1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 */
5
6 /*
7 * jfs_dtree.c: directory B+-tree manager
8 *
9 * B+-tree with variable length key directory:
10 *
11 * each directory page is structured as an array of 32-byte
12 * directory entry slots initialized as a freelist
13 * to avoid search/compaction of free space at insertion.
14 * when an entry is inserted, a number of slots are allocated
15 * from the freelist as required to store variable length data
16 * of the entry; when the entry is deleted, slots of the entry
17 * are returned to freelist.
18 *
19 * leaf entry stores full name as key and file serial number
20 * (aka inode number) as data.
21 * internal/router entry stores sufffix compressed name
22 * as key and simple extent descriptor as data.
23 *
24 * each directory page maintains a sorted entry index table
25 * which stores the start slot index of sorted entries
26 * to allow binary search on the table.
27 *
28 * directory starts as a root/leaf page in on-disk inode
29 * inline data area.
30 * when it becomes full, it starts a leaf of a external extent
31 * of length of 1 block. each time the first leaf becomes full,
32 * it is extended rather than split (its size is doubled),
33 * until its length becoms 4 KBytes, from then the extent is split
34 * with new 4 Kbyte extent when it becomes full
35 * to reduce external fragmentation of small directories.
36 *
37 * blah, blah, blah, for linear scan of directory in pieces by
38 * readdir().
39 *
40 *
41 * case-insensitive directory file system
42 *
43 * names are stored in case-sensitive way in leaf entry.
44 * but stored, searched and compared in case-insensitive (uppercase) order
45 * (i.e., both search key and entry key are folded for search/compare):
46 * (note that case-sensitive order is BROKEN in storage, e.g.,
47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48 *
49 * entries which folds to the same key makes up a equivalent class
50 * whose members are stored as contiguous cluster (may cross page boundary)
51 * but whose order is arbitrary and acts as duplicate, e.g.,
52 * abc, Abc, aBc, abC)
53 *
54 * once match is found at leaf, requires scan forward/backward
55 * either for, in case-insensitive search, duplicate
56 * or for, in case-sensitive search, for exact match
57 *
58 * router entry must be created/stored in case-insensitive way
59 * in internal entry:
60 * (right most key of left page and left most key of right page
61 * are folded, and its suffix compression is propagated as router
62 * key in parent)
63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64 * should be made the router key for the split)
65 *
66 * case-insensitive search:
67 *
68 * fold search key;
69 *
70 * case-insensitive search of B-tree:
71 * for internal entry, router key is already folded;
72 * for leaf entry, fold the entry key before comparison.
73 *
74 * if (leaf entry case-insensitive match found)
75 * if (next entry satisfies case-insensitive match)
76 * return EDUPLICATE;
77 * if (prev entry satisfies case-insensitive match)
78 * return EDUPLICATE;
79 * return match;
80 * else
81 * return no match;
82 *
83 * serialization:
84 * target directory inode lock is being held on entry/exit
85 * of all main directory service routines.
86 *
87 * log based recovery:
88 */
89
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100
101 /* dtree split parameter */
102 struct dtsplit {
103 struct metapage *mp;
104 s16 index;
105 s16 nslot;
106 struct component_name *key;
107 ddata_t *data;
108 struct pxdlist *pxdlist;
109 };
110
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
115 do { \
116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
117 if (!(RC)) { \
118 if (((P)->header.nextindex > \
119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \
121 BT_PUTPAGE(MP); \
122 jfs_error((IP)->i_sb, \
123 "DT_GETPAGE: dtree page corrupt\n"); \
124 MP = NULL; \
125 RC = -EIO; \
126 } \
127 } \
128 } while (0)
129
130 /* for consistency */
131 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132
133 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135
136 /*
137 * forward references
138 */
139 static int dtSplitUp(tid_t tid, struct inode *ip,
140 struct dtsplit * split, struct btstack * btstack);
141
142 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144
145 static int dtExtendPage(tid_t tid, struct inode *ip,
146 struct dtsplit * split, struct btstack * btstack);
147
148 static int dtSplitRoot(tid_t tid, struct inode *ip,
149 struct dtsplit * split, struct metapage ** rmpp);
150
151 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 dtpage_t * fp, struct btstack * btstack);
153
154 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155
156 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157
158 static int dtReadNext(struct inode *ip,
159 loff_t * offset, struct btstack * btstack);
160
161 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162
163 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 int flag);
165
166 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 int flag);
168
169 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 int ri, struct component_name * key, int flag);
171
172 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 ddata_t * data, struct dt_lock **);
174
175 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 int do_index);
178
179 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180
181 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182
183 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184
185 #define ciToUpper(c) UniStrupr((c)->name)
186
187 /*
188 * read_index_page()
189 *
190 * Reads a page of a directory's index table.
191 * Having metadata mapped into the directory inode's address space
192 * presents a multitude of problems. We avoid this by mapping to
193 * the absolute address space outside of the *_metapage routines
194 */
read_index_page(struct inode * inode,s64 blkno)195 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196 {
197 int rc;
198 s64 xaddr;
199 int xflag;
200 s32 xlen;
201
202 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
203 if (rc || (xaddr == 0))
204 return NULL;
205
206 return read_metapage(inode, xaddr, PSIZE, 1);
207 }
208
209 /*
210 * get_index_page()
211 *
212 * Same as get_index_page(), but get's a new page without reading
213 */
get_index_page(struct inode * inode,s64 blkno)214 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215 {
216 int rc;
217 s64 xaddr;
218 int xflag;
219 s32 xlen;
220
221 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
222 if (rc || (xaddr == 0))
223 return NULL;
224
225 return get_metapage(inode, xaddr, PSIZE, 1);
226 }
227
228 /*
229 * find_index()
230 *
231 * Returns dtree page containing directory table entry for specified
232 * index and pointer to its entry.
233 *
234 * mp must be released by caller.
