1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-btree-internal.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
10
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
13
14 #define DM_MSG_PREFIX "btree"
15
16 /*----------------------------------------------------------------
17 * Array manipulation
18 *--------------------------------------------------------------*/
memcpy_disk(void * dest,const void * src,size_t len)19 static void memcpy_disk(void *dest, const void *src, size_t len)
20 __dm_written_to_disk(src)
21 {
22 memcpy(dest, src, len);
23 __dm_unbless_for_disk(src);
24 }
25
array_insert(void * base,size_t elt_size,unsigned nr_elts,unsigned index,void * elt)26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
27 unsigned index, void *elt)
28 __dm_written_to_disk(elt)
29 {
30 if (index < nr_elts)
31 memmove(base + (elt_size * (index + 1)),
32 base + (elt_size * index),
33 (nr_elts - index) * elt_size);
34
35 memcpy_disk(base + (elt_size * index), elt, elt_size);
36 }
37
38 /*----------------------------------------------------------------*/
39
40 /* makes the assumption that no two keys are the same. */
bsearch(struct btree_node * n,uint64_t key,int want_hi)41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
42 {
43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
44
45 while (hi - lo > 1) {
46 int mid = lo + ((hi - lo) / 2);
47 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
48
49 if (mid_key == key)
50 return mid;
51
52 if (mid_key < key)
53 lo = mid;
54 else
55 hi = mid;
56 }
57
58 return want_hi ? hi : lo;
59 }
60
lower_bound(struct btree_node * n,uint64_t key)61 int lower_bound(struct btree_node *n, uint64_t key)
62 {
63 return bsearch(n, key, 0);
64 }
65
upper_bound(struct btree_node * n,uint64_t key)66 static int upper_bound(struct btree_node *n, uint64_t key)
67 {
68 return bsearch(n, key, 1);
69 }
70
inc_children(struct dm_transaction_manager * tm,struct btree_node * n,struct dm_btree_value_type * vt)71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
72 struct dm_btree_value_type *vt)
73 {
74 unsigned i;
75 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
76
77 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
78 for (i = 0; i < nr_entries; i++)
79 dm_tm_inc(tm, value64(n, i));
80 else if (vt->inc)
81 for (i = 0; i < nr_entries; i++)
82 vt->inc(vt->context, value_ptr(n, i));
83 }
84
insert_at(size_t value_size,struct btree_node * node,unsigned index,uint64_t key,void * value)85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
86 uint64_t key, void *value)
87 __dm_written_to_disk(value)
88 {
89 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
90 uint32_t max_entries = le32_to_cpu(node->header.max_entries);
91 __le64 key_le = cpu_to_le64(key);
92
93 if (index > nr_entries ||
94 index >= max_entries ||
95 nr_entries >= max_entries) {
96 DMERR("too many entries in btree node for insert");
97 __dm_unbless_for_disk(value);
98 return -ENOMEM;
99 }
100
101 __dm_bless_for_disk(&key_le);
102
103 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
104 array_insert(value_base(node), value_size, nr_entries, index, value);
105 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
106
107 return 0;
108 }
109
110 /*----------------------------------------------------------------*/
111
112 /*
113 * We want 3n entries (for some n). This works more nicely for repeated
114 * insert remove loops than (2n + 1).
115 */
calc_max_entries(size_t value_size,size_t block_size)116 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
117 {
118 uint32_t total, n;
119 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
120
121 block_size -= sizeof(struct node_header);
122 total = block_size / elt_size;
123 n = total / 3; /* rounds down */
124
125 return 3 * n;
126 }
127
dm_btree_empty(struct dm_btree_info * info,dm_block_t * root)128 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
129 {
130 int r;
131 struct dm_block *b;
132 struct btree_node *n;
133 size_t block_size;
134 uint32_t max_entries;
135
136 r = new_block(info, &b);
137 if (r < 0)
138 return r;
139
140 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
141 max_entries = calc_max_entries(info->value_type.size, block_size);
142
143 n = dm_block_data(b);
144 memset(n, 0, block_size);
145 n->header.flags = cpu_to_le32(LEAF_NODE);
146 n->header.nr_entries = cpu_to_le32(0);
147 n->header.max_entries = cpu_to_le32(max_entries);
148 n->header.value_size = cpu_to_le32(info->value_type.size);
149
150 *root = dm_block_location(b);
151 unlock_block(info, b);
152
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(dm_btree_empty);
156
157 /*----------------------------------------------------------------*/
158
159 /*
160 * Deletion uses a recursive algorithm, since we have limited stack space
161 * we explicitly manage our own stack on the heap.
