etq->q.cntxt_id);
4926 __netif_tx_lock_bh(etq->txq);
4927 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4928 __netif_tx_unlock_bh(etq->txq);
4929 kfree(etq->q.sdesc);
4930 free_txq(adap, &etq->q);
4931 }
4932 }
4933
4934 /* clean up control Tx queues */
4935 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4936 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4937
4938 if (cq->q.desc) {
4939 tasklet_kill(&cq->qresume_tsk);
4940 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4941 cq->q.cntxt_id);
4942 __skb_queue_purge(&cq->sendq);
4943 free_txq(adap, &cq->q);
4944 }
4945 }
4946
4947 if (adap->sge.fw_evtq.desc) {
4948 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4949 if (adap->sge.fwevtq_msix_idx >= 0)
4950 cxgb4_free_msix_idx_in_bmap(adap,
4951 adap->sge.fwevtq_msix_idx);
4952 }
4953
4954 if (adap->sge.nd_msix_idx >= 0)
4955 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4956
4957 if (adap->sge.intrq.desc)
4958 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4959
4960 if (!is_t4(adap->params.chip)) {
4961 etq = &adap->sge.ptptxq;
4962 if (etq->q.desc) {
4963 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4964 etq->q.cntxt_id);
4965 spin_lock_bh(&adap->ptp_lock);
4966 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4967 spin_unlock_bh(&adap->ptp_lock);
4968 kfree(etq->q.sdesc);
4969 free_txq(adap, &etq->q);
4970 }
4971 }
4972
4973 /* clear the reverse egress queue map */
4974 memset(adap->sge.egr_map, 0,
4975 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4976 }
4977
t4_sge_start(struct adapter * adap)4978 void t4_sge_start(struct adapter *adap)
4979 {
4980 adap->sge.ethtxq_rover = 0;
4981 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4982 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4983 }
4984
4985 /**
4986 * t4_sge_stop - disable SGE operation
4987 * @adap: the adapter
4988 *
4989 * Stop tasklets and timers associated with the DMA engine. Note that
4990 * this is effective only if measures have been taken to disable any HW
4991 * events that may restart them.
4992 */
t4_sge_stop(struct adapter * adap)4993 void t4_sge_stop(struct adapter *adap)
4994 {
4995 int i;
4996 struct sge *s = &adap->sge;
4997
4998 if (s->rx_timer.function)
4999 del_timer_sync(&s->rx_timer);
5000 if (s->tx_timer.function)
5001 del_timer_sync(&s->tx_timer);
5002
5003 if (is_offload(adap)) {
5004 struct sge_uld_txq_info *txq_info;
5005
5006 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5007 if (txq_info) {
5008 struct sge_uld_txq *txq = txq_info->uldtxq;
5009
5010 for_each_ofldtxq(&adap->sge, i) {
5011 if (txq->q.desc)
5012 tasklet_kill(&txq->qresume_tsk);
5013 }
5014 }
5015 }
5016
5017 if (is_pci_uld(adap)) {
5018 struct sge_uld_txq_info *txq_info;
5019
5020 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5021 if (txq_info) {
5022 struct sge_uld_txq *txq = txq_info->uldtxq;
5023
5024 for_each_ofldtxq(&adap->sge, i) {
5025 if (txq->q.desc)
5026 tasklet_kill(&txq->qresume_tsk);
5027 }
5028 }
5029 }
5030
5031 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5032 struct sge_ctrl_txq *cq = &s->ctrlq[i];
5033
5034 if (cq->q.desc)
5035 tasklet_kill(&cq->qresume_tsk);
5036 }
5037 }
5038
5039 /**
5040 * t4_sge_init_soft - grab core SGE values needed by SGE code
5041 * @adap: the adapter
5042 *
5043 * We need to grab the SGE operating parameters that we need to have
5044 * in order to do our job and make sure we can live with them.
5045 */
5046
t4_sge_init_soft(struct adapter * adap)5047 static int t4_sge_init_soft(struct adapter *adap)
5048 {
5049 struct sge *s = &adap->sge;
5050 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5051 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5052 u32 ingress_rx_threshold;
5053
5054 /*
5055 * Verify that CPL messages are going to the Ingress Queue for
5056 * process_responses() and that only packet data is going to the
5057 * Free Lists.
5058 */
5059 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5060 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5061 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5062 return -EINVAL;
5063 }
5064
5065 /*
5066 * Validate the Host Buffer Register Array indices that we want to
5067 * use ...
