1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd_worker.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11
12 */
13
14 #include <linux/module.h>
15 #include <linux/drbd.h>
16 #include <linux/sched/signal.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/memcontrol.h>
20 #include <linux/mm_inline.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/string.h>
24 #include <linux/scatterlist.h>
25 #include <linux/part_stat.h>
26
27 #include "drbd_int.h"
28 #include "drbd_protocol.h"
29 #include "drbd_req.h"
30
31 static int make_ov_request(struct drbd_device *, int);
32 static int make_resync_request(struct drbd_device *, int);
33
34 /* endio handlers:
35 * drbd_md_endio (defined here)
36 * drbd_request_endio (defined here)
37 * drbd_peer_request_endio (defined here)
38 * drbd_bm_endio (defined in drbd_bitmap.c)
39 *
40 * For all these callbacks, note the following:
41 * The callbacks will be called in irq context by the IDE drivers,
42 * and in Softirqs/Tasklets/BH context by the SCSI drivers.
43 * Try to get the locking right :)
44 *
45 */
46
47 /* used for synchronous meta data and bitmap IO
48 * submitted by drbd_md_sync_page_io()
49 */
drbd_md_endio(struct bio * bio)50 void drbd_md_endio(struct bio *bio)
51 {
52 struct drbd_device *device;
53
54 device = bio->bi_private;
55 device->md_io.error = blk_status_to_errno(bio->bi_status);
56
57 /* special case: drbd_md_read() during drbd_adm_attach() */
58 if (device->ldev)
59 put_ldev(device);
60 bio_put(bio);
61
62 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
63 * to timeout on the lower level device, and eventually detach from it.
64 * If this io completion runs after that timeout expired, this
65 * drbd_md_put_buffer() may allow us to finally try and re-attach.
66 * During normal operation, this only puts that extra reference
67 * down to 1 again.
68 * Make sure we first drop the reference, and only then signal
69 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
70 * next drbd_md_sync_page_io(), that we trigger the
71 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
72 */
73 drbd_md_put_buffer(device);
74 device->md_io.done = 1;
75 wake_up(&device->misc_wait);
76 }
77
78 /* reads on behalf of the partner,
79 * "submitted" by the receiver
80 */
drbd_endio_read_sec_final(struct drbd_peer_request * peer_req)81 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
82 {
83 unsigned long flags = 0;
84 struct drbd_peer_device *peer_device = peer_req->peer_device;
85 struct drbd_device *device = peer_device->device;
86
87 spin_lock_irqsave(&device->resource->req_lock, flags);
88 device->read_cnt += peer_req->i.size >> 9;
89 list_del(&peer_req->w.list);
90 if (list_empty(&device->read_ee))
91 wake_up(&device->ee_wait);
92 if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
93 __drbd_chk_io_error(device, DRBD_READ_ERROR);
94 spin_unlock_irqrestore(&device->resource->req_lock, flags);
95
96 drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
97 put_ldev(device);
98 }
99
100 /* writes on behalf of the partner, or resync writes,
101 * "submitted" by the receiver, final stage. */
drbd_endio_write_sec_final(struct drbd_peer_request * peer_req)102 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
103 {
104 unsigned long flags = 0;
105 struct drbd_peer_device *peer_device = peer_req->peer_device;
106 struct drbd_device *device = peer_device->device;
107 struct drbd_connection *connection = peer_device->connection;
108 struct drbd_interval i;
109 int do_wake;
110 u64 block_id;
111 int do_al_complete_io;
112
113 /* after we moved peer_req to done_ee,
114 * we may no longer access it,
115 * it may be freed/reused already!
116 * (as soon as we release the req_lock) */
117 i = peer_req->i;
118 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
119 block_id = peer_req->block_id;
120 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
121
122 if (peer_req->flags & EE_WAS_ERROR) {
123 /* In protocol != C, we usually do not send write acks.
124 * In case of a write error, send the neg ack anyways. */
125 if (!__test_and_set_bit(__EE_SEND_WRITE_ACK, &peer_req->flags))
126 inc_unacked(device);
127 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
128 }
129
130 spin_lock_irqsave(&device->resource->req_lock, flags);
131 device->writ_cnt += peer_req->i.size >> 9;
132 list_move_tail(&peer_req->w.list, &device->done_ee);
133
134 /*
135 * Do not remove from the write_requests tree here: we did not send the
136 * Ack yet and did not wake possibly waiting conflicting requests.
137 * Removed from the tree from "drbd_process_done_ee" within the
138 * appropriate dw.cb (e_end_block/e_end_resync_block) or from
139 * _drbd_clear_done_ee.
140 */
141
142 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
143
144 /* FIXME do we want to detach for failed REQ_OP_DISCARD?
145 * ((peer_req->flags & (EE_WAS_ERROR|EE_TRIM)) == EE_WAS_ERROR) */
146 if (peer_req->flags & EE_WAS_ERROR)
147 __drbd_chk_io_error(device, DRBD_WRITE_ERROR);
148
149 if (connection->cstate >= C_WF_REPORT_PARAMS) {
150 kref_get(&device->kref); /* put is in drbd_send_acks_wf() */
151 if (!queue_work(connection->ack_sender, &peer_device->send_acks_work))
152 kref_put(&device->kref, drbd_destroy_device);
153 }
154 spin_unlock_irqrestore(&device->resource->req_lock, flags);
155
156 if (block_id == ID_SYNCER)
157 drbd_rs_complete_io(device, i.sector);
158
159 if (do_wake)
160 wake_up(&device->ee_wait);
161
162 if (do_al_complete_io)
163 drbd_al_complete_io(device, &i);
164
165 put_ldev(device);
166 }
167
168 /* writes on behalf of the partner, or resync writes,
169 * "submitted" by the receiver.
170 */
drbd_peer_request_endio(struct bio * bio)171 void drbd_peer_request_endio(struct bio *bio)
172 {
173 struct drbd_peer_request *peer_req = bio->bi_private;
174 struct drbd_device *device = peer_req->peer_device->device;
175 bool is_write = bio_data_dir(bio) == WRITE;
176 bool is_discard = bio_op(bio) == REQ_OP_WRITE_ZEROES ||
177 bio_op(bio) == REQ_OP_DISCARD;
178
179 if (bio->bi_status && __ratelimit(&drbd_ratelimit_state))
180 drbd_warn(device, "%s: error=%d s=%llus\n",
181 is_write ? (is_discard ? "discard" : "write")
182 : "read", bio->bi_status,
183 (unsigned long long)peer_req->i.sector);
184
185 if (bio->bi_status)
186 set_bit(__EE_WAS_ERROR, &peer_req->flags);
187
188 bio_put(bio); /* no need for the bio anymore */
189 if (atomic_dec_and_test(&peer_req->pending_bios)) {
190 if (is_write)
191 drbd_endio_write_sec_final(peer_req);
192 else
193 drbd_endio_read_sec_final(peer_req);
194 }
195 }
196
197 static void
drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device * device)198 drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device)
199 {
200 panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n",
201 device->minor, device->resource->name, device->vnr);
202 }
203
204 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
205 */
drbd_request_endio(struct bio * bio)206 void drbd_request_endio(struct bio *bio)
207 {
208 unsigned long flags;
209 struct drbd_request *req = bio->bi_private;
210 struct drbd_device *device = req->device;
211 struct bio_and_error m;
212 enum drbd_req_event what;
213
214 /* If this request was aborted locally before,
215 * but now was completed "successfully",
216 * chances are that this caused arbitrary data corruption.
217 *
218 * "aborting" requests, or force-detaching the disk, is intended for
219 * completely blocked/hung local backing devices which do no longer
220 * complete requests at all, not even do error completions. In this
221 * situation, usually a hard-reset and failover is the only way out.
222 *
223 * By "aborting", basically faking a local error-completion,
224 * we allow for a more graceful swichover by cleanly migrating services.
225 * Still the affected node has to be rebooted "soon".
226 *
227 * By completing these requests, we allow the upper layers to re-use
228 * the associated data pages.
229 *
230 * If later the local backing device "recovers", and now DMAs some data
231 * from disk into the original request pages, in the best case it will
232 * just put random data into unused pages; but typically it will corrupt
233 * meanwhile completely unrelated data, causing all sorts of damage.
234 *
235 * Which means delayed successful completion,
236 * especially for READ requests,
237 * is a reason to panic().
238 *
239 * We assume that a delayed *error* completion is OK,
240 * though we still will complain noisily about it.
