• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
d_hash(unsigned int hash)101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
in_lookup_hash(const struct dentry * parent,unsigned int hash)109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
get_nr_dentry(void)140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
get_nr_dentry_unused(void)149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
get_nr_dentry_negative(void)158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
proc_nr_dentry(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
external_name(struct dentry * dentry)262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
__d_free(struct rcu_head * head)267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
__d_free_external(struct rcu_head * head)274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
dname_external(const struct dentry * dentry)281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
release_dentry_name_snapshot(struct name_snapshot * name)301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
__d_clear_type_and_inode(struct dentry * dentry)325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
dentry_free(struct dentry * dentry)336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
dentry_unlink_inode(struct dentry * dentry)357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
d_lru_del(struct dentry * dentry)407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
d_shrink_del(struct dentry * dentry)417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
d_shrink_add(struct dentry * dentry,struct list_head * list)425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
___d_drop(struct dentry * dentry)476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
__d_drop(struct dentry * dentry)494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
d_drop(struct dentry * dentry)504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
dentry_unlist(struct dentry * dentry,struct dentry * parent)512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
__dentry_kill(struct dentry * dentry)550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
__lock_parent(struct dentry * dentry)597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
lock_parent(struct dentry * dentry)625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
retain_dentry(struct dentry * dentry)635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 
651 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652 		return false;
653 
654 	/* retain; LRU fodder */
655 	dentry->d_lockref.count--;
656 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657 		d_lru_add(dentry);
658 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659 		dentry->d_flags |= DCACHE_REFERENCED;
660 	return true;
661 }
662 
d_mark_dontcache(struct inode * inode)663 void d_mark_dontcache(struct inode *inode)
664 {
665 	struct dentry *de;
666 
667 	spin_lock(&inode->i_lock);
668 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669 		spin_lock(&de->d_lock);
670 		de->d_flags |= DCACHE_DONTCACHE;
671 		spin_unlock(&de->d_lock);
672 	}
673 	inode->i_state |= I_DONTCACHE;
674 	spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677 
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
dentry_kill(struct dentry * dentry)683 static struct dentry *dentry_kill(struct dentry *dentry)
684 	__releases(dentry->d_lock)
685 {
686 	struct inode *inode = dentry->d_inode;
687 	struct dentry *parent = NULL;
688 
689 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690 		goto slow_positive;
691 
692 	if (!IS_ROOT(dentry)) {
693 		parent = dentry->d_parent;
694 		if (unlikely(!spin_trylock(&parent->d_lock))) {
695 			parent = __lock_parent(dentry);
696 			if (likely(inode || !dentry->d_inode))
697 				goto got_locks;
698 			/* negative that became positive */
699 			if (parent)
700 				spin_unlock(&parent->d_lock);
701 			inode = dentry->d_inode;
702 			goto slow_positive;
703 		}
704 	}
705 	__dentry_kill(dentry);
706 	return parent;
707 
708 slow_positive:
709 	spin_unlock(&dentry->d_lock);
710 	spin_lock(&inode->i_lock);
711 	spin_lock(&dentry->d_lock);
712 	parent = lock_parent(dentry);
713 got_locks:
714 	if (unlikely(dentry->d_lockref.count != 1)) {
715 		dentry->d_lockref.count--;
716 	} else if (likely(!retain_dentry(dentry))) {
717 		__dentry_kill(dentry);
718 		return parent;
719 	}
720 	/* we are keeping it, after all */
721 	if (inode)
722 		spin_unlock(&inode->i_lock);
723 	if (parent)
724 		spin_unlock(&parent->d_lock);
725 	spin_unlock(&dentry->d_lock);
726 	return NULL;
727 }
728 
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
fast_dput(struct dentry * dentry)737 static inline bool fast_dput(struct dentry *dentry)
738 {
739 	int ret;
740 	unsigned int d_flags;
741 
742 	/*
743 	 * If we have a d_op->d_delete() operation, we sould not
744 	 * let the dentry count go to zero, so use "put_or_lock".
745 	 */
746 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747 		return lockref_put_or_lock(&dentry->d_lockref);
748 
749 	/*
750 	 * .. otherwise, we can try to just decrement the
751 	 * lockref optimistically.
752 	 */
753 	ret = lockref_put_return(&dentry->d_lockref);
754 
755 	/*
756 	 * If the lockref_put_return() failed due to the lock being held
757 	 * by somebody else, the fast path has failed. We will need to
758 	 * get the lock, and then check the count again.
759 	 */
760 	if (unlikely(ret < 0)) {
761 		spin_lock(&dentry->d_lock);
762 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
763 			spin_unlock(&dentry->d_lock);
764 			return true;
765 		}
766 		dentry->d_lockref.count--;
767 		goto locked;
768 	}
769 
770 	/*
771 	 * If we weren't the last ref, we're done.
772 	 */
773 	if (ret)
774 		return true;
775 
776 	/*
777 	 * Careful, careful. The reference count went down
778 	 * to zero, but we don't hold the dentry lock, so
779 	 * somebody else could get it again, and do another
780 	 * dput(), and we need to not race with that.
781 	 *
782 	 * However, there is a very special and common case
783 	 * where we don't care, because there is nothing to
784 	 * do: the dentry is still hashed, it does not have
785 	 * a 'delete' op, and it's referenced and already on
786 	 * the LRU list.
787 	 *
788 	 * NOTE! Since we aren't locked, these values are
789 	 * not "stable". However, it is sufficient that at
790 	 * some point after we dropped the reference the
791 	 * dentry was hashed and the flags had the proper
792 	 * value. Other dentry users may have re-gotten
793 	 * a reference to the dentry and change that, but
794 	 * our work is done - we can leave the dentry
795 	 * around with a zero refcount.
796 	 */
797 	smp_rmb();
798 	d_flags = READ_ONCE(dentry->d_flags);
799 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
800 
801 	/* Nothing to do? Dropping the reference was all we needed? */
802 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
803 		return true;
804 
805 	/*
806 	 * Not the fast normal case? Get the lock. We've already decremented
807 	 * the refcount, but we'll need to re-check the situation after
808 	 * getting the lock.
809 	 */
810 	spin_lock(&dentry->d_lock);
811 
812 	/*
813 	 * Did somebody else grab a reference to it in the meantime, and
814 	 * we're no longer the last user after all? Alternatively, somebody
815 	 * else could have killed it and marked it dead. Either way, we
816 	 * don't need to do anything else.
817 	 */
818 locked:
819 	if (dentry->d_lockref.count) {
820 		spin_unlock(&dentry->d_lock);
821 		return true;
822 	}
823 
824 	/*
825 	 * Re-get the reference we optimistically dropped. We hold the
826 	 * lock, and we just tested that it was zero, so we can just
827 	 * set it to 1.
828 	 */
829 	dentry->d_lockref.count = 1;
830 	return false;
831 }
832 
833 
834 /*
835  * This is dput
836  *
837  * This is complicated by the fact that we do not want to put
838  * dentries that are no longer on any hash chain on the unused
839  * list: we'd much rather just get rid of them immediately.
840  *
841  * However, that implies that we have to traverse the dentry
842  * tree upwards to the parents which might _also_ now be
843  * scheduled for deletion (it may have been only waiting for
844  * its last child to go away).
845  *
846  * This tail recursion is done by hand as we don't want to depend
847  * on the compiler to always get this right (gcc generally doesn't).
848  * Real recursion would eat up our stack space.
849  */
850 
851 /*
852  * dput - release a dentry
853  * @dentry: dentry to release
854  *
855  * Release a dentry. This will drop the usage count and if appropriate
856  * call the dentry unlink method as well as removing it from the queues and
857  * releasing its resources. If the parent dentries were scheduled for release
858  * they too may now get deleted.
859  */
dput(struct dentry * dentry)860 void dput(struct dentry *dentry)
861 {
862 	while (dentry) {
863 		might_sleep();
864 
865 		rcu_read_lock();
866 		if (likely(fast_dput(dentry))) {
867 			rcu_read_unlock();
868 			return;
869 		}
870 
871 		/* Slow case: now with the dentry lock held */
872 		rcu_read_unlock();
873 
874 		if (likely(retain_dentry(dentry))) {
875 			spin_unlock(&dentry->d_lock);
876 			return;
877 		}
878 
879 		dentry = dentry_kill(dentry);
880 	}
881 }
882 EXPORT_SYMBOL(dput);
883 
__dput_to_list(struct dentry * dentry,struct list_head * list)884 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
885 __must_hold(&dentry->d_lock)
886 {
887 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
888 		/* let the owner of the list it's on deal with it */
889 		--dentry->d_lockref.count;
890 	} else {
891 		if (dentry->d_flags & DCACHE_LRU_LIST)
892 			d_lru_del(dentry);
893 		if (!--dentry->d_lockref.count)
894 			d_shrink_add(dentry, list);
895 	}
896 }
897 
dput_to_list(struct dentry * dentry,struct list_head * list)898 void dput_to_list(struct dentry *dentry, struct list_head *list)
899 {
900 	rcu_read_lock();
901 	if (likely(fast_dput(dentry))) {
902 		rcu_read_unlock();
903 		return;
904 	}
905 	rcu_read_unlock();
906 	if (!retain_dentry(dentry))
907 		__dput_to_list(dentry, list);
908 	spin_unlock(&dentry->d_lock);
909 }
910 
911 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)912 static inline void __dget_dlock(struct dentry *dentry)
913 {
914 	dentry->d_lockref.count++;
915 }
916 
__dget(struct dentry * dentry)917 static inline void __dget(struct dentry *dentry)
918 {
919 	lockref_get(&dentry->d_lockref);
920 }
921 
dget_parent(struct dentry * dentry)922 struct dentry *dget_parent(struct dentry *dentry)
923 {
924 	int gotref;
925 	struct dentry *ret;
926 	unsigned seq;
927 
928 	/*
929 	 * Do optimistic parent lookup without any
930 	 * locking.
931 	 */
932 	rcu_read_lock();
933 	seq = raw_seqcount_begin(&dentry->d_seq);
934 	ret = READ_ONCE(dentry->d_parent);
935 	gotref = lockref_get_not_zero(&ret->d_lockref);
936 	rcu_read_unlock();
937 	if (likely(gotref)) {
938 		if (!read_seqcount_retry(&dentry->d_seq, seq))
939 			return ret;
940 		dput(ret);
941 	}
942 
943 repeat:
944 	/*
945 	 * Don't need rcu_dereference because we re-check it was correct under
946 	 * the lock.
947 	 */
948 	rcu_read_lock();
949 	ret = dentry->d_parent;
950 	spin_lock(&ret->d_lock);
951 	if (unlikely(ret != dentry->d_parent)) {
952 		spin_unlock(&ret->d_lock);
953 		rcu_read_unlock();
954 		goto repeat;
955 	}
956 	rcu_read_unlock();
957 	BUG_ON(!ret->d_lockref.count);
958 	ret->d_lockref.count++;
959 	spin_unlock(&ret->d_lock);
960 	return ret;
961 }
962 EXPORT_SYMBOL(dget_parent);
963 
__d_find_any_alias(struct inode * inode)964 static struct dentry * __d_find_any_alias(struct inode *inode)
965 {
966 	struct dentry *alias;
967 
968 	if (hlist_empty(&inode->i_dentry))
969 		return NULL;
970 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
971 	__dget(alias);
972 	return alias;
973 }
974 
975 /**
976  * d_find_any_alias - find any alias for a given inode
977  * @inode: inode to find an alias for
978  *
979  * If any aliases exist for the given inode, take and return a
980  * reference for one of them.  If no aliases exist, return %NULL.
