1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 unsigned long size;
100 void *addr;
101
102 /*
103 * Check that we're not going to overflow.
104 */
105 if (nmemb > (ULONG_MAX / elem_size))
106 return NULL;
107
108 size = nmemb * elem_size;
109 addr = vzalloc(size);
110
111 return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116 * highs, and targets are managed as dynamic arrays during a
117 * table load.
118 */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 sector_t *n_highs;
122 struct dm_target *n_targets;
123
124 /*
125 * Allocate both the target array and offset array at once.
126 */
127 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 sizeof(sector_t));
129 if (!n_highs)
130 return -ENOMEM;
131
132 n_targets = (struct dm_target *) (n_highs + num);
133
134 memset(n_highs, -1, sizeof(*n_highs) * num);
135 vfree(t->highs);
136
137 t->num_allocated = num;
138 t->highs = n_highs;
139 t->targets = n_targets;
140
141 return 0;
142 }
143
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 unsigned num_targets, struct mapped_device *md)
146 {
147 struct dm_table *t;
148
149 if (num_targets > DM_MAX_TARGETS)
150 return -EOVERFLOW;
151
152 t = kzalloc(sizeof(*t), GFP_KERNEL);
153
154 if (!t)
155 return -ENOMEM;
156
157 INIT_LIST_HEAD(&t->devices);
158
159 if (!num_targets)
160 num_targets = KEYS_PER_NODE;
161
162 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
163
164 if (!num_targets) {
165 kfree(t);
166 return -EOVERFLOW;
167 }
168
169 if (alloc_targets(t, num_targets)) {
170 kfree(t);
171 return -ENOMEM;
172 }
173
174 t->type = DM_TYPE_NONE;
175 t->mode = mode;
176 t->md = md;
177 *result = t;
178 return 0;
179 }
180
free_devices(struct list_head * devices,struct mapped_device * md)181 static void free_devices(struct list_head *devices, struct mapped_device *md)
182 {
183 struct list_head *tmp, *next;
184
185 list_for_each_safe(tmp, next, devices) {
186 struct dm_dev_internal *dd =
187 list_entry(tmp, struct dm_dev_internal, list);
188 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
189 dm_device_name(md), dd->dm_dev->name);
190 dm_put_table_device(md, dd->dm_dev);
191 kfree(dd);
192 }
193 }
194
195 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
196
dm_table_destroy(struct dm_table * t)197 void dm_table_destroy(struct dm_table *t)
198 {
199 unsigned int i;
200
201 if (!t)
202 return;
203
204 /* free the indexes */
205 if (t->depth >= 2)
206 vfree(t->index[t->depth - 2]);
207
208 /* free the targets */
209 for (i = 0; i < t->num_targets; i++) {
210 struct dm_target *tgt = t->targets + i;
211
212 if (tgt->type->dtr)
213 tgt->type->dtr(tgt);
214
215 dm_put_target_type(tgt->type);
216 }
217
218 vfree(t->highs);
219
220 /* free the device list */
221 free_devices(&t->devices, t->md);
222
223 dm_free_md_mempools(t->mempools);
224
225 dm_table_destroy_keyslot_manager(t);
226
227 kfree(t);
228 }
229
230 /*
231 * See if we've already got a device in the list.
232 */
find_device(struct list_head * l,dev_t dev)233 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
234 {
235 struct dm_dev_internal *dd;
236
237 list_for_each_entry (dd, l, list)
238 if (dd->dm_dev->bdev->bd_dev == dev)
239 return dd;
240
241 return NULL;
242 }
243
244 /*
245 * If possible, this checks an area of a destination device is invalid.
246 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)247 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
248 sector_t start, sector_t len, void *data)
249 {
250 struct queue_limits *limits = data;
251 struct block_device *bdev = dev->bdev;
252 sector_t dev_size =
253 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
254 unsigned short logical_block_size_sectors =
255 limits->logical_block_size >> SECTOR_SHIFT;
256 char b[BDEVNAME_SIZE];
257
258 if (!dev_size)
259 return 0;
260
261 if ((start >= dev_size) || (start + len > dev_size)) {
262 DMWARN("%s: %s too small for target: "
263 "start=%llu, len=%llu, dev_size=%llu",
264 dm_device_name(ti->table->md), bdevname(bdev, b),
265 (unsigned long long)start,
266 (unsigned long long)len,
267 (unsigned long long)dev_size);
268 return 1;
269 }
270
271 /*
272 * If the target is mapped to zoned block device(s), check
273 * that the zones are not partially mapped.
274 */
275 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
276 unsigned int zone_sectors = bdev_zone_sectors(bdev);
277
278 if (start & (zone_sectors - 1)) {
279 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
280 dm_device_name(ti->table->md),
281 (unsigned long long)start,
282 zone_sectors, bdevname(bdev, b));
283 return 1;
284 }
285
286 /*
287 * Note: The last zone of a zoned block device may be smaller
288 * than other zones. So for a target mapping the end of a
289 * zoned block device with such a zone, len would not be zone
290 * aligned. We do not allow such last smaller zone to be part
291 * of the mapping here to ensure that mappings with multiple
292 * devices do not end up with a smaller zone in the middle of
293 * the sector range.
294 */
295 if (len & (zone_sectors - 1)) {
296 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
297 dm_device_name(ti->table->md),
298 (unsigned long long)len,
299 zone_sectors, bdevname(bdev, b));
300 return 1;
301 }
302 }
303
304 if (logical_block_size_sectors <= 1)
305 return 0;
306
307 if (start & (logical_block_size_sectors - 1)) {
308 DMWARN("%s: start=%llu not aligned to h/w "
309 "logical block size %u of %s",
310 dm_device_name(ti->table->md),
311 (unsigned long long)start,
312 limits->logical_block_size, bdevname(bdev, b));
313 return 1;
314 }
315
316 if (len & (logical_block_size_sectors - 1)) {
317 DMWARN("%s: len=%llu not aligned to h/w "
318 "logical block size %u of %s",
319 dm_device_name(ti->table->md),
320 (unsigned long long)len,
321 limits->logical_block_size, bdevname(bdev, b));
322 return 1;
323 }
324
325 return 0;
326 }
327
328 /*
329 * This upgrades the mode on an already open dm_dev, being
330 * careful to leave things as they were if we fail to reopen the
331 * device and not to touch the existing bdev field in case
332 * it is accessed concurrently.
333 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)334 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
335 struct mapped_device *md)
336 {
337 int r;
338 struct dm_dev *old_dev, *new_dev;
339
340 old_dev = dd->dm_dev;
341
342 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
343 dd->dm_dev->mode | new_mode, &new_dev);
344 if (r)
345 return r;
346
347 dd->dm_dev = new_dev;
348 dm_put_table_device(md, old_dev);
349
350 return 0;
351 }
352
353 /*
354 * Convert the path to a device
355 */
dm_get_dev_t(const char * path)356 dev_t dm_get_dev_t(const char *path)
357 {
358 dev_t dev;
359 struct block_device *bdev;
360
361 bdev = lookup_bdev(path);
362 if (IS_ERR(bdev))
363 dev = name_to_dev_t(path);
364 else {
365 dev = bdev->bd_dev;
366 bdput(bdev);
367 }
368
369 return dev;
370 }
371 EXPORT_SYMBOL_GPL(dm_get_dev_t);
372
373 /*
374 * Add a device to the list, or just increment the usage count if
375 * it's already present.