241 */
242 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
243 if (__ratelimit(&drbd_ratelimit_state))
244 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
245
246 if (!bio->bi_status)
247 drbd_panic_after_delayed_completion_of_aborted_request(device);
248 }
249
250 /* to avoid recursion in __req_mod */
251 if (unlikely(bio->bi_status)) {
252 switch (bio_op(bio)) {
253 case REQ_OP_WRITE_ZEROES:
254 case REQ_OP_DISCARD:
255 if (bio->bi_status == BLK_STS_NOTSUPP)
256 what = DISCARD_COMPLETED_NOTSUPP;
257 else
258 what = DISCARD_COMPLETED_WITH_ERROR;
259 break;
260 case REQ_OP_READ:
261 if (bio->bi_opf & REQ_RAHEAD)
262 what = READ_AHEAD_COMPLETED_WITH_ERROR;
263 else
264 what = READ_COMPLETED_WITH_ERROR;
265 break;
266 default:
267 what = WRITE_COMPLETED_WITH_ERROR;
268 break;
269 }
270 } else {
271 what = COMPLETED_OK;
272 }
273
274 req->private_bio = ERR_PTR(blk_status_to_errno(bio->bi_status));
275 bio_put(bio);
276
277 /* not req_mod(), we need irqsave here! */
278 spin_lock_irqsave(&device->resource->req_lock, flags);
279 __req_mod(req, what, &m);
280 spin_unlock_irqrestore(&device->resource->req_lock, flags);
281 put_ldev(device);
282
283 if (m.bio)
284 complete_master_bio(device, &m);
285 }
286
drbd_csum_ee(struct crypto_shash * tfm,struct drbd_peer_request * peer_req,void * digest)287 void drbd_csum_ee(struct crypto_shash *tfm, struct drbd_peer_request *peer_req, void *digest)
288 {
289 SHASH_DESC_ON_STACK(desc, tfm);
290 struct page *page = peer_req->pages;
291 struct page *tmp;
292 unsigned len;
293 void *src;
294
295 desc->tfm = tfm;
296
297 crypto_shash_init(desc);
298
299 src = kmap_atomic(page);
300 while ((tmp = page_chain_next(page))) {
301 /* all but the last page will be fully used */
302 crypto_shash_update(desc, src, PAGE_SIZE);
303 kunmap_atomic(src);
304 page = tmp;
305 src = kmap_atomic(page);
306 }
307 /* and now the last, possibly only partially used page */
308 len = peer_req->i.size & (PAGE_SIZE - 1);
309 crypto_shash_update(desc, src, len ?: PAGE_SIZE);
310 kunmap_atomic(src);
311
312 crypto_shash_final(desc, digest);
313 shash_desc_zero(desc);
314 }
315
drbd_csum_bio(struct crypto_shash * tfm,struct bio * bio,void * digest)316 void drbd_csum_bio(struct crypto_shash *tfm, struct bio *bio, void *digest)
317 {
318 SHASH_DESC_ON_STACK(desc, tfm);
319 struct bio_vec bvec;
320 struct bvec_iter iter;
321
322 desc->tfm = tfm;
323
324 crypto_shash_init(desc);
325
326 bio_for_each_segment(bvec, bio, iter) {
327 u8 *src;
328
329 src = kmap_atomic(bvec.bv_page);
330 crypto_shash_update(desc, src + bvec.bv_offset, bvec.bv_len);
331 kunmap_atomic(src);
332
333 /* REQ_OP_WRITE_SAME has only one segment,
334 * checksum the payload only once. */
335 if (bio_op(bio) == REQ_OP_WRITE_SAME)
336 break;
337 }
338 crypto_shash_final(desc, digest);
339 shash_desc_zero(desc);
340 }
341
342 /* MAYBE merge common code with w_e_end_ov_req */
w_e_send_csum(struct drbd_work * w,int cancel)343 static int w_e_send_csum(struct drbd_work *w, int cancel)
344 {
345 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
346 struct drbd_peer_device *peer_device = peer_req->peer_device;
347 struct drbd_device *device = peer_device->device;
348 int digest_size;
349 void *digest;
350 int err = 0;
351
352 if (unlikely(cancel))
353 goto out;
354
355 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
356 goto out;
357
358 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
359 digest = kmalloc(digest_size, GFP_NOIO);
360 if (digest) {
361 sector_t sector = peer_req->i.sector;
362 unsigned int size = peer_req->i.size;
363 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
364 /* Free peer_req and pages before send.
365 * In case we block on congestion, we could otherwise run into
366 * some distributed deadlock, if the other side blocks on
367 * congestion as well, because our receiver blocks in
368 * drbd_alloc_pages due to pp_in_use > max_buffers. */
369 drbd_free_peer_req(device, peer_req);
370 peer_req = NULL;
371 inc_rs_pending(device);
372 err = drbd_send_drequest_csum(peer_device, sector, size,
373 digest, digest_size,
374 P_CSUM_RS_REQUEST);
375 kfree(digest);
376 } else {
377 drbd_err(device, "kmalloc() of digest failed.\n");
378 err = -ENOMEM;
379 }
380
381 out:
382 if (peer_req)
383 drbd_free_peer_req(device, peer_req);
384
385 if (unlikely(err))
386 drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
387 return err;
388 }
389
390 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
391
read_for_csum(struct drbd_peer_device * peer_device,sector_t sector,int size)392 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
393 {
394 struct drbd_device *device = peer_device->device;
395 struct drbd_peer_request *peer_req;
396
397 if (!get_ldev(device))
398 return -EIO;
399
400 /* GFP_TRY, because if there is no memory available right now, this may
401 * be rescheduled for later. It is "only" background resync, after all. */
402 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
403 size, size, GFP_TRY);
404 if (!peer_req)
405 goto defer;
406
407 peer_req->w.cb = w_e_send_csum;
408 spin_lock_irq(&device->resource->req_lock);
409 list_add_tail(&peer_req->w.list, &device->read_ee);
410 spin_unlock_irq(&device->resource->req_lock);
411
412 atomic_add(size >> 9, &device->rs_sect_ev);
413 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
414 DRBD_FAULT_RS_RD) == 0)
415 return 0;
416
417 /* If it failed because of ENOMEM, retry should help. If it failed
418 * because bio_add_page failed (probably broken lower level driver),
419 * retry may or may not help.
420 * If it does not, you may need to force disconnect. */
421 spin_lock_irq(&device->resource->req_lock);
422 list_del(&peer_req->w.list);
423 spin_unlock_irq(&device->resource->req_lock);
424
425 drbd_free_peer_req(device, peer_req);
426 defer:
427 put_ldev(device);
428 return -EAGAIN;
429 }
430
w_resync_timer(struct drbd_work * w,int cancel)431 int w_resync_timer(struct drbd_work *w, int cancel)
432 {
433 struct drbd_device *device =
434 container_of(w, struct drbd_device, resync_work);
435
436 switch (device->state.conn) {
437 case C_VERIFY_S:
438 make_ov_request(device, cancel);
439 break;
440 case C_SYNC_TARGET:
441 make_resync_request(device, cancel);
442 break;
443 }
444
445 return 0;
446 }
447
resync_timer_fn(struct timer_list * t)448 void resync_timer_fn(struct timer_list *t)
449 {
450 struct drbd_device *device = from_timer(device, t, resync_timer);
451
452 drbd_queue_work_if_unqueued(
453 &first_peer_device(device)->connection->sender_work,
454 &device->resync_work);
455 }
456
fifo_set(struct fifo_buffer * fb,int value)457 static void fifo_set(struct fifo_buffer *fb, int value)
458 {
459 int i;
460
461 for (i = 0; i < fb->size; i++)
462 fb->values[i] = value;
463 }
464
fifo_push(struct fifo_buffer * fb,int value)465 static int fifo_push(struct fifo_buffer *fb, int value)
466 {
467 int ov;
468
469 ov = fb->values[fb->head_index];
470 fb->values[fb->head_index++] = value;
471
472 if (fb->head_index >= fb->size)
473 fb->head_index = 0;
474
475 return ov;
476 }
477
fifo_add_val(struct fifo_buffer * fb,int value)478 static void fifo_add_val(struct fifo_buffer *fb, int value)
479 {
480 int i;
481
482 for (i = 0; i < fb->size; i++)
483 fb->values[i] += value;
484 }
485
fifo_alloc(unsigned int fifo_size)486 struct fifo_buffer *fifo_alloc(unsigned int fifo_size)
487 {
488 struct fifo_buffer *fb;
489
490 fb = kzalloc(struct_size(fb, values, fifo_size), GFP_NOIO);
491 if (!fb)
492 return NULL;
493
494 fb->head_index = 0;
495 fb->size = fifo_size;
496 fb->total = 0;
497
498 return fb;
499 }
500
drbd_rs_controller(struct drbd_device * device,unsigned int sect_in)501 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
502 {
503 struct disk_conf *dc;
504 unsigned int want; /* The number of sectors we want in-flight */
505 int req_sect; /* Number of sectors to request in this turn */
506 int correction; /* Number of sectors more we need in-flight */
507 int cps; /* correction per invocation of drbd_rs_controller() */
508 int steps; /* Number of time steps to plan ahead */
509 int curr_corr;
510 int max_sect;
511 struct fifo_buffer *plan;
512
513 dc = rcu_dereference(device->ldev->disk_conf);
514 plan = rcu_dereference(device->rs_plan_s);
515
516 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
517
518 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
519 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
520 } else { /* normal path */
521 want = dc->c_fill_target ? dc->c_fill_target :
522 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
523 }
524
525 correction = want - device->rs_in_flight - plan->total;
526
527 /* Plan ahead */
528 cps = correction / steps;
529 fifo_add_val(plan, cps);
530 plan->total += cps * steps;
531
532 /* What we do in this step */
533 curr_corr = fifo_push(plan, 0);
534 plan->total -= curr_corr;
535
536 req_sect = sect_in + curr_corr;
537 if (req_sect < 0)
538 req_sect = 0;
539
540 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
541 if (req_sect > max_sect)
542 req_sect = max_sect;
543
544 /*
545 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
546 sect_in, device->rs_in_flight, want, correction,
547 steps, cps, device->rs_planed, curr_corr, req_sect);
548 */
549
550 return req_sect;
551 }
552
drbd_rs_number_requests(struct drbd_device * device)553 static int drbd_rs_number_requests(struct drbd_device *device)
554 {
555 unsigned int sect_in; /* Number of sectors that came in since the last turn */
556 int number, mxb;
557
558 sect_in = atomic_xchg(&device->rs_sect_in, 0);
559 device->rs_in_flight -= sect_in;
560
561 rcu_read_lock();
562 mxb = drbd_get_max_buffers(device) / 2;
563 if (rcu_dereference(device->rs_plan_s)->size) {
564 number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
565 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
566 } else {
567 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
568 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ);
569 }
570 rcu_read_unlock();
571
572 /* Don't have more than "max-buffers"/2 in-flight.
