• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/i2c.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31 
32 #include <drm/drm_dp_helper.h>
33 #include <drm/drm_print.h>
34 #include <drm/drm_vblank.h>
35 #include <drm/drm_dp_mst_helper.h>
36 
37 #include "drm_crtc_helper_internal.h"
38 
39 /**
40  * DOC: dp helpers
41  *
42  * These functions contain some common logic and helpers at various abstraction
43  * levels to deal with Display Port sink devices and related things like DP aux
44  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
45  * blocks, ...
46  */
47 
48 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)49 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
50 {
51 	return link_status[r - DP_LANE0_1_STATUS];
52 }
53 
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)54 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
55 			     int lane)
56 {
57 	int i = DP_LANE0_1_STATUS + (lane >> 1);
58 	int s = (lane & 1) * 4;
59 	u8 l = dp_link_status(link_status, i);
60 
61 	return (l >> s) & 0xf;
62 }
63 
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)64 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
65 			  int lane_count)
66 {
67 	u8 lane_align;
68 	u8 lane_status;
69 	int lane;
70 
71 	lane_align = dp_link_status(link_status,
72 				    DP_LANE_ALIGN_STATUS_UPDATED);
73 	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
74 		return false;
75 	for (lane = 0; lane < lane_count; lane++) {
76 		lane_status = dp_get_lane_status(link_status, lane);
77 		if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
78 			return false;
79 	}
80 	return true;
81 }
82 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
83 
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)84 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
85 			      int lane_count)
86 {
87 	int lane;
88 	u8 lane_status;
89 
90 	for (lane = 0; lane < lane_count; lane++) {
91 		lane_status = dp_get_lane_status(link_status, lane);
92 		if ((lane_status & DP_LANE_CR_DONE) == 0)
93 			return false;
94 	}
95 	return true;
96 }
97 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
98 
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)99 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
100 				     int lane)
101 {
102 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
103 	int s = ((lane & 1) ?
104 		 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
105 		 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
106 	u8 l = dp_link_status(link_status, i);
107 
108 	return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
109 }
110 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
111 
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)112 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
113 					  int lane)
114 {
115 	int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
116 	int s = ((lane & 1) ?
117 		 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
118 		 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
119 	u8 l = dp_link_status(link_status, i);
120 
121 	return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
122 }
123 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
124 
drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],unsigned int lane)125 u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],
126 					 unsigned int lane)
127 {
128 	unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2;
129 	u8 value = dp_link_status(link_status, offset);
130 
131 	return (value >> (lane << 1)) & 0x3;
132 }
133 EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor);
134 
drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])135 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
136 {
137 	unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
138 					 DP_TRAINING_AUX_RD_MASK;
139 
140 	if (rd_interval > 4)
141 		DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
142 			      rd_interval);
143 
144 	if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
145 		rd_interval = 100;
146 	else
147 		rd_interval *= 4 * USEC_PER_MSEC;
148 
149 	usleep_range(rd_interval, rd_interval * 2);
150 }
151 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
152 
drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])153 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
154 {
155 	unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
156 					 DP_TRAINING_AUX_RD_MASK;
157 
158 	if (rd_interval > 4)
159 		DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
160 			      rd_interval);
161 
162 	if (rd_interval == 0)
163 		rd_interval = 400;
164 	else
165 		rd_interval *= 4 * USEC_PER_MSEC;
166 
167 	usleep_range(rd_interval, rd_interval * 2);
168 }
169 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
170 
drm_dp_link_rate_to_bw_code(int link_rate)171 u8 drm_dp_link_rate_to_bw_code(int link_rate)
172 {
173 	/* Spec says link_bw = link_rate / 0.27Gbps */
174 	return link_rate / 27000;
175 }
176 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
177 
drm_dp_bw_code_to_link_rate(u8 link_bw)178 int drm_dp_bw_code_to_link_rate(u8 link_bw)
179 {
180 	/* Spec says link_rate = link_bw * 0.27Gbps */
181 	return link_bw * 27000;
182 }
183 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
184 
185 #define AUX_RETRY_INTERVAL 500 /* us */
186 
187 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)188 drm_dp_dump_access(const struct drm_dp_aux *aux,
189 		   u8 request, uint offset, void *buffer, int ret)
190 {
191 	const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
192 
193 	if (ret > 0)
194 		DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
195 			     aux->name, offset, arrow, ret, min(ret, 20), buffer);
196 	else
197 		DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n",
198 			     aux->name, offset, arrow, ret);
199 }
200 
201 /**
202  * DOC: dp helpers
203  *
204  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
205  * independent access to AUX functionality. Drivers can take advantage of
206  * this by filling in the fields of the drm_dp_aux structure.
207  *
208  * Transactions are described using a hardware-independent drm_dp_aux_msg
209  * structure, which is passed into a driver's .transfer() implementation.
210  * Both native and I2C-over-AUX transactions are supported.
211  */
212 
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)213 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
214 			      unsigned int offset, void *buffer, size_t size)
215 {
216 	struct drm_dp_aux_msg msg;
217 	unsigned int retry, native_reply;
218 	int err = 0, ret = 0;
219 
220 	memset(&msg, 0, sizeof(msg));
221 	msg.address = offset;
222 	msg.request = request;
223 	msg.buffer = buffer;
224 	msg.size = size;
225 
226 	mutex_lock(&aux->hw_mutex);
227 
228 	/*
229 	 * The specification doesn't give any recommendation on how often to
230 	 * retry native transactions. We used to retry 7 times like for
231 	 * aux i2c transactions but real world devices this wasn't
232 	 * sufficient, bump to 32 which makes Dell 4k monitors happier.
233 	 */
234 	for (retry = 0; retry < 32; retry++) {
235 		if (ret != 0 && ret != -ETIMEDOUT) {
236 			usleep_range(AUX_RETRY_INTERVAL,
237 				     AUX_RETRY_INTERVAL + 100);
238 		}
239 
240 		ret = aux->transfer(aux, &msg);
241 		if (ret >= 0) {
242 			native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
243 			if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
244 				if (ret == size)
245 					goto unlock;
246 
247 				ret = -EPROTO;
248 			} else
249 				ret = -EIO;
250 		}
251 
252 		/*
253 		 * We want the error we return to be the error we received on
254 		 * the first transaction, since we may get a different error the
255 		 * next time we retry
256 		 */
257 		if (!err)
258 			err = ret;
259 	}
260 
261 	DRM_DEBUG_KMS("%s: Too many retries, giving up. First error: %d\n",
262 		      aux->name, err);
263 	ret = err;
264 
265 unlock:
266 	mutex_unlock(&aux->hw_mutex);
267 	return ret;
268 }
269 
270 /**
271  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
272  * @aux: DisplayPort AUX channel (SST or MST)
273  * @offset: address of the (first) register to read
274  * @buffer: buffer to store the register values
275  * @size: number of bytes in @buffer
276  *
277  * Returns the number of bytes transferred on success, or a negative error
278  * code on failure. -EIO is returned if the request was NAKed by the sink or
279  * if the retry count was exceeded. If not all bytes were transferred, this
280  * function returns -EPROTO. Errors from the underlying AUX channel transfer
281  * function, with the exception of -EBUSY (which causes the transaction to
282  * be retried), are propagated to the caller.
283  */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)284 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
285 			 void *buffer, size_t size)
286 {
287 	int ret;
288 
289 	/*
290 	 * HP ZR24w corrupts the first DPCD access after entering power save
291 	 * mode. Eg. on a read, the entire buffer will be filled with the same
292 	 * byte. Do a throw away read to avoid corrupting anything we care
293 	 * about. Afterwards things will work correctly until the monitor
294 	 * gets woken up and subsequently re-enters power save mode.
295 	 *
296 	 * The user pressing any button on the monitor is enough to wake it
297 	 * up, so there is no particularly good place to do the workaround.
298 	 * We just have to do it before any DPCD access and hope that the
299 	 * monitor doesn't power down exactly after the throw away read.
300 	 */
301 	if (!aux->is_remote) {
302 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV,
303 					 buffer, 1);
304 		if (ret != 1)
305 			goto out;
306 	}
307 
308 	if (aux->is_remote)
309 		ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
310 	else
311 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
312 					 buffer, size);
313 
314 out:
315 	drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
316 	return ret;
317 }
318 EXPORT_SYMBOL(drm_dp_dpcd_read);
319 
320 /**
321  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
322  * @aux: DisplayPort AUX channel (SST or MST)
323  * @offset: address of the (first) register to write
324  * @buffer: buffer containing the values to write
325  * @size: number of bytes in @buffer
326  *
327  * Returns the number of bytes transferred on success, or a negative error
328  * code on failure. -EIO is returned if the request was NAKed by the sink or
329  * if the retry count was exceeded. If not all bytes were transferred, this
330  * function returns -EPROTO. Errors from the underlying AUX channel transfer
331  * function, with the exception of -EBUSY (which causes the transaction to
332  * be retried), are propagated to the caller.
