• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  */
5 
6 /*
7  *	jfs_dtree.c: directory B+-tree manager
8  *
9  * B+-tree with variable length key directory:
10  *
11  * each directory page is structured as an array of 32-byte
12  * directory entry slots initialized as a freelist
13  * to avoid search/compaction of free space at insertion.
14  * when an entry is inserted, a number of slots are allocated
15  * from the freelist as required to store variable length data
16  * of the entry; when the entry is deleted, slots of the entry
17  * are returned to freelist.
18  *
19  * leaf entry stores full name as key and file serial number
20  * (aka inode number) as data.
21  * internal/router entry stores sufffix compressed name
22  * as key and simple extent descriptor as data.
23  *
24  * each directory page maintains a sorted entry index table
25  * which stores the start slot index of sorted entries
26  * to allow binary search on the table.
27  *
28  * directory starts as a root/leaf page in on-disk inode
29  * inline data area.
30  * when it becomes full, it starts a leaf of a external extent
31  * of length of 1 block. each time the first leaf becomes full,
32  * it is extended rather than split (its size is doubled),
33  * until its length becoms 4 KBytes, from then the extent is split
34  * with new 4 Kbyte extent when it becomes full
35  * to reduce external fragmentation of small directories.
36  *
37  * blah, blah, blah, for linear scan of directory in pieces by
38  * readdir().
39  *
40  *
41  *	case-insensitive directory file system
42  *
43  * names are stored in case-sensitive way in leaf entry.
44  * but stored, searched and compared in case-insensitive (uppercase) order
45  * (i.e., both search key and entry key are folded for search/compare):
46  * (note that case-sensitive order is BROKEN in storage, e.g.,
47  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48  *
49  *  entries which folds to the same key makes up a equivalent class
50  *  whose members are stored as contiguous cluster (may cross page boundary)
51  *  but whose order is arbitrary and acts as duplicate, e.g.,
52  *  abc, Abc, aBc, abC)
53  *
54  * once match is found at leaf, requires scan forward/backward
55  * either for, in case-insensitive search, duplicate
56  * or for, in case-sensitive search, for exact match
57  *
58  * router entry must be created/stored in case-insensitive way
59  * in internal entry:
60  * (right most key of left page and left most key of right page
61  * are folded, and its suffix compression is propagated as router
62  * key in parent)
63  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64  * should be made the router key for the split)
65  *
66  * case-insensitive search:
67  *
68  *	fold search key;
69  *
70  *	case-insensitive search of B-tree:
71  *	for internal entry, router key is already folded;
72  *	for leaf entry, fold the entry key before comparison.
73  *
74  *	if (leaf entry case-insensitive match found)
75  *		if (next entry satisfies case-insensitive match)
76  *			return EDUPLICATE;
77  *		if (prev entry satisfies case-insensitive match)
78  *			return EDUPLICATE;
79  *		return match;
80  *	else
81  *		return no match;
82  *
83  *	serialization:
84  * target directory inode lock is being held on entry/exit
85  * of all main directory service routines.
86  *
87  *	log based recovery:
88  */
89 
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100 
101 /* dtree split parameter */
102 struct dtsplit {
103 	struct metapage *mp;
104 	s16 index;
105 	s16 nslot;
106 	struct component_name *key;
107 	ddata_t *data;
108 	struct pxdlist *pxdlist;
109 };
110 
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112 
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)				\
115 do {									\
116 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot);	\
117 	if (!(RC)) {							\
118 		if (((P)->header.nextindex >				\
119 		     (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) {	\
121 			BT_PUTPAGE(MP);					\
122 			jfs_error((IP)->i_sb,				\
123 				  "DT_GETPAGE: dtree page corrupt\n");	\
124 			MP = NULL;					\
125 			RC = -EIO;					\
126 		}							\
127 	}								\
128 } while (0)
129 
130 /* for consistency */
131 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132 
133 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135 
136 /*
137  * forward references
138  */
139 static int dtSplitUp(tid_t tid, struct inode *ip,
140 		     struct dtsplit * split, struct btstack * btstack);
141 
142 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144 
145 static int dtExtendPage(tid_t tid, struct inode *ip,
146 			struct dtsplit * split, struct btstack * btstack);
147 
148 static int dtSplitRoot(tid_t tid, struct inode *ip,
149 		       struct dtsplit * split, struct metapage ** rmpp);
150 
151 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 		      dtpage_t * fp, struct btstack * btstack);
153 
154 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155 
156 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157 
158 static int dtReadNext(struct inode *ip,
159 		      loff_t * offset, struct btstack * btstack);
160 
161 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162 
163 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 		     int flag);
165 
166 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 		     int flag);
168 
169 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 			      int ri, struct component_name * key, int flag);
171 
172 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 			  ddata_t * data, struct dt_lock **);
174 
175 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 			int do_index);
178 
179 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180 
181 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182 
183 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184 
185 #define ciToUpper(c)	UniStrupr((c)->name)
186 
187 /*
188  *	read_index_page()
189  *
190  *	Reads a page of a directory's index table.
191  *	Having metadata mapped into the directory inode's address space
192  *	presents a multitude of problems.  We avoid this by mapping to
193  *	the absolute address space outside of the *_metapage routines
194  */
read_index_page(struct inode * inode,s64 blkno)195 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196 {
197 	int rc;
198 	s64 xaddr;
199 	int xflag;
200 	s32 xlen;
201 
202 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
203 	if (rc || (xaddr == 0))
204 		return NULL;
205 
206 	return read_metapage(inode, xaddr, PSIZE, 1);
207 }
208 
209 /*
210  *	get_index_page()
211  *
212  *	Same as get_index_page(), but get's a new page without reading
213  */
get_index_page(struct inode * inode,s64 blkno)214 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215 {
216 	int rc;
217 	s64 xaddr;
218 	int xflag;
219 	s32 xlen;
220 
221 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
222 	if (rc || (xaddr == 0))
223 		return NULL;
224 
225 	return get_metapage(inode, xaddr, PSIZE, 1);
226 }
227 
228 /*
229  *	find_index()
230  *
231  *	Returns dtree page containing directory table entry for specified
232  *	index and pointer to its entry.
233  *
234  *	mp must be released by caller.
235  */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)236 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 					 struct metapage ** mp, s64 *lblock)
238 {
239 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
240 	s64 blkno;
241 	s64 offset;
242 	int page_offset;
243 	struct dir_table_slot *slot;
244 	static int maxWarnings = 10;
245 
246 	if (index < 2) {
247 		if (maxWarnings) {
248 			jfs_warn("find_entry called with index = %d", index);
249 			maxWarnings--;
250 		}
251 		return NULL;
252 	}
253 
254 	if (index >= jfs_ip->next_index) {
255 		jfs_warn("find_entry called with index >= next_index");
256 		return NULL;
257 	}
258 
259 	if (jfs_dirtable_inline(ip)) {
260 		/*
261 		 * Inline directory table
262 		 */
263 		*mp = NULL;
264 		slot = &jfs_ip->i_dirtable[index - 2];
265 	} else {
266 		offset = (index - 2) * sizeof(struct dir_table_slot);
267 		page_offset = offset & (PSIZE - 1);
268 		blkno = ((offset + 1) >> L2PSIZE) <<
269 		    JFS_SBI(ip->i_sb)->l2nbperpage;
270 
271 		if (*mp && (*lblock != blkno)) {
272 			release_metapage(*mp);
273 			*mp = NULL;
274 		}
275 		if (!(*mp)) {
276 			*lblock = blkno;
277 			*mp = read_index_page(ip, blkno);
278 		}
279 		if (!(*mp)) {
280 			jfs_err("free_index: error reading directory table");
281 			return NULL;
282 		}
283 
284 		slot =
285 		    (struct dir_table_slot *) ((char *) (*mp)->data +
286 					       page_offset);
287 	}
288 	return slot;
289 }
290 
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)291 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 			      u32 index)
293 {
294 	struct tlock *tlck;
295 	struct linelock *llck;
296 	struct lv *lv;
297 
298 	tlck = txLock(tid, ip, mp, tlckDATA);
299 	llck = (struct linelock *) tlck->lock;
300 
301 	if (llck->index >= llck->maxcnt)
302 		llck = txLinelock(llck);
303 	lv = &llck->lv[llck->index];
304 
305 	/*
306 	 *	Linelock slot size is twice the size of directory table
307 	 *	slot size.  512 entries per page.
308 	 */
309 	lv->offset = ((index - 2) & 511) >> 1;
310 	lv->length = 1;
311 	llck->index++;
312 }
313 
314 /*
315  *	add_index()
316  *
317  *	Adds an entry to the directory index table.  This is used to provide
318  *	each directory entry with a persistent index in which to resume
319  *	directory traversals
320  */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)321 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322 {
323 	struct super_block *sb = ip->i_sb;
324 	struct jfs_sb_info *sbi = JFS_SBI(sb);
325 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
326 	u64 blkno;
327 	struct dir_table_slot *dirtab_slot;
328 	u32 index;
329 	struct linelock *llck;
330 	struct lv *lv;
331 	struct metapage *mp;
332 	s64 offset;
333 	uint page_offset;
334 	struct tlock *tlck;
335 	s64 xaddr;
336 
337 	ASSERT(DO_INDEX(ip));
338 
339 	if (jfs_ip->next_index < 2) {
340 		jfs_warn("add_index: next_index = %d.  Resetting!",
341 			   jfs_ip->next_index);
342 		jfs_ip->next_index = 2;
343 	}
344 
345 	index = jfs_ip->next_index++;
346 
347 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 		/*
349 		 * i_size reflects size of index table, or 8 bytes per entry.
350 		 */
351 		ip->i_size = (loff_t) (index - 1) << 3;
352 
353 		/*
354 		 * dir table fits inline within inode
355 		 */
356 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 		dirtab_slot->flag = DIR_INDEX_VALID;
358 		dirtab_slot->slot = slot;
359 		DTSaddress(dirtab_slot, bn);
360 
361 		set_cflag(COMMIT_Dirtable, ip);
362 
363 		return index;
364 	}
365 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 		struct dir_table_slot temp_table[12];
367 
368 		/*
369 		 * It's time to move the inline table to an external
370 		 * page and begin to build the xtree
371 		 */
372 		if (dquot_alloc_block(ip, sbi->nbperpage))
373 			goto clean_up;
374 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
375 			dquot_free_block(ip, sbi->nbperpage);
376 			goto clean_up;
377 		}
378 
379 		/*
380 		 * Save the table, we're going to overwrite it with the
381 		 * xtree root
382 		 */
383 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384 
385 		/*
386 		 * Initialize empty x-tree
387 		 */
388 		xtInitRoot(tid, ip);
389 
390 		/*
391 		 * Add the first block to the xtree
392 		 */
393 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
394 			/* This really shouldn't fail */
395 			jfs_warn("add_index: xtInsert failed!");
396 			memcpy(&jfs_ip->i_dirtable, temp_table,
397 			       sizeof (temp_table));
398 			dbFree(ip, xaddr, sbi->nbperpage);
399 			dquot_free_block(ip, sbi->nbperpage);
400 			goto clean_up;
401 		}
402 		ip->i_size = PSIZE;
403 
404 		mp = get_index_page(ip, 0);
405 		if (!mp) {
406 			jfs_err("add_index: get_metapage failed!");
407 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			goto clean_up;
411 		}
412 		tlck = txLock(tid, ip, mp, tlckDATA);
413 		llck = (struct linelock *) & tlck->lock;
414 		ASSERT(llck->index == 0);
415 		lv = &llck->lv[0];
416 
417 		lv->offset = 0;
418 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
419 		llck->index++;
420 
421 		memcpy(mp->data, temp_table, sizeof(temp_table));
422 
423 		mark_metapage_dirty(mp);
424 		release_metapage(mp);
425 
426 		/*
427 		 * Logging is now directed by xtree tlocks
428 		 */
429 		clear_cflag(COMMIT_Dirtable, ip);
430 	}
431 
432 	offset = (index - 2) * sizeof(struct dir_table_slot);
433 	page_offset = offset & (PSIZE - 1);
434 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 	if (page_offset == 0) {
436 		/*
437 		 * This will be the beginning of a new page
438 		 */
439 		xaddr = 0;
440 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
441 			jfs_warn("add_index: xtInsert failed!");
442 			goto clean_up;
443 		}
444 		ip->i_size += PSIZE;
445 
446 		if ((mp = get_index_page(ip, blkno)))
447 			memset(mp->data, 0, PSIZE);	/* Just looks better */
448 		else
449 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
450 	} else
451 		mp = read_index_page(ip, blkno);
452 
453 	if (!mp) {
454 		jfs_err("add_index: get/read_metapage failed!");
455 		goto clean_up;
456 	}
457 
458 	lock_index(tid, ip, mp, index);
459 
460 	dirtab_slot =
461 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 	dirtab_slot->flag = DIR_INDEX_VALID;
463 	dirtab_slot->slot = slot;
464 	DTSaddress(dirtab_slot, bn);
465 
466 	mark_metapage_dirty(mp);
467 	release_metapage(mp);
468 
469 	return index;
470 
471       clean_up:
472 
473 	jfs_ip->next_index--;
474 
475 	return 0;
476 }
477 
478 /*
479  *	free_index()
480  *
481  *	Marks an entry to the directory index table as free.
482  */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)483 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484 {
485 	struct dir_table_slot *dirtab_slot;
486 	s64 lblock;
487 	struct metapage *mp = NULL;
488 
489 	dirtab_slot = find_index(ip, index, &mp, &lblock);
490 
491 	if (!dirtab_slot)
492 		return;
493 
494 	dirtab_slot->flag = DIR_INDEX_FREE;
495 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 	dirtab_slot->addr2 = cpu_to_le32(next);
497 
498 	if (mp) {
499 		lock_index(tid, ip, mp, index);
500 		mark_metapage_dirty(mp);
501 		release_metapage(mp);
502 	} else
503 		set_cflag(COMMIT_Dirtable, ip);
504 }
505 
506 /*
507  *	modify_index()
508  *
509  *	Changes an entry in the directory index table
510  */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,s64 * lblock)511 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 			 int slot, struct metapage ** mp, s64 *lblock)
513 {
514 	struct dir_table_slot *dirtab_slot;
515 
516 	dirtab_slot = find_index(ip, index, mp, lblock);
517 
518 	if (!dirtab_slot)
519 		return;
520 
521 	DTSaddress(dirtab_slot, bn);
522 	dirtab_slot->slot = slot;
523 
524 	if (*mp) {
525 		lock_index(tid, ip, *mp, index);
526 		mark_metapage_dirty(*mp);
527 	} else
528 		set_cflag(COMMIT_Dirtable, ip);
529 }
530 
531 /*
532  *	read_index()
533  *
534  *	reads a directory table slot
535  */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)536 static int read_index(struct inode *ip, u32 index,
537 		     struct dir_table_slot * dirtab_slot)
538 {
539 	s64 lblock;
540 	struct metapage *mp = NULL;
541 	struct dir_table_slot *slot;
542 
543 	slot = find_index(ip, index, &mp, &lblock);
544 	if (!slot) {
545 		return -EIO;
546 	}
547 
548 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549 
550 	if (mp)
551 		release_metapage(mp);
552 
553 	return 0;
554 }
555 
556 /*
557  *	dtSearch()
558  *
559  * function:
560  *	Search for the entry with specified key
561  *
562  * parameter:
563  *
564  * return: 0 - search result on stack, leaf page pinned;
565  *	   errno - I/O error
566  */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)567 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 	     struct btstack * btstack, int flag)
569 {
570 	int rc = 0;
571 	int cmp = 1;		/* init for empty page */
572 	s64 bn;
573 	struct metapage *mp;
574 	dtpage_t *p;
575 	s8 *stbl;
576 	int base, index, lim;
577 	struct btframe *btsp;
578 	pxd_t *pxd;
579 	int psize = 288;	/* initial in-line directory */
580 	ino_t inumber;
581 	struct component_name ciKey;
582 	struct super_block *sb = ip->i_sb;
583 
584 	ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
585 				   GFP_NOFS);
586 	if (!ciKey.name) {
587 		rc = -ENOMEM;
588 		goto dtSearch_Exit2;
589 	}
590 
591 
592 	/* uppercase search key for c-i directory */
593 	UniStrcpy(ciKey.name, key->name);
594 	ciKey.namlen = key->namlen;
595 
596 	/* only uppercase if case-insensitive support is on */
597 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 		ciToUpper(&ciKey);
599 	}
600 	BT_CLR(btstack);	/* reset stack */
601 
602 	/* init level count for max pages to split */
603 	btstack->nsplit = 1;
604 
605 	/*
606 	 *	search down tree from root:
607 	 *
608 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 	 *
611 	 * if entry with search key K is not found
612 	 * internal page search find the entry with largest key Ki
613 	 * less than K which point to the child page to search;
614 	 * leaf page search find the entry with smallest key Kj
615 	 * greater than K so that the returned index is the position of
616 	 * the entry to be shifted right for insertion of new entry.
617 	 * for empty tree, search key is greater than any key of the tree.
618 	 *
619 	 * by convention, root bn = 0.
620 	 */
621 	for (bn = 0;;) {
622 		/* get/pin the page to search */
623 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 		if (rc)
625 			goto dtSearch_Exit1;
626 
627 		/* get sorted entry table of the page */
628 		stbl = DT_GETSTBL(p);
629 
630 		/*
631 		 * binary search with search key K on the current page.