573 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
574 * potentially causing a distributed deadlock on congestion during
575 * online-verify or (checksum-based) resync, if max-buffers,
576 * socket buffer sizes and resync rate settings are mis-configured. */
577
578 /* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
579 * mxb (as used here, and in drbd_alloc_pages on the peer) is
580 * "number of pages" (typically also 4k),
581 * but "rs_in_flight" is in "sectors" (512 Byte). */
582 if (mxb - device->rs_in_flight/8 < number)
583 number = mxb - device->rs_in_flight/8;
584
585 return number;
586 }
587
make_resync_request(struct drbd_device * const device,int cancel)588 static int make_resync_request(struct drbd_device *const device, int cancel)
589 {
590 struct drbd_peer_device *const peer_device = first_peer_device(device);
591 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
592 unsigned long bit;
593 sector_t sector;
594 const sector_t capacity = get_capacity(device->vdisk);
595 int max_bio_size;
596 int number, rollback_i, size;
597 int align, requeue = 0;
598 int i = 0;
599 int discard_granularity = 0;
600
601 if (unlikely(cancel))
602 return 0;
603
604 if (device->rs_total == 0) {
605 /* empty resync? */
606 drbd_resync_finished(device);
607 return 0;
608 }
609
610 if (!get_ldev(device)) {
611 /* Since we only need to access device->rsync a
612 get_ldev_if_state(device,D_FAILED) would be sufficient, but
613 to continue resync with a broken disk makes no sense at
614 all */
615 drbd_err(device, "Disk broke down during resync!\n");
616 return 0;
617 }
618
619 if (connection->agreed_features & DRBD_FF_THIN_RESYNC) {
620 rcu_read_lock();
621 discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity;
622 rcu_read_unlock();
623 }
624
625 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
626 number = drbd_rs_number_requests(device);
627 if (number <= 0)
628 goto requeue;
629
630 for (i = 0; i < number; i++) {
631 /* Stop generating RS requests when half of the send buffer is filled,
632 * but notify TCP that we'd like to have more space. */
633 mutex_lock(&connection->data.mutex);
634 if (connection->data.socket) {
635 struct sock *sk = connection->data.socket->sk;
636 int queued = sk->sk_wmem_queued;
637 int sndbuf = sk->sk_sndbuf;
638 if (queued > sndbuf / 2) {
639 requeue = 1;
640 if (sk->sk_socket)
641 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
642 }
643 } else
644 requeue = 1;
645 mutex_unlock(&connection->data.mutex);
646 if (requeue)
647 goto requeue;
648
649 next_sector:
650 size = BM_BLOCK_SIZE;
651 bit = drbd_bm_find_next(device, device->bm_resync_fo);
652
653 if (bit == DRBD_END_OF_BITMAP) {
654 device->bm_resync_fo = drbd_bm_bits(device);
655 put_ldev(device);
656 return 0;
657 }
658
659 sector = BM_BIT_TO_SECT(bit);
660
661 if (drbd_try_rs_begin_io(device, sector)) {
662 device->bm_resync_fo = bit;
663 goto requeue;
664 }
665 device->bm_resync_fo = bit + 1;
666
667 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
668 drbd_rs_complete_io(device, sector);
669 goto next_sector;
670 }
671
672 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
673 /* try to find some adjacent bits.
674 * we stop if we have already the maximum req size.
675 *
676 * Additionally always align bigger requests, in order to
677 * be prepared for all stripe sizes of software RAIDs.
678 */
679 align = 1;
680 rollback_i = i;
681 while (i < number) {
682 if (size + BM_BLOCK_SIZE > max_bio_size)
683 break;
684
685 /* Be always aligned */
686 if (sector & ((1<<(align+3))-1))
687 break;
688
689 if (discard_granularity && size == discard_granularity)
690 break;
691
692 /* do not cross extent boundaries */
693 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
694 break;
695 /* now, is it actually dirty, after all?
696 * caution, drbd_bm_test_bit is tri-state for some
697 * obscure reason; ( b == 0 ) would get the out-of-band
698 * only accidentally right because of the "oddly sized"
699 * adjustment below */
700 if (drbd_bm_test_bit(device, bit+1) != 1)
701 break;
702 bit++;
703 size += BM_BLOCK_SIZE;
704 if ((BM_BLOCK_SIZE << align) <= size)
705 align++;
706 i++;
707 }
708 /* if we merged some,
709 * reset the offset to start the next drbd_bm_find_next from */
710 if (size > BM_BLOCK_SIZE)
711 device->bm_resync_fo = bit + 1;
712 #endif
713
714 /* adjust very last sectors, in case we are oddly sized */
715 if (sector + (size>>9) > capacity)
716 size = (capacity-sector)<<9;
717
718 if (device->use_csums) {
719 switch (read_for_csum(peer_device, sector, size)) {
720 case -EIO: /* Disk failure */
721 put_ldev(device);
722 return -EIO;
723 case -EAGAIN: /* allocation failed, or ldev busy */
724 drbd_rs_complete_io(device, sector);
725 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
726 i = rollback_i;
727 goto requeue;
728 case 0:
729 /* everything ok */
730 break;
731 default:
732 BUG();
733 }
734 } else {
735 int err;
736
737 inc_rs_pending(device);
738 err = drbd_send_drequest(peer_device,
739 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST,
740 sector, size, ID_SYNCER);
741 if (err) {
742 drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
743 dec_rs_pending(device);
744 put_ldev(device);
745 return err;
746 }
747 }
748 }
749
750 if (device->bm_resync_fo >= drbd_bm_bits(device)) {
751 /* last syncer _request_ was sent,
752 * but the P_RS_DATA_REPLY not yet received. sync will end (and
753 * next sync group will resume), as soon as we receive the last
754 * resync data block, and the last bit is cleared.
755 * until then resync "work" is "inactive" ...
756 */
757 put_ldev(device);
758 return 0;
759 }
760
761 requeue:
762 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
763 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
764 put_ldev(device);
765 return 0;
766 }
767
make_ov_request(struct drbd_device * device,int cancel)768 static int make_ov_request(struct drbd_device *device, int cancel)
769 {
770 int number, i, size;
771 sector_t sector;
772 const sector_t capacity = get_capacity(device->vdisk);
773 bool stop_sector_reached = false;
774
775 if (unlikely(cancel))
776 return 1;
777
778 number = drbd_rs_number_requests(device);
779
780 sector = device->ov_position;
781 for (i = 0; i < number; i++) {
782 if (sector >= capacity)
783 return 1;
784
785 /* We check for "finished" only in the reply path:
786 * w_e_end_ov_reply().