162 */
163 #define MAX_SPINE_DEPTH 64
164 struct frame {
165 struct dm_block *b;
166 struct btree_node *n;
167 unsigned level;
168 unsigned nr_children;
169 unsigned current_child;
170 };
171
172 struct del_stack {
173 struct dm_btree_info *info;
174 struct dm_transaction_manager *tm;
175 int top;
176 struct frame spine[MAX_SPINE_DEPTH];
177 };
178
top_frame(struct del_stack * s,struct frame ** f)179 static int top_frame(struct del_stack *s, struct frame **f)
180 {
181 if (s->top < 0) {
182 DMERR("btree deletion stack empty");
183 return -EINVAL;
184 }
185
186 *f = s->spine + s->top;
187
188 return 0;
189 }
190
unprocessed_frames(struct del_stack * s)191 static int unprocessed_frames(struct del_stack *s)
192 {
193 return s->top >= 0;
194 }
195
prefetch_children(struct del_stack * s,struct frame * f)196 static void prefetch_children(struct del_stack *s, struct frame *f)
197 {
198 unsigned i;
199 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
200
201 for (i = 0; i < f->nr_children; i++)
202 dm_bm_prefetch(bm, value64(f->n, i));
203 }
204
is_internal_level(struct dm_btree_info * info,struct frame * f)205 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
206 {
207 return f->level < (info->levels - 1);
208 }
209
push_frame(struct del_stack * s,dm_block_t b,unsigned level)210 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
211 {
212 int r;
213 uint32_t ref_count;
214
215 if (s->top >= MAX_SPINE_DEPTH - 1) {
216 DMERR("btree deletion stack out of memory");
217 return -ENOMEM;
218 }
219
220 r = dm_tm_ref(s->tm, b, &ref_count);
221 if (r)
222 return r;
223
224 if (ref_count > 1)
225 /*
226 * This is a shared node, so we can just decrement it's
227 * reference counter and leave the children.
228 */
229 dm_tm_dec(s->tm, b);
230
231 else {
232 uint32_t flags;
233 struct frame *f = s->spine + ++s->top;
234
235 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
236 if (r) {
237 s->top--;
238 return r;
239 }
240
241 f->n = dm_block_data(f->b);
242 f->level = level;
243 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
244 f->current_child = 0;
245
246 flags = le32_to_cpu(f->n->header.flags);
247 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
248 prefetch_children(s, f);
249 }
250
251 return 0;
252 }
253
pop_frame(struct del_stack * s)254 static void pop_frame(struct del_stack *s)
255 {
256 struct frame *f = s->spine + s->top--;
257
258 dm_tm_dec(s->tm, dm_block_location(f->b));
259 dm_tm_unlock(s->tm, f->b);
260 }
261
unlock_all_frames(struct del_stack * s)262 static void unlock_all_frames(struct del_stack *s)
263 {
264 struct frame *f;
265
266 while (unprocessed_frames(s)) {
267 f = s->spine + s->top--;
268 dm_tm_unlock(s->tm, f->b);
269 }
270 }
271
dm_btree_del(struct dm_btree_info * info,dm_block_t root)272 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
273 {
274 int r;
275 struct del_stack *s;
276
277 /*
278 * dm_btree_del() is called via an ioctl, as such should be
279 * considered an FS op. We can't recurse back into the FS, so we
280 * allocate GFP_NOFS.
