1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12 from Logicworks, Inc. for making SDP replication support possible.
13
14
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69 * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99 * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105 * as member "struct gendisk *vdisk;"
106 */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache; /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122 1) I want to hand out the pre-allocated objects first.
123 2) I want to be able to interrupt sleeping allocation with a signal.
124 Note: This is a single linked list, the next pointer is the private
125 member of struct page.
126 */
127 struct page *drbd_pp_pool;
128 spinlock_t drbd_pp_lock;
129 int drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135 .owner = THIS_MODULE,
136 .submit_bio = drbd_submit_bio,
137 .open = drbd_open,
138 .release = drbd_release,
139 };
140
bio_alloc_drbd(gfp_t gfp_mask)141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 struct bio *bio;
144
145 if (!bioset_initialized(&drbd_md_io_bio_set))
146 return bio_alloc(gfp_mask, 1);
147
148 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 if (!bio)
150 return NULL;
151 return bio;
152 }
153
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156 give tons of false positives. When this is a real functions sparse works.
157 */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 int io_allowed;
161
162 atomic_inc(&device->local_cnt);
163 io_allowed = (device->state.disk >= mins);
164 if (!io_allowed) {
165 if (atomic_dec_and_test(&device->local_cnt))
166 wake_up(&device->misc_wait);
167 }
168 return io_allowed;
169 }
170
171 #endif
172
173 /**
174 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175 * @connection: DRBD connection.
176 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
177 * @set_size: Expected number of requests before that barrier.
178 *
179 * In case the passed barrier_nr or set_size does not match the oldest
180 * epoch of not yet barrier-acked requests, this function will cause a
181 * termination of the connection.
182 */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 unsigned int set_size)
185 {
186 struct drbd_request *r;
187 struct drbd_request *req = NULL, *tmp = NULL;
188 int expect_epoch = 0;
189 int expect_size = 0;
190
191 spin_lock_irq(&connection->resource->req_lock);
192
193 /* find oldest not yet barrier-acked write request,
194 * count writes in its epoch. */
195 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 const unsigned s = r->rq_state;
197 if (!req) {
198 if (!(s & RQ_WRITE))
199 continue;
200 if (!(s & RQ_NET_MASK))
201 continue;
202 if (s & RQ_NET_DONE)
203 continue;
204 req = r;
205 expect_epoch = req->epoch;
206 expect_size ++;
207 } else {
208 if (r->epoch != expect_epoch)
209 break;
210 if (!(s & RQ_WRITE))
211 continue;
212 /* if (s & RQ_DONE): not expected */
213 /* if (!(s & RQ_NET_MASK)): not expected */
214 expect_size++;
215 }
216 }
217
218 /* first some paranoia code */
219 if (req == NULL) {
220 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 barrier_nr);
222 goto bail;
223 }
224 if (expect_epoch != barrier_nr) {
225 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 barrier_nr, expect_epoch);
227 goto bail;
228 }
229
230 if (expect_size != set_size) {
231 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 barrier_nr, set_size, expect_size);
233 goto bail;
234 }
235
236 /* Clean up list of requests processed during current epoch. */
237 /* this extra list walk restart is paranoia,
238 * to catch requests being barrier-acked "unexpectedly".
239 * It usually should find the same req again, or some READ preceding it. */
240 list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 if (req->epoch == expect_epoch) {
242 tmp = req;
243 break;
244 }
245 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
246 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
247 if (req->epoch != expect_epoch)
248 break;
249 _req_mod(req, BARRIER_ACKED);
250 }
251 spin_unlock_irq(&connection->resource->req_lock);
252
253 return;
254
255 bail:
256 spin_unlock_irq(&connection->resource->req_lock);
257 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
258 }
259
260
261 /**
262 * _tl_restart() - Walks the transfer log, and applies an action to all requests
263 * @connection: DRBD connection to operate on.
264 * @what: The action/event to perform with all request objects
265 *
266 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
267 * RESTART_FROZEN_DISK_IO.
268 */
269 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)270 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
271 {
272 struct drbd_request *req, *r;
273
274 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
275 _req_mod(req, what);
276 }
277
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)278 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
279 {
280 spin_lock_irq(&connection->resource->req_lock);
281 _tl_restart(connection, what);
282 spin_unlock_irq(&connection->resource->req_lock);
283 }
284
285 /**
286 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
287 * @device: DRBD device.
288 *
289 * This is called after the connection to the peer was lost. The storage covered
290 * by the requests on the transfer gets marked as our of sync. Called from the
291 * receiver thread and the worker thread.
292 */
tl_clear(struct drbd_connection * connection)293 void tl_clear(struct drbd_connection *connection)
294 {
295 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
296 }
297
298 /**
299 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
300 * @device: DRBD device.
301 */
tl_abort_disk_io(struct drbd_device * device)302 void tl_abort_disk_io(struct drbd_device *device)
303 {
304 struct drbd_connection *connection = first_peer_device(device)->connection;
305 struct drbd_request *req, *r;
306
307 spin_lock_irq(&connection->resource->req_lock);
308 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
309 if (!(req->rq_state & RQ_LOCAL_PENDING))
310 continue;
311 if (req->device != device)
312 continue;
313 _req_mod(req, ABORT_DISK_IO);
314 }
315 spin_unlock_irq(&connection->resource->req_lock);
316 }
317
drbd_thread_setup(void * arg)318 static int drbd_thread_setup(void *arg)
319 {
320 struct drbd_thread *thi = (struct drbd_thread *) arg;
321 struct drbd_resource *resource = thi->resource;
322 unsigned long flags;
323 int retval;
324
325 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
326 thi->name[0],
327 resource->name);
328
329 allow_kernel_signal(DRBD_SIGKILL);
330 allow_kernel_signal(SIGXCPU);
331 restart:
332 retval = thi->function(thi);
333
334 spin_lock_irqsave(&thi->t_lock, flags);
335
336 /* if the receiver has been "EXITING", the last thing it did
337 * was set the conn state to "StandAlone",
338 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
339 * and receiver thread will be "started".
340 * drbd_thread_start needs to set "RESTARTING" in that case.
341 * t_state check and assignment needs to be within the same spinlock,
342 * so either thread_start sees EXITING, and can remap to RESTARTING,
343 * or thread_start see NONE, and can proceed as normal.
344 */
345
346 if (thi->t_state == RESTARTING) {
347 drbd_info(resource, "Restarting %s thread\n", thi->name);
348 thi->t_state = RUNNING;
349 spin_unlock_irqrestore(&thi->t_lock, flags);
350 goto restart;
351 }
352
353 thi->task = NULL;
354 thi->t_state = NONE;
355 smp_mb();
356 complete_all(&thi->stop);
357 spin_unlock_irqrestore(&thi->t_lock, flags);
358
359 drbd_info(resource, "Terminating %s\n", current->comm);
360
361 /* Release mod reference taken when thread was started */
362
363 if (thi->connection)
364 kref_put(&thi->connection->kref, drbd_destroy_connection);
365 kref_put(&resource->kref, drbd_destroy_resource);
366 module_put(THIS_MODULE);
367 return retval;
368 }
369
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)370 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
371 int (*func) (struct drbd_thread *), const char *name)
372 {
373 spin_lock_init(&thi->t_lock);
374 thi->task = NULL;
375 thi->t_state = NONE;
376 thi->function = func;
377 thi->resource = resource;
378 thi->connection = NULL;
379 thi->name = name;
380 }
381
drbd_thread_start(struct drbd_thread * thi)382 int drbd_thread_start(struct drbd_thread *thi)
383 {
384 struct drbd_resource *resource = thi->resource;
385 struct task_struct *nt;
386 unsigned long flags;
387
388 /* is used from state engine doing drbd_thread_stop_nowait,
389 * while holding the req lock irqsave */
390 spin_lock_irqsave(&thi->t_lock, flags);
391
392 switch (thi->t_state) {
393 case NONE:
394 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
395 thi->name, current->comm, current->pid);
396
397 /* Get ref on module for thread - this is released when thread exits */
398 if (!try_module_get(THIS_MODULE)) {
399 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
400 spin_unlock_irqrestore(&thi->t_lock, flags);
401 return false;
402 }
403
404 kref_get(&resource->kref);
405 if (thi->connection)
406 kref_get(&thi->connection->kref);
407
408 init_completion(&thi->stop);
409 thi->reset_cpu_mask = 1;
410 thi->t_state = RUNNING;
411 spin_unlock_irqrestore(&thi->t_lock, flags);
412 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413
414 nt = kthread_create(drbd_thread_setup, (void *) thi,
415 "drbd_%c_%s", thi->name[0], thi->resource->name);
416
417 if (IS_ERR(nt)) {
418 drbd_err(resource, "Couldn't start thread\n");
419
420 if (thi->connection)
421 kref_put(&thi->connection->kref, drbd_destroy_connection);
422 kref_put(&resource->kref, drbd_destroy_resource);
423 module_put(THIS_MODULE);
424 return false;
425 }
426 spin_lock_irqsave(&thi->t_lock, flags);
427 thi->task = nt;
428 thi->t_state = RUNNING;
429 spin_unlock_irqrestore(&thi->t_lock, flags);
430 wake_up_process(nt);
431 break;
432 case EXITING:
433 thi->t_state = RESTARTING;
434 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
435 thi->name, current->comm, current->pid);
436 fallthrough;
437 case RUNNING:
438 case RESTARTING:
439 default:
440 spin_unlock_irqrestore(&thi->t_lock, flags);
441 break;
442 }
443
444 return true;
445 }
446
447
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)448 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
449 {
450 unsigned long flags;
451
452 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
453
454 /* may be called from state engine, holding the req lock irqsave */
455 spin_lock_irqsave(&thi->t_lock, flags);
456
457 if (thi->t_state == NONE) {
458 spin_unlock_irqrestore(&thi->t_lock, flags);
459 if (restart)
460 drbd_thread_start(thi);
461 return;
462 }
463
464 if (thi->t_state != ns) {
465 if (thi->task == NULL) {
466 spin_unlock_irqrestore(&thi->t_lock, flags);
467 return;
468 }
469
470 thi->t_state = ns;
471 smp_mb();
472 init_completion(&thi->stop);
473 if (thi->task != current)
474 send_sig(DRBD_SIGKILL, thi->task, 1);
475 }
476
477 spin_unlock_irqrestore(&thi->t_lock, flags);
478
479 if (wait)
480 wait_for_completion(&thi->stop);
481 }
482
conn_lowest_minor(struct drbd_connection * connection)483 int conn_lowest_minor(struct drbd_connection *connection)
484 {
485 struct drbd_peer_device *peer_device;
486 int vnr = 0, minor = -1;
487
488 rcu_read_lock();
489 peer_device = idr_get_next(&connection->peer_devices, &vnr);
490 if (peer_device)
491 minor = device_to_minor(peer_device->device);
492 rcu_read_unlock();
493
494 return minor;
495 }
496
497 #ifdef CONFIG_SMP
498 /**
499 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
500 *
501 * Forces all threads of a resource onto the same CPU. This is beneficial for
502 * DRBD's performance. May be overwritten by user's configuration.
503 */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)504 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
505 {
506 unsigned int *resources_per_cpu, min_index = ~0;
507
508 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
509 GFP_KERNEL);
510 if (resources_per_cpu) {
511 struct drbd_resource *resource;
512 unsigned int cpu, min = ~0;
513
514 rcu_read_lock();
515 for_each_resource_rcu(resource, &drbd_resources) {
516 for_each_cpu(cpu, resource->cpu_mask)
517 resources_per_cpu[cpu]++;
518 }
519 rcu_read_unlock();
520 for_each_online_cpu(cpu) {
521 if (resources_per_cpu[cpu] < min) {
522 min = resources_per_cpu[cpu];
523 min_index = cpu;
524 }
525 }
526 kfree(resources_per_cpu);
527 }
528 if (min_index == ~0) {
529 cpumask_setall(*cpu_mask);
530 return;
531 }
532 cpumask_set_cpu(min_index, *cpu_mask);
533 }
534
535 /**
536 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
537 * @device: DRBD device.
538 * @thi: drbd_thread object
539 *
540 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
541 * prematurely.
542 */
drbd_thread_current_set_cpu(struct drbd_thread * thi)543 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
544 {
545 struct drbd_resource *resource = thi->resource;
546 struct task_struct *p = current;
547
548 if (!thi->reset_cpu_mask)
549 return;
550 thi->reset_cpu_mask = 0;
551 set_cpus_allowed_ptr(p, resource->cpu_mask);
552 }
553 #else
554 #define drbd_calc_cpu_mask(A) ({})
555 #endif
556
557 /**
558 * drbd_header_size - size of a packet header
559 *
560 * The header size is a multiple of 8, so any payload following the header is
561 * word aligned on 64-bit architectures. (The bitmap send and receive code
562 * relies on this.)
563 */
drbd_header_size(struct drbd_connection * connection)564 unsigned int drbd_header_size(struct drbd_connection *connection)
565 {
566 if (connection->agreed_pro_version >= 100) {
567 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
568 return sizeof(struct p_header100);
569 } else {
570 BUILD_BUG_ON(sizeof(struct p_header80) !=
571 sizeof(struct p_header95));
572 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
573 return sizeof(struct p_header80);
574 }
575 }
576
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)577 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
578 {
579 h->magic = cpu_to_be32(DRBD_MAGIC);
580 h->command = cpu_to_be16(cmd);
581 h->length = cpu_to_be16(size);
582 return sizeof(struct p_header80);
583 }
584
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)585 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
586 {
587 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
588 h->command = cpu_to_be16(cmd);
589 h->length = cpu_to_be32(size);
590 return sizeof(struct p_header95);
591 }
592
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)593 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
594 int size, int vnr)
595 {
596 h->magic = cpu_to_be32(DRBD_MAGIC_100);
597 h->volume = cpu_to_be16(vnr);
598 h->command = cpu_to_be16(cmd);
599 h->length = cpu_to_be32(size);
600 h->pad = 0;
601 return sizeof(struct p_header100);
602 }
603
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)604 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
605 void *buffer, enum drbd_packet cmd, int size)
606 {
607 if (connection->agreed_pro_version >= 100)
608 return prepare_header100(buffer, cmd, size, vnr);
609 else if (connection->agreed_pro_version >= 95 &&
610 size > DRBD_MAX_SIZE_H80_PACKET)
611 return prepare_header95(buffer, cmd, size);
612 else
613 return prepare_header80(buffer, cmd, size);
614 }
615
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)616 static void *__conn_prepare_command(struct drbd_connection *connection,
617 struct drbd_socket *sock)
618 {
619 if (!sock->socket)
620 return NULL;
621 return sock->sbuf + drbd_header_size(connection);
622 }
623
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)624 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
625 {
626 void *p;
627
628 mutex_lock(&sock->mutex);
629 p = __conn_prepare_command(connection, sock);
630 if (!p)
631 mutex_unlock(&sock->mutex);
632
633 return p;
634 }
635
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)636 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
637 {
638 return conn_prepare_command(peer_device->connection, sock);
639 }
640
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)641 static int __send_command(struct drbd_connection *connection, int vnr,
642 struct drbd_socket *sock, enum drbd_packet cmd,
643 unsigned int header_size, void *data,
644 unsigned int size)
645 {
646 int msg_flags;
647 int err;
648
649 /*
650 * Called with @data == NULL and the size of the data blocks in @size
651 * for commands that send data blocks. For those commands, omit the
652 * MSG_MORE flag: this will increase the likelihood that data blocks
653 * which are page aligned on the sender will end up page aligned on the
654 * receiver.