333  */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)334 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
335 			  void *buffer, size_t size)
336 {
337 	int ret;
338 
339 	if (aux->is_remote)
340 		ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
341 	else
342 		ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
343 					 buffer, size);
344 
345 	drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
346 	return ret;
347 }
348 EXPORT_SYMBOL(drm_dp_dpcd_write);
349 
350 /**
351  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
352  * @aux: DisplayPort AUX channel
353  * @status: buffer to store the link status in (must be at least 6 bytes)
354  *
355  * Returns the number of bytes transferred on success or a negative error
356  * code on failure.
357  */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])358 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
359 				 u8 status[DP_LINK_STATUS_SIZE])
360 {
361 	return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
362 				DP_LINK_STATUS_SIZE);
363 }
364 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
365 
is_edid_digital_input_dp(const struct edid * edid)366 static bool is_edid_digital_input_dp(const struct edid *edid)
367 {
368 	return edid && edid->revision >= 4 &&
369 		edid->input & DRM_EDID_INPUT_DIGITAL &&
370 		(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
371 }
372 
373 /**
374  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
375  * @dpcd: DisplayPort configuration data
376  * @port_cap: port capabilities
377  * @type: port type to be checked. Can be:
378  * 	  %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
379  * 	  %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
380  *	  %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
381  *
382  * Caveat: Only works with DPCD 1.1+ port caps.
383  *
384  * Returns: whether the downstream facing port matches the type.
385  */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)386 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
387 			       const u8 port_cap[4], u8 type)
388 {
389 	return drm_dp_is_branch(dpcd) &&
390 		dpcd[DP_DPCD_REV] >= 0x11 &&
391 		(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
392 }
393 EXPORT_SYMBOL(drm_dp_downstream_is_type);
394 
395 /**
396  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
397  * @dpcd: DisplayPort configuration data
398  * @port_cap: port capabilities
399  * @edid: EDID
400  *
401  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
402  */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)403 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
404 			       const u8 port_cap[4],
405 			       const struct edid *edid)
406 {
407 	if (dpcd[DP_DPCD_REV] < 0x11) {
408 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
409 		case DP_DWN_STRM_PORT_TYPE_TMDS:
410 			return true;
411 		default:
412 			return false;
413 		}
414 	}
415 
416 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
417 	case DP_DS_PORT_TYPE_DP_DUALMODE:
418 		if (is_edid_digital_input_dp(edid))
419 			return false;
420 		fallthrough;
421 	case DP_DS_PORT_TYPE_DVI:
422 	case DP_DS_PORT_TYPE_HDMI:
423 		return true;
424 	default:
425 		return false;
426 	}
427 }
428 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
429 
430 /**
431  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
432  * @aux: DisplayPort AUX channel
433  * @real_edid_checksum: real edid checksum for the last block
434  *
435  * Returns:
436  * True on success
437  */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)438 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
439 				    u8 real_edid_checksum)
440 {
441 	u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
442 
443 	if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
444 			     &auto_test_req, 1) < 1) {
445 		DRM_ERROR("%s: DPCD failed read at register 0x%x\n",
446 			  aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
447 		return false;
448 	}
449 	auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
450 
451 	if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
452 		DRM_ERROR("%s: DPCD failed read at register 0x%x\n",
453 			  aux->name, DP_TEST_REQUEST);
454 		return false;
455 	}
456 	link_edid_read &= DP_TEST_LINK_EDID_READ;
457 
458 	if (!auto_test_req || !link_edid_read) {
459 		DRM_DEBUG_KMS("%s: Source DUT does not support TEST_EDID_READ\n",
460 			      aux->name);
461 		return false;
462 	}
463 
464 	if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
465 			      &auto_test_req, 1) < 1) {
466 		DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
467 			  aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
468 		return false;
469 	}
470 
471 	/* send back checksum for the last edid extension block data */
472 	if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
473 			      &real_edid_checksum, 1) < 1) {
474 		DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
475 			  aux->name, DP_TEST_EDID_CHECKSUM);
476 		return false;
477 	}
478 
479 	test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
480 	if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
481 		DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
482 			  aux->name, DP_TEST_RESPONSE);
483 		return false;
484 	}
485 
486 	return true;
487 }
488 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
489 
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])490 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
491 {
492 	u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
493 
494 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
495 		port_count = 4;
496 
497 	return port_count;
498 }
499 
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])500 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
501 					  u8 dpcd[DP_RECEIVER_CAP_SIZE])
502 {
503 	u8 dpcd_ext[6];
504 	int ret;
505 
506 	/*
507 	 * Prior to DP1.3 the bit represented by
508 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
509 	 * If it is set DP_DPCD_REV at 0000h could be at a value less than
510 	 * the true capability of the panel. The only way to check is to
511 	 * then compare 0000h and 2200h.
512 	 */
513 	if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
514 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
515 		return 0;
516 
517 	ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
518 			       sizeof(dpcd_ext));
519 	if (ret < 0)
520 		return ret;
521 	if (ret != sizeof(dpcd_ext))
522 		return -EIO;
523 
524 	if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
525 		DRM_DEBUG_KMS("%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
526 			      aux->name, dpcd[DP_DPCD_REV],
527 			      dpcd_ext[DP_DPCD_REV]);
528 		return 0;
529 	}
530 
531 	if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
532 		return 0;
533 
534 	DRM_DEBUG_KMS("%s: Base DPCD: %*ph\n",
535 		      aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
536 
537 	memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
538 
539 	return 0;
540 }
541 
542 /**
543  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
544  * available
545  * @aux: DisplayPort AUX channel
546  * @dpcd: Buffer to store the resulting DPCD in
547  *
548  * Attempts to read the base DPCD caps for @aux. Additionally, this function
549  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
550  * present.
551  *
552  * Returns: %0 if the DPCD was read successfully, negative error code
553  * otherwise.
554  */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])555 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
556 			  u8 dpcd[DP_RECEIVER_CAP_SIZE])
557 {
558 	int ret;
559 
560 	ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
561 	if (ret < 0)
562 		return ret;
563 	if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
564 		return -EIO;
565 
566 	ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
567 	if (ret < 0)
568 		return ret;
569 
570 	DRM_DEBUG_KMS("%s: DPCD: %*ph\n",
571 		      aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
572 
573 	return ret;
574 }
575 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
576 
577 /**
578  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
579  * @aux: DisplayPort AUX channel
580  * @dpcd: A cached copy of the port's DPCD
581  * @downstream_ports: buffer to store the downstream port info in
582  *
583  * See also:
584  * drm_dp_downstream_max_clock()
585  * drm_dp_downstream_max_bpc()
586  *
587  * Returns: 0 if either the downstream port info was read successfully or
588  * there was no downstream info to read, or a negative error code otherwise.
589  */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])590 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
591 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
592 				u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
593 {
594 	int ret;
595 	u8 len;
596 
597 	memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
598 
599 	/* No downstream info to read */
600 	if (!drm_dp_is_branch(dpcd) ||
601 	    dpcd[DP_DPCD_REV] < DP_DPCD_REV_10 ||
602 	    !(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
603 		return 0;
604 
605 	/* Some branches advertise having 0 downstream ports, despite also advertising they have a
606 	 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
607 	 * some branches do it we need to handle it regardless.
608 	 */
609 	len = drm_dp_downstream_port_count(dpcd);
610 	if (!len)
611 		return 0;
612 
613 	if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
614 		len *= 4;
615 
616 	ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
617 	if (ret < 0)
618 		return ret;
619 	if (ret != len)
620 		return -EIO;
621 
622 	DRM_DEBUG_KMS("%s: DPCD DFP: %*ph\n",
623 		      aux->name, len, downstream_ports);
624 
625 	return 0;
626 }
627 EXPORT_SYMBOL(drm_dp_read_downstream_info);
628 
629 /**
630  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
631  * @dpcd: DisplayPort configuration data
632  * @port_cap: port capabilities
633  *
634  * Returns: Downstream facing port max dot clock in kHz on success,
635  * or 0 if max clock not defined
636  */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])637 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
638 				   const u8 port_cap[4])
639 {
640 	if (!drm_dp_is_branch(dpcd))
641 		return 0;
642 
643 	if (dpcd[DP_DPCD_REV] < 0x11)
644 		return 0;
645 
646 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
647 	case DP_DS_PORT_TYPE_VGA:
648 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
649 			return 0;
650 		return port_cap[1] * 8000;
651 	default:
652 		return 0;
653 	}
654 }
655 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
656 
657 /**
658  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
659  * @dpcd: DisplayPort configuration data
660  * @port_cap: port capabilities
661  * @edid: EDID
662  *
663  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
664  * or 0 if max TMDS clock not defined
665  */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)666 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
667 				     const u8 port_cap[4],
668 				     const struct edid *edid)
669 {
670 	if (!drm_dp_is_branch(dpcd))
671 		return 0;
672 
673 	if (dpcd[DP_DPCD_REV] < 0x11) {
674 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
675 		case DP_DWN_STRM_PORT_TYPE_TMDS:
676 			return 165000;
677 		default:
678 			return 0;
679 		}
680 	}
681 
682 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
683 	case DP_DS_PORT_TYPE_DP_DUALMODE:
684 		if (is_edid_digital_input_dp(edid))
685 			return 0;
686 		/*
687 		 * It's left up to the driver to check the
688 		 * DP dual mode adapter's max TMDS clock.