376 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)377 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
378 struct dm_dev **result)
379 {
380 int r;
381 dev_t dev;
382 unsigned int major, minor;
383 char dummy;
384 struct dm_dev_internal *dd;
385 struct dm_table *t = ti->table;
386
387 BUG_ON(!t);
388
389 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
390 /* Extract the major/minor numbers */
391 dev = MKDEV(major, minor);
392 if (MAJOR(dev) != major || MINOR(dev) != minor)
393 return -EOVERFLOW;
394 } else {
395 dev = dm_get_dev_t(path);
396 if (!dev)
397 return -ENODEV;
398 }
399
400 dd = find_device(&t->devices, dev);
401 if (!dd) {
402 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
403 if (!dd)
404 return -ENOMEM;
405
406 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
407 kfree(dd);
408 return r;
409 }
410
411 refcount_set(&dd->count, 1);
412 list_add(&dd->list, &t->devices);
413 goto out;
414
415 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
416 r = upgrade_mode(dd, mode, t->md);
417 if (r)
418 return r;
419 }
420 refcount_inc(&dd->count);
421 out:
422 *result = dd->dm_dev;
423 return 0;
424 }
425 EXPORT_SYMBOL(dm_get_device);
426
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)427 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
428 sector_t start, sector_t len, void *data)
429 {
430 struct queue_limits *limits = data;
431 struct block_device *bdev = dev->bdev;
432 struct request_queue *q = bdev_get_queue(bdev);
433 char b[BDEVNAME_SIZE];
434
435 if (unlikely(!q)) {
436 DMWARN("%s: Cannot set limits for nonexistent device %s",
437 dm_device_name(ti->table->md), bdevname(bdev, b));
438 return 0;
439 }
440
441 if (blk_stack_limits(limits, &q->limits,
442 get_start_sect(bdev) + start) < 0)
443 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
444 "physical_block_size=%u, logical_block_size=%u, "
445 "alignment_offset=%u, start=%llu",
446 dm_device_name(ti->table->md), bdevname(bdev, b),
447 q->limits.physical_block_size,
448 q->limits.logical_block_size,
449 q->limits.alignment_offset,
450 (unsigned long long) start << SECTOR_SHIFT);
451 return 0;
452 }
453
454 /*
455 * Decrement a device's use count and remove it if necessary.
456 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 int found = 0;
460 struct list_head *devices = &ti->table->devices;
461 struct dm_dev_internal *dd;
462
463 list_for_each_entry(dd, devices, list) {
464 if (dd->dm_dev == d) {
465 found = 1;
466 break;
467 }
468 }
469 if (!found) {
470 DMWARN("%s: device %s not in table devices list",
471 dm_device_name(ti->table->md), d->name);
472 return;
473 }
474 if (refcount_dec_and_test(&dd->count)) {
475 dm_put_table_device(ti->table->md, d);
476 list_del(&dd->list);
477 kfree(dd);
478 }
479 }
480 EXPORT_SYMBOL(dm_put_device);
481
482 /*
483 * Checks to see if the target joins onto the end of the table.
484 */
adjoin(struct dm_table * table,struct dm_target * ti)485 static int adjoin(struct dm_table *table, struct dm_target *ti)
486 {
487 struct dm_target *prev;
488
489 if (!table->num_targets)
490 return !ti->begin;
491
492 prev = &table->targets[table->num_targets - 1];
493 return (ti->begin == (prev->begin + prev->len));
494 }
495
496 /*
497 * Used to dynamically allocate the arg array.
498 *
499 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
500 * process messages even if some device is suspended. These messages have a
501 * small fixed number of arguments.
502 *
503 * On the other hand, dm-switch needs to process bulk data using messages and
504 * excessive use of GFP_NOIO could cause trouble.
505 */
realloc_argv(unsigned * size,char ** old_argv)506 static char **realloc_argv(unsigned *size, char **old_argv)
507 {
508 char **argv;
509 unsigned new_size;
510 gfp_t gfp;
511
512 if (*size) {
513 new_size = *size * 2;
514 gfp = GFP_KERNEL;
515 } else {
516 new_size = 8;
517 gfp = GFP_NOIO;
518 }
519 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
520 if (argv && old_argv) {
521 memcpy(argv, old_argv, *size * sizeof(*argv));
522 *size = new_size;
523 }
524
525 kfree(old_argv);
526 return argv;
527 }
528
529 /*
530 * Destructively splits up the argument list to pass to ctr.
531 */
dm_split_args(int * argc,char *** argvp,char * input)532 int dm_split_args(int *argc, char ***argvp, char *input)
533 {
534 char *start, *end = input, *out, **argv = NULL;
535 unsigned array_size = 0;
536
537 *argc = 0;
538
539 if (!input) {
540 *argvp = NULL;
541 return 0;
542 }
543
544 argv = realloc_argv(&array_size, argv);
545 if (!argv)
546 return -ENOMEM;
547
548 while (1) {
549 /* Skip whitespace */
550 start = skip_spaces(end);
551
552 if (!*start)
553 break; /* success, we hit the end */
554
555 /* 'out' is used to remove any back-quotes */
556 end = out = start;
557 while (*end) {
558 /* Everything apart from '\0' can be quoted */
559 if (*end == '\\' && *(end + 1)) {
560 *out++ = *(end + 1);
561 end += 2;
562 continue;
563 }
564
565 if (isspace(*end))
566 break; /* end of token */
567
568 *out++ = *end++;
569 }
570
571 /* have we already filled the array ? */
572 if ((*argc + 1) > array_size) {
573 argv = realloc_argv(&array_size, argv);
574 if (!argv)
575 return -ENOMEM;
576 }
577
578 /* we know this is whitespace */
579 if (*end)
580 end++;
581
582 /* terminate the string and put it in the array */
583 *out = '\0';
584 argv[*argc] = start;
585 (*argc)++;
586 }
587
588 *argvp = argv;
589 return 0;
590 }
591
592 /*
593 * Impose necessary and sufficient conditions on a devices's table such
594 * that any incoming bio which respects its logical_block_size can be
595 * processed successfully. If it falls across the boundary between
596 * two or more targets, the size of each piece it gets split into must
597 * be compatible with the logical_block_size of the target processing it.
598 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)599 static int validate_hardware_logical_block_alignment(struct dm_table *table,
600 struct queue_limits *limits)
601 {
602 /*
603 * This function uses arithmetic modulo the logical_block_size
604 * (in units of 512-byte sectors).
605 */
606 unsigned short device_logical_block_size_sects =
607 limits->logical_block_size >> SECTOR_SHIFT;
608
609 /*
610 * Offset of the start of the next table entry, mod logical_block_size.
611 */
612 unsigned short next_target_start = 0;
613
614 /*
615 * Given an aligned bio that extends beyond the end of a
616 * target, how many sectors must the next target handle?
617 */
618 unsigned short remaining = 0;
619
620 struct dm_target *ti;
621 struct queue_limits ti_limits;
622 unsigned i;
623
624 /*
625 * Check each entry in the table in turn.
626 */
627 for (i = 0; i < dm_table_get_num_targets(table); i++) {
628 ti = dm_table_get_target(table, i);
629
630 blk_set_stacking_limits(&ti_limits);
631
632 /* combine all target devices' limits */
633 if (ti->type->iterate_devices)
634 ti->type->iterate_devices(ti, dm_set_device_limits,
635 &ti_limits);
636
637 /*
638 * If the remaining sectors fall entirely within this
639 * table entry are they compatible with its logical_block_size?
640 */
641 if (remaining < ti->len &&
642 remaining & ((ti_limits.logical_block_size >>
643 SECTOR_SHIFT) - 1))
644 break; /* Error */
645
646 next_target_start =
647 (unsigned short) ((next_target_start + ti->len) &
648 (device_logical_block_size_sects - 1));
649 remaining = next_target_start ?