655 */
656 msg_flags = data ? MSG_MORE : 0;
657
658 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
659 header_size + size);
660 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
661 msg_flags);
662 if (data && !err)
663 err = drbd_send_all(connection, sock->socket, data, size, 0);
664 /* DRBD protocol "pings" are latency critical.
665 * This is supposed to trigger tcp_push_pending_frames() */
666 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
667 tcp_sock_set_nodelay(sock->socket->sk);
668
669 return err;
670 }
671
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)672 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
673 enum drbd_packet cmd, unsigned int header_size,
674 void *data, unsigned int size)
675 {
676 return __send_command(connection, 0, sock, cmd, header_size, data, size);
677 }
678
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)679 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
680 enum drbd_packet cmd, unsigned int header_size,
681 void *data, unsigned int size)
682 {
683 int err;
684
685 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
686 mutex_unlock(&sock->mutex);
687 return err;
688 }
689
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)690 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
691 enum drbd_packet cmd, unsigned int header_size,
692 void *data, unsigned int size)
693 {
694 int err;
695
696 err = __send_command(peer_device->connection, peer_device->device->vnr,
697 sock, cmd, header_size, data, size);
698 mutex_unlock(&sock->mutex);
699 return err;
700 }
701
drbd_send_ping(struct drbd_connection * connection)702 int drbd_send_ping(struct drbd_connection *connection)
703 {
704 struct drbd_socket *sock;
705
706 sock = &connection->meta;
707 if (!conn_prepare_command(connection, sock))
708 return -EIO;
709 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
710 }
711
drbd_send_ping_ack(struct drbd_connection * connection)712 int drbd_send_ping_ack(struct drbd_connection *connection)
713 {
714 struct drbd_socket *sock;
715
716 sock = &connection->meta;
717 if (!conn_prepare_command(connection, sock))
718 return -EIO;
719 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
720 }
721
drbd_send_sync_param(struct drbd_peer_device * peer_device)722 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
723 {
724 struct drbd_socket *sock;
725 struct p_rs_param_95 *p;
726 int size;
727 const int apv = peer_device->connection->agreed_pro_version;
728 enum drbd_packet cmd;
729 struct net_conf *nc;
730 struct disk_conf *dc;
731
732 sock = &peer_device->connection->data;
733 p = drbd_prepare_command(peer_device, sock);
734 if (!p)
735 return -EIO;
736
737 rcu_read_lock();
738 nc = rcu_dereference(peer_device->connection->net_conf);
739
740 size = apv <= 87 ? sizeof(struct p_rs_param)
741 : apv == 88 ? sizeof(struct p_rs_param)
742 + strlen(nc->verify_alg) + 1
743 : apv <= 94 ? sizeof(struct p_rs_param_89)
744 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
745
746 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
747
748 /* initialize verify_alg and csums_alg */
749 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
750
751 if (get_ldev(peer_device->device)) {
752 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
753 p->resync_rate = cpu_to_be32(dc->resync_rate);
754 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
755 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
756 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
757 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
758 put_ldev(peer_device->device);
759 } else {
760 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
761 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
762 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
763 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
764 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
765 }
766
767 if (apv >= 88)
768 strcpy(p->verify_alg, nc->verify_alg);
769 if (apv >= 89)
770 strcpy(p->csums_alg, nc->csums_alg);
771 rcu_read_unlock();
772
773 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
774 }
775
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)776 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
777 {
778 struct drbd_socket *sock;
779 struct p_protocol *p;
780 struct net_conf *nc;
781 int size, cf;
782
783 sock = &connection->data;
784 p = __conn_prepare_command(connection, sock);
785 if (!p)
786 return -EIO;
787
788 rcu_read_lock();
789 nc = rcu_dereference(connection->net_conf);
790
791 if (nc->tentative && connection->agreed_pro_version < 92) {
792 rcu_read_unlock();
793 drbd_err(connection, "--dry-run is not supported by peer");
794 return -EOPNOTSUPP;
795 }
796
797 size = sizeof(*p);
798 if (connection->agreed_pro_version >= 87)
799 size += strlen(nc->integrity_alg) + 1;
800
801 p->protocol = cpu_to_be32(nc->wire_protocol);
802 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
803 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
804 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
805 p->two_primaries = cpu_to_be32(nc->two_primaries);
806 cf = 0;
807 if (nc->discard_my_data)
808 cf |= CF_DISCARD_MY_DATA;
809 if (nc->tentative)
810 cf |= CF_DRY_RUN;
811 p->conn_flags = cpu_to_be32(cf);
812
813 if (connection->agreed_pro_version >= 87)
814 strcpy(p->integrity_alg, nc->integrity_alg);
815 rcu_read_unlock();
816
817 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
818 }
819
drbd_send_protocol(struct drbd_connection * connection)820 int drbd_send_protocol(struct drbd_connection *connection)
821 {
822 int err;
823
824 mutex_lock(&connection->data.mutex);
825 err = __drbd_send_protocol(connection, P_PROTOCOL);
826 mutex_unlock(&connection->data.mutex);
827
828 return err;
829 }
830
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)831 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
832 {
833 struct drbd_device *device = peer_device->device;
834 struct drbd_socket *sock;
835 struct p_uuids *p;
836 int i;
837
838 if (!get_ldev_if_state(device, D_NEGOTIATING))
839 return 0;
840
841 sock = &peer_device->connection->data;
842 p = drbd_prepare_command(peer_device, sock);
843 if (!p) {
844 put_ldev(device);
845 return -EIO;
846 }
847 spin_lock_irq(&device->ldev->md.uuid_lock);
848 for (i = UI_CURRENT; i < UI_SIZE; i++)
849 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
850 spin_unlock_irq(&device->ldev->md.uuid_lock);
851
852 device->comm_bm_set = drbd_bm_total_weight(device);
853 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
854 rcu_read_lock();
855 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
856 rcu_read_unlock();
857 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
858 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
859 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
860
861 put_ldev(device);
862 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
863 }
864
drbd_send_uuids(struct drbd_peer_device * peer_device)865 int drbd_send_uuids(struct drbd_peer_device *peer_device)
866 {
867 return _drbd_send_uuids(peer_device, 0);
868 }
869
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)870 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
871 {
872 return _drbd_send_uuids(peer_device, 8);
873 }
874
drbd_print_uuids(struct drbd_device * device,const char * text)875 void drbd_print_uuids(struct drbd_device *device, const char *text)
876 {
877 if (get_ldev_if_state(device, D_NEGOTIATING)) {
878 u64 *uuid = device->ldev->md.uuid;
879 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
880 text,
881 (unsigned long long)uuid[UI_CURRENT],
882 (unsigned long long)uuid[UI_BITMAP],
883 (unsigned long long)uuid[UI_HISTORY_START],
884 (unsigned long long)uuid[UI_HISTORY_END]);
885 put_ldev(device);
886 } else {
887 drbd_info(device, "%s effective data uuid: %016llX\n",
888 text,
889 (unsigned long long)device->ed_uuid);
890 }
891 }
892
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)893 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
894 {
895 struct drbd_device *device = peer_device->device;
896 struct drbd_socket *sock;
897 struct p_rs_uuid *p;
898 u64 uuid;
899
900 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
901
902 uuid = device->ldev->md.uuid[UI_BITMAP];
903 if (uuid && uuid != UUID_JUST_CREATED)
904 uuid = uuid + UUID_NEW_BM_OFFSET;
905 else
906 get_random_bytes(&uuid, sizeof(u64));
907 drbd_uuid_set(device, UI_BITMAP, uuid);
908 drbd_print_uuids(device, "updated sync UUID");
909 drbd_md_sync(device);
910
911 sock = &peer_device->connection->data;
912 p = drbd_prepare_command(peer_device, sock);
913 if (p) {
914 p->uuid = cpu_to_be64(uuid);
915 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
916 }
917 }
918
919 /* communicated if (agreed_features & DRBD_FF_WSAME) */
920 static void
assign_p_sizes_qlim(struct drbd_device * device,struct p_sizes * p,struct request_queue * q)921 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
922 struct request_queue *q)
923 {
924 if (q) {
925 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
926 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
927 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
928 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
929 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
930 p->qlim->discard_enabled = blk_queue_discard(q);
931 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
932 } else {
933 q = device->rq_queue;
934 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
935 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
936 p->qlim->alignment_offset = 0;
937 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
938 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
939 p->qlim->discard_enabled = 0;
940 p->qlim->write_same_capable = 0;
941 }
942 }
943
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)944 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
945 {
946 struct drbd_device *device = peer_device->device;
947 struct drbd_socket *sock;
948 struct p_sizes *p;
949 sector_t d_size, u_size;
950 int q_order_type;
951 unsigned int max_bio_size;
952 unsigned int packet_size;
953
954 sock = &peer_device->connection->data;
955 p = drbd_prepare_command(peer_device, sock);
956 if (!p)
957 return -EIO;
958
959 packet_size = sizeof(*p);
960 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
961 packet_size += sizeof(p->qlim[0]);
962
963 memset(p, 0, packet_size);
964 if (get_ldev_if_state(device, D_NEGOTIATING)) {
965 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
966 d_size = drbd_get_max_capacity(device->ldev);
967 rcu_read_lock();
968 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
969 rcu_read_unlock();
970 q_order_type = drbd_queue_order_type(device);
971 max_bio_size = queue_max_hw_sectors(q) << 9;
972 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
973 assign_p_sizes_qlim(device, p, q);
974 put_ldev(device);
975 } else {
976 d_size = 0;
977 u_size = 0;
978 q_order_type = QUEUE_ORDERED_NONE;
979 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
980 assign_p_sizes_qlim(device, p, NULL);
981 }
982
983 if (peer_device->connection->agreed_pro_version <= 94)
984 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
985 else if (peer_device->connection->agreed_pro_version < 100)
986 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
987
988 p->d_size = cpu_to_be64(d_size);
989 p->u_size = cpu_to_be64(u_size);
990 if (trigger_reply)
991 p->c_size = 0;
992 else
993 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
994 p->max_bio_size = cpu_to_be32(max_bio_size);
995 p->queue_order_type = cpu_to_be16(q_order_type);
996 p->dds_flags = cpu_to_be16(flags);
997
998 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
999 }
1000
1001 /**
1002 * drbd_send_current_state() - Sends the drbd state to the peer
1003 * @peer_device: DRBD peer device.
1004 */
drbd_send_current_state(struct drbd_peer_device * peer_device)1005 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1006 {
1007 struct drbd_socket *sock;
1008 struct p_state *p;
1009
1010 sock = &peer_device->connection->data;
1011 p = drbd_prepare_command(peer_device, sock);
1012 if (!p)
1013 return -EIO;
1014 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1015 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1016 }
1017
1018 /**
1019 * drbd_send_state() - After a state change, sends the new state to the peer
1020 * @peer_device: DRBD peer device.
1021 * @state: the state to send, not necessarily the current state.
1022 *
1023 * Each state change queues an "after_state_ch" work, which will eventually
1024 * send the resulting new state to the peer. If more state changes happen
1025 * between queuing and processing of the after_state_ch work, we still
1026 * want to send each intermediary state in the order it occurred.
1027 */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1028 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1029 {
1030 struct drbd_socket *sock;
1031 struct p_state *p;
1032
1033 sock = &peer_device->connection->data;
1034 p = drbd_prepare_command(peer_device, sock);
1035 if (!p)
1036 return -EIO;
1037 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1038 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1039 }
1040
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1041 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1042 {
1043 struct drbd_socket *sock;
1044 struct p_req_state *p;
1045
1046 sock = &peer_device->connection->data;
1047 p = drbd_prepare_command(peer_device, sock);
1048 if (!p)
1049 return -EIO;
1050 p->mask = cpu_to_be32(mask.i);
1051 p->val = cpu_to_be32(val.i);
1052 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1053 }
1054
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1055 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1056 {
1057 enum drbd_packet cmd;
1058 struct drbd_socket *sock;
1059 struct p_req_state *p;
1060
1061 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1062 sock = &connection->data;
1063 p = conn_prepare_command(connection, sock);
1064 if (!p)
1065 return -EIO;
1066 p->mask = cpu_to_be32(mask.i);
1067 p->val = cpu_to_be32(val.i);
1068 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1069 }
1070
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1071 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1072 {
1073 struct drbd_socket *sock;
1074 struct p_req_state_reply *p;
1075
1076 sock = &peer_device->connection->meta;
1077 p = drbd_prepare_command(peer_device, sock);
1078 if (p) {
1079 p->retcode = cpu_to_be32(retcode);
1080 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1081 }
1082 }
1083
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1084 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1085 {
1086 struct drbd_socket *sock;
1087 struct p_req_state_reply *p;
1088 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1089
1090 sock = &connection->meta;
1091 p = conn_prepare_command(connection, sock);
1092 if (p) {
1093 p->retcode = cpu_to_be32(retcode);
1094 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1095 }
1096 }
1097
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1098 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1099 {
1100 BUG_ON(code & ~0xf);
1101 p->encoding = (p->encoding & ~0xf) | code;
1102 }
1103
dcbp_set_start(struct p_compressed_bm * p,int set)1104 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1105 {
1106 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1107 }
1108
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1109 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1110 {
1111 BUG_ON(n & ~0x7);
1112 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1113 }
1114
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1115 static int fill_bitmap_rle_bits(struct drbd_device *device,
1116 struct p_compressed_bm *p,
1117 unsigned int size,
1118 struct bm_xfer_ctx *c)
1119 {
1120 struct bitstream bs;
1121 unsigned long plain_bits;
1122 unsigned long tmp;
1123 unsigned long rl;
1124 unsigned len;
1125 unsigned toggle;
1126 int bits, use_rle;
1127
1128 /* may we use this feature? */
1129 rcu_read_lock();
1130 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1131 rcu_read_unlock();
1132 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1133 return 0;
1134
1135 if (c->bit_offset >= c->bm_bits)
1136 return 0; /* nothing to do. */
1137
1138 /* use at most thus many bytes */
1139 bitstream_init(&bs, p->code, size, 0);
1140 memset(p->code, 0, size);
1141 /* plain bits covered in this code string */
1142 plain_bits = 0;
1143
1144 /* p->encoding & 0x80 stores whether the first run length is set.