632 		 */
633 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 			index = base + (lim >> 1);
635 
636 			if (stbl[index] < 0) {
637 				rc = -EIO;
638 				goto out;
639 			}
640 
641 			if (p->header.flag & BT_LEAF) {
642 				/* uppercase leaf name to compare */
643 				cmp =
644 				    ciCompare(&ciKey, p, stbl[index],
645 					      JFS_SBI(sb)->mntflag);
646 			} else {
647 				/* router key is in uppercase */
648 
649 				cmp = dtCompare(&ciKey, p, stbl[index]);
650 
651 
652 			}
653 			if (cmp == 0) {
654 				/*
655 				 *	search hit
656 				 */
657 				/* search hit - leaf page:
658 				 * return the entry found
659 				 */
660 				if (p->header.flag & BT_LEAF) {
661 					inumber = le32_to_cpu(
662 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
663 
664 					/*
665 					 * search for JFS_LOOKUP
666 					 */
667 					if (flag == JFS_LOOKUP) {
668 						*data = inumber;
669 						rc = 0;
670 						goto out;
671 					}
672 
673 					/*
674 					 * search for JFS_CREATE
675 					 */
676 					if (flag == JFS_CREATE) {
677 						*data = inumber;
678 						rc = -EEXIST;
679 						goto out;
680 					}
681 
682 					/*
683 					 * search for JFS_REMOVE or JFS_RENAME
684 					 */
685 					if ((flag == JFS_REMOVE ||
686 					     flag == JFS_RENAME) &&
687 					    *data != inumber) {
688 						rc = -ESTALE;
689 						goto out;
690 					}
691 
692 					/*
693 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
694 					 */
695 					/* save search result */
696 					*data = inumber;
697 					btsp = btstack->top;
698 					btsp->bn = bn;
699 					btsp->index = index;
700 					btsp->mp = mp;
701 
702 					rc = 0;
703 					goto dtSearch_Exit1;
704 				}
705 
706 				/* search hit - internal page:
707 				 * descend/search its child page
708 				 */
709 				goto getChild;
710 			}
711 
712 			if (cmp > 0) {
713 				base = index + 1;
714 				--lim;
715 			}
716 		}
717 
718 		/*
719 		 *	search miss
720 		 *
721 		 * base is the smallest index with key (Kj) greater than
722 		 * search key (K) and may be zero or (maxindex + 1) index.
723 		 */
724 		/*
725 		 * search miss - leaf page
726 		 *
727 		 * return location of entry (base) where new entry with
728 		 * search key K is to be inserted.
729 		 */
730 		if (p->header.flag & BT_LEAF) {
731 			/*
732 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
733 			 */
734 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
735 			    flag == JFS_RENAME) {
736 				rc = -ENOENT;
737 				goto out;
738 			}
739 
740 			/*
741 			 * search for JFS_CREATE|JFS_FINDDIR:
742 			 *
743 			 * save search result
744 			 */
745 			*data = 0;
746 			btsp = btstack->top;
747 			btsp->bn = bn;
748 			btsp->index = base;
749 			btsp->mp = mp;
750 
751 			rc = 0;
752 			goto dtSearch_Exit1;
753 		}
754 
755 		/*
756 		 * search miss - internal page
757 		 *
758 		 * if base is non-zero, decrement base by one to get the parent
759 		 * entry of the child page to search.
760 		 */
761 		index = base ? base - 1 : base;
762 
763 		/*
764 		 * go down to child page
765 		 */
766 	      getChild:
767 		/* update max. number of pages to split */
768 		if (BT_STACK_FULL(btstack)) {
769 			/* Something's corrupted, mark filesystem dirty so
770 			 * chkdsk will fix it.
771 			 */
772 			jfs_error(sb, "stack overrun!\n");
773 			BT_STACK_DUMP(btstack);
774 			rc = -EIO;
775 			goto out;
776 		}
777 		btstack->nsplit++;
778 
779 		/* push (bn, index) of the parent page/entry */
780 		BT_PUSH(btstack, bn, index);
781 
782 		/* get the child page block number */
783 		pxd = (pxd_t *) & p->slot[stbl[index]];
784 		bn = addressPXD(pxd);
785 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
786 
787 		/* unpin the parent page */
788 		DT_PUTPAGE(mp);
789 	}
790 
791       out:
792 	DT_PUTPAGE(mp);
793 
794       dtSearch_Exit1:
795 
796 	kfree(ciKey.name);
797 
798       dtSearch_Exit2:
799 
800 	return rc;
801 }
802 
803 
804 /*
805  *	dtInsert()
806  *
807  * function: insert an entry to directory tree
808  *
809  * parameter:
810  *
811  * return: 0 - success;
812  *	   errno - failure;
813  */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)814 int dtInsert(tid_t tid, struct inode *ip,
815 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
816 {
817 	int rc = 0;
818 	struct metapage *mp;	/* meta-page buffer */
819 	dtpage_t *p;		/* base B+-tree index page */
820 	s64 bn;
821 	int index;
822 	struct dtsplit split;	/* split information */
823 	ddata_t data;
824 	struct dt_lock *dtlck;
825 	int n;
826 	struct tlock *tlck;
827 	struct lv *lv;
828 
829 	/*
830 	 *	retrieve search result
831 	 *
832 	 * dtSearch() returns (leaf page pinned, index at which to insert).
833 	 * n.b. dtSearch() may return index of (maxindex + 1) of
834 	 * the full page.
835 	 */
836 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
837 
838 	/*
839 	 *	insert entry for new key
840 	 */
841 	if (DO_INDEX(ip)) {
842 		if (JFS_IP(ip)->next_index == DIREND) {
843 			DT_PUTPAGE(mp);
844 			return -EMLINK;
845 		}
846 		n = NDTLEAF(name->namlen);
847 		data.leaf.tid = tid;
848 		data.leaf.ip = ip;
849 	} else {
850 		n = NDTLEAF_LEGACY(name->namlen);
851 		data.leaf.ip = NULL;	/* signifies legacy directory format */
852 	}
853 	data.leaf.ino = *fsn;
854 
855 	/*
856 	 *	leaf page does not have enough room for new entry:
857 	 *
858 	 *	extend/split the leaf page;
859 	 *
860 	 * dtSplitUp() will insert the entry and unpin the leaf page.
861 	 */
862 	if (n > p->header.freecnt) {
863 		split.mp = mp;
864 		split.index = index;
865 		split.nslot = n;
866 		split.key = name;
867 		split.data = &data;
868 		rc = dtSplitUp(tid, ip, &split, btstack);
869 		return rc;
870 	}
871 
872 	/*
873 	 *	leaf page does have enough room for new entry:
874 	 *
875 	 *	insert the new data entry into the leaf page;
876 	 */
877 	BT_MARK_DIRTY(mp, ip);
878 	/*
879 	 * acquire a transaction lock on the leaf page
880 	 */
881 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
882 	dtlck = (struct dt_lock *) & tlck->lock;
883 	ASSERT(dtlck->index == 0);
884 	lv = & dtlck->lv[0];
885 
886 	/* linelock header */
887 	lv->offset = 0;
888 	lv->length = 1;
889 	dtlck->index++;
890 
891 	dtInsertEntry(p, index, name, &data, &dtlck);
892 
893 	/* linelock stbl of non-root leaf page */
894 	if (!(p->header.flag & BT_ROOT)) {
895 		if (dtlck->index >= dtlck->maxcnt)
896 			dtlck = (struct dt_lock *) txLinelock(dtlck);
897 		lv = & dtlck->lv[dtlck->index];
898 		n = index >> L2DTSLOTSIZE;
899 		lv->offset = p->header.stblindex + n;
900 		lv->length =
901 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
902 		dtlck->index++;
903 	}
904 
905 	/* unpin the leaf page */
906 	DT_PUTPAGE(mp);
907 
908 	return 0;
909 }
910 
911 
912 /*
913  *	dtSplitUp()
914  *
915  * function: propagate insertion bottom up;
916  *
917  * parameter:
918  *
919  * return: 0 - success;
920  *	   errno - failure;
921  *	leaf page unpinned;
922  */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)923 static int dtSplitUp(tid_t tid,
924 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
925 {
926 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
927 	int rc = 0;
928 	struct metapage *smp;
929 	dtpage_t *sp;		/* split page */
930 	struct metapage *rmp;
931 	dtpage_t *rp;		/* new right page split from sp */
932 	pxd_t rpxd;		/* new right page extent descriptor */
933 	struct metapage *lmp;
934 	dtpage_t *lp;		/* left child page */
935 	int skip;		/* index of entry of insertion */
936 	struct btframe *parent;	/* parent page entry on traverse stack */
937 	s64 xaddr, nxaddr;
938 	int xlen, xsize;
939 	struct pxdlist pxdlist;
940 	pxd_t *pxd;
941 	struct component_name key = { 0, NULL };
942 	ddata_t *data = split->data;
943 	int n;
944 	struct dt_lock *dtlck;
945 	struct tlock *tlck;
946 	struct lv *lv;
947 	int quota_allocation = 0;
948 
949 	/* get split page */
950 	smp = split->mp;
951 	sp = DT_PAGE(ip, smp);
952 
953 	key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
954 	if (!key.name) {
955 		DT_PUTPAGE(smp);
956 		rc = -ENOMEM;
957 		goto dtSplitUp_Exit;
958 	}
959 
960 	/*
961 	 *	split leaf page
962 	 *
963 	 * The split routines insert the new entry, and
964 	 * acquire txLock as appropriate.
965 	 */
966 	/*
967 	 *	split root leaf page:
968 	 */
969 	if (sp->header.flag & BT_ROOT) {
970 		/*
971 		 * allocate a single extent child page
972 		 */
973 		xlen = 1;
974 		n = sbi->bsize >> L2DTSLOTSIZE;
975 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
976 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
977 		if (n <= split->nslot)
978 			xlen++;
979 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
980 			DT_PUTPAGE(smp);
981 			goto freeKeyName;
982 		}
983 
984 		pxdlist.maxnpxd = 1;
985 		pxdlist.npxd = 0;
986 		pxd = &pxdlist.pxd[0];
987 		PXDaddress(pxd, xaddr);
988 		PXDlength(pxd, xlen);
989 		split->pxdlist = &pxdlist;
990 		rc = dtSplitRoot(tid, ip, split, &rmp);
991 
992 		if (rc)
993 			dbFree(ip, xaddr, xlen);
994 		else
995 			DT_PUTPAGE(rmp);
996 
997 		DT_PUTPAGE(smp);
998 
999 		if (!DO_INDEX(ip))
1000 			ip->i_size = xlen << sbi->l2bsize;
1001 
1002 		goto freeKeyName;
1003 	}
1004 
1005 	/*
1006 	 *	extend first leaf page
1007 	 *
1008 	 * extend the 1st extent if less than buffer page size
1009 	 * (dtExtendPage() reurns leaf page unpinned)
1010 	 */
1011 	pxd = &sp->header.self;
1012 	xlen = lengthPXD(pxd);
1013 	xsize = xlen << sbi->l2bsize;
1014 	if (xsize < PSIZE) {
1015 		xaddr = addressPXD(pxd);
1016 		n = xsize >> L2DTSLOTSIZE;
1017 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1018 		if ((n + sp->header.freecnt) <= split->nslot)
1019 			n = xlen + (xlen << 1);
1020 		else
1021 			n = xlen;
1022 
1023 		/* Allocate blocks to quota. */
1024 		rc = dquot_alloc_block(ip, n);
1025 		if (rc)
1026 			goto extendOut;
1027 		quota_allocation += n;
1028 
1029 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1030 				    (s64) n, &nxaddr)))
1031 			goto extendOut;
1032 
1033 		pxdlist.maxnpxd = 1;
1034 		pxdlist.npxd = 0;
1035 		pxd = &pxdlist.pxd[0];
1036 		PXDaddress(pxd, nxaddr);
1037 		PXDlength(pxd, xlen + n);
1038 		split->pxdlist = &pxdlist;
1039 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1040 			nxaddr = addressPXD(pxd);
1041 			if (xaddr != nxaddr) {
1042 				/* free relocated extent */
1043 				xlen = lengthPXD(pxd);
1044 				dbFree(ip, nxaddr, (s64) xlen);
1045 			} else {
1046 				/* free extended delta */
1047 				xlen = lengthPXD(pxd) - n;
1048 				xaddr = addressPXD(pxd) + xlen;
1049 				dbFree(ip, xaddr, (s64) n);
1050 			}
1051 		} else if (!DO_INDEX(ip))
1052 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1053 
1054 
1055 	      extendOut:
1056 		DT_PUTPAGE(smp);
1057 		goto freeKeyName;
1058 	}
1059 
1060 	/*
1061 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1062 	 *
1063 	 * return <rp> pinned and its extent descriptor <rpxd>
1064 	 */
1065 	/*
1066 	 * allocate new directory page extent and
1067 	 * new index page(s) to cover page split(s)
1068 	 *
1069 	 * allocation hint: ?
1070 	 */
1071 	n = btstack->nsplit;
1072 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1073 	xlen = sbi->nbperpage;
1074 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1075 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1076 			PXDaddress(pxd, xaddr);
1077 			PXDlength(pxd, xlen);
1078 			pxdlist.maxnpxd++;
1079 			continue;
1080 		}
1081 
1082 		DT_PUTPAGE(smp);
1083 
1084 		/* undo allocation */
1085 		goto splitOut;
1086 	}
1087 
1088 	split->pxdlist = &pxdlist;
1089 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1090 		DT_PUTPAGE(smp);
1091 
1092 		/* undo allocation */
1093 		goto splitOut;
1094 	}
1095 
1096 	if (!DO_INDEX(ip))
1097 		ip->i_size += PSIZE;
1098 
1099 	/*
1100 	 * propagate up the router entry for the leaf page just split
1101 	 *
1102 	 * insert a router entry for the new page into the parent page,
1103 	 * propagate the insert/split up the tree by walking back the stack
1104 	 * of (bn of parent page, index of child page entry in parent page)
1105 	 * that were traversed during the search for the page that split.
1106 	 *
1107 	 * the propagation of insert/split up the tree stops if the root
1108 	 * splits or the page inserted into doesn't have to split to hold
1109 	 * the new entry.
1110 	 *
1111 	 * the parent entry for the split page remains the same, and
1112 	 * a new entry is inserted at its right with the first key and
1113 	 * block number of the new right page.
1114 	 *
1115 	 * There are a maximum of 4 pages pinned at any time:
1116 	 * two children, left parent and right parent (when the parent splits).
1117 	 * keep the child pages pinned while working on the parent.
1118 	 * make sure that all pins are released at exit.
1119 	 */
1120 	while ((parent = BT_POP(btstack)) != NULL) {
1121 		/* parent page specified by stack frame <parent> */
1122 
1123 		/* keep current child pages (<lp>, <rp>) pinned */
1124 		lmp = smp;
1125 		lp = sp;
1126 
1127 		/*
1128 		 * insert router entry in parent for new right child page <rp>
1129 		 */
1130 		/* get the parent page <sp> */
1131 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1132 		if (rc) {
1133 			DT_PUTPAGE(lmp);
1134 			DT_PUTPAGE(rmp);
1135 			goto splitOut;
1136 		}
1137 
1138 		/*
1139 		 * The new key entry goes ONE AFTER the index of parent entry,
1140 		 * because the split was to the right.
1141 		 */
1142 		skip = parent->index + 1;
1143 
1144 		/*
1145 		 * compute the key for the router entry
1146 		 *
1147 		 * key suffix compression:
1148 		 * for internal pages that have leaf pages as children,
1149 		 * retain only what's needed to distinguish between
1150 		 * the new entry and the entry on the page to its left.
1151 		 * If the keys compare equal, retain the entire key.
1152 		 *
1153 		 * note that compression is performed only at computing
1154 		 * router key at the lowest internal level.
1155 		 * further compression of the key between pairs of higher
1156 		 * level internal pages loses too much information and
1157 		 * the search may fail.
1158 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1159 		 * results in two adjacent parent entries (a)(xx).
1160 		 * if split occurs between these two entries, and
1161 		 * if compression is applied, the router key of parent entry
1162 		 * of right page (x) will divert search for x into right
1163 		 * subtree and miss x in the left subtree.)
1164 		 *
1165 		 * the entire key must be retained for the next-to-leftmost
1166 		 * internal key at any level of the tree, or search may fail
1167 		 * (e.g., ?)