650 device_logical_block_size_sects - next_target_start : 0;
651 }
652
653 if (remaining) {
654 DMWARN("%s: table line %u (start sect %llu len %llu) "
655 "not aligned to h/w logical block size %u",
656 dm_device_name(table->md), i,
657 (unsigned long long) ti->begin,
658 (unsigned long long) ti->len,
659 limits->logical_block_size);
660 return -EINVAL;
661 }
662
663 return 0;
664 }
665
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)666 int dm_table_add_target(struct dm_table *t, const char *type,
667 sector_t start, sector_t len, char *params)
668 {
669 int r = -EINVAL, argc;
670 char **argv;
671 struct dm_target *tgt;
672
673 if (t->singleton) {
674 DMERR("%s: target type %s must appear alone in table",
675 dm_device_name(t->md), t->targets->type->name);
676 return -EINVAL;
677 }
678
679 BUG_ON(t->num_targets >= t->num_allocated);
680
681 tgt = t->targets + t->num_targets;
682 memset(tgt, 0, sizeof(*tgt));
683
684 if (!len) {
685 DMERR("%s: zero-length target", dm_device_name(t->md));
686 return -EINVAL;
687 }
688
689 tgt->type = dm_get_target_type(type);
690 if (!tgt->type) {
691 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
692 return -EINVAL;
693 }
694
695 if (dm_target_needs_singleton(tgt->type)) {
696 if (t->num_targets) {
697 tgt->error = "singleton target type must appear alone in table";
698 goto bad;
699 }
700 t->singleton = true;
701 }
702
703 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
704 tgt->error = "target type may not be included in a read-only table";
705 goto bad;
706 }
707
708 if (t->immutable_target_type) {
709 if (t->immutable_target_type != tgt->type) {
710 tgt->error = "immutable target type cannot be mixed with other target types";
711 goto bad;
712 }
713 } else if (dm_target_is_immutable(tgt->type)) {
714 if (t->num_targets) {
715 tgt->error = "immutable target type cannot be mixed with other target types";
716 goto bad;
717 }
718 t->immutable_target_type = tgt->type;
719 }
720
721 if (dm_target_has_integrity(tgt->type))
722 t->integrity_added = 1;
723
724 tgt->table = t;
725 tgt->begin = start;
726 tgt->len = len;
727 tgt->error = "Unknown error";
728
729 /*
730 * Does this target adjoin the previous one ?
731 */
732 if (!adjoin(t, tgt)) {
733 tgt->error = "Gap in table";
734 goto bad;
735 }
736
737 r = dm_split_args(&argc, &argv, params);
738 if (r) {
739 tgt->error = "couldn't split parameters (insufficient memory)";
740 goto bad;
741 }
742
743 r = tgt->type->ctr(tgt, argc, argv);
744 kfree(argv);
745 if (r)
746 goto bad;
747
748 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
749
750 if (!tgt->num_discard_bios && tgt->discards_supported)
751 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
752 dm_device_name(t->md), type);
753
754 return 0;
755
756 bad:
757 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
758 dm_put_target_type(tgt->type);
759 return r;
760 }
761
762 /*
763 * Target argument parsing helpers.
764 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)765 static int validate_next_arg(const struct dm_arg *arg,
766 struct dm_arg_set *arg_set,
767 unsigned *value, char **error, unsigned grouped)
768 {
769 const char *arg_str = dm_shift_arg(arg_set);
770 char dummy;
771
772 if (!arg_str ||
773 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
774 (*value < arg->min) ||
775 (*value > arg->max) ||
776 (grouped && arg_set->argc < *value)) {
777 *error = arg->error;
778 return -EINVAL;
779 }
780
781 return 0;
782 }
783
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)784 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
785 unsigned *value, char **error)
786 {
787 return validate_next_arg(arg, arg_set, value, error, 0);
788 }
789 EXPORT_SYMBOL(dm_read_arg);
790
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)791 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
792 unsigned *value, char **error)
793 {
794 return validate_next_arg(arg, arg_set, value, error, 1);
795 }
796 EXPORT_SYMBOL(dm_read_arg_group);
797
dm_shift_arg(struct dm_arg_set * as)798 const char *dm_shift_arg(struct dm_arg_set *as)
799 {
800 char *r;
801
802 if (as->argc) {
803 as->argc--;
804 r = *as->argv;
805 as->argv++;
806 return r;
807 }
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(dm_shift_arg);
812
dm_consume_args(struct dm_arg_set * as,unsigned num_args)813 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
814 {
815 BUG_ON(as->argc < num_args);
816 as->argc -= num_args;
817 as->argv += num_args;
818 }
819 EXPORT_SYMBOL(dm_consume_args);
820
__table_type_bio_based(enum dm_queue_mode table_type)821 static bool __table_type_bio_based(enum dm_queue_mode table_type)
822 {
823 return (table_type == DM_TYPE_BIO_BASED ||
824 table_type == DM_TYPE_DAX_BIO_BASED);
825 }
826
__table_type_request_based(enum dm_queue_mode table_type)827 static bool __table_type_request_based(enum dm_queue_mode table_type)
828 {
829 return table_type == DM_TYPE_REQUEST_BASED;
830 }
831
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)832 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
833 {
834 t->type = type;
835 }
836 EXPORT_SYMBOL_GPL(dm_table_set_type);
837
838 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)839 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
840 sector_t start, sector_t len, void *data)
841 {
842 int blocksize = *(int *) data, id;
843 bool rc;
844
845 id = dax_read_lock();
846 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
847 dax_read_unlock(id);
848
849 return rc;
850 }
851
852 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)853 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
854 sector_t start, sector_t len, void *data)
855 {
856 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
857 }
858
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)859 bool dm_table_supports_dax(struct dm_table *t,
860 iterate_devices_callout_fn iterate_fn, int *blocksize)
861 {
862 struct dm_target *ti;
863 unsigned i;
864
865 /* Ensure that all targets support DAX. */
866 for (i = 0; i < dm_table_get_num_targets(t); i++) {
867 ti = dm_table_get_target(t, i);
868
869 if (!ti->type->direct_access)
870 return false;
871
872 if (!ti->type->iterate_devices ||
873 ti->type->iterate_devices(ti, iterate_fn, blocksize))
874 return false;
875 }
876
877 return true;
878 }
879
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)880 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
881 sector_t start, sector_t len, void *data)
882 {
883 struct block_device *bdev = dev->bdev;
884 struct request_queue *q = bdev_get_queue(bdev);
885
886 /* request-based cannot stack on partitions! */
887 if (bdev_is_partition(bdev))
888 return false;
889
890 return queue_is_mq(q);
891 }
892
dm_table_determine_type(struct dm_table * t)893 static int dm_table_determine_type(struct dm_table *t)
894 {
895 unsigned i;
896 unsigned bio_based = 0, request_based = 0, hybrid = 0;
897 struct dm_target *tgt;
898 struct list_head *devices = dm_table_get_devices(t);
899 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
900 int page_size = PAGE_SIZE;
901
902 if (t->type != DM_TYPE_NONE) {
903 /* target already set the table's type */
904 if (t->type == DM_TYPE_BIO_BASED) {
905 /* possibly upgrade to a variant of bio-based */
906 goto verify_bio_based;
907 }
908 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
909 goto verify_rq_based;
910 }
911
912 for (i = 0; i < t->num_targets; i++) {
913 tgt = t->targets + i;
914 if (dm_target_hybrid(tgt))
915 hybrid = 1;
916 else if (dm_target_request_based(tgt))
917 request_based = 1;
918 else
919 bio_based = 1;
920
921 if (bio_based && request_based) {
922 DMERR("Inconsistent table: different target types"
923 " can't be mixed up");
924 return -EINVAL;
925 }
926 }
927
928 if (hybrid && !bio_based && !request_based) {
929 /*
930 * The targets can work either way.
931 * Determine the type from the live device.
932 * Default to bio-based if device is new.
933 */
934 if (__table_type_request_based(live_md_type))
935 request_based = 1;
936 else
937 bio_based = 1;
938 }
939
940 if (bio_based) {
941 verify_bio_based:
942 /* We must use this table as bio-based */
943 t->type = DM_TYPE_BIO_BASED;
944 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
945 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
946 t->type = DM_TYPE_DAX_BIO_BASED;
947 }
948 return 0;
949 }
950
951 BUG_ON(!request_based); /* No targets in this table */
952
953 t->type = DM_TYPE_REQUEST_BASED;
954
955 verify_rq_based:
956 /*
957 * Request-based dm supports only tables that have a single target now.
958 * To support multiple targets, request splitting support is needed,
959 * and that needs lots of changes in the block-layer.
960 * (e.g. request completion process for partial completion.)