281 */
282 s = kmalloc(sizeof(*s), GFP_NOFS);
283 if (!s)
284 return -ENOMEM;
285 s->info = info;
286 s->tm = info->tm;
287 s->top = -1;
288
289 r = push_frame(s, root, 0);
290 if (r)
291 goto out;
292
293 while (unprocessed_frames(s)) {
294 uint32_t flags;
295 struct frame *f;
296 dm_block_t b;
297
298 r = top_frame(s, &f);
299 if (r)
300 goto out;
301
302 if (f->current_child >= f->nr_children) {
303 pop_frame(s);
304 continue;
305 }
306
307 flags = le32_to_cpu(f->n->header.flags);
308 if (flags & INTERNAL_NODE) {
309 b = value64(f->n, f->current_child);
310 f->current_child++;
311 r = push_frame(s, b, f->level);
312 if (r)
313 goto out;
314
315 } else if (is_internal_level(info, f)) {
316 b = value64(f->n, f->current_child);
317 f->current_child++;
318 r = push_frame(s, b, f->level + 1);
319 if (r)
320 goto out;
321
322 } else {
323 if (info->value_type.dec) {
324 unsigned i;
325
326 for (i = 0; i < f->nr_children; i++)
327 info->value_type.dec(info->value_type.context,
328 value_ptr(f->n, i));
329 }
330 pop_frame(s);
331 }
332 }
333 out:
334 if (r) {
335 /* cleanup all frames of del_stack */
336 unlock_all_frames(s);
337 }
338 kfree(s);
339
340 return r;
341 }
342 EXPORT_SYMBOL_GPL(dm_btree_del);
343
344 /*----------------------------------------------------------------*/
345
btree_lookup_raw(struct ro_spine * s,dm_block_t block,uint64_t key,int (* search_fn)(struct btree_node *,uint64_t),uint64_t * result_key,void * v,size_t value_size)346 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
347 int (*search_fn)(struct btree_node *, uint64_t),
348 uint64_t *result_key, void *v, size_t value_size)
349 {
350 int i, r;
351 uint32_t flags, nr_entries;
352
353 do {
354 r = ro_step(s, block);
355 if (r < 0)
356 return r;
357
358 i = search_fn(ro_node(s), key);
359
360 flags = le32_to_cpu(ro_node(s)->header.flags);
361 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
362 if (i < 0 || i >= nr_entries)
363 return -ENODATA;
364
365 if (flags & INTERNAL_NODE)
366 block = value64(ro_node(s), i);
367
368 } while (!(flags & LEAF_NODE));
369
370 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
371 if (v)
372 memcpy(v, value_ptr(ro_node(s), i), value_size);
373
374 return 0;
375 }
376
dm_btree_lookup(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value_le)377 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
378 uint64_t *keys, void *value_le)
379 {
380 unsigned level, last_level = info->levels - 1;
381 int r = -ENODATA;
382 uint64_t rkey;
383 __le64 internal_value_le;
384 struct ro_spine spine;
385
386 init_ro_spine(&spine, info);
387 for (level = 0; level < info->levels; level++) {
388 size_t size;
389 void *value_p;
390
391 if (level == last_level) {
392 value_p = value_le;
393 size = info->value_type.size;
394
395 } else {
396 value_p = &internal_value_le;
397 size = sizeof(uint64_t);
398 }
399
400 r = btree_lookup_raw(&spine, root, keys[level],
401 lower_bound, &rkey,
402 value_p, size);
403
404 if (!r) {
405 if (rkey != keys[level]) {
406 exit_ro_spine(&spine);
407 return -ENODATA;
408 }
409 } else {
410 exit_ro_spine(&spine);
411 return r;
412 }
413
414 root = le64_to_cpu(internal_value_le);
415 }
416 exit_ro_spine(&spine);
417
418 return r;
419 }
420 EXPORT_SYMBOL_GPL(dm_btree_lookup);
421
dm_btree_lookup_next_single(struct dm_btree_info * info,dm_block_t root,uint64_t key,uint64_t * rkey,void * value_le)422 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
423 uint64_t key, uint64_t *rkey, void *value_le)
424 {
425 int r, i;
426 uint32_t flags, nr_entries;
427 struct dm_block *node;
428 struct btree_node *n;
429
430 r = bn_read_lock(info, root, &node);
431 if (r)
432 return r;
433
434 n = dm_block_data(node);
435 flags = le32_to_cpu(n->header.flags);
436 nr_entries = le32_to_cpu(n->header.nr_entries);
437
438 if (flags & INTERNAL_NODE) {
439 i = lower_bound(n, key);
440 if (i < 0) {
441 /*
442 * avoid early -ENODATA return when all entries are
443 * higher than the search @key.