1168 		 */
1169 		switch (rp->header.flag & BT_TYPE) {
1170 		case BT_LEAF:
1171 			/*
1172 			 * compute the length of prefix for suffix compression
1173 			 * between last entry of left page and first entry
1174 			 * of right page
1175 			 */
1176 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1177 			    sp->header.prev != 0 || skip > 1) {
1178 				/* compute uppercase router prefix key */
1179 				rc = ciGetLeafPrefixKey(lp,
1180 							lp->header.nextindex-1,
1181 							rp, 0, &key,
1182 							sbi->mntflag);
1183 				if (rc) {
1184 					DT_PUTPAGE(lmp);
1185 					DT_PUTPAGE(rmp);
1186 					DT_PUTPAGE(smp);
1187 					goto splitOut;
1188 				}
1189 			} else {
1190 				/* next to leftmost entry of
1191 				   lowest internal level */
1192 
1193 				/* compute uppercase router key */
1194 				dtGetKey(rp, 0, &key, sbi->mntflag);
1195 				key.name[key.namlen] = 0;
1196 
1197 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1198 					ciToUpper(&key);
1199 			}
1200 
1201 			n = NDTINTERNAL(key.namlen);
1202 			break;
1203 
1204 		case BT_INTERNAL:
1205 			dtGetKey(rp, 0, &key, sbi->mntflag);
1206 			n = NDTINTERNAL(key.namlen);
1207 			break;
1208 
1209 		default:
1210 			jfs_err("dtSplitUp(): UFO!");
1211 			break;
1212 		}
1213 
1214 		/* unpin left child page */
1215 		DT_PUTPAGE(lmp);
1216 
1217 		/*
1218 		 * compute the data for the router entry
1219 		 */
1220 		data->xd = rpxd;	/* child page xd */
1221 
1222 		/*
1223 		 * parent page is full - split the parent page
1224 		 */
1225 		if (n > sp->header.freecnt) {
1226 			/* init for parent page split */
1227 			split->mp = smp;
1228 			split->index = skip;	/* index at insert */
1229 			split->nslot = n;
1230 			split->key = &key;
1231 			/* split->data = data; */
1232 
1233 			/* unpin right child page */
1234 			DT_PUTPAGE(rmp);
1235 
1236 			/* The split routines insert the new entry,
1237 			 * acquire txLock as appropriate.
1238 			 * return <rp> pinned and its block number <rbn>.
1239 			 */
1240 			rc = (sp->header.flag & BT_ROOT) ?
1241 			    dtSplitRoot(tid, ip, split, &rmp) :
1242 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1243 			if (rc) {
1244 				DT_PUTPAGE(smp);
1245 				goto splitOut;
1246 			}
1247 
1248 			/* smp and rmp are pinned */
1249 		}
1250 		/*
1251 		 * parent page is not full - insert router entry in parent page
1252 		 */
1253 		else {
1254 			BT_MARK_DIRTY(smp, ip);
1255 			/*
1256 			 * acquire a transaction lock on the parent page
1257 			 */
1258 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1259 			dtlck = (struct dt_lock *) & tlck->lock;
1260 			ASSERT(dtlck->index == 0);
1261 			lv = & dtlck->lv[0];
1262 
1263 			/* linelock header */
1264 			lv->offset = 0;
1265 			lv->length = 1;
1266 			dtlck->index++;
1267 
1268 			/* linelock stbl of non-root parent page */
1269 			if (!(sp->header.flag & BT_ROOT)) {
1270 				lv++;
1271 				n = skip >> L2DTSLOTSIZE;
1272 				lv->offset = sp->header.stblindex + n;
1273 				lv->length =
1274 				    ((sp->header.nextindex -
1275 				      1) >> L2DTSLOTSIZE) - n + 1;
1276 				dtlck->index++;
1277 			}
1278 
1279 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1280 
1281 			/* exit propagate up */
1282 			break;
1283 		}
1284 	}
1285 
1286 	/* unpin current split and its right page */
1287 	DT_PUTPAGE(smp);
1288 	DT_PUTPAGE(rmp);
1289 
1290 	/*
1291 	 * free remaining extents allocated for split
1292 	 */
1293       splitOut:
1294 	n = pxdlist.npxd;
1295 	pxd = &pxdlist.pxd[n];
1296 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1297 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1298 
1299       freeKeyName:
1300 	kfree(key.name);
1301 
1302 	/* Rollback quota allocation */
1303 	if (rc && quota_allocation)
1304 		dquot_free_block(ip, quota_allocation);
1305 
1306       dtSplitUp_Exit:
1307 
1308 	return rc;
1309 }
1310 
1311 
1312 /*
1313  *	dtSplitPage()
1314  *
1315  * function: Split a non-root page of a btree.
1316  *
1317  * parameter:
1318  *
1319  * return: 0 - success;
1320  *	   errno - failure;
1321  *	return split and new page pinned;
1322  */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1323 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1324 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1325 {
1326 	int rc = 0;
1327 	struct metapage *smp;
1328 	dtpage_t *sp;
1329 	struct metapage *rmp;
1330 	dtpage_t *rp;		/* new right page allocated */
1331 	s64 rbn;		/* new right page block number */
1332 	struct metapage *mp;
1333 	dtpage_t *p;
1334 	s64 nextbn;
1335 	struct pxdlist *pxdlist;
1336 	pxd_t *pxd;
1337 	int skip, nextindex, half, left, nxt, off, si;
1338 	struct ldtentry *ldtentry;
1339 	struct idtentry *idtentry;
1340 	u8 *stbl;
1341 	struct dtslot *f;
1342 	int fsi, stblsize;
1343 	int n;
1344 	struct dt_lock *sdtlck, *rdtlck;
1345 	struct tlock *tlck;
1346 	struct dt_lock *dtlck;
1347 	struct lv *slv, *rlv, *lv;
1348 
1349 	/* get split page */
1350 	smp = split->mp;
1351 	sp = DT_PAGE(ip, smp);
1352 
1353 	/*
1354 	 * allocate the new right page for the split
1355 	 */
1356 	pxdlist = split->pxdlist;
1357 	pxd = &pxdlist->pxd[pxdlist->npxd];
1358 	pxdlist->npxd++;
1359 	rbn = addressPXD(pxd);
1360 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1361 	if (rmp == NULL)
1362 		return -EIO;
1363 
1364 	/* Allocate blocks to quota. */
1365 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1366 	if (rc) {
1367 		release_metapage(rmp);
1368 		return rc;
1369 	}
1370 
1371 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1372 
1373 	BT_MARK_DIRTY(rmp, ip);
1374 	/*
1375 	 * acquire a transaction lock on the new right page
1376 	 */
1377 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1378 	rdtlck = (struct dt_lock *) & tlck->lock;
1379 
1380 	rp = (dtpage_t *) rmp->data;
1381 	*rpp = rp;
1382 	rp->header.self = *pxd;
1383 
1384 	BT_MARK_DIRTY(smp, ip);
1385 	/*
1386 	 * acquire a transaction lock on the split page
1387 	 *
1388 	 * action:
1389 	 */
1390 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1391 	sdtlck = (struct dt_lock *) & tlck->lock;
1392 
1393 	/* linelock header of split page */
1394 	ASSERT(sdtlck->index == 0);
1395 	slv = & sdtlck->lv[0];
1396 	slv->offset = 0;
1397 	slv->length = 1;
1398 	sdtlck->index++;
1399 
1400 	/*
1401 	 * initialize/update sibling pointers between sp and rp
1402 	 */
1403 	nextbn = le64_to_cpu(sp->header.next);
1404 	rp->header.next = cpu_to_le64(nextbn);
1405 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1406 	sp->header.next = cpu_to_le64(rbn);
1407 
1408 	/*
1409 	 * initialize new right page
1410 	 */
1411 	rp->header.flag = sp->header.flag;
1412 
1413 	/* compute sorted entry table at start of extent data area */
1414 	rp->header.nextindex = 0;
1415 	rp->header.stblindex = 1;
1416 
1417 	n = PSIZE >> L2DTSLOTSIZE;
1418 	rp->header.maxslot = n;
1419 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1420 
1421 	/* init freelist */
1422 	fsi = rp->header.stblindex + stblsize;
1423 	rp->header.freelist = fsi;
1424 	rp->header.freecnt = rp->header.maxslot - fsi;
1425 
1426 	/*
1427 	 *	sequential append at tail: append without split
1428 	 *
1429 	 * If splitting the last page on a level because of appending
1430 	 * a entry to it (skip is maxentry), it's likely that the access is
1431 	 * sequential. Adding an empty page on the side of the level is less
1432 	 * work and can push the fill factor much higher than normal.
1433 	 * If we're wrong it's no big deal, we'll just do the split the right
1434 	 * way next time.
1435 	 * (It may look like it's equally easy to do a similar hack for
1436 	 * reverse sorted data, that is, split the tree left,
1437 	 * but it's not. Be my guest.)
1438 	 */
1439 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1440 		/* linelock header + stbl (first slot) of new page */
1441 		rlv = & rdtlck->lv[rdtlck->index];
1442 		rlv->offset = 0;
1443 		rlv->length = 2;
1444 		rdtlck->index++;
1445 
1446 		/*
1447 		 * initialize freelist of new right page
1448 		 */
1449 		f = &rp->slot[fsi];
1450 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1451 			f->next = fsi;
1452 		f->next = -1;
1453 
1454 		/* insert entry at the first entry of the new right page */
1455 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1456 
1457 		goto out;
1458 	}
1459 
1460 	/*
1461 	 *	non-sequential insert (at possibly middle page)
1462 	 */
1463 
1464 	/*
1465 	 * update prev pointer of previous right sibling page;
1466 	 */
1467 	if (nextbn != 0) {
1468 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1469 		if (rc) {
1470 			discard_metapage(rmp);
1471 			return rc;
1472 		}
1473 
1474 		BT_MARK_DIRTY(mp, ip);
1475 		/*
1476 		 * acquire a transaction lock on the next page
1477 		 */
1478 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1479 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1480 			tlck, ip, mp);
1481 		dtlck = (struct dt_lock *) & tlck->lock;
1482 
1483 		/* linelock header of previous right sibling page */
1484 		lv = & dtlck->lv[dtlck->index];
1485 		lv->offset = 0;
1486 		lv->length = 1;
1487 		dtlck->index++;
1488 
1489 		p->header.prev = cpu_to_le64(rbn);
1490 
1491 		DT_PUTPAGE(mp);
1492 	}
1493 
1494 	/*
1495 	 * split the data between the split and right pages.
1496 	 */
1497 	skip = split->index;
1498 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1499 	left = 0;
1500 
1501 	/*
1502 	 *	compute fill factor for split pages
1503 	 *
1504 	 * <nxt> traces the next entry to move to rp
1505 	 * <off> traces the next entry to stay in sp
1506 	 */
1507 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1508 	nextindex = sp->header.nextindex;
1509 	for (nxt = off = 0; nxt < nextindex; ++off) {
1510 		if (off == skip)
1511 			/* check for fill factor with new entry size */
1512 			n = split->nslot;
1513 		else {
1514 			si = stbl[nxt];
1515 			switch (sp->header.flag & BT_TYPE) {
1516 			case BT_LEAF:
1517 				ldtentry = (struct ldtentry *) & sp->slot[si];
1518 				if (DO_INDEX(ip))
1519 					n = NDTLEAF(ldtentry->namlen);
1520 				else
1521 					n = NDTLEAF_LEGACY(ldtentry->
1522 							   namlen);
1523 				break;
1524 
1525 			case BT_INTERNAL:
1526 				idtentry = (struct idtentry *) & sp->slot[si];
1527 				n = NDTINTERNAL(idtentry->namlen);
1528 				break;
1529 
1530 			default:
1531 				break;
1532 			}
1533 
1534 			++nxt;	/* advance to next entry to move in sp */
1535 		}
1536 
1537 		left += n;
1538 		if (left >= half)
1539 			break;
1540 	}
1541 
1542 	/* <nxt> poins to the 1st entry to move */
1543 
1544 	/*
1545 	 *	move entries to right page
1546 	 *
1547 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1548 	 *
1549 	 * split page moved out entries are linelocked;
1550 	 * new/right page moved in entries are linelocked;
1551 	 */
1552 	/* linelock header + stbl of new right page */
1553 	rlv = & rdtlck->lv[rdtlck->index];
1554 	rlv->offset = 0;
1555 	rlv->length = 5;
1556 	rdtlck->index++;
1557 
1558 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1559 
1560 	sp->header.nextindex = nxt;
1561 
1562 	/*
1563 	 * finalize freelist of new right page
1564 	 */
1565 	fsi = rp->header.freelist;
1566 	f = &rp->slot[fsi];
1567 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1568 		f->next = fsi;
1569 	f->next = -1;
1570 
1571 	/*
1572 	 * Update directory index table for entries now in right page
1573 	 */
1574 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1575 		s64 lblock;
1576 
1577 		mp = NULL;
1578 		stbl = DT_GETSTBL(rp);
1579 		for (n = 0; n < rp->header.nextindex; n++) {
1580 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1581 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1582 				     rbn, n, &mp, &lblock);
1583 		}
1584 		if (mp)
1585 			release_metapage(mp);
1586 	}
1587 
1588 	/*
1589 	 * the skipped index was on the left page,
1590 	 */
1591 	if (skip <= off) {
1592 		/* insert the new entry in the split page */
1593 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1594 
1595 		/* linelock stbl of split page */
1596 		if (sdtlck->index >= sdtlck->maxcnt)
1597 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1598 		slv = & sdtlck->lv[sdtlck->index];
1599 		n = skip >> L2DTSLOTSIZE;
1600 		slv->offset = sp->header.stblindex + n;
1601 		slv->length =
1602 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1603 		sdtlck->index++;
1604 	}
1605 	/*
1606 	 * the skipped index was on the right page,
1607 	 */
1608 	else {
1609 		/* adjust the skip index to reflect the new position */
1610 		skip -= nxt;
1611 
1612 		/* insert the new entry in the right page */
1613 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1614 	}
1615 
1616       out:
1617 	*rmpp = rmp;
1618 	*rpxdp = *pxd;
1619 
1620 	return rc;
1621 }
1622 
1623 
1624 /*
1625  *	dtExtendPage()
1626  *
1627  * function: extend 1st/only directory leaf page
1628  *
1629  * parameter:
1630  *
1631  * return: 0 - success;
1632  *	   errno - failure;
1633  *	return extended page pinned;
1634  */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1635 static int dtExtendPage(tid_t tid,
1636 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1637 {
1638 	struct super_block *sb = ip->i_sb;
1639 	int rc;
1640 	struct metapage *smp, *pmp, *mp;
1641 	dtpage_t *sp, *pp;
1642 	struct pxdlist *pxdlist;
1643 	pxd_t *pxd, *tpxd;
1644 	int xlen, xsize;
1645 	int newstblindex, newstblsize;
1646 	int oldstblindex, oldstblsize;
1647 	int fsi, last;
1648 	struct dtslot *f;
1649 	struct btframe *parent;
1650 	int n;
1651 	struct dt_lock *dtlck;
1652 	s64 xaddr, txaddr;
1653 	struct tlock *tlck;
1654 	struct pxd_lock *pxdlock;
1655 	struct lv *lv;
1656 	uint type;
1657 	struct ldtentry *ldtentry;
1658 	u8 *stbl;
1659 
1660 	/* get page to extend */
1661 	smp = split->mp;
1662 	sp = DT_PAGE(ip, smp);
1663 
1664 	/* get parent/root page */
1665 	parent = BT_POP(btstack);
1666 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1667 	if (rc)
1668 		return (rc);
1669 
1670 	/*
1671 	 *	extend the extent
1672 	 */
1673 	pxdlist = split->pxdlist;
1674 	pxd = &pxdlist->pxd[pxdlist->npxd];
1675 	pxdlist->npxd++;
1676 
1677 	xaddr = addressPXD(pxd);
1678 	tpxd = &sp->header.self;
1679 	txaddr = addressPXD(tpxd);
1680 	/* in-place extension */
1681 	if (xaddr == txaddr) {
1682 		type = tlckEXTEND;
1683 	}
1684 	/* relocation */
1685 	else {
1686 		type = tlckNEW;
1687 
1688 		/* save moved extent descriptor for later free */
1689 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1690 		pxdlock = (struct pxd_lock *) & tlck->lock;
1691 		pxdlock->flag = mlckFREEPXD;
1692 		pxdlock->pxd = sp->header.self;
1693 		pxdlock->index = 1;
1694 
1695 		/*
1696 		 * Update directory index table to reflect new page address
1697 		 */
1698 		if (DO_INDEX(ip)) {
1699 			s64 lblock;
1700 
1701 			mp = NULL;
1702 			stbl = DT_GETSTBL(sp);
1703 			for (n = 0; n < sp->header.nextindex; n++) {
1704 				ldtentry =
1705 				    (struct ldtentry *) & sp->slot[stbl[n]];
1706 				modify_index(tid, ip,
1707 					     le32_to_cpu(ldtentry->index),
1708 					     xaddr, n, &mp, &lblock);
1709 			}
1710 			if (mp)
1711 				release_metapage(mp);
1712 		}
1713 	}
1714 
1715 	/*
1716 	 *	extend the page
1717 	 */
1718 	sp->header.self = *pxd;
1719 
1720 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1721 
1722 	BT_MARK_DIRTY(smp, ip);
1723 	/*
1724 	 * acquire a transaction lock on the extended/leaf page
1725 	 */
1726 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1727 	dtlck = (struct dt_lock *) & tlck->lock;
1728 	lv = & dtlck->lv[0];
1729 
1730 	/* update buffer extent descriptor of extended page */
1731 	xlen = lengthPXD(pxd);
1732 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1733 
1734 	/*
1735 	 * copy old stbl to new stbl at start of extended area
1736 	 */
1737 	oldstblindex = sp->header.stblindex;
1738 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1739 	newstblindex = sp->header.maxslot;
1740 	n = xsize >> L2DTSLOTSIZE;
1741 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1742 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1743 	       sp->header.nextindex);
1744 
1745 	/*
1746 	 * in-line extension: linelock old area of extended page
1747 	 */
1748 	if (type == tlckEXTEND) {
1749 		/* linelock header */
1750 		lv->offset = 0;
1751 		lv->length = 1;
1752 		dtlck->index++;
1753 		lv++;
1754 
1755 		/* linelock new stbl of extended page */
1756 		lv->offset = newstblindex;
1757 		lv->length = newstblsize;
1758 	}
1759 	/*
1760 	 * relocation: linelock whole relocated area
1761 	 */
1762 	else {
1763 		lv->offset = 0;
1764 		lv->length = sp->header.maxslot + newstblsize;
1765 	}
1766 
1767 	dtlck->index++;
1768 
1769 	sp->header.maxslot = n;
1770 	sp->header.stblindex = newstblindex;
1771 	/* sp->header.nextindex remains the same */
1772 
1773 	/*
1774 	 * add old stbl region at head of freelist
1775 	 */
1776 	fsi = oldstblindex;
1777 	f = &sp->slot[fsi];
1778 	last = sp->header.freelist;
1779 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1780 		f->next = last;
1781 		last = fsi;
1782 	}
1783 	sp->header.freelist = last;
1784 	sp->header.freecnt += oldstblsize;
1785 
1786 	/*
1787 	 * append free region of newly extended area at tail of freelist
1788 	 */
1789 	/* init free region of newly extended area */
1790 	fsi = n = newstblindex + newstblsize;
1791 	f = &sp->slot[fsi];
1792 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1793 		f->next = fsi;
1794 	f->next = -1;
1795 
1796 	/* append new free region at tail of old freelist */
1797 	fsi = sp->header.freelist;
1798 	if (fsi == -1)
1799 		sp->header.freelist = n;
1800 	else {
1801 		do {
1802 			f = &sp->slot[fsi];
1803 			fsi = f->next;
1804 		} while (fsi != -1);
1805 
1806 		f->next = n;
1807 	}
1808 
1809 	sp->header.freecnt += sp->header.maxslot - n;
1810 
1811 	/*
1812 	 * insert the new entry
1813 	 */
1814 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1815 
1816 	BT_MARK_DIRTY(pmp, ip);
1817 	/*
1818 	 * linelock any freeslots residing in old extent
1819 	 */
1820 	if (type == tlckEXTEND) {
1821 		n = sp->header.maxslot >> 2;
1822 		if (sp->header.freelist < n)
1823 			dtLinelockFreelist(sp, n, &dtlck);
1824 	}
1825 
1826 	/*
1827 	 *	update parent entry on the parent/root page
1828 	 */
1829 	/*
1830 	 * acquire a transaction lock on the parent/root page
1831 	 */
1832 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1833 	dtlck = (struct dt_lock *) & tlck->lock;
1834 	lv = & dtlck->lv[dtlck->index];
1835 
1836 	/* linelock parent entry - 1st slot */
1837 	lv->offset = 1;
1838 	lv->length = 1;
1839 	dtlck->index++;
1840 
1841 	/* update the parent pxd for page extension */
1842 	tpxd = (pxd_t *) & pp->slot[1];
1843 	*tpxd = *pxd;
1844 
1845 	DT_PUTPAGE(pmp);
1846 	return 0;
1847 }
1848 
1849 
1850 /*
1851  *	dtSplitRoot()
1852  *
1853  * function:
1854  *	split the full root page into
1855  *	original/root/split page and new right page
1856  *	i.e., root remains fixed in tree anchor (inode) and
1857  *	the root is copied to a single new right child page
1858  *	since root page << non-root page, and
1859  *	the split root page contains a single entry for the
1860  *	new right child page.