961 */
962 if (t->num_targets > 1) {
963 DMERR("request-based DM doesn't support multiple targets");
964 return -EINVAL;
965 }
966
967 if (list_empty(devices)) {
968 int srcu_idx;
969 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
970
971 /* inherit live table's type */
972 if (live_table)
973 t->type = live_table->type;
974 dm_put_live_table(t->md, srcu_idx);
975 return 0;
976 }
977
978 tgt = dm_table_get_immutable_target(t);
979 if (!tgt) {
980 DMERR("table load rejected: immutable target is required");
981 return -EINVAL;
982 } else if (tgt->max_io_len) {
983 DMERR("table load rejected: immutable target that splits IO is not supported");
984 return -EINVAL;
985 }
986
987 /* Non-request-stackable devices can't be used for request-based dm */
988 if (!tgt->type->iterate_devices ||
989 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
990 DMERR("table load rejected: including non-request-stackable devices");
991 return -EINVAL;
992 }
993
994 return 0;
995 }
996
dm_table_get_type(struct dm_table * t)997 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
998 {
999 return t->type;
1000 }
1001
dm_table_get_immutable_target_type(struct dm_table * t)1002 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1003 {
1004 return t->immutable_target_type;
1005 }
1006
dm_table_get_immutable_target(struct dm_table * t)1007 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1008 {
1009 /* Immutable target is implicitly a singleton */
1010 if (t->num_targets > 1 ||
1011 !dm_target_is_immutable(t->targets[0].type))
1012 return NULL;
1013
1014 return t->targets;
1015 }
1016
dm_table_get_wildcard_target(struct dm_table * t)1017 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1018 {
1019 struct dm_target *ti;
1020 unsigned i;
1021
1022 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1023 ti = dm_table_get_target(t, i);
1024 if (dm_target_is_wildcard(ti->type))
1025 return ti;
1026 }
1027
1028 return NULL;
1029 }
1030
dm_table_bio_based(struct dm_table * t)1031 bool dm_table_bio_based(struct dm_table *t)
1032 {
1033 return __table_type_bio_based(dm_table_get_type(t));
1034 }
1035
dm_table_request_based(struct dm_table * t)1036 bool dm_table_request_based(struct dm_table *t)
1037 {
1038 return __table_type_request_based(dm_table_get_type(t));
1039 }
1040
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1041 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042 {
1043 enum dm_queue_mode type = dm_table_get_type(t);
1044 unsigned per_io_data_size = 0;
1045 unsigned min_pool_size = 0;
1046 struct dm_target *ti;
1047 unsigned i;
1048
1049 if (unlikely(type == DM_TYPE_NONE)) {
1050 DMWARN("no table type is set, can't allocate mempools");
1051 return -EINVAL;
1052 }
1053
1054 if (__table_type_bio_based(type))
1055 for (i = 0; i < t->num_targets; i++) {
1056 ti = t->targets + i;
1057 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1058 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1059 }
1060
1061 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1062 per_io_data_size, min_pool_size);
1063 if (!t->mempools)
1064 return -ENOMEM;
1065
1066 return 0;
1067 }
1068
dm_table_free_md_mempools(struct dm_table * t)1069 void dm_table_free_md_mempools(struct dm_table *t)
1070 {
1071 dm_free_md_mempools(t->mempools);
1072 t->mempools = NULL;
1073 }
1074
dm_table_get_md_mempools(struct dm_table * t)1075 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1076 {
1077 return t->mempools;
1078 }
1079
setup_indexes(struct dm_table * t)1080 static int setup_indexes(struct dm_table *t)
1081 {
1082 int i;
1083 unsigned int total = 0;
1084 sector_t *indexes;
1085
1086 /* allocate the space for *all* the indexes */
1087 for (i = t->depth - 2; i >= 0; i--) {
1088 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1089 total += t->counts[i];
1090 }
1091
1092 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1093 if (!indexes)
1094 return -ENOMEM;
1095
1096 /* set up internal nodes, bottom-up */
1097 for (i = t->depth - 2; i >= 0; i--) {
1098 t->index[i] = indexes;
1099 indexes += (KEYS_PER_NODE * t->counts[i]);
1100 setup_btree_index(i, t);
1101 }
1102
1103 return 0;
1104 }
1105
1106 /*
1107 * Builds the btree to index the map.
1108 */
dm_table_build_index(struct dm_table * t)1109 static int dm_table_build_index(struct dm_table *t)
1110 {
1111 int r = 0;
1112 unsigned int leaf_nodes;
1113
1114 /* how many indexes will the btree have ? */
1115 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1116 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1117
1118 /* leaf layer has already been set up */
1119 t->counts[t->depth - 1] = leaf_nodes;
1120 t->index[t->depth - 1] = t->highs;
1121
1122 if (t->depth >= 2)
1123 r = setup_indexes(t);
1124
1125 return r;
1126 }
1127
integrity_profile_exists(struct gendisk * disk)1128 static bool integrity_profile_exists(struct gendisk *disk)
1129 {
1130 return !!blk_get_integrity(disk);
1131 }
1132
1133 /*
1134 * Get a disk whose integrity profile reflects the table's profile.
1135 * Returns NULL if integrity support was inconsistent or unavailable.
1136 */
dm_table_get_integrity_disk(struct dm_table * t)1137 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1138 {
1139 struct list_head *devices = dm_table_get_devices(t);
1140 struct dm_dev_internal *dd = NULL;
1141 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1142 unsigned i;
1143
1144 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1145 struct dm_target *ti = dm_table_get_target(t, i);
1146 if (!dm_target_passes_integrity(ti->type))
1147 goto no_integrity;
1148 }
1149
1150 list_for_each_entry(dd, devices, list) {
1151 template_disk = dd->dm_dev->bdev->bd_disk;
1152 if (!integrity_profile_exists(template_disk))
1153 goto no_integrity;
1154 else if (prev_disk &&
1155 blk_integrity_compare(prev_disk, template_disk) < 0)
1156 goto no_integrity;
1157 prev_disk = template_disk;
1158 }
1159
1160 return template_disk;
1161
1162 no_integrity:
1163 if (prev_disk)
1164 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1165 dm_device_name(t->md),
1166 prev_disk->disk_name,
1167 template_disk->disk_name);
1168 return NULL;
1169 }
1170
1171 /*
1172 * Register the mapped device for blk_integrity support if the
1173 * underlying devices have an integrity profile. But all devices may
1174 * not have matching profiles (checking all devices isn't reliable
1175 * during table load because this table may use other DM device(s) which
1176 * must be resumed before they will have an initialized integity
1177 * profile). Consequently, stacked DM devices force a 2 stage integrity
1178 * profile validation: First pass during table load, final pass during
1179 * resume.
1180 */
dm_table_register_integrity(struct dm_table * t)1181 static int dm_table_register_integrity(struct dm_table *t)
1182 {
1183 struct mapped_device *md = t->md;
1184 struct gendisk *template_disk = NULL;
1185
1186 /* If target handles integrity itself do not register it here. */
1187 if (t->integrity_added)
1188 return 0;
1189
1190 template_disk = dm_table_get_integrity_disk(t);
1191 if (!template_disk)
1192 return 0;
1193
1194 if (!integrity_profile_exists(dm_disk(md))) {
1195 t->integrity_supported = true;
1196 /*
1197 * Register integrity profile during table load; we can do
1198 * this because the final profile must match during resume.
1199 */
1200 blk_integrity_register(dm_disk(md),
1201 blk_get_integrity(template_disk));
1202 return 0;
1203 }
1204
1205 /*
1206 * If DM device already has an initialized integrity
1207 * profile the new profile should not conflict.
1208 */
1209 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1210 DMWARN("%s: conflict with existing integrity profile: "
1211 "%s profile mismatch",
1212 dm_device_name(t->md),
1213 template_disk->disk_name);
1214 return 1;
1215 }
1216
1217 /* Preserve existing integrity profile */
1218 t->integrity_supported = true;
1219 return 0;
1220 }
1221
1222 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1223
1224 struct dm_keyslot_manager {
1225 struct blk_keyslot_manager ksm;
1226 struct mapped_device *md;
1227 };
1228
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1229 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1230 sector_t start, sector_t len, void *data)
1231 {
1232 const struct blk_crypto_key *key = data;
1233
1234 blk_crypto_evict_key(bdev_get_queue(dev->bdev), key);
1235 return 0;
1236 }
1237
1238 /*
1239 * When an inline encryption key is evicted from a device-mapper device, evict
1240 * it from all the underlying devices.