235 */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)236 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 struct metapage ** mp, s64 *lblock)
238 {
239 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
240 s64 blkno;
241 s64 offset;
242 int page_offset;
243 struct dir_table_slot *slot;
244 static int maxWarnings = 10;
245
246 if (index < 2) {
247 if (maxWarnings) {
248 jfs_warn("find_entry called with index = %d", index);
249 maxWarnings--;
250 }
251 return NULL;
252 }
253
254 if (index >= jfs_ip->next_index) {
255 jfs_warn("find_entry called with index >= next_index");
256 return NULL;
257 }
258
259 if (jfs_dirtable_inline(ip)) {
260 /*
261 * Inline directory table
262 */
263 *mp = NULL;
264 slot = &jfs_ip->i_dirtable[index - 2];
265 } else {
266 offset = (index - 2) * sizeof(struct dir_table_slot);
267 page_offset = offset & (PSIZE - 1);
268 blkno = ((offset + 1) >> L2PSIZE) <<
269 JFS_SBI(ip->i_sb)->l2nbperpage;
270
271 if (*mp && (*lblock != blkno)) {
272 release_metapage(*mp);
273 *mp = NULL;
274 }
275 if (!(*mp)) {
276 *lblock = blkno;
277 *mp = read_index_page(ip, blkno);
278 }
279 if (!(*mp)) {
280 jfs_err("free_index: error reading directory table");
281 return NULL;
282 }
283
284 slot =
285 (struct dir_table_slot *) ((char *) (*mp)->data +
286 page_offset);
287 }
288 return slot;
289 }
290
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)291 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 u32 index)
293 {
294 struct tlock *tlck;
295 struct linelock *llck;
296 struct lv *lv;
297
298 tlck = txLock(tid, ip, mp, tlckDATA);
299 llck = (struct linelock *) tlck->lock;
300
301 if (llck->index >= llck->maxcnt)
302 llck = txLinelock(llck);
303 lv = &llck->lv[llck->index];
304
305 /*
306 * Linelock slot size is twice the size of directory table
307 * slot size. 512 entries per page.
308 */
309 lv->offset = ((index - 2) & 511) >> 1;
310 lv->length = 1;
311 llck->index++;
312 }
313
314 /*
315 * add_index()
316 *
317 * Adds an entry to the directory index table. This is used to provide
318 * each directory entry with a persistent index in which to resume
319 * directory traversals
320 */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)321 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322 {
323 struct super_block *sb = ip->i_sb;
324 struct jfs_sb_info *sbi = JFS_SBI(sb);
325 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
326 u64 blkno;
327 struct dir_table_slot *dirtab_slot;
328 u32 index;
329 struct linelock *llck;
330 struct lv *lv;
331 struct metapage *mp;
332 s64 offset;
333 uint page_offset;
334 struct tlock *tlck;
335 s64 xaddr;
336
337 ASSERT(DO_INDEX(ip));
338
339 if (jfs_ip->next_index < 2) {
340 jfs_warn("add_index: next_index = %d. Resetting!",
341 jfs_ip->next_index);
342 jfs_ip->next_index = 2;
343 }
344
345 index = jfs_ip->next_index++;
346
347 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 /*
349 * i_size reflects size of index table, or 8 bytes per entry.
350 */
351 ip->i_size = (loff_t) (index - 1) << 3;
352
353 /*
354 * dir table fits inline within inode
355 */
356 dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 dirtab_slot->flag = DIR_INDEX_VALID;
358 dirtab_slot->slot = slot;
359 DTSaddress(dirtab_slot, bn);
360
361 set_cflag(COMMIT_Dirtable, ip);
362
363 return index;
364 }
365 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 struct dir_table_slot temp_table[12];
367
368 /*
369 * It's time to move the inline table to an external
370 * page and begin to build the xtree
371 */
372 if (dquot_alloc_block(ip, sbi->nbperpage))
373 goto clean_up;
374 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
375 dquot_free_block(ip, sbi->nbperpage);
376 goto clean_up;
377 }
378
379 /*
380 * Save the table, we're going to overwrite it with the
381 * xtree root
382 */
383 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384
385 /*
386 * Initialize empty x-tree
387 */
388 xtInitRoot(tid, ip);
389
390 /*
391 * Add the first block to the xtree
392 */
393 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
394 /* This really shouldn't fail */
395 jfs_warn("add_index: xtInsert failed!");
396 memcpy(&jfs_ip->i_dirtable, temp_table,
397 sizeof (temp_table));
398 dbFree(ip, xaddr, sbi->nbperpage);
399 dquot_free_block(ip, sbi->nbperpage);
400 goto clean_up;
401 }
402 ip->i_size = PSIZE;
403
404 mp = get_index_page(ip, 0);
405 if (!mp) {
406 jfs_err("add_index: get_metapage failed!");
407 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
408 memcpy(&jfs_ip->i_dirtable, temp_table,
409 sizeof (temp_table));
410 goto clean_up;
411 }
412 tlck = txLock(tid, ip, mp, tlckDATA);
413 llck = (struct linelock *) & tlck->lock;
414 ASSERT(llck->index == 0);
415 lv = &llck->lv[0];
416
417 lv->offset = 0;
418 lv->length = 6; /* tlckDATA slot size is 16 bytes */
419 llck->index++;
420
421 memcpy(mp->data, temp_table, sizeof(temp_table));
422
423 mark_metapage_dirty(mp);
424 release_metapage(mp);
425
426 /*
427 * Logging is now directed by xtree tlocks
428 */
429 clear_cflag(COMMIT_Dirtable, ip);
430 }
431
432 offset = (index - 2) * sizeof(struct dir_table_slot);
433 page_offset = offset & (PSIZE - 1);
434 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 if (page_offset == 0) {
436 /*
437 * This will be the beginning of a new page
438 */
439 xaddr = 0;
440 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
441 jfs_warn("add_index: xtInsert failed!");
442 goto clean_up;
443 }
444 ip->i_size += PSIZE;
445
446 if ((mp = get_index_page(ip, blkno)))
447 memset(mp->data, 0, PSIZE); /* Just looks better */
448 else
449 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
450 } else
451 mp = read_index_page(ip, blkno);
452
453 if (!mp) {
454 jfs_err("add_index: get/read_metapage failed!");
455 goto clean_up;
456 }
457
458 lock_index(tid, ip, mp, index);
459
460 dirtab_slot =
461 (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 dirtab_slot->flag = DIR_INDEX_VALID;
463 dirtab_slot->slot = slot;
464 DTSaddress(dirtab_slot, bn);
465
466 mark_metapage_dirty(mp);
467 release_metapage(mp);
468
469 return index;
470
471 clean_up:
472
473 jfs_ip->next_index--;
474
475 return 0;
476 }
477
478 /*
479 * free_index()
480 *
481 * Marks an entry to the directory index table as free.