1861  *
1862  * parameter:
1863  *
1864  * return: 0 - success;
1865  *	   errno - failure;
1866  *	return new page pinned;
1867  */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1868 static int dtSplitRoot(tid_t tid,
1869 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1870 {
1871 	struct super_block *sb = ip->i_sb;
1872 	struct metapage *smp;
1873 	dtroot_t *sp;
1874 	struct metapage *rmp;
1875 	dtpage_t *rp;
1876 	s64 rbn;
1877 	int xlen;
1878 	int xsize;
1879 	struct dtslot *f;
1880 	s8 *stbl;
1881 	int fsi, stblsize, n;
1882 	struct idtentry *s;
1883 	pxd_t *ppxd;
1884 	struct pxdlist *pxdlist;
1885 	pxd_t *pxd;
1886 	struct dt_lock *dtlck;
1887 	struct tlock *tlck;
1888 	struct lv *lv;
1889 	int rc;
1890 
1891 	/* get split root page */
1892 	smp = split->mp;
1893 	sp = &JFS_IP(ip)->i_dtroot;
1894 
1895 	/*
1896 	 *	allocate/initialize a single (right) child page
1897 	 *
1898 	 * N.B. at first split, a one (or two) block to fit new entry
1899 	 * is allocated; at subsequent split, a full page is allocated;
1900 	 */
1901 	pxdlist = split->pxdlist;
1902 	pxd = &pxdlist->pxd[pxdlist->npxd];
1903 	pxdlist->npxd++;
1904 	rbn = addressPXD(pxd);
1905 	xlen = lengthPXD(pxd);
1906 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1907 	rmp = get_metapage(ip, rbn, xsize, 1);
1908 	if (!rmp)
1909 		return -EIO;
1910 
1911 	rp = rmp->data;
1912 
1913 	/* Allocate blocks to quota. */
1914 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1915 	if (rc) {
1916 		release_metapage(rmp);
1917 		return rc;
1918 	}
1919 
1920 	BT_MARK_DIRTY(rmp, ip);
1921 	/*
1922 	 * acquire a transaction lock on the new right page
1923 	 */
1924 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1925 	dtlck = (struct dt_lock *) & tlck->lock;
1926 
1927 	rp->header.flag =
1928 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1929 	rp->header.self = *pxd;
1930 
1931 	/* initialize sibling pointers */
1932 	rp->header.next = 0;
1933 	rp->header.prev = 0;
1934 
1935 	/*
1936 	 *	move in-line root page into new right page extent
1937 	 */
1938 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1939 	ASSERT(dtlck->index == 0);
1940 	lv = & dtlck->lv[0];
1941 	lv->offset = 0;
1942 	lv->length = 10;	/* 1 + 8 + 1 */
1943 	dtlck->index++;
1944 
1945 	n = xsize >> L2DTSLOTSIZE;
1946 	rp->header.maxslot = n;
1947 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1948 
1949 	/* copy old stbl to new stbl at start of extended area */
1950 	rp->header.stblindex = DTROOTMAXSLOT;
1951 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1952 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1953 	rp->header.nextindex = sp->header.nextindex;
1954 
1955 	/* copy old data area to start of new data area */
1956 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1957 
1958 	/*
1959 	 * append free region of newly extended area at tail of freelist
1960 	 */
1961 	/* init free region of newly extended area */
1962 	fsi = n = DTROOTMAXSLOT + stblsize;
1963 	f = &rp->slot[fsi];
1964 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1965 		f->next = fsi;
1966 	f->next = -1;
1967 
1968 	/* append new free region at tail of old freelist */
1969 	fsi = sp->header.freelist;
1970 	if (fsi == -1)
1971 		rp->header.freelist = n;
1972 	else {
1973 		rp->header.freelist = fsi;
1974 
1975 		do {
1976 			f = &rp->slot[fsi];
1977 			fsi = f->next;
1978 		} while (fsi >= 0);
1979 
1980 		f->next = n;
1981 	}
1982 
1983 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1984 
1985 	/*
1986 	 * Update directory index table for entries now in right page
1987 	 */
1988 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1989 		s64 lblock;
1990 		struct metapage *mp = NULL;
1991 		struct ldtentry *ldtentry;
1992 
1993 		stbl = DT_GETSTBL(rp);
1994 		for (n = 0; n < rp->header.nextindex; n++) {
1995 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1996 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1997 				     rbn, n, &mp, &lblock);
1998 		}
1999 		if (mp)
2000 			release_metapage(mp);
2001 	}
2002 	/*
2003 	 * insert the new entry into the new right/child page
2004 	 * (skip index in the new right page will not change)
2005 	 */
2006 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2007 
2008 	/*
2009 	 *	reset parent/root page
2010 	 *
2011 	 * set the 1st entry offset to 0, which force the left-most key
2012 	 * at any level of the tree to be less than any search key.
2013 	 *
2014 	 * The btree comparison code guarantees that the left-most key on any
2015 	 * level of the tree is never used, so it doesn't need to be filled in.
2016 	 */
2017 	BT_MARK_DIRTY(smp, ip);
2018 	/*
2019 	 * acquire a transaction lock on the root page (in-memory inode)
2020 	 */
2021 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2022 	dtlck = (struct dt_lock *) & tlck->lock;
2023 
2024 	/* linelock root */
2025 	ASSERT(dtlck->index == 0);
2026 	lv = & dtlck->lv[0];
2027 	lv->offset = 0;
2028 	lv->length = DTROOTMAXSLOT;
2029 	dtlck->index++;
2030 
2031 	/* update page header of root */
2032 	if (sp->header.flag & BT_LEAF) {
2033 		sp->header.flag &= ~BT_LEAF;
2034 		sp->header.flag |= BT_INTERNAL;
2035 	}
2036 
2037 	/* init the first entry */
2038 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2039 	ppxd = (pxd_t *) s;
2040 	*ppxd = *pxd;
2041 	s->next = -1;
2042 	s->namlen = 0;
2043 
2044 	stbl = sp->header.stbl;
2045 	stbl[0] = DTENTRYSTART;
2046 	sp->header.nextindex = 1;
2047 
2048 	/* init freelist */
2049 	fsi = DTENTRYSTART + 1;
2050 	f = &sp->slot[fsi];
2051 
2052 	/* init free region of remaining area */
2053 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2054 		f->next = fsi;
2055 	f->next = -1;
2056 
2057 	sp->header.freelist = DTENTRYSTART + 1;
2058 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2059 
2060 	*rmpp = rmp;
2061 
2062 	return 0;
2063 }
2064 
2065 
2066 /*
2067  *	dtDelete()
2068  *
2069  * function: delete the entry(s) referenced by a key.
2070  *
2071  * parameter:
2072  *
2073  * return:
2074  */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2075 int dtDelete(tid_t tid,
2076 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2077 {
2078 	int rc = 0;
2079 	s64 bn;
2080 	struct metapage *mp, *imp;
2081 	dtpage_t *p;
2082 	int index;
2083 	struct btstack btstack;
2084 	struct dt_lock *dtlck;
2085 	struct tlock *tlck;
2086 	struct lv *lv;
2087 	int i;
2088 	struct ldtentry *ldtentry;
2089 	u8 *stbl;
2090 	u32 table_index, next_index;
2091 	struct metapage *nmp;
2092 	dtpage_t *np;
2093 
2094 	/*
2095 	 *	search for the entry to delete:
2096 	 *
2097 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2098 	 */
2099 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2100 		return rc;
2101 
2102 	/* retrieve search result */
2103 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2104 
2105 	/*
2106 	 * We need to find put the index of the next entry into the
2107 	 * directory index table in order to resume a readdir from this
2108 	 * entry.
2109 	 */
2110 	if (DO_INDEX(ip)) {
2111 		stbl = DT_GETSTBL(p);
2112 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2113 		table_index = le32_to_cpu(ldtentry->index);
2114 		if (index == (p->header.nextindex - 1)) {
2115 			/*
2116 			 * Last entry in this leaf page
2117 			 */
2118 			if ((p->header.flag & BT_ROOT)
2119 			    || (p->header.next == 0))
2120 				next_index = -1;
2121 			else {
2122 				/* Read next leaf page */
2123 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2124 					   nmp, PSIZE, np, rc);
2125 				if (rc)
2126 					next_index = -1;
2127 				else {
2128 					stbl = DT_GETSTBL(np);
2129 					ldtentry =
2130 					    (struct ldtentry *) & np->
2131 					    slot[stbl[0]];
2132 					next_index =
2133 					    le32_to_cpu(ldtentry->index);
2134 					DT_PUTPAGE(nmp);
2135 				}
2136 			}
2137 		} else {
2138 			ldtentry =
2139 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2140 			next_index = le32_to_cpu(ldtentry->index);
2141 		}
2142 		free_index(tid, ip, table_index, next_index);
2143 	}
2144 	/*
2145 	 * the leaf page becomes empty, delete the page
2146 	 */
2147 	if (p->header.nextindex == 1) {
2148 		/* delete empty page */
2149 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2150 	}
2151 	/*
2152 	 * the leaf page has other entries remaining:
2153 	 *
2154 	 * delete the entry from the leaf page.
2155 	 */
2156 	else {
2157 		BT_MARK_DIRTY(mp, ip);
2158 		/*
2159 		 * acquire a transaction lock on the leaf page
2160 		 */
2161 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2162 		dtlck = (struct dt_lock *) & tlck->lock;
2163 
2164 		/*
2165 		 * Do not assume that dtlck->index will be zero.  During a
2166 		 * rename within a directory, this transaction may have
2167 		 * modified this page already when adding the new entry.
2168 		 */
2169 
2170 		/* linelock header */
2171 		if (dtlck->index >= dtlck->maxcnt)
2172 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2173 		lv = & dtlck->lv[dtlck->index];
2174 		lv->offset = 0;
2175 		lv->length = 1;
2176 		dtlck->index++;
2177 
2178 		/* linelock stbl of non-root leaf page */
2179 		if (!(p->header.flag & BT_ROOT)) {
2180 			if (dtlck->index >= dtlck->maxcnt)
2181 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2182 			lv = & dtlck->lv[dtlck->index];
2183 			i = index >> L2DTSLOTSIZE;
2184 			lv->offset = p->header.stblindex + i;
2185 			lv->length =
2186 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2187 			    i + 1;
2188 			dtlck->index++;
2189 		}
2190 
2191 		/* free the leaf entry */
2192 		dtDeleteEntry(p, index, &dtlck);
2193 
2194 		/*
2195 		 * Update directory index table for entries moved in stbl
2196 		 */
2197 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2198 			s64 lblock;
2199 
2200 			imp = NULL;
2201 			stbl = DT_GETSTBL(p);
2202 			for (i = index; i < p->header.nextindex; i++) {
2203 				ldtentry =
2204 				    (struct ldtentry *) & p->slot[stbl[i]];
2205 				modify_index(tid, ip,
2206 					     le32_to_cpu(ldtentry->index),
2207 					     bn, i, &imp, &lblock);
2208 			}
2209 			if (imp)
2210 				release_metapage(imp);
2211 		}
2212 
2213 		DT_PUTPAGE(mp);
2214 	}
2215 
2216 	return rc;
2217 }
2218 
2219 
2220 /*
2221  *	dtDeleteUp()
2222  *
2223  * function:
2224  *	free empty pages as propagating deletion up the tree
2225  *
2226  * parameter:
2227  *
2228  * return:
2229  */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2230 static int dtDeleteUp(tid_t tid, struct inode *ip,
2231 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2232 {
2233 	int rc = 0;
2234 	struct metapage *mp;
2235 	dtpage_t *p;
2236 	int index, nextindex;
2237 	int xlen;
2238 	struct btframe *parent;
2239 	struct dt_lock *dtlck;
2240 	struct tlock *tlck;
2241 	struct lv *lv;
2242 	struct pxd_lock *pxdlock;
2243 	int i;
2244 
2245 	/*
2246 	 *	keep the root leaf page which has become empty
2247 	 */
2248 	if (BT_IS_ROOT(fmp)) {
2249 		/*
2250 		 * reset the root
2251 		 *
2252 		 * dtInitRoot() acquires txlock on the root
2253 		 */
2254 		dtInitRoot(tid, ip, PARENT(ip));
2255 
2256 		DT_PUTPAGE(fmp);
2257 
2258 		return 0;
2259 	}
2260 
2261 	/*
2262 	 *	free the non-root leaf page
2263 	 */
2264 	/*
2265 	 * acquire a transaction lock on the page
2266 	 *
2267 	 * write FREEXTENT|NOREDOPAGE log record
2268 	 * N.B. linelock is overlaid as freed extent descriptor, and
2269 	 * the buffer page is freed;
2270 	 */
2271 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2272 	pxdlock = (struct pxd_lock *) & tlck->lock;
2273 	pxdlock->flag = mlckFREEPXD;
2274 	pxdlock->pxd = fp->header.self;
2275 	pxdlock->index = 1;
2276 
2277 	/* update sibling pointers */
2278 	if ((rc = dtRelink(tid, ip, fp))) {
2279 		BT_PUTPAGE(fmp);
2280 		return rc;
2281 	}
2282 
2283 	xlen = lengthPXD(&fp->header.self);
2284 
2285 	/* Free quota allocation. */
2286 	dquot_free_block(ip, xlen);
2287 
2288 	/* free/invalidate its buffer page */
2289 	discard_metapage(fmp);
2290 
2291 	/*
2292 	 *	propagate page deletion up the directory tree
2293 	 *
2294 	 * If the delete from the parent page makes it empty,
2295 	 * continue all the way up the tree.
2296 	 * stop if the root page is reached (which is never deleted) or
2297 	 * if the entry deletion does not empty the page.