1145 * bit offset is implicit.
1146 * start with toggle == 2 to be able to tell the first iteration */
1147 toggle = 2;
1148
1149 /* see how much plain bits we can stuff into one packet
1150 * using RLE and VLI. */
1151 do {
1152 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1153 : _drbd_bm_find_next(device, c->bit_offset);
1154 if (tmp == -1UL)
1155 tmp = c->bm_bits;
1156 rl = tmp - c->bit_offset;
1157
1158 if (toggle == 2) { /* first iteration */
1159 if (rl == 0) {
1160 /* the first checked bit was set,
1161 * store start value, */
1162 dcbp_set_start(p, 1);
1163 /* but skip encoding of zero run length */
1164 toggle = !toggle;
1165 continue;
1166 }
1167 dcbp_set_start(p, 0);
1168 }
1169
1170 /* paranoia: catch zero runlength.
1171 * can only happen if bitmap is modified while we scan it. */
1172 if (rl == 0) {
1173 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1174 "t:%u bo:%lu\n", toggle, c->bit_offset);
1175 return -1;
1176 }
1177
1178 bits = vli_encode_bits(&bs, rl);
1179 if (bits == -ENOBUFS) /* buffer full */
1180 break;
1181 if (bits <= 0) {
1182 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1183 return 0;
1184 }
1185
1186 toggle = !toggle;
1187 plain_bits += rl;
1188 c->bit_offset = tmp;
1189 } while (c->bit_offset < c->bm_bits);
1190
1191 len = bs.cur.b - p->code + !!bs.cur.bit;
1192
1193 if (plain_bits < (len << 3)) {
1194 /* incompressible with this method.
1195 * we need to rewind both word and bit position. */
1196 c->bit_offset -= plain_bits;
1197 bm_xfer_ctx_bit_to_word_offset(c);
1198 c->bit_offset = c->word_offset * BITS_PER_LONG;
1199 return 0;
1200 }
1201
1202 /* RLE + VLI was able to compress it just fine.
1203 * update c->word_offset. */
1204 bm_xfer_ctx_bit_to_word_offset(c);
1205
1206 /* store pad_bits */
1207 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1208
1209 return len;
1210 }
1211
1212 /**
1213 * send_bitmap_rle_or_plain
1214 *
1215 * Return 0 when done, 1 when another iteration is needed, and a negative error
1216 * code upon failure.
1217 */
1218 static int
send_bitmap_rle_or_plain(struct drbd_device * device,struct bm_xfer_ctx * c)1219 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1220 {
1221 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1222 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1223 struct p_compressed_bm *p = sock->sbuf + header_size;
1224 int len, err;
1225
1226 len = fill_bitmap_rle_bits(device, p,
1227 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1228 if (len < 0)
1229 return -EIO;
1230
1231 if (len) {
1232 dcbp_set_code(p, RLE_VLI_Bits);
1233 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1234 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1235 NULL, 0);
1236 c->packets[0]++;
1237 c->bytes[0] += header_size + sizeof(*p) + len;
1238
1239 if (c->bit_offset >= c->bm_bits)
1240 len = 0; /* DONE */
1241 } else {
1242 /* was not compressible.
1243 * send a buffer full of plain text bits instead. */
1244 unsigned int data_size;
1245 unsigned long num_words;
1246 unsigned long *p = sock->sbuf + header_size;
1247
1248 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1249 num_words = min_t(size_t, data_size / sizeof(*p),
1250 c->bm_words - c->word_offset);
1251 len = num_words * sizeof(*p);
1252 if (len)
1253 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1254 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1255 c->word_offset += num_words;
1256 c->bit_offset = c->word_offset * BITS_PER_LONG;
1257
1258 c->packets[1]++;
1259 c->bytes[1] += header_size + len;
1260
1261 if (c->bit_offset > c->bm_bits)
1262 c->bit_offset = c->bm_bits;
1263 }
1264 if (!err) {
1265 if (len == 0) {
1266 INFO_bm_xfer_stats(device, "send", c);
1267 return 0;
1268 } else
1269 return 1;
1270 }
1271 return -EIO;
1272 }
1273
1274 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device)1275 static int _drbd_send_bitmap(struct drbd_device *device)
1276 {
1277 struct bm_xfer_ctx c;
1278 int err;
1279
1280 if (!expect(device->bitmap))
1281 return false;
1282
1283 if (get_ldev(device)) {
1284 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1285 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1286 drbd_bm_set_all(device);
1287 if (drbd_bm_write(device)) {
1288 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1289 * but otherwise process as per normal - need to tell other
1290 * side that a full resync is required! */
1291 drbd_err(device, "Failed to write bitmap to disk!\n");
1292 } else {
1293 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1294 drbd_md_sync(device);
1295 }
1296 }
1297 put_ldev(device);
1298 }
1299
1300 c = (struct bm_xfer_ctx) {
1301 .bm_bits = drbd_bm_bits(device),
1302 .bm_words = drbd_bm_words(device),
1303 };
1304
1305 do {
1306 err = send_bitmap_rle_or_plain(device, &c);
1307 } while (err > 0);
1308
1309 return err == 0;
1310 }
1311
drbd_send_bitmap(struct drbd_device * device)1312 int drbd_send_bitmap(struct drbd_device *device)
1313 {
1314 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1315 int err = -1;
1316
1317 mutex_lock(&sock->mutex);
1318 if (sock->socket)
1319 err = !_drbd_send_bitmap(device);
1320 mutex_unlock(&sock->mutex);
1321 return err;
1322 }
1323
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1324 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1325 {
1326 struct drbd_socket *sock;
1327 struct p_barrier_ack *p;
1328
1329 if (connection->cstate < C_WF_REPORT_PARAMS)
1330 return;
1331
1332 sock = &connection->meta;
1333 p = conn_prepare_command(connection, sock);
1334 if (!p)
1335 return;
1336 p->barrier = barrier_nr;
1337 p->set_size = cpu_to_be32(set_size);
1338 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1339 }
1340
1341 /**
1342 * _drbd_send_ack() - Sends an ack packet
1343 * @device: DRBD device.
1344 * @cmd: Packet command code.
1345 * @sector: sector, needs to be in big endian byte order
1346 * @blksize: size in byte, needs to be in big endian byte order
1347 * @block_id: Id, big endian byte order
1348 */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1349 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1350 u64 sector, u32 blksize, u64 block_id)
1351 {
1352 struct drbd_socket *sock;
1353 struct p_block_ack *p;
1354
1355 if (peer_device->device->state.conn < C_CONNECTED)
1356 return -EIO;
1357
1358 sock = &peer_device->connection->meta;
1359 p = drbd_prepare_command(peer_device, sock);
1360 if (!p)
1361 return -EIO;
1362 p->sector = sector;
1363 p->block_id = block_id;
1364 p->blksize = blksize;
1365 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1366 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1367 }
1368
1369 /* dp->sector and dp->block_id already/still in network byte order,
1370 * data_size is payload size according to dp->head,
1371 * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1372 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1373 struct p_data *dp, int data_size)
1374 {
1375 if (peer_device->connection->peer_integrity_tfm)
1376 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1377 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1378 dp->block_id);
1379 }
1380
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1381 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1382 struct p_block_req *rp)
1383 {
1384 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1385 }
1386
1387 /**
1388 * drbd_send_ack() - Sends an ack packet
1389 * @device: DRBD device
1390 * @cmd: packet command code
1391 * @peer_req: peer request
1392 */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1393 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1394 struct drbd_peer_request *peer_req)
1395 {
1396 return _drbd_send_ack(peer_device, cmd,
1397 cpu_to_be64(peer_req->i.sector),
1398 cpu_to_be32(peer_req->i.size),
1399 peer_req->block_id);
1400 }
1401
1402 /* This function misuses the block_id field to signal if the blocks
1403 * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1404 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1405 sector_t sector, int blksize, u64 block_id)
1406 {
1407 return _drbd_send_ack(peer_device, cmd,
1408 cpu_to_be64(sector),
1409 cpu_to_be32(blksize),
1410 cpu_to_be64(block_id));
1411 }
1412
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1413 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1414 struct drbd_peer_request *peer_req)
1415 {
1416 struct drbd_socket *sock;
1417 struct p_block_desc *p;
1418
1419 sock = &peer_device->connection->data;
1420 p = drbd_prepare_command(peer_device, sock);
1421 if (!p)
1422 return -EIO;
1423 p->sector = cpu_to_be64(peer_req->i.sector);
1424 p->blksize = cpu_to_be32(peer_req->i.size);
1425 p->pad = 0;
1426 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1427 }
1428
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1429 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1430 sector_t sector, int size, u64 block_id)
1431 {
1432 struct drbd_socket *sock;
1433 struct p_block_req *p;
1434
1435 sock = &peer_device->connection->data;
1436 p = drbd_prepare_command(peer_device, sock);
1437 if (!p)
1438 return -EIO;
1439 p->sector = cpu_to_be64(sector);
1440 p->block_id = block_id;
1441 p->blksize = cpu_to_be32(size);
1442 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1443 }
1444
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1445 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1446 void *digest, int digest_size, enum drbd_packet cmd)
1447 {
1448 struct drbd_socket *sock;
1449 struct p_block_req *p;
1450
1451 /* FIXME: Put the digest into the preallocated socket buffer. */
1452
1453 sock = &peer_device->connection->data;
1454 p = drbd_prepare_command(peer_device, sock);
1455 if (!p)
1456 return -EIO;
1457 p->sector = cpu_to_be64(sector);
1458 p->block_id = ID_SYNCER /* unused */;
1459 p->blksize = cpu_to_be32(size);
1460 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1461 }
1462
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1463 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1464 {
1465 struct drbd_socket *sock;
1466 struct p_block_req *p;
1467
1468 sock = &peer_device->connection->data;
1469 p = drbd_prepare_command(peer_device, sock);
1470 if (!p)
1471 return -EIO;
1472 p->sector = cpu_to_be64(sector);
1473 p->block_id = ID_SYNCER /* unused */;
1474 p->blksize = cpu_to_be32(size);
1475 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1476 }
1477
1478 /* called on sndtimeo
1479 * returns false if we should retry,
1480 * true if we think connection is dead
1481 */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1482 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1483 {
1484 int drop_it;
1485 /* long elapsed = (long)(jiffies - device->last_received); */
1486
1487 drop_it = connection->meta.socket == sock
1488 || !connection->ack_receiver.task
1489 || get_t_state(&connection->ack_receiver) != RUNNING
1490 || connection->cstate < C_WF_REPORT_PARAMS;
1491
1492 if (drop_it)
1493 return true;
1494
1495 drop_it = !--connection->ko_count;
1496 if (!drop_it) {
1497 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1498 current->comm, current->pid, connection->ko_count);
1499 request_ping(connection);
1500 }
1501
1502 return drop_it; /* && (device->state == R_PRIMARY) */;
1503 }
1504
drbd_update_congested(struct drbd_connection * connection)1505 static void drbd_update_congested(struct drbd_connection *connection)
1506 {
1507 struct sock *sk = connection->data.socket->sk;
1508 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1509 set_bit(NET_CONGESTED, &connection->flags);
1510 }
1511
1512 /* The idea of sendpage seems to be to put some kind of reference
1513 * to the page into the skb, and to hand it over to the NIC. In
1514 * this process get_page() gets called.
1515 *
1516 * As soon as the page was really sent over the network put_page()
1517 * gets called by some part of the network layer. [ NIC driver? ]
1518 *
1519 * [ get_page() / put_page() increment/decrement the count. If count
1520 * reaches 0 the page will be freed. ]
1521 *
1522 * This works nicely with pages from FSs.
1523 * But this means that in protocol A we might signal IO completion too early!
1524 *
1525 * In order not to corrupt data during a resync we must make sure
1526 * that we do not reuse our own buffer pages (EEs) to early, therefore
1527 * we have the net_ee list.
1528 *
1529 * XFS seems to have problems, still, it submits pages with page_count == 0!
1530 * As a workaround, we disable sendpage on pages
1531 * with page_count == 0 or PageSlab.
1532 */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1533 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1534 int offset, size_t size, unsigned msg_flags)
1535 {
1536 struct socket *socket;
1537 void *addr;
1538 int err;
1539
1540 socket = peer_device->connection->data.socket;
1541 addr = kmap(page) + offset;
1542 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1543 kunmap(page);
1544 if (!err)
1545 peer_device->device->send_cnt += size >> 9;
1546 return err;
1547 }
1548
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1549 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1550 int offset, size_t size, unsigned msg_flags)
1551 {
1552 struct socket *socket = peer_device->connection->data.socket;
1553 int len = size;
1554 int err = -EIO;
1555
1556 /* e.g. XFS meta- & log-data is in slab pages, which have a
1557 * page_count of 0 and/or have PageSlab() set.