5068 *
5069 * XXX Note that we should really read through the Host Buffer Size
5070 * XXX register array and find the indices of the Buffer Sizes which
5071 * XXX meet our needs!
5072 */
5073 #define READ_FL_BUF(x) \
5074 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5075
5076 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5077 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5078 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5079 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5080
5081 /* We only bother using the Large Page logic if the Large Page Buffer
5082 * is larger than our Page Size Buffer.
5083 */
5084 if (fl_large_pg <= fl_small_pg)
5085 fl_large_pg = 0;
5086
5087 #undef READ_FL_BUF
5088
5089 /* The Page Size Buffer must be exactly equal to our Page Size and the
5090 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5091 */
5092 if (fl_small_pg != PAGE_SIZE ||
5093 (fl_large_pg & (fl_large_pg-1)) != 0) {
5094 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5095 fl_small_pg, fl_large_pg);
5096 return -EINVAL;
5097 }
5098 if (fl_large_pg)
5099 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5100
5101 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5102 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5103 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5104 fl_small_mtu, fl_large_mtu);
5105 return -EINVAL;
5106 }
5107
5108 /*
5109 * Retrieve our RX interrupt holdoff timer values and counter
5110 * threshold values from the SGE parameters.
5111 */
5112 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5113 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5114 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5115 s->timer_val[0] = core_ticks_to_us(adap,
5116 TIMERVALUE0_G(timer_value_0_and_1));
5117 s->timer_val[1] = core_ticks_to_us(adap,
5118 TIMERVALUE1_G(timer_value_0_and_1));
5119 s->timer_val[2] = core_ticks_to_us(adap,
5120 TIMERVALUE2_G(timer_value_2_and_3));
5121 s->timer_val[3] = core_ticks_to_us(adap,
5122 TIMERVALUE3_G(timer_value_2_and_3));
5123 s->timer_val[4] = core_ticks_to_us(adap,
5124 TIMERVALUE4_G(timer_value_4_and_5));
5125 s->timer_val[5] = core_ticks_to_us(adap,
5126 TIMERVALUE5_G(timer_value_4_and_5));
5127
5128 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5129 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5130 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5131 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5132 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5133
5134 return 0;
5135 }
5136
5137 /**
5138 * t4_sge_init - initialize SGE
5139 * @adap: the adapter
5140 *
5141 * Perform low-level SGE code initialization needed every time after a
5142 * chip reset.
5143 */
t4_sge_init(struct adapter * adap)5144 int t4_sge_init(struct adapter *adap)
5145 {
5146 struct sge *s = &adap->sge;
5147 u32 sge_control, sge_conm_ctrl;
5148 int ret, egress_threshold;
5149
5150 /*
5151 * Ingress Padding Boundary and Egress Status Page Size are set up by
5152 * t4_fixup_host_params().
5153 */
5154 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5155 s->pktshift = PKTSHIFT_G(sge_control);
5156 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5157
5158 s->fl_align = t4_fl_pkt_align(adap);
5159 ret = t4_sge_init_soft(adap);
5160 if (ret < 0)
5161 return ret;
5162
5163 /*
5164 * A FL with <= fl_starve_thres buffers is starving and a periodic
5165 * timer will attempt to refill it. This needs to be larger than the
5166 * SGE's Egress Congestion Threshold. If it isn't, then we can get
5167 * stuck waiting for new packets while the SGE is waiting for us to
5168 * give it more Free List entries. (Note that the SGE's Egress
5169 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5170 * there was only a single field to control this. For T5 there's the
5171 * original field which now only applies to Unpacked Mode Free List
5172 * buffers and a new field which only applies to Packed Mode Free List
5173 * buffers.
5174 */
5175 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5176 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5177 case CHELSIO_T4:
5178 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5179 break;
5180 case CHELSIO_T5:
5181 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5182 break;
5183 case CHELSIO_T6:
5184 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5185 break;
5186 default:
5187 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5188 CHELSIO_CHIP_VERSION(adap->params.chip));
5189 return -EINVAL;
5190 }
5191 s->fl_starve_thres = 2*egress_threshold + 1;
5192
5193 t4_idma_monitor_init(adap, &s->idma_monitor);
5194
5195 /* Set up timers used for recuring callbacks to process RX and TX
5196 * administrative tasks.
5197 */
5198 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5199 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5200
5201 spin_lock_init(&s->intrq_lock);
5202
5203 return 0;
5204 }
5205