482 */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)483 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484 {
485 struct dir_table_slot *dirtab_slot;
486 s64 lblock;
487 struct metapage *mp = NULL;
488
489 dirtab_slot = find_index(ip, index, &mp, &lblock);
490
491 if (!dirtab_slot)
492 return;
493
494 dirtab_slot->flag = DIR_INDEX_FREE;
495 dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 dirtab_slot->addr2 = cpu_to_le32(next);
497
498 if (mp) {
499 lock_index(tid, ip, mp, index);
500 mark_metapage_dirty(mp);
501 release_metapage(mp);
502 } else
503 set_cflag(COMMIT_Dirtable, ip);
504 }
505
506 /*
507 * modify_index()
508 *
509 * Changes an entry in the directory index table
510 */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,s64 * lblock)511 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 int slot, struct metapage ** mp, s64 *lblock)
513 {
514 struct dir_table_slot *dirtab_slot;
515
516 dirtab_slot = find_index(ip, index, mp, lblock);
517
518 if (!dirtab_slot)
519 return;
520
521 DTSaddress(dirtab_slot, bn);
522 dirtab_slot->slot = slot;
523
524 if (*mp) {
525 lock_index(tid, ip, *mp, index);
526 mark_metapage_dirty(*mp);
527 } else
528 set_cflag(COMMIT_Dirtable, ip);
529 }
530
531 /*
532 * read_index()
533 *
534 * reads a directory table slot
535 */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)536 static int read_index(struct inode *ip, u32 index,
537 struct dir_table_slot * dirtab_slot)
538 {
539 s64 lblock;
540 struct metapage *mp = NULL;
541 struct dir_table_slot *slot;
542
543 slot = find_index(ip, index, &mp, &lblock);
544 if (!slot) {
545 return -EIO;
546 }
547
548 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549
550 if (mp)
551 release_metapage(mp);
552
553 return 0;
554 }
555
556 /*
557 * dtSearch()
558 *
559 * function:
560 * Search for the entry with specified key
561 *
562 * parameter:
563 *
564 * return: 0 - search result on stack, leaf page pinned;
565 * errno - I/O error
566 */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)567 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 struct btstack * btstack, int flag)
569 {
570 int rc = 0;
571 int cmp = 1; /* init for empty page */
572 s64 bn;
573 struct metapage *mp;
574 dtpage_t *p;
575 s8 *stbl;
576 int base, index, lim;
577 struct btframe *btsp;
578 pxd_t *pxd;
579 int psize = 288; /* initial in-line directory */
580 ino_t inumber;
581 struct component_name ciKey;
582 struct super_block *sb = ip->i_sb;
583
584 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
585 GFP_NOFS);
586 if (!ciKey.name) {
587 rc = -ENOMEM;
588 goto dtSearch_Exit2;
589 }
590
591
592 /* uppercase search key for c-i directory */
593 UniStrcpy(ciKey.name, key->name);
594 ciKey.namlen = key->namlen;
595
596 /* only uppercase if case-insensitive support is on */
597 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 ciToUpper(&ciKey);
599 }
600 BT_CLR(btstack); /* reset stack */
601
602 /* init level count for max pages to split */
603 btstack->nsplit = 1;
604
605 /*
606 * search down tree from root:
607 *
608 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 *
611 * if entry with search key K is not found
612 * internal page search find the entry with largest key Ki
613 * less than K which point to the child page to search;
614 * leaf page search find the entry with smallest key Kj
615 * greater than K so that the returned index is the position of
616 * the entry to be shifted right for insertion of new entry.
617 * for empty tree, search key is greater than any key of the tree.
618 *
619 * by convention, root bn = 0.
620 */
621 for (bn = 0;;) {
622 /* get/pin the page to search */
623 DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 if (rc)
625 goto dtSearch_Exit1;
626
627 /* get sorted entry table of the page */
628 stbl = DT_GETSTBL(p);
629
630 /*
631 * binary search with search key K on the current page.
632 */
633 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 index = base + (lim >> 1);
635
636 if (stbl[index] < 0) {
637 rc = -EIO;
638 goto out;
639 }
640
641 if (p->header.flag & BT_LEAF) {
642 /* uppercase leaf name to compare */
643 cmp =
644 ciCompare(&ciKey, p, stbl[index],
645 JFS_SBI(sb)->mntflag);
646 } else {
647 /* router key is in uppercase */
648
649 cmp = dtCompare(&ciKey, p, stbl[index]);
650
651
652 }
653 if (cmp == 0) {
654 /*
655 * search hit
656 */
657 /* search hit - leaf page:
658 * return the entry found
659 */
660 if (p->header.flag & BT_LEAF) {
661 inumber = le32_to_cpu(
662 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
663
664 /*
665 * search for JFS_LOOKUP
666 */
667 if (flag == JFS_LOOKUP) {
668 *data = inumber;
669 rc = 0;
670 goto out;
671 }
672
673 /*
674 * search for JFS_CREATE
675 */
676 if (flag == JFS_CREATE) {
677 *data = inumber;
678 rc = -EEXIST;
679 goto out;
680 }
681
682 /*
683 * search for JFS_REMOVE or JFS_RENAME
684 */
685 if ((flag == JFS_REMOVE ||
686 flag == JFS_RENAME) &&
687 *data != inumber) {
688 rc = -ESTALE;
689 goto out;
690 }
691
692 /*
693 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
694 */
695 /* save search result */
696 *data = inumber;
697 btsp = btstack->top;
698 btsp->bn = bn;
699 btsp->index = index;
700 btsp->mp = mp;
701
702 rc = 0;
703 goto dtSearch_Exit1;
704 }
705
706 /* search hit - internal page:
707 * descend/search its child page
708 */
709 goto getChild;
710 }
711
712 if (cmp > 0) {
713 base = index + 1;
714 --lim;
715 }
716 }
717
718 /*
719 * search miss
720 *
721 * base is the smallest index with key (Kj) greater than
722 * search key (K) and may be zero or (maxindex + 1) index.