689 		 *
690 		 * Unfortunatley it looks like branch devices
691 		 * may not fordward that the DP dual mode i2c
692 		 * access so we just usually get i2c nak :(
693 		 */
694 		fallthrough;
695 	case DP_DS_PORT_TYPE_HDMI:
696 		 /*
697 		  * We should perhaps assume 165 MHz when detailed cap
698 		  * info is not available. But looks like many typical
699 		  * branch devices fall into that category and so we'd
700 		  * probably end up with users complaining that they can't
701 		  * get high resolution modes with their favorite dongle.
702 		  *
703 		  * So let's limit to 300 MHz instead since DPCD 1.4
704 		  * HDMI 2.0 DFPs are required to have the detailed cap
705 		  * info. So it's more likely we're dealing with a HDMI 1.4
706 		  * compatible* device here.
707 		  */
708 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
709 			return 300000;
710 		return port_cap[1] * 2500;
711 	case DP_DS_PORT_TYPE_DVI:
712 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
713 			return 165000;
714 		/* FIXME what to do about DVI dual link? */
715 		return port_cap[1] * 2500;
716 	default:
717 		return 0;
718 	}
719 }
720 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
721 
722 /**
723  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
724  * @dpcd: DisplayPort configuration data
725  * @port_cap: port capabilities
726  * @edid: EDID
727  *
728  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
729  * or 0 if max TMDS clock not defined
730  */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)731 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
732 				     const u8 port_cap[4],
733 				     const struct edid *edid)
734 {
735 	if (!drm_dp_is_branch(dpcd))
736 		return 0;
737 
738 	if (dpcd[DP_DPCD_REV] < 0x11) {
739 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
740 		case DP_DWN_STRM_PORT_TYPE_TMDS:
741 			return 25000;
742 		default:
743 			return 0;
744 		}
745 	}
746 
747 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
748 	case DP_DS_PORT_TYPE_DP_DUALMODE:
749 		if (is_edid_digital_input_dp(edid))
750 			return 0;
751 		fallthrough;
752 	case DP_DS_PORT_TYPE_DVI:
753 	case DP_DS_PORT_TYPE_HDMI:
754 		/*
755 		 * Unclear whether the protocol converter could
756 		 * utilize pixel replication. Assume it won't.
757 		 */
758 		return 25000;
759 	default:
760 		return 0;
761 	}
762 }
763 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
764 
765 /**
766  * drm_dp_downstream_max_bpc() - extract downstream facing port max
767  *                               bits per component
768  * @dpcd: DisplayPort configuration data
769  * @port_cap: downstream facing port capabilities
770  * @edid: EDID
771  *
772  * Returns: Max bpc on success or 0 if max bpc not defined
773  */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)774 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
775 			      const u8 port_cap[4],
776 			      const struct edid *edid)
777 {
778 	if (!drm_dp_is_branch(dpcd))
779 		return 0;
780 
781 	if (dpcd[DP_DPCD_REV] < 0x11) {
782 		switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
783 		case DP_DWN_STRM_PORT_TYPE_DP:
784 			return 0;
785 		default:
786 			return 8;
787 		}
788 	}
789 
790 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
791 	case DP_DS_PORT_TYPE_DP:
792 		return 0;
793 	case DP_DS_PORT_TYPE_DP_DUALMODE:
794 		if (is_edid_digital_input_dp(edid))
795 			return 0;
796 		fallthrough;
797 	case DP_DS_PORT_TYPE_HDMI:
798 	case DP_DS_PORT_TYPE_DVI:
799 	case DP_DS_PORT_TYPE_VGA:
800 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
801 			return 8;
802 
803 		switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
804 		case DP_DS_8BPC:
805 			return 8;
806 		case DP_DS_10BPC:
807 			return 10;
808 		case DP_DS_12BPC:
809 			return 12;
810 		case DP_DS_16BPC:
811 			return 16;
812 		default:
813 			return 8;
814 		}
815 		break;
816 	default:
817 		return 8;
818 	}
819 }
820 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
821 
822 /**
823  * drm_dp_downstream_420_passthrough() - determine downstream facing port
824  *                                       YCbCr 4:2:0 pass-through capability
825  * @dpcd: DisplayPort configuration data
826  * @port_cap: downstream facing port capabilities
827  *
828  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
829  */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])830 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
831 				       const u8 port_cap[4])
832 {
833 	if (!drm_dp_is_branch(dpcd))
834 		return false;
835 
836 	if (dpcd[DP_DPCD_REV] < 0x13)
837 		return false;
838 
839 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
840 	case DP_DS_PORT_TYPE_DP:
841 		return true;
842 	case DP_DS_PORT_TYPE_HDMI:
843 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
844 			return false;
845 
846 		return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
847 	default:
848 		return false;
849 	}
850 }
851 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
852 
853 /**
854  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
855  *                                             YCbCr 4:4:4->4:2:0 conversion capability
856  * @dpcd: DisplayPort configuration data
857  * @port_cap: downstream facing port capabilities
858  *
859  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
860  */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])861 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
862 					     const u8 port_cap[4])
863 {
864 	if (!drm_dp_is_branch(dpcd))
865 		return false;
866 
867 	if (dpcd[DP_DPCD_REV] < 0x13)
868 		return false;
869 
870 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
871 	case DP_DS_PORT_TYPE_HDMI:
872 		if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
873 			return false;
874 
875 		return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
876 	default:
877 		return false;
878 	}
879 }
880 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
881 
882 /**
883  * drm_dp_downstream_mode() - return a mode for downstream facing port
884  * @dev: DRM device
885  * @dpcd: DisplayPort configuration data
886  * @port_cap: port capabilities
887  *
888  * Provides a suitable mode for downstream facing ports without EDID.
889  *
890  * Returns: A new drm_display_mode on success or NULL on failure
891  */
892 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])893 drm_dp_downstream_mode(struct drm_device *dev,
894 		       const u8 dpcd[DP_RECEIVER_CAP_SIZE],
895 		       const u8 port_cap[4])
896 
897 {
898 	u8 vic;
899 
900 	if (!drm_dp_is_branch(dpcd))
901 		return NULL;
902 
903 	if (dpcd[DP_DPCD_REV] < 0x11)
904 		return NULL;
905 
906 	switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
907 	case DP_DS_PORT_TYPE_NON_EDID:
908 		switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
909 		case DP_DS_NON_EDID_720x480i_60:
910 			vic = 6;
911 			break;
912 		case DP_DS_NON_EDID_720x480i_50:
913 			vic = 21;
914 			break;
915 		case DP_DS_NON_EDID_1920x1080i_60:
916 			vic = 5;
917 			break;
918 		case DP_DS_NON_EDID_1920x1080i_50:
919 			vic = 20;
920 			break;
921 		case DP_DS_NON_EDID_1280x720_60:
922 			vic = 4;
923 			break;
924 		case DP_DS_NON_EDID_1280x720_50:
925 			vic = 19;
926 			break;
927 		default:
928 			return NULL;
929 		}
930 		return drm_display_mode_from_cea_vic(dev, vic);
931 	default:
932 		return NULL;
933 	}
934 }
935 EXPORT_SYMBOL(drm_dp_downstream_mode);
936 
937 /**
938  * drm_dp_downstream_id() - identify branch device
939  * @aux: DisplayPort AUX channel
940  * @id: DisplayPort branch device id
941  *
942  * Returns branch device id on success or NULL on failure
943  */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])944 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
945 {
946 	return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
947 }
948 EXPORT_SYMBOL(drm_dp_downstream_id);
949 
950 /**
951  * drm_dp_downstream_debug() - debug DP branch devices
952  * @m: pointer for debugfs file
953  * @dpcd: DisplayPort configuration data
954  * @port_cap: port capabilities
955  * @edid: EDID
956  * @aux: DisplayPort AUX channel
957  *
958  */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid,struct drm_dp_aux * aux)959 void drm_dp_downstream_debug(struct seq_file *m,
960 			     const u8 dpcd[DP_RECEIVER_CAP_SIZE],
961 			     const u8 port_cap[4],
962 			     const struct edid *edid,
963 			     struct drm_dp_aux *aux)
964 {
965 	bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
966 				 DP_DETAILED_CAP_INFO_AVAILABLE;
967 	int clk;
968 	int bpc;
969 	char id[7];
970 	int len;
971 	uint8_t rev[2];
972 	int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
973 	bool branch_device = drm_dp_is_branch(dpcd);
974 
975 	seq_printf(m, "\tDP branch device present: %s\n",
976 		   branch_device ? "yes" : "no");
977 
978 	if (!branch_device)
979 		return;
980 
981 	switch (type) {
982 	case DP_DS_PORT_TYPE_DP:
983 		seq_puts(m, "\t\tType: DisplayPort\n");
984 		break;
985 	case DP_DS_PORT_TYPE_VGA:
986 		seq_puts(m, "\t\tType: VGA\n");
987 		break;
988 	case DP_DS_PORT_TYPE_DVI:
989 		seq_puts(m, "\t\tType: DVI\n");
990 		break;
991 	case DP_DS_PORT_TYPE_HDMI:
992 		seq_puts(m, "\t\tType: HDMI\n");
993 		break;
994 	case DP_DS_PORT_TYPE_NON_EDID:
995 		seq_puts(m, "\t\tType: others without EDID support\n");
996 		break;
997 	case DP_DS_PORT_TYPE_DP_DUALMODE:
998 		seq_puts(m, "\t\tType: DP++\n");
999 		break;
1000 	case DP_DS_PORT_TYPE_WIRELESS:
1001 		seq_puts(m, "\t\tType: Wireless\n");
1002 		break;
1003 	default:
1004 		seq_puts(m, "\t\tType: N/A\n");
1005 	}
1006 
1007 	memset(id, 0, sizeof(id));
1008 	drm_dp_downstream_id(aux, id);
1009 	seq_printf(m, "\t\tID: %s\n", id);
1010 
1011 	len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1012 	if (len > 0)
1013 		seq_printf(m, "\t\tHW: %d.%d\n",
1014 			   (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1015 
1016 	len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1017 	if (len > 0)
1018 		seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1019 
1020 	if (detailed_cap_info) {
1021 		clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1022 		if (clk > 0)
1023 			seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1024 
1025 		clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1026 		if (clk > 0)
1027 			seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1028 
1029 		clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1030 		if (clk > 0)
1031 			seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1032 
1033 		bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1034 
1035 		if (bpc > 0)
1036 			seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1037 	}
1038 }
1039 EXPORT_SYMBOL(drm_dp_downstream_debug);
1040 
1041 /**
1042  * drm_dp_subconnector_type() - get DP branch device type
1043  * @dpcd: DisplayPort configuration data
1044  * @port_cap: port capabilities
1045  */
1046 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1047 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1048 			 const u8 port_cap[4])
1049 {
1050 	int type;
1051 	if (!drm_dp_is_branch(dpcd))
1052 		return DRM_MODE_SUBCONNECTOR_Native;
1053 	/* DP 1.0 approach */
1054 	if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1055 		type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1056 		       DP_DWN_STRM_PORT_TYPE_MASK;
1057 
1058 		switch (type) {
1059 		case DP_DWN_STRM_PORT_TYPE_TMDS:
1060 			/* Can be HDMI or DVI-D, DVI-D is a safer option */
1061 			return DRM_MODE_SUBCONNECTOR_DVID;
1062 		case DP_DWN_STRM_PORT_TYPE_ANALOG:
1063 			/* Can be VGA or DVI-A, VGA is more popular */
1064 			return DRM_MODE_SUBCONNECTOR_VGA;
1065 		case DP_DWN_STRM_PORT_TYPE_DP:
1066 			return DRM_MODE_SUBCONNECTOR_DisplayPort;
1067 		case DP_DWN_STRM_PORT_TYPE_OTHER:
1068 		default:
1069 			return DRM_MODE_SUBCONNECTOR_Unknown;
1070 		}
1071 	}
1072 	type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1073 
1074 	switch (type) {
1075 	case DP_DS_PORT_TYPE_DP:
1076 	case DP_DS_PORT_TYPE_DP_DUALMODE:
1077 		return DRM_MODE_SUBCONNECTOR_DisplayPort;
1078 	case DP_DS_PORT_TYPE_VGA:
1079 		return DRM_MODE_SUBCONNECTOR_VGA;
1080 	case DP_DS_PORT_TYPE_DVI:
1081 		return DRM_MODE_SUBCONNECTOR_DVID;
1082 	case DP_DS_PORT_TYPE_HDMI:
1083 		return DRM_MODE_SUBCONNECTOR_HDMIA;
1084 	case DP_DS_PORT_TYPE_WIRELESS:
1085 		return DRM_MODE_SUBCONNECTOR_Wireless;
1086 	case DP_DS_PORT_TYPE_NON_EDID:
1087 	default:
1088 		return DRM_MODE_SUBCONNECTOR_Unknown;
1089 	}
1090 }
1091 EXPORT_SYMBOL(drm_dp_subconnector_type);
1092 
1093 /**
1094  * drm_mode_set_dp_subconnector_property - set subconnector for DP connector
1095  * @connector: connector to set property on
1096  * @status: connector status
1097  * @dpcd: DisplayPort configuration data
1098  * @port_cap: port capabilities
1099  *
1100  * Called by a driver on every detect event.
1101  */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1102 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1103 				      enum drm_connector_status status,
1104 				      const u8 *dpcd,
1105 				      const u8 port_cap[4])
1106 {
1107 	enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1108 
1109 	if (status == connector_status_connected)
1110 		subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1111 	drm_object_property_set_value(&connector->base,
1112 			connector->dev->mode_config.dp_subconnector_property,
1113 			subconnector);
1114 }
1115 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1116 
1117 /**
1118  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1119  * count
1120  * @connector: The DRM connector to check
1121  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1122  * @desc: A cached copy of the connector's DP descriptor
1123  *
1124  * See also: drm_dp_read_sink_count()
1125  *
1126  * Returns: %True if the (e)DP connector has a valid sink count that should
1127  * be probed, %false otherwise.
1128  */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1129 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1130 				const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1131 				const struct drm_dp_desc *desc)
1132 {
1133 	/* Some eDP panels don't set a valid value for the sink count */
1134 	return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1135 		dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1136 		dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1137 		!drm_dp_has_quirk(desc, 0, DP_DPCD_QUIRK_NO_SINK_COUNT);
1138 }
1139 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1140 
1141 /**
1142  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1143  * @aux: The DP AUX channel to use
1144  *
1145  * See also: drm_dp_read_sink_count_cap()
1146  *
1147  * Returns: The current sink count reported by @aux, or a negative error code
1148  * otherwise.
1149  */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1150 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1151 {
1152 	u8 count;
1153 	int ret;
1154 
1155 	ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1156 	if (ret < 0)
1157 		return ret;
1158 	if (ret != 1)
1159 		return -EIO;
1160 
1161 	return DP_GET_SINK_COUNT(count);
1162 }
1163 EXPORT_SYMBOL(drm_dp_read_sink_count);
1164 
1165 /*
1166  * I2C-over-AUX implementation
1167  */
1168 
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1169 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1170 {
1171 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1172 	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1173 	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1174 	       I2C_FUNC_10BIT_ADDR;
1175 }
1176 
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1177 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1178 {
1179 	/*
1180 	 * In case of i2c defer or short i2c ack reply to a write,
1181 	 * we need to switch to WRITE_STATUS_UPDATE to drain the
1182 	 * rest of the message
1183 	 */
1184 	if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1185 		msg->request &= DP_AUX_I2C_MOT;
1186 		msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1187 	}
1188 }
1189 
1190 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1191 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1192 #define AUX_STOP_LEN 4
1193 #define AUX_CMD_LEN 4
1194 #define AUX_ADDRESS_LEN 20
1195 #define AUX_REPLY_PAD_LEN 4
1196 #define AUX_LENGTH_LEN 8
1197 
1198 /*
1199  * Calculate the duration of the AUX request/reply in usec. Gives the
1200  * "best" case estimate, ie. successful while as short as possible.
1201  */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1202 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1203 {
1204 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1205 		AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1206 
1207 	if ((msg->request & DP_AUX_I2C_READ) == 0)
1208 		len += msg->size * 8;
1209 
1210 	return len;
1211 }
1212 
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1213 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1214 {
1215 	int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1216 		AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1217 
1218 	/*
1219 	 * For read we expect what was asked. For writes there will
1220 	 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1221 	 */
1222 	if (msg->request & DP_AUX_I2C_READ)
1223 		len += msg->size * 8;
1224 
1225 	return len;
1226 }
1227 
1228 #define I2C_START_LEN 1
1229 #define I2C_STOP_LEN 1
1230 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1231 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1232 
1233 /*
1234  * Calculate the length of the i2c transfer in usec, assuming
1235  * the i2c bus speed is as specified. Gives the the "worst"
1236  * case estimate, ie. successful while as long as possible.
1237  * Doesn't account the the "MOT" bit, and instead assumes each
1238  * message includes a START, ADDRESS and STOP. Neither does it
1239  * account for additional random variables such as clock stretching.
1240  */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1241 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1242 				   int i2c_speed_khz)
1243 {
1244 	/* AUX bitrate is 1MHz, i2c bitrate as specified */
1245 	return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1246 			     msg->size * I2C_DATA_LEN +
1247 			     I2C_STOP_LEN) * 1000, i2c_speed_khz);
1248 }
1249 
1250 /*
1251  * Deterine how many retries should be attempted to successfully transfer
1252  * the specified message, based on the estimated durations of the
1253  * i2c and AUX transfers.
1254  */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1255 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1256 			      int i2c_speed_khz)
1257 {
1258 	int aux_time_us = drm_dp_aux_req_duration(msg) +
1259 		drm_dp_aux_reply_duration(msg);
1260 	int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1261 
1262 	return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1263 }
1264 
1265 /*
1266  * FIXME currently assumes 10 kHz as some real world devices seem
1267  * to require it. We should query/set the speed via DPCD if supported.