1241 */
dm_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)1242 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1243 const struct blk_crypto_key *key, unsigned int slot)
1244 {
1245 struct dm_keyslot_manager *dksm = container_of(ksm,
1246 struct dm_keyslot_manager,
1247 ksm);
1248 struct mapped_device *md = dksm->md;
1249 struct dm_table *t;
1250 int srcu_idx;
1251 int i;
1252 struct dm_target *ti;
1253
1254 t = dm_get_live_table(md, &srcu_idx);
1255 if (!t)
1256 return 0;
1257 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1258 ti = dm_table_get_target(t, i);
1259 if (!ti->type->iterate_devices)
1260 continue;
1261 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1262 (void *)key);
1263 }
1264 dm_put_live_table(md, srcu_idx);
1265 return 0;
1266 }
1267
1268 struct dm_derive_raw_secret_args {
1269 const u8 *wrapped_key;
1270 unsigned int wrapped_key_size;
1271 u8 *secret;
1272 unsigned int secret_size;
1273 int err;
1274 };
1275
dm_derive_raw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1276 static int dm_derive_raw_secret_callback(struct dm_target *ti,
1277 struct dm_dev *dev, sector_t start,
1278 sector_t len, void *data)
1279 {
1280 struct dm_derive_raw_secret_args *args = data;
1281 struct request_queue *q = bdev_get_queue(dev->bdev);
1282
1283 if (!args->err)
1284 return 0;
1285
1286 if (!q->ksm) {
1287 args->err = -EOPNOTSUPP;
1288 return 0;
1289 }
1290
1291 args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key,
1292 args->wrapped_key_size,
1293 args->secret,
1294 args->secret_size);
1295 /* Try another device in case this fails. */
1296 return 0;
1297 }
1298
1299 /*
1300 * Retrieve the raw_secret from the underlying device. Given that only one
1301 * raw_secret can exist for a particular wrappedkey, retrieve it only from the
1302 * first device that supports derive_raw_secret().
1303 */
dm_derive_raw_secret(struct blk_keyslot_manager * ksm,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * secret,unsigned int secret_size)1304 static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm,
1305 const u8 *wrapped_key,
1306 unsigned int wrapped_key_size,
1307 u8 *secret, unsigned int secret_size)
1308 {
1309 struct dm_keyslot_manager *dksm = container_of(ksm,
1310 struct dm_keyslot_manager,
1311 ksm);
1312 struct mapped_device *md = dksm->md;
1313 struct dm_derive_raw_secret_args args = {
1314 .wrapped_key = wrapped_key,
1315 .wrapped_key_size = wrapped_key_size,
1316 .secret = secret,
1317 .secret_size = secret_size,
1318 .err = -EOPNOTSUPP,
1319 };
1320 struct dm_table *t;
1321 int srcu_idx;
1322 int i;
1323 struct dm_target *ti;
1324
1325 t = dm_get_live_table(md, &srcu_idx);
1326 if (!t)
1327 return -EOPNOTSUPP;
1328 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1329 ti = dm_table_get_target(t, i);
1330 if (!ti->type->iterate_devices)
1331 continue;
1332 ti->type->iterate_devices(ti, dm_derive_raw_secret_callback,
1333 &args);
1334 if (!args.err)
1335 break;
1336 }
1337 dm_put_live_table(md, srcu_idx);
1338 return args.err;
1339 }
1340
1341
1342 static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1343 .keyslot_evict = dm_keyslot_evict,
1344 .derive_raw_secret = dm_derive_raw_secret,
1345 };
1346
device_intersect_crypto_modes(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1347 static int device_intersect_crypto_modes(struct dm_target *ti,
1348 struct dm_dev *dev, sector_t start,
1349 sector_t len, void *data)
1350 {
1351 struct blk_keyslot_manager *parent = data;
1352 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1353
1354 blk_ksm_intersect_modes(parent, child);
1355 return 0;
1356 }
1357
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1358 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1359 {
1360 struct dm_keyslot_manager *dksm = container_of(ksm,
1361 struct dm_keyslot_manager,
1362 ksm);
1363
1364 if (!ksm)
1365 return;
1366
1367 blk_ksm_destroy(ksm);
1368 kfree(dksm);
1369 }
1370
dm_table_destroy_keyslot_manager(struct dm_table * t)1371 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1372 {
1373 dm_destroy_keyslot_manager(t->ksm);
1374 t->ksm = NULL;
1375 }
1376
1377 /*
1378 * Constructs and initializes t->ksm with a keyslot manager that
1379 * represents the common set of crypto capabilities of the devices
1380 * described by the dm_table. However, if the constructed keyslot
1381 * manager does not support a superset of the crypto capabilities
1382 * supported by the current keyslot manager of the mapped_device,
1383 * it returns an error instead, since we don't support restricting
1384 * crypto capabilities on table changes. Finally, if the constructed
1385 * keyslot manager doesn't actually support any crypto modes at all,
1386 * it just returns NULL.
1387 */
dm_table_construct_keyslot_manager(struct dm_table * t)1388 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1389 {
1390 struct dm_keyslot_manager *dksm;
1391 struct blk_keyslot_manager *ksm;
1392 struct dm_target *ti;
1393 unsigned int i;
1394 bool ksm_is_empty = true;
1395
1396 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1397 if (!dksm)
1398 return -ENOMEM;
1399 dksm->md = t->md;
1400
1401 ksm = &dksm->ksm;
1402 blk_ksm_init_passthrough(ksm);
1403 ksm->ksm_ll_ops = dm_ksm_ll_ops;
1404 ksm->max_dun_bytes_supported = UINT_MAX;
1405 memset(ksm->crypto_modes_supported, 0xFF,
1406 sizeof(ksm->crypto_modes_supported));
1407 ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS |
1408 BLK_CRYPTO_FEATURE_WRAPPED_KEYS;
1409
1410 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1411 ti = dm_table_get_target(t, i);
1412
1413 if (!dm_target_passes_crypto(ti->type)) {
1414 blk_ksm_intersect_modes(ksm, NULL);
1415 break;
1416 }
1417 if (!ti->type->iterate_devices)
1418 continue;
1419 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1420 ksm);
1421 }
1422
1423 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1424 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1425 dm_destroy_keyslot_manager(ksm);
1426 return -EINVAL;
1427 }
1428
1429 /*
1430 * If the new KSM doesn't actually support any crypto modes, we may as
1431 * well represent it with a NULL ksm.
1432 */
1433 ksm_is_empty = true;
1434 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1435 if (ksm->crypto_modes_supported[i]) {
1436 ksm_is_empty = false;
1437 break;
1438 }
1439 }
1440
1441 if (ksm_is_empty) {
1442 dm_destroy_keyslot_manager(ksm);
1443 ksm = NULL;
1444 }
1445
1446 /*
1447 * t->ksm is only set temporarily while the table is being set
1448 * up, and it gets set to NULL after the capabilities have
1449 * been transferred to the request_queue.
1450 */
1451 t->ksm = ksm;
1452
1453 return 0;
1454 }
1455
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1456 static void dm_update_keyslot_manager(struct request_queue *q,
1457 struct dm_table *t)
1458 {
1459 if (!t->ksm)
1460 return;
1461
1462 /* Make the ksm less restrictive */
1463 if (!q->ksm) {
1464 blk_ksm_register(t->ksm, q);
1465 } else {
1466 blk_ksm_update_capabilities(q->ksm, t->ksm);
1467 dm_destroy_keyslot_manager(t->ksm);
1468 }
1469 t->ksm = NULL;
1470 }
1471
1472 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1473
dm_table_construct_keyslot_manager(struct dm_table * t)1474 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1475 {
1476 return 0;
1477 }
1478
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1479 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1480 {
1481 }
1482
dm_table_destroy_keyslot_manager(struct dm_table * t)1483 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1484 {
1485 }
1486
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1487 static void dm_update_keyslot_manager(struct request_queue *q,
1488 struct dm_table *t)
1489 {
1490 }
1491
1492 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1493
1494 /*
1495 * Prepares the table for use by building the indices,
1496 * setting the type, and allocating mempools.