981  */
d_find_any_alias(struct inode * inode)982 struct dentry *d_find_any_alias(struct inode *inode)
983 {
984 	struct dentry *de;
985 
986 	spin_lock(&inode->i_lock);
987 	de = __d_find_any_alias(inode);
988 	spin_unlock(&inode->i_lock);
989 	return de;
990 }
991 EXPORT_SYMBOL(d_find_any_alias);
992 
993 /**
994  * d_find_alias - grab a hashed alias of inode
995  * @inode: inode in question
996  *
997  * If inode has a hashed alias, or is a directory and has any alias,
998  * acquire the reference to alias and return it. Otherwise return NULL.
999  * Notice that if inode is a directory there can be only one alias and
1000  * it can be unhashed only if it has no children, or if it is the root
1001  * of a filesystem, or if the directory was renamed and d_revalidate
1002  * was the first vfs operation to notice.
1003  *
1004  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005  * any other hashed alias over that one.
1006  */
__d_find_alias(struct inode * inode)1007 static struct dentry *__d_find_alias(struct inode *inode)
1008 {
1009 	struct dentry *alias;
1010 
1011 	if (S_ISDIR(inode->i_mode))
1012 		return __d_find_any_alias(inode);
1013 
1014 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1015 		spin_lock(&alias->d_lock);
1016  		if (!d_unhashed(alias)) {
1017 			__dget_dlock(alias);
1018 			spin_unlock(&alias->d_lock);
1019 			return alias;
1020 		}
1021 		spin_unlock(&alias->d_lock);
1022 	}
1023 	return NULL;
1024 }
1025 
d_find_alias(struct inode * inode)1026 struct dentry *d_find_alias(struct inode *inode)
1027 {
1028 	struct dentry *de = NULL;
1029 
1030 	if (!hlist_empty(&inode->i_dentry)) {
1031 		spin_lock(&inode->i_lock);
1032 		de = __d_find_alias(inode);
1033 		spin_unlock(&inode->i_lock);
1034 	}
1035 	return de;
1036 }
1037 EXPORT_SYMBOL(d_find_alias);
1038 
1039 /*
1040  *	Try to kill dentries associated with this inode.
1041  * WARNING: you must own a reference to inode.
1042  */
d_prune_aliases(struct inode * inode)1043 void d_prune_aliases(struct inode *inode)
1044 {
1045 	struct dentry *dentry;
1046 restart:
1047 	spin_lock(&inode->i_lock);
1048 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1049 		spin_lock(&dentry->d_lock);
1050 		if (!dentry->d_lockref.count) {
1051 			struct dentry *parent = lock_parent(dentry);
1052 			if (likely(!dentry->d_lockref.count)) {
1053 				__dentry_kill(dentry);
1054 				dput(parent);
1055 				goto restart;
1056 			}
1057 			if (parent)
1058 				spin_unlock(&parent->d_lock);
1059 		}
1060 		spin_unlock(&dentry->d_lock);
1061 	}
1062 	spin_unlock(&inode->i_lock);
1063 }
1064 EXPORT_SYMBOL(d_prune_aliases);
1065 
1066 /*
1067  * Lock a dentry from shrink list.
1068  * Called under rcu_read_lock() and dentry->d_lock; the former
1069  * guarantees that nothing we access will be freed under us.
1070  * Note that dentry is *not* protected from concurrent dentry_kill(),
1071  * d_delete(), etc.
1072  *
1073  * Return false if dentry has been disrupted or grabbed, leaving
1074  * the caller to kick it off-list.  Otherwise, return true and have
1075  * that dentry's inode and parent both locked.
1076  */
shrink_lock_dentry(struct dentry * dentry)1077 static bool shrink_lock_dentry(struct dentry *dentry)
1078 {
1079 	struct inode *inode;
1080 	struct dentry *parent;
1081 
1082 	if (dentry->d_lockref.count)
1083 		return false;
1084 
1085 	inode = dentry->d_inode;
1086 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1087 		spin_unlock(&dentry->d_lock);
1088 		spin_lock(&inode->i_lock);
1089 		spin_lock(&dentry->d_lock);
1090 		if (unlikely(dentry->d_lockref.count))
1091 			goto out;
1092 		/* changed inode means that somebody had grabbed it */
1093 		if (unlikely(inode != dentry->d_inode))
1094 			goto out;
1095 	}
1096 
1097 	parent = dentry->d_parent;
1098 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1099 		return true;
1100 
1101 	spin_unlock(&dentry->d_lock);
1102 	spin_lock(&parent->d_lock);
1103 	if (unlikely(parent != dentry->d_parent)) {
1104 		spin_unlock(&parent->d_lock);
1105 		spin_lock(&dentry->d_lock);
1106 		goto out;
1107 	}
1108 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1109 	if (likely(!dentry->d_lockref.count))
1110 		return true;
1111 	spin_unlock(&parent->d_lock);
1112 out:
1113 	if (inode)
1114 		spin_unlock(&inode->i_lock);
1115 	return false;
1116 }
1117 
shrink_dentry_list(struct list_head * list)1118 void shrink_dentry_list(struct list_head *list)
1119 {
1120 	while (!list_empty(list)) {
1121 		struct dentry *dentry, *parent;
1122 
1123 		dentry = list_entry(list->prev, struct dentry, d_lru);
1124 		spin_lock(&dentry->d_lock);
1125 		rcu_read_lock();
1126 		if (!shrink_lock_dentry(dentry)) {
1127 			bool can_free = false;
1128 			rcu_read_unlock();
1129 			d_shrink_del(dentry);
1130 			if (dentry->d_lockref.count < 0)
1131 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1132 			spin_unlock(&dentry->d_lock);
1133 			if (can_free)
1134 				dentry_free(dentry);
1135 			continue;
1136 		}
1137 		rcu_read_unlock();
1138 		d_shrink_del(dentry);
1139 		parent = dentry->d_parent;
1140 		if (parent != dentry)
1141 			__dput_to_list(parent, list);
1142 		__dentry_kill(dentry);
1143 	}
1144 }
1145 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1146 static enum lru_status dentry_lru_isolate(struct list_head *item,
1147 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1148 {
1149 	struct list_head *freeable = arg;
1150 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1151 
1152 
1153 	/*
1154 	 * we are inverting the lru lock/dentry->d_lock here,
1155 	 * so use a trylock. If we fail to get the lock, just skip
1156 	 * it
1157 	 */
1158 	if (!spin_trylock(&dentry->d_lock))
1159 		return LRU_SKIP;
1160 
1161 	/*
1162 	 * Referenced dentries are still in use. If they have active
1163 	 * counts, just remove them from the LRU. Otherwise give them
1164 	 * another pass through the LRU.
1165 	 */
1166 	if (dentry->d_lockref.count) {
1167 		d_lru_isolate(lru, dentry);
1168 		spin_unlock(&dentry->d_lock);
1169 		return LRU_REMOVED;
1170 	}
1171 
1172 	if (dentry->d_flags & DCACHE_REFERENCED) {
1173 		dentry->d_flags &= ~DCACHE_REFERENCED;
1174 		spin_unlock(&dentry->d_lock);
1175 
1176 		/*
1177 		 * The list move itself will be made by the common LRU code. At
1178 		 * this point, we've dropped the dentry->d_lock but keep the
1179 		 * lru lock. This is safe to do, since every list movement is
1180 		 * protected by the lru lock even if both locks are held.
1181 		 *
1182 		 * This is guaranteed by the fact that all LRU management
1183 		 * functions are intermediated by the LRU API calls like
1184 		 * list_lru_add and list_lru_del. List movement in this file
1185 		 * only ever occur through this functions or through callbacks
1186 		 * like this one, that are called from the LRU API.
1187 		 *
1188 		 * The only exceptions to this are functions like
1189 		 * shrink_dentry_list, and code that first checks for the
1190 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1191 		 * operating only with stack provided lists after they are
1192 		 * properly isolated from the main list.  It is thus, always a
1193 		 * local access.
1194 		 */
1195 		return LRU_ROTATE;
1196 	}
1197 
1198 	d_lru_shrink_move(lru, dentry, freeable);
1199 	spin_unlock(&dentry->d_lock);
1200 
1201 	return LRU_REMOVED;
1202 }
1203 
1204 /**
1205  * prune_dcache_sb - shrink the dcache
1206  * @sb: superblock
1207  * @sc: shrink control, passed to list_lru_shrink_walk()
1208  *
1209  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1210  * is done when we need more memory and called from the superblock shrinker
1211  * function.
1212  *
1213  * This function may fail to free any resources if all the dentries are in
1214  * use.
1215  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1216 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1217 {
1218 	LIST_HEAD(dispose);
1219 	long freed;
1220 
1221 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1222 				     dentry_lru_isolate, &dispose);
1223 	shrink_dentry_list(&dispose);
1224 	return freed;
1225 }
1226 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1227 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1228 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1229 {
1230 	struct list_head *freeable = arg;
1231 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1232 
1233 	/*
1234 	 * we are inverting the lru lock/dentry->d_lock here,
1235 	 * so use a trylock. If we fail to get the lock, just skip
1236 	 * it
1237 	 */
1238 	if (!spin_trylock(&dentry->d_lock))
1239 		return LRU_SKIP;
1240 
1241 	d_lru_shrink_move(lru, dentry, freeable);
1242 	spin_unlock(&dentry->d_lock);
1243 
1244 	return LRU_REMOVED;
1245 }
1246 
1247 
1248 /**
1249  * shrink_dcache_sb - shrink dcache for a superblock
1250  * @sb: superblock
1251  *
1252  * Shrink the dcache for the specified super block. This is used to free
1253  * the dcache before unmounting a file system.
1254  */
shrink_dcache_sb(struct super_block * sb)1255 void shrink_dcache_sb(struct super_block *sb)
1256 {
1257 	do {
1258 		LIST_HEAD(dispose);
1259 
1260 		list_lru_walk(&sb->s_dentry_lru,
1261 			dentry_lru_isolate_shrink, &dispose, 1024);
1262 		shrink_dentry_list(&dispose);
1263 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1264 }
1265 EXPORT_SYMBOL(shrink_dcache_sb);
1266 
1267 /**
1268  * enum d_walk_ret - action to talke during tree walk
1269  * @D_WALK_CONTINUE:	contrinue walk
1270  * @D_WALK_QUIT:	quit walk
1271  * @D_WALK_NORETRY:	quit when retry is needed
1272  * @D_WALK_SKIP:	skip this dentry and its children
1273  */
1274 enum d_walk_ret {
1275 	D_WALK_CONTINUE,
1276 	D_WALK_QUIT,
1277 	D_WALK_NORETRY,
1278 	D_WALK_SKIP,
1279 };
1280 
1281 /**
1282  * d_walk - walk the dentry tree
1283  * @parent:	start of walk
1284  * @data:	data passed to @enter() and @finish()
1285  * @enter:	callback when first entering the dentry
1286  *
1287  * The @enter() callbacks are called with d_lock held.