2298 	 */
2299 	while ((parent = BT_POP(btstack)) != NULL) {
2300 		/* pin the parent page <sp> */
2301 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2302 		if (rc)
2303 			return rc;
2304 
2305 		/*
2306 		 * free the extent of the child page deleted
2307 		 */
2308 		index = parent->index;
2309 
2310 		/*
2311 		 * delete the entry for the child page from parent
2312 		 */
2313 		nextindex = p->header.nextindex;
2314 
2315 		/*
2316 		 * the parent has the single entry being deleted:
2317 		 *
2318 		 * free the parent page which has become empty.
2319 		 */
2320 		if (nextindex == 1) {
2321 			/*
2322 			 * keep the root internal page which has become empty
2323 			 */
2324 			if (p->header.flag & BT_ROOT) {
2325 				/*
2326 				 * reset the root
2327 				 *
2328 				 * dtInitRoot() acquires txlock on the root
2329 				 */
2330 				dtInitRoot(tid, ip, PARENT(ip));
2331 
2332 				DT_PUTPAGE(mp);
2333 
2334 				return 0;
2335 			}
2336 			/*
2337 			 * free the parent page
2338 			 */
2339 			else {
2340 				/*
2341 				 * acquire a transaction lock on the page
2342 				 *
2343 				 * write FREEXTENT|NOREDOPAGE log record
2344 				 */
2345 				tlck =
2346 				    txMaplock(tid, ip,
2347 					      tlckDTREE | tlckFREE);
2348 				pxdlock = (struct pxd_lock *) & tlck->lock;
2349 				pxdlock->flag = mlckFREEPXD;
2350 				pxdlock->pxd = p->header.self;
2351 				pxdlock->index = 1;
2352 
2353 				/* update sibling pointers */
2354 				if ((rc = dtRelink(tid, ip, p))) {
2355 					DT_PUTPAGE(mp);
2356 					return rc;
2357 				}
2358 
2359 				xlen = lengthPXD(&p->header.self);
2360 
2361 				/* Free quota allocation */
2362 				dquot_free_block(ip, xlen);
2363 
2364 				/* free/invalidate its buffer page */
2365 				discard_metapage(mp);
2366 
2367 				/* propagate up */
2368 				continue;
2369 			}
2370 		}
2371 
2372 		/*
2373 		 * the parent has other entries remaining:
2374 		 *
2375 		 * delete the router entry from the parent page.
2376 		 */
2377 		BT_MARK_DIRTY(mp, ip);
2378 		/*
2379 		 * acquire a transaction lock on the page
2380 		 *
2381 		 * action: router entry deletion
2382 		 */
2383 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2384 		dtlck = (struct dt_lock *) & tlck->lock;
2385 
2386 		/* linelock header */
2387 		if (dtlck->index >= dtlck->maxcnt)
2388 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2389 		lv = & dtlck->lv[dtlck->index];
2390 		lv->offset = 0;
2391 		lv->length = 1;
2392 		dtlck->index++;
2393 
2394 		/* linelock stbl of non-root leaf page */
2395 		if (!(p->header.flag & BT_ROOT)) {
2396 			if (dtlck->index < dtlck->maxcnt)
2397 				lv++;
2398 			else {
2399 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2400 				lv = & dtlck->lv[0];
2401 			}
2402 			i = index >> L2DTSLOTSIZE;
2403 			lv->offset = p->header.stblindex + i;
2404 			lv->length =
2405 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2406 			    i + 1;
2407 			dtlck->index++;
2408 		}
2409 
2410 		/* free the router entry */
2411 		dtDeleteEntry(p, index, &dtlck);
2412 
2413 		/* reset key of new leftmost entry of level (for consistency) */
2414 		if (index == 0 &&
2415 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2416 			dtTruncateEntry(p, 0, &dtlck);
2417 
2418 		/* unpin the parent page */
2419 		DT_PUTPAGE(mp);
2420 
2421 		/* exit propagation up */
2422 		break;
2423 	}
2424 
2425 	if (!DO_INDEX(ip))
2426 		ip->i_size -= PSIZE;
2427 
2428 	return 0;
2429 }
2430 
2431 #ifdef _NOTYET
2432 /*
2433  * NAME:	dtRelocate()
2434  *
2435  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2436  *		This function is mainly used by defragfs utility.
2437  */
dtRelocate(tid_t tid,struct inode * ip,s64 lmxaddr,pxd_t * opxd,s64 nxaddr)2438 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2439 	       s64 nxaddr)
2440 {
2441 	int rc = 0;
2442 	struct metapage *mp, *pmp, *lmp, *rmp;
2443 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2444 	s64 bn;
2445 	int index;
2446 	struct btstack btstack;
2447 	pxd_t *pxd;
2448 	s64 oxaddr, nextbn, prevbn;
2449 	int xlen, xsize;
2450 	struct tlock *tlck;
2451 	struct dt_lock *dtlck;
2452 	struct pxd_lock *pxdlock;
2453 	s8 *stbl;
2454 	struct lv *lv;
2455 
2456 	oxaddr = addressPXD(opxd);
2457 	xlen = lengthPXD(opxd);
2458 
2459 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2460 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2461 		   xlen);
2462 
2463 	/*
2464 	 *	1. get the internal parent dtpage covering
2465 	 *	router entry for the tartget page to be relocated;
2466 	 */
2467 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2468 	if (rc)
2469 		return rc;
2470 
2471 	/* retrieve search result */
2472 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2473 	jfs_info("dtRelocate: parent router entry validated.");
2474 
2475 	/*
2476 	 *	2. relocate the target dtpage
2477 	 */
2478 	/* read in the target page from src extent */
2479 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2480 	if (rc) {
2481 		/* release the pinned parent page */
2482 		DT_PUTPAGE(pmp);
2483 		return rc;
2484 	}
2485 
2486 	/*
2487 	 * read in sibling pages if any to update sibling pointers;
2488 	 */
2489 	rmp = NULL;
2490 	if (p->header.next) {
2491 		nextbn = le64_to_cpu(p->header.next);
2492 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2493 		if (rc) {
2494 			DT_PUTPAGE(mp);
2495 			DT_PUTPAGE(pmp);
2496 			return (rc);
2497 		}
2498 	}
2499 
2500 	lmp = NULL;
2501 	if (p->header.prev) {
2502 		prevbn = le64_to_cpu(p->header.prev);
2503 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2504 		if (rc) {
2505 			DT_PUTPAGE(mp);
2506 			DT_PUTPAGE(pmp);
2507 			if (rmp)
2508 				DT_PUTPAGE(rmp);
2509 			return (rc);
2510 		}
2511 	}
2512 
2513 	/* at this point, all xtpages to be updated are in memory */
2514 
2515 	/*
2516 	 * update sibling pointers of sibling dtpages if any;
2517 	 */
2518 	if (lmp) {
2519 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2520 		dtlck = (struct dt_lock *) & tlck->lock;
2521 		/* linelock header */
2522 		ASSERT(dtlck->index == 0);
2523 		lv = & dtlck->lv[0];
2524 		lv->offset = 0;
2525 		lv->length = 1;
2526 		dtlck->index++;
2527 
2528 		lp->header.next = cpu_to_le64(nxaddr);
2529 		DT_PUTPAGE(lmp);
2530 	}
2531 
2532 	if (rmp) {
2533 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2534 		dtlck = (struct dt_lock *) & tlck->lock;
2535 		/* linelock header */
2536 		ASSERT(dtlck->index == 0);
2537 		lv = & dtlck->lv[0];
2538 		lv->offset = 0;
2539 		lv->length = 1;
2540 		dtlck->index++;
2541 
2542 		rp->header.prev = cpu_to_le64(nxaddr);
2543 		DT_PUTPAGE(rmp);
2544 	}
2545 
2546 	/*
2547 	 * update the target dtpage to be relocated
2548 	 *
2549 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2550 	 * for the whole target page (logredo() will apply
2551 	 * after image and update bmap for allocation of the
2552 	 * dst extent), and update bmap for allocation of
2553 	 * the dst extent;
2554 	 */
2555 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2556 	dtlck = (struct dt_lock *) & tlck->lock;
2557 	/* linelock header */
2558 	ASSERT(dtlck->index == 0);
2559 	lv = & dtlck->lv[0];
2560 
2561 	/* update the self address in the dtpage header */
2562 	pxd = &p->header.self;
2563 	PXDaddress(pxd, nxaddr);
2564 
2565 	/* the dst page is the same as the src page, i.e.,
2566 	 * linelock for afterimage of the whole page;
2567 	 */
2568 	lv->offset = 0;
2569 	lv->length = p->header.maxslot;
2570 	dtlck->index++;
2571 
2572 	/* update the buffer extent descriptor of the dtpage */
2573 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2574 
2575 	/* unpin the relocated page */
2576 	DT_PUTPAGE(mp);
2577 	jfs_info("dtRelocate: target dtpage relocated.");
2578 
2579 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2580 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2581 	 * will also force a bmap update ).
2582 	 */
2583 
2584 	/*
2585 	 *	3. acquire maplock for the source extent to be freed;
2586 	 */
2587 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2588 	 * for the source dtpage (logredo() will init NoRedoPage
2589 	 * filter and will also update bmap for free of the source
2590 	 * dtpage), and upadte bmap for free of the source dtpage;
2591 	 */
2592 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2593 	pxdlock = (struct pxd_lock *) & tlck->lock;
2594 	pxdlock->flag = mlckFREEPXD;
2595 	PXDaddress(&pxdlock->pxd, oxaddr);
2596 	PXDlength(&pxdlock->pxd, xlen);
2597 	pxdlock->index = 1;
2598 
2599 	/*
2600 	 *	4. update the parent router entry for relocation;
2601 	 *
2602 	 * acquire tlck for the parent entry covering the target dtpage;
2603 	 * write LOG_REDOPAGE to apply after image only;
2604 	 */
2605 	jfs_info("dtRelocate: update parent router entry.");
2606 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2607 	dtlck = (struct dt_lock *) & tlck->lock;
2608 	lv = & dtlck->lv[dtlck->index];
2609 
2610 	/* update the PXD with the new address */
2611 	stbl = DT_GETSTBL(pp);
2612 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2613 	PXDaddress(pxd, nxaddr);
2614 	lv->offset = stbl[index];
2615 	lv->length = 1;
2616 	dtlck->index++;
2617 
2618 	/* unpin the parent dtpage */
2619 	DT_PUTPAGE(pmp);
2620 
2621 	return rc;
2622 }
2623 
2624 /*
2625  * NAME:	dtSearchNode()
2626  *
2627  * FUNCTION:	Search for an dtpage containing a specified address
2628  *		This function is mainly used by defragfs utility.
2629  *
2630  * NOTE:	Search result on stack, the found page is pinned at exit.
2631  *		The result page must be an internal dtpage.
2632  *		lmxaddr give the address of the left most page of the
2633  *		dtree level, in which the required dtpage resides.
2634  */
dtSearchNode(struct inode * ip,s64 lmxaddr,pxd_t * kpxd,struct btstack * btstack)2635 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2636 			struct btstack * btstack)
2637 {
2638 	int rc = 0;
2639 	s64 bn;
2640 	struct metapage *mp;
2641 	dtpage_t *p;
2642 	int psize = 288;	/* initial in-line directory */
2643 	s8 *stbl;
2644 	int i;
2645 	pxd_t *pxd;
2646 	struct btframe *btsp;
2647 
2648 	BT_CLR(btstack);	/* reset stack */
2649 
2650 	/*
2651 	 *	descend tree to the level with specified leftmost page
2652 	 *
2653 	 *  by convention, root bn = 0.
2654 	 */
2655 	for (bn = 0;;) {
2656 		/* get/pin the page to search */
2657 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2658 		if (rc)
2659 			return rc;
2660 
2661 		/* does the xaddr of leftmost page of the levevl
2662 		 * matches levevl search key ?
2663 		 */
2664 		if (p->header.flag & BT_ROOT) {
2665 			if (lmxaddr == 0)
2666 				break;
2667 		} else if (addressPXD(&p->header.self) == lmxaddr)
2668 			break;
2669 
2670 		/*
2671 		 * descend down to leftmost child page
2672 		 */
2673 		if (p->header.flag & BT_LEAF) {
2674 			DT_PUTPAGE(mp);
2675 			return -ESTALE;
2676 		}
2677 
2678 		/* get the leftmost entry */
2679 		stbl = DT_GETSTBL(p);
2680 		pxd = (pxd_t *) & p->slot[stbl[0]];
2681 
2682 		/* get the child page block address */
2683 		bn = addressPXD(pxd);
2684 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2685 		/* unpin the parent page */
2686 		DT_PUTPAGE(mp);
2687 	}
2688 
2689 	/*
2690 	 *	search each page at the current levevl
2691 	 */
2692       loop:
2693 	stbl = DT_GETSTBL(p);
2694 	for (i = 0; i < p->header.nextindex; i++) {
2695 		pxd = (pxd_t *) & p->slot[stbl[i]];
2696 
2697 		/* found the specified router entry */
2698 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2699 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2700 			btsp = btstack->top;
2701 			btsp->bn = bn;
2702 			btsp->index = i;
2703 			btsp->mp = mp;
2704 
2705 			return 0;
2706 		}
2707 	}
2708 
2709 	/* get the right sibling page if any */
2710 	if (p->header.next)
2711 		bn = le64_to_cpu(p->header.next);
2712 	else {
2713 		DT_PUTPAGE(mp);
2714 		return -ESTALE;
2715 	}
2716 
2717 	/* unpin current page */
2718 	DT_PUTPAGE(mp);
2719 
2720 	/* get the right sibling page */
2721 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2722 	if (rc)
2723 		return rc;
2724 
2725 	goto loop;
2726 }
2727 #endif /* _NOTYET */
2728 
2729 /*
2730  *	dtRelink()
2731  *
2732  * function:
2733  *	link around a freed page.
2734  *
2735  * parameter:
2736  *	fp:	page to be freed
2737  *
2738  * return:
2739  */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2740 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2741 {
2742 	int rc;
2743 	struct metapage *mp;
2744 	s64 nextbn, prevbn;
2745 	struct tlock *tlck;
2746 	struct dt_lock *dtlck;
2747 	struct lv *lv;
2748 
2749 	nextbn = le64_to_cpu(p->header.next);
2750 	prevbn = le64_to_cpu(p->header.prev);
2751 
2752 	/* update prev pointer of the next page */
2753 	if (nextbn != 0) {
2754 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2755 		if (rc)
2756 			return rc;
2757 
2758 		BT_MARK_DIRTY(mp, ip);
2759 		/*
2760 		 * acquire a transaction lock on the next page
2761 		 *
2762 		 * action: update prev pointer;
2763 		 */
2764 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2765 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2766 			tlck, ip, mp);
2767 		dtlck = (struct dt_lock *) & tlck->lock;
2768 
2769 		/* linelock header */
2770 		if (dtlck->index >= dtlck->maxcnt)
2771 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2772 		lv = & dtlck->lv[dtlck->index];
2773 		lv->offset = 0;
2774 		lv->length = 1;
2775 		dtlck->index++;
2776 
2777 		p->header.prev = cpu_to_le64(prevbn);
2778 		DT_PUTPAGE(mp);
2779 	}
2780 
2781 	/* update next pointer of the previous page */
2782 	if (prevbn != 0) {
2783 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2784 		if (rc)
2785 			return rc;
2786 
2787 		BT_MARK_DIRTY(mp, ip);
2788 		/*
2789 		 * acquire a transaction lock on the prev page
2790 		 *
2791 		 * action: update next pointer;
2792 		 */
2793 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2794 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2795 			tlck, ip, mp);
2796 		dtlck = (struct dt_lock *) & tlck->lock;
2797 
2798 		/* linelock header */
2799 		if (dtlck->index >= dtlck->maxcnt)
2800 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2801 		lv = & dtlck->lv[dtlck->index];
2802 		lv->offset = 0;
2803 		lv->length = 1;
2804 		dtlck->index++;
2805 
2806 		p->header.next = cpu_to_le64(nextbn);
2807 		DT_PUTPAGE(mp);
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 
2814 /*
2815  *	dtInitRoot()
2816  *
2817  * initialize directory root (inline in inode)
2818  */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2819 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2820 {
2821 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2822 	dtroot_t *p;
2823 	int fsi;
2824 	struct dtslot *f;
2825 	struct tlock *tlck;
2826 	struct dt_lock *dtlck;
2827 	struct lv *lv;
2828 	u16 xflag_save;
2829 
2830 	/*
2831 	 * If this was previously an non-empty directory, we need to remove
2832 	 * the old directory table.
2833 	 */
2834 	if (DO_INDEX(ip)) {
2835 		if (!jfs_dirtable_inline(ip)) {
2836 			struct tblock *tblk = tid_to_tblock(tid);
2837 			/*
2838 			 * We're playing games with the tid's xflag.  If
2839 			 * we're removing a regular file, the file's xtree
2840 			 * is committed with COMMIT_PMAP, but we always
2841 			 * commit the directories xtree with COMMIT_PWMAP.
2842 			 */
2843 			xflag_save = tblk->xflag;
2844 			tblk->xflag = 0;
2845 			/*
2846 			 * xtTruncate isn't guaranteed to fully truncate
2847 			 * the xtree.  The caller needs to check i_size
2848 			 * after committing the transaction to see if
2849 			 * additional truncation is needed.  The
2850 			 * COMMIT_Stale flag tells caller that we
2851 			 * initiated the truncation.