1497 */
dm_table_complete(struct dm_table * t)1498 int dm_table_complete(struct dm_table *t)
1499 {
1500 int r;
1501
1502 r = dm_table_determine_type(t);
1503 if (r) {
1504 DMERR("unable to determine table type");
1505 return r;
1506 }
1507
1508 r = dm_table_build_index(t);
1509 if (r) {
1510 DMERR("unable to build btrees");
1511 return r;
1512 }
1513
1514 r = dm_table_register_integrity(t);
1515 if (r) {
1516 DMERR("could not register integrity profile.");
1517 return r;
1518 }
1519
1520 r = dm_table_construct_keyslot_manager(t);
1521 if (r) {
1522 DMERR("could not construct keyslot manager.");
1523 return r;
1524 }
1525
1526 r = dm_table_alloc_md_mempools(t, t->md);
1527 if (r)
1528 DMERR("unable to allocate mempools");
1529
1530 return r;
1531 }
1532
1533 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1534 void dm_table_event_callback(struct dm_table *t,
1535 void (*fn)(void *), void *context)
1536 {
1537 mutex_lock(&_event_lock);
1538 t->event_fn = fn;
1539 t->event_context = context;
1540 mutex_unlock(&_event_lock);
1541 }
1542
dm_table_event(struct dm_table * t)1543 void dm_table_event(struct dm_table *t)
1544 {
1545 mutex_lock(&_event_lock);
1546 if (t->event_fn)
1547 t->event_fn(t->event_context);
1548 mutex_unlock(&_event_lock);
1549 }
1550 EXPORT_SYMBOL(dm_table_event);
1551
dm_table_get_size(struct dm_table * t)1552 inline sector_t dm_table_get_size(struct dm_table *t)
1553 {
1554 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1555 }
1556 EXPORT_SYMBOL(dm_table_get_size);
1557
dm_table_get_target(struct dm_table * t,unsigned int index)1558 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1559 {
1560 if (index >= t->num_targets)
1561 return NULL;
1562
1563 return t->targets + index;
1564 }
1565
1566 /*
1567 * Search the btree for the correct target.
1568 *
1569 * Caller should check returned pointer for NULL
1570 * to trap I/O beyond end of device.
1571 */
dm_table_find_target(struct dm_table * t,sector_t sector)1572 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1573 {
1574 unsigned int l, n = 0, k = 0;
1575 sector_t *node;
1576
1577 if (unlikely(sector >= dm_table_get_size(t)))
1578 return NULL;
1579
1580 for (l = 0; l < t->depth; l++) {
1581 n = get_child(n, k);
1582 node = get_node(t, l, n);
1583
1584 for (k = 0; k < KEYS_PER_NODE; k++)
1585 if (node[k] >= sector)
1586 break;
1587 }
1588
1589 return &t->targets[(KEYS_PER_NODE * n) + k];
1590 }
1591
1592 /*
1593 * type->iterate_devices() should be called when the sanity check needs to
1594 * iterate and check all underlying data devices. iterate_devices() will
1595 * iterate all underlying data devices until it encounters a non-zero return
1596 * code, returned by whether the input iterate_devices_callout_fn, or
1597 * iterate_devices() itself internally.
1598 *
1599 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1600 * iterate multiple underlying devices internally, in which case a non-zero
1601 * return code returned by iterate_devices_callout_fn will stop the iteration
1602 * in advance.
1603 *
1604 * Cases requiring _any_ underlying device supporting some kind of attribute,
1605 * should use the iteration structure like dm_table_any_dev_attr(), or call
1606 * it directly. @func should handle semantics of positive examples, e.g.
1607 * capable of something.
1608 *
1609 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1610 * should use the iteration structure like dm_table_supports_nowait() or
1611 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1612 * uses an @anti_func that handle semantics of counter examples, e.g. not
1613 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1614 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1615 static bool dm_table_any_dev_attr(struct dm_table *t,
1616 iterate_devices_callout_fn func, void *data)
1617 {
1618 struct dm_target *ti;
1619 unsigned int i;
1620
1621 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1622 ti = dm_table_get_target(t, i);
1623
1624 if (ti->type->iterate_devices &&
1625 ti->type->iterate_devices(ti, func, data))
1626 return true;
1627 }
1628
1629 return false;
1630 }
1631
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1632 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1633 sector_t start, sector_t len, void *data)
1634 {
1635 unsigned *num_devices = data;
1636
1637 (*num_devices)++;
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * Check whether a table has no data devices attached using each
1644 * target's iterate_devices method.
1645 * Returns false if the result is unknown because a target doesn't
1646 * support iterate_devices.
1647 */
dm_table_has_no_data_devices(struct dm_table * table)1648 bool dm_table_has_no_data_devices(struct dm_table *table)
1649 {
1650 struct dm_target *ti;
1651 unsigned i, num_devices;
1652
1653 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1654 ti = dm_table_get_target(table, i);
1655
1656 if (!ti->type->iterate_devices)
1657 return false;
1658
1659 num_devices = 0;
1660 ti->type->iterate_devices(ti, count_device, &num_devices);
1661 if (num_devices)
1662 return false;
1663 }
1664
1665 return true;
1666 }
1667
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1668 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1669 sector_t start, sector_t len, void *data)
1670 {
1671 struct request_queue *q = bdev_get_queue(dev->bdev);
1672 enum blk_zoned_model *zoned_model = data;
1673
1674 return !q || blk_queue_zoned_model(q) != *zoned_model;
1675 }
1676
1677 /*
1678 * Check the device zoned model based on the target feature flag. If the target
1679 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1680 * also accepted but all devices must have the same zoned model. If the target
1681 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1682 * zoned model with all zoned devices having the same zone size.
1683 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1684 static bool dm_table_supports_zoned_model(struct dm_table *t,
1685 enum blk_zoned_model zoned_model)
1686 {
1687 struct dm_target *ti;
1688 unsigned i;
1689
1690 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1691 ti = dm_table_get_target(t, i);
1692
1693 if (dm_target_supports_zoned_hm(ti->type)) {
1694 if (!ti->type->iterate_devices ||
1695 ti->type->iterate_devices(ti, device_not_zoned_model,
1696 &zoned_model))
1697 return false;
1698 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1699 if (zoned_model == BLK_ZONED_HM)
1700 return false;
1701 }
1702 }
1703
1704 return true;
1705 }
1706
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1707 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709 {
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711 unsigned int *zone_sectors = data;
1712
1713 if (!blk_queue_is_zoned(q))
1714 return 0;
1715
1716 return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1717 }
1718
1719 /*
1720 * Check consistency of zoned model and zone sectors across all targets. For
1721 * zone sectors, if the destination device is a zoned block device, it shall
1722 * have the specified zone_sectors.
1723 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1724 static int validate_hardware_zoned_model(struct dm_table *table,
1725 enum blk_zoned_model zoned_model,
1726 unsigned int zone_sectors)
1727 {
1728 if (zoned_model == BLK_ZONED_NONE)
1729 return 0;
1730
1731 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1732 DMERR("%s: zoned model is not consistent across all devices",
1733 dm_device_name(table->md));
1734 return -EINVAL;
1735 }
1736
1737 /* Check zone size validity and compatibility */
1738 if (!zone_sectors || !is_power_of_2(zone_sectors))
1739 return -EINVAL;
1740
1741 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1742 DMERR("%s: zone sectors is not consistent across all zoned devices",
1743 dm_device_name(table->md));
1744 return -EINVAL;
1745 }
1746
1747 return 0;
1748 }
1749
1750 /*
1751 * Establish the new table's queue_limits and validate them.