723 */
724 /*
725 * search miss - leaf page
726 *
727 * return location of entry (base) where new entry with
728 * search key K is to be inserted.
729 */
730 if (p->header.flag & BT_LEAF) {
731 /*
732 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
733 */
734 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
735 flag == JFS_RENAME) {
736 rc = -ENOENT;
737 goto out;
738 }
739
740 /*
741 * search for JFS_CREATE|JFS_FINDDIR:
742 *
743 * save search result
744 */
745 *data = 0;
746 btsp = btstack->top;
747 btsp->bn = bn;
748 btsp->index = base;
749 btsp->mp = mp;
750
751 rc = 0;
752 goto dtSearch_Exit1;
753 }
754
755 /*
756 * search miss - internal page
757 *
758 * if base is non-zero, decrement base by one to get the parent
759 * entry of the child page to search.
760 */
761 index = base ? base - 1 : base;
762
763 /*
764 * go down to child page
765 */
766 getChild:
767 /* update max. number of pages to split */
768 if (BT_STACK_FULL(btstack)) {
769 /* Something's corrupted, mark filesystem dirty so
770 * chkdsk will fix it.
771 */
772 jfs_error(sb, "stack overrun!\n");
773 BT_STACK_DUMP(btstack);
774 rc = -EIO;
775 goto out;
776 }
777 btstack->nsplit++;
778
779 /* push (bn, index) of the parent page/entry */
780 BT_PUSH(btstack, bn, index);
781
782 /* get the child page block number */
783 pxd = (pxd_t *) & p->slot[stbl[index]];
784 bn = addressPXD(pxd);
785 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
786
787 /* unpin the parent page */
788 DT_PUTPAGE(mp);
789 }
790
791 out:
792 DT_PUTPAGE(mp);
793
794 dtSearch_Exit1:
795
796 kfree(ciKey.name);
797
798 dtSearch_Exit2:
799
800 return rc;
801 }
802
803
804 /*
805 * dtInsert()
806 *
807 * function: insert an entry to directory tree
808 *
809 * parameter:
810 *
811 * return: 0 - success;
812 * errno - failure;
813 */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)814 int dtInsert(tid_t tid, struct inode *ip,
815 struct component_name * name, ino_t * fsn, struct btstack * btstack)
816 {
817 int rc = 0;
818 struct metapage *mp; /* meta-page buffer */
819 dtpage_t *p; /* base B+-tree index page */
820 s64 bn;
821 int index;
822 struct dtsplit split; /* split information */
823 ddata_t data;
824 struct dt_lock *dtlck;
825 int n;
826 struct tlock *tlck;
827 struct lv *lv;
828
829 /*
830 * retrieve search result
831 *
832 * dtSearch() returns (leaf page pinned, index at which to insert).
833 * n.b. dtSearch() may return index of (maxindex + 1) of
834 * the full page.
835 */
836 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
837
838 /*
839 * insert entry for new key
840 */
841 if (DO_INDEX(ip)) {
842 if (JFS_IP(ip)->next_index == DIREND) {
843 DT_PUTPAGE(mp);
844 return -EMLINK;
845 }
846 n = NDTLEAF(name->namlen);
847 data.leaf.tid = tid;
848 data.leaf.ip = ip;
849 } else {
850 n = NDTLEAF_LEGACY(name->namlen);
851 data.leaf.ip = NULL; /* signifies legacy directory format */
852 }
853 data.leaf.ino = *fsn;
854
855 /*
856 * leaf page does not have enough room for new entry:
857 *
858 * extend/split the leaf page;
859 *
860 * dtSplitUp() will insert the entry and unpin the leaf page.
861 */
862 if (n > p->header.freecnt) {
863 split.mp = mp;
864 split.index = index;
865 split.nslot = n;
866 split.key = name;
867 split.data = &data;
868 rc = dtSplitUp(tid, ip, &split, btstack);
869 return rc;
870 }
871
872 /*
873 * leaf page does have enough room for new entry:
874 *
875 * insert the new data entry into the leaf page;
876 */
877 BT_MARK_DIRTY(mp, ip);
878 /*
879 * acquire a transaction lock on the leaf page
880 */
881 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
882 dtlck = (struct dt_lock *) & tlck->lock;
883 ASSERT(dtlck->index == 0);
884 lv = & dtlck->lv[0];
885
886 /* linelock header */
887 lv->offset = 0;
888 lv->length = 1;
889 dtlck->index++;
890
891 dtInsertEntry(p, index, name, &data, &dtlck);
892
893 /* linelock stbl of non-root leaf page */
894 if (!(p->header.flag & BT_ROOT)) {
895 if (dtlck->index >= dtlck->maxcnt)
896 dtlck = (struct dt_lock *) txLinelock(dtlck);
897 lv = & dtlck->lv[dtlck->index];
898 n = index >> L2DTSLOTSIZE;
899 lv->offset = p->header.stblindex + n;
900 lv->length =
901 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
902 dtlck->index++;
903 }
904
905 /* unpin the leaf page */
906 DT_PUTPAGE(mp);
907
908 return 0;
909 }
910
911
912 /*
913 * dtSplitUp()
914 *
915 * function: propagate insertion bottom up;
916 *
917 * parameter:
918 *
919 * return: 0 - success;
920 * errno - failure;
921 * leaf page unpinned;
922 */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)923 static int dtSplitUp(tid_t tid,
924 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
925 {
926 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
927 int rc = 0;
928 struct metapage *smp;
929 dtpage_t *sp; /* split page */
930 struct metapage *rmp;
931 dtpage_t *rp; /* new right page split from sp */
932 pxd_t rpxd; /* new right page extent descriptor */
933 struct metapage *lmp;
934 dtpage_t *lp; /* left child page */
935 int skip; /* index of entry of insertion */
936 struct btframe *parent; /* parent page entry on traverse stack */
937 s64 xaddr, nxaddr;
938 int xlen, xsize;
939 struct pxdlist pxdlist;
940 pxd_t *pxd;
941 struct component_name key = { 0, NULL };
942 ddata_t *data = split->data;
943 int n;
944 struct dt_lock *dtlck;
945 struct tlock *tlck;
946 struct lv *lv;
947 int quota_allocation = 0;
948
949 /* get split page */
950 smp = split->mp;
951 sp = DT_PAGE(ip, smp);
952
953 key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
954 if (!key.name) {
955 DT_PUTPAGE(smp);
956 rc = -ENOMEM;
957 goto dtSplitUp_Exit;
958 }
959
960 /*
961 * split leaf page
962 *
963 * The split routines insert the new entry, and
964 * acquire txLock as appropriate.