444 */
445 i = 0;
446 }
447 if (i >= nr_entries) {
448 r = -ENODATA;
449 goto out;
450 }
451
452 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
453 if (r == -ENODATA && i < (nr_entries - 1)) {
454 i++;
455 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
456 }
457
458 } else {
459 i = upper_bound(n, key);
460 if (i < 0 || i >= nr_entries) {
461 r = -ENODATA;
462 goto out;
463 }
464
465 *rkey = le64_to_cpu(n->keys[i]);
466 memcpy(value_le, value_ptr(n, i), info->value_type.size);
467 }
468 out:
469 dm_tm_unlock(info->tm, node);
470 return r;
471 }
472
dm_btree_lookup_next(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,uint64_t * rkey,void * value_le)473 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
474 uint64_t *keys, uint64_t *rkey, void *value_le)
475 {
476 unsigned level;
477 int r = -ENODATA;
478 __le64 internal_value_le;
479 struct ro_spine spine;
480
481 init_ro_spine(&spine, info);
482 for (level = 0; level < info->levels - 1u; level++) {
483 r = btree_lookup_raw(&spine, root, keys[level],
484 lower_bound, rkey,
485 &internal_value_le, sizeof(uint64_t));
486 if (r)
487 goto out;
488
489 if (*rkey != keys[level]) {
490 r = -ENODATA;
491 goto out;
492 }
493
494 root = le64_to_cpu(internal_value_le);
495 }
496
497 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
498 out:
499 exit_ro_spine(&spine);
500 return r;
501 }
502
503 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
504
505 /*
506 * Splits a node by creating a sibling node and shifting half the nodes
507 * contents across. Assumes there is a parent node, and it has room for
508 * another child.
509 *
510 * Before:
511 * +--------+
512 * | Parent |
513 * +--------+
514 * |
515 * v
516 * +----------+
517 * | A ++++++ |
518 * +----------+
519 *
520 *
521 * After:
522 * +--------+
523 * | Parent |
524 * +--------+
525 * | |
526 * v +------+
527 * +---------+ |
528 * | A* +++ | v
529 * +---------+ +-------+
530 * | B +++ |
531 * +-------+
532 *
533 * Where A* is a shadow of A.
534 */
btree_split_sibling(struct shadow_spine * s,unsigned parent_index,uint64_t key)535 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
536 uint64_t key)
537 {
538 int r;
539 size_t size;
540 unsigned nr_left, nr_right;
541 struct dm_block *left, *right, *parent;
542 struct btree_node *ln, *rn, *pn;
543 __le64 location;
544
545 left = shadow_current(s);
546
547 r = new_block(s->info, &right);
548 if (r < 0)
549 return r;
550
551 ln = dm_block_data(left);
552 rn = dm_block_data(right);
553
554 nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
555 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
556
557 ln->header.nr_entries = cpu_to_le32(nr_left);
558
559 rn->header.flags = ln->header.flags;
560 rn->header.nr_entries = cpu_to_le32(nr_right);
561 rn->header.max_entries = ln->header.max_entries;
562 rn->header.value_size = ln->header.value_size;
563 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
564
565 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
566 sizeof(uint64_t) : s->info->value_type.size;
567 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
568 size * nr_right);
569
570 /*
571 * Patch up the parent
572 */
573 parent = shadow_parent(s);
574
575 pn = dm_block_data(parent);
576 location = cpu_to_le64(dm_block_location(left));
577 __dm_bless_for_disk(&location);
578 memcpy_disk(value_ptr(pn, parent_index),
579 &location, sizeof(__le64));
580
581 location = cpu_to_le64(dm_block_location(right));
582 __dm_bless_for_disk(&location);
583
584 r = insert_at(sizeof(__le64), pn, parent_index + 1,
585 le64_to_cpu(rn->keys[0]), &location);
586 if (r) {
587 unlock_block(s->info, right);
588 return r;
589 }
590
591 if (key < le64_to_cpu(rn->keys[0])) {
592 unlock_block(s->info, right);
593 s->nodes[1] = left;
594 } else {
595 unlock_block(s->info, left);
596 s->nodes[1] = right;
597 }
598
599 return 0;
600 }
601
602 /*
603 * Splits a node by creating two new children beneath the given node.