2852 			 */
2853 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2854 			set_cflag(COMMIT_Stale, ip);
2855 
2856 			tblk->xflag = xflag_save;
2857 		} else
2858 			ip->i_size = 1;
2859 
2860 		jfs_ip->next_index = 2;
2861 	} else
2862 		ip->i_size = IDATASIZE;
2863 
2864 	/*
2865 	 * acquire a transaction lock on the root
2866 	 *
2867 	 * action: directory initialization;
2868 	 */
2869 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2870 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2871 	dtlck = (struct dt_lock *) & tlck->lock;
2872 
2873 	/* linelock root */
2874 	ASSERT(dtlck->index == 0);
2875 	lv = & dtlck->lv[0];
2876 	lv->offset = 0;
2877 	lv->length = DTROOTMAXSLOT;
2878 	dtlck->index++;
2879 
2880 	p = &jfs_ip->i_dtroot;
2881 
2882 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2883 
2884 	p->header.nextindex = 0;
2885 
2886 	/* init freelist */
2887 	fsi = 1;
2888 	f = &p->slot[fsi];
2889 
2890 	/* init data area of root */
2891 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2892 		f->next = fsi;
2893 	f->next = -1;
2894 
2895 	p->header.freelist = 1;
2896 	p->header.freecnt = 8;
2897 
2898 	/* init '..' entry */
2899 	p->header.idotdot = cpu_to_le32(idotdot);
2900 
2901 	return;
2902 }
2903 
2904 /*
2905  *	add_missing_indices()
2906  *
2907  * function: Fix dtree page in which one or more entries has an invalid index.
2908  *	     fsck.jfs should really fix this, but it currently does not.
2909  *	     Called from jfs_readdir when bad index is detected.
2910  */
add_missing_indices(struct inode * inode,s64 bn)2911 static void add_missing_indices(struct inode *inode, s64 bn)
2912 {
2913 	struct ldtentry *d;
2914 	struct dt_lock *dtlck;
2915 	int i;
2916 	uint index;
2917 	struct lv *lv;
2918 	struct metapage *mp;
2919 	dtpage_t *p;
2920 	int rc;
2921 	s8 *stbl;
2922 	tid_t tid;
2923 	struct tlock *tlck;
2924 
2925 	tid = txBegin(inode->i_sb, 0);
2926 
2927 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2928 
2929 	if (rc) {
2930 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2931 		goto end;
2932 	}
2933 	BT_MARK_DIRTY(mp, inode);
2934 
2935 	ASSERT(p->header.flag & BT_LEAF);
2936 
2937 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2938 	if (BT_IS_ROOT(mp))
2939 		tlck->type |= tlckBTROOT;
2940 
2941 	dtlck = (struct dt_lock *) &tlck->lock;
2942 
2943 	stbl = DT_GETSTBL(p);
2944 	for (i = 0; i < p->header.nextindex; i++) {
2945 		d = (struct ldtentry *) &p->slot[stbl[i]];
2946 		index = le32_to_cpu(d->index);
2947 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2948 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2949 			if (dtlck->index >= dtlck->maxcnt)
2950 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2951 			lv = &dtlck->lv[dtlck->index];
2952 			lv->offset = stbl[i];
2953 			lv->length = 1;
2954 			dtlck->index++;
2955 		}
2956 	}
2957 
2958 	DT_PUTPAGE(mp);
2959 	(void) txCommit(tid, 1, &inode, 0);
2960 end:
2961 	txEnd(tid);
2962 }
2963 
2964 /*
2965  * Buffer to hold directory entry info while traversing a dtree page
2966  * before being fed to the filldir function
2967  */
2968 struct jfs_dirent {
2969 	loff_t position;
2970 	int ino;
2971 	u16 name_len;
2972 	char name[];
2973 };
2974 
2975 /*
2976  * function to determine next variable-sized jfs_dirent in buffer
2977  */
next_jfs_dirent(struct jfs_dirent * dirent)2978 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2979 {
2980 	return (struct jfs_dirent *)
2981 		((char *)dirent +
2982 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2983 		   sizeof (loff_t) - 1) &
2984 		  ~(sizeof (loff_t) - 1)));
2985 }
2986 
2987 /*
2988  *	jfs_readdir()
2989  *
2990  * function: read directory entries sequentially
2991  *	from the specified entry offset
2992  *
2993  * parameter:
2994  *
2995  * return: offset = (pn, index) of start entry
2996  *	of next jfs_readdir()/dtRead()
2997  */
jfs_readdir(struct file * file,struct dir_context * ctx)2998 int jfs_readdir(struct file *file, struct dir_context *ctx)
2999 {
3000 	struct inode *ip = file_inode(file);
3001 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3002 	int rc = 0;
3003 	loff_t dtpos;	/* legacy OS/2 style position */
3004 	struct dtoffset {
3005 		s16 pn;
3006 		s16 index;
3007 		s32 unused;
3008 	} *dtoffset = (struct dtoffset *) &dtpos;
3009 	s64 bn;
3010 	struct metapage *mp;
3011 	dtpage_t *p;
3012 	int index;
3013 	s8 *stbl;
3014 	struct btstack btstack;
3015 	int i, next;
3016 	struct ldtentry *d;
3017 	struct dtslot *t;
3018 	int d_namleft, len, outlen;
3019 	unsigned long dirent_buf;
3020 	char *name_ptr;
3021 	u32 dir_index;
3022 	int do_index = 0;
3023 	uint loop_count = 0;
3024 	struct jfs_dirent *jfs_dirent;
3025 	int jfs_dirents;
3026 	int overflow, fix_page, page_fixed = 0;
3027 	static int unique_pos = 2;	/* If we can't fix broken index */
3028 
3029 	if (ctx->pos == DIREND)
3030 		return 0;
3031 
3032 	if (DO_INDEX(ip)) {
3033 		/*
3034 		 * persistent index is stored in directory entries.
3035 		 * Special cases:	 0 = .
3036 		 *			 1 = ..
3037 		 *			-1 = End of directory
3038 		 */
3039 		do_index = 1;
3040 
3041 		dir_index = (u32) ctx->pos;
3042 
3043 		/*
3044 		 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
3045 		 * we return to the vfs is one greater than the one we use
3046 		 * internally.
3047 		 */
3048 		if (dir_index)
3049 			dir_index--;
3050 
3051 		if (dir_index > 1) {
3052 			struct dir_table_slot dirtab_slot;
3053 
3054 			if (dtEmpty(ip) ||
3055 			    (dir_index >= JFS_IP(ip)->next_index)) {
3056 				/* Stale position.  Directory has shrunk */
3057 				ctx->pos = DIREND;
3058 				return 0;
3059 			}
3060 		      repeat:
3061 			rc = read_index(ip, dir_index, &dirtab_slot);
3062 			if (rc) {
3063 				ctx->pos = DIREND;
3064 				return rc;
3065 			}
3066 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3067 				if (loop_count++ > JFS_IP(ip)->next_index) {
3068 					jfs_err("jfs_readdir detected infinite loop!");
3069 					ctx->pos = DIREND;
3070 					return 0;
3071 				}
3072 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3073 				if (dir_index == -1) {
3074 					ctx->pos = DIREND;
3075 					return 0;
3076 				}
3077 				goto repeat;
3078 			}
3079 			bn = addressDTS(&dirtab_slot);
3080 			index = dirtab_slot.slot;
3081 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3082 			if (rc) {
3083 				ctx->pos = DIREND;
3084 				return 0;
3085 			}
3086 			if (p->header.flag & BT_INTERNAL) {
3087 				jfs_err("jfs_readdir: bad index table");
3088 				DT_PUTPAGE(mp);
3089 				ctx->pos = DIREND;
3090 				return 0;
3091 			}
3092 		} else {
3093 			if (dir_index == 0) {
3094 				/*
3095 				 * self "."
3096 				 */
3097 				ctx->pos = 1;
3098 				if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3099 					return 0;
3100 			}
3101 			/*
3102 			 * parent ".."
3103 			 */
3104 			ctx->pos = 2;
3105 			if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3106 				return 0;
3107 
3108 			/*
3109 			 * Find first entry of left-most leaf
3110 			 */
3111 			if (dtEmpty(ip)) {
3112 				ctx->pos = DIREND;
3113 				return 0;
3114 			}
3115 
3116 			if ((rc = dtReadFirst(ip, &btstack)))
3117 				return rc;
3118 
3119 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3120 		}
3121 	} else {
3122 		/*
3123 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3124 		 *
3125 		 * pn = 0; index = 1:	First entry "."
3126 		 * pn = 0; index = 2:	Second entry ".."
3127 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3128 		 * pn = index = -1:	No more entries
3129 		 */
3130 		dtpos = ctx->pos;
3131 		if (dtpos < 2) {
3132 			/* build "." entry */
3133 			ctx->pos = 1;
3134 			if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3135 				return 0;
3136 			dtoffset->index = 2;
3137 			ctx->pos = dtpos;
3138 		}
3139 
3140 		if (dtoffset->pn == 0) {
3141 			if (dtoffset->index == 2) {
3142 				/* build ".." entry */
3143 				if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3144 					return 0;
3145 			} else {
3146 				jfs_err("jfs_readdir called with invalid offset!");
3147 			}
3148 			dtoffset->pn = 1;
3149 			dtoffset->index = 0;
3150 			ctx->pos = dtpos;
3151 		}
3152 
3153 		if (dtEmpty(ip)) {
3154 			ctx->pos = DIREND;
3155 			return 0;
3156 		}
3157 
3158 		if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
3159 			jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
3160 				rc);
3161 			ctx->pos = DIREND;
3162 			return 0;
3163 		}
3164 		/* get start leaf page and index */
3165 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3166 
3167 		/* offset beyond directory eof ? */
3168 		if (bn < 0) {
3169 			ctx->pos = DIREND;
3170 			return 0;
3171 		}
3172 	}
3173 
3174 	dirent_buf = __get_free_page(GFP_KERNEL);
3175 	if (dirent_buf == 0) {
3176 		DT_PUTPAGE(mp);
3177 		jfs_warn("jfs_readdir: __get_free_page failed!");
3178 		ctx->pos = DIREND;
3179 		return -ENOMEM;
3180 	}
3181 
3182 	while (1) {
3183 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3184 		jfs_dirents = 0;
3185 		overflow = fix_page = 0;
3186 
3187 		stbl = DT_GETSTBL(p);
3188 
3189 		for (i = index; i < p->header.nextindex; i++) {
3190 			d = (struct ldtentry *) & p->slot[stbl[i]];
3191 
3192 			if (((long) jfs_dirent + d->namlen + 1) >
3193 			    (dirent_buf + PAGE_SIZE)) {
3194 				/* DBCS codepages could overrun dirent_buf */
3195 				index = i;
3196 				overflow = 1;
3197 				break;
3198 			}
3199 
3200 			d_namleft = d->namlen;
3201 			name_ptr = jfs_dirent->name;
3202 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3203 
3204 			if (do_index) {
3205 				len = min(d_namleft, DTLHDRDATALEN);
3206 				jfs_dirent->position = le32_to_cpu(d->index);
3207 				/*
3208 				 * d->index should always be valid, but it
3209 				 * isn't.  fsck.jfs doesn't create the
3210 				 * directory index for the lost+found
3211 				 * directory.  Rather than let it go,
3212 				 * we can try to fix it.
3213 				 */
3214 				if ((jfs_dirent->position < 2) ||
3215 				    (jfs_dirent->position >=
3216 				     JFS_IP(ip)->next_index)) {
3217 					if (!page_fixed && !isReadOnly(ip)) {
3218 						fix_page = 1;
3219 						/*
3220 						 * setting overflow and setting
3221 						 * index to i will cause the
3222 						 * same page to be processed
3223 						 * again starting here
3224 						 */
3225 						overflow = 1;
3226 						index = i;
3227 						break;
3228 					}
3229 					jfs_dirent->position = unique_pos++;
3230 				}
3231 				/*
3232 				 * We add 1 to the index because we may
3233 				 * use a value of 2 internally, and NFSv4
3234 				 * doesn't like that.
3235 				 */
3236 				jfs_dirent->position++;
3237 			} else {
3238 				jfs_dirent->position = dtpos;
3239 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3240 			}
3241 
3242 			/* copy the name of head/only segment */
3243 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3244 						   codepage);
3245 			jfs_dirent->name_len = outlen;
3246 
3247 			/* copy name in the additional segment(s) */
3248 			next = d->next;
3249 			while (next >= 0) {
3250 				t = (struct dtslot *) & p->slot[next];
3251 				name_ptr += outlen;
3252 				d_namleft -= len;
3253 				/* Sanity Check */
3254 				if (d_namleft == 0) {
3255 					jfs_error(ip->i_sb,
3256 						  "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
3257 						  (long)ip->i_ino,
3258 						  (long long)bn,
3259 						  i);
3260 					goto skip_one;
3261 				}
3262 				len = min(d_namleft, DTSLOTDATALEN);
3263 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3264 							   len, codepage);
3265 				jfs_dirent->name_len += outlen;
3266 
3267 				next = t->next;
3268 			}
3269 
3270 			jfs_dirents++;
3271 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3272 skip_one:
3273 			if (!do_index)
3274 				dtoffset->index++;
3275 		}
3276 
3277 		if (!overflow) {
3278 			/* Point to next leaf page */
3279 			if (p->header.flag & BT_ROOT)
3280 				bn = 0;
3281 			else {
3282 				bn = le64_to_cpu(p->header.next);
3283 				index = 0;
3284 				/* update offset (pn:index) for new page */
3285 				if (!do_index) {
3286 					dtoffset->pn++;
3287 					dtoffset->index = 0;
3288 				}
3289 			}
3290 			page_fixed = 0;
3291 		}
3292 
3293 		/* unpin previous leaf page */
3294 		DT_PUTPAGE(mp);
3295 
3296 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3297 		while (jfs_dirents--) {
3298 			ctx->pos = jfs_dirent->position;
3299 			if (!dir_emit(ctx, jfs_dirent->name,
3300 				    jfs_dirent->name_len,
3301 				    jfs_dirent->ino, DT_UNKNOWN))
3302 				goto out;
3303 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3304 		}
3305 
3306 		if (fix_page) {
3307 			add_missing_indices(ip, bn);
3308 			page_fixed = 1;
3309 		}
3310 
3311 		if (!overflow && (bn == 0)) {
3312 			ctx->pos = DIREND;
3313 			break;
3314 		}
3315 
3316 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3317 		if (rc) {
3318 			free_page(dirent_buf);
3319 			return rc;
3320 		}
3321 	}
3322 
3323       out:
3324 	free_page(dirent_buf);
3325 
3326 	return rc;
3327 }
3328 
3329 
3330 /*
3331  *	dtReadFirst()
3332  *
3333  * function: get the leftmost page of the directory
3334  */
dtReadFirst(struct inode * ip,struct btstack * btstack)3335 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3336 {
3337 	int rc = 0;
3338 	s64 bn;
3339 	int psize = 288;	/* initial in-line directory */
3340 	struct metapage *mp;
3341 	dtpage_t *p;
3342 	s8 *stbl;
3343 	struct btframe *btsp;
3344 	pxd_t *xd;
3345 
3346 	BT_CLR(btstack);	/* reset stack */
3347 
3348 	/*
3349 	 *	descend leftmost path of the tree
3350 	 *
3351 	 * by convention, root bn = 0.