1268  */
1269 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1270 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1271 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1272 		 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1273 
1274 /*
1275  * Transfer a single I2C-over-AUX message and handle various error conditions,
1276  * retrying the transaction as appropriate.  It is assumed that the
1277  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1278  * reply field.
1279  *
1280  * Returns bytes transferred on success, or a negative error code on failure.
1281  */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1282 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1283 {
1284 	unsigned int retry, defer_i2c;
1285 	int ret;
1286 	/*
1287 	 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1288 	 * is required to retry at least seven times upon receiving AUX_DEFER
1289 	 * before giving up the AUX transaction.
1290 	 *
1291 	 * We also try to account for the i2c bus speed.
1292 	 */
1293 	int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1294 
1295 	for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1296 		ret = aux->transfer(aux, msg);
1297 		if (ret < 0) {
1298 			if (ret == -EBUSY)
1299 				continue;
1300 
1301 			/*
1302 			 * While timeouts can be errors, they're usually normal
1303 			 * behavior (for instance, when a driver tries to
1304 			 * communicate with a non-existant DisplayPort device).
1305 			 * Avoid spamming the kernel log with timeout errors.
1306 			 */
1307 			if (ret == -ETIMEDOUT)
1308 				DRM_DEBUG_KMS_RATELIMITED("%s: transaction timed out\n",
1309 							  aux->name);
1310 			else
1311 				DRM_DEBUG_KMS("%s: transaction failed: %d\n",
1312 					      aux->name, ret);
1313 			return ret;
1314 		}
1315 
1316 
1317 		switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1318 		case DP_AUX_NATIVE_REPLY_ACK:
1319 			/*
1320 			 * For I2C-over-AUX transactions this isn't enough, we
1321 			 * need to check for the I2C ACK reply.
1322 			 */
1323 			break;
1324 
1325 		case DP_AUX_NATIVE_REPLY_NACK:
1326 			DRM_DEBUG_KMS("%s: native nack (result=%d, size=%zu)\n",
1327 				      aux->name, ret, msg->size);
1328 			return -EREMOTEIO;
1329 
1330 		case DP_AUX_NATIVE_REPLY_DEFER:
1331 			DRM_DEBUG_KMS("%s: native defer\n", aux->name);
1332 			/*
1333 			 * We could check for I2C bit rate capabilities and if
1334 			 * available adjust this interval. We could also be
1335 			 * more careful with DP-to-legacy adapters where a
1336 			 * long legacy cable may force very low I2C bit rates.
1337 			 *
1338 			 * For now just defer for long enough to hopefully be
1339 			 * safe for all use-cases.
1340 			 */
1341 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1342 			continue;
1343 
1344 		default:
1345 			DRM_ERROR("%s: invalid native reply %#04x\n",
1346 				  aux->name, msg->reply);
1347 			return -EREMOTEIO;
1348 		}
1349 
1350 		switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1351 		case DP_AUX_I2C_REPLY_ACK:
1352 			/*
1353 			 * Both native ACK and I2C ACK replies received. We
1354 			 * can assume the transfer was successful.
1355 			 */
1356 			if (ret != msg->size)
1357 				drm_dp_i2c_msg_write_status_update(msg);
1358 			return ret;
1359 
1360 		case DP_AUX_I2C_REPLY_NACK:
1361 			DRM_DEBUG_KMS("%s: I2C nack (result=%d, size=%zu)\n",
1362 				      aux->name, ret, msg->size);
1363 			aux->i2c_nack_count++;
1364 			return -EREMOTEIO;
1365 
1366 		case DP_AUX_I2C_REPLY_DEFER:
1367 			DRM_DEBUG_KMS("%s: I2C defer\n", aux->name);
1368 			/* DP Compliance Test 4.2.2.5 Requirement:
1369 			 * Must have at least 7 retries for I2C defers on the
1370 			 * transaction to pass this test
1371 			 */
1372 			aux->i2c_defer_count++;
1373 			if (defer_i2c < 7)
1374 				defer_i2c++;
1375 			usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1376 			drm_dp_i2c_msg_write_status_update(msg);
1377 
1378 			continue;
1379 
1380 		default:
1381 			DRM_ERROR("%s: invalid I2C reply %#04x\n",
1382 				  aux->name, msg->reply);
1383 			return -EREMOTEIO;
1384 		}
1385 	}
1386 
1387 	DRM_DEBUG_KMS("%s: Too many retries, giving up\n", aux->name);
1388 	return -EREMOTEIO;
1389 }
1390 
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)1391 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1392 				       const struct i2c_msg *i2c_msg)
1393 {
1394 	msg->request = (i2c_msg->flags & I2C_M_RD) ?
1395 		DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1396 	if (!(i2c_msg->flags & I2C_M_STOP))
1397 		msg->request |= DP_AUX_I2C_MOT;
1398 }
1399 
1400 /*
1401  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1402  *
1403  * Returns an error code on failure, or a recommended transfer size on success.
1404  */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)1405 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1406 {
1407 	int err, ret = orig_msg->size;
1408 	struct drm_dp_aux_msg msg = *orig_msg;
1409 
1410 	while (msg.size > 0) {
1411 		err = drm_dp_i2c_do_msg(aux, &msg);
1412 		if (err <= 0)
1413 			return err == 0 ? -EPROTO : err;
1414 
1415 		if (err < msg.size && err < ret) {
1416 			DRM_DEBUG_KMS("%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1417 				      aux->name, msg.size, err);
1418 			ret = err;
1419 		}
1420 
1421 		msg.size -= err;
1422 		msg.buffer += err;
1423 	}
1424 
1425 	return ret;
1426 }
1427 
1428 /*
1429  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1430  * packets to be as large as possible. If not, the I2C transactions never
1431  * succeed. Hence the default is maximum.
1432  */
1433 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1434 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1435 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1436 		 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1437 
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)1438 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1439 			   int num)
1440 {
1441 	struct drm_dp_aux *aux = adapter->algo_data;
1442 	unsigned int i, j;
1443 	unsigned transfer_size;
1444 	struct drm_dp_aux_msg msg;
1445 	int err = 0;
1446 
1447 	dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1448 
1449 	memset(&msg, 0, sizeof(msg));
1450 
1451 	for (i = 0; i < num; i++) {
1452 		msg.address = msgs[i].addr;
1453 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1454 		/* Send a bare address packet to start the transaction.
1455 		 * Zero sized messages specify an address only (bare
1456 		 * address) transaction.
1457 		 */
1458 		msg.buffer = NULL;
1459 		msg.size = 0;
1460 		err = drm_dp_i2c_do_msg(aux, &msg);
1461 
1462 		/*
1463 		 * Reset msg.request in case in case it got
1464 		 * changed into a WRITE_STATUS_UPDATE.
1465 		 */
1466 		drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1467 
1468 		if (err < 0)
1469 			break;
1470 		/* We want each transaction to be as large as possible, but
1471 		 * we'll go to smaller sizes if the hardware gives us a
1472 		 * short reply.
1473 		 */
1474 		transfer_size = dp_aux_i2c_transfer_size;
1475 		for (j = 0; j < msgs[i].len; j += msg.size) {
1476 			msg.buffer = msgs[i].buf + j;
1477 			msg.size = min(transfer_size, msgs[i].len - j);
1478 
1479 			err = drm_dp_i2c_drain_msg(aux, &msg);
1480 
1481 			/*
1482 			 * Reset msg.request in case in case it got
1483 			 * changed into a WRITE_STATUS_UPDATE.
1484 			 */
1485 			drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1486 
1487 			if (err < 0)
1488 				break;
1489 			transfer_size = err;
1490 		}
1491 		if (err < 0)
1492 			break;
1493 	}
1494 	if (err >= 0)
1495 		err = num;
1496 	/* Send a bare address packet to close out the transaction.
1497 	 * Zero sized messages specify an address only (bare
1498 	 * address) transaction.
1499 	 */
1500 	msg.request &= ~DP_AUX_I2C_MOT;
1501 	msg.buffer = NULL;
1502 	msg.size = 0;
1503 	(void)drm_dp_i2c_do_msg(aux, &msg);
1504 
1505 	return err;
1506 }
1507 
1508 static const struct i2c_algorithm drm_dp_i2c_algo = {
1509 	.functionality = drm_dp_i2c_functionality,
1510 	.master_xfer = drm_dp_i2c_xfer,
1511 };
1512 
i2c_to_aux(struct i2c_adapter * i2c)1513 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1514 {
1515 	return container_of(i2c, struct drm_dp_aux, ddc);
1516 }
1517 
lock_bus(struct i2c_adapter * i2c,unsigned int flags)1518 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1519 {
1520 	mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1521 }
1522 
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)1523 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1524 {
1525 	return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1526 }
1527 
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)1528 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1529 {
1530 	mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1531 }
1532 
1533 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1534 	.lock_bus = lock_bus,
1535 	.trylock_bus = trylock_bus,
1536 	.unlock_bus = unlock_bus,
1537 };
1538 
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)1539 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1540 {
1541 	u8 buf, count;
1542 	int ret;
1543 
1544 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1545 	if (ret < 0)
1546 		return ret;
1547 
1548 	WARN_ON(!(buf & DP_TEST_SINK_START));
1549 
1550 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1551 	if (ret < 0)
1552 		return ret;
1553 
1554 	count = buf & DP_TEST_COUNT_MASK;
1555 	if (count == aux->crc_count)
1556 		return -EAGAIN; /* No CRC yet */
1557 
1558 	aux->crc_count = count;
1559 
1560 	/*
1561 	 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1562 	 * per component (RGB or CrYCb).