965 */
966 /*
967 * split root leaf page:
968 */
969 if (sp->header.flag & BT_ROOT) {
970 /*
971 * allocate a single extent child page
972 */
973 xlen = 1;
974 n = sbi->bsize >> L2DTSLOTSIZE;
975 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
976 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
977 if (n <= split->nslot)
978 xlen++;
979 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
980 DT_PUTPAGE(smp);
981 goto freeKeyName;
982 }
983
984 pxdlist.maxnpxd = 1;
985 pxdlist.npxd = 0;
986 pxd = &pxdlist.pxd[0];
987 PXDaddress(pxd, xaddr);
988 PXDlength(pxd, xlen);
989 split->pxdlist = &pxdlist;
990 rc = dtSplitRoot(tid, ip, split, &rmp);
991
992 if (rc)
993 dbFree(ip, xaddr, xlen);
994 else
995 DT_PUTPAGE(rmp);
996
997 DT_PUTPAGE(smp);
998
999 if (!DO_INDEX(ip))
1000 ip->i_size = xlen << sbi->l2bsize;
1001
1002 goto freeKeyName;
1003 }
1004
1005 /*
1006 * extend first leaf page
1007 *
1008 * extend the 1st extent if less than buffer page size
1009 * (dtExtendPage() reurns leaf page unpinned)
1010 */
1011 pxd = &sp->header.self;
1012 xlen = lengthPXD(pxd);
1013 xsize = xlen << sbi->l2bsize;
1014 if (xsize < PSIZE) {
1015 xaddr = addressPXD(pxd);
1016 n = xsize >> L2DTSLOTSIZE;
1017 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1018 if ((n + sp->header.freecnt) <= split->nslot)
1019 n = xlen + (xlen << 1);
1020 else
1021 n = xlen;
1022
1023 /* Allocate blocks to quota. */
1024 rc = dquot_alloc_block(ip, n);
1025 if (rc)
1026 goto extendOut;
1027 quota_allocation += n;
1028
1029 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1030 (s64) n, &nxaddr)))
1031 goto extendOut;
1032
1033 pxdlist.maxnpxd = 1;
1034 pxdlist.npxd = 0;
1035 pxd = &pxdlist.pxd[0];
1036 PXDaddress(pxd, nxaddr);
1037 PXDlength(pxd, xlen + n);
1038 split->pxdlist = &pxdlist;
1039 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1040 nxaddr = addressPXD(pxd);
1041 if (xaddr != nxaddr) {
1042 /* free relocated extent */
1043 xlen = lengthPXD(pxd);
1044 dbFree(ip, nxaddr, (s64) xlen);
1045 } else {
1046 /* free extended delta */
1047 xlen = lengthPXD(pxd) - n;
1048 xaddr = addressPXD(pxd) + xlen;
1049 dbFree(ip, xaddr, (s64) n);
1050 }
1051 } else if (!DO_INDEX(ip))
1052 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1053
1054
1055 extendOut:
1056 DT_PUTPAGE(smp);
1057 goto freeKeyName;
1058 }
1059
1060 /*
1061 * split leaf page <sp> into <sp> and a new right page <rp>.
1062 *
1063 * return <rp> pinned and its extent descriptor <rpxd>
1064 */
1065 /*
1066 * allocate new directory page extent and
1067 * new index page(s) to cover page split(s)
1068 *
1069 * allocation hint: ?
1070 */
1071 n = btstack->nsplit;
1072 pxdlist.maxnpxd = pxdlist.npxd = 0;
1073 xlen = sbi->nbperpage;
1074 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1075 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1076 PXDaddress(pxd, xaddr);
1077 PXDlength(pxd, xlen);
1078 pxdlist.maxnpxd++;
1079 continue;
1080 }
1081
1082 DT_PUTPAGE(smp);
1083
1084 /* undo allocation */
1085 goto splitOut;
1086 }
1087
1088 split->pxdlist = &pxdlist;
1089 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1090 DT_PUTPAGE(smp);
1091
1092 /* undo allocation */
1093 goto splitOut;
1094 }
1095
1096 if (!DO_INDEX(ip))
1097 ip->i_size += PSIZE;
1098
1099 /*
1100 * propagate up the router entry for the leaf page just split
1101 *
1102 * insert a router entry for the new page into the parent page,
1103 * propagate the insert/split up the tree by walking back the stack
1104 * of (bn of parent page, index of child page entry in parent page)
1105 * that were traversed during the search for the page that split.
1106 *
1107 * the propagation of insert/split up the tree stops if the root
1108 * splits or the page inserted into doesn't have to split to hold
1109 * the new entry.
1110 *
1111 * the parent entry for the split page remains the same, and
1112 * a new entry is inserted at its right with the first key and
1113 * block number of the new right page.
1114 *
1115 * There are a maximum of 4 pages pinned at any time:
1116 * two children, left parent and right parent (when the parent splits).
1117 * keep the child pages pinned while working on the parent.