787 * We need to send at least one request out. */
788 stop_sector_reached = i > 0
789 && verify_can_do_stop_sector(device)
790 && sector >= device->ov_stop_sector;
791 if (stop_sector_reached)
792 break;
793
794 size = BM_BLOCK_SIZE;
795
796 if (drbd_try_rs_begin_io(device, sector)) {
797 device->ov_position = sector;
798 goto requeue;
799 }
800
801 if (sector + (size>>9) > capacity)
802 size = (capacity-sector)<<9;
803
804 inc_rs_pending(device);
805 if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
806 dec_rs_pending(device);
807 return 0;
808 }
809 sector += BM_SECT_PER_BIT;
810 }
811 device->ov_position = sector;
812
813 requeue:
814 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
815 if (i == 0 || !stop_sector_reached)
816 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
817 return 1;
818 }
819
w_ov_finished(struct drbd_work * w,int cancel)820 int w_ov_finished(struct drbd_work *w, int cancel)
821 {
822 struct drbd_device_work *dw =
823 container_of(w, struct drbd_device_work, w);
824 struct drbd_device *device = dw->device;
825 kfree(dw);
826 ov_out_of_sync_print(device);
827 drbd_resync_finished(device);
828
829 return 0;
830 }
831
w_resync_finished(struct drbd_work * w,int cancel)832 static int w_resync_finished(struct drbd_work *w, int cancel)
833 {
834 struct drbd_device_work *dw =
835 container_of(w, struct drbd_device_work, w);
836 struct drbd_device *device = dw->device;
837 kfree(dw);
838
839 drbd_resync_finished(device);
840
841 return 0;
842 }
843
ping_peer(struct drbd_device * device)844 static void ping_peer(struct drbd_device *device)
845 {
846 struct drbd_connection *connection = first_peer_device(device)->connection;
847
848 clear_bit(GOT_PING_ACK, &connection->flags);
849 request_ping(connection);
850 wait_event(connection->ping_wait,
851 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
852 }
853
drbd_resync_finished(struct drbd_device * device)854 int drbd_resync_finished(struct drbd_device *device)
855 {
856 struct drbd_connection *connection = first_peer_device(device)->connection;
857 unsigned long db, dt, dbdt;
858 unsigned long n_oos;
859 union drbd_state os, ns;
860 struct drbd_device_work *dw;
861 char *khelper_cmd = NULL;
862 int verify_done = 0;
863
864 /* Remove all elements from the resync LRU. Since future actions
865 * might set bits in the (main) bitmap, then the entries in the
866 * resync LRU would be wrong. */
867 if (drbd_rs_del_all(device)) {
868 /* In case this is not possible now, most probably because
869 * there are P_RS_DATA_REPLY Packets lingering on the worker's
870 * queue (or even the read operations for those packets
871 * is not finished by now). Retry in 100ms. */
872
873 schedule_timeout_interruptible(HZ / 10);
874 dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
875 if (dw) {
876 dw->w.cb = w_resync_finished;
877 dw->device = device;
878 drbd_queue_work(&connection->sender_work, &dw->w);
879 return 1;
880 }
881 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
882 }
883
884 dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
885 if (dt <= 0)
886 dt = 1;
887
888 db = device->rs_total;
889 /* adjust for verify start and stop sectors, respective reached position */
890 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
891 db -= device->ov_left;
892
893 dbdt = Bit2KB(db/dt);
894 device->rs_paused /= HZ;
895
896 if (!get_ldev(device))
897 goto out;
898
899 ping_peer(device);
900
901 spin_lock_irq(&device->resource->req_lock);
902 os = drbd_read_state(device);
903
904 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
905
906 /* This protects us against multiple calls (that can happen in the presence
907 of application IO), and against connectivity loss just before we arrive here. */
908 if (os.conn <= C_CONNECTED)
909 goto out_unlock;
910
911 ns = os;
912 ns.conn = C_CONNECTED;
913
914 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
915 verify_done ? "Online verify" : "Resync",
916 dt + device->rs_paused, device->rs_paused, dbdt);
917
918 n_oos = drbd_bm_total_weight(device);
919
920 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
921 if (n_oos) {
922 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
923 n_oos, Bit2KB(1));
924 khelper_cmd = "out-of-sync";
925 }
926 } else {
927 D_ASSERT(device, (n_oos - device->rs_failed) == 0);
928
929 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
930 khelper_cmd = "after-resync-target";
931
932 if (device->use_csums && device->rs_total) {
933 const unsigned long s = device->rs_same_csum;
934 const unsigned long t = device->rs_total;
935 const int ratio =
936 (t == 0) ? 0 :
937 (t < 100000) ? ((s*100)/t) : (s/(t/100));
938 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
939 "transferred %luK total %luK\n",
940 ratio,
941 Bit2KB(device->rs_same_csum),
942 Bit2KB(device->rs_total - device->rs_same_csum),
943 Bit2KB(device->rs_total));
944 }
945 }
946
947 if (device->rs_failed) {
948 drbd_info(device, " %lu failed blocks\n", device->rs_failed);
949
950 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
951 ns.disk = D_INCONSISTENT;
952 ns.pdsk = D_UP_TO_DATE;
953 } else {
954 ns.disk = D_UP_TO_DATE;
955 ns.pdsk = D_INCONSISTENT;
956 }
957 } else {
958 ns.disk = D_UP_TO_DATE;
959 ns.pdsk = D_UP_TO_DATE;
960
961 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
962 if (device->p_uuid) {
963 int i;
964 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
965 _drbd_uuid_set(device, i, device->p_uuid[i]);
966 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
967 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
968 } else {
969 drbd_err(device, "device->p_uuid is NULL! BUG\n");
970 }
971 }
972
973 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
974 /* for verify runs, we don't update uuids here,
975 * so there would be nothing to report. */
976 drbd_uuid_set_bm(device, 0UL);
977 drbd_print_uuids(device, "updated UUIDs");
978 if (device->p_uuid) {
979 /* Now the two UUID sets are equal, update what we
980 * know of the peer. */
981 int i;
982 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
983 device->p_uuid[i] = device->ldev->md.uuid[i];
984 }
985 }
986 }
987
988 _drbd_set_state(device, ns, CS_VERBOSE, NULL);
989 out_unlock:
990 spin_unlock_irq(&device->resource->req_lock);
991
992 /* If we have been sync source, and have an effective fencing-policy,
993 * once *all* volumes are back in sync, call "unfence". */
994 if (os.conn == C_SYNC_SOURCE) {
995 enum drbd_disk_state disk_state = D_MASK;
996 enum drbd_disk_state pdsk_state = D_MASK;
997 enum drbd_fencing_p fp = FP_DONT_CARE;
998
999 rcu_read_lock();
1000 fp = rcu_dereference(device->ldev->disk_conf)->fencing;
1001 if (fp != FP_DONT_CARE) {
1002 struct drbd_peer_device *peer_device;
1003 int vnr;
1004 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1005 struct drbd_device *device = peer_device->device;
1006 disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk);
1007 pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk);
1008 }
1009 }
1010 rcu_read_unlock();
1011 if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE)
1012 conn_khelper(connection, "unfence-peer");
1013 }
1014
1015 put_ldev(device);
1016 out:
1017 device->rs_total = 0;
1018 device->rs_failed = 0;
1019 device->rs_paused = 0;
1020
1021 /* reset start sector, if we reached end of device */
1022 if (verify_done && device->ov_left == 0)
1023 device->ov_start_sector = 0;
1024
1025 drbd_md_sync(device);
1026
1027 if (khelper_cmd)
1028 drbd_khelper(device, khelper_cmd);
1029
1030 return 1;
1031 }
1032
1033 /* helper */
move_to_net_ee_or_free(struct drbd_device * device,struct drbd_peer_request * peer_req)1034 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
1035 {
1036 if (drbd_peer_req_has_active_page(peer_req)) {
1037 /* This might happen if sendpage() has not finished */
1038 int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
1039 atomic_add(i, &device->pp_in_use_by_net);
1040 atomic_sub(i, &device->pp_in_use);
1041 spin_lock_irq(&device->resource->req_lock);
1042 list_add_tail(&peer_req->w.list, &device->net_ee);
1043 spin_unlock_irq(&device->resource->req_lock);
1044 wake_up(&drbd_pp_wait);
1045 } else
1046 drbd_free_peer_req(device, peer_req);
1047 }
1048
1049 /**
1050 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
1051 * @w: work object.
1052 * @cancel: The connection will be closed anyways
1053 */
w_e_end_data_req(struct drbd_work * w,int cancel)1054 int w_e_end_data_req(struct drbd_work *w, int cancel)
1055 {
1056 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1057 struct drbd_peer_device *peer_device = peer_req->peer_device;
1058 struct drbd_device *device = peer_device->device;
1059 int err;
1060
1061 if (unlikely(cancel)) {
1062 drbd_free_peer_req(device, peer_req);
1063 dec_unacked(device);
1064 return 0;
1065 }
1066
1067 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1068 err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
1069 } else {
1070 if (__ratelimit(&drbd_ratelimit_state))
1071 drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1072 (unsigned long long)peer_req->i.sector);
1073
1074 err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
1075 }
1076
1077 dec_unacked(device);
1078
1079 move_to_net_ee_or_free(device, peer_req);
1080
1081 if (unlikely(err))
1082 drbd_err(device, "drbd_send_block() failed\n");
1083 return err;
1084 }
1085
all_zero(struct drbd_peer_request * peer_req)1086 static bool all_zero(struct drbd_peer_request *peer_req)
1087 {
1088 struct page *page = peer_req->pages;
1089 unsigned int len = peer_req->i.size;
1090
1091 page_chain_for_each(page) {
1092 unsigned int l = min_t(unsigned int, len, PAGE_SIZE);
1093 unsigned int i, words = l / sizeof(long);
1094 unsigned long *d;
1095
1096 d = kmap_atomic(page);
1097 for (i = 0; i < words; i++) {
1098 if (d[i]) {
1099 kunmap_atomic(d);
1100 return false;
1101 }
1102 }
1103 kunmap_atomic(d);
1104 len -= l;
1105 }
1106
1107 return true;
1108 }
1109
1110 /**
1111 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1112 * @w: work object.
1113 * @cancel: The connection will be closed anyways
1114 */
w_e_end_rsdata_req(struct drbd_work * w,int cancel)1115 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1116 {
1117 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1118 struct drbd_peer_device *peer_device = peer_req->peer_device;
1119 struct drbd_device *device = peer_device->device;
1120 int err;
1121
1122 if (unlikely(cancel)) {
1123 drbd_free_peer_req(device, peer_req);
1124 dec_unacked(device);
1125 return 0;
1126 }
1127
1128 if (get_ldev_if_state(device, D_FAILED)) {
1129 drbd_rs_complete_io(device, peer_req->i.sector);
1130 put_ldev(device);
1131 }
1132
1133 if (device->state.conn == C_AHEAD) {
1134 err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
1135 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1136 if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1137 inc_rs_pending(device);
1138 if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req))
1139 err = drbd_send_rs_deallocated(peer_device, peer_req);
1140 else
1141 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1142 } else {
1143 if (__ratelimit(&drbd_ratelimit_state))
1144 drbd_err(device, "Not sending RSDataReply, "
1145 "partner DISKLESS!\n");
1146 err = 0;
1147 }
1148 } else {
1149 if (__ratelimit(&drbd_ratelimit_state))
1150 drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1151 (unsigned long long)peer_req->i.sector);
1152
1153 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1154
1155 /* update resync data with failure */
1156 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1157 }
1158
1159 dec_unacked(device);
1160
1161 move_to_net_ee_or_free(device, peer_req);
1162
1163 if (unlikely(err))
1164 drbd_err(device, "drbd_send_block() failed\n");
1165 return err;
1166 }
1167
w_e_end_csum_rs_req(struct drbd_work * w,int cancel)1168 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1169 {
1170 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1171 struct drbd_peer_device *peer_device = peer_req->peer_device;
1172 struct drbd_device *device = peer_device->device;
1173 struct digest_info *di;
1174 int digest_size;
1175 void *digest = NULL;
1176 int err, eq = 0;
1177
1178 if (unlikely(cancel)) {
1179 drbd_free_peer_req(device, peer_req);
1180 dec_unacked(device);
1181 return 0;
1182 }
1183
1184 if (get_ldev(device)) {
1185 drbd_rs_complete_io(device, peer_req->i.sector);
1186 put_ldev(device);
1187 }
1188
1189 di = peer_req->digest;
1190
1191 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1192 /* quick hack to try to avoid a race against reconfiguration.