1288  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1289 static void d_walk(struct dentry *parent, void *data,
1290 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1291 {
1292 	struct dentry *this_parent;
1293 	struct list_head *next;
1294 	unsigned seq = 0;
1295 	enum d_walk_ret ret;
1296 	bool retry = true;
1297 
1298 again:
1299 	read_seqbegin_or_lock(&rename_lock, &seq);
1300 	this_parent = parent;
1301 	spin_lock(&this_parent->d_lock);
1302 
1303 	ret = enter(data, this_parent);
1304 	switch (ret) {
1305 	case D_WALK_CONTINUE:
1306 		break;
1307 	case D_WALK_QUIT:
1308 	case D_WALK_SKIP:
1309 		goto out_unlock;
1310 	case D_WALK_NORETRY:
1311 		retry = false;
1312 		break;
1313 	}
1314 repeat:
1315 	next = this_parent->d_subdirs.next;
1316 resume:
1317 	while (next != &this_parent->d_subdirs) {
1318 		struct list_head *tmp = next;
1319 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1320 		next = tmp->next;
1321 
1322 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1323 			continue;
1324 
1325 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1326 
1327 		ret = enter(data, dentry);
1328 		switch (ret) {
1329 		case D_WALK_CONTINUE:
1330 			break;
1331 		case D_WALK_QUIT:
1332 			spin_unlock(&dentry->d_lock);
1333 			goto out_unlock;
1334 		case D_WALK_NORETRY:
1335 			retry = false;
1336 			break;
1337 		case D_WALK_SKIP:
1338 			spin_unlock(&dentry->d_lock);
1339 			continue;
1340 		}
1341 
1342 		if (!list_empty(&dentry->d_subdirs)) {
1343 			spin_unlock(&this_parent->d_lock);
1344 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1345 			this_parent = dentry;
1346 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1347 			goto repeat;
1348 		}
1349 		spin_unlock(&dentry->d_lock);
1350 	}
1351 	/*
1352 	 * All done at this level ... ascend and resume the search.
1353 	 */
1354 	rcu_read_lock();
1355 ascend:
1356 	if (this_parent != parent) {
1357 		struct dentry *child = this_parent;
1358 		this_parent = child->d_parent;
1359 
1360 		spin_unlock(&child->d_lock);
1361 		spin_lock(&this_parent->d_lock);
1362 
1363 		/* might go back up the wrong parent if we have had a rename. */
1364 		if (need_seqretry(&rename_lock, seq))
1365 			goto rename_retry;
1366 		/* go into the first sibling still alive */
1367 		do {
1368 			next = child->d_child.next;
1369 			if (next == &this_parent->d_subdirs)
1370 				goto ascend;
1371 			child = list_entry(next, struct dentry, d_child);
1372 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1373 		rcu_read_unlock();
1374 		goto resume;
1375 	}
1376 	if (need_seqretry(&rename_lock, seq))
1377 		goto rename_retry;
1378 	rcu_read_unlock();
1379 
1380 out_unlock:
1381 	spin_unlock(&this_parent->d_lock);
1382 	done_seqretry(&rename_lock, seq);
1383 	return;
1384 
1385 rename_retry:
1386 	spin_unlock(&this_parent->d_lock);
1387 	rcu_read_unlock();
1388 	BUG_ON(seq & 1);
1389 	if (!retry)
1390 		return;
1391 	seq = 1;
1392 	goto again;
1393 }
1394 
1395 struct check_mount {
1396 	struct vfsmount *mnt;
1397 	unsigned int mounted;
1398 };
1399 
path_check_mount(void * data,struct dentry * dentry)1400 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1401 {
1402 	struct check_mount *info = data;
1403 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1404 
1405 	if (likely(!d_mountpoint(dentry)))
1406 		return D_WALK_CONTINUE;
1407 	if (__path_is_mountpoint(&path)) {
1408 		info->mounted = 1;
1409 		return D_WALK_QUIT;
1410 	}
1411 	return D_WALK_CONTINUE;
1412 }
1413 
1414 /**
1415  * path_has_submounts - check for mounts over a dentry in the
1416  *                      current namespace.
1417  * @parent: path to check.
1418  *
1419  * Return true if the parent or its subdirectories contain
1420  * a mount point in the current namespace.
1421  */
path_has_submounts(const struct path * parent)1422 int path_has_submounts(const struct path *parent)
1423 {
1424 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1425 
1426 	read_seqlock_excl(&mount_lock);
1427 	d_walk(parent->dentry, &data, path_check_mount);
1428 	read_sequnlock_excl(&mount_lock);
1429 
1430 	return data.mounted;
1431 }
1432 EXPORT_SYMBOL(path_has_submounts);
1433 
1434 /*
1435  * Called by mount code to set a mountpoint and check if the mountpoint is
1436  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1437  * subtree can become unreachable).
1438  *
1439  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1440  * this reason take rename_lock and d_lock on dentry and ancestors.
1441  */
d_set_mounted(struct dentry * dentry)1442 int d_set_mounted(struct dentry *dentry)
1443 {
1444 	struct dentry *p;
1445 	int ret = -ENOENT;
1446 	write_seqlock(&rename_lock);
1447 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1448 		/* Need exclusion wrt. d_invalidate() */
1449 		spin_lock(&p->d_lock);
1450 		if (unlikely(d_unhashed(p))) {
1451 			spin_unlock(&p->d_lock);
1452 			goto out;
1453 		}
1454 		spin_unlock(&p->d_lock);
1455 	}
1456 	spin_lock(&dentry->d_lock);
1457 	if (!d_unlinked(dentry)) {
1458 		ret = -EBUSY;
1459 		if (!d_mountpoint(dentry)) {
1460 			dentry->d_flags |= DCACHE_MOUNTED;
1461 			ret = 0;
1462 		}
1463 	}
1464  	spin_unlock(&dentry->d_lock);
1465 out:
1466 	write_sequnlock(&rename_lock);
1467 	return ret;
1468 }
1469 
1470 /*
1471  * Search the dentry child list of the specified parent,
1472  * and move any unused dentries to the end of the unused
1473  * list for prune_dcache(). We descend to the next level
1474  * whenever the d_subdirs list is non-empty and continue
1475  * searching.
1476  *
1477  * It returns zero iff there are no unused children,
1478  * otherwise  it returns the number of children moved to
1479  * the end of the unused list. This may not be the total
1480  * number of unused children, because select_parent can
1481  * drop the lock and return early due to latency
1482  * constraints.
1483  */
1484 
1485 struct select_data {
1486 	struct dentry *start;
1487 	union {
1488 		long found;
1489 		struct dentry *victim;
1490 	};
1491 	struct list_head dispose;
1492 };
1493 
select_collect(void * _data,struct dentry * dentry)1494 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1495 {
1496 	struct select_data *data = _data;
1497 	enum d_walk_ret ret = D_WALK_CONTINUE;
1498 
1499 	if (data->start == dentry)
1500 		goto out;
1501 
1502 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1503 		data->found++;
1504 	} else {
1505 		if (dentry->d_flags & DCACHE_LRU_LIST)
1506 			d_lru_del(dentry);
1507 		if (!dentry->d_lockref.count) {
1508 			d_shrink_add(dentry, &data->dispose);
1509 			data->found++;
1510 		}
1511 	}
1512 	/*
1513 	 * We can return to the caller if we have found some (this
1514 	 * ensures forward progress). We'll be coming back to find
1515 	 * the rest.
1516 	 */
1517 	if (!list_empty(&data->dispose))
1518 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1519 out:
1520 	return ret;
1521 }
1522 
select_collect2(void * _data,struct dentry * dentry)1523 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1524 {
1525 	struct select_data *data = _data;
1526 	enum d_walk_ret ret = D_WALK_CONTINUE;
1527 
1528 	if (data->start == dentry)
1529 		goto out;
1530 
1531 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1532 		if (!dentry->d_lockref.count) {
1533 			rcu_read_lock();
1534 			data->victim = dentry;
1535 			return D_WALK_QUIT;
1536 		}
1537 	} else {
1538 		if (dentry->d_flags & DCACHE_LRU_LIST)
1539 			d_lru_del(dentry);
1540 		if (!dentry->d_lockref.count)
1541 			d_shrink_add(dentry, &data->dispose);
1542 	}
1543 	/*
1544 	 * We can return to the caller if we have found some (this
1545 	 * ensures forward progress). We'll be coming back to find
1546 	 * the rest.
1547 	 */
1548 	if (!list_empty(&data->dispose))
1549 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1550 out:
1551 	return ret;
1552 }
1553 
1554 /**
1555  * shrink_dcache_parent - prune dcache
1556  * @parent: parent of entries to prune
1557  *
1558  * Prune the dcache to remove unused children of the parent dentry.
1559  */
shrink_dcache_parent(struct dentry * parent)1560 void shrink_dcache_parent(struct dentry *parent)
1561 {
1562 	for (;;) {
1563 		struct select_data data = {.start = parent};
1564 
1565 		INIT_LIST_HEAD(&data.dispose);
1566 		d_walk(parent, &data, select_collect);
1567 
1568 		if (!list_empty(&data.dispose)) {
1569 			shrink_dentry_list(&data.dispose);
1570 			continue;
1571 		}
1572 
1573 		cond_resched();
1574 		if (!data.found)
1575 			break;
1576 		data.victim = NULL;
1577 		d_walk(parent, &data, select_collect2);
1578 		if (data.victim) {
1579 			struct dentry *parent;
1580 			spin_lock(&data.victim->d_lock);
1581 			if (!shrink_lock_dentry(data.victim)) {
1582 				spin_unlock(&data.victim->d_lock);
1583 				rcu_read_unlock();
1584 			} else {
1585 				rcu_read_unlock();
1586 				parent = data.victim->d_parent;
1587 				if (parent != data.victim)
1588 					__dput_to_list(parent, &data.dispose);
1589 				__dentry_kill(data.victim);
1590 			}
1591 		}
1592 		if (!list_empty(&data.dispose))
1593 			shrink_dentry_list(&data.dispose);
1594 	}
1595 }
1596 EXPORT_SYMBOL(shrink_dcache_parent);
1597 
umount_check(void * _data,struct dentry * dentry)1598 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1599 {
1600 	/* it has busy descendents; complain about those instead */
1601 	if (!list_empty(&dentry->d_subdirs))
1602 		return D_WALK_CONTINUE;
1603 
1604 	/* root with refcount 1 is fine */
1605 	if (dentry == _data && dentry->d_lockref.count == 1)
1606 		return D_WALK_CONTINUE;
1607 
1608 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1609 			" still in use (%d) [unmount of %s %s]\n",
1610 		       dentry,
1611 		       dentry->d_inode ?