1558 * we cannot use send_page for those, as that does get_page();
1559 * put_page(); and would cause either a VM_BUG directly, or
1560 * __page_cache_release a page that would actually still be referenced
1561 * by someone, leading to some obscure delayed Oops somewhere else. */
1562 if (drbd_disable_sendpage || !sendpage_ok(page))
1563 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1564
1565 msg_flags |= MSG_NOSIGNAL;
1566 drbd_update_congested(peer_device->connection);
1567 do {
1568 int sent;
1569
1570 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1571 if (sent <= 0) {
1572 if (sent == -EAGAIN) {
1573 if (we_should_drop_the_connection(peer_device->connection, socket))
1574 break;
1575 continue;
1576 }
1577 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1578 __func__, (int)size, len, sent);
1579 if (sent < 0)
1580 err = sent;
1581 break;
1582 }
1583 len -= sent;
1584 offset += sent;
1585 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1586 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1587
1588 if (len == 0) {
1589 err = 0;
1590 peer_device->device->send_cnt += size >> 9;
1591 }
1592 return err;
1593 }
1594
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1595 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1596 {
1597 struct bio_vec bvec;
1598 struct bvec_iter iter;
1599
1600 /* hint all but last page with MSG_MORE */
1601 bio_for_each_segment(bvec, bio, iter) {
1602 int err;
1603
1604 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1605 bvec.bv_offset, bvec.bv_len,
1606 bio_iter_last(bvec, iter)
1607 ? 0 : MSG_MORE);
1608 if (err)
1609 return err;
1610 /* REQ_OP_WRITE_SAME has only one segment */
1611 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1612 break;
1613 }
1614 return 0;
1615 }
1616
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1617 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1618 {
1619 struct bio_vec bvec;
1620 struct bvec_iter iter;
1621
1622 /* hint all but last page with MSG_MORE */
1623 bio_for_each_segment(bvec, bio, iter) {
1624 int err;
1625
1626 err = _drbd_send_page(peer_device, bvec.bv_page,
1627 bvec.bv_offset, bvec.bv_len,
1628 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1629 if (err)
1630 return err;
1631 /* REQ_OP_WRITE_SAME has only one segment */
1632 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1633 break;
1634 }
1635 return 0;
1636 }
1637
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1638 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1639 struct drbd_peer_request *peer_req)
1640 {
1641 struct page *page = peer_req->pages;
1642 unsigned len = peer_req->i.size;
1643 int err;
1644
1645 /* hint all but last page with MSG_MORE */
1646 page_chain_for_each(page) {
1647 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1648
1649 err = _drbd_send_page(peer_device, page, 0, l,
1650 page_chain_next(page) ? MSG_MORE : 0);
1651 if (err)
1652 return err;
1653 len -= l;
1654 }
1655 return 0;
1656 }
1657
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1658 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1659 struct bio *bio)
1660 {
1661 if (connection->agreed_pro_version >= 95)
1662 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1663 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1664 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1665 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1666 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1667 (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1668 ((connection->agreed_features & DRBD_FF_WZEROES) ?
1669 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1670 : DP_DISCARD)
1671 : 0);
1672 else
1673 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1674 }
1675
1676 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1677 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1678 */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1680 {
1681 struct drbd_device *device = peer_device->device;
1682 struct drbd_socket *sock;
1683 struct p_data *p;
1684 struct p_wsame *wsame = NULL;
1685 void *digest_out;
1686 unsigned int dp_flags = 0;
1687 int digest_size;
1688 int err;
1689
1690 sock = &peer_device->connection->data;
1691 p = drbd_prepare_command(peer_device, sock);
1692 digest_size = peer_device->connection->integrity_tfm ?
1693 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1694
1695 if (!p)
1696 return -EIO;
1697 p->sector = cpu_to_be64(req->i.sector);
1698 p->block_id = (unsigned long)req;
1699 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1700 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1701 if (device->state.conn >= C_SYNC_SOURCE &&
1702 device->state.conn <= C_PAUSED_SYNC_T)
1703 dp_flags |= DP_MAY_SET_IN_SYNC;
1704 if (peer_device->connection->agreed_pro_version >= 100) {
1705 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1706 dp_flags |= DP_SEND_RECEIVE_ACK;
1707 /* During resync, request an explicit write ack,
1708 * even in protocol != C */
1709 if (req->rq_state & RQ_EXP_WRITE_ACK
1710 || (dp_flags & DP_MAY_SET_IN_SYNC))
1711 dp_flags |= DP_SEND_WRITE_ACK;
1712 }
1713 p->dp_flags = cpu_to_be32(dp_flags);
1714
1715 if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1716 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1717 struct p_trim *t = (struct p_trim*)p;
1718 t->size = cpu_to_be32(req->i.size);
1719 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1720 goto out;
1721 }
1722 if (dp_flags & DP_WSAME) {
1723 /* this will only work if DRBD_FF_WSAME is set AND the
1724 * handshake agreed that all nodes and backend devices are
1725 * WRITE_SAME capable and agree on logical_block_size */
1726 wsame = (struct p_wsame*)p;
1727 digest_out = wsame + 1;
1728 wsame->size = cpu_to_be32(req->i.size);
1729 } else
1730 digest_out = p + 1;
1731
1732 /* our digest is still only over the payload.
1733 * TRIM does not carry any payload. */
1734 if (digest_size)
1735 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1736 if (wsame) {
1737 err =
1738 __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1739 sizeof(*wsame) + digest_size, NULL,
1740 bio_iovec(req->master_bio).bv_len);
1741 } else
1742 err =
1743 __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1744 sizeof(*p) + digest_size, NULL, req->i.size);
1745 if (!err) {
1746 /* For protocol A, we have to memcpy the payload into
1747 * socket buffers, as we may complete right away
1748 * as soon as we handed it over to tcp, at which point the data
1749 * pages may become invalid.
1750 *
1751 * For data-integrity enabled, we copy it as well, so we can be
1752 * sure that even if the bio pages may still be modified, it
1753 * won't change the data on the wire, thus if the digest checks
1754 * out ok after sending on this side, but does not fit on the
1755 * receiving side, we sure have detected corruption elsewhere.
1756 */
1757 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1758 err = _drbd_send_bio(peer_device, req->master_bio);
1759 else
1760 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1761
1762 /* double check digest, sometimes buffers have been modified in flight. */
1763 if (digest_size > 0 && digest_size <= 64) {
1764 /* 64 byte, 512 bit, is the largest digest size
1765 * currently supported in kernel crypto. */
1766 unsigned char digest[64];
1767 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1768 if (memcmp(p + 1, digest, digest_size)) {
1769 drbd_warn(device,
1770 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1771 (unsigned long long)req->i.sector, req->i.size);
1772 }
1773 } /* else if (digest_size > 64) {
1774 ... Be noisy about digest too large ...
1775 } */
1776 }
1777 out:
1778 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1779
1780 return err;
1781 }
1782
1783 /* answer packet, used to send data back for read requests:
1784 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1785 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1786 */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1787 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1788 struct drbd_peer_request *peer_req)
1789 {
1790 struct drbd_device *device = peer_device->device;
1791 struct drbd_socket *sock;
1792 struct p_data *p;
1793 int err;
1794 int digest_size;
1795
1796 sock = &peer_device->connection->data;
1797 p = drbd_prepare_command(peer_device, sock);
1798
1799 digest_size = peer_device->connection->integrity_tfm ?
1800 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1801
1802 if (!p)
1803 return -EIO;
1804 p->sector = cpu_to_be64(peer_req->i.sector);
1805 p->block_id = peer_req->block_id;
1806 p->seq_num = 0; /* unused */
1807 p->dp_flags = 0;
1808 if (digest_size)
1809 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1810 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1811 if (!err)
1812 err = _drbd_send_zc_ee(peer_device, peer_req);
1813 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1814
1815 return err;
1816 }
1817
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1818 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1819 {
1820 struct drbd_socket *sock;
1821 struct p_block_desc *p;
1822
1823 sock = &peer_device->connection->data;
1824 p = drbd_prepare_command(peer_device, sock);
1825 if (!p)
1826 return -EIO;
1827 p->sector = cpu_to_be64(req->i.sector);
1828 p->blksize = cpu_to_be32(req->i.size);
1829 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1830 }
1831
1832 /*
1833 drbd_send distinguishes two cases:
1834
1835 Packets sent via the data socket "sock"
1836 and packets sent via the meta data socket "msock"
1837
1838 sock msock
1839 -----------------+-------------------------+------------------------------
1840 timeout conf.timeout / 2 conf.timeout / 2
1841 timeout action send a ping via msock Abort communication
1842 and close all sockets
1843 */
1844
1845 /*
1846 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1847 */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1848 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1849 void *buf, size_t size, unsigned msg_flags)
1850 {
1851 struct kvec iov = {.iov_base = buf, .iov_len = size};
1852 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1853 int rv, sent = 0;
1854
1855 if (!sock)
1856 return -EBADR;
1857
1858 /* THINK if (signal_pending) return ... ? */
1859
1860 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1861
1862 if (sock == connection->data.socket) {
1863 rcu_read_lock();
1864 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1865 rcu_read_unlock();
1866 drbd_update_congested(connection);
1867 }
1868 do {
1869 rv = sock_sendmsg(sock, &msg);
1870 if (rv == -EAGAIN) {
1871 if (we_should_drop_the_connection(connection, sock))
1872 break;
1873 else
1874 continue;
1875 }
1876 if (rv == -EINTR) {
1877 flush_signals(current);
1878 rv = 0;
1879 }
1880 if (rv < 0)
1881 break;
1882 sent += rv;
1883 } while (sent < size);
1884
1885 if (sock == connection->data.socket)
1886 clear_bit(NET_CONGESTED, &connection->flags);
1887
1888 if (rv <= 0) {
1889 if (rv != -EAGAIN) {
1890 drbd_err(connection, "%s_sendmsg returned %d\n",
1891 sock == connection->meta.socket ? "msock" : "sock",
1892 rv);
1893 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1894 } else
1895 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1896 }
1897
1898 return sent;
1899 }
1900
1901 /**
1902 * drbd_send_all - Send an entire buffer
1903 *
1904 * Returns 0 upon success and a negative error value otherwise.
1905 */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1906 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1907 size_t size, unsigned msg_flags)
1908 {
1909 int err;
1910
1911 err = drbd_send(connection, sock, buffer, size, msg_flags);
1912 if (err < 0)
1913 return err;
1914 if (err != size)
1915 return -EIO;
1916 return 0;
1917 }
1918
drbd_open(struct block_device * bdev,fmode_t mode)1919 static int drbd_open(struct block_device *bdev, fmode_t mode)
1920 {
1921 struct drbd_device *device = bdev->bd_disk->private_data;
1922 unsigned long flags;
1923 int rv = 0;
1924
1925 mutex_lock(&drbd_main_mutex);
1926 spin_lock_irqsave(&device->resource->req_lock, flags);
1927 /* to have a stable device->state.role
1928 * and no race with updating open_cnt */
1929
1930 if (device->state.role != R_PRIMARY) {
1931 if (mode & FMODE_WRITE)
1932 rv = -EROFS;
1933 else if (!drbd_allow_oos)
1934 rv = -EMEDIUMTYPE;
1935 }
1936
1937 if (!rv)
1938 device->open_cnt++;
1939 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1940 mutex_unlock(&drbd_main_mutex);
1941
1942 return rv;
1943 }
1944
drbd_release(struct gendisk * gd,fmode_t mode)1945 static void drbd_release(struct gendisk *gd, fmode_t mode)
1946 {
1947 struct drbd_device *device = gd->private_data;
1948 mutex_lock(&drbd_main_mutex);
1949 device->open_cnt--;
1950 mutex_unlock(&drbd_main_mutex);
1951 }
1952
1953 /* need to hold resource->req_lock */
drbd_queue_unplug(struct drbd_device * device)1954 void drbd_queue_unplug(struct drbd_device *device)
1955 {
1956 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1957 D_ASSERT(device, device->state.role == R_PRIMARY);
1958 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1959 drbd_queue_work_if_unqueued(
1960 &first_peer_device(device)->connection->sender_work,
1961 &device->unplug_work);
1962 }
1963 }
1964 }
1965
drbd_set_defaults(struct drbd_device * device)1966 static void drbd_set_defaults(struct drbd_device *device)
1967 {
1968 /* Beware! The actual layout differs
1969 * between big endian and little endian */
1970 device->state = (union drbd_dev_state) {
1971 { .role = R_SECONDARY,
1972 .peer = R_UNKNOWN,
1973 .conn = C_STANDALONE,
1974 .disk = D_DISKLESS,
1975 .pdsk = D_UNKNOWN,
1976 } };
1977 }
1978
drbd_init_set_defaults(struct drbd_device * device)1979 void drbd_init_set_defaults(struct drbd_device *device)
1980 {
1981 /* the memset(,0,) did most of this.