604 *
605 * Before:
606 * +----------+
607 * | A ++++++ |
608 * +----------+
609 *
610 *
611 * After:
612 * +------------+
613 * | A (shadow) |
614 * +------------+
615 * | |
616 * +------+ +----+
617 * | |
618 * v v
619 * +-------+ +-------+
620 * | B +++ | | C +++ |
621 * +-------+ +-------+
622 */
btree_split_beneath(struct shadow_spine * s,uint64_t key)623 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
624 {
625 int r;
626 size_t size;
627 unsigned nr_left, nr_right;
628 struct dm_block *left, *right, *new_parent;
629 struct btree_node *pn, *ln, *rn;
630 __le64 val;
631
632 new_parent = shadow_current(s);
633
634 pn = dm_block_data(new_parent);
635 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
636 sizeof(__le64) : s->info->value_type.size;
637
638 /* create & init the left block */
639 r = new_block(s->info, &left);
640 if (r < 0)
641 return r;
642
643 ln = dm_block_data(left);
644 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
645
646 ln->header.flags = pn->header.flags;
647 ln->header.nr_entries = cpu_to_le32(nr_left);
648 ln->header.max_entries = pn->header.max_entries;
649 ln->header.value_size = pn->header.value_size;
650 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
651 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
652
653 /* create & init the right block */
654 r = new_block(s->info, &right);
655 if (r < 0) {
656 unlock_block(s->info, left);
657 return r;
658 }
659
660 rn = dm_block_data(right);
661 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
662
663 rn->header.flags = pn->header.flags;
664 rn->header.nr_entries = cpu_to_le32(nr_right);
665 rn->header.max_entries = pn->header.max_entries;
666 rn->header.value_size = pn->header.value_size;
667 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
668 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
669 nr_right * size);
670
671 /* new_parent should just point to l and r now */
672 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
673 pn->header.nr_entries = cpu_to_le32(2);
674 pn->header.max_entries = cpu_to_le32(
675 calc_max_entries(sizeof(__le64),
676 dm_bm_block_size(
677 dm_tm_get_bm(s->info->tm))));
678 pn->header.value_size = cpu_to_le32(sizeof(__le64));
679
680 val = cpu_to_le64(dm_block_location(left));
681 __dm_bless_for_disk(&val);
682 pn->keys[0] = ln->keys[0];
683 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
684
685 val = cpu_to_le64(dm_block_location(right));
686 __dm_bless_for_disk(&val);
687 pn->keys[1] = rn->keys[0];
688 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
689
690 unlock_block(s->info, left);
691 unlock_block(s->info, right);
692 return 0;
693 }
694
btree_insert_raw(struct shadow_spine * s,dm_block_t root,struct dm_btree_value_type * vt,uint64_t key,unsigned * index)695 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
696 struct dm_btree_value_type *vt,
697 uint64_t key, unsigned *index)
698 {
699 int r, i = *index, top = 1;
700 struct btree_node *node;
701
702 for (;;) {
703 r = shadow_step(s, root, vt);
704 if (r < 0)
705 return r;
706
707 node = dm_block_data(shadow_current(s));
708
709 /*
710 * We have to patch up the parent node, ugly, but I don't
711 * see a way to do this automatically as part of the spine
712 * op.