1612 		       dentry->d_inode->i_ino : 0UL,
1613 		       dentry,
1614 		       dentry->d_lockref.count,
1615 		       dentry->d_sb->s_type->name,
1616 		       dentry->d_sb->s_id);
1617 	WARN_ON(1);
1618 	return D_WALK_CONTINUE;
1619 }
1620 
do_one_tree(struct dentry * dentry)1621 static void do_one_tree(struct dentry *dentry)
1622 {
1623 	shrink_dcache_parent(dentry);
1624 	d_walk(dentry, dentry, umount_check);
1625 	d_drop(dentry);
1626 	dput(dentry);
1627 }
1628 
1629 /*
1630  * destroy the dentries attached to a superblock on unmounting
1631  */
shrink_dcache_for_umount(struct super_block * sb)1632 void shrink_dcache_for_umount(struct super_block *sb)
1633 {
1634 	struct dentry *dentry;
1635 
1636 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1637 
1638 	dentry = sb->s_root;
1639 	sb->s_root = NULL;
1640 	do_one_tree(dentry);
1641 
1642 	while (!hlist_bl_empty(&sb->s_roots)) {
1643 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1644 		do_one_tree(dentry);
1645 	}
1646 }
1647 
find_submount(void * _data,struct dentry * dentry)1648 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1649 {
1650 	struct dentry **victim = _data;
1651 	if (d_mountpoint(dentry)) {
1652 		__dget_dlock(dentry);
1653 		*victim = dentry;
1654 		return D_WALK_QUIT;
1655 	}
1656 	return D_WALK_CONTINUE;
1657 }
1658 
1659 /**
1660  * d_invalidate - detach submounts, prune dcache, and drop
1661  * @dentry: dentry to invalidate (aka detach, prune and drop)
1662  */
d_invalidate(struct dentry * dentry)1663 void d_invalidate(struct dentry *dentry)
1664 {
1665 	bool had_submounts = false;
1666 	spin_lock(&dentry->d_lock);
1667 	if (d_unhashed(dentry)) {
1668 		spin_unlock(&dentry->d_lock);
1669 		return;
1670 	}
1671 	__d_drop(dentry);
1672 	spin_unlock(&dentry->d_lock);
1673 
1674 	/* Negative dentries can be dropped without further checks */
1675 	if (!dentry->d_inode)
1676 		return;
1677 
1678 	shrink_dcache_parent(dentry);
1679 	for (;;) {
1680 		struct dentry *victim = NULL;
1681 		d_walk(dentry, &victim, find_submount);
1682 		if (!victim) {
1683 			if (had_submounts)
1684 				shrink_dcache_parent(dentry);
1685 			return;
1686 		}
1687 		had_submounts = true;
1688 		detach_mounts(victim);
1689 		dput(victim);
1690 	}
1691 }
1692 EXPORT_SYMBOL(d_invalidate);
1693 
1694 /**
1695  * __d_alloc	-	allocate a dcache entry
1696  * @sb: filesystem it will belong to
1697  * @name: qstr of the name
1698  *
1699  * Allocates a dentry. It returns %NULL if there is insufficient memory
1700  * available. On a success the dentry is returned. The name passed in is
1701  * copied and the copy passed in may be reused after this call.
1702  */
1703 
__d_alloc(struct super_block * sb,const struct qstr * name)1704 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1705 {
1706 	struct dentry *dentry;
1707 	char *dname;
1708 	int err;
1709 
1710 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1711 	if (!dentry)
1712 		return NULL;
1713 
1714 	/*
1715 	 * We guarantee that the inline name is always NUL-terminated.
1716 	 * This way the memcpy() done by the name switching in rename
1717 	 * will still always have a NUL at the end, even if we might
1718 	 * be overwriting an internal NUL character
1719 	 */
1720 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1721 	if (unlikely(!name)) {
1722 		name = &slash_name;
1723 		dname = dentry->d_iname;
1724 	} else if (name->len > DNAME_INLINE_LEN-1) {
1725 		size_t size = offsetof(struct external_name, name[1]);
1726 		struct external_name *p = kmalloc(size + name->len,
1727 						  GFP_KERNEL_ACCOUNT |
1728 						  __GFP_RECLAIMABLE);
1729 		if (!p) {
1730 			kmem_cache_free(dentry_cache, dentry);
1731 			return NULL;
1732 		}
1733 		atomic_set(&p->u.count, 1);
1734 		dname = p->name;
1735 	} else  {
1736 		dname = dentry->d_iname;
1737 	}
1738 
1739 	dentry->d_name.len = name->len;
1740 	dentry->d_name.hash = name->hash;
1741 	memcpy(dname, name->name, name->len);
1742 	dname[name->len] = 0;
1743 
1744 	/* Make sure we always see the terminating NUL character */
1745 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1746 
1747 	dentry->d_lockref.count = 1;
1748 	dentry->d_flags = 0;
1749 	spin_lock_init(&dentry->d_lock);
1750 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1751 	dentry->d_inode = NULL;
1752 	dentry->d_parent = dentry;
1753 	dentry->d_sb = sb;
1754 	dentry->d_op = NULL;
1755 	dentry->d_fsdata = NULL;
1756 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1757 	INIT_LIST_HEAD(&dentry->d_lru);
1758 	INIT_LIST_HEAD(&dentry->d_subdirs);
1759 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1760 	INIT_LIST_HEAD(&dentry->d_child);
1761 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1762 
1763 	if (dentry->d_op && dentry->d_op->d_init) {
1764 		err = dentry->d_op->d_init(dentry);
1765 		if (err) {
1766 			if (dname_external(dentry))
1767 				kfree(external_name(dentry));
1768 			kmem_cache_free(dentry_cache, dentry);
1769 			return NULL;
1770 		}
1771 	}
1772 
1773 	this_cpu_inc(nr_dentry);
1774 
1775 	return dentry;
1776 }
1777 
1778 /**
1779  * d_alloc	-	allocate a dcache entry
1780  * @parent: parent of entry to allocate
1781  * @name: qstr of the name
1782  *
1783  * Allocates a dentry. It returns %NULL if there is insufficient memory
1784  * available. On a success the dentry is returned. The name passed in is
1785  * copied and the copy passed in may be reused after this call.
1786  */
d_alloc(struct dentry * parent,const struct qstr * name)1787 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1788 {
1789 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1790 	if (!dentry)
1791 		return NULL;
1792 	spin_lock(&parent->d_lock);
1793 	/*
1794 	 * don't need child lock because it is not subject
1795 	 * to concurrency here
1796 	 */
1797 	__dget_dlock(parent);
1798 	dentry->d_parent = parent;
1799 	list_add(&dentry->d_child, &parent->d_subdirs);
1800 	spin_unlock(&parent->d_lock);
1801 
1802 	return dentry;
1803 }
1804 EXPORT_SYMBOL(d_alloc);
1805 
d_alloc_anon(struct super_block * sb)1806 struct dentry *d_alloc_anon(struct super_block *sb)
1807 {
1808 	return __d_alloc(sb, NULL);
1809 }
1810 EXPORT_SYMBOL(d_alloc_anon);
1811 
d_alloc_cursor(struct dentry * parent)1812 struct dentry *d_alloc_cursor(struct dentry * parent)
1813 {
1814 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1815 	if (dentry) {
1816 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1817 		dentry->d_parent = dget(parent);
1818 	}
1819 	return dentry;
1820 }
1821 
1822 /**
1823  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1824  * @sb: the superblock
1825  * @name: qstr of the name
1826  *
1827  * For a filesystem that just pins its dentries in memory and never
1828  * performs lookups at all, return an unhashed IS_ROOT dentry.
1829  * This is used for pipes, sockets et.al. - the stuff that should
1830  * never be anyone's children or parents.  Unlike all other
1831  * dentries, these will not have RCU delay between dropping the
1832  * last reference and freeing them.
1833  *
1834  * The only user is alloc_file_pseudo() and that's what should
1835  * be considered a public interface.  Don't use directly.
1836  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1837 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1838 {
1839 	struct dentry *dentry = __d_alloc(sb, name);
1840 	if (likely(dentry))
1841 		dentry->d_flags |= DCACHE_NORCU;
1842 	return dentry;
1843 }
1844 
d_alloc_name(struct dentry * parent,const char * name)1845 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1846 {
1847 	struct qstr q;
1848 
1849 	q.name = name;
1850 	q.hash_len = hashlen_string(parent, name);
1851 	return d_alloc(parent, &q);
1852 }
1853 EXPORT_SYMBOL(d_alloc_name);
1854 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1855 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1856 {
1857 	WARN_ON_ONCE(dentry->d_op);
1858 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1859 				DCACHE_OP_COMPARE	|
1860 				DCACHE_OP_REVALIDATE	|
1861 				DCACHE_OP_WEAK_REVALIDATE	|
1862 				DCACHE_OP_DELETE	|
1863 				DCACHE_OP_REAL));
1864 	dentry->d_op = op;
1865 	if (!op)
1866 		return;
1867 	if (op->d_hash)
1868 		dentry->d_flags |= DCACHE_OP_HASH;
1869 	if (op->d_compare)
1870 		dentry->d_flags |= DCACHE_OP_COMPARE;
1871 	if (op->d_revalidate)
1872 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1873 	if (op->d_weak_revalidate)
1874 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1875 	if (op->d_delete)
1876 		dentry->d_flags |= DCACHE_OP_DELETE;
1877 	if (op->d_prune)
1878 		dentry->d_flags |= DCACHE_OP_PRUNE;
1879 	if (op->d_real)
1880 		dentry->d_flags |= DCACHE_OP_REAL;
1881 
1882 }
1883 EXPORT_SYMBOL(d_set_d_op);
1884 
1885 
1886 /*
1887  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1888  * @dentry - The dentry to mark
1889  *
1890  * Mark a dentry as falling through to the lower layer (as set with
1891  * d_pin_lower()).  This flag may be recorded on the medium.
1892  */
d_set_fallthru(struct dentry * dentry)1893 void d_set_fallthru(struct dentry *dentry)
1894 {
1895 	spin_lock(&dentry->d_lock);
1896 	dentry->d_flags |= DCACHE_FALLTHRU;
1897 	spin_unlock(&dentry->d_lock);
1898 }
1899 EXPORT_SYMBOL(d_set_fallthru);
1900 
d_flags_for_inode(struct inode * inode)1901 static unsigned d_flags_for_inode(struct inode *inode)
1902 {
1903 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1904 
1905 	if (!inode)
1906 		return DCACHE_MISS_TYPE;
1907 
1908 	if (S_ISDIR(inode->i_mode)) {
1909 		add_flags = DCACHE_DIRECTORY_TYPE;
1910 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1911 			if (unlikely(!inode->i_op->lookup))
1912 				add_flags = DCACHE_AUTODIR_TYPE;
1913 			else
1914 				inode->i_opflags |= IOP_LOOKUP;
1915 		}
1916 		goto type_determined;
1917 	}
1918 
1919 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1920 		if (unlikely(inode->i_op->get_link)) {
1921 			add_flags = DCACHE_SYMLINK_TYPE;
1922 			goto type_determined;
1923 		}
1924 		inode->i_opflags |= IOP_NOFOLLOW;
1925 	}
1926 
1927 	if (unlikely(!S_ISREG(inode->i_mode)))
1928 		add_flags = DCACHE_SPECIAL_TYPE;
1929 
1930 type_determined:
1931 	if (unlikely(IS_AUTOMOUNT(inode)))
1932 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1933 	return add_flags;
1934 }
1935 
__d_instantiate(struct dentry * dentry,struct inode * inode)1936 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1937 {
1938 	unsigned add_flags = d_flags_for_inode(inode);
1939 	WARN_ON(d_in_lookup(dentry));
1940 
1941 	spin_lock(&dentry->d_lock);
1942 	/*
1943 	 * Decrement negative dentry count if it was in the LRU list.