1193 * a real fix would be much more involved,
1194 * introducing more locking mechanisms */
1195 if (peer_device->connection->csums_tfm) {
1196 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
1197 D_ASSERT(device, digest_size == di->digest_size);
1198 digest = kmalloc(digest_size, GFP_NOIO);
1199 }
1200 if (digest) {
1201 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
1202 eq = !memcmp(digest, di->digest, digest_size);
1203 kfree(digest);
1204 }
1205
1206 if (eq) {
1207 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1208 /* rs_same_csums unit is BM_BLOCK_SIZE */
1209 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1210 err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
1211 } else {
1212 inc_rs_pending(device);
1213 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1214 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1215 kfree(di);
1216 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1217 }
1218 } else {
1219 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1220 if (__ratelimit(&drbd_ratelimit_state))
1221 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1222 }
1223
1224 dec_unacked(device);
1225 move_to_net_ee_or_free(device, peer_req);
1226
1227 if (unlikely(err))
1228 drbd_err(device, "drbd_send_block/ack() failed\n");
1229 return err;
1230 }
1231
w_e_end_ov_req(struct drbd_work * w,int cancel)1232 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1233 {
1234 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1235 struct drbd_peer_device *peer_device = peer_req->peer_device;
1236 struct drbd_device *device = peer_device->device;
1237 sector_t sector = peer_req->i.sector;
1238 unsigned int size = peer_req->i.size;
1239 int digest_size;
1240 void *digest;
1241 int err = 0;
1242
1243 if (unlikely(cancel))
1244 goto out;
1245
1246 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1247 digest = kmalloc(digest_size, GFP_NOIO);
1248 if (!digest) {
1249 err = 1; /* terminate the connection in case the allocation failed */
1250 goto out;
1251 }
1252
1253 if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1254 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1255 else
1256 memset(digest, 0, digest_size);
1257
1258 /* Free e and pages before send.
1259 * In case we block on congestion, we could otherwise run into
1260 * some distributed deadlock, if the other side blocks on
1261 * congestion as well, because our receiver blocks in
1262 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1263 drbd_free_peer_req(device, peer_req);
1264 peer_req = NULL;
1265 inc_rs_pending(device);
1266 err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
1267 if (err)
1268 dec_rs_pending(device);
1269 kfree(digest);
1270
1271 out:
1272 if (peer_req)
1273 drbd_free_peer_req(device, peer_req);
1274 dec_unacked(device);
1275 return err;
1276 }
1277
drbd_ov_out_of_sync_found(struct drbd_device * device,sector_t sector,int size)1278 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1279 {
1280 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1281 device->ov_last_oos_size += size>>9;
1282 } else {
1283 device->ov_last_oos_start = sector;
1284 device->ov_last_oos_size = size>>9;
1285 }
1286 drbd_set_out_of_sync(device, sector, size);
1287 }
1288
w_e_end_ov_reply(struct drbd_work * w,int cancel)1289 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1290 {
1291 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1292 struct drbd_peer_device *peer_device = peer_req->peer_device;
1293 struct drbd_device *device = peer_device->device;
1294 struct digest_info *di;
1295 void *digest;
1296 sector_t sector = peer_req->i.sector;
1297 unsigned int size = peer_req->i.size;
1298 int digest_size;
1299 int err, eq = 0;
1300 bool stop_sector_reached = false;
1301
1302 if (unlikely(cancel)) {
1303 drbd_free_peer_req(device, peer_req);
1304 dec_unacked(device);
1305 return 0;
1306 }
1307
1308 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1309 * the resync lru has been cleaned up already */
1310 if (get_ldev(device)) {
1311 drbd_rs_complete_io(device, peer_req->i.sector);
1312 put_ldev(device);
1313 }
1314
1315 di = peer_req->digest;
1316
1317 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1318 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1319 digest = kmalloc(digest_size, GFP_NOIO);
1320 if (digest) {
1321 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1322
1323 D_ASSERT(device, digest_size == di->digest_size);
1324 eq = !memcmp(digest, di->digest, digest_size);
1325 kfree(digest);
1326 }
1327 }
1328
1329 /* Free peer_req and pages before send.
1330 * In case we block on congestion, we could otherwise run into
1331 * some distributed deadlock, if the other side blocks on
1332 * congestion as well, because our receiver blocks in
1333 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1334 drbd_free_peer_req(device, peer_req);
1335 if (!eq)
1336 drbd_ov_out_of_sync_found(device, sector, size);
1337 else
1338 ov_out_of_sync_print(device);
1339
1340 err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
1341 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1342
1343 dec_unacked(device);
1344
1345 --device->ov_left;
1346
1347 /* let's advance progress step marks only for every other megabyte */
1348 if ((device->ov_left & 0x200) == 0x200)
1349 drbd_advance_rs_marks(device, device->ov_left);
1350
1351 stop_sector_reached = verify_can_do_stop_sector(device) &&
1352 (sector + (size>>9)) >= device->ov_stop_sector;
1353
1354 if (device->ov_left == 0 || stop_sector_reached) {
1355 ov_out_of_sync_print(device);
1356 drbd_resync_finished(device);
1357 }
1358
1359 return err;
1360 }
1361
1362 /* FIXME
1363 * We need to track the number of pending barrier acks,
1364 * and to be able to wait for them.
1365 * See also comment in drbd_adm_attach before drbd_suspend_io.
1366 */
drbd_send_barrier(struct drbd_connection * connection)1367 static int drbd_send_barrier(struct drbd_connection *connection)
1368 {
1369 struct p_barrier *p;
1370 struct drbd_socket *sock;
1371
1372 sock = &connection->data;
1373 p = conn_prepare_command(connection, sock);
1374 if (!p)
1375 return -EIO;
1376 p->barrier = connection->send.current_epoch_nr;
1377 p->pad = 0;
1378 connection->send.current_epoch_writes = 0;
1379 connection->send.last_sent_barrier_jif = jiffies;
1380
1381 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1382 }
1383
pd_send_unplug_remote(struct drbd_peer_device * pd)1384 static int pd_send_unplug_remote(struct drbd_peer_device *pd)
1385 {
1386 struct drbd_socket *sock = &pd->connection->data;
1387 if (!drbd_prepare_command(pd, sock))
1388 return -EIO;
1389 return drbd_send_command(pd, sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1390 }
1391
w_send_write_hint(struct drbd_work * w,int cancel)1392 int w_send_write_hint(struct drbd_work *w, int cancel)
1393 {
1394 struct drbd_device *device =
1395 container_of(w, struct drbd_device, unplug_work);
1396
1397 if (cancel)
1398 return 0;
1399 return pd_send_unplug_remote(first_peer_device(device));
1400 }
1401
re_init_if_first_write(struct drbd_connection * connection,unsigned int epoch)1402 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1403 {
1404 if (!connection->send.seen_any_write_yet) {
1405 connection->send.seen_any_write_yet = true;
1406 connection->send.current_epoch_nr = epoch;
1407 connection->send.current_epoch_writes = 0;
1408 connection->send.last_sent_barrier_jif = jiffies;
1409 }
1410 }
1411
maybe_send_barrier(struct drbd_connection * connection,unsigned int epoch)1412 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1413 {
1414 /* re-init if first write on this connection */
1415 if (!connection->send.seen_any_write_yet)
1416 return;
1417 if (connection->send.current_epoch_nr != epoch) {
1418 if (connection->send.current_epoch_writes)
1419 drbd_send_barrier(connection);
1420 connection->send.current_epoch_nr = epoch;
1421 }
1422 }
1423
w_send_out_of_sync(struct drbd_work * w,int cancel)1424 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1425 {
1426 struct drbd_request *req = container_of(w, struct drbd_request, w);
1427 struct drbd_device *device = req->device;
1428 struct drbd_peer_device *const peer_device = first_peer_device(device);
1429 struct drbd_connection *const connection = peer_device->connection;
1430 int err;
1431
1432 if (unlikely(cancel)) {
1433 req_mod(req, SEND_CANCELED);
1434 return 0;
1435 }
1436 req->pre_send_jif = jiffies;
1437
1438 /* this time, no connection->send.current_epoch_writes++;
1439 * If it was sent, it was the closing barrier for the last
1440 * replicated epoch, before we went into AHEAD mode.