1118 * make sure that all pins are released at exit.
1119 */
1120 while ((parent = BT_POP(btstack)) != NULL) {
1121 /* parent page specified by stack frame <parent> */
1122
1123 /* keep current child pages (<lp>, <rp>) pinned */
1124 lmp = smp;
1125 lp = sp;
1126
1127 /*
1128 * insert router entry in parent for new right child page <rp>
1129 */
1130 /* get the parent page <sp> */
1131 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1132 if (rc) {
1133 DT_PUTPAGE(lmp);
1134 DT_PUTPAGE(rmp);
1135 goto splitOut;
1136 }
1137
1138 /*
1139 * The new key entry goes ONE AFTER the index of parent entry,
1140 * because the split was to the right.
1141 */
1142 skip = parent->index + 1;
1143
1144 /*
1145 * compute the key for the router entry
1146 *
1147 * key suffix compression:
1148 * for internal pages that have leaf pages as children,
1149 * retain only what's needed to distinguish between
1150 * the new entry and the entry on the page to its left.
1151 * If the keys compare equal, retain the entire key.
1152 *
1153 * note that compression is performed only at computing
1154 * router key at the lowest internal level.
1155 * further compression of the key between pairs of higher
1156 * level internal pages loses too much information and
1157 * the search may fail.
1158 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1159 * results in two adjacent parent entries (a)(xx).
1160 * if split occurs between these two entries, and
1161 * if compression is applied, the router key of parent entry
1162 * of right page (x) will divert search for x into right
1163 * subtree and miss x in the left subtree.)
1164 *
1165 * the entire key must be retained for the next-to-leftmost
1166 * internal key at any level of the tree, or search may fail
1167 * (e.g., ?)
1168 */
1169 switch (rp->header.flag & BT_TYPE) {
1170 case BT_LEAF:
1171 /*
1172 * compute the length of prefix for suffix compression
1173 * between last entry of left page and first entry
1174 * of right page
1175 */
1176 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1177 sp->header.prev != 0 || skip > 1) {
1178 /* compute uppercase router prefix key */
1179 rc = ciGetLeafPrefixKey(lp,
1180 lp->header.nextindex-1,
1181 rp, 0, &key,
1182 sbi->mntflag);
1183 if (rc) {
1184 DT_PUTPAGE(lmp);
1185 DT_PUTPAGE(rmp);
1186 DT_PUTPAGE(smp);
1187 goto splitOut;
1188 }
1189 } else {
1190 /* next to leftmost entry of
1191 lowest internal level */
1192
1193 /* compute uppercase router key */
1194 dtGetKey(rp, 0, &key, sbi->mntflag);
1195 key.name[key.namlen] = 0;
1196
1197 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1198 ciToUpper(&key);
1199 }
1200
1201 n = NDTINTERNAL(key.namlen);
1202 break;
1203
1204 case BT_INTERNAL:
1205 dtGetKey(rp, 0, &key, sbi->mntflag);
1206 n = NDTINTERNAL(key.namlen);
1207 break;
1208
1209 default:
1210 jfs_err("dtSplitUp(): UFO!");
1211 break;
1212 }
1213
1214 /* unpin left child page */
1215 DT_PUTPAGE(lmp);
1216
1217 /*
1218 * compute the data for the router entry
1219 */
1220 data->xd = rpxd; /* child page xd */
1221
1222 /*
1223 * parent page is full - split the parent page
1224 */
1225 if (n > sp->header.freecnt) {
1226 /* init for parent page split */
1227 split->mp = smp;
1228 split->index = skip; /* index at insert */
1229 split->nslot = n;
1230 split->key = &key;
1231 /* split->data = data; */
1232
1233 /* unpin right child page */
1234 DT_PUTPAGE(rmp);
1235
1236 /* The split routines insert the new entry,
1237 * acquire txLock as appropriate.
1238 * return <rp> pinned and its block number <rbn>.
1239 */
1240 rc = (sp->header.flag & BT_ROOT) ?
1241 dtSplitRoot(tid, ip, split, &rmp) :
1242 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1243 if (rc) {
1244 DT_PUTPAGE(smp);
1245 goto splitOut;
1246 }
1247
1248 /* smp and rmp are pinned */
1249 }
1250 /*
1251 * parent page is not full - insert router entry in parent page
1252 */
1253 else {
1254 BT_MARK_DIRTY(smp, ip);
1255 /*
1256 * acquire a transaction lock on the parent page
1257 */
1258 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1259 dtlck = (struct dt_lock *) & tlck->lock;
1260 ASSERT(dtlck->index == 0);
1261 lv = & dtlck->lv[0];
1262
1263 /* linelock header */
1264 lv->offset = 0;
1265 lv->length = 1;
1266 dtlck->index++;
1267
1268 /* linelock stbl of non-root parent page */
1269 if (!(sp->header.flag & BT_ROOT)) {
1270 lv++;
1271 n = skip >> L2DTSLOTSIZE;
1272 lv->offset = sp->header.stblindex + n;
1273 lv->length =
1274 ((sp->header.nextindex -
1275 1) >> L2DTSLOTSIZE) - n + 1;
1276 dtlck->index++;
1277 }
1278
1279 dtInsertEntry(sp, skip, &key, data, &dtlck);
1280
1281 /* exit propagate up */
1282 break;
1283 }
1284 }
1285
1286 /* unpin current split and its right page */
1287 DT_PUTPAGE(smp);
1288 DT_PUTPAGE(rmp);
1289
1290 /*
1291 * free remaining extents allocated for split
1292 */
1293 splitOut:
1294 n = pxdlist.npxd;
1295 pxd = &pxdlist.pxd[n];
1296 for (; n < pxdlist.maxnpxd; n++, pxd++)
1297 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1298
1299 freeKeyName:
1300 kfree(key.name);
1301
1302 /* Rollback quota allocation */
1303 if (rc && quota_allocation)
1304 dquot_free_block(ip, quota_allocation);
1305
1306 dtSplitUp_Exit:
1307
1308 return rc;
1309 }
1310
1311
1312 /*
1313 * dtSplitPage()
1314 *
1315 * function: Split a non-root page of a btree.