1944 	 */
1945 	if (dentry->d_flags & DCACHE_LRU_LIST)
1946 		this_cpu_dec(nr_dentry_negative);
1947 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1948 	raw_write_seqcount_begin(&dentry->d_seq);
1949 	__d_set_inode_and_type(dentry, inode, add_flags);
1950 	raw_write_seqcount_end(&dentry->d_seq);
1951 	fsnotify_update_flags(dentry);
1952 	spin_unlock(&dentry->d_lock);
1953 }
1954 
1955 /**
1956  * d_instantiate - fill in inode information for a dentry
1957  * @entry: dentry to complete
1958  * @inode: inode to attach to this dentry
1959  *
1960  * Fill in inode information in the entry.
1961  *
1962  * This turns negative dentries into productive full members
1963  * of society.
1964  *
1965  * NOTE! This assumes that the inode count has been incremented
1966  * (or otherwise set) by the caller to indicate that it is now
1967  * in use by the dcache.
1968  */
1969 
d_instantiate(struct dentry * entry,struct inode * inode)1970 void d_instantiate(struct dentry *entry, struct inode * inode)
1971 {
1972 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1973 	if (inode) {
1974 		security_d_instantiate(entry, inode);
1975 		spin_lock(&inode->i_lock);
1976 		__d_instantiate(entry, inode);
1977 		spin_unlock(&inode->i_lock);
1978 	}
1979 }
1980 EXPORT_SYMBOL(d_instantiate);
1981 
1982 /*
1983  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1984  * with lockdep-related part of unlock_new_inode() done before
1985  * anything else.  Use that instead of open-coding d_instantiate()/
1986  * unlock_new_inode() combinations.
1987  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1988 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1989 {
1990 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1991 	BUG_ON(!inode);
1992 	lockdep_annotate_inode_mutex_key(inode);
1993 	security_d_instantiate(entry, inode);
1994 	spin_lock(&inode->i_lock);
1995 	__d_instantiate(entry, inode);
1996 	WARN_ON(!(inode->i_state & I_NEW));
1997 	inode->i_state &= ~I_NEW & ~I_CREATING;
1998 	smp_mb();
1999 	wake_up_bit(&inode->i_state, __I_NEW);
2000 	spin_unlock(&inode->i_lock);
2001 }
2002 EXPORT_SYMBOL(d_instantiate_new);
2003 
d_make_root(struct inode * root_inode)2004 struct dentry *d_make_root(struct inode *root_inode)
2005 {
2006 	struct dentry *res = NULL;
2007 
2008 	if (root_inode) {
2009 		res = d_alloc_anon(root_inode->i_sb);
2010 		if (res)
2011 			d_instantiate(res, root_inode);
2012 		else
2013 			iput(root_inode);
2014 	}
2015 	return res;
2016 }
2017 EXPORT_SYMBOL(d_make_root);
2018 
__d_instantiate_anon(struct dentry * dentry,struct inode * inode,bool disconnected)2019 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2020 					   struct inode *inode,
2021 					   bool disconnected)
2022 {
2023 	struct dentry *res;
2024 	unsigned add_flags;
2025 
2026 	security_d_instantiate(dentry, inode);
2027 	spin_lock(&inode->i_lock);
2028 	res = __d_find_any_alias(inode);
2029 	if (res) {
2030 		spin_unlock(&inode->i_lock);
2031 		dput(dentry);
2032 		goto out_iput;
2033 	}
2034 
2035 	/* attach a disconnected dentry */
2036 	add_flags = d_flags_for_inode(inode);
2037 
2038 	if (disconnected)
2039 		add_flags |= DCACHE_DISCONNECTED;
2040 
2041 	spin_lock(&dentry->d_lock);
2042 	__d_set_inode_and_type(dentry, inode, add_flags);
2043 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2044 	if (!disconnected) {
2045 		hlist_bl_lock(&dentry->d_sb->s_roots);
2046 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2047 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2048 	}
2049 	spin_unlock(&dentry->d_lock);
2050 	spin_unlock(&inode->i_lock);
2051 
2052 	return dentry;
2053 
2054  out_iput:
2055 	iput(inode);
2056 	return res;
2057 }
2058 
d_instantiate_anon(struct dentry * dentry,struct inode * inode)2059 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2060 {
2061 	return __d_instantiate_anon(dentry, inode, true);
2062 }
2063 EXPORT_SYMBOL(d_instantiate_anon);
2064 
__d_obtain_alias(struct inode * inode,bool disconnected)2065 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2066 {
2067 	struct dentry *tmp;
2068 	struct dentry *res;
2069 
2070 	if (!inode)
2071 		return ERR_PTR(-ESTALE);
2072 	if (IS_ERR(inode))
2073 		return ERR_CAST(inode);
2074 
2075 	res = d_find_any_alias(inode);
2076 	if (res)
2077 		goto out_iput;
2078 
2079 	tmp = d_alloc_anon(inode->i_sb);
2080 	if (!tmp) {
2081 		res = ERR_PTR(-ENOMEM);
2082 		goto out_iput;
2083 	}
2084 
2085 	return __d_instantiate_anon(tmp, inode, disconnected);
2086 
2087 out_iput:
2088 	iput(inode);
2089 	return res;
2090 }
2091 
2092 /**
2093  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2094  * @inode: inode to allocate the dentry for
2095  *
2096  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2097  * similar open by handle operations.  The returned dentry may be anonymous,
2098  * or may have a full name (if the inode was already in the cache).
2099  *
2100  * When called on a directory inode, we must ensure that the inode only ever
2101  * has one dentry.  If a dentry is found, that is returned instead of
2102  * allocating a new one.
2103  *
2104  * On successful return, the reference to the inode has been transferred
2105  * to the dentry.  In case of an error the reference on the inode is released.
2106  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2107  * be passed in and the error will be propagated to the return value,
2108  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2109  */
d_obtain_alias(struct inode * inode)2110 struct dentry *d_obtain_alias(struct inode *inode)
2111 {
2112 	return __d_obtain_alias(inode, true);
2113 }
2114 EXPORT_SYMBOL_NS(d_obtain_alias, ANDROID_GKI_VFS_EXPORT_ONLY);
2115 
2116 /**
2117  * d_obtain_root - find or allocate a dentry for a given inode
2118  * @inode: inode to allocate the dentry for
2119  *
2120  * Obtain an IS_ROOT dentry for the root of a filesystem.
2121  *
2122  * We must ensure that directory inodes only ever have one dentry.  If a
2123  * dentry is found, that is returned instead of allocating a new one.
2124  *
2125  * On successful return, the reference to the inode has been transferred
2126  * to the dentry.  In case of an error the reference on the inode is
2127  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2128  * error will be propagate to the return value, with a %NULL @inode
2129  * replaced by ERR_PTR(-ESTALE).
2130  */
d_obtain_root(struct inode * inode)2131 struct dentry *d_obtain_root(struct inode *inode)
2132 {
2133 	return __d_obtain_alias(inode, false);
2134 }
2135 EXPORT_SYMBOL(d_obtain_root);
2136 
2137 /**
2138  * d_add_ci - lookup or allocate new dentry with case-exact name
2139  * @inode:  the inode case-insensitive lookup has found
2140  * @dentry: the negative dentry that was passed to the parent's lookup func
2141  * @name:   the case-exact name to be associated with the returned dentry
2142  *
2143  * This is to avoid filling the dcache with case-insensitive names to the
2144  * same inode, only the actual correct case is stored in the dcache for
2145  * case-insensitive filesystems.
2146  *
2147  * For a case-insensitive lookup match and if the the case-exact dentry
2148  * already exists in in the dcache, use it and return it.
2149  *
2150  * If no entry exists with the exact case name, allocate new dentry with
2151  * the exact case, and return the spliced entry.
2152  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2153 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2154 			struct qstr *name)
2155 {
2156 	struct dentry *found, *res;
2157 
2158 	/*
2159 	 * First check if a dentry matching the name already exists,
2160 	 * if not go ahead and create it now.
2161 	 */
2162 	found = d_hash_and_lookup(dentry->d_parent, name);
2163 	if (found) {
2164 		iput(inode);
2165 		return found;
2166 	}
2167 	if (d_in_lookup(dentry)) {
2168 		found = d_alloc_parallel(dentry->d_parent, name,
2169 					dentry->d_wait);
2170 		if (IS_ERR(found) || !d_in_lookup(found)) {
2171 			iput(inode);
2172 			return found;
2173 		}
2174 	} else {
2175 		found = d_alloc(dentry->d_parent, name);
2176 		if (!found) {
2177 			iput(inode);
2178 			return ERR_PTR(-ENOMEM);
2179 		}
2180 	}
2181 	res = d_splice_alias(inode, found);
2182 	if (res) {
2183 		dput(found);
2184 		return res;
2185 	}
2186 	return found;
2187 }
2188 EXPORT_SYMBOL_NS(d_add_ci, ANDROID_GKI_VFS_EXPORT_ONLY);
2189 
2190 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2191 static inline bool d_same_name(const struct dentry *dentry,
2192 				const struct dentry *parent,
2193 				const struct qstr *name)
2194 {
2195 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2196 		if (dentry->d_name.len != name->len)
2197 			return false;
2198 		return dentry_cmp(dentry, name->name, name->len) == 0;
2199 	}
2200 	return parent->d_op->d_compare(dentry,
2201 				       dentry->d_name.len, dentry->d_name.name,
2202 				       name) == 0;
2203 }
2204 
2205 /**
2206  * __d_lookup_rcu - search for a dentry (racy, store-free)
2207  * @parent: parent dentry
2208  * @name: qstr of name we wish to find
2209  * @seqp: returns d_seq value at the point where the dentry was found
2210  * Returns: dentry, or NULL
2211  *
2212  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2213  * resolution (store-free path walking) design described in
2214  * Documentation/filesystems/path-lookup.txt.
2215  *
2216  * This is not to be used outside core vfs.
2217  *
2218  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2219  * held, and rcu_read_lock held. The returned dentry must not be stored into
2220  * without taking d_lock and checking d_seq sequence count against @seq
2221  * returned here.
2222  *
2223  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2224  * function.
2225  *
2226  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2227  * the returned dentry, so long as its parent's seqlock is checked after the
2228  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2229  * is formed, giving integrity down the path walk.
2230  *
2231  * NOTE! The caller *has* to check the resulting dentry against the sequence
2232  * number we've returned before using any of the resulting dentry state!
2233  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2234 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2235 				const struct qstr *name,
2236 				unsigned *seqp)
2237 {
2238 	u64 hashlen = name->hash_len;
2239 	const unsigned char *str = name->name;
2240 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2241 	struct hlist_bl_node *node;
2242 	struct dentry *dentry;
2243 
2244 	/*
2245 	 * Note: There is significant duplication with __d_lookup_rcu which is
2246 	 * required to prevent single threaded performance regressions
2247 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2248 	 * Keep the two functions in sync.
2249 	 */
2250 
2251 	/*
2252 	 * The hash list is protected using RCU.
2253 	 *
2254 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2255 	 * races with d_move().