1563 	 */
1564 	ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1565 	if (ret < 0)
1566 		return ret;
1567 
1568 	return 0;
1569 }
1570 
drm_dp_aux_crc_work(struct work_struct * work)1571 static void drm_dp_aux_crc_work(struct work_struct *work)
1572 {
1573 	struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1574 					      crc_work);
1575 	struct drm_crtc *crtc;
1576 	u8 crc_bytes[6];
1577 	uint32_t crcs[3];
1578 	int ret;
1579 
1580 	if (WARN_ON(!aux->crtc))
1581 		return;
1582 
1583 	crtc = aux->crtc;
1584 	while (crtc->crc.opened) {
1585 		drm_crtc_wait_one_vblank(crtc);
1586 		if (!crtc->crc.opened)
1587 			break;
1588 
1589 		ret = drm_dp_aux_get_crc(aux, crc_bytes);
1590 		if (ret == -EAGAIN) {
1591 			usleep_range(1000, 2000);
1592 			ret = drm_dp_aux_get_crc(aux, crc_bytes);
1593 		}
1594 
1595 		if (ret == -EAGAIN) {
1596 			DRM_DEBUG_KMS("%s: Get CRC failed after retrying: %d\n",
1597 				      aux->name, ret);
1598 			continue;
1599 		} else if (ret) {
1600 			DRM_DEBUG_KMS("%s: Failed to get a CRC: %d\n",
1601 				      aux->name, ret);
1602 			continue;
1603 		}
1604 
1605 		crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1606 		crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1607 		crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1608 		drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1609 	}
1610 }
1611 
1612 /**
1613  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1614  * @aux: DisplayPort AUX channel
1615  *
1616  * Used for remote aux channel in general. Merely initialize the crc work
1617  * struct.
1618  */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)1619 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1620 {
1621 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1622 }
1623 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1624 
1625 /**
1626  * drm_dp_aux_init() - minimally initialise an aux channel
1627  * @aux: DisplayPort AUX channel
1628  *
1629  * If you need to use the drm_dp_aux's i2c adapter prior to registering it
1630  * with the outside world, call drm_dp_aux_init() first. You must still
1631  * call drm_dp_aux_register() once the connector has been registered to
1632  * allow userspace access to the auxiliary DP channel.
1633  */
drm_dp_aux_init(struct drm_dp_aux * aux)1634 void drm_dp_aux_init(struct drm_dp_aux *aux)
1635 {
1636 	mutex_init(&aux->hw_mutex);
1637 	mutex_init(&aux->cec.lock);
1638 	INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1639 
1640 	aux->ddc.algo = &drm_dp_i2c_algo;
1641 	aux->ddc.algo_data = aux;
1642 	aux->ddc.retries = 3;
1643 
1644 	aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
1645 }
1646 EXPORT_SYMBOL(drm_dp_aux_init);
1647 
1648 /**
1649  * drm_dp_aux_register() - initialise and register aux channel
1650  * @aux: DisplayPort AUX channel
1651  *
1652  * Automatically calls drm_dp_aux_init() if this hasn't been done yet.
1653  * This should only be called when the underlying &struct drm_connector is
1654  * initialiazed already. Therefore the best place to call this is from
1655  * &drm_connector_funcs.late_register. Not that drivers which don't follow this
1656  * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled.
1657  *
1658  * Drivers which need to use the aux channel before that point (e.g. at driver
1659  * load time, before drm_dev_register() has been called) need to call
1660  * drm_dp_aux_init().
1661  *
1662  * Returns 0 on success or a negative error code on failure.
1663  */
drm_dp_aux_register(struct drm_dp_aux * aux)1664 int drm_dp_aux_register(struct drm_dp_aux *aux)
1665 {
1666 	int ret;
1667 
1668 	if (!aux->ddc.algo)
1669 		drm_dp_aux_init(aux);
1670 
1671 	aux->ddc.class = I2C_CLASS_DDC;
1672 	aux->ddc.owner = THIS_MODULE;
1673 	aux->ddc.dev.parent = aux->dev;
1674 
1675 	strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
1676 		sizeof(aux->ddc.name));
1677 
1678 	ret = drm_dp_aux_register_devnode(aux);
1679 	if (ret)
1680 		return ret;
1681 
1682 	ret = i2c_add_adapter(&aux->ddc);
1683 	if (ret) {
1684 		drm_dp_aux_unregister_devnode(aux);
1685 		return ret;
1686 	}
1687 
1688 	return 0;
1689 }
1690 EXPORT_SYMBOL(drm_dp_aux_register);
1691 
1692 /**
1693  * drm_dp_aux_unregister() - unregister an AUX adapter
1694  * @aux: DisplayPort AUX channel
1695  */
drm_dp_aux_unregister(struct drm_dp_aux * aux)1696 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
1697 {
1698 	drm_dp_aux_unregister_devnode(aux);
1699 	i2c_del_adapter(&aux->ddc);
1700 }
1701 EXPORT_SYMBOL(drm_dp_aux_unregister);
1702 
1703 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
1704 
1705 /**
1706  * drm_dp_psr_setup_time() - PSR setup in time usec
1707  * @psr_cap: PSR capabilities from DPCD
1708  *
1709  * Returns:
1710  * PSR setup time for the panel in microseconds,  negative
1711  * error code on failure.
1712  */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])1713 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
1714 {
1715 	static const u16 psr_setup_time_us[] = {
1716 		PSR_SETUP_TIME(330),
1717 		PSR_SETUP_TIME(275),
1718 		PSR_SETUP_TIME(220),
1719 		PSR_SETUP_TIME(165),
1720 		PSR_SETUP_TIME(110),
1721 		PSR_SETUP_TIME(55),
1722 		PSR_SETUP_TIME(0),
1723 	};
1724 	int i;
1725 
1726 	i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
1727 	if (i >= ARRAY_SIZE(psr_setup_time_us))
1728 		return -EINVAL;
1729 
1730 	return psr_setup_time_us[i];
1731 }
1732 EXPORT_SYMBOL(drm_dp_psr_setup_time);
1733 
1734 #undef PSR_SETUP_TIME
1735 
1736 /**
1737  * drm_dp_start_crc() - start capture of frame CRCs
1738  * @aux: DisplayPort AUX channel
1739  * @crtc: CRTC displaying the frames whose CRCs are to be captured
1740  *
1741  * Returns 0 on success or a negative error code on failure.
1742  */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)1743 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
1744 {
1745 	u8 buf;
1746 	int ret;
1747 
1748 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1749 	if (ret < 0)
1750 		return ret;
1751 
1752 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
1753 	if (ret < 0)
1754 		return ret;
1755 
1756 	aux->crc_count = 0;
1757 	aux->crtc = crtc;
1758 	schedule_work(&aux->crc_work);
1759 
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(drm_dp_start_crc);
1763 
1764 /**
1765  * drm_dp_stop_crc() - stop capture of frame CRCs
1766  * @aux: DisplayPort AUX channel
1767  *
1768  * Returns 0 on success or a negative error code on failure.
1769  */
drm_dp_stop_crc(struct drm_dp_aux * aux)1770 int drm_dp_stop_crc(struct drm_dp_aux *aux)
1771 {
1772 	u8 buf;
1773 	int ret;
1774 
1775 	ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1776 	if (ret < 0)
1777 		return ret;
1778 
1779 	ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
1780 	if (ret < 0)
1781 		return ret;
1782 
1783 	flush_work(&aux->crc_work);
1784 	aux->crtc = NULL;
1785 
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(drm_dp_stop_crc);
1789 
1790 struct dpcd_quirk {
1791 	u8 oui[3];
1792 	u8 device_id[6];
1793 	bool is_branch;
1794 	u32 quirks;
1795 };
1796 
1797 #define OUI(first, second, third) { (first), (second), (third) }
1798 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
1799 	{ (first), (second), (third), (fourth), (fifth), (sixth) }
1800 
1801 #define DEVICE_ID_ANY	DEVICE_ID(0, 0, 0, 0, 0, 0)
1802 
1803 static const struct dpcd_quirk dpcd_quirk_list[] = {
1804 	/* Analogix 7737 needs reduced M and N at HBR2 link rates */
1805 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1806 	/* LG LP140WF6-SPM1 eDP panel */
1807 	{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1808 	/* Apple panels need some additional handling to support PSR */
1809 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
1810 	/* CH7511 seems to leave SINK_COUNT zeroed */
1811 	{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
1812 	/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
1813 	{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
1814 	/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
1815 	{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
1816 };
1817 
1818 #undef OUI
1819 
1820 /*
1821  * Get a bit mask of DPCD quirks for the sink/branch device identified by
1822  * ident. The quirk data is shared but it's up to the drivers to act on the
1823  * data.