713 */
714 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
715 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
716
717 __dm_bless_for_disk(&location);
718 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
719 &location, sizeof(__le64));
720 }
721
722 node = dm_block_data(shadow_current(s));
723
724 if (node->header.nr_entries == node->header.max_entries) {
725 if (top)
726 r = btree_split_beneath(s, key);
727 else
728 r = btree_split_sibling(s, i, key);
729
730 if (r < 0)
731 return r;
732 }
733
734 node = dm_block_data(shadow_current(s));
735
736 i = lower_bound(node, key);
737
738 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
739 break;
740
741 if (i < 0) {
742 /* change the bounds on the lowest key */
743 node->keys[0] = cpu_to_le64(key);
744 i = 0;
745 }
746
747 root = value64(node, i);
748 top = 0;
749 }
750
751 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
752 i++;
753
754 *index = i;
755 return 0;
756 }
757
need_insert(struct btree_node * node,uint64_t * keys,unsigned level,unsigned index)758 static bool need_insert(struct btree_node *node, uint64_t *keys,
759 unsigned level, unsigned index)
760 {
761 return ((index >= le32_to_cpu(node->header.nr_entries)) ||
762 (le64_to_cpu(node->keys[index]) != keys[level]));
763 }
764
insert(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root,int * inserted)765 static int insert(struct dm_btree_info *info, dm_block_t root,
766 uint64_t *keys, void *value, dm_block_t *new_root,
767 int *inserted)
768 __dm_written_to_disk(value)
769 {
770 int r;
771 unsigned level, index = -1, last_level = info->levels - 1;
772 dm_block_t block = root;
773 struct shadow_spine spine;
774 struct btree_node *n;
775 struct dm_btree_value_type le64_type;
776
777 init_le64_type(info->tm, &le64_type);
778 init_shadow_spine(&spine, info);
779
780 for (level = 0; level < (info->levels - 1); level++) {
781 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
782 if (r < 0)
783 goto bad;
784
785 n = dm_block_data(shadow_current(&spine));
786
787 if (need_insert(n, keys, level, index)) {
788 dm_block_t new_tree;
789 __le64 new_le;
790
791 r = dm_btree_empty(info, &new_tree);
792 if (r < 0)
793 goto bad;
794
795 new_le = cpu_to_le64(new_tree);
796 __dm_bless_for_disk(&new_le);
797
798 r = insert_at(sizeof(uint64_t), n, index,
799 keys[level], &new_le);
800 if (r)
801 goto bad;
802 }
803
804 if (level < last_level)
805 block = value64(n, index);
806 }
807
808 r = btree_insert_raw(&spine, block, &info->value_type,
809 keys[level], &index);
810 if (r < 0)
811 goto bad;
812
813 n = dm_block_data(shadow_current(&spine));
814
815 if (need_insert(n, keys, level, index)) {
816 if (inserted)
817 *inserted = 1;
818
819 r = insert_at(info->value_type.size, n, index,
820 keys[level], value);
821 if (r)
822 goto bad_unblessed;
823 } else {
824 if (inserted)
825 *inserted = 0;
826
827 if (info->value_type.dec &&
828 (!info->value_type.equal ||
829 !info->value_type.equal(
830 info->value_type.context,
831 value_ptr(n, index),
832 value))) {
833 info->value_type.dec(info->value_type.context,
834 value_ptr(n, index));
835 }
836 memcpy_disk(value_ptr(n, index),
837 value, info->value_type.size);
838 }
839
840 *new_root = shadow_root(&spine);
841 exit_shadow_spine(&spine);
842
843 return 0;
844
845 bad:
846 __dm_unbless_for_disk(value);
847 bad_unblessed:
848 exit_shadow_spine(&spine);
849 return r;
850 }
851
dm_btree_insert(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root)852 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
853 uint64_t *keys, void *value, dm_block_t *new_root)
854 __dm_written_to_disk(value)
855 {
856 return insert(info, root, keys, value, new_root, NULL);
857 }
858 EXPORT_SYMBOL_GPL(dm_btree_insert);
859
dm_btree_insert_notify(struct dm_btree_info * info,dm_block_t root,uint64_t * keys,void * value,dm_block_t * new_root,int * inserted)860 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
861 uint64_t *keys, void *value, dm_block_t *new_root,
862 int *inserted)
863 __dm_written_to_disk(value)
864 {
865 return insert(info, root, keys, value, new_root, inserted);
866 }
867 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
868
869 /*----------------------------------------------------------------*/