1441 * No more barriers will be sent, until we leave AHEAD mode again. */
1442 maybe_send_barrier(connection, req->epoch);
1443
1444 err = drbd_send_out_of_sync(peer_device, req);
1445 req_mod(req, OOS_HANDED_TO_NETWORK);
1446
1447 return err;
1448 }
1449
1450 /**
1451 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1452 * @w: work object.
1453 * @cancel: The connection will be closed anyways
1454 */
w_send_dblock(struct drbd_work * w,int cancel)1455 int w_send_dblock(struct drbd_work *w, int cancel)
1456 {
1457 struct drbd_request *req = container_of(w, struct drbd_request, w);
1458 struct drbd_device *device = req->device;
1459 struct drbd_peer_device *const peer_device = first_peer_device(device);
1460 struct drbd_connection *connection = peer_device->connection;
1461 bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1462 int err;
1463
1464 if (unlikely(cancel)) {
1465 req_mod(req, SEND_CANCELED);
1466 return 0;
1467 }
1468 req->pre_send_jif = jiffies;
1469
1470 re_init_if_first_write(connection, req->epoch);
1471 maybe_send_barrier(connection, req->epoch);
1472 connection->send.current_epoch_writes++;
1473
1474 err = drbd_send_dblock(peer_device, req);
1475 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1476
1477 if (do_send_unplug && !err)
1478 pd_send_unplug_remote(peer_device);
1479
1480 return err;
1481 }
1482
1483 /**
1484 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1485 * @w: work object.
1486 * @cancel: The connection will be closed anyways
1487 */
w_send_read_req(struct drbd_work * w,int cancel)1488 int w_send_read_req(struct drbd_work *w, int cancel)
1489 {
1490 struct drbd_request *req = container_of(w, struct drbd_request, w);
1491 struct drbd_device *device = req->device;
1492 struct drbd_peer_device *const peer_device = first_peer_device(device);
1493 struct drbd_connection *connection = peer_device->connection;
1494 bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1495 int err;
1496
1497 if (unlikely(cancel)) {
1498 req_mod(req, SEND_CANCELED);
1499 return 0;
1500 }
1501 req->pre_send_jif = jiffies;
1502
1503 /* Even read requests may close a write epoch,
1504 * if there was any yet. */
1505 maybe_send_barrier(connection, req->epoch);
1506
1507 err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
1508 (unsigned long)req);
1509
1510 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1511
1512 if (do_send_unplug && !err)
1513 pd_send_unplug_remote(peer_device);
1514
1515 return err;
1516 }
1517
w_restart_disk_io(struct drbd_work * w,int cancel)1518 int w_restart_disk_io(struct drbd_work *w, int cancel)
1519 {
1520 struct drbd_request *req = container_of(w, struct drbd_request, w);
1521 struct drbd_device *device = req->device;
1522
1523 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1524 drbd_al_begin_io(device, &req->i);
1525
1526 drbd_req_make_private_bio(req, req->master_bio);
1527 bio_set_dev(req->private_bio, device->ldev->backing_bdev);
1528 submit_bio_noacct(req->private_bio);
1529
1530 return 0;
1531 }
1532
_drbd_may_sync_now(struct drbd_device * device)1533 static int _drbd_may_sync_now(struct drbd_device *device)
1534 {
1535 struct drbd_device *odev = device;
1536 int resync_after;
1537
1538 while (1) {
1539 if (!odev->ldev || odev->state.disk == D_DISKLESS)
1540 return 1;
1541 rcu_read_lock();
1542 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1543 rcu_read_unlock();
1544 if (resync_after == -1)
1545 return 1;
1546 odev = minor_to_device(resync_after);
1547 if (!odev)
1548 return 1;
1549 if ((odev->state.conn >= C_SYNC_SOURCE &&
1550 odev->state.conn <= C_PAUSED_SYNC_T) ||
1551 odev->state.aftr_isp || odev->state.peer_isp ||
1552 odev->state.user_isp)
1553 return 0;
1554 }
1555 }
1556
1557 /**
1558 * drbd_pause_after() - Pause resync on all devices that may not resync now
1559 * @device: DRBD device.
1560 *
1561 * Called from process context only (admin command and after_state_ch).
1562 */
drbd_pause_after(struct drbd_device * device)1563 static bool drbd_pause_after(struct drbd_device *device)
1564 {
1565 bool changed = false;
1566 struct drbd_device *odev;
1567 int i;
1568
1569 rcu_read_lock();
1570 idr_for_each_entry(&drbd_devices, odev, i) {
1571 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1572 continue;
1573 if (!_drbd_may_sync_now(odev) &&
1574 _drbd_set_state(_NS(odev, aftr_isp, 1),
1575 CS_HARD, NULL) != SS_NOTHING_TO_DO)
1576 changed = true;
1577 }
1578 rcu_read_unlock();
1579
1580 return changed;
1581 }
1582
1583 /**
1584 * drbd_resume_next() - Resume resync on all devices that may resync now
1585 * @device: DRBD device.
1586 *
1587 * Called from process context only (admin command and worker).
1588 */
drbd_resume_next(struct drbd_device * device)1589 static bool drbd_resume_next(struct drbd_device *device)
1590 {
1591 bool changed = false;
1592 struct drbd_device *odev;
1593 int i;
1594
1595 rcu_read_lock();
1596 idr_for_each_entry(&drbd_devices, odev, i) {
1597 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1598 continue;
1599 if (odev->state.aftr_isp) {
1600 if (_drbd_may_sync_now(odev) &&
1601 _drbd_set_state(_NS(odev, aftr_isp, 0),
1602 CS_HARD, NULL) != SS_NOTHING_TO_DO)
1603 changed = true;
1604 }
1605 }
1606 rcu_read_unlock();
1607 return changed;
1608 }
1609
resume_next_sg(struct drbd_device * device)1610 void resume_next_sg(struct drbd_device *device)
1611 {
1612 lock_all_resources();
1613 drbd_resume_next(device);
1614 unlock_all_resources();
1615 }
1616
suspend_other_sg(struct drbd_device * device)1617 void suspend_other_sg(struct drbd_device *device)
1618 {
1619 lock_all_resources();
1620 drbd_pause_after(device);
1621 unlock_all_resources();
1622 }
1623
1624 /* caller must lock_all_resources() */
drbd_resync_after_valid(struct drbd_device * device,int o_minor)1625 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1626 {
1627 struct drbd_device *odev;
1628 int resync_after;
1629
1630 if (o_minor == -1)
1631 return NO_ERROR;
1632 if (o_minor < -1 || o_minor > MINORMASK)
1633 return ERR_RESYNC_AFTER;
1634
1635 /* check for loops */
1636 odev = minor_to_device(o_minor);
1637 while (1) {
1638 if (odev == device)
1639 return ERR_RESYNC_AFTER_CYCLE;
1640
1641 /* You are free to depend on diskless, non-existing,
1642 * or not yet/no longer existing minors.
1643 * We only reject dependency loops.
1644 * We cannot follow the dependency chain beyond a detached or
1645 * missing minor.
1646 */
1647 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1648 return NO_ERROR;
1649
1650 rcu_read_lock();
1651 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1652 rcu_read_unlock();
1653 /* dependency chain ends here, no cycles. */
1654 if (resync_after == -1)
1655 return NO_ERROR;
1656
1657 /* follow the dependency chain */
1658 odev = minor_to_device(resync_after);
1659 }
1660 }
1661
1662 /* caller must lock_all_resources() */
drbd_resync_after_changed(struct drbd_device * device)1663 void drbd_resync_after_changed(struct drbd_device *device)
1664 {
1665 int changed;
1666
1667 do {
1668 changed = drbd_pause_after(device);
1669 changed |= drbd_resume_next(device);
1670 } while (changed);
1671 }
1672
drbd_rs_controller_reset(struct drbd_device * device)1673 void drbd_rs_controller_reset(struct drbd_device *device)
1674 {
1675 struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
1676 struct fifo_buffer *plan;
1677
1678 atomic_set(&device->rs_sect_in, 0);
1679 atomic_set(&device->rs_sect_ev, 0);
1680 device->rs_in_flight = 0;
1681 device->rs_last_events = (int)part_stat_read_accum(&disk->part0, sectors);
1682
1683 /* Updating the RCU protected object in place is necessary since
1684 this function gets called from atomic context.
1685 It is valid since all other updates also lead to an completely
1686 empty fifo */
1687 rcu_read_lock();
1688 plan = rcu_dereference(device->rs_plan_s);
1689 plan->total = 0;
1690 fifo_set(plan, 0);
1691 rcu_read_unlock();
1692 }
1693
start_resync_timer_fn(struct timer_list * t)1694 void start_resync_timer_fn(struct timer_list *t)
1695 {
1696 struct drbd_device *device = from_timer(device, t, start_resync_timer);
1697 drbd_device_post_work(device, RS_START);
1698 }
1699
do_start_resync(struct drbd_device * device)1700 static void do_start_resync(struct drbd_device *device)
1701 {
1702 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1703 drbd_warn(device, "postponing start_resync ...\n");
1704 device->start_resync_timer.expires = jiffies + HZ/10;
1705 add_timer(&device->start_resync_timer);
1706 return;
1707 }
1708
1709 drbd_start_resync(device, C_SYNC_SOURCE);
1710 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1711 }
1712
use_checksum_based_resync(struct drbd_connection * connection,struct drbd_device * device)1713 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
1714 {
1715 bool csums_after_crash_only;
1716 rcu_read_lock();
1717 csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
1718 rcu_read_unlock();
1719 return connection->agreed_pro_version >= 89 && /* supported? */
1720 connection->csums_tfm && /* configured? */
1721 (csums_after_crash_only == false /* use for each resync? */
1722 || test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */
1723 }
1724
1725 /**
1726 * drbd_start_resync() - Start the resync process
1727 * @device: DRBD device.