1316 *
1317 * parameter:
1318 *
1319 * return: 0 - success;
1320 * errno - failure;
1321 * return split and new page pinned;
1322 */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1323 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1324 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1325 {
1326 int rc = 0;
1327 struct metapage *smp;
1328 dtpage_t *sp;
1329 struct metapage *rmp;
1330 dtpage_t *rp; /* new right page allocated */
1331 s64 rbn; /* new right page block number */
1332 struct metapage *mp;
1333 dtpage_t *p;
1334 s64 nextbn;
1335 struct pxdlist *pxdlist;
1336 pxd_t *pxd;
1337 int skip, nextindex, half, left, nxt, off, si;
1338 struct ldtentry *ldtentry;
1339 struct idtentry *idtentry;
1340 u8 *stbl;
1341 struct dtslot *f;
1342 int fsi, stblsize;
1343 int n;
1344 struct dt_lock *sdtlck, *rdtlck;
1345 struct tlock *tlck;
1346 struct dt_lock *dtlck;
1347 struct lv *slv, *rlv, *lv;
1348
1349 /* get split page */
1350 smp = split->mp;
1351 sp = DT_PAGE(ip, smp);
1352
1353 /*
1354 * allocate the new right page for the split
1355 */
1356 pxdlist = split->pxdlist;
1357 pxd = &pxdlist->pxd[pxdlist->npxd];
1358 pxdlist->npxd++;
1359 rbn = addressPXD(pxd);
1360 rmp = get_metapage(ip, rbn, PSIZE, 1);
1361 if (rmp == NULL)
1362 return -EIO;
1363
1364 /* Allocate blocks to quota. */
1365 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1366 if (rc) {
1367 release_metapage(rmp);
1368 return rc;
1369 }
1370
1371 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1372
1373 BT_MARK_DIRTY(rmp, ip);
1374 /*
1375 * acquire a transaction lock on the new right page
1376 */
1377 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1378 rdtlck = (struct dt_lock *) & tlck->lock;
1379
1380 rp = (dtpage_t *) rmp->data;
1381 *rpp = rp;
1382 rp->header.self = *pxd;
1383
1384 BT_MARK_DIRTY(smp, ip);
1385 /*
1386 * acquire a transaction lock on the split page
1387 *
1388 * action:
1389 */
1390 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1391 sdtlck = (struct dt_lock *) & tlck->lock;
1392
1393 /* linelock header of split page */
1394 ASSERT(sdtlck->index == 0);
1395 slv = & sdtlck->lv[0];
1396 slv->offset = 0;
1397 slv->length = 1;
1398 sdtlck->index++;
1399
1400 /*
1401 * initialize/update sibling pointers between sp and rp
1402 */
1403 nextbn = le64_to_cpu(sp->header.next);
1404 rp->header.next = cpu_to_le64(nextbn);
1405 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1406 sp->header.next = cpu_to_le64(rbn);
1407
1408 /*
1409 * initialize new right page
1410 */
1411 rp->header.flag = sp->header.flag;
1412
1413 /* compute sorted entry table at start of extent data area */
1414 rp->header.nextindex = 0;
1415 rp->header.stblindex = 1;
1416
1417 n = PSIZE >> L2DTSLOTSIZE;
1418 rp->header.maxslot = n;
1419 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1420
1421 /* init freelist */
1422 fsi = rp->header.stblindex + stblsize;
1423 rp->header.freelist = fsi;
1424 rp->header.freecnt = rp->header.maxslot - fsi;
1425
1426 /*
1427 * sequential append at tail: append without split
1428 *
1429 * If splitting the last page on a level because of appending
1430 * a entry to it (skip is maxentry), it's likely that the access is
1431 * sequential. Adding an empty page on the side of the level is less
1432 * work and can push the fill factor much higher than normal.
1433 * If we're wrong it's no big deal, we'll just do the split the right
1434 * way next time.
1435 * (It may look like it's equally easy to do a similar hack for
1436 * reverse sorted data, that is, split the tree left,
1437 * but it's not. Be my guest.)
1438 */
1439 if (nextbn == 0 && split->index == sp->header.nextindex) {
1440 /* linelock header + stbl (first slot) of new page */
1441 rlv = & rdtlck->lv[rdtlck->index];
1442 rlv->offset = 0;
1443 rlv->length = 2;
1444 rdtlck->index++;
1445
1446 /*
1447 * initialize freelist of new right page
1448 */
1449 f = &rp->slot[fsi];
1450 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1451 f->next = fsi;
1452 f->next = -1;
1453
1454 /* insert entry at the first entry of the new right page */
1455 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1456
1457 goto out;
1458 }
1459
1460 /*
1461 * non-sequential insert (at possibly middle page)
1462 */
1463
1464 /*
1465 * update prev pointer of previous right sibling page;
1466 */
1467 if (nextbn != 0) {
1468 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1469 if (rc) {
1470 discard_metapage(rmp);
1471 return rc;
1472 }
1473
1474 BT_MARK_DIRTY(mp, ip);
1475 /*
1476 * acquire a transaction lock on the next page
1477 */
1478 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1479 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1480 tlck, ip, mp);
1481 dtlck = (struct dt_lock *) & tlck->lock;
1482
1483 /* linelock header of previous right sibling page */
1484 lv = & dtlck->lv[dtlck->index];
1485 lv->offset = 0;
1486 lv->length = 1;
1487 dtlck->index++;
1488
1489 p->header.prev = cpu_to_le64(rbn);
1490
1491 DT_PUTPAGE(mp);
1492 }
1493
1494 /*
1495 * split the data between the split and right pages.