870
find_key(struct ro_spine * s,dm_block_t block,bool find_highest,uint64_t * result_key,dm_block_t * next_block)871 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
872 uint64_t *result_key, dm_block_t *next_block)
873 {
874 int i, r;
875 uint32_t flags;
876
877 do {
878 r = ro_step(s, block);
879 if (r < 0)
880 return r;
881
882 flags = le32_to_cpu(ro_node(s)->header.flags);
883 i = le32_to_cpu(ro_node(s)->header.nr_entries);
884 if (!i)
885 return -ENODATA;
886 else
887 i--;
888
889 if (find_highest)
890 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
891 else
892 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
893
894 if (next_block || flags & INTERNAL_NODE) {
895 if (find_highest)
896 block = value64(ro_node(s), i);
897 else
898 block = value64(ro_node(s), 0);
899 }
900
901 } while (flags & INTERNAL_NODE);
902
903 if (next_block)
904 *next_block = block;
905 return 0;
906 }
907
dm_btree_find_key(struct dm_btree_info * info,dm_block_t root,bool find_highest,uint64_t * result_keys)908 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
909 bool find_highest, uint64_t *result_keys)
910 {
911 int r = 0, count = 0, level;
912 struct ro_spine spine;
913
914 init_ro_spine(&spine, info);
915 for (level = 0; level < info->levels; level++) {
916 r = find_key(&spine, root, find_highest, result_keys + level,
917 level == info->levels - 1 ? NULL : &root);
918 if (r == -ENODATA) {
919 r = 0;
920 break;
921
922 } else if (r)
923 break;
924
925 count++;
926 }
927 exit_ro_spine(&spine);
928
929 return r ? r : count;
930 }
931
dm_btree_find_highest_key(struct dm_btree_info * info,dm_block_t root,uint64_t * result_keys)932 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
933 uint64_t *result_keys)
934 {
935 return dm_btree_find_key(info, root, true, result_keys);
936 }
937 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
938
dm_btree_find_lowest_key(struct dm_btree_info * info,dm_block_t root,uint64_t * result_keys)939 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
940 uint64_t *result_keys)
941 {
942 return dm_btree_find_key(info, root, false, result_keys);
943 }
944 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
945
946 /*----------------------------------------------------------------*/
947
948 /*
949 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
950 * space. Also this only works for single level trees.
951 */
walk_node(struct dm_btree_info * info,dm_block_t block,int (* fn)(void * context,uint64_t * keys,void * leaf),void * context)952 static int walk_node(struct dm_btree_info *info, dm_block_t block,
953 int (*fn)(void *context, uint64_t *keys, void *leaf),
954 void *context)
955 {
956 int r;
957 unsigned i, nr;
958 struct dm_block *node;
959 struct btree_node *n;
960 uint64_t keys;
961
962 r = bn_read_lock(info, block, &node);
963 if (r)
964 return r;
965
966 n = dm_block_data(node);
967
968 nr = le32_to_cpu(n->header.nr_entries);
969 for (i = 0; i < nr; i++) {
970 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
971 r = walk_node(info, value64(n, i), fn, context);
972 if (r)
973 goto out;
974 } else {
975 keys = le64_to_cpu(*key_ptr(n, i));
976 r = fn(context, &keys, value_ptr(n, i));
977 if (r)
978 goto out;
979 }
980 }
981
982 out:
983 dm_tm_unlock(info->tm, node);
984 return r;
985 }
986
dm_btree_walk(struct dm_btree_info * info,dm_block_t root,int (* fn)(void * context,uint64_t * keys,void * leaf),void * context)987 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
988 int (*fn)(void *context, uint64_t *keys, void *leaf),
989 void *context)
990 {
991 BUG_ON(info->levels > 1);
992 return walk_node(info, root, fn, context);
993 }
994 EXPORT_SYMBOL_GPL(dm_btree_walk);
995
996 /*----------------------------------------------------------------*/
997
prefetch_values(struct dm_btree_cursor * c)998 static void prefetch_values(struct dm_btree_cursor *c)
999 {
1000 unsigned i, nr;
1001 __le64 value_le;
1002 struct cursor_node *n = c->nodes + c->depth - 1;
1003 struct btree_node *bn = dm_block_data(n->b);
1004 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1005
1006 BUG_ON(c->info->value_type.size != sizeof(value_le));
1007
1008 nr = le32_to_cpu(bn->header.nr_entries);