1728 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET
1729 *
1730 * This function might bring you directly into one of the
1731 * C_PAUSED_SYNC_* states.
1732 */
drbd_start_resync(struct drbd_device * device,enum drbd_conns side)1733 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1734 {
1735 struct drbd_peer_device *peer_device = first_peer_device(device);
1736 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
1737 union drbd_state ns;
1738 int r;
1739
1740 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1741 drbd_err(device, "Resync already running!\n");
1742 return;
1743 }
1744
1745 if (!connection) {
1746 drbd_err(device, "No connection to peer, aborting!\n");
1747 return;
1748 }
1749
1750 if (!test_bit(B_RS_H_DONE, &device->flags)) {
1751 if (side == C_SYNC_TARGET) {
1752 /* Since application IO was locked out during C_WF_BITMAP_T and
1753 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1754 we check that we might make the data inconsistent. */
1755 r = drbd_khelper(device, "before-resync-target");
1756 r = (r >> 8) & 0xff;
1757 if (r > 0) {
1758 drbd_info(device, "before-resync-target handler returned %d, "
1759 "dropping connection.\n", r);
1760 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
1761 return;
1762 }
1763 } else /* C_SYNC_SOURCE */ {
1764 r = drbd_khelper(device, "before-resync-source");
1765 r = (r >> 8) & 0xff;
1766 if (r > 0) {
1767 if (r == 3) {
1768 drbd_info(device, "before-resync-source handler returned %d, "
1769 "ignoring. Old userland tools?", r);
1770 } else {
1771 drbd_info(device, "before-resync-source handler returned %d, "
1772 "dropping connection.\n", r);
1773 conn_request_state(connection,
1774 NS(conn, C_DISCONNECTING), CS_HARD);
1775 return;
1776 }
1777 }
1778 }
1779 }
1780
1781 if (current == connection->worker.task) {
1782 /* The worker should not sleep waiting for state_mutex,
1783 that can take long */
1784 if (!mutex_trylock(device->state_mutex)) {
1785 set_bit(B_RS_H_DONE, &device->flags);
1786 device->start_resync_timer.expires = jiffies + HZ/5;
1787 add_timer(&device->start_resync_timer);
1788 return;
1789 }
1790 } else {
1791 mutex_lock(device->state_mutex);
1792 }
1793
1794 lock_all_resources();
1795 clear_bit(B_RS_H_DONE, &device->flags);
1796 /* Did some connection breakage or IO error race with us? */
1797 if (device->state.conn < C_CONNECTED
1798 || !get_ldev_if_state(device, D_NEGOTIATING)) {
1799 unlock_all_resources();
1800 goto out;
1801 }
1802
1803 ns = drbd_read_state(device);
1804
1805 ns.aftr_isp = !_drbd_may_sync_now(device);
1806
1807 ns.conn = side;
1808
1809 if (side == C_SYNC_TARGET)
1810 ns.disk = D_INCONSISTENT;
1811 else /* side == C_SYNC_SOURCE */
1812 ns.pdsk = D_INCONSISTENT;
1813
1814 r = _drbd_set_state(device, ns, CS_VERBOSE, NULL);
1815 ns = drbd_read_state(device);
1816
1817 if (ns.conn < C_CONNECTED)
1818 r = SS_UNKNOWN_ERROR;
1819
1820 if (r == SS_SUCCESS) {
1821 unsigned long tw = drbd_bm_total_weight(device);
1822 unsigned long now = jiffies;
1823 int i;
1824
1825 device->rs_failed = 0;
1826 device->rs_paused = 0;
1827 device->rs_same_csum = 0;
1828 device->rs_last_sect_ev = 0;
1829 device->rs_total = tw;
1830 device->rs_start = now;
1831 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1832 device->rs_mark_left[i] = tw;
1833 device->rs_mark_time[i] = now;
1834 }
1835 drbd_pause_after(device);
1836 /* Forget potentially stale cached per resync extent bit-counts.
1837 * Open coded drbd_rs_cancel_all(device), we already have IRQs
1838 * disabled, and know the disk state is ok. */
1839 spin_lock(&device->al_lock);
1840 lc_reset(device->resync);
1841 device->resync_locked = 0;
1842 device->resync_wenr = LC_FREE;
1843 spin_unlock(&device->al_lock);
1844 }
1845 unlock_all_resources();
1846
1847 if (r == SS_SUCCESS) {
1848 wake_up(&device->al_wait); /* for lc_reset() above */
1849 /* reset rs_last_bcast when a resync or verify is started,
1850 * to deal with potential jiffies wrap. */
1851 device->rs_last_bcast = jiffies - HZ;
1852
1853 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1854 drbd_conn_str(ns.conn),
1855 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1856 (unsigned long) device->rs_total);
1857 if (side == C_SYNC_TARGET) {
1858 device->bm_resync_fo = 0;
1859 device->use_csums = use_checksum_based_resync(connection, device);
1860 } else {
1861 device->use_csums = false;
1862 }
1863
1864 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1865 * with w_send_oos, or the sync target will get confused as to
1866 * how much bits to resync. We cannot do that always, because for an
1867 * empty resync and protocol < 95, we need to do it here, as we call
1868 * drbd_resync_finished from here in that case.
1869 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1870 * and from after_state_ch otherwise. */
1871 if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
1872 drbd_gen_and_send_sync_uuid(peer_device);
1873
1874 if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
1875 /* This still has a race (about when exactly the peers
1876 * detect connection loss) that can lead to a full sync
1877 * on next handshake. In 8.3.9 we fixed this with explicit
1878 * resync-finished notifications, but the fix
1879 * introduces a protocol change. Sleeping for some
1880 * time longer than the ping interval + timeout on the
1881 * SyncSource, to give the SyncTarget the chance to
1882 * detect connection loss, then waiting for a ping
1883 * response (implicit in drbd_resync_finished) reduces
1884 * the race considerably, but does not solve it. */
1885 if (side == C_SYNC_SOURCE) {
1886 struct net_conf *nc;
1887 int timeo;
1888
1889 rcu_read_lock();
1890 nc = rcu_dereference(connection->net_conf);
1891 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1892 rcu_read_unlock();
1893 schedule_timeout_interruptible(timeo);
1894 }
1895 drbd_resync_finished(device);
1896 }
1897
1898 drbd_rs_controller_reset(device);
1899 /* ns.conn may already be != device->state.conn,
1900 * we may have been paused in between, or become paused until
1901 * the timer triggers.
1902 * No matter, that is handled in resync_timer_fn() */
1903 if (ns.conn == C_SYNC_TARGET)
1904 mod_timer(&device->resync_timer, jiffies);
1905
1906 drbd_md_sync(device);
1907 }
1908 put_ldev(device);
1909 out:
1910 mutex_unlock(device->state_mutex);
1911 }
1912
update_on_disk_bitmap(struct drbd_device * device,bool resync_done)1913 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
1914 {
1915 struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
1916 device->rs_last_bcast = jiffies;
1917
1918 if (!get_ldev(device))
1919 return;
1920
1921 drbd_bm_write_lazy(device, 0);
1922 if (resync_done && is_sync_state(device->state.conn))
1923 drbd_resync_finished(device);
1924
1925 drbd_bcast_event(device, &sib);
1926 /* update timestamp, in case it took a while to write out stuff */
1927 device->rs_last_bcast = jiffies;
1928 put_ldev(device);
1929 }
1930
drbd_ldev_destroy(struct drbd_device * device)1931 static void drbd_ldev_destroy(struct drbd_device *device)
1932 {
1933 lc_destroy(device->resync);
1934 device->resync = NULL;
1935 lc_destroy(device->act_log);
1936 device->act_log = NULL;
1937
1938 __acquire(local);
1939 drbd_backing_dev_free(device, device->ldev);
1940 device->ldev = NULL;
1941 __release(local);
1942
1943 clear_bit(GOING_DISKLESS, &device->flags);
1944 wake_up(&device->misc_wait);
1945 }
1946
go_diskless(struct drbd_device * device)1947 static void go_diskless(struct drbd_device *device)
1948 {
1949 D_ASSERT(device, device->state.disk == D_FAILED);
1950 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
1951 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
1952 * the protected members anymore, though, so once put_ldev reaches zero
1953 * again, it will be safe to free them. */
1954
1955 /* Try to write changed bitmap pages, read errors may have just
1956 * set some bits outside the area covered by the activity log.
1957 *
1958 * If we have an IO error during the bitmap writeout,
1959 * we will want a full sync next time, just in case.
1960 * (Do we want a specific meta data flag for this?)
1961 *
1962 * If that does not make it to stable storage either,
1963 * we cannot do anything about that anymore.
1964 *
1965 * We still need to check if both bitmap and ldev are present, we may
1966 * end up here after a failed attach, before ldev was even assigned.
1967 */
1968 if (device->bitmap && device->ldev) {
1969 /* An interrupted resync or similar is allowed to recounts bits
1970 * while we detach.
1971 * Any modifications would not be expected anymore, though.