1752 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1753 int dm_calculate_queue_limits(struct dm_table *table,
1754 struct queue_limits *limits)
1755 {
1756 struct dm_target *ti;
1757 struct queue_limits ti_limits;
1758 unsigned i;
1759 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1760 unsigned int zone_sectors = 0;
1761
1762 blk_set_stacking_limits(limits);
1763
1764 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1765 blk_set_stacking_limits(&ti_limits);
1766
1767 ti = dm_table_get_target(table, i);
1768
1769 if (!ti->type->iterate_devices)
1770 goto combine_limits;
1771
1772 /*
1773 * Combine queue limits of all the devices this target uses.
1774 */
1775 ti->type->iterate_devices(ti, dm_set_device_limits,
1776 &ti_limits);
1777
1778 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1779 /*
1780 * After stacking all limits, validate all devices
1781 * in table support this zoned model and zone sectors.
1782 */
1783 zoned_model = ti_limits.zoned;
1784 zone_sectors = ti_limits.chunk_sectors;
1785 }
1786
1787 /* Set I/O hints portion of queue limits */
1788 if (ti->type->io_hints)
1789 ti->type->io_hints(ti, &ti_limits);
1790
1791 /*
1792 * Check each device area is consistent with the target's
1793 * overall queue limits.
1794 */
1795 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1796 &ti_limits))
1797 return -EINVAL;
1798
1799 combine_limits:
1800 /*
1801 * Merge this target's queue limits into the overall limits
1802 * for the table.
1803 */
1804 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1805 DMWARN("%s: adding target device "
1806 "(start sect %llu len %llu) "
1807 "caused an alignment inconsistency",
1808 dm_device_name(table->md),
1809 (unsigned long long) ti->begin,
1810 (unsigned long long) ti->len);
1811 }
1812
1813 /*
1814 * Verify that the zoned model and zone sectors, as determined before
1815 * any .io_hints override, are the same across all devices in the table.
1816 * - this is especially relevant if .io_hints is emulating a disk-managed
1817 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1818 * BUT...
1819 */
1820 if (limits->zoned != BLK_ZONED_NONE) {
1821 /*
1822 * ...IF the above limits stacking determined a zoned model
1823 * validate that all of the table's devices conform to it.
1824 */
1825 zoned_model = limits->zoned;
1826 zone_sectors = limits->chunk_sectors;
1827 }
1828 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1829 return -EINVAL;
1830
1831 return validate_hardware_logical_block_alignment(table, limits);
1832 }
1833
1834 /*
1835 * Verify that all devices have an integrity profile that matches the
1836 * DM device's registered integrity profile. If the profiles don't
1837 * match then unregister the DM device's integrity profile.
1838 */
dm_table_verify_integrity(struct dm_table * t)1839 static void dm_table_verify_integrity(struct dm_table *t)
1840 {
1841 struct gendisk *template_disk = NULL;
1842
1843 if (t->integrity_added)
1844 return;
1845
1846 if (t->integrity_supported) {
1847 /*
1848 * Verify that the original integrity profile
1849 * matches all the devices in this table.
1850 */
1851 template_disk = dm_table_get_integrity_disk(t);
1852 if (template_disk &&
1853 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1854 return;
1855 }
1856
1857 if (integrity_profile_exists(dm_disk(t->md))) {
1858 DMWARN("%s: unable to establish an integrity profile",
1859 dm_device_name(t->md));
1860 blk_integrity_unregister(dm_disk(t->md));
1861 }
1862 }
1863
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1864 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1865 sector_t start, sector_t len, void *data)
1866 {
1867 unsigned long flush = (unsigned long) data;
1868 struct request_queue *q = bdev_get_queue(dev->bdev);
1869
1870 return q && (q->queue_flags & flush);
1871 }
1872
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1873 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1874 {
1875 struct dm_target *ti;
1876 unsigned i;
1877
1878 /*
1879 * Require at least one underlying device to support flushes.
1880 * t->devices includes internal dm devices such as mirror logs
1881 * so we need to use iterate_devices here, which targets
1882 * supporting flushes must provide.
1883 */
1884 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1885 ti = dm_table_get_target(t, i);
1886
1887 if (!ti->num_flush_bios)
1888 continue;
1889
1890 if (ti->flush_supported)
1891 return true;
1892
1893 if (ti->type->iterate_devices &&
1894 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1895 return true;
1896 }
1897
1898 return false;
1899 }
1900
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1901 static int device_dax_write_cache_enabled(struct dm_target *ti,
1902 struct dm_dev *dev, sector_t start,
1903 sector_t len, void *data)
1904 {
1905 struct dax_device *dax_dev = dev->dax_dev;
1906
1907 if (!dax_dev)
1908 return false;
1909
1910 if (dax_write_cache_enabled(dax_dev))
1911 return true;
1912 return false;
1913 }
1914
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1915 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1916 sector_t start, sector_t len, void *data)
1917 {
1918 struct request_queue *q = bdev_get_queue(dev->bdev);
1919
1920 return q && !blk_queue_nonrot(q);
1921 }
1922
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1923 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1924 sector_t start, sector_t len, void *data)
1925 {
1926 struct request_queue *q = bdev_get_queue(dev->bdev);
1927
1928 return q && !blk_queue_add_random(q);
1929 }
1930
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1931 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1932 sector_t start, sector_t len, void *data)
1933 {
1934 struct request_queue *q = bdev_get_queue(dev->bdev);
1935
1936 return q && !q->limits.max_write_same_sectors;
1937 }
1938
dm_table_supports_write_same(struct dm_table * t)1939 static bool dm_table_supports_write_same(struct dm_table *t)
1940 {
1941 struct dm_target *ti;
1942 unsigned i;
1943
1944 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1945 ti = dm_table_get_target(t, i);
1946
1947 if (!ti->num_write_same_bios)
1948 return false;
1949
1950 if (!ti->type->iterate_devices ||
1951 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1952 return false;
1953 }
1954
1955 return true;
1956 }
1957
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1958 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1959 sector_t start, sector_t len, void *data)
1960 {
1961 struct request_queue *q = bdev_get_queue(dev->bdev);
1962
1963 return q && !q->limits.max_write_zeroes_sectors;
1964 }
1965
dm_table_supports_write_zeroes(struct dm_table * t)1966 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1967 {
1968 struct dm_target *ti;
1969 unsigned i = 0;
1970
1971 while (i < dm_table_get_num_targets(t)) {
1972 ti = dm_table_get_target(t, i++);
1973
1974 if (!ti->num_write_zeroes_bios)
1975 return false;
1976
1977 if (!ti->type->iterate_devices ||
1978 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1979 return false;
1980 }
1981
1982 return true;
1983 }
1984
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1985 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1986 sector_t start, sector_t len, void *data)
1987 {
1988 struct request_queue *q = bdev_get_queue(dev->bdev);
1989
1990 return q && !blk_queue_nowait(q);
1991 }
1992
dm_table_supports_nowait(struct dm_table * t)1993 static bool dm_table_supports_nowait(struct dm_table *t)
1994 {
1995 struct dm_target *ti;
1996 unsigned i = 0;
1997
1998 while (i < dm_table_get_num_targets(t)) {
1999 ti = dm_table_get_target(t, i++);
2000
2001 if (!dm_target_supports_nowait(ti->type))
2002 return false;
2003
2004 if (!ti->type->iterate_devices ||
2005 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
2006 return false;
2007 }
2008
2009 return true;
2010 }
2011
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2012 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
2013 sector_t start, sector_t len, void *data)
2014 {
2015 struct request_queue *q = bdev_get_queue(dev->bdev);
2016
2017 return q && !blk_queue_discard(q);
2018 }
2019
dm_table_supports_discards(struct dm_table * t)2020 static bool dm_table_supports_discards(struct dm_table *t)
2021 {
2022 struct dm_target *ti;
2023 unsigned i;
2024
2025 for (i = 0; i < dm_table_get_num_targets(t); i++) {
2026 ti = dm_table_get_target(t, i);
2027
2028 if (!ti->num_discard_bios)
2029 return false;
2030
2031 /*
2032 * Either the target provides discard support (as implied by setting
2033 * 'discards_supported') or it relies on _all_ data devices having
2034 * discard support.