1982 * note: only assignments, no allocation in here */
1983
1984 drbd_set_defaults(device);
1985
1986 atomic_set(&device->ap_bio_cnt, 0);
1987 atomic_set(&device->ap_actlog_cnt, 0);
1988 atomic_set(&device->ap_pending_cnt, 0);
1989 atomic_set(&device->rs_pending_cnt, 0);
1990 atomic_set(&device->unacked_cnt, 0);
1991 atomic_set(&device->local_cnt, 0);
1992 atomic_set(&device->pp_in_use_by_net, 0);
1993 atomic_set(&device->rs_sect_in, 0);
1994 atomic_set(&device->rs_sect_ev, 0);
1995 atomic_set(&device->ap_in_flight, 0);
1996 atomic_set(&device->md_io.in_use, 0);
1997
1998 mutex_init(&device->own_state_mutex);
1999 device->state_mutex = &device->own_state_mutex;
2000
2001 spin_lock_init(&device->al_lock);
2002 spin_lock_init(&device->peer_seq_lock);
2003
2004 INIT_LIST_HEAD(&device->active_ee);
2005 INIT_LIST_HEAD(&device->sync_ee);
2006 INIT_LIST_HEAD(&device->done_ee);
2007 INIT_LIST_HEAD(&device->read_ee);
2008 INIT_LIST_HEAD(&device->net_ee);
2009 INIT_LIST_HEAD(&device->resync_reads);
2010 INIT_LIST_HEAD(&device->resync_work.list);
2011 INIT_LIST_HEAD(&device->unplug_work.list);
2012 INIT_LIST_HEAD(&device->bm_io_work.w.list);
2013 INIT_LIST_HEAD(&device->pending_master_completion[0]);
2014 INIT_LIST_HEAD(&device->pending_master_completion[1]);
2015 INIT_LIST_HEAD(&device->pending_completion[0]);
2016 INIT_LIST_HEAD(&device->pending_completion[1]);
2017
2018 device->resync_work.cb = w_resync_timer;
2019 device->unplug_work.cb = w_send_write_hint;
2020 device->bm_io_work.w.cb = w_bitmap_io;
2021
2022 timer_setup(&device->resync_timer, resync_timer_fn, 0);
2023 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2024 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2025 timer_setup(&device->request_timer, request_timer_fn, 0);
2026
2027 init_waitqueue_head(&device->misc_wait);
2028 init_waitqueue_head(&device->state_wait);
2029 init_waitqueue_head(&device->ee_wait);
2030 init_waitqueue_head(&device->al_wait);
2031 init_waitqueue_head(&device->seq_wait);
2032
2033 device->resync_wenr = LC_FREE;
2034 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2035 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2036 }
2037
drbd_set_my_capacity(struct drbd_device * device,sector_t size)2038 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2039 {
2040 char ppb[10];
2041
2042 set_capacity(device->vdisk, size);
2043 revalidate_disk_size(device->vdisk, false);
2044
2045 drbd_info(device, "size = %s (%llu KB)\n",
2046 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2047 }
2048
drbd_device_cleanup(struct drbd_device * device)2049 void drbd_device_cleanup(struct drbd_device *device)
2050 {
2051 int i;
2052 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2053 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2054 first_peer_device(device)->connection->receiver.t_state);
2055
2056 device->al_writ_cnt =
2057 device->bm_writ_cnt =
2058 device->read_cnt =
2059 device->recv_cnt =
2060 device->send_cnt =
2061 device->writ_cnt =
2062 device->p_size =
2063 device->rs_start =
2064 device->rs_total =
2065 device->rs_failed = 0;
2066 device->rs_last_events = 0;
2067 device->rs_last_sect_ev = 0;
2068 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2069 device->rs_mark_left[i] = 0;
2070 device->rs_mark_time[i] = 0;
2071 }
2072 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2073
2074 set_capacity(device->vdisk, 0);
2075 revalidate_disk_size(device->vdisk, false);
2076 if (device->bitmap) {
2077 /* maybe never allocated. */
2078 drbd_bm_resize(device, 0, 1);
2079 drbd_bm_cleanup(device);
2080 }
2081
2082 drbd_backing_dev_free(device, device->ldev);
2083 device->ldev = NULL;
2084
2085 clear_bit(AL_SUSPENDED, &device->flags);
2086
2087 D_ASSERT(device, list_empty(&device->active_ee));
2088 D_ASSERT(device, list_empty(&device->sync_ee));
2089 D_ASSERT(device, list_empty(&device->done_ee));
2090 D_ASSERT(device, list_empty(&device->read_ee));
2091 D_ASSERT(device, list_empty(&device->net_ee));
2092 D_ASSERT(device, list_empty(&device->resync_reads));
2093 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2094 D_ASSERT(device, list_empty(&device->resync_work.list));
2095 D_ASSERT(device, list_empty(&device->unplug_work.list));
2096
2097 drbd_set_defaults(device);
2098 }
2099
2100
drbd_destroy_mempools(void)2101 static void drbd_destroy_mempools(void)
2102 {
2103 struct page *page;
2104
2105 while (drbd_pp_pool) {
2106 page = drbd_pp_pool;
2107 drbd_pp_pool = (struct page *)page_private(page);
2108 __free_page(page);
2109 drbd_pp_vacant--;
2110 }
2111
2112 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2113
2114 bioset_exit(&drbd_io_bio_set);
2115 bioset_exit(&drbd_md_io_bio_set);
2116 mempool_exit(&drbd_md_io_page_pool);
2117 mempool_exit(&drbd_ee_mempool);
2118 mempool_exit(&drbd_request_mempool);
2119 kmem_cache_destroy(drbd_ee_cache);
2120 kmem_cache_destroy(drbd_request_cache);
2121 kmem_cache_destroy(drbd_bm_ext_cache);
2122 kmem_cache_destroy(drbd_al_ext_cache);
2123
2124 drbd_ee_cache = NULL;
2125 drbd_request_cache = NULL;
2126 drbd_bm_ext_cache = NULL;
2127 drbd_al_ext_cache = NULL;
2128
2129 return;
2130 }
2131
drbd_create_mempools(void)2132 static int drbd_create_mempools(void)
2133 {
2134 struct page *page;
2135 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2136 int i, ret;
2137
2138 /* caches */
2139 drbd_request_cache = kmem_cache_create(
2140 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2141 if (drbd_request_cache == NULL)
2142 goto Enomem;
2143
2144 drbd_ee_cache = kmem_cache_create(
2145 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2146 if (drbd_ee_cache == NULL)
2147 goto Enomem;
2148
2149 drbd_bm_ext_cache = kmem_cache_create(
2150 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2151 if (drbd_bm_ext_cache == NULL)
2152 goto Enomem;
2153
2154 drbd_al_ext_cache = kmem_cache_create(
2155 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2156 if (drbd_al_ext_cache == NULL)
2157 goto Enomem;
2158
2159 /* mempools */
2160 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2161 if (ret)
2162 goto Enomem;
2163
2164 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2165 BIOSET_NEED_BVECS);
2166 if (ret)
2167 goto Enomem;
2168
2169 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2170 if (ret)
2171 goto Enomem;
2172
2173 ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2174 drbd_request_cache);
2175 if (ret)
2176 goto Enomem;
2177
2178 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2179 if (ret)
2180 goto Enomem;
2181
2182 /* drbd's page pool */
2183 spin_lock_init(&drbd_pp_lock);
2184
2185 for (i = 0; i < number; i++) {
2186 page = alloc_page(GFP_HIGHUSER);
2187 if (!page)
2188 goto Enomem;
2189 set_page_private(page, (unsigned long)drbd_pp_pool);
2190 drbd_pp_pool = page;
2191 }
2192 drbd_pp_vacant = number;
2193
2194 return 0;
2195
2196 Enomem:
2197 drbd_destroy_mempools(); /* in case we allocated some */
2198 return -ENOMEM;
2199 }
2200
drbd_release_all_peer_reqs(struct drbd_device * device)2201 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2202 {
2203 int rr;
2204
2205 rr = drbd_free_peer_reqs(device, &device->active_ee);
2206 if (rr)
2207 drbd_err(device, "%d EEs in active list found!\n", rr);
2208
2209 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2210 if (rr)
2211 drbd_err(device, "%d EEs in sync list found!\n", rr);
2212
2213 rr = drbd_free_peer_reqs(device, &device->read_ee);
2214 if (rr)
2215 drbd_err(device, "%d EEs in read list found!\n", rr);
2216
2217 rr = drbd_free_peer_reqs(device, &device->done_ee);
2218 if (rr)
2219 drbd_err(device, "%d EEs in done list found!\n", rr);
2220
2221 rr = drbd_free_peer_reqs(device, &device->net_ee);
2222 if (rr)
2223 drbd_err(device, "%d EEs in net list found!\n", rr);
2224 }
2225
2226 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2227 void drbd_destroy_device(struct kref *kref)
2228 {
2229 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2230 struct drbd_resource *resource = device->resource;
2231 struct drbd_peer_device *peer_device, *tmp_peer_device;
2232
2233 del_timer_sync(&device->request_timer);
2234
2235 /* paranoia asserts */
2236 D_ASSERT(device, device->open_cnt == 0);
2237 /* end paranoia asserts */
2238
2239 /* cleanup stuff that may have been allocated during
2240 * device (re-)configuration or state changes */
2241
2242 drbd_backing_dev_free(device, device->ldev);
2243 device->ldev = NULL;
2244
2245 drbd_release_all_peer_reqs(device);
2246
2247 lc_destroy(device->act_log);
2248 lc_destroy(device->resync);
2249
2250 kfree(device->p_uuid);
2251 /* device->p_uuid = NULL; */
2252
2253 if (device->bitmap) /* should no longer be there. */
2254 drbd_bm_cleanup(device);
2255 __free_page(device->md_io.page);
2256 put_disk(device->vdisk);
2257 blk_cleanup_queue(device->rq_queue);
2258 kfree(device->rs_plan_s);
2259
2260 /* not for_each_connection(connection, resource):
2261 * those may have been cleaned up and disassociated already.
2262 */
2263 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2264 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2265 kfree(peer_device);
2266 }
2267 memset(device, 0xfd, sizeof(*device));
2268 kfree(device);
2269 kref_put(&resource->kref, drbd_destroy_resource);
2270 }
2271
2272 /* One global retry thread, if we need to push back some bio and have it
2273 * reinserted through our make request function.
2274 */
2275 static struct retry_worker {
2276 struct workqueue_struct *wq;
2277 struct work_struct worker;
2278
2279 spinlock_t lock;
2280 struct list_head writes;
2281 } retry;
2282
do_retry(struct work_struct * ws)2283 static void do_retry(struct work_struct *ws)
2284 {
2285 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2286 LIST_HEAD(writes);
2287 struct drbd_request *req, *tmp;
2288
2289 spin_lock_irq(&retry->lock);
2290 list_splice_init(&retry->writes, &writes);
2291 spin_unlock_irq(&retry->lock);
2292
2293 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2294 struct drbd_device *device = req->device;
2295 struct bio *bio = req->master_bio;
2296 unsigned long start_jif = req->start_jif;
2297 bool expected;
2298
2299 expected =
2300 expect(atomic_read(&req->completion_ref) == 0) &&
2301 expect(req->rq_state & RQ_POSTPONED) &&
2302 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2303 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2304
2305 if (!expected)
2306 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2307 req, atomic_read(&req->completion_ref),
2308 req->rq_state);
2309
2310 /* We still need to put one kref associated with the
2311 * "completion_ref" going zero in the code path that queued it
2312 * here. The request object may still be referenced by a
2313 * frozen local req->private_bio, in case we force-detached.
2314 */
2315 kref_put(&req->kref, drbd_req_destroy);
2316
2317 /* A single suspended or otherwise blocking device may stall
2318 * all others as well. Fortunately, this code path is to
2319 * recover from a situation that "should not happen":
2320 * concurrent writes in multi-primary setup.
2321 * In a "normal" lifecycle, this workqueue is supposed to be
2322 * destroyed without ever doing anything.
2323 * If it turns out to be an issue anyways, we can do per
2324 * resource (replication group) or per device (minor) retry
2325 * workqueues instead.
2326 */
2327
2328 /* We are not just doing submit_bio_noacct(),
2329 * as we want to keep the start_time information. */
2330 inc_ap_bio(device);
2331 __drbd_make_request(device, bio, start_jif);
2332 }
2333 }
2334
2335 /* called via drbd_req_put_completion_ref(),
2336 * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2337 void drbd_restart_request(struct drbd_request *req)
2338 {
2339 unsigned long flags;
2340 spin_lock_irqsave(&retry.lock, flags);
2341 list_move_tail(&req->tl_requests, &retry.writes);
2342 spin_unlock_irqrestore(&retry.lock, flags);
2343
2344 /* Drop the extra reference that would otherwise
2345 * have been dropped by complete_master_bio.
2346 * do_retry() needs to grab a new one. */
2347 dec_ap_bio(req->device);
2348
2349 queue_work(retry.wq, &retry.worker);
2350 }
2351
drbd_destroy_resource(struct kref * kref)2352 void drbd_destroy_resource(struct kref *kref)
2353 {
2354 struct drbd_resource *resource =
2355 container_of(kref, struct drbd_resource, kref);
2356
2357 idr_destroy(&resource->devices);
2358 free_cpumask_var(resource->cpu_mask);
2359 kfree(resource->name);
2360 memset(resource, 0xf2, sizeof(*resource));
2361 kfree(resource);
2362 }
2363
drbd_free_resource(struct drbd_resource * resource)2364 void drbd_free_resource(struct drbd_resource *resource)
2365 {
2366 struct drbd_connection *connection, *tmp;
2367
2368 for_each_connection_safe(connection, tmp, resource) {
2369 list_del(&connection->connections);
2370 drbd_debugfs_connection_cleanup(connection);
2371 kref_put(&connection->kref, drbd_destroy_connection);
2372 }
2373 drbd_debugfs_resource_cleanup(resource);
2374 kref_put(&resource->kref, drbd_destroy_resource);
2375 }
2376
drbd_cleanup(void)2377 static void drbd_cleanup(void)
2378 {
2379 unsigned int i;
2380 struct drbd_device *device;
2381 struct drbd_resource *resource, *tmp;
2382
2383 /* first remove proc,
2384 * drbdsetup uses it's presence to detect
2385 * whether DRBD is loaded.
2386 * If we would get stuck in proc removal,
2387 * but have netlink already deregistered,
2388 * some drbdsetup commands may wait forever
2389 * for an answer.