2256 	 *
2257 	 * It is possible that concurrent renames can mess up our list
2258 	 * walk here and result in missing our dentry, resulting in the
2259 	 * false-negative result. d_lookup() protects against concurrent
2260 	 * renames using rename_lock seqlock.
2261 	 *
2262 	 * See Documentation/filesystems/path-lookup.txt for more details.
2263 	 */
2264 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2265 		unsigned seq;
2266 
2267 seqretry:
2268 		/*
2269 		 * The dentry sequence count protects us from concurrent
2270 		 * renames, and thus protects parent and name fields.
2271 		 *
2272 		 * The caller must perform a seqcount check in order
2273 		 * to do anything useful with the returned dentry.
2274 		 *
2275 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2276 		 * we don't wait for the sequence count to stabilize if it
2277 		 * is in the middle of a sequence change. If we do the slow
2278 		 * dentry compare, we will do seqretries until it is stable,
2279 		 * and if we end up with a successful lookup, we actually
2280 		 * want to exit RCU lookup anyway.
2281 		 *
2282 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2283 		 * we are still guaranteed NUL-termination of ->d_name.name.
2284 		 */
2285 		seq = raw_seqcount_begin(&dentry->d_seq);
2286 		if (dentry->d_parent != parent)
2287 			continue;
2288 		if (d_unhashed(dentry))
2289 			continue;
2290 
2291 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2292 			int tlen;
2293 			const char *tname;
2294 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2295 				continue;
2296 			tlen = dentry->d_name.len;
2297 			tname = dentry->d_name.name;
2298 			/* we want a consistent (name,len) pair */
2299 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2300 				cpu_relax();
2301 				goto seqretry;
2302 			}
2303 			if (parent->d_op->d_compare(dentry,
2304 						    tlen, tname, name) != 0)
2305 				continue;
2306 		} else {
2307 			if (dentry->d_name.hash_len != hashlen)
2308 				continue;
2309 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2310 				continue;
2311 		}
2312 		*seqp = seq;
2313 		return dentry;
2314 	}
2315 	return NULL;
2316 }
2317 
2318 /**
2319  * d_lookup - search for a dentry
2320  * @parent: parent dentry
2321  * @name: qstr of name we wish to find
2322  * Returns: dentry, or NULL
2323  *
2324  * d_lookup searches the children of the parent dentry for the name in
2325  * question. If the dentry is found its reference count is incremented and the
2326  * dentry is returned. The caller must use dput to free the entry when it has
2327  * finished using it. %NULL is returned if the dentry does not exist.
2328  */
d_lookup(const struct dentry * parent,const struct qstr * name)2329 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2330 {
2331 	struct dentry *dentry;
2332 	unsigned seq;
2333 
2334 	do {
2335 		seq = read_seqbegin(&rename_lock);
2336 		dentry = __d_lookup(parent, name);
2337 		if (dentry)
2338 			break;
2339 	} while (read_seqretry(&rename_lock, seq));
2340 	return dentry;
2341 }
2342 EXPORT_SYMBOL(d_lookup);
2343 
2344 /**
2345  * __d_lookup - search for a dentry (racy)
2346  * @parent: parent dentry
2347  * @name: qstr of name we wish to find
2348  * Returns: dentry, or NULL
2349  *
2350  * __d_lookup is like d_lookup, however it may (rarely) return a
2351  * false-negative result due to unrelated rename activity.
2352  *
2353  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2354  * however it must be used carefully, eg. with a following d_lookup in
2355  * the case of failure.
2356  *
2357  * __d_lookup callers must be commented.
2358  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2359 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2360 {
2361 	unsigned int hash = name->hash;
2362 	struct hlist_bl_head *b = d_hash(hash);
2363 	struct hlist_bl_node *node;
2364 	struct dentry *found = NULL;
2365 	struct dentry *dentry;
2366 
2367 	/*
2368 	 * Note: There is significant duplication with __d_lookup_rcu which is
2369 	 * required to prevent single threaded performance regressions
2370 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2371 	 * Keep the two functions in sync.
2372 	 */
2373 
2374 	/*
2375 	 * The hash list is protected using RCU.
2376 	 *
2377 	 * Take d_lock when comparing a candidate dentry, to avoid races
2378 	 * with d_move().
2379 	 *
2380 	 * It is possible that concurrent renames can mess up our list
2381 	 * walk here and result in missing our dentry, resulting in the
2382 	 * false-negative result. d_lookup() protects against concurrent
2383 	 * renames using rename_lock seqlock.
2384 	 *
2385 	 * See Documentation/filesystems/path-lookup.txt for more details.
2386 	 */
2387 	rcu_read_lock();
2388 
2389 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2390 
2391 		if (dentry->d_name.hash != hash)
2392 			continue;
2393 
2394 		spin_lock(&dentry->d_lock);
2395 		if (dentry->d_parent != parent)
2396 			goto next;
2397 		if (d_unhashed(dentry))
2398 			goto next;
2399 
2400 		if (!d_same_name(dentry, parent, name))
2401 			goto next;
2402 
2403 		dentry->d_lockref.count++;
2404 		found = dentry;
2405 		spin_unlock(&dentry->d_lock);
2406 		break;
2407 next:
2408 		spin_unlock(&dentry->d_lock);
2409  	}
2410  	rcu_read_unlock();
2411 
2412  	return found;
2413 }
2414 
2415 /**
2416  * d_hash_and_lookup - hash the qstr then search for a dentry
2417  * @dir: Directory to search in
2418  * @name: qstr of name we wish to find
2419  *
2420  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2421  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2422 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2423 {
2424 	/*
2425 	 * Check for a fs-specific hash function. Note that we must
2426 	 * calculate the standard hash first, as the d_op->d_hash()
2427 	 * routine may choose to leave the hash value unchanged.
2428 	 */
2429 	name->hash = full_name_hash(dir, name->name, name->len);
2430 	if (dir->d_flags & DCACHE_OP_HASH) {
2431 		int err = dir->d_op->d_hash(dir, name);
2432 		if (unlikely(err < 0))
2433 			return ERR_PTR(err);
2434 	}
2435 	return d_lookup(dir, name);
2436 }
2437 EXPORT_SYMBOL(d_hash_and_lookup);
2438 
2439 /*
2440  * When a file is deleted, we have two options:
2441  * - turn this dentry into a negative dentry
2442  * - unhash this dentry and free it.
2443  *
2444  * Usually, we want to just turn this into
2445  * a negative dentry, but if anybody else is
2446  * currently using the dentry or the inode
2447  * we can't do that and we fall back on removing
2448  * it from the hash queues and waiting for
2449  * it to be deleted later when it has no users
2450  */
2451 
2452 /**
2453  * d_delete - delete a dentry
2454  * @dentry: The dentry to delete
2455  *
2456  * Turn the dentry into a negative dentry if possible, otherwise
2457  * remove it from the hash queues so it can be deleted later
2458  */
2459 
d_delete(struct dentry * dentry)2460 void d_delete(struct dentry * dentry)
2461 {
2462 	struct inode *inode = dentry->d_inode;
2463 
2464 	spin_lock(&inode->i_lock);
2465 	spin_lock(&dentry->d_lock);
2466 	/*
2467 	 * Are we the only user?
2468 	 */
2469 	if (dentry->d_lockref.count == 1) {
2470 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2471 		dentry_unlink_inode(dentry);
2472 	} else {
2473 		__d_drop(dentry);
2474 		spin_unlock(&dentry->d_lock);
2475 		spin_unlock(&inode->i_lock);
2476 	}
2477 }
2478 EXPORT_SYMBOL(d_delete);
2479 
__d_rehash(struct dentry * entry)2480 static void __d_rehash(struct dentry *entry)
2481 {
2482 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2483 
2484 	hlist_bl_lock(b);
2485 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2486 	hlist_bl_unlock(b);
2487 }
2488 
2489 /**
2490  * d_rehash	- add an entry back to the hash
2491  * @entry: dentry to add to the hash
2492  *
2493  * Adds a dentry to the hash according to its name.
2494  */
2495 
d_rehash(struct dentry * entry)2496 void d_rehash(struct dentry * entry)
2497 {
2498 	spin_lock(&entry->d_lock);
2499 	__d_rehash(entry);
2500 	spin_unlock(&entry->d_lock);
2501 }
2502 EXPORT_SYMBOL(d_rehash);
2503 
start_dir_add(struct inode * dir)2504 static inline unsigned start_dir_add(struct inode *dir)
2505 {
2506 
2507 	for (;;) {
2508 		unsigned n = dir->i_dir_seq;
2509 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2510 			return n;
2511 		cpu_relax();
2512 	}
2513 }
2514 
end_dir_add(struct inode * dir,unsigned n)2515 static inline void end_dir_add(struct inode *dir, unsigned n)
2516 {
2517 	smp_store_release(&dir->i_dir_seq, n + 2);
2518 }
2519 
d_wait_lookup(struct dentry * dentry)2520 static void d_wait_lookup(struct dentry *dentry)
2521 {
2522 	if (d_in_lookup(dentry)) {
2523 		DECLARE_WAITQUEUE(wait, current);
2524 		add_wait_queue(dentry->d_wait, &wait);
2525 		do {
2526 			set_current_state(TASK_UNINTERRUPTIBLE);
2527 			spin_unlock(&dentry->d_lock);
2528 			schedule();
2529 			spin_lock(&dentry->d_lock);
2530 		} while (d_in_lookup(dentry));
2531 	}
2532 }
2533 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2534 struct dentry *d_alloc_parallel(struct dentry *parent,
2535 				const struct qstr *name,
2536 				wait_queue_head_t *wq)
2537 {
2538 	unsigned int hash = name->hash;
2539 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2540 	struct hlist_bl_node *node;
2541 	struct dentry *new = d_alloc(parent, name);
2542 	struct dentry *dentry;
2543 	unsigned seq, r_seq, d_seq;
2544 
2545 	if (unlikely(!new))
2546 		return ERR_PTR(-ENOMEM);
2547 
2548 retry:
2549 	rcu_read_lock();
2550 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2551 	r_seq = read_seqbegin(&rename_lock);
2552 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2553 	if (unlikely(dentry)) {
2554 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2555 			rcu_read_unlock();
2556 			goto retry;
2557 		}
2558 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2559 			rcu_read_unlock();
2560 			dput(dentry);
2561 			goto retry;
2562 		}
2563 		rcu_read_unlock();
2564 		dput(new);
2565 		return dentry;
2566 	}
2567 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2568 		rcu_read_unlock();
2569 		goto retry;
2570 	}
2571 
2572 	if (unlikely(seq & 1)) {
2573 		rcu_read_unlock();
2574 		goto retry;
2575 	}
2576 
2577 	hlist_bl_lock(b);
2578 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2579 		hlist_bl_unlock(b);
2580 		rcu_read_unlock();
2581 		goto retry;
2582 	}
2583 	/*
2584 	 * No changes for the parent since the beginning of d_lookup().
2585 	 * Since all removals from the chain happen with hlist_bl_lock(),
2586 	 * any potential in-lookup matches are going to stay here until
2587 	 * we unlock the chain.  All fields are stable in everything
2588 	 * we encounter.