1009 for (i = 0; i < nr; i++) {
1010 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1011 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1012 }
1013 }
1014
leaf_node(struct dm_btree_cursor * c)1015 static bool leaf_node(struct dm_btree_cursor *c)
1016 {
1017 struct cursor_node *n = c->nodes + c->depth - 1;
1018 struct btree_node *bn = dm_block_data(n->b);
1019
1020 return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1021 }
1022
push_node(struct dm_btree_cursor * c,dm_block_t b)1023 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1024 {
1025 int r;
1026 struct cursor_node *n = c->nodes + c->depth;
1027
1028 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1029 DMERR("couldn't push cursor node, stack depth too high");
1030 return -EINVAL;
1031 }
1032
1033 r = bn_read_lock(c->info, b, &n->b);
1034 if (r)
1035 return r;
1036
1037 n->index = 0;
1038 c->depth++;
1039
1040 if (c->prefetch_leaves || !leaf_node(c))
1041 prefetch_values(c);
1042
1043 return 0;
1044 }
1045
pop_node(struct dm_btree_cursor * c)1046 static void pop_node(struct dm_btree_cursor *c)
1047 {
1048 c->depth--;
1049 unlock_block(c->info, c->nodes[c->depth].b);
1050 }
1051
inc_or_backtrack(struct dm_btree_cursor * c)1052 static int inc_or_backtrack(struct dm_btree_cursor *c)
1053 {
1054 struct cursor_node *n;
1055 struct btree_node *bn;
1056
1057 for (;;) {
1058 if (!c->depth)
1059 return -ENODATA;
1060
1061 n = c->nodes + c->depth - 1;
1062 bn = dm_block_data(n->b);
1063
1064 n->index++;
1065 if (n->index < le32_to_cpu(bn->header.nr_entries))
1066 break;
1067
1068 pop_node(c);
1069 }
1070
1071 return 0;
1072 }
1073
find_leaf(struct dm_btree_cursor * c)1074 static int find_leaf(struct dm_btree_cursor *c)
1075 {
1076 int r = 0;
1077 struct cursor_node *n;
1078 struct btree_node *bn;
1079 __le64 value_le;
1080
1081 for (;;) {
1082 n = c->nodes + c->depth - 1;
1083 bn = dm_block_data(n->b);
1084
1085 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1086 break;
1087
1088 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1089 r = push_node(c, le64_to_cpu(value_le));
1090 if (r) {
1091 DMERR("push_node failed");
1092 break;
1093 }
1094 }
1095
1096 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1097 return -ENODATA;
1098
1099 return r;
1100 }
1101
dm_btree_cursor_begin(struct dm_btree_info * info,dm_block_t root,bool prefetch_leaves,struct dm_btree_cursor * c)1102 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1103 bool prefetch_leaves, struct dm_btree_cursor *c)
1104 {
1105 int r;
1106
1107 c->info = info;
1108 c->root = root;
1109 c->depth = 0;
1110 c->prefetch_leaves = prefetch_leaves;
1111
1112 r = push_node(c, root);
1113 if (r)
1114 return r;
1115
1116 return find_leaf(c);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1119
dm_btree_cursor_end(struct dm_btree_cursor * c)1120 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1121 {
1122 while (c->depth)
1123 pop_node(c);
1124 }
1125 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1126
dm_btree_cursor_next(struct dm_btree_cursor * c)1127 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1128 {
1129 int r = inc_or_backtrack(c);
1130 if (!r) {
1131 r = find_leaf(c);
1132 if (r)
1133 DMERR("find_leaf failed");
1134 }
1135
1136 return r;
1137 }
1138 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1139
dm_btree_cursor_skip(struct dm_btree_cursor * c,uint32_t count)1140 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1141 {
1142 int r = 0;
1143
1144 while (count-- && !r)
1145 r = dm_btree_cursor_next(c);
1146
1147 return r;
1148 }
1149 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1150
dm_btree_cursor_get_value(struct dm_btree_cursor * c,uint64_t * key,void * value_le)1151 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1152 {
1153 if (c->depth) {
1154 struct cursor_node *n = c->nodes + c->depth - 1;
1155 struct btree_node *bn = dm_block_data(n->b);
1156
1157 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1158 return -EINVAL;
1159
1160 *key = le64_to_cpu(*key_ptr(bn, n->index));
1161 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1162 return 0;
1163
1164 } else
1165 return -ENODATA;
1166 }
1167 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
1168