1824  *
1825  * For now, only the OUI (first three bytes) is used, but this may be extended
1826  * to device identification string and hardware/firmware revisions later.
1827  */
1828 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)1829 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
1830 {
1831 	const struct dpcd_quirk *quirk;
1832 	u32 quirks = 0;
1833 	int i;
1834 	u8 any_device[] = DEVICE_ID_ANY;
1835 
1836 	for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
1837 		quirk = &dpcd_quirk_list[i];
1838 
1839 		if (quirk->is_branch != is_branch)
1840 			continue;
1841 
1842 		if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
1843 			continue;
1844 
1845 		if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
1846 		    memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
1847 			continue;
1848 
1849 		quirks |= quirk->quirks;
1850 	}
1851 
1852 	return quirks;
1853 }
1854 
1855 #undef DEVICE_ID_ANY
1856 #undef DEVICE_ID
1857 
1858 struct edid_quirk {
1859 	u8 mfg_id[2];
1860 	u8 prod_id[2];
1861 	u32 quirks;
1862 };
1863 
1864 #define MFG(first, second) { (first), (second) }
1865 #define PROD_ID(first, second) { (first), (second) }
1866 
1867 /*
1868  * Some devices have unreliable OUIDs where they don't set the device ID
1869  * correctly, and as a result we need to use the EDID for finding additional
1870  * DP quirks in such cases.
1871  */
1872 static const struct edid_quirk edid_quirk_list[] = {
1873 	/* Optional 4K AMOLED panel in the ThinkPad X1 Extreme 2nd Generation
1874 	 * only supports DPCD backlight controls
1875 	 */
1876 	{ MFG(0x4c, 0x83), PROD_ID(0x41, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1877 	/*
1878 	 * Some Dell CML 2020 systems have panels support both AUX and PWM
1879 	 * backlight control, and some only support AUX backlight control. All
1880 	 * said panels start up in AUX mode by default, and we don't have any
1881 	 * support for disabling HDR mode on these panels which would be
1882 	 * required to switch to PWM backlight control mode (plus, I'm not
1883 	 * even sure we want PWM backlight controls over DPCD backlight
1884 	 * controls anyway...). Until we have a better way of detecting these,
1885 	 * force DPCD backlight mode on all of them.
1886 	 */
1887 	{ MFG(0x06, 0xaf), PROD_ID(0x9b, 0x32), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1888 	{ MFG(0x06, 0xaf), PROD_ID(0xeb, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1889 	{ MFG(0x4d, 0x10), PROD_ID(0xc7, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1890 	{ MFG(0x4d, 0x10), PROD_ID(0xe6, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1891 	{ MFG(0x4c, 0x83), PROD_ID(0x47, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1892 };
1893 
1894 #undef MFG
1895 #undef PROD_ID
1896 
1897 /**
1898  * drm_dp_get_edid_quirks() - Check the EDID of a DP device to find additional
1899  * DP-specific quirks
1900  * @edid: The EDID to check
1901  *
1902  * While OUIDs are meant to be used to recognize a DisplayPort device, a lot
1903  * of manufacturers don't seem to like following standards and neglect to fill
1904  * the dev-ID in, making it impossible to only use OUIDs for determining
1905  * quirks in some cases. This function can be used to check the EDID and look
1906  * up any additional DP quirks. The bits returned by this function correspond
1907  * to the quirk bits in &drm_dp_quirk.
1908  *
1909  * Returns: a bitmask of quirks, if any. The driver can check this using
1910  * drm_dp_has_quirk().
1911  */
drm_dp_get_edid_quirks(const struct edid * edid)1912 u32 drm_dp_get_edid_quirks(const struct edid *edid)
1913 {
1914 	const struct edid_quirk *quirk;
1915 	u32 quirks = 0;
1916 	int i;
1917 
1918 	if (!edid)
1919 		return 0;
1920 
1921 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1922 		quirk = &edid_quirk_list[i];
1923 		if (memcmp(quirk->mfg_id, edid->mfg_id,
1924 			   sizeof(edid->mfg_id)) == 0 &&
1925 		    memcmp(quirk->prod_id, edid->prod_code,
1926 			   sizeof(edid->prod_code)) == 0)
1927 			quirks |= quirk->quirks;
1928 	}
1929 
1930 	DRM_DEBUG_KMS("DP sink: EDID mfg %*phD prod-ID %*phD quirks: 0x%04x\n",
1931 		      (int)sizeof(edid->mfg_id), edid->mfg_id,
1932 		      (int)sizeof(edid->prod_code), edid->prod_code, quirks);
1933 
1934 	return quirks;
1935 }
1936 EXPORT_SYMBOL(drm_dp_get_edid_quirks);
1937 
1938 /**
1939  * drm_dp_read_desc - read sink/branch descriptor from DPCD
1940  * @aux: DisplayPort AUX channel
1941  * @desc: Device descriptor to fill from DPCD
1942  * @is_branch: true for branch devices, false for sink devices
1943  *
1944  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
1945  * identification.
1946  *
1947  * Returns 0 on success or a negative error code on failure.
1948  */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)1949 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
1950 		     bool is_branch)
1951 {
1952 	struct drm_dp_dpcd_ident *ident = &desc->ident;
1953 	unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
1954 	int ret, dev_id_len;
1955 
1956 	ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
1957 	if (ret < 0)
1958 		return ret;
1959 
1960 	desc->quirks = drm_dp_get_quirks(ident, is_branch);
1961 
1962 	dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
1963 
1964 	DRM_DEBUG_KMS("%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
1965 		      aux->name, is_branch ? "branch" : "sink",
1966 		      (int)sizeof(ident->oui), ident->oui,
1967 		      dev_id_len, ident->device_id,
1968 		      ident->hw_rev >> 4, ident->hw_rev & 0xf,
1969 		      ident->sw_major_rev, ident->sw_minor_rev,
1970 		      desc->quirks);
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL(drm_dp_read_desc);
1975 
1976 /**
1977  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
1978  * supported by the DSC sink.
1979  * @dsc_dpcd: DSC capabilities from DPCD
1980  * @is_edp: true if its eDP, false for DP
1981  *
1982  * Read the slice capabilities DPCD register from DSC sink to get
1983  * the maximum slice count supported. This is used to populate
1984  * the DSC parameters in the &struct drm_dsc_config by the driver.
1985  * Driver creates an infoframe using these parameters to populate
1986  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1987  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1988  *
1989  * Returns:
1990  * Maximum slice count supported by DSC sink or 0 its invalid
1991  */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)1992 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1993 				   bool is_edp)
1994 {
1995 	u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
1996 
1997 	if (is_edp) {
1998 		/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
1999 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2000 			return 4;
2001 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2002 			return 2;
2003 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2004 			return 1;
2005 	} else {
2006 		/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2007 		u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2008 
2009 		if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2010 			return 24;
2011 		if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2012 			return 20;
2013 		if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2014 			return 16;
2015 		if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2016 			return 12;
2017 		if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2018 			return 10;
2019 		if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2020 			return 8;
2021 		if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2022 			return 6;
2023 		if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2024 			return 4;
2025 		if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2026 			return 2;
2027 		if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2028 			return 1;
2029 	}
2030 
2031 	return 0;
2032 }
2033 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2034 
2035 /**
2036  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2037  * @dsc_dpcd: DSC capabilities from DPCD
2038  *
2039  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2040  * number of bits of precision within the decoder line buffer supported by
2041  * the DSC sink. This is used to populate the DSC parameters in the
2042  * &struct drm_dsc_config by the driver.
2043  * Driver creates an infoframe using these parameters to populate
2044  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2045  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2046  *
2047  * Returns:
2048  * Line buffer depth supported by DSC panel or 0 its invalid
2049  */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2050 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2051 {
2052 	u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2053 
2054 	switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2055 	case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2056 		return 9;
2057 	case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2058 		return 10;
2059 	case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2060 		return 11;
2061 	case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2062 		return 12;
2063 	case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2064 		return 13;
2065 	case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2066 		return 14;
2067 	case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2068 		return 15;
2069 	case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2070 		return 16;
2071 	case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2072 		return 8;
2073 	}
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2078 
2079 /**
2080  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2081  * values supported by the DSC sink.
2082  * @dsc_dpcd: DSC capabilities from DPCD
2083  * @dsc_bpc: An array to be filled by this helper with supported
2084  *           input bpcs.
2085  *
2086  * Read the DSC DPCD from the sink device to parse the supported bits per
2087  * component values. This is used to populate the DSC parameters
2088  * in the &struct drm_dsc_config by the driver.
2089  * Driver creates an infoframe using these parameters to populate
2090  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2091  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2092  *
2093  * Returns:
2094  * Number of input BPC values parsed from the DPCD
2095  */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2096 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2097 					 u8 dsc_bpc[3])
2098 {
2099 	int num_bpc = 0;
2100 	u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2101 
2102 	if (color_depth & DP_DSC_12_BPC)
2103 		dsc_bpc[num_bpc++] = 12;
2104 	if (color_depth & DP_DSC_10_BPC)
2105 		dsc_bpc[num_bpc++] = 10;
2106 	if (color_depth & DP_DSC_8_BPC)
2107 		dsc_bpc[num_bpc++] = 8;
2108 
2109 	return num_bpc;
2110 }
2111 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2112 
2113 /**
2114  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2115  * @aux: DisplayPort AUX channel
2116  * @data: DP phy compliance test parameters.