3352 	 */
3353 	for (bn = 0;;) {
3354 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3355 		if (rc)
3356 			return rc;
3357 
3358 		/*
3359 		 * leftmost leaf page
3360 		 */
3361 		if (p->header.flag & BT_LEAF) {
3362 			/* return leftmost entry */
3363 			btsp = btstack->top;
3364 			btsp->bn = bn;
3365 			btsp->index = 0;
3366 			btsp->mp = mp;
3367 
3368 			return 0;
3369 		}
3370 
3371 		/*
3372 		 * descend down to leftmost child page
3373 		 */
3374 		if (BT_STACK_FULL(btstack)) {
3375 			DT_PUTPAGE(mp);
3376 			jfs_error(ip->i_sb, "btstack overrun\n");
3377 			BT_STACK_DUMP(btstack);
3378 			return -EIO;
3379 		}
3380 		/* push (bn, index) of the parent page/entry */
3381 		BT_PUSH(btstack, bn, 0);
3382 
3383 		/* get the leftmost entry */
3384 		stbl = DT_GETSTBL(p);
3385 		xd = (pxd_t *) & p->slot[stbl[0]];
3386 
3387 		/* get the child page block address */
3388 		bn = addressPXD(xd);
3389 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3390 
3391 		/* unpin the parent page */
3392 		DT_PUTPAGE(mp);
3393 	}
3394 }
3395 
3396 
3397 /*
3398  *	dtReadNext()
3399  *
3400  * function: get the page of the specified offset (pn:index)
3401  *
3402  * return: if (offset > eof), bn = -1;
3403  *
3404  * note: if index > nextindex of the target leaf page,
3405  * start with 1st entry of next leaf page;
3406  */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3407 static int dtReadNext(struct inode *ip, loff_t * offset,
3408 		      struct btstack * btstack)
3409 {
3410 	int rc = 0;
3411 	struct dtoffset {
3412 		s16 pn;
3413 		s16 index;
3414 		s32 unused;
3415 	} *dtoffset = (struct dtoffset *) offset;
3416 	s64 bn;
3417 	struct metapage *mp;
3418 	dtpage_t *p;
3419 	int index;
3420 	int pn;
3421 	s8 *stbl;
3422 	struct btframe *btsp, *parent;
3423 	pxd_t *xd;
3424 
3425 	/*
3426 	 * get leftmost leaf page pinned
3427 	 */
3428 	if ((rc = dtReadFirst(ip, btstack)))
3429 		return rc;
3430 
3431 	/* get leaf page */
3432 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3433 
3434 	/* get the start offset (pn:index) */
3435 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3436 	index = dtoffset->index;
3437 
3438 	/* start at leftmost page ? */
3439 	if (pn == 0) {
3440 		/* offset beyond eof ? */
3441 		if (index < p->header.nextindex)
3442 			goto out;
3443 
3444 		if (p->header.flag & BT_ROOT) {
3445 			bn = -1;
3446 			goto out;
3447 		}
3448 
3449 		/* start with 1st entry of next leaf page */
3450 		dtoffset->pn++;
3451 		dtoffset->index = index = 0;
3452 		goto a;
3453 	}
3454 
3455 	/* start at non-leftmost page: scan parent pages for large pn */
3456 	if (p->header.flag & BT_ROOT) {
3457 		bn = -1;
3458 		goto out;
3459 	}
3460 
3461 	/* start after next leaf page ? */
3462 	if (pn > 1)
3463 		goto b;
3464 
3465 	/* get leaf page pn = 1 */
3466       a:
3467 	bn = le64_to_cpu(p->header.next);
3468 
3469 	/* unpin leaf page */
3470 	DT_PUTPAGE(mp);
3471 
3472 	/* offset beyond eof ? */
3473 	if (bn == 0) {
3474 		bn = -1;
3475 		goto out;
3476 	}
3477 
3478 	goto c;
3479 
3480 	/*
3481 	 * scan last internal page level to get target leaf page
3482 	 */
3483       b:
3484 	/* unpin leftmost leaf page */
3485 	DT_PUTPAGE(mp);
3486 
3487 	/* get left most parent page */
3488 	btsp = btstack->top;
3489 	parent = btsp - 1;
3490 	bn = parent->bn;
3491 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3492 	if (rc)
3493 		return rc;
3494 
3495 	/* scan parent pages at last internal page level */
3496 	while (pn >= p->header.nextindex) {
3497 		pn -= p->header.nextindex;
3498 
3499 		/* get next parent page address */
3500 		bn = le64_to_cpu(p->header.next);
3501 
3502 		/* unpin current parent page */
3503 		DT_PUTPAGE(mp);
3504 
3505 		/* offset beyond eof ? */
3506 		if (bn == 0) {
3507 			bn = -1;
3508 			goto out;
3509 		}
3510 
3511 		/* get next parent page */
3512 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3513 		if (rc)
3514 			return rc;
3515 
3516 		/* update parent page stack frame */
3517 		parent->bn = bn;
3518 	}
3519 
3520 	/* get leaf page address */
3521 	stbl = DT_GETSTBL(p);
3522 	xd = (pxd_t *) & p->slot[stbl[pn]];
3523 	bn = addressPXD(xd);
3524 
3525 	/* unpin parent page */
3526 	DT_PUTPAGE(mp);
3527 
3528 	/*
3529 	 * get target leaf page
3530 	 */
3531       c:
3532 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3533 	if (rc)
3534 		return rc;
3535 
3536 	/*
3537 	 * leaf page has been completed:
3538 	 * start with 1st entry of next leaf page
3539 	 */
3540 	if (index >= p->header.nextindex) {
3541 		bn = le64_to_cpu(p->header.next);
3542 
3543 		/* unpin leaf page */
3544 		DT_PUTPAGE(mp);
3545 
3546 		/* offset beyond eof ? */
3547 		if (bn == 0) {
3548 			bn = -1;
3549 			goto out;
3550 		}
3551 
3552 		/* get next leaf page */
3553 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3554 		if (rc)
3555 			return rc;
3556 
3557 		/* start with 1st entry of next leaf page */
3558 		dtoffset->pn++;
3559 		dtoffset->index = 0;
3560 	}
3561 
3562       out:
3563 	/* return target leaf page pinned */
3564 	btsp = btstack->top;
3565 	btsp->bn = bn;
3566 	btsp->index = dtoffset->index;
3567 	btsp->mp = mp;
3568 
3569 	return 0;
3570 }
3571 
3572 
3573 /*
3574  *	dtCompare()
3575  *
3576  * function: compare search key with an internal entry
3577  *
3578  * return:
3579  *	< 0 if k is < record
3580  *	= 0 if k is = record
3581  *	> 0 if k is > record
3582  */
dtCompare(struct component_name * key,dtpage_t * p,int si)3583 static int dtCompare(struct component_name * key,	/* search key */
3584 		     dtpage_t * p,	/* directory page */
3585 		     int si)
3586 {				/* entry slot index */
3587 	wchar_t *kname;
3588 	__le16 *name;
3589 	int klen, namlen, len, rc;
3590 	struct idtentry *ih;
3591 	struct dtslot *t;
3592 
3593 	/*
3594 	 * force the left-most key on internal pages, at any level of
3595 	 * the tree, to be less than any search key.
3596 	 * this obviates having to update the leftmost key on an internal
3597 	 * page when the user inserts a new key in the tree smaller than
3598 	 * anything that has been stored.
3599 	 *
3600 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3601 	 * at any internal page at any level of the tree,
3602 	 * it descends to child of the entry anyway -
3603 	 * ? make the entry as min size dummy entry)
3604 	 *
3605 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3606 	 * return (1);
3607 	 */
3608 
3609 	kname = key->name;
3610 	klen = key->namlen;
3611 
3612 	ih = (struct idtentry *) & p->slot[si];
3613 	si = ih->next;
3614 	name = ih->name;
3615 	namlen = ih->namlen;
3616 	len = min(namlen, DTIHDRDATALEN);
3617 
3618 	/* compare with head/only segment */
3619 	len = min(klen, len);
3620 	if ((rc = UniStrncmp_le(kname, name, len)))
3621 		return rc;
3622 
3623 	klen -= len;
3624 	namlen -= len;
3625 
3626 	/* compare with additional segment(s) */
3627 	kname += len;
3628 	while (klen > 0 && namlen > 0) {
3629 		/* compare with next name segment */
3630 		t = (struct dtslot *) & p->slot[si];
3631 		len = min(namlen, DTSLOTDATALEN);
3632 		len = min(klen, len);
3633 		name = t->name;
3634 		if ((rc = UniStrncmp_le(kname, name, len)))
3635 			return rc;
3636 
3637 		klen -= len;
3638 		namlen -= len;
3639 		kname += len;
3640 		si = t->next;
3641 	}
3642 
3643 	return (klen - namlen);
3644 }
3645 
3646 
3647 
3648 
3649 /*
3650  *	ciCompare()
3651  *
3652  * function: compare search key with an (leaf/internal) entry
3653  *
3654  * return:
3655  *	< 0 if k is < record
3656  *	= 0 if k is = record
3657  *	> 0 if k is > record
3658  */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3659 static int ciCompare(struct component_name * key,	/* search key */
3660 		     dtpage_t * p,	/* directory page */
3661 		     int si,	/* entry slot index */
3662 		     int flag)
3663 {
3664 	wchar_t *kname, x;
3665 	__le16 *name;
3666 	int klen, namlen, len, rc;
3667 	struct ldtentry *lh;
3668 	struct idtentry *ih;
3669 	struct dtslot *t;
3670 	int i;
3671 
3672 	/*
3673 	 * force the left-most key on internal pages, at any level of
3674 	 * the tree, to be less than any search key.
3675 	 * this obviates having to update the leftmost key on an internal
3676 	 * page when the user inserts a new key in the tree smaller than
3677 	 * anything that has been stored.
3678 	 *
3679 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3680 	 * at any internal page at any level of the tree,
3681 	 * it descends to child of the entry anyway -
3682 	 * ? make the entry as min size dummy entry)
3683 	 *
3684 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3685 	 * return (1);
3686 	 */
3687 
3688 	kname = key->name;
3689 	klen = key->namlen;
3690 
3691 	/*
3692 	 * leaf page entry
3693 	 */
3694 	if (p->header.flag & BT_LEAF) {
3695 		lh = (struct ldtentry *) & p->slot[si];
3696 		si = lh->next;
3697 		name = lh->name;
3698 		namlen = lh->namlen;
3699 		if (flag & JFS_DIR_INDEX)
3700 			len = min(namlen, DTLHDRDATALEN);
3701 		else
3702 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3703 	}
3704 	/*
3705 	 * internal page entry
3706 	 */
3707 	else {
3708 		ih = (struct idtentry *) & p->slot[si];
3709 		si = ih->next;
3710 		name = ih->name;
3711 		namlen = ih->namlen;
3712 		len = min(namlen, DTIHDRDATALEN);
3713 	}
3714 
3715 	/* compare with head/only segment */
3716 	len = min(klen, len);
3717 	for (i = 0; i < len; i++, kname++, name++) {
3718 		/* only uppercase if case-insensitive support is on */
3719 		if ((flag & JFS_OS2) == JFS_OS2)
3720 			x = UniToupper(le16_to_cpu(*name));
3721 		else
3722 			x = le16_to_cpu(*name);
3723 		if ((rc = *kname - x))
3724 			return rc;
3725 	}
3726 
3727 	klen -= len;
3728 	namlen -= len;
3729 
3730 	/* compare with additional segment(s) */
3731 	while (klen > 0 && namlen > 0) {
3732 		/* compare with next name segment */
3733 		t = (struct dtslot *) & p->slot[si];
3734 		len = min(namlen, DTSLOTDATALEN);
3735 		len = min(klen, len);
3736 		name = t->name;
3737 		for (i = 0; i < len; i++, kname++, name++) {
3738 			/* only uppercase if case-insensitive support is on */
3739 			if ((flag & JFS_OS2) == JFS_OS2)
3740 				x = UniToupper(le16_to_cpu(*name));
3741 			else
3742 				x = le16_to_cpu(*name);
3743 
3744 			if ((rc = *kname - x))
3745 				return rc;
3746 		}
3747 
3748 		klen -= len;
3749 		namlen -= len;
3750 		si = t->next;
3751 	}
3752 
3753 	return (klen - namlen);
3754 }
3755 
3756 
3757 /*
3758  *	ciGetLeafPrefixKey()
3759  *
3760  * function: compute prefix of suffix compression
3761  *	     from two adjacent leaf entries
3762  *	     across page boundary
3763  *
3764  * return: non-zero on error
3765  *
3766  */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3767 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3768 			       int ri, struct component_name * key, int flag)
3769 {
3770 	int klen, namlen;
3771 	wchar_t *pl, *pr, *kname;
3772 	struct component_name lkey;
3773 	struct component_name rkey;
3774 
3775 	lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3776 					GFP_KERNEL);
3777 	if (lkey.name == NULL)
3778 		return -ENOMEM;
3779 
3780 	rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3781 					GFP_KERNEL);
3782 	if (rkey.name == NULL) {
3783 		kfree(lkey.name);
3784 		return -ENOMEM;
3785 	}
3786 
3787 	/* get left and right key */
3788 	dtGetKey(lp, li, &lkey, flag);
3789 	lkey.name[lkey.namlen] = 0;
3790 
3791 	if ((flag & JFS_OS2) == JFS_OS2)
3792 		ciToUpper(&lkey);
3793 
3794 	dtGetKey(rp, ri, &rkey, flag);
3795 	rkey.name[rkey.namlen] = 0;
3796 
3797 
3798 	if ((flag & JFS_OS2) == JFS_OS2)
3799 		ciToUpper(&rkey);
3800 
3801 	/* compute prefix */
3802 	klen = 0;
3803 	kname = key->name;
3804 	namlen = min(lkey.namlen, rkey.namlen);
3805 	for (pl = lkey.name, pr = rkey.name;
3806 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3807 		*kname = *pr;
3808 		if (*pl != *pr) {
3809 			key->namlen = klen + 1;
3810 			goto free_names;
3811 		}
3812 	}
3813 
3814 	/* l->namlen <= r->namlen since l <= r */
3815 	if (lkey.namlen < rkey.namlen) {
3816 		*kname = *pr;
3817 		key->namlen = klen + 1;
3818 	} else			/* l->namelen == r->namelen */
3819 		key->namlen = klen;
3820 
3821 free_names:
3822 	kfree(lkey.name);
3823 	kfree(rkey.name);
3824 	return 0;
3825 }
3826 
3827 
3828 
3829 /*
3830  *	dtGetKey()
3831  *
3832  * function: get key of the entry
3833  */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3834 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3835 		     struct component_name * key, int flag)
3836 {
3837 	int si;
3838 	s8 *stbl;
3839 	struct ldtentry *lh;
3840 	struct idtentry *ih;
3841 	struct dtslot *t;
3842 	int namlen, len;
3843 	wchar_t *kname;
3844 	__le16 *name;
3845 
3846 	/* get entry */
3847 	stbl = DT_GETSTBL(p);
3848 	si = stbl[i];
3849 	if (p->header.flag & BT_LEAF) {
3850 		lh = (struct ldtentry *) & p->slot[si];
3851 		si = lh->next;
3852 		namlen = lh->namlen;
3853 		name = lh->name;
3854 		if (flag & JFS_DIR_INDEX)
3855 			len = min(namlen, DTLHDRDATALEN);
3856 		else
3857 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3858 	} else {
3859 		ih = (struct idtentry *) & p->slot[si];
3860 		si = ih->next;
3861 		namlen = ih->namlen;
3862 		name = ih->name;
3863 		len = min(namlen, DTIHDRDATALEN);
3864 	}
3865 
3866 	key->namlen = namlen;
3867 	kname = key->name;
3868 
3869 	/*
3870 	 * move head/only segment
3871 	 */
3872 	UniStrncpy_from_le(kname, name, len);
3873 
3874 	/*
3875 	 * move additional segment(s)
3876 	 */
3877 	while (si >= 0) {
3878 		/* get next segment */
3879 		t = &p->slot[si];
3880 		kname += len;
3881 		namlen -= len;
3882 		len = min(namlen, DTSLOTDATALEN);
3883 		UniStrncpy_from_le(kname, t->name, len);
3884 
3885 		si = t->next;
3886 	}
3887 }
3888 
3889 
3890 /*
3891  *	dtInsertEntry()
3892  *
3893  * function: allocate free slot(s) and
3894  *	     write a leaf/internal entry
3895  *
3896  * return: entry slot index
3897  */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3898 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3899 			  ddata_t * data, struct dt_lock ** dtlock)
3900 {
3901 	struct dtslot *h, *t;
3902 	struct ldtentry *lh = NULL;
3903 	struct idtentry *ih = NULL;
3904 	int hsi, fsi, klen, len, nextindex;
3905 	wchar_t *kname;
3906 	__le16 *name;
3907 	s8 *stbl;
3908 	pxd_t *xd;
3909 	struct dt_lock *dtlck = *dtlock;
3910 	struct lv *lv;
3911 	int xsi, n;
3912 	s64 bn = 0;
3913 	struct metapage *mp = NULL;
3914 
3915 	klen = key->namlen;
3916 	kname = key->name;
3917 
3918 	/* allocate a free slot */
3919 	hsi = fsi = p->header.freelist;
3920 	h = &p->slot[fsi];
3921 	p->header.freelist = h->next;
3922 	--p->header.freecnt;
3923 
3924 	/* open new linelock */
3925 	if (dtlck->index >= dtlck->maxcnt)
3926 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3927 
3928 	lv = & dtlck->lv[dtlck->index];
3929 	lv->offset = hsi;
3930 
3931 	/* write head/only segment */
3932 	if (p->header.flag & BT_LEAF) {
3933 		lh = (struct ldtentry *) h;
3934 		lh->next = h->next;
3935 		lh->inumber = cpu_to_le32(data->leaf.ino);
3936 		lh->namlen = klen;
3937 		name = lh->name;
3938 		if (data->leaf.ip) {
3939 			len = min(klen, DTLHDRDATALEN);
3940 			if (!(p->header.flag & BT_ROOT))
3941 				bn = addressPXD(&p->header.self);
3942 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3943 							  data->leaf.ip,
3944 							  bn, index));
3945 		} else
3946 			len = min(klen, DTLHDRDATALEN_LEGACY);
3947 	} else {
3948 		ih = (struct idtentry *) h;
3949 		ih->next = h->next;
3950 		xd = (pxd_t *) ih;
3951 		*xd = data->xd;
3952 		ih->namlen = klen;
3953 		name = ih->name;
3954 		len = min(klen, DTIHDRDATALEN);
3955 	}
3956 
3957 	UniStrncpy_to_le(name, kname, len);
3958 
3959 	n = 1;
3960 	xsi = hsi;
3961 
3962 	/* write additional segment(s) */
3963 	t = h;
3964 	klen -= len;
3965 	while (klen) {
3966 		/* get free slot */
3967 		fsi = p->header.freelist;
3968 		t = &p->slot[fsi];
3969 		p->header.freelist = t->next;
3970 		--p->header.freecnt;
3971 
3972 		/* is next slot contiguous ? */
3973 		if (fsi != xsi + 1) {
3974 			/* close current linelock */
3975 			lv->length = n;
3976 			dtlck->index++;
3977 
3978 			/* open new linelock */
3979 			if (dtlck->index < dtlck->maxcnt)
3980 				lv++;
3981 			else {
3982 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3983 				lv = & dtlck->lv[0];
3984 			}
3985 
3986 			lv->offset = fsi;
3987 			n = 0;
3988 		}
3989 
3990 		kname += len;
3991 		len = min(klen, DTSLOTDATALEN);
3992 		UniStrncpy_to_le(t->name, kname, len);
3993 
3994 		n++;
3995 		xsi = fsi;
3996 		klen -= len;
3997 	}
3998 
3999 	/* close current linelock */
4000 	lv->length = n;
4001 	dtlck->index++;
4002 
4003 	*dtlock = dtlck;
4004 
4005 	/* terminate last/only segment */
4006 	if (h == t) {
4007 		/* single segment entry */
4008 		if (p->header.flag & BT_LEAF)
4009 			lh->next = -1;
4010 		else
4011 			ih->next = -1;
4012 	} else
4013 		/* multi-segment entry */
4014 		t->next = -1;
4015 
4016 	/* if insert into middle, shift right succeeding entries in stbl */
4017 	stbl = DT_GETSTBL(p);
4018 	nextindex = p->header.nextindex;
4019 	if (index < nextindex) {
4020 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4021 
4022 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4023 			s64 lblock;
4024 
4025 			/*
4026 			 * Need to update slot number for entries that moved
4027 			 * in the stbl
4028 			 */
4029 			mp = NULL;
4030 			for (n = index + 1; n <= nextindex; n++) {
4031 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4032 				modify_index(data->leaf.tid, data->leaf.ip,
4033 					     le32_to_cpu(lh->index), bn, n,
4034 					     &mp, &lblock);
4035 			}
4036 			if (mp)
4037 				release_metapage(mp);
4038 		}
4039 	}
4040 
4041 	stbl[index] = hsi;
4042 
4043 	/* advance next available entry index of stbl */
4044 	++p->header.nextindex;
4045 }
4046 
4047 
4048 /*
4049  *	dtMoveEntry()
4050  *
4051  * function: move entries from split/left page to new/right page
4052  *
4053  *	nextindex of dst page and freelist/freecnt of both pages
4054  *	are updated.