2589 	 */
2590 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2591 		if (dentry->d_name.hash != hash)
2592 			continue;
2593 		if (dentry->d_parent != parent)
2594 			continue;
2595 		if (!d_same_name(dentry, parent, name))
2596 			continue;
2597 		hlist_bl_unlock(b);
2598 		/* now we can try to grab a reference */
2599 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2600 			rcu_read_unlock();
2601 			goto retry;
2602 		}
2603 
2604 		rcu_read_unlock();
2605 		/*
2606 		 * somebody is likely to be still doing lookup for it;
2607 		 * wait for them to finish
2608 		 */
2609 		spin_lock(&dentry->d_lock);
2610 		d_wait_lookup(dentry);
2611 		/*
2612 		 * it's not in-lookup anymore; in principle we should repeat
2613 		 * everything from dcache lookup, but it's likely to be what
2614 		 * d_lookup() would've found anyway.  If it is, just return it;
2615 		 * otherwise we really have to repeat the whole thing.
2616 		 */
2617 		if (unlikely(dentry->d_name.hash != hash))
2618 			goto mismatch;
2619 		if (unlikely(dentry->d_parent != parent))
2620 			goto mismatch;
2621 		if (unlikely(d_unhashed(dentry)))
2622 			goto mismatch;
2623 		if (unlikely(!d_same_name(dentry, parent, name)))
2624 			goto mismatch;
2625 		/* OK, it *is* a hashed match; return it */
2626 		spin_unlock(&dentry->d_lock);
2627 		dput(new);
2628 		return dentry;
2629 	}
2630 	rcu_read_unlock();
2631 	/* we can't take ->d_lock here; it's OK, though. */
2632 	new->d_flags |= DCACHE_PAR_LOOKUP;
2633 	new->d_wait = wq;
2634 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2635 	hlist_bl_unlock(b);
2636 	return new;
2637 mismatch:
2638 	spin_unlock(&dentry->d_lock);
2639 	dput(dentry);
2640 	goto retry;
2641 }
2642 EXPORT_SYMBOL(d_alloc_parallel);
2643 
__d_lookup_done(struct dentry * dentry)2644 void __d_lookup_done(struct dentry *dentry)
2645 {
2646 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2647 						 dentry->d_name.hash);
2648 	hlist_bl_lock(b);
2649 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2650 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2651 	wake_up_all(dentry->d_wait);
2652 	dentry->d_wait = NULL;
2653 	hlist_bl_unlock(b);
2654 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2655 	INIT_LIST_HEAD(&dentry->d_lru);
2656 }
2657 EXPORT_SYMBOL(__d_lookup_done);
2658 
2659 /* inode->i_lock held if inode is non-NULL */
2660 
__d_add(struct dentry * dentry,struct inode * inode)2661 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2662 {
2663 	struct inode *dir = NULL;
2664 	unsigned n;
2665 	spin_lock(&dentry->d_lock);
2666 	if (unlikely(d_in_lookup(dentry))) {
2667 		dir = dentry->d_parent->d_inode;
2668 		n = start_dir_add(dir);
2669 		__d_lookup_done(dentry);
2670 	}
2671 	if (inode) {
2672 		unsigned add_flags = d_flags_for_inode(inode);
2673 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2674 		raw_write_seqcount_begin(&dentry->d_seq);
2675 		__d_set_inode_and_type(dentry, inode, add_flags);
2676 		raw_write_seqcount_end(&dentry->d_seq);
2677 		fsnotify_update_flags(dentry);
2678 	}
2679 	__d_rehash(dentry);
2680 	if (dir)
2681 		end_dir_add(dir, n);
2682 	spin_unlock(&dentry->d_lock);
2683 	if (inode)
2684 		spin_unlock(&inode->i_lock);
2685 }
2686 
2687 /**
2688  * d_add - add dentry to hash queues
2689  * @entry: dentry to add
2690  * @inode: The inode to attach to this dentry
2691  *
2692  * This adds the entry to the hash queues and initializes @inode.
2693  * The entry was actually filled in earlier during d_alloc().
2694  */
2695 
d_add(struct dentry * entry,struct inode * inode)2696 void d_add(struct dentry *entry, struct inode *inode)
2697 {
2698 	if (inode) {
2699 		security_d_instantiate(entry, inode);
2700 		spin_lock(&inode->i_lock);
2701 	}
2702 	__d_add(entry, inode);
2703 }
2704 EXPORT_SYMBOL(d_add);
2705 
2706 /**
2707  * d_exact_alias - find and hash an exact unhashed alias
2708  * @entry: dentry to add
2709  * @inode: The inode to go with this dentry
2710  *
2711  * If an unhashed dentry with the same name/parent and desired
2712  * inode already exists, hash and return it.  Otherwise, return
2713  * NULL.
2714  *
2715  * Parent directory should be locked.
2716  */
d_exact_alias(struct dentry * entry,struct inode * inode)2717 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2718 {
2719 	struct dentry *alias;
2720 	unsigned int hash = entry->d_name.hash;
2721 
2722 	spin_lock(&inode->i_lock);
2723 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2724 		/*
2725 		 * Don't need alias->d_lock here, because aliases with
2726 		 * d_parent == entry->d_parent are not subject to name or
2727 		 * parent changes, because the parent inode i_mutex is held.
2728 		 */
2729 		if (alias->d_name.hash != hash)
2730 			continue;
2731 		if (alias->d_parent != entry->d_parent)
2732 			continue;
2733 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2734 			continue;
2735 		spin_lock(&alias->d_lock);
2736 		if (!d_unhashed(alias)) {
2737 			spin_unlock(&alias->d_lock);
2738 			alias = NULL;
2739 		} else {
2740 			__dget_dlock(alias);
2741 			__d_rehash(alias);
2742 			spin_unlock(&alias->d_lock);
2743 		}
2744 		spin_unlock(&inode->i_lock);
2745 		return alias;
2746 	}
2747 	spin_unlock(&inode->i_lock);
2748 	return NULL;
2749 }
2750 EXPORT_SYMBOL(d_exact_alias);
2751 
swap_names(struct dentry * dentry,struct dentry * target)2752 static void swap_names(struct dentry *dentry, struct dentry *target)
2753 {
2754 	if (unlikely(dname_external(target))) {
2755 		if (unlikely(dname_external(dentry))) {
2756 			/*
2757 			 * Both external: swap the pointers
2758 			 */
2759 			swap(target->d_name.name, dentry->d_name.name);
2760 		} else {
2761 			/*
2762 			 * dentry:internal, target:external.  Steal target's
2763 			 * storage and make target internal.
2764 			 */
2765 			memcpy(target->d_iname, dentry->d_name.name,
2766 					dentry->d_name.len + 1);
2767 			dentry->d_name.name = target->d_name.name;
2768 			target->d_name.name = target->d_iname;
2769 		}
2770 	} else {
2771 		if (unlikely(dname_external(dentry))) {
2772 			/*
2773 			 * dentry:external, target:internal.  Give dentry's
2774 			 * storage to target and make dentry internal
2775 			 */
2776 			memcpy(dentry->d_iname, target->d_name.name,
2777 					target->d_name.len + 1);
2778 			target->d_name.name = dentry->d_name.name;
2779 			dentry->d_name.name = dentry->d_iname;
2780 		} else {
2781 			/*
2782 			 * Both are internal.
2783 			 */
2784 			unsigned int i;
2785 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2786 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2787 				swap(((long *) &dentry->d_iname)[i],
2788 				     ((long *) &target->d_iname)[i]);
2789 			}
2790 		}
2791 	}
2792 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2793 }
2794 
copy_name(struct dentry * dentry,struct dentry * target)2795 static void copy_name(struct dentry *dentry, struct dentry *target)
2796 {
2797 	struct external_name *old_name = NULL;
2798 	if (unlikely(dname_external(dentry)))
2799 		old_name = external_name(dentry);
2800 	if (unlikely(dname_external(target))) {
2801 		atomic_inc(&external_name(target)->u.count);
2802 		dentry->d_name = target->d_name;
2803 	} else {
2804 		memcpy(dentry->d_iname, target->d_name.name,
2805 				target->d_name.len + 1);
2806 		dentry->d_name.name = dentry->d_iname;
2807 		dentry->d_name.hash_len = target->d_name.hash_len;
2808 	}
2809 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2810 		kfree_rcu(old_name, u.head);
2811 }
2812 
2813 /*
2814  * __d_move - move a dentry
2815  * @dentry: entry to move
2816  * @target: new dentry
2817  * @exchange: exchange the two dentries
2818  *
2819  * Update the dcache to reflect the move of a file name. Negative
2820  * dcache entries should not be moved in this way. Caller must hold
2821  * rename_lock, the i_mutex of the source and target directories,
2822  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2823  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2824 static void __d_move(struct dentry *dentry, struct dentry *target,
2825 		     bool exchange)
2826 {
2827 	struct dentry *old_parent, *p;
2828 	struct inode *dir = NULL;
2829 	unsigned n;
2830 
2831 	WARN_ON(!dentry->d_inode);
2832 	if (WARN_ON(dentry == target))
2833 		return;
2834 
2835 	BUG_ON(d_ancestor(target, dentry));
2836 	old_parent = dentry->d_parent;
2837 	p = d_ancestor(old_parent, target);
2838 	if (IS_ROOT(dentry)) {
2839 		BUG_ON(p);
2840 		spin_lock(&target->d_parent->d_lock);
2841 	} else if (!p) {
2842 		/* target is not a descendent of dentry->d_parent */
2843 		spin_lock(&target->d_parent->d_lock);
2844 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2845 	} else {
2846 		BUG_ON(p == dentry);
2847 		spin_lock(&old_parent->d_lock);
2848 		if (p != target)
2849 			spin_lock_nested(&target->d_parent->d_lock,
2850 					DENTRY_D_LOCK_NESTED);
2851 	}
2852 	spin_lock_nested(&dentry->d_lock, 2);
2853 	spin_lock_nested(&target->d_lock, 3);
2854 
2855 	if (unlikely(d_in_lookup(target))) {
2856 		dir = target->d_parent->d_inode;
2857 		n = start_dir_add(dir);
2858 		__d_lookup_done(target);
2859 	}
2860 
2861 	write_seqcount_begin(&dentry->d_seq);
2862 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2863 
2864 	/* unhash both */
2865 	if (!d_unhashed(dentry))
2866 		___d_drop(dentry);
2867 	if (!d_unhashed(target))
2868 		___d_drop(target);
2869 
2870 	/* ... and switch them in the tree */
2871 	dentry->d_parent = target->d_parent;
2872 	if (!exchange) {
2873 		copy_name(dentry, target);
2874 		target->d_hash.pprev = NULL;
2875 		dentry->d_parent->d_lockref.count++;
2876 		if (dentry != old_parent) /* wasn't IS_ROOT */
2877 			WARN_ON(!--old_parent->d_lockref.count);
2878 	} else {
2879 		target->d_parent = old_parent;
2880 		swap_names(dentry, target);
2881 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2882 		__d_rehash(target);
2883 		fsnotify_update_flags(target);
2884 	}
2885 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2886 	__d_rehash(dentry);
2887 	fsnotify_update_flags(dentry);
2888 	fscrypt_handle_d_move(dentry);
2889 
2890 	write_seqcount_end(&target->d_seq);
2891 	write_seqcount_end(&dentry->d_seq);
2892 
2893 	if (dir)
2894 		end_dir_add(dir, n);
2895 
2896 	if (dentry->d_parent != old_parent)
2897 		spin_unlock(&dentry->d_parent->d_lock);
2898 	if (dentry != old_parent)
2899 		spin_unlock(&old_parent->d_lock);
2900 	spin_unlock(&target->d_lock);
2901 	spin_unlock(&dentry->d_lock);
2902 }
2903 
2904 /*
2905  * d_move - move a dentry
2906  * @dentry: entry to move
2907  * @target: new dentry
2908  *
2909  * Update the dcache to reflect the move of a file name. Negative
2910  * dcache entries should not be moved in this way. See the locking
2911  * requirements for __d_move.