2117  *
2118  * Returns 0 on success or a negative error code on failure.
2119  */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2120 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2121 				struct drm_dp_phy_test_params *data)
2122 {
2123 	int err;
2124 	u8 rate, lanes;
2125 
2126 	err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2127 	if (err < 0)
2128 		return err;
2129 	data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2130 
2131 	err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2132 	if (err < 0)
2133 		return err;
2134 	data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2135 
2136 	if (lanes & DP_ENHANCED_FRAME_CAP)
2137 		data->enhanced_frame_cap = true;
2138 
2139 	err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2140 	if (err < 0)
2141 		return err;
2142 
2143 	switch (data->phy_pattern) {
2144 	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2145 		err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2146 				       &data->custom80, sizeof(data->custom80));
2147 		if (err < 0)
2148 			return err;
2149 
2150 		break;
2151 	case DP_PHY_TEST_PATTERN_CP2520:
2152 		err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2153 				       &data->hbr2_reset,
2154 				       sizeof(data->hbr2_reset));
2155 		if (err < 0)
2156 			return err;
2157 	}
2158 
2159 	return 0;
2160 }
2161 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2162 
2163 /**
2164  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2165  * @aux: DisplayPort AUX channel
2166  * @data: DP phy compliance test parameters.
2167  * @dp_rev: DP revision to use for compliance testing
2168  *
2169  * Returns 0 on success or a negative error code on failure.
2170  */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)2171 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2172 				struct drm_dp_phy_test_params *data, u8 dp_rev)
2173 {
2174 	int err, i;
2175 	u8 test_pattern;
2176 
2177 	test_pattern = data->phy_pattern;
2178 	if (dp_rev < 0x12) {
2179 		test_pattern = (test_pattern << 2) &
2180 			       DP_LINK_QUAL_PATTERN_11_MASK;
2181 		err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2182 					 test_pattern);
2183 		if (err < 0)
2184 			return err;
2185 	} else {
2186 		for (i = 0; i < data->num_lanes; i++) {
2187 			err = drm_dp_dpcd_writeb(aux,
2188 						 DP_LINK_QUAL_LANE0_SET + i,
2189 						 test_pattern);
2190 			if (err < 0)
2191 				return err;
2192 		}
2193 	}
2194 
2195 	return 0;
2196 }
2197 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2198 
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)2199 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2200 {
2201 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2202 		return "Invalid";
2203 
2204 	switch (pixelformat) {
2205 	case DP_PIXELFORMAT_RGB:
2206 		return "RGB";
2207 	case DP_PIXELFORMAT_YUV444:
2208 		return "YUV444";
2209 	case DP_PIXELFORMAT_YUV422:
2210 		return "YUV422";
2211 	case DP_PIXELFORMAT_YUV420:
2212 		return "YUV420";
2213 	case DP_PIXELFORMAT_Y_ONLY:
2214 		return "Y_ONLY";
2215 	case DP_PIXELFORMAT_RAW:
2216 		return "RAW";
2217 	default:
2218 		return "Reserved";
2219 	}
2220 }
2221 
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)2222 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2223 					   enum dp_colorimetry colorimetry)
2224 {
2225 	if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2226 		return "Invalid";
2227 
2228 	switch (colorimetry) {
2229 	case DP_COLORIMETRY_DEFAULT:
2230 		switch (pixelformat) {
2231 		case DP_PIXELFORMAT_RGB:
2232 			return "sRGB";
2233 		case DP_PIXELFORMAT_YUV444:
2234 		case DP_PIXELFORMAT_YUV422:
2235 		case DP_PIXELFORMAT_YUV420:
2236 			return "BT.601";
2237 		case DP_PIXELFORMAT_Y_ONLY:
2238 			return "DICOM PS3.14";
2239 		case DP_PIXELFORMAT_RAW:
2240 			return "Custom Color Profile";
2241 		default:
2242 			return "Reserved";
2243 		}
2244 	case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2245 		switch (pixelformat) {
2246 		case DP_PIXELFORMAT_RGB:
2247 			return "Wide Fixed";
2248 		case DP_PIXELFORMAT_YUV444:
2249 		case DP_PIXELFORMAT_YUV422:
2250 		case DP_PIXELFORMAT_YUV420:
2251 			return "BT.709";
2252 		default:
2253 			return "Reserved";
2254 		}
2255 	case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2256 		switch (pixelformat) {
2257 		case DP_PIXELFORMAT_RGB:
2258 			return "Wide Float";
2259 		case DP_PIXELFORMAT_YUV444:
2260 		case DP_PIXELFORMAT_YUV422:
2261 		case DP_PIXELFORMAT_YUV420:
2262 			return "xvYCC 601";
2263 		default:
2264 			return "Reserved";
2265 		}
2266 	case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2267 		switch (pixelformat) {
2268 		case DP_PIXELFORMAT_RGB:
2269 			return "OpRGB";
2270 		case DP_PIXELFORMAT_YUV444:
2271 		case DP_PIXELFORMAT_YUV422:
2272 		case DP_PIXELFORMAT_YUV420:
2273 			return "xvYCC 709";
2274 		default:
2275 			return "Reserved";
2276 		}
2277 	case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2278 		switch (pixelformat) {
2279 		case DP_PIXELFORMAT_RGB:
2280 			return "DCI-P3";
2281 		case DP_PIXELFORMAT_YUV444:
2282 		case DP_PIXELFORMAT_YUV422:
2283 		case DP_PIXELFORMAT_YUV420:
2284 			return "sYCC 601";
2285 		default:
2286 			return "Reserved";
2287 		}
2288 	case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2289 		switch (pixelformat) {
2290 		case DP_PIXELFORMAT_RGB:
2291 			return "Custom Profile";
2292 		case DP_PIXELFORMAT_YUV444:
2293 		case DP_PIXELFORMAT_YUV422:
2294 		case DP_PIXELFORMAT_YUV420:
2295 			return "OpYCC 601";
2296 		default:
2297 			return "Reserved";
2298 		}
2299 	case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2300 		switch (pixelformat) {
2301 		case DP_PIXELFORMAT_RGB:
2302 			return "BT.2020 RGB";
2303 		case DP_PIXELFORMAT_YUV444:
2304 		case DP_PIXELFORMAT_YUV422:
2305 		case DP_PIXELFORMAT_YUV420:
2306 			return "BT.2020 CYCC";
2307 		default:
2308 			return "Reserved";
2309 		}
2310 	case DP_COLORIMETRY_BT2020_YCC:
2311 		switch (pixelformat) {
2312 		case DP_PIXELFORMAT_YUV444:
2313 		case DP_PIXELFORMAT_YUV422:
2314 		case DP_PIXELFORMAT_YUV420:
2315 			return "BT.2020 YCC";
2316 		default:
2317 			return "Reserved";
2318 		}
2319 	default:
2320 		return "Invalid";
2321 	}
2322 }
2323 
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)2324 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2325 {
2326 	switch (dynamic_range) {
2327 	case DP_DYNAMIC_RANGE_VESA:
2328 		return "VESA range";
2329 	case DP_DYNAMIC_RANGE_CTA:
2330 		return "CTA range";
2331 	default:
2332 		return "Invalid";
2333 	}
2334 }
2335 
dp_content_type_get_name(enum dp_content_type content_type)2336 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2337 {
2338 	switch (content_type) {
2339 	case DP_CONTENT_TYPE_NOT_DEFINED:
2340 		return "Not defined";
2341 	case DP_CONTENT_TYPE_GRAPHICS:
2342 		return "Graphics";
2343 	case DP_CONTENT_TYPE_PHOTO:
2344 		return "Photo";
2345 	case DP_CONTENT_TYPE_VIDEO:
2346 		return "Video";
2347 	case DP_CONTENT_TYPE_GAME:
2348 		return "Game";
2349 	default:
2350 		return "Reserved";
2351 	}
2352 }
2353 
drm_dp_vsc_sdp_log(const char * level,struct device * dev,const struct drm_dp_vsc_sdp * vsc)2354 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2355 			const struct drm_dp_vsc_sdp *vsc)
2356 {
2357 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2358 	DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2359 		   vsc->revision, vsc->length);
2360 	DP_SDP_LOG("    pixelformat: %s\n",
2361 		   dp_pixelformat_get_name(vsc->pixelformat));
2362 	DP_SDP_LOG("    colorimetry: %s\n",
2363 		   dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2364 	DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2365 	DP_SDP_LOG("    dynamic range: %s\n",
2366 		   dp_dynamic_range_get_name(vsc->dynamic_range));
2367 	DP_SDP_LOG("    content type: %s\n",
2368 		   dp_content_type_get_name(vsc->content_type));
2369 #undef DP_SDP_LOG
2370 }
2371 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2372