2390 */
2391 if (drbd_proc)
2392 remove_proc_entry("drbd", NULL);
2393
2394 if (retry.wq)
2395 destroy_workqueue(retry.wq);
2396
2397 drbd_genl_unregister();
2398
2399 idr_for_each_entry(&drbd_devices, device, i)
2400 drbd_delete_device(device);
2401
2402 /* not _rcu since, no other updater anymore. Genl already unregistered */
2403 for_each_resource_safe(resource, tmp, &drbd_resources) {
2404 list_del(&resource->resources);
2405 drbd_free_resource(resource);
2406 }
2407
2408 drbd_debugfs_cleanup();
2409
2410 drbd_destroy_mempools();
2411 unregister_blkdev(DRBD_MAJOR, "drbd");
2412
2413 idr_destroy(&drbd_devices);
2414
2415 pr_info("module cleanup done.\n");
2416 }
2417
drbd_init_workqueue(struct drbd_work_queue * wq)2418 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2419 {
2420 spin_lock_init(&wq->q_lock);
2421 INIT_LIST_HEAD(&wq->q);
2422 init_waitqueue_head(&wq->q_wait);
2423 }
2424
2425 struct completion_work {
2426 struct drbd_work w;
2427 struct completion done;
2428 };
2429
w_complete(struct drbd_work * w,int cancel)2430 static int w_complete(struct drbd_work *w, int cancel)
2431 {
2432 struct completion_work *completion_work =
2433 container_of(w, struct completion_work, w);
2434
2435 complete(&completion_work->done);
2436 return 0;
2437 }
2438
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2439 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2440 {
2441 struct completion_work completion_work;
2442
2443 completion_work.w.cb = w_complete;
2444 init_completion(&completion_work.done);
2445 drbd_queue_work(work_queue, &completion_work.w);
2446 wait_for_completion(&completion_work.done);
2447 }
2448
drbd_find_resource(const char * name)2449 struct drbd_resource *drbd_find_resource(const char *name)
2450 {
2451 struct drbd_resource *resource;
2452
2453 if (!name || !name[0])
2454 return NULL;
2455
2456 rcu_read_lock();
2457 for_each_resource_rcu(resource, &drbd_resources) {
2458 if (!strcmp(resource->name, name)) {
2459 kref_get(&resource->kref);
2460 goto found;
2461 }
2462 }
2463 resource = NULL;
2464 found:
2465 rcu_read_unlock();
2466 return resource;
2467 }
2468
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2469 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2470 void *peer_addr, int peer_addr_len)
2471 {
2472 struct drbd_resource *resource;
2473 struct drbd_connection *connection;
2474
2475 rcu_read_lock();
2476 for_each_resource_rcu(resource, &drbd_resources) {
2477 for_each_connection_rcu(connection, resource) {
2478 if (connection->my_addr_len == my_addr_len &&
2479 connection->peer_addr_len == peer_addr_len &&
2480 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2481 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2482 kref_get(&connection->kref);
2483 goto found;
2484 }
2485 }
2486 }
2487 connection = NULL;
2488 found:
2489 rcu_read_unlock();
2490 return connection;
2491 }
2492
drbd_alloc_socket(struct drbd_socket * socket)2493 static int drbd_alloc_socket(struct drbd_socket *socket)
2494 {
2495 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2496 if (!socket->rbuf)
2497 return -ENOMEM;
2498 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2499 if (!socket->sbuf)
2500 return -ENOMEM;
2501 return 0;
2502 }
2503
drbd_free_socket(struct drbd_socket * socket)2504 static void drbd_free_socket(struct drbd_socket *socket)
2505 {
2506 free_page((unsigned long) socket->sbuf);
2507 free_page((unsigned long) socket->rbuf);
2508 }
2509
conn_free_crypto(struct drbd_connection * connection)2510 void conn_free_crypto(struct drbd_connection *connection)
2511 {
2512 drbd_free_sock(connection);
2513
2514 crypto_free_shash(connection->csums_tfm);
2515 crypto_free_shash(connection->verify_tfm);
2516 crypto_free_shash(connection->cram_hmac_tfm);
2517 crypto_free_shash(connection->integrity_tfm);
2518 crypto_free_shash(connection->peer_integrity_tfm);
2519 kfree(connection->int_dig_in);
2520 kfree(connection->int_dig_vv);
2521
2522 connection->csums_tfm = NULL;
2523 connection->verify_tfm = NULL;
2524 connection->cram_hmac_tfm = NULL;
2525 connection->integrity_tfm = NULL;
2526 connection->peer_integrity_tfm = NULL;
2527 connection->int_dig_in = NULL;
2528 connection->int_dig_vv = NULL;
2529 }
2530
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2531 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2532 {
2533 struct drbd_connection *connection;
2534 cpumask_var_t new_cpu_mask;
2535 int err;
2536
2537 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2538 return -ENOMEM;
2539
2540 /* silently ignore cpu mask on UP kernel */
2541 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2542 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2543 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2544 if (err == -EOVERFLOW) {
2545 /* So what. mask it out. */
2546 cpumask_var_t tmp_cpu_mask;
2547 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2548 cpumask_setall(tmp_cpu_mask);
2549 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2550 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2551 res_opts->cpu_mask,
2552 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2553 nr_cpu_ids);
2554 free_cpumask_var(tmp_cpu_mask);
2555 err = 0;
2556 }
2557 }
2558 if (err) {
2559 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2560 /* retcode = ERR_CPU_MASK_PARSE; */
2561 goto fail;
2562 }
2563 }
2564 resource->res_opts = *res_opts;
2565 if (cpumask_empty(new_cpu_mask))
2566 drbd_calc_cpu_mask(&new_cpu_mask);
2567 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2568 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2569 for_each_connection_rcu(connection, resource) {
2570 connection->receiver.reset_cpu_mask = 1;
2571 connection->ack_receiver.reset_cpu_mask = 1;
2572 connection->worker.reset_cpu_mask = 1;
2573 }
2574 }
2575 err = 0;
2576
2577 fail:
2578 free_cpumask_var(new_cpu_mask);
2579 return err;
2580
2581 }
2582
drbd_create_resource(const char * name)2583 struct drbd_resource *drbd_create_resource(const char *name)
2584 {
2585 struct drbd_resource *resource;
2586
2587 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2588 if (!resource)
2589 goto fail;
2590 resource->name = kstrdup(name, GFP_KERNEL);
2591 if (!resource->name)
2592 goto fail_free_resource;
2593 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2594 goto fail_free_name;
2595 kref_init(&resource->kref);
2596 idr_init(&resource->devices);
2597 INIT_LIST_HEAD(&resource->connections);
2598 resource->write_ordering = WO_BDEV_FLUSH;
2599 list_add_tail_rcu(&resource->resources, &drbd_resources);
2600 mutex_init(&resource->conf_update);
2601 mutex_init(&resource->adm_mutex);
2602 spin_lock_init(&resource->req_lock);
2603 drbd_debugfs_resource_add(resource);
2604 return resource;
2605
2606 fail_free_name:
2607 kfree(resource->name);
2608 fail_free_resource:
2609 kfree(resource);
2610 fail:
2611 return NULL;
2612 }
2613
2614 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2615 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2616 {
2617 struct drbd_resource *resource;
2618 struct drbd_connection *connection;
2619
2620 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2621 if (!connection)
2622 return NULL;
2623
2624 if (drbd_alloc_socket(&connection->data))
2625 goto fail;
2626 if (drbd_alloc_socket(&connection->meta))
2627 goto fail;
2628
2629 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2630 if (!connection->current_epoch)
2631 goto fail;
2632
2633 INIT_LIST_HEAD(&connection->transfer_log);
2634
2635 INIT_LIST_HEAD(&connection->current_epoch->list);
2636 connection->epochs = 1;
2637 spin_lock_init(&connection->epoch_lock);
2638
2639 connection->send.seen_any_write_yet = false;
2640 connection->send.current_epoch_nr = 0;
2641 connection->send.current_epoch_writes = 0;
2642
2643 resource = drbd_create_resource(name);
2644 if (!resource)
2645 goto fail;
2646
2647 connection->cstate = C_STANDALONE;
2648 mutex_init(&connection->cstate_mutex);
2649 init_waitqueue_head(&connection->ping_wait);
2650 idr_init(&connection->peer_devices);
2651
2652 drbd_init_workqueue(&connection->sender_work);
2653 mutex_init(&connection->data.mutex);
2654 mutex_init(&connection->meta.mutex);
2655
2656 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2657 connection->receiver.connection = connection;
2658 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2659 connection->worker.connection = connection;
2660 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2661 connection->ack_receiver.connection = connection;
2662
2663 kref_init(&connection->kref);
2664
2665 connection->resource = resource;
2666
2667 if (set_resource_options(resource, res_opts))
2668 goto fail_resource;
2669
2670 kref_get(&resource->kref);
2671 list_add_tail_rcu(&connection->connections, &resource->connections);
2672 drbd_debugfs_connection_add(connection);
2673 return connection;
2674
2675 fail_resource:
2676 list_del(&resource->resources);
2677 drbd_free_resource(resource);
2678 fail:
2679 kfree(connection->current_epoch);
2680 drbd_free_socket(&connection->meta);
2681 drbd_free_socket(&connection->data);
2682 kfree(connection);
2683 return NULL;
2684 }
2685
drbd_destroy_connection(struct kref * kref)2686 void drbd_destroy_connection(struct kref *kref)
2687 {
2688 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2689 struct drbd_resource *resource = connection->resource;
2690
2691 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2692 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2693 kfree(connection->current_epoch);
2694
2695 idr_destroy(&connection->peer_devices);
2696
2697 drbd_free_socket(&connection->meta);
2698 drbd_free_socket(&connection->data);
2699 kfree(connection->int_dig_in);
2700 kfree(connection->int_dig_vv);
2701 memset(connection, 0xfc, sizeof(*connection));
2702 kfree(connection);
2703 kref_put(&resource->kref, drbd_destroy_resource);
2704 }
2705
init_submitter(struct drbd_device * device)2706 static int init_submitter(struct drbd_device *device)
2707 {
2708 /* opencoded create_singlethread_workqueue(),
2709 * to be able to say "drbd%d", ..., minor */
2710 device->submit.wq =
2711 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2712 if (!device->submit.wq)
2713 return -ENOMEM;
2714
2715 INIT_WORK(&device->submit.worker, do_submit);
2716 INIT_LIST_HEAD(&device->submit.writes);
2717 return 0;
2718 }
2719
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2720 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2721 {
2722 struct drbd_resource *resource = adm_ctx->resource;
2723 struct drbd_connection *connection, *n;
2724 struct drbd_device *device;
2725 struct drbd_peer_device *peer_device, *tmp_peer_device;
2726 struct gendisk *disk;
2727 struct request_queue *q;
2728 int id;
2729 int vnr = adm_ctx->volume;
2730 enum drbd_ret_code err = ERR_NOMEM;
2731
2732 device = minor_to_device(minor);
2733 if (device)
2734 return ERR_MINOR_OR_VOLUME_EXISTS;
2735
2736 /* GFP_KERNEL, we are outside of all write-out paths */
2737 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2738 if (!device)
2739 return ERR_NOMEM;
2740 kref_init(&device->kref);
2741
2742 kref_get(&resource->kref);
2743 device->resource = resource;
2744 device->minor = minor;
2745 device->vnr = vnr;
2746
2747 drbd_init_set_defaults(device);
2748
2749 q = blk_alloc_queue(NUMA_NO_NODE);
2750 if (!q)
2751 goto out_no_q;
2752 device->rq_queue = q;
2753
2754 disk = alloc_disk(1);
2755 if (!disk)
2756 goto out_no_disk;
2757 device->vdisk = disk;
2758
2759 set_disk_ro(disk, true);
2760
2761 disk->queue = q;
2762 disk->major = DRBD_MAJOR;
2763 disk->first_minor = minor;
2764 disk->fops = &drbd_ops;
2765 sprintf(disk->disk_name, "drbd%d", minor);
2766 disk->private_data = device;
2767
2768 blk_queue_write_cache(q, true, true);
2769 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2770 This triggers a max_bio_size message upon first attach or connect */
2771 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2772
2773 device->md_io.page = alloc_page(GFP_KERNEL);
2774 if (!device->md_io.page)
2775 goto out_no_io_page;
2776
2777 if (drbd_bm_init(device))
2778 goto out_no_bitmap;
2779 device->read_requests = RB_ROOT;
2780 device->write_requests = RB_ROOT;
2781
2782 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2783 if (id < 0) {
2784 if (id == -ENOSPC)
2785 err = ERR_MINOR_OR_VOLUME_EXISTS;
2786 goto out_no_minor_idr;
2787 }
2788 kref_get(&device->kref);
2789
2790 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2791 if (id < 0) {
2792 if (id == -ENOSPC)
2793 err = ERR_MINOR_OR_VOLUME_EXISTS;
2794 goto out_idr_remove_minor;
2795 }
2796 kref_get(&device->kref);
2797
2798 INIT_LIST_HEAD(&device->peer_devices);
2799 INIT_LIST_HEAD(&device->pending_bitmap_io);
2800 for_each_connection(connection, resource) {
2801 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2802 if (!peer_device)
2803 goto out_idr_remove_from_resource;
2804 peer_device->connection = connection;
2805 peer_device->device = device;
2806
2807 list_add(&peer_device->peer_devices, &device->peer_devices);
2808 kref_get(&device->kref);
2809
2810 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2811 if (id < 0) {
2812 if (id == -ENOSPC)
2813 err = ERR_INVALID_REQUEST;
2814 goto out_idr_remove_from_resource;
2815 }
2816 kref_get(&connection->kref);
2817 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2818 }
2819
2820 if (init_submitter(device)) {
2821 err = ERR_NOMEM;
2822 goto out_idr_remove_from_resource;
2823 }
2824
2825 add_disk(disk);
2826
2827 /* inherit the connection state */
2828 device->state.conn = first_connection(resource)->cstate;
2829 if (device->state.conn == C_WF_REPORT_PARAMS) {
2830 for_each_peer_device(peer_device, device)
2831 drbd_connected(peer_device);
2832 }
2833 /* move to create_peer_device() */
2834 for_each_peer_device(peer_device, device)
2835 drbd_debugfs_peer_device_add(peer_device);
2836 drbd_debugfs_device_add(device);
2837 return NO_ERROR;
2838
2839 out_idr_remove_from_resource:
2840 for_each_connection_safe(connection, n, resource) {
2841 peer_device = idr_remove(&connection->peer_devices, vnr);
2842 if (peer_device)
2843 kref_put(&connection->kref, drbd_destroy_connection);
2844 }
2845 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2846 list_del(&peer_device->peer_devices);
2847 kfree(peer_device);
2848 }
2849 idr_remove(&resource->devices, vnr);
2850 out_idr_remove_minor:
2851 idr_remove(&drbd_devices, minor);
2852 synchronize_rcu();
2853 out_no_minor_idr:
2854 drbd_bm_cleanup(device);
2855 out_no_bitmap:
2856 __free_page(device->md_io.page);
2857 out_no_io_page:
2858 put_disk(disk);
2859 out_no_disk:
2860 blk_cleanup_queue(q);
2861 out_no_q:
2862 kref_put(&resource->kref, drbd_destroy_resource);
2863 kfree(device);
2864 return err;
2865 }
2866
drbd_delete_device(struct drbd_device * device)2867 void drbd_delete_device(struct drbd_device *device)
2868 {
2869 struct drbd_resource *resource = device->resource;
2870 struct drbd_connection *connection;
2871 struct drbd_peer_device *peer_device;
2872
2873 /* move to free_peer_device() */
2874 for_each_peer_device(peer_device, device)
2875 drbd_debugfs_peer_device_cleanup(peer_device);
2876 drbd_debugfs_device_cleanup(device);
2877 for_each_connection(connection, resource) {
2878 idr_remove(&connection->peer_devices, device->vnr);
2879 kref_put(&device->kref, drbd_destroy_device);
2880 }
2881 idr_remove(&resource->devices, device->vnr);
2882 kref_put(&device->kref, drbd_destroy_device);
2883 idr_remove(&drbd_devices, device_to_minor(device));
2884 kref_put(&device->kref, drbd_destroy_device);
2885 del_gendisk(device->vdisk);
2886 synchronize_rcu();
2887 kref_put(&device->kref, drbd_destroy_device);
2888 }
2889
drbd_init(void)2890 static int __init drbd_init(void)
2891 {
2892 int err;
2893
2894 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2895 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2896 #ifdef MODULE
2897 return -EINVAL;
2898 #else
2899 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2900 #endif
2901 }
2902
2903 err = register_blkdev(DRBD_MAJOR, "drbd");
2904 if (err) {
2905 pr_err("unable to register block device major %d\n",
2906 DRBD_MAJOR);
2907 return err;
2908 }
2909
2910 /*
2911 * allocate all necessary structs
2912 */
2913 init_waitqueue_head(&drbd_pp_wait);
2914