1972 */
1973 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
1974 "detach", BM_LOCKED_TEST_ALLOWED)) {
1975 if (test_bit(WAS_READ_ERROR, &device->flags)) {
1976 drbd_md_set_flag(device, MDF_FULL_SYNC);
1977 drbd_md_sync(device);
1978 }
1979 }
1980 }
1981
1982 drbd_force_state(device, NS(disk, D_DISKLESS));
1983 }
1984
do_md_sync(struct drbd_device * device)1985 static int do_md_sync(struct drbd_device *device)
1986 {
1987 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
1988 drbd_md_sync(device);
1989 return 0;
1990 }
1991
1992 /* only called from drbd_worker thread, no locking */
__update_timing_details(struct drbd_thread_timing_details * tdp,unsigned int * cb_nr,void * cb,const char * fn,const unsigned int line)1993 void __update_timing_details(
1994 struct drbd_thread_timing_details *tdp,
1995 unsigned int *cb_nr,
1996 void *cb,
1997 const char *fn, const unsigned int line)
1998 {
1999 unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
2000 struct drbd_thread_timing_details *td = tdp + i;
2001
2002 td->start_jif = jiffies;
2003 td->cb_addr = cb;
2004 td->caller_fn = fn;
2005 td->line = line;
2006 td->cb_nr = *cb_nr;
2007
2008 i = (i+1) % DRBD_THREAD_DETAILS_HIST;
2009 td = tdp + i;
2010 memset(td, 0, sizeof(*td));
2011
2012 ++(*cb_nr);
2013 }
2014
do_device_work(struct drbd_device * device,const unsigned long todo)2015 static void do_device_work(struct drbd_device *device, const unsigned long todo)
2016 {
2017 if (test_bit(MD_SYNC, &todo))
2018 do_md_sync(device);
2019 if (test_bit(RS_DONE, &todo) ||
2020 test_bit(RS_PROGRESS, &todo))
2021 update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
2022 if (test_bit(GO_DISKLESS, &todo))
2023 go_diskless(device);
2024 if (test_bit(DESTROY_DISK, &todo))
2025 drbd_ldev_destroy(device);
2026 if (test_bit(RS_START, &todo))
2027 do_start_resync(device);
2028 }
2029
2030 #define DRBD_DEVICE_WORK_MASK \
2031 ((1UL << GO_DISKLESS) \
2032 |(1UL << DESTROY_DISK) \
2033 |(1UL << MD_SYNC) \
2034 |(1UL << RS_START) \
2035 |(1UL << RS_PROGRESS) \
2036 |(1UL << RS_DONE) \
2037 )
2038
get_work_bits(unsigned long * flags)2039 static unsigned long get_work_bits(unsigned long *flags)
2040 {
2041 unsigned long old, new;
2042 do {
2043 old = *flags;
2044 new = old & ~DRBD_DEVICE_WORK_MASK;
2045 } while (cmpxchg(flags, old, new) != old);
2046 return old & DRBD_DEVICE_WORK_MASK;
2047 }
2048
do_unqueued_work(struct drbd_connection * connection)2049 static void do_unqueued_work(struct drbd_connection *connection)
2050 {
2051 struct drbd_peer_device *peer_device;
2052 int vnr;
2053
2054 rcu_read_lock();
2055 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2056 struct drbd_device *device = peer_device->device;
2057 unsigned long todo = get_work_bits(&device->flags);
2058 if (!todo)
2059 continue;
2060
2061 kref_get(&device->kref);
2062 rcu_read_unlock();
2063 do_device_work(device, todo);
2064 kref_put(&device->kref, drbd_destroy_device);
2065 rcu_read_lock();
2066 }
2067 rcu_read_unlock();
2068 }
2069
dequeue_work_batch(struct drbd_work_queue * queue,struct list_head * work_list)2070 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
2071 {
2072 spin_lock_irq(&queue->q_lock);
2073 list_splice_tail_init(&queue->q, work_list);
2074 spin_unlock_irq(&queue->q_lock);
2075 return !list_empty(work_list);
2076 }
2077
wait_for_work(struct drbd_connection * connection,struct list_head * work_list)2078 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
2079 {
2080 DEFINE_WAIT(wait);
2081 struct net_conf *nc;
2082 int uncork, cork;
2083
2084 dequeue_work_batch(&connection->sender_work, work_list);
2085 if (!list_empty(work_list))
2086 return;
2087
2088 /* Still nothing to do?
2089 * Maybe we still need to close the current epoch,
2090 * even if no new requests are queued yet.
2091 *
2092 * Also, poke TCP, just in case.
2093 * Then wait for new work (or signal). */
2094 rcu_read_lock();
2095 nc = rcu_dereference(connection->net_conf);
2096 uncork = nc ? nc->tcp_cork : 0;
2097 rcu_read_unlock();
2098 if (uncork) {
2099 mutex_lock(&connection->data.mutex);
2100 if (connection->data.socket)
2101 tcp_sock_set_cork(connection->data.socket->sk, false);
2102 mutex_unlock(&connection->data.mutex);
2103 }
2104
2105 for (;;) {
2106 int send_barrier;
2107 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
2108 spin_lock_irq(&connection->resource->req_lock);
2109 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
2110 if (!list_empty(&connection->sender_work.q))
2111 list_splice_tail_init(&connection->sender_work.q, work_list);
2112 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
2113 if (!list_empty(work_list) || signal_pending(current)) {
2114 spin_unlock_irq(&connection->resource->req_lock);
2115 break;
2116 }
2117
2118 /* We found nothing new to do, no to-be-communicated request,
2119 * no other work item. We may still need to close the last
2120 * epoch. Next incoming request epoch will be connection ->
2121 * current transfer log epoch number. If that is different
2122 * from the epoch of the last request we communicated, it is
2123 * safe to send the epoch separating barrier now.
2124 */
2125 send_barrier =
2126 atomic_read(&connection->current_tle_nr) !=
2127 connection->send.current_epoch_nr;
2128 spin_unlock_irq(&connection->resource->req_lock);
2129
2130 if (send_barrier)
2131 maybe_send_barrier(connection,
2132 connection->send.current_epoch_nr + 1);
2133
2134 if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
2135 break;
2136
2137 /* drbd_send() may have called flush_signals() */
2138 if (get_t_state(&connection->worker) != RUNNING)
2139 break;
2140
2141 schedule();
2142 /* may be woken up for other things but new work, too,
2143 * e.g. if the current epoch got closed.
2144 * In which case we send the barrier above. */
2145 }
2146 finish_wait(&connection->sender_work.q_wait, &wait);
2147
2148 /* someone may have changed the config while we have been waiting above. */
2149 rcu_read_lock();
2150 nc = rcu_dereference(connection->net_conf);
2151 cork = nc ? nc->tcp_cork : 0;
2152 rcu_read_unlock();
2153 mutex_lock(&connection->data.mutex);
2154 if (connection->data.socket) {
2155 if (cork)
2156 tcp_sock_set_cork(connection->data.socket->sk, true);
2157 else if (!uncork)
2158 tcp_sock_set_cork(connection->data.socket->sk, false);
2159 }
2160 mutex_unlock(&connection->data.mutex);
2161 }
2162
drbd_worker(struct drbd_thread * thi)2163 int drbd_worker(struct drbd_thread *thi)
2164 {
2165 struct drbd_connection *connection = thi->connection;
2166 struct drbd_work *w = NULL;
2167 struct drbd_peer_device *peer_device;
2168 LIST_HEAD(work_list);
2169 int vnr;
2170
2171 while (get_t_state(thi) == RUNNING) {
2172 drbd_thread_current_set_cpu(thi);
2173
2174 if (list_empty(&work_list)) {
2175 update_worker_timing_details(connection, wait_for_work);
2176 wait_for_work(connection, &work_list);
2177 }
2178
2179 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2180 update_worker_timing_details(connection, do_unqueued_work);
2181 do_unqueued_work(connection);
2182 }
2183
2184 if (signal_pending(current)) {
2185 flush_signals(current);
2186 if (get_t_state(thi) == RUNNING) {
2187 drbd_warn(connection, "Worker got an unexpected signal\n");
2188 continue;
2189 }
2190 break;
2191 }
2192
2193 if (get_t_state(thi) != RUNNING)
2194 break;
2195
2196 if (!list_empty(&work_list)) {
2197 w = list_first_entry(&work_list, struct drbd_work, list);
2198 list_del_init(&w->list);
2199 update_worker_timing_details(connection, w->cb);
2200 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
2201 continue;
2202 if (connection->cstate >= C_WF_REPORT_PARAMS)
2203 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
2204 }
2205 }
2206
2207 do {
2208 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2209 update_worker_timing_details(connection, do_unqueued_work);
2210 do_unqueued_work(connection);
2211 }
2212 if (!list_empty(&work_list)) {
2213 w = list_first_entry(&work_list, struct drbd_work, list);
2214 list_del_init(&w->list);
2215 update_worker_timing_details(connection, w->cb);
2216 w->cb(w, 1);
2217 } else
2218 dequeue_work_batch(&connection->sender_work, &work_list);
2219 } while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
2220
2221 rcu_read_lock();
2222 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2223 struct drbd_device *device = peer_device->device;
2224 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
2225 kref_get(&device->kref);
2226 rcu_read_unlock();
2227 drbd_device_cleanup(device);
2228 kref_put(&device->kref, drbd_destroy_device);
2229 rcu_read_lock();
2230 }
2231 rcu_read_unlock();
2232
2233 return 0;
2234 }
2235