4055  */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)4056 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4057 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4058 			int do_index)
4059 {
4060 	int ssi, next;		/* src slot index */
4061 	int di;			/* dst entry index */
4062 	int dsi;		/* dst slot index */
4063 	s8 *sstbl, *dstbl;	/* sorted entry table */
4064 	int snamlen, len;
4065 	struct ldtentry *slh, *dlh = NULL;
4066 	struct idtentry *sih, *dih = NULL;
4067 	struct dtslot *h, *s, *d;
4068 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4069 	struct lv *slv, *dlv;
4070 	int xssi, ns, nd;
4071 	int sfsi;
4072 
4073 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4074 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4075 
4076 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4077 	sfsi = sp->header.freelist;
4078 
4079 	/* linelock destination entry slot */
4080 	dlv = & ddtlck->lv[ddtlck->index];
4081 	dlv->offset = dsi;
4082 
4083 	/* linelock source entry slot */
4084 	slv = & sdtlck->lv[sdtlck->index];
4085 	slv->offset = sstbl[si];
4086 	xssi = slv->offset - 1;
4087 
4088 	/*
4089 	 * move entries
4090 	 */
4091 	ns = nd = 0;
4092 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4093 		ssi = sstbl[si];
4094 		dstbl[di] = dsi;
4095 
4096 		/* is next slot contiguous ? */
4097 		if (ssi != xssi + 1) {
4098 			/* close current linelock */
4099 			slv->length = ns;
4100 			sdtlck->index++;
4101 
4102 			/* open new linelock */
4103 			if (sdtlck->index < sdtlck->maxcnt)
4104 				slv++;
4105 			else {
4106 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4107 				slv = & sdtlck->lv[0];
4108 			}
4109 
4110 			slv->offset = ssi;
4111 			ns = 0;
4112 		}
4113 
4114 		/*
4115 		 * move head/only segment of an entry
4116 		 */
4117 		/* get dst slot */
4118 		h = d = &dp->slot[dsi];
4119 
4120 		/* get src slot and move */
4121 		s = &sp->slot[ssi];
4122 		if (sp->header.flag & BT_LEAF) {
4123 			/* get source entry */
4124 			slh = (struct ldtentry *) s;
4125 			dlh = (struct ldtentry *) h;
4126 			snamlen = slh->namlen;
4127 
4128 			if (do_index) {
4129 				len = min(snamlen, DTLHDRDATALEN);
4130 				dlh->index = slh->index; /* little-endian */
4131 			} else
4132 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4133 
4134 			memcpy(dlh, slh, 6 + len * 2);
4135 
4136 			next = slh->next;
4137 
4138 			/* update dst head/only segment next field */
4139 			dsi++;
4140 			dlh->next = dsi;
4141 		} else {
4142 			sih = (struct idtentry *) s;
4143 			snamlen = sih->namlen;
4144 
4145 			len = min(snamlen, DTIHDRDATALEN);
4146 			dih = (struct idtentry *) h;
4147 			memcpy(dih, sih, 10 + len * 2);
4148 			next = sih->next;
4149 
4150 			dsi++;
4151 			dih->next = dsi;
4152 		}
4153 
4154 		/* free src head/only segment */
4155 		s->next = sfsi;
4156 		s->cnt = 1;
4157 		sfsi = ssi;
4158 
4159 		ns++;
4160 		nd++;
4161 		xssi = ssi;
4162 
4163 		/*
4164 		 * move additional segment(s) of the entry
4165 		 */
4166 		snamlen -= len;
4167 		while ((ssi = next) >= 0) {
4168 			/* is next slot contiguous ? */
4169 			if (ssi != xssi + 1) {
4170 				/* close current linelock */
4171 				slv->length = ns;
4172 				sdtlck->index++;
4173 
4174 				/* open new linelock */
4175 				if (sdtlck->index < sdtlck->maxcnt)
4176 					slv++;
4177 				else {
4178 					sdtlck =
4179 					    (struct dt_lock *)
4180 					    txLinelock(sdtlck);
4181 					slv = & sdtlck->lv[0];
4182 				}
4183 
4184 				slv->offset = ssi;
4185 				ns = 0;
4186 			}
4187 
4188 			/* get next source segment */
4189 			s = &sp->slot[ssi];
4190 
4191 			/* get next destination free slot */
4192 			d++;
4193 
4194 			len = min(snamlen, DTSLOTDATALEN);
4195 			UniStrncpy_le(d->name, s->name, len);
4196 
4197 			ns++;
4198 			nd++;
4199 			xssi = ssi;
4200 
4201 			dsi++;
4202 			d->next = dsi;
4203 
4204 			/* free source segment */
4205 			next = s->next;
4206 			s->next = sfsi;
4207 			s->cnt = 1;
4208 			sfsi = ssi;
4209 
4210 			snamlen -= len;
4211 		}		/* end while */
4212 
4213 		/* terminate dst last/only segment */
4214 		if (h == d) {
4215 			/* single segment entry */
4216 			if (dp->header.flag & BT_LEAF)
4217 				dlh->next = -1;
4218 			else
4219 				dih->next = -1;
4220 		} else
4221 			/* multi-segment entry */
4222 			d->next = -1;
4223 	}			/* end for */
4224 
4225 	/* close current linelock */
4226 	slv->length = ns;
4227 	sdtlck->index++;
4228 	*sdtlock = sdtlck;
4229 
4230 	dlv->length = nd;
4231 	ddtlck->index++;
4232 	*ddtlock = ddtlck;
4233 
4234 	/* update source header */
4235 	sp->header.freelist = sfsi;
4236 	sp->header.freecnt += nd;
4237 
4238 	/* update destination header */
4239 	dp->header.nextindex = di;
4240 
4241 	dp->header.freelist = dsi;
4242 	dp->header.freecnt -= nd;
4243 }
4244 
4245 
4246 /*
4247  *	dtDeleteEntry()
4248  *
4249  * function: free a (leaf/internal) entry
4250  *
4251  * log freelist header, stbl, and each segment slot of entry
4252  * (even though last/only segment next field is modified,
4253  * physical image logging requires all segment slots of
4254  * the entry logged to avoid applying previous updates
4255  * to the same slots)
4256  */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)4257 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4258 {
4259 	int fsi;		/* free entry slot index */
4260 	s8 *stbl;
4261 	struct dtslot *t;
4262 	int si, freecnt;
4263 	struct dt_lock *dtlck = *dtlock;
4264 	struct lv *lv;
4265 	int xsi, n;
4266 
4267 	/* get free entry slot index */
4268 	stbl = DT_GETSTBL(p);
4269 	fsi = stbl[fi];
4270 
4271 	/* open new linelock */
4272 	if (dtlck->index >= dtlck->maxcnt)
4273 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4274 	lv = & dtlck->lv[dtlck->index];
4275 
4276 	lv->offset = fsi;
4277 
4278 	/* get the head/only segment */
4279 	t = &p->slot[fsi];
4280 	if (p->header.flag & BT_LEAF)
4281 		si = ((struct ldtentry *) t)->next;
4282 	else
4283 		si = ((struct idtentry *) t)->next;
4284 	t->next = si;
4285 	t->cnt = 1;
4286 
4287 	n = freecnt = 1;
4288 	xsi = fsi;
4289 
4290 	/* find the last/only segment */
4291 	while (si >= 0) {
4292 		/* is next slot contiguous ? */
4293 		if (si != xsi + 1) {
4294 			/* close current linelock */
4295 			lv->length = n;
4296 			dtlck->index++;
4297 
4298 			/* open new linelock */
4299 			if (dtlck->index < dtlck->maxcnt)
4300 				lv++;
4301 			else {
4302 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4303 				lv = & dtlck->lv[0];
4304 			}
4305 
4306 			lv->offset = si;
4307 			n = 0;
4308 		}
4309 
4310 		n++;
4311 		xsi = si;
4312 		freecnt++;
4313 
4314 		t = &p->slot[si];
4315 		t->cnt = 1;
4316 		si = t->next;
4317 	}
4318 
4319 	/* close current linelock */
4320 	lv->length = n;
4321 	dtlck->index++;
4322 
4323 	*dtlock = dtlck;
4324 
4325 	/* update freelist */
4326 	t->next = p->header.freelist;
4327 	p->header.freelist = fsi;
4328 	p->header.freecnt += freecnt;
4329 
4330 	/* if delete from middle,
4331 	 * shift left the succedding entries in the stbl
4332 	 */
4333 	si = p->header.nextindex;
4334 	if (fi < si - 1)
4335 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4336 
4337 	p->header.nextindex--;
4338 }
4339 
4340 
4341 /*
4342  *	dtTruncateEntry()
4343  *
4344  * function: truncate a (leaf/internal) entry
4345  *
4346  * log freelist header, stbl, and each segment slot of entry
4347  * (even though last/only segment next field is modified,
4348  * physical image logging requires all segment slots of
4349  * the entry logged to avoid applying previous updates
4350  * to the same slots)
4351  */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4352 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4353 {
4354 	int tsi;		/* truncate entry slot index */
4355 	s8 *stbl;
4356 	struct dtslot *t;
4357 	int si, freecnt;
4358 	struct dt_lock *dtlck = *dtlock;
4359 	struct lv *lv;
4360 	int fsi, xsi, n;
4361 
4362 	/* get free entry slot index */
4363 	stbl = DT_GETSTBL(p);
4364 	tsi = stbl[ti];
4365 
4366 	/* open new linelock */
4367 	if (dtlck->index >= dtlck->maxcnt)
4368 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4369 	lv = & dtlck->lv[dtlck->index];
4370 
4371 	lv->offset = tsi;
4372 
4373 	/* get the head/only segment */
4374 	t = &p->slot[tsi];
4375 	ASSERT(p->header.flag & BT_INTERNAL);
4376 	((struct idtentry *) t)->namlen = 0;
4377 	si = ((struct idtentry *) t)->next;
4378 	((struct idtentry *) t)->next = -1;
4379 
4380 	n = 1;
4381 	freecnt = 0;
4382 	fsi = si;
4383 	xsi = tsi;
4384 
4385 	/* find the last/only segment */
4386 	while (si >= 0) {
4387 		/* is next slot contiguous ? */
4388 		if (si != xsi + 1) {
4389 			/* close current linelock */
4390 			lv->length = n;
4391 			dtlck->index++;
4392 
4393 			/* open new linelock */
4394 			if (dtlck->index < dtlck->maxcnt)
4395 				lv++;
4396 			else {
4397 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4398 				lv = & dtlck->lv[0];
4399 			}
4400 
4401 			lv->offset = si;
4402 			n = 0;
4403 		}
4404 
4405 		n++;
4406 		xsi = si;
4407 		freecnt++;
4408 
4409 		t = &p->slot[si];
4410 		t->cnt = 1;
4411 		si = t->next;
4412 	}
4413 
4414 	/* close current linelock */
4415 	lv->length = n;
4416 	dtlck->index++;
4417 
4418 	*dtlock = dtlck;
4419 
4420 	/* update freelist */
4421 	if (freecnt == 0)
4422 		return;
4423 	t->next = p->header.freelist;
4424 	p->header.freelist = fsi;
4425 	p->header.freecnt += freecnt;
4426 }
4427 
4428 
4429 /*
4430  *	dtLinelockFreelist()
4431  */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4432 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4433 			       int m,	/* max slot index */
4434 			       struct dt_lock ** dtlock)
4435 {
4436 	int fsi;		/* free entry slot index */
4437 	struct dtslot *t;
4438 	int si;
4439 	struct dt_lock *dtlck = *dtlock;
4440 	struct lv *lv;
4441 	int xsi, n;
4442 
4443 	/* get free entry slot index */
4444 	fsi = p->header.freelist;
4445 
4446 	/* open new linelock */
4447 	if (dtlck->index >= dtlck->maxcnt)
4448 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4449 	lv = & dtlck->lv[dtlck->index];
4450 
4451 	lv->offset = fsi;
4452 
4453 	n = 1;
4454 	xsi = fsi;
4455 
4456 	t = &p->slot[fsi];
4457 	si = t->next;
4458 
4459 	/* find the last/only segment */
4460 	while (si < m && si >= 0) {
4461 		/* is next slot contiguous ? */
4462 		if (si != xsi + 1) {
4463 			/* close current linelock */
4464 			lv->length = n;
4465 			dtlck->index++;
4466 
4467 			/* open new linelock */
4468 			if (dtlck->index < dtlck->maxcnt)
4469 				lv++;
4470 			else {
4471 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4472 				lv = & dtlck->lv[0];
4473 			}
4474 
4475 			lv->offset = si;
4476 			n = 0;
4477 		}
4478 
4479 		n++;
4480 		xsi = si;
4481 
4482 		t = &p->slot[si];
4483 		si = t->next;
4484 	}
4485 
4486 	/* close current linelock */
4487 	lv->length = n;
4488 	dtlck->index++;
4489 
4490 	*dtlock = dtlck;
4491 }
4492 
4493 
4494 /*
4495  * NAME: dtModify
4496  *
4497  * FUNCTION: Modify the inode number part of a directory entry
4498  *
4499  * PARAMETERS:
4500  *	tid	- Transaction id
4501  *	ip	- Inode of parent directory
4502  *	key	- Name of entry to be modified
4503  *	orig_ino	- Original inode number expected in entry
4504  *	new_ino	- New inode number to put into entry
4505  *	flag	- JFS_RENAME
4506  *
4507  * RETURNS:
4508  *	-ESTALE	- If entry found does not match orig_ino passed in
4509  *	-ENOENT	- If no entry can be found to match key
4510  *	0	- If successfully modified entry
4511  */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4512 int dtModify(tid_t tid, struct inode *ip,
4513 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4514 {
4515 	int rc;
4516 	s64 bn;
4517 	struct metapage *mp;
4518 	dtpage_t *p;
4519 	int index;
4520 	struct btstack btstack;
4521 	struct tlock *tlck;
4522 	struct dt_lock *dtlck;
4523 	struct lv *lv;
4524 	s8 *stbl;
4525 	int entry_si;		/* entry slot index */
4526 	struct ldtentry *entry;
4527 
4528 	/*
4529 	 *	search for the entry to modify:
4530 	 *
4531 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4532 	 */
4533 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4534 		return rc;
4535 
4536 	/* retrieve search result */
4537 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4538 
4539 	BT_MARK_DIRTY(mp, ip);
4540 	/*
4541 	 * acquire a transaction lock on the leaf page of named entry
4542 	 */
4543 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4544 	dtlck = (struct dt_lock *) & tlck->lock;
4545 
4546 	/* get slot index of the entry */
4547 	stbl = DT_GETSTBL(p);
4548 	entry_si = stbl[index];
4549 
4550 	/* linelock entry */
4551 	ASSERT(dtlck->index == 0);
4552 	lv = & dtlck->lv[0];
4553 	lv->offset = entry_si;
4554 	lv->length = 1;
4555 	dtlck->index++;
4556 
4557 	/* get the head/only segment */
4558 	entry = (struct ldtentry *) & p->slot[entry_si];
4559 
4560 	/* substitute the inode number of the entry */
4561 	entry->inumber = cpu_to_le32(new_ino);
4562 
4563 	/* unpin the leaf page */
4564 	DT_PUTPAGE(mp);
4565 
4566 	return 0;
4567 }
4568