2915 drbd_proc = NULL; /* play safe for drbd_cleanup */
2916 idr_init(&drbd_devices);
2917
2918 mutex_init(&resources_mutex);
2919 INIT_LIST_HEAD(&drbd_resources);
2920
2921 err = drbd_genl_register();
2922 if (err) {
2923 pr_err("unable to register generic netlink family\n");
2924 goto fail;
2925 }
2926
2927 err = drbd_create_mempools();
2928 if (err)
2929 goto fail;
2930
2931 err = -ENOMEM;
2932 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2933 if (!drbd_proc) {
2934 pr_err("unable to register proc file\n");
2935 goto fail;
2936 }
2937
2938 retry.wq = create_singlethread_workqueue("drbd-reissue");
2939 if (!retry.wq) {
2940 pr_err("unable to create retry workqueue\n");
2941 goto fail;
2942 }
2943 INIT_WORK(&retry.worker, do_retry);
2944 spin_lock_init(&retry.lock);
2945 INIT_LIST_HEAD(&retry.writes);
2946
2947 drbd_debugfs_init();
2948
2949 pr_info("initialized. "
2950 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2951 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2952 pr_info("%s\n", drbd_buildtag());
2953 pr_info("registered as block device major %d\n", DRBD_MAJOR);
2954 return 0; /* Success! */
2955
2956 fail:
2957 drbd_cleanup();
2958 if (err == -ENOMEM)
2959 pr_err("ran out of memory\n");
2960 else
2961 pr_err("initialization failure\n");
2962 return err;
2963 }
2964
drbd_free_one_sock(struct drbd_socket * ds)2965 static void drbd_free_one_sock(struct drbd_socket *ds)
2966 {
2967 struct socket *s;
2968 mutex_lock(&ds->mutex);
2969 s = ds->socket;
2970 ds->socket = NULL;
2971 mutex_unlock(&ds->mutex);
2972 if (s) {
2973 /* so debugfs does not need to mutex_lock() */
2974 synchronize_rcu();
2975 kernel_sock_shutdown(s, SHUT_RDWR);
2976 sock_release(s);
2977 }
2978 }
2979
drbd_free_sock(struct drbd_connection * connection)2980 void drbd_free_sock(struct drbd_connection *connection)
2981 {
2982 if (connection->data.socket)
2983 drbd_free_one_sock(&connection->data);
2984 if (connection->meta.socket)
2985 drbd_free_one_sock(&connection->meta);
2986 }
2987
2988 /* meta data management */
2989
conn_md_sync(struct drbd_connection * connection)2990 void conn_md_sync(struct drbd_connection *connection)
2991 {
2992 struct drbd_peer_device *peer_device;
2993 int vnr;
2994
2995 rcu_read_lock();
2996 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2997 struct drbd_device *device = peer_device->device;
2998
2999 kref_get(&device->kref);
3000 rcu_read_unlock();
3001 drbd_md_sync(device);
3002 kref_put(&device->kref, drbd_destroy_device);
3003 rcu_read_lock();
3004 }
3005 rcu_read_unlock();
3006 }
3007
3008 /* aligned 4kByte */
3009 struct meta_data_on_disk {
3010 u64 la_size_sect; /* last agreed size. */
3011 u64 uuid[UI_SIZE]; /* UUIDs. */
3012 u64 device_uuid;
3013 u64 reserved_u64_1;
3014 u32 flags; /* MDF */
3015 u32 magic;
3016 u32 md_size_sect;
3017 u32 al_offset; /* offset to this block */
3018 u32 al_nr_extents; /* important for restoring the AL (userspace) */
3019 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3020 u32 bm_offset; /* offset to the bitmap, from here */
3021 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3022 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3023
3024 /* see al_tr_number_to_on_disk_sector() */
3025 u32 al_stripes;
3026 u32 al_stripe_size_4k;
3027
3028 u8 reserved_u8[4096 - (7*8 + 10*4)];
3029 } __packed;
3030
3031
3032
drbd_md_write(struct drbd_device * device,void * b)3033 void drbd_md_write(struct drbd_device *device, void *b)
3034 {
3035 struct meta_data_on_disk *buffer = b;
3036 sector_t sector;
3037 int i;
3038
3039 memset(buffer, 0, sizeof(*buffer));
3040
3041 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3042 for (i = UI_CURRENT; i < UI_SIZE; i++)
3043 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3044 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3045 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3046
3047 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3048 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3049 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3050 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3051 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3052
3053 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3054 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3055
3056 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3057 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3058
3059 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3060 sector = device->ldev->md.md_offset;
3061
3062 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3063 /* this was a try anyways ... */
3064 drbd_err(device, "meta data update failed!\n");
3065 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3066 }
3067 }
3068
3069 /**
3070 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3071 * @device: DRBD device.
3072 */
drbd_md_sync(struct drbd_device * device)3073 void drbd_md_sync(struct drbd_device *device)
3074 {
3075 struct meta_data_on_disk *buffer;
3076
3077 /* Don't accidentally change the DRBD meta data layout. */
3078 BUILD_BUG_ON(UI_SIZE != 4);
3079 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3080
3081 del_timer(&device->md_sync_timer);
3082 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3083 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3084 return;
3085
3086 /* We use here D_FAILED and not D_ATTACHING because we try to write
3087 * metadata even if we detach due to a disk failure! */
3088 if (!get_ldev_if_state(device, D_FAILED))
3089 return;
3090
3091 buffer = drbd_md_get_buffer(device, __func__);
3092 if (!buffer)
3093 goto out;
3094
3095 drbd_md_write(device, buffer);
3096
3097 /* Update device->ldev->md.la_size_sect,
3098 * since we updated it on metadata. */
3099 device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3100
3101 drbd_md_put_buffer(device);
3102 out:
3103 put_ldev(device);
3104 }
3105
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3106 static int check_activity_log_stripe_size(struct drbd_device *device,
3107 struct meta_data_on_disk *on_disk,
3108 struct drbd_md *in_core)
3109 {
3110 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3111 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3112 u64 al_size_4k;
3113
3114 /* both not set: default to old fixed size activity log */
3115 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3116 al_stripes = 1;
3117 al_stripe_size_4k = MD_32kB_SECT/8;
3118 }
3119
3120 /* some paranoia plausibility checks */
3121
3122 /* we need both values to be set */
3123 if (al_stripes == 0 || al_stripe_size_4k == 0)
3124 goto err;
3125
3126 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3127
3128 /* Upper limit of activity log area, to avoid potential overflow
3129 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3130 * than 72 * 4k blocks total only increases the amount of history,
3131 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3132 if (al_size_4k > (16 * 1024 * 1024/4))
3133 goto err;
3134
3135 /* Lower limit: we need at least 8 transaction slots (32kB)
3136 * to not break existing setups */
3137 if (al_size_4k < MD_32kB_SECT/8)
3138 goto err;
3139
3140 in_core->al_stripe_size_4k = al_stripe_size_4k;
3141 in_core->al_stripes = al_stripes;
3142 in_core->al_size_4k = al_size_4k;
3143
3144 return 0;
3145 err:
3146 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3147 al_stripes, al_stripe_size_4k);
3148 return -EINVAL;
3149 }
3150
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3151 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3152 {
3153 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3154 struct drbd_md *in_core = &bdev->md;
3155 s32 on_disk_al_sect;
3156 s32 on_disk_bm_sect;
3157
3158 /* The on-disk size of the activity log, calculated from offsets, and
3159 * the size of the activity log calculated from the stripe settings,
3160 * should match.
3161 * Though we could relax this a bit: it is ok, if the striped activity log
3162 * fits in the available on-disk activity log size.
3163 * Right now, that would break how resize is implemented.
3164 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3165 * of possible unused padding space in the on disk layout. */
3166 if (in_core->al_offset < 0) {
3167 if (in_core->bm_offset > in_core->al_offset)
3168 goto err;
3169 on_disk_al_sect = -in_core->al_offset;
3170 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3171 } else {
3172 if (in_core->al_offset != MD_4kB_SECT)
3173 goto err;
3174 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3175 goto err;
3176
3177 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3178 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3179 }
3180
3181 /* old fixed size meta data is exactly that: fixed. */
3182 if (in_core->meta_dev_idx >= 0) {
3183 if (in_core->md_size_sect != MD_128MB_SECT
3184 || in_core->al_offset != MD_4kB_SECT
3185 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3186 || in_core->al_stripes != 1
3187 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3188 goto err;
3189 }
3190
3191 if (capacity < in_core->md_size_sect)
3192 goto err;
3193 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3194 goto err;
3195
3196 /* should be aligned, and at least 32k */
3197 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3198 goto err;
3199
3200 /* should fit (for now: exactly) into the available on-disk space;
3201 * overflow prevention is in check_activity_log_stripe_size() above. */
3202 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3203 goto err;
3204
3205 /* again, should be aligned */
3206 if (in_core->bm_offset & 7)
3207 goto err;
3208
3209 /* FIXME check for device grow with flex external meta data? */
3210
3211 /* can the available bitmap space cover the last agreed device size? */
3212 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3213 goto err;
3214
3215 return 0;
3216
3217 err:
3218 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3219 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3220 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3221 in_core->meta_dev_idx,
3222 in_core->al_stripes, in_core->al_stripe_size_4k,
3223 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3224 (unsigned long long)in_core->la_size_sect,
3225 (unsigned long long)capacity);
3226
3227 return -EINVAL;
3228 }
3229
3230
3231 /**
3232 * drbd_md_read() - Reads in the meta data super block
3233 * @device: DRBD device.
3234 * @bdev: Device from which the meta data should be read in.
3235 *
3236 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3237 * something goes wrong.
3238 *
3239 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3240 * even before @bdev is assigned to @device->ldev.
3241 */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3242 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3243 {
3244 struct meta_data_on_disk *buffer;
3245 u32 magic, flags;
3246 int i, rv = NO_ERROR;
3247
3248 if (device->state.disk != D_DISKLESS)
3249 return ERR_DISK_CONFIGURED;
3250
3251 buffer = drbd_md_get_buffer(device, __func__);
3252 if (!buffer)
3253 return ERR_NOMEM;
3254
3255 /* First, figure out where our meta data superblock is located,
3256 * and read it. */
3257 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3258 bdev->md.md_offset = drbd_md_ss(bdev);
3259 /* Even for (flexible or indexed) external meta data,
3260 * initially restrict us to the 4k superblock for now.
3261 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3262 bdev->md.md_size_sect = 8;
3263
3264 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3265 REQ_OP_READ)) {
3266 /* NOTE: can't do normal error processing here as this is
3267 called BEFORE disk is attached */
3268 drbd_err(device, "Error while reading metadata.\n");
3269 rv = ERR_IO_MD_DISK;
3270 goto err;
3271 }
3272
3273 magic = be32_to_cpu(buffer->magic);
3274 flags = be32_to_cpu(buffer->flags);
3275 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3276 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3277 /* btw: that's Activity Log clean, not "all" clean. */
3278 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3279 rv = ERR_MD_UNCLEAN;
3280 goto err;
3281 }
3282
3283 rv = ERR_MD_INVALID;
3284 if (magic != DRBD_MD_MAGIC_08) {
3285 if (magic == DRBD_MD_MAGIC_07)
3286 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3287 else
3288 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3289 goto err;
3290 }
3291
3292 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3293 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3294 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3295 goto err;
3296 }
3297
3298
3299 /* convert to in_core endian */
3300 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3301 for (i = UI_CURRENT; i < UI_SIZE; i++)
3302 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3303 bdev->md.flags = be32_to_cpu(buffer->flags);
3304 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3305
3306 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3307 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3308 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3309
3310 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3311 goto err;
3312 if (check_offsets_and_sizes(device, bdev))
3313 goto err;
3314
3315 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3316 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3317 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3318 goto err;
3319 }
3320 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3321 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3322 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3323 goto err;
3324 }
3325
3326 rv = NO_ERROR;
3327
3328 spin_lock_irq(&device->resource->req_lock);
3329 if (device->state.conn < C_CONNECTED) {
3330 unsigned int peer;
3331 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3332 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3333 device->peer_max_bio_size = peer;
3334 }
3335 spin_unlock_irq(&device->resource->req_lock);
3336
3337 err:
3338 drbd_md_put_buffer(device);
3339
3340 return rv;
3341 }
3342
3343 /**
3344 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3345 * @device: DRBD device.
3346 *
3347 * Call this function if you change anything that should be written to
3348 * the meta-data super block. This function sets MD_DIRTY, and starts a
3349 * timer that ensures that within five seconds you have to call drbd_md_sync().
3350 */
drbd_md_mark_dirty(struct drbd_device * device)3351 void drbd_md_mark_dirty(struct drbd_device *device)
3352 {
3353 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3354 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3355 }
3356
drbd_uuid_move_history(struct drbd_device * device)3357 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3358 {
3359 int i;
3360
3361 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3362 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3363 }
3364
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3365 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3366 {
3367 if (idx == UI_CURRENT) {
3368 if (device->state.role == R_PRIMARY)
3369 val |= 1;
3370 else
3371 val &= ~((u64)1);
3372
3373 drbd_set_ed_uuid(device, val);
3374 }
3375
3376 device->ldev->md.uuid[idx] = val;
3377 drbd_md_mark_dirty(device);
3378 }
3379
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3380 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3381 {
3382 unsigned long flags;
3383 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3384 __drbd_uuid_set(device, idx, val);
3385 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3386 }
3387
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3388 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3389 {
3390 unsigned long flags;
3391 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3392 if (device->ldev->md.uuid[idx]) {
3393 drbd_uuid_move_history(device);
3394 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3395 }
3396 __drbd_uuid_set(device, idx, val);
3397 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3398 }
3399
3400 /**
3401 * drbd_uuid_new_current() - Creates a new current UUID
3402 * @device: DRBD device.
3403 *
3404 * Creates a new current UUID, and rotates the old current UUID into
3405 * the bitmap slot. Causes an incremental resync upon next connect.