2912  */
d_move(struct dentry * dentry,struct dentry * target)2913 void d_move(struct dentry *dentry, struct dentry *target)
2914 {
2915 	write_seqlock(&rename_lock);
2916 	__d_move(dentry, target, false);
2917 	write_sequnlock(&rename_lock);
2918 }
2919 EXPORT_SYMBOL(d_move);
2920 
2921 /*
2922  * d_exchange - exchange two dentries
2923  * @dentry1: first dentry
2924  * @dentry2: second dentry
2925  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2926 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2927 {
2928 	write_seqlock(&rename_lock);
2929 
2930 	WARN_ON(!dentry1->d_inode);
2931 	WARN_ON(!dentry2->d_inode);
2932 	WARN_ON(IS_ROOT(dentry1));
2933 	WARN_ON(IS_ROOT(dentry2));
2934 
2935 	__d_move(dentry1, dentry2, true);
2936 
2937 	write_sequnlock(&rename_lock);
2938 }
2939 
2940 /**
2941  * d_ancestor - search for an ancestor
2942  * @p1: ancestor dentry
2943  * @p2: child dentry
2944  *
2945  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2946  * an ancestor of p2, else NULL.
2947  */
d_ancestor(struct dentry * p1,struct dentry * p2)2948 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2949 {
2950 	struct dentry *p;
2951 
2952 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2953 		if (p->d_parent == p1)
2954 			return p;
2955 	}
2956 	return NULL;
2957 }
2958 
2959 /*
2960  * This helper attempts to cope with remotely renamed directories
2961  *
2962  * It assumes that the caller is already holding
2963  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2964  *
2965  * Note: If ever the locking in lock_rename() changes, then please
2966  * remember to update this too...
2967  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2968 static int __d_unalias(struct inode *inode,
2969 		struct dentry *dentry, struct dentry *alias)
2970 {
2971 	struct mutex *m1 = NULL;
2972 	struct rw_semaphore *m2 = NULL;
2973 	int ret = -ESTALE;
2974 
2975 	/* If alias and dentry share a parent, then no extra locks required */
2976 	if (alias->d_parent == dentry->d_parent)
2977 		goto out_unalias;
2978 
2979 	/* See lock_rename() */
2980 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2981 		goto out_err;
2982 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2983 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2984 		goto out_err;
2985 	m2 = &alias->d_parent->d_inode->i_rwsem;
2986 out_unalias:
2987 	__d_move(alias, dentry, false);
2988 	ret = 0;
2989 out_err:
2990 	if (m2)
2991 		up_read(m2);
2992 	if (m1)
2993 		mutex_unlock(m1);
2994 	return ret;
2995 }
2996 
2997 /**
2998  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2999  * @inode:  the inode which may have a disconnected dentry
3000  * @dentry: a negative dentry which we want to point to the inode.
3001  *
3002  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3003  * place of the given dentry and return it, else simply d_add the inode
3004  * to the dentry and return NULL.
3005  *
3006  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3007  * we should error out: directories can't have multiple aliases.
3008  *
3009  * This is needed in the lookup routine of any filesystem that is exportable
3010  * (via knfsd) so that we can build dcache paths to directories effectively.
3011  *
3012  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3013  * is returned.  This matches the expected return value of ->lookup.
3014  *
3015  * Cluster filesystems may call this function with a negative, hashed dentry.
3016  * In that case, we know that the inode will be a regular file, and also this
3017  * will only occur during atomic_open. So we need to check for the dentry
3018  * being already hashed only in the final case.
3019  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3020 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3021 {
3022 	if (IS_ERR(inode))
3023 		return ERR_CAST(inode);
3024 
3025 	BUG_ON(!d_unhashed(dentry));
3026 
3027 	if (!inode)
3028 		goto out;
3029 
3030 	security_d_instantiate(dentry, inode);
3031 	spin_lock(&inode->i_lock);
3032 	if (S_ISDIR(inode->i_mode)) {
3033 		struct dentry *new = __d_find_any_alias(inode);
3034 		if (unlikely(new)) {
3035 			/* The reference to new ensures it remains an alias */
3036 			spin_unlock(&inode->i_lock);
3037 			write_seqlock(&rename_lock);
3038 			if (unlikely(d_ancestor(new, dentry))) {
3039 				write_sequnlock(&rename_lock);
3040 				dput(new);
3041 				new = ERR_PTR(-ELOOP);
3042 				pr_warn_ratelimited(
3043 					"VFS: Lookup of '%s' in %s %s"
3044 					" would have caused loop\n",
3045 					dentry->d_name.name,
3046 					inode->i_sb->s_type->name,
3047 					inode->i_sb->s_id);
3048 			} else if (!IS_ROOT(new)) {
3049 				struct dentry *old_parent = dget(new->d_parent);
3050 				int err = __d_unalias(inode, dentry, new);
3051 				write_sequnlock(&rename_lock);
3052 				if (err) {
3053 					dput(new);
3054 					new = ERR_PTR(err);
3055 				}
3056 				dput(old_parent);
3057 			} else {
3058 				__d_move(new, dentry, false);
3059 				write_sequnlock(&rename_lock);
3060 			}
3061 			iput(inode);
3062 			return new;
3063 		}
3064 	}
3065 out:
3066 	__d_add(dentry, inode);
3067 	return NULL;
3068 }
3069 EXPORT_SYMBOL_NS(d_splice_alias, ANDROID_GKI_VFS_EXPORT_ONLY);
3070 
3071 /*
3072  * Test whether new_dentry is a subdirectory of old_dentry.
3073  *
3074  * Trivially implemented using the dcache structure
3075  */
3076 
3077 /**
3078  * is_subdir - is new dentry a subdirectory of old_dentry
3079  * @new_dentry: new dentry
3080  * @old_dentry: old dentry
3081  *
3082  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3083  * Returns false otherwise.
3084  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3085  */
3086 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3087 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3088 {
3089 	bool result;
3090 	unsigned seq;
3091 
3092 	if (new_dentry == old_dentry)
3093 		return true;
3094 
3095 	do {
3096 		/* for restarting inner loop in case of seq retry */
3097 		seq = read_seqbegin(&rename_lock);
3098 		/*
3099 		 * Need rcu_readlock to protect against the d_parent trashing
3100 		 * due to d_move
3101 		 */
3102 		rcu_read_lock();
3103 		if (d_ancestor(old_dentry, new_dentry))
3104 			result = true;
3105 		else
3106 			result = false;
3107 		rcu_read_unlock();
3108 	} while (read_seqretry(&rename_lock, seq));
3109 
3110 	return result;
3111 }
3112 EXPORT_SYMBOL(is_subdir);
3113 
d_genocide_kill(void * data,struct dentry * dentry)3114 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3115 {
3116 	struct dentry *root = data;
3117 	if (dentry != root) {
3118 		if (d_unhashed(dentry) || !dentry->d_inode)
3119 			return D_WALK_SKIP;
3120 
3121 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3122 			dentry->d_flags |= DCACHE_GENOCIDE;
3123 			dentry->d_lockref.count--;
3124 		}
3125 	}
3126 	return D_WALK_CONTINUE;
3127 }
3128 
d_genocide(struct dentry * parent)3129 void d_genocide(struct dentry *parent)
3130 {
3131 	d_walk(parent, parent, d_genocide_kill);
3132 }
3133 
3134 EXPORT_SYMBOL(d_genocide);
3135 
d_tmpfile(struct dentry * dentry,struct inode * inode)3136 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3137 {
3138 	inode_dec_link_count(inode);
3139 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3140 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3141 		!d_unlinked(dentry));
3142 	spin_lock(&dentry->d_parent->d_lock);
3143 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3144 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3145 				(unsigned long long)inode->i_ino);
3146 	spin_unlock(&dentry->d_lock);
3147 	spin_unlock(&dentry->d_parent->d_lock);
3148 	d_instantiate(dentry, inode);
3149 }
3150 EXPORT_SYMBOL(d_tmpfile);
3151 
3152 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3153 static int __init set_dhash_entries(char *str)
3154 {
3155 	if (!str)
3156 		return 0;
3157 	dhash_entries = simple_strtoul(str, &str, 0);
3158 	return 1;
3159 }
3160 __setup("dhash_entries=", set_dhash_entries);
3161 
dcache_init_early(void)3162 static void __init dcache_init_early(void)
3163 {
3164 	/* If hashes are distributed across NUMA nodes, defer
3165 	 * hash allocation until vmalloc space is available.
3166 	 */
3167 	if (hashdist)
3168 		return;
3169 
3170 	dentry_hashtable =
3171 		alloc_large_system_hash("Dentry cache",
3172 					sizeof(struct hlist_bl_head),
3173 					dhash_entries,
3174 					13,
3175 					HASH_EARLY | HASH_ZERO,
3176 					&d_hash_shift,
3177 					NULL,
3178 					0,
3179 					0);
3180 	d_hash_shift = 32 - d_hash_shift;
3181 }
3182 
dcache_init(void)3183 static void __init dcache_init(void)
3184 {
3185 	/*
3186 	 * A constructor could be added for stable state like the lists,
3187 	 * but it is probably not worth it because of the cache nature
3188 	 * of the dcache.
3189 	 */
3190 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3191 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3192 		d_iname);
3193 
3194 	/* Hash may have been set up in dcache_init_early */
3195 	if (!hashdist)
3196 		return;
3197 
3198 	dentry_hashtable =
3199 		alloc_large_system_hash("Dentry cache",
3200 					sizeof(struct hlist_bl_head),
3201 					dhash_entries,
3202 					13,
3203 					HASH_ZERO,
3204 					&d_hash_shift,
3205 					NULL,
3206 					0,
3207 					0);
3208 	d_hash_shift = 32 - d_hash_shift;
3209 }
3210 
3211 /* SLAB cache for __getname() consumers */
3212 struct kmem_cache *names_cachep __read_mostly;
3213 EXPORT_SYMBOL(names_cachep);
3214 
vfs_caches_init_early(void)3215 void __init vfs_caches_init_early(void)
3216 {
3217 	int i;
3218 
3219 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3220 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3221 
3222 	dcache_init_early();
3223 	inode_init_early();
3224 }
3225 
vfs_caches_init(void)3226 void __init vfs_caches_init(void)
3227 {
3228 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3229 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3230 
3231 	dcache_init();
3232 	inode_init();
3233 	files_init();
3234 	files_maxfiles_init();
3235 	mnt_init();
3236 	bdev_cache_init();
3237 	chrdev_init();
3238 }
3239