2035 */
2036 if (!ti->discards_supported &&
2037 (!ti->type->iterate_devices ||
2038 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
2039 return false;
2040 }
2041
2042 return true;
2043 }
2044
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2045 static int device_not_secure_erase_capable(struct dm_target *ti,
2046 struct dm_dev *dev, sector_t start,
2047 sector_t len, void *data)
2048 {
2049 struct request_queue *q = bdev_get_queue(dev->bdev);
2050
2051 return q && !blk_queue_secure_erase(q);
2052 }
2053
dm_table_supports_secure_erase(struct dm_table * t)2054 static bool dm_table_supports_secure_erase(struct dm_table *t)
2055 {
2056 struct dm_target *ti;
2057 unsigned int i;
2058
2059 for (i = 0; i < dm_table_get_num_targets(t); i++) {
2060 ti = dm_table_get_target(t, i);
2061
2062 if (!ti->num_secure_erase_bios)
2063 return false;
2064
2065 if (!ti->type->iterate_devices ||
2066 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
2067 return false;
2068 }
2069
2070 return true;
2071 }
2072
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2073 static int device_requires_stable_pages(struct dm_target *ti,
2074 struct dm_dev *dev, sector_t start,
2075 sector_t len, void *data)
2076 {
2077 struct request_queue *q = bdev_get_queue(dev->bdev);
2078
2079 return q && blk_queue_stable_writes(q);
2080 }
2081
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)2082 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
2083 struct queue_limits *limits)
2084 {
2085 bool wc = false, fua = false;
2086 int page_size = PAGE_SIZE;
2087
2088 /*
2089 * Copy table's limits to the DM device's request_queue
2090 */
2091 q->limits = *limits;
2092
2093 if (dm_table_supports_nowait(t))
2094 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2095 else
2096 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2097
2098 if (!dm_table_supports_discards(t)) {
2099 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2100 /* Must also clear discard limits... */
2101 q->limits.max_discard_sectors = 0;
2102 q->limits.max_hw_discard_sectors = 0;
2103 q->limits.discard_granularity = 0;
2104 q->limits.discard_alignment = 0;
2105 q->limits.discard_misaligned = 0;
2106 } else
2107 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2108
2109 if (dm_table_supports_secure_erase(t))
2110 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2111
2112 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2113 wc = true;
2114 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2115 fua = true;
2116 }
2117 blk_queue_write_cache(q, wc, fua);
2118
2119 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2120 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2121 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2122 set_dax_synchronous(t->md->dax_dev);
2123 }
2124 else
2125 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2126
2127 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2128 dax_write_cache(t->md->dax_dev, true);
2129
2130 /* Ensure that all underlying devices are non-rotational. */
2131 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2132 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2133 else
2134 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2135
2136 if (!dm_table_supports_write_same(t))
2137 q->limits.max_write_same_sectors = 0;
2138 if (!dm_table_supports_write_zeroes(t))
2139 q->limits.max_write_zeroes_sectors = 0;
2140
2141 dm_table_verify_integrity(t);
2142
2143 /*
2144 * Some devices don't use blk_integrity but still want stable pages
2145 * because they do their own checksumming.
2146 * If any underlying device requires stable pages, a table must require
2147 * them as well. Only targets that support iterate_devices are considered:
2148 * don't want error, zero, etc to require stable pages.
2149 */
2150 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2151 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2152 else
2153 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2154
2155 /*
2156 * Determine whether or not this queue's I/O timings contribute
2157 * to the entropy pool, Only request-based targets use this.
2158 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2159 * have it set.
2160 */
2161 if (blk_queue_add_random(q) &&
2162 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2163 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2164
2165 /*
2166 * For a zoned target, the number of zones should be updated for the
2167 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2168 * target, this is all that is needed.
2169 */
2170 #ifdef CONFIG_BLK_DEV_ZONED
2171 if (blk_queue_is_zoned(q)) {
2172 WARN_ON_ONCE(queue_is_mq(q));
2173 q->nr_zones = blkdev_nr_zones(t->md->disk);
2174 }
2175 #endif
2176
2177 dm_update_keyslot_manager(q, t);
2178 blk_queue_update_readahead(q);
2179 }
2180
dm_table_get_num_targets(struct dm_table * t)2181 unsigned int dm_table_get_num_targets(struct dm_table *t)
2182 {
2183 return t->num_targets;
2184 }
2185
dm_table_get_devices(struct dm_table * t)2186 struct list_head *dm_table_get_devices(struct dm_table *t)
2187 {
2188 return &t->devices;
2189 }
2190
dm_table_get_mode(struct dm_table * t)2191 fmode_t dm_table_get_mode(struct dm_table *t)
2192 {
2193 return t->mode;
2194 }
2195 EXPORT_SYMBOL(dm_table_get_mode);
2196
2197 enum suspend_mode {
2198 PRESUSPEND,
2199 PRESUSPEND_UNDO,
2200 POSTSUSPEND,
2201 };
2202
suspend_targets(struct dm_table * t,enum suspend_mode mode)2203 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2204 {
2205 int i = t->num_targets;
2206 struct dm_target *ti = t->targets;
2207
2208 lockdep_assert_held(&t->md->suspend_lock);
2209
2210 while (i--) {
2211 switch (mode) {
2212 case PRESUSPEND:
2213 if (ti->type->presuspend)
2214 ti->type->presuspend(ti);
2215 break;
2216 case PRESUSPEND_UNDO:
2217 if (ti->type->presuspend_undo)
2218 ti->type->presuspend_undo(ti);
2219 break;
2220 case POSTSUSPEND:
2221 if (ti->type->postsuspend)
2222 ti->type->postsuspend(ti);
2223 break;
2224 }
2225 ti++;
2226 }
2227 }
2228
dm_table_presuspend_targets(struct dm_table * t)2229 void dm_table_presuspend_targets(struct dm_table *t)
2230 {
2231 if (!t)
2232 return;
2233
2234 suspend_targets(t, PRESUSPEND);
2235 }
2236
dm_table_presuspend_undo_targets(struct dm_table * t)2237 void dm_table_presuspend_undo_targets(struct dm_table *t)
2238 {
2239 if (!t)
2240 return;
2241
2242 suspend_targets(t, PRESUSPEND_UNDO);
2243 }
2244
dm_table_postsuspend_targets(struct dm_table * t)2245 void dm_table_postsuspend_targets(struct dm_table *t)
2246 {
2247 if (!t)
2248 return;
2249
2250 suspend_targets(t, POSTSUSPEND);
2251 }
2252
dm_table_resume_targets(struct dm_table * t)2253 int dm_table_resume_targets(struct dm_table *t)
2254 {
2255 int i, r = 0;
2256
2257 lockdep_assert_held(&t->md->suspend_lock);
2258
2259 for (i = 0; i < t->num_targets; i++) {
2260 struct dm_target *ti = t->targets + i;
2261
2262 if (!ti->type->preresume)
2263 continue;
2264
2265 r = ti->type->preresume(ti);
2266 if (r) {
2267 DMERR("%s: %s: preresume failed, error = %d",
2268 dm_device_name(t->md), ti->type->name, r);
2269 return r;
2270 }
2271 }
2272
2273 for (i = 0; i < t->num_targets; i++) {
2274 struct dm_target *ti = t->targets + i;
2275
2276 if (ti->type->resume)
2277 ti->type->resume(ti);
2278 }
2279
2280 return 0;
2281 }
2282
dm_table_get_md(struct dm_table * t)2283 struct mapped_device *dm_table_get_md(struct dm_table *t)
2284 {
2285 return t->md;
2286 }
2287 EXPORT_SYMBOL(dm_table_get_md);
2288
dm_table_device_name(struct dm_table * t)2289 const char *dm_table_device_name(struct dm_table *t)
2290 {
2291 return dm_device_name(t->md);
2292 }
2293 EXPORT_SYMBOL_GPL(dm_table_device_name);
2294
dm_table_run_md_queue_async(struct dm_table * t)2295 void dm_table_run_md_queue_async(struct dm_table *t)
2296 {
2297 if (!dm_table_request_based(t))
2298 return;
2299
2300 if (t->md->queue)
2301 blk_mq_run_hw_queues(t->md->queue, true);
2302 }
2303 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2304
2305