3406 */
drbd_uuid_new_current(struct drbd_device * device)3407 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3408 {
3409 u64 val;
3410 unsigned long long bm_uuid;
3411
3412 get_random_bytes(&val, sizeof(u64));
3413
3414 spin_lock_irq(&device->ldev->md.uuid_lock);
3415 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3416
3417 if (bm_uuid)
3418 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3419
3420 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3421 __drbd_uuid_set(device, UI_CURRENT, val);
3422 spin_unlock_irq(&device->ldev->md.uuid_lock);
3423
3424 drbd_print_uuids(device, "new current UUID");
3425 /* get it to stable storage _now_ */
3426 drbd_md_sync(device);
3427 }
3428
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3429 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3430 {
3431 unsigned long flags;
3432 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3433 return;
3434
3435 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3436 if (val == 0) {
3437 drbd_uuid_move_history(device);
3438 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3439 device->ldev->md.uuid[UI_BITMAP] = 0;
3440 } else {
3441 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3442 if (bm_uuid)
3443 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3444
3445 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3446 }
3447 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3448
3449 drbd_md_mark_dirty(device);
3450 }
3451
3452 /**
3453 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3454 * @device: DRBD device.
3455 *
3456 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3457 */
drbd_bmio_set_n_write(struct drbd_device * device)3458 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3459 {
3460 int rv = -EIO;
3461
3462 drbd_md_set_flag(device, MDF_FULL_SYNC);
3463 drbd_md_sync(device);
3464 drbd_bm_set_all(device);
3465
3466 rv = drbd_bm_write(device);
3467
3468 if (!rv) {
3469 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3470 drbd_md_sync(device);
3471 }
3472
3473 return rv;
3474 }
3475
3476 /**
3477 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3478 * @device: DRBD device.
3479 *
3480 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3481 */
drbd_bmio_clear_n_write(struct drbd_device * device)3482 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3483 {
3484 drbd_resume_al(device);
3485 drbd_bm_clear_all(device);
3486 return drbd_bm_write(device);
3487 }
3488
w_bitmap_io(struct drbd_work * w,int unused)3489 static int w_bitmap_io(struct drbd_work *w, int unused)
3490 {
3491 struct drbd_device *device =
3492 container_of(w, struct drbd_device, bm_io_work.w);
3493 struct bm_io_work *work = &device->bm_io_work;
3494 int rv = -EIO;
3495
3496 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3497 int cnt = atomic_read(&device->ap_bio_cnt);
3498 if (cnt)
3499 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3500 cnt, work->why);
3501 }
3502
3503 if (get_ldev(device)) {
3504 drbd_bm_lock(device, work->why, work->flags);
3505 rv = work->io_fn(device);
3506 drbd_bm_unlock(device);
3507 put_ldev(device);
3508 }
3509
3510 clear_bit_unlock(BITMAP_IO, &device->flags);
3511 wake_up(&device->misc_wait);
3512
3513 if (work->done)
3514 work->done(device, rv);
3515
3516 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3517 work->why = NULL;
3518 work->flags = 0;
3519
3520 return 0;
3521 }
3522
3523 /**
3524 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3525 * @device: DRBD device.
3526 * @io_fn: IO callback to be called when bitmap IO is possible
3527 * @done: callback to be called after the bitmap IO was performed
3528 * @why: Descriptive text of the reason for doing the IO
3529 *
3530 * While IO on the bitmap happens we freeze application IO thus we ensure
3531 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3532 * called from worker context. It MUST NOT be used while a previous such
3533 * work is still pending!
3534 *
3535 * Its worker function encloses the call of io_fn() by get_ldev() and
3536 * put_ldev().
3537 */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags)3538 void drbd_queue_bitmap_io(struct drbd_device *device,
3539 int (*io_fn)(struct drbd_device *),
3540 void (*done)(struct drbd_device *, int),
3541 char *why, enum bm_flag flags)
3542 {
3543 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3544
3545 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3546 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3547 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3548 if (device->bm_io_work.why)
3549 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3550 why, device->bm_io_work.why);
3551
3552 device->bm_io_work.io_fn = io_fn;
3553 device->bm_io_work.done = done;
3554 device->bm_io_work.why = why;
3555 device->bm_io_work.flags = flags;
3556
3557 spin_lock_irq(&device->resource->req_lock);
3558 set_bit(BITMAP_IO, &device->flags);
3559 /* don't wait for pending application IO if the caller indicates that
3560 * application IO does not conflict anyways. */
3561 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3562 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3563 drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3564 &device->bm_io_work.w);
3565 }
3566 spin_unlock_irq(&device->resource->req_lock);
3567 }
3568
3569 /**
3570 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3571 * @device: DRBD device.
3572 * @io_fn: IO callback to be called when bitmap IO is possible
3573 * @why: Descriptive text of the reason for doing the IO
3574 *
3575 * freezes application IO while that the actual IO operations runs. This
3576 * functions MAY NOT be called from worker context.
3577 */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),char * why,enum bm_flag flags)3578 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3579 char *why, enum bm_flag flags)
3580 {
3581 /* Only suspend io, if some operation is supposed to be locked out */
3582 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3583 int rv;
3584
3585 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3586
3587 if (do_suspend_io)
3588 drbd_suspend_io(device);
3589
3590 drbd_bm_lock(device, why, flags);
3591 rv = io_fn(device);
3592 drbd_bm_unlock(device);
3593
3594 if (do_suspend_io)
3595 drbd_resume_io(device);
3596
3597 return rv;
3598 }
3599
drbd_md_set_flag(struct drbd_device * device,int flag)3600 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3601 {
3602 if ((device->ldev->md.flags & flag) != flag) {
3603 drbd_md_mark_dirty(device);
3604 device->ldev->md.flags |= flag;
3605 }
3606 }
3607
drbd_md_clear_flag(struct drbd_device * device,int flag)3608 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3609 {
3610 if ((device->ldev->md.flags & flag) != 0) {
3611 drbd_md_mark_dirty(device);
3612 device->ldev->md.flags &= ~flag;
3613 }
3614 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3615 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3616 {
3617 return (bdev->md.flags & flag) != 0;
3618 }
3619
md_sync_timer_fn(struct timer_list * t)3620 static void md_sync_timer_fn(struct timer_list *t)
3621 {
3622 struct drbd_device *device = from_timer(device, t, md_sync_timer);
3623 drbd_device_post_work(device, MD_SYNC);
3624 }
3625
cmdname(enum drbd_packet cmd)3626 const char *cmdname(enum drbd_packet cmd)
3627 {
3628 /* THINK may need to become several global tables
3629 * when we want to support more than
3630 * one PRO_VERSION */
3631 static const char *cmdnames[] = {
3632
3633 [P_DATA] = "Data",
3634 [P_DATA_REPLY] = "DataReply",
3635 [P_RS_DATA_REPLY] = "RSDataReply",
3636 [P_BARRIER] = "Barrier",
3637 [P_BITMAP] = "ReportBitMap",
3638 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3639 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3640 [P_UNPLUG_REMOTE] = "UnplugRemote",
3641 [P_DATA_REQUEST] = "DataRequest",
3642 [P_RS_DATA_REQUEST] = "RSDataRequest",
3643 [P_SYNC_PARAM] = "SyncParam",
3644 [P_PROTOCOL] = "ReportProtocol",
3645 [P_UUIDS] = "ReportUUIDs",
3646 [P_SIZES] = "ReportSizes",
3647 [P_STATE] = "ReportState",
3648 [P_SYNC_UUID] = "ReportSyncUUID",
3649 [P_AUTH_CHALLENGE] = "AuthChallenge",
3650 [P_AUTH_RESPONSE] = "AuthResponse",
3651 [P_STATE_CHG_REQ] = "StateChgRequest",
3652 [P_PING] = "Ping",
3653 [P_PING_ACK] = "PingAck",
3654 [P_RECV_ACK] = "RecvAck",
3655 [P_WRITE_ACK] = "WriteAck",
3656 [P_RS_WRITE_ACK] = "RSWriteAck",
3657 [P_SUPERSEDED] = "Superseded",
3658 [P_NEG_ACK] = "NegAck",
3659 [P_NEG_DREPLY] = "NegDReply",
3660 [P_NEG_RS_DREPLY] = "NegRSDReply",
3661 [P_BARRIER_ACK] = "BarrierAck",
3662 [P_STATE_CHG_REPLY] = "StateChgReply",
3663 [P_OV_REQUEST] = "OVRequest",
3664 [P_OV_REPLY] = "OVReply",
3665 [P_OV_RESULT] = "OVResult",
3666 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3667 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3668 [P_SYNC_PARAM89] = "SyncParam89",
3669 [P_COMPRESSED_BITMAP] = "CBitmap",
3670 [P_DELAY_PROBE] = "DelayProbe",
3671 [P_OUT_OF_SYNC] = "OutOfSync",
3672 [P_RS_CANCEL] = "RSCancel",
3673 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3674 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3675 [P_RETRY_WRITE] = "retry_write",
3676 [P_PROTOCOL_UPDATE] = "protocol_update",
3677 [P_TRIM] = "Trim",
3678 [P_RS_THIN_REQ] = "rs_thin_req",
3679 [P_RS_DEALLOCATED] = "rs_deallocated",
3680 [P_WSAME] = "WriteSame",
3681 [P_ZEROES] = "Zeroes",
3682
3683 /* enum drbd_packet, but not commands - obsoleted flags:
3684 * P_MAY_IGNORE
3685 * P_MAX_OPT_CMD
3686 */
3687 };
3688
3689 /* too big for the array: 0xfffX */
3690 if (cmd == P_INITIAL_META)
3691 return "InitialMeta";
3692 if (cmd == P_INITIAL_DATA)
3693 return "InitialData";
3694 if (cmd == P_CONNECTION_FEATURES)
3695 return "ConnectionFeatures";
3696 if (cmd >= ARRAY_SIZE(cmdnames))
3697 return "Unknown";
3698 return cmdnames[cmd];
3699 }
3700
3701 /**
3702 * drbd_wait_misc - wait for a request to make progress
3703 * @device: device associated with the request
3704 * @i: the struct drbd_interval embedded in struct drbd_request or
3705 * struct drbd_peer_request
3706 */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3707 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3708 {
3709 struct net_conf *nc;
3710 DEFINE_WAIT(wait);
3711 long timeout;
3712
3713 rcu_read_lock();
3714 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3715 if (!nc) {
3716 rcu_read_unlock();
3717 return -ETIMEDOUT;
3718 }
3719 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3720 rcu_read_unlock();
3721
3722 /* Indicate to wake up device->misc_wait on progress. */
3723 i->waiting = true;
3724 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3725 spin_unlock_irq(&device->resource->req_lock);
3726 timeout = schedule_timeout(timeout);
3727 finish_wait(&device->misc_wait, &wait);
3728 spin_lock_irq(&device->resource->req_lock);
3729 if (!timeout || device->state.conn < C_CONNECTED)
3730 return -ETIMEDOUT;
3731 if (signal_pending(current))
3732 return -ERESTARTSYS;
3733 return 0;
3734 }
3735
lock_all_resources(void)3736 void lock_all_resources(void)
3737 {
3738 struct drbd_resource *resource;
3739 int __maybe_unused i = 0;
3740
3741 mutex_lock(&resources_mutex);
3742 local_irq_disable();
3743 for_each_resource(resource, &drbd_resources)
3744 spin_lock_nested(&resource->req_lock, i++);
3745 }
3746
unlock_all_resources(void)3747 void unlock_all_resources(void)
3748 {
3749 struct drbd_resource *resource;
3750
3751 for_each_resource(resource, &drbd_resources)
3752 spin_unlock(&resource->req_lock);
3753 local_irq_enable();
3754 mutex_unlock(&resources_mutex);
3755 }
3756
3757 #ifdef CONFIG_DRBD_FAULT_INJECTION
3758 /* Fault insertion support including random number generator shamelessly
3759 * stolen from kernel/rcutorture.c */
3760 struct fault_random_state {
3761 unsigned long state;
3762 unsigned long count;
3763 };
3764
3765 #define FAULT_RANDOM_MULT 39916801 /* prime */
3766 #define FAULT_RANDOM_ADD 479001701 /* prime */
3767 #define FAULT_RANDOM_REFRESH 10000
3768
3769 /*
3770 * Crude but fast random-number generator. Uses a linear congruential
3771 * generator, with occasional help from get_random_bytes().
3772 */
3773 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3774 _drbd_fault_random(struct fault_random_state *rsp)
3775 {
3776 long refresh;
3777
3778 if (!rsp->count--) {
3779 get_random_bytes(&refresh, sizeof(refresh));
3780 rsp->state += refresh;
3781 rsp->count = FAULT_RANDOM_REFRESH;
3782 }
3783 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3784 return swahw32(rsp->state);
3785 }
3786
3787 static char *
_drbd_fault_str(unsigned int type)3788 _drbd_fault_str(unsigned int type) {
3789 static char *_faults[] = {
3790 [DRBD_FAULT_MD_WR] = "Meta-data write",
3791 [DRBD_FAULT_MD_RD] = "Meta-data read",
3792 [DRBD_FAULT_RS_WR] = "Resync write",
3793 [DRBD_FAULT_RS_RD] = "Resync read",
3794 [DRBD_FAULT_DT_WR] = "Data write",
3795 [DRBD_FAULT_DT_RD] = "Data read",
3796 [DRBD_FAULT_DT_RA] = "Data read ahead",
3797 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3798 [DRBD_FAULT_AL_EE] = "EE allocation",
3799 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3800 };
3801
3802 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3803 }
3804
3805 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3806 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3807 {
3808 static struct fault_random_state rrs = {0, 0};
3809
3810 unsigned int ret = (
3811 (drbd_fault_devs == 0 ||
3812 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3813 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3814
3815 if (ret) {
3816 drbd_fault_count++;
3817
3818 if (__ratelimit(&drbd_ratelimit_state))
3819 drbd_warn(device, "***Simulating %s failure\n",
3820 _drbd_fault_str(type));
3821 }
3822
3823 return ret;
3824 }
3825 #endif
3826
drbd_buildtag(void)3827 const char *drbd_buildtag(void)
3828 {
3829 /* DRBD built from external sources has here a reference to the
3830 git hash of the source code. */
3831
3832 static char buildtag[38] = "\0uilt-in";
3833
3834 if (buildtag[0] == 0) {
3835 #ifdef MODULE
3836 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3837 #else
3838 buildtag[0] = 'b';
3839 #endif
3840 }
3841
3842 return buildtag;
3843 }
3844
3845 module_init(drbd_init)
3846 module_exit(drbd_cleanup)
3847
3848 EXPORT_SYMBOL(drbd_conn_str);
3849 EXPORT_SYMBOL(drbd_role_str);
3850 EXPORT_SYMBOL(drbd_disk_str);
3851 EXPORT_SYMBOL(drbd_set_st_err_str);
3852