1496 */
1497 skip = split->index;
1498 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1499 left = 0;
1500
1501 /*
1502 * compute fill factor for split pages
1503 *
1504 * <nxt> traces the next entry to move to rp
1505 * <off> traces the next entry to stay in sp
1506 */
1507 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1508 nextindex = sp->header.nextindex;
1509 for (nxt = off = 0; nxt < nextindex; ++off) {
1510 if (off == skip)
1511 /* check for fill factor with new entry size */
1512 n = split->nslot;
1513 else {
1514 si = stbl[nxt];
1515 switch (sp->header.flag & BT_TYPE) {
1516 case BT_LEAF:
1517 ldtentry = (struct ldtentry *) & sp->slot[si];
1518 if (DO_INDEX(ip))
1519 n = NDTLEAF(ldtentry->namlen);
1520 else
1521 n = NDTLEAF_LEGACY(ldtentry->
1522 namlen);
1523 break;
1524
1525 case BT_INTERNAL:
1526 idtentry = (struct idtentry *) & sp->slot[si];
1527 n = NDTINTERNAL(idtentry->namlen);
1528 break;
1529
1530 default:
1531 break;
1532 }
1533
1534 ++nxt; /* advance to next entry to move in sp */
1535 }
1536
1537 left += n;
1538 if (left >= half)
1539 break;
1540 }
1541
1542 /* <nxt> poins to the 1st entry to move */
1543
1544 /*
1545 * move entries to right page
1546 *
1547 * dtMoveEntry() initializes rp and reserves entry for insertion
1548 *
1549 * split page moved out entries are linelocked;
1550 * new/right page moved in entries are linelocked;
1551 */
1552 /* linelock header + stbl of new right page */
1553 rlv = & rdtlck->lv[rdtlck->index];
1554 rlv->offset = 0;
1555 rlv->length = 5;
1556 rdtlck->index++;
1557
1558 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1559
1560 sp->header.nextindex = nxt;
1561
1562 /*
1563 * finalize freelist of new right page
1564 */
1565 fsi = rp->header.freelist;
1566 f = &rp->slot[fsi];
1567 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1568 f->next = fsi;
1569 f->next = -1;
1570
1571 /*
1572 * Update directory index table for entries now in right page
1573 */
1574 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1575 s64 lblock;
1576
1577 mp = NULL;
1578 stbl = DT_GETSTBL(rp);
1579 for (n = 0; n < rp->header.nextindex; n++) {
1580 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1581 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1582 rbn, n, &mp, &lblock);
1583 }
1584 if (mp)
1585 release_metapage(mp);
1586 }
1587
1588 /*
1589 * the skipped index was on the left page,
1590 */
1591 if (skip <= off) {
1592 /* insert the new entry in the split page */
1593 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1594
1595 /* linelock stbl of split page */
1596 if (sdtlck->index >= sdtlck->maxcnt)
1597 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1598 slv = & sdtlck->lv[sdtlck->index];
1599 n = skip >> L2DTSLOTSIZE;
1600 slv->offset = sp->header.stblindex + n;
1601 slv->length =
1602 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1603 sdtlck->index++;
1604 }
1605 /*
1606 * the skipped index was on the right page,
1607 */
1608 else {
1609 /* adjust the skip index to reflect the new position */
1610 skip -= nxt;
1611
1612 /* insert the new entry in the right page */
1613 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1614 }
1615
1616 out:
1617 *rmpp = rmp;
1618 *rpxdp = *pxd;
1619
1620 return rc;
1621 }
1622
1623
1624 /*
1625 * dtExtendPage()
1626 *
1627 * function: extend 1st/only directory leaf page
1628 *
1629 * parameter:
1630 *
1631 * return: 0 - success;
1632 * errno - failure;
1633 * return extended page pinned;
1634 */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1635 static int dtExtendPage(tid_t tid,
1636 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1637 {
1638 struct super_block *sb = ip->i_sb;
1639 int rc;
1640 struct metapage *smp, *pmp, *mp;
1641 dtpage_t *sp, *pp;
1642 struct pxdlist *pxdlist;
1643 pxd_t *pxd, *tpxd;
1644 int xlen, xsize;
1645 int newstblindex, newstblsize;
1646 int oldstblindex, oldstblsize;
1647 int fsi, last;
1648 struct dtslot *f;
1649 struct btframe *parent;
1650 int n;
1651 struct dt_lock *dtlck;
1652 s64 xaddr, txaddr;
1653 struct tlock *tlck;
1654 struct pxd_lock *pxdlock;
1655 struct lv *lv;
1656 uint type;
1657 struct ldtentry *ldtentry;
1658 u8 *stbl;
1659
1660 /* get page to extend */
1661 smp = split->mp;
1662 sp = DT_PAGE(ip, smp);
1663
1664 /* get parent/root page */
1665 parent = BT_POP(btstack);
1666 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1667 if (rc)
1668 return (rc);
1669
1670 /*
1671 * extend the extent
1672 */
1673 pxdlist = split->pxdlist;
1674 pxd = &pxdlist->pxd[pxdlist->npxd];
1675 pxdlist->npxd++;
1676
1677 xaddr = addressPXD(pxd);
1678 tpxd = &sp->header.self;
1679 txaddr = addressPXD(tpxd);
1680 /* in-place extension */
1681 if (xaddr == txaddr) {
1682 type = tlckEXTEND;
1683 }
1684 /* relocation */
1685 else {
1686 type = tlckNEW;
1687
1688 /* save moved extent descriptor for later free */
1689 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1690 pxdlock = (struct pxd_lock *) & tlck->lock;
1691 pxdlock->flag = mlckFREEPXD;
1692 pxdlock->pxd = sp->header.self;
1693 pxdlock->index = 1;
1694
1695 /*
1696 * Update directory index table to reflect new page address
1697 */
1698 if (DO_INDEX(ip)) {
1699 s64 lblock;
1700
1701 mp = NULL;
1702 stbl = DT_GETSTBL(sp);
1703 for (n = 0; n < sp->header.nextindex; n++) {
1704 ldtentry =
1705 (struct ldtentry *) & sp->slot[stbl[n]];
1706 modify_index(tid, ip,
1707 le32_to_cpu(ldtentry->index),
1708 xaddr, n, &mp, &lblock);
1709 }
1710 if (mp)
1711 release_metapage(mp);
1712 }
1713 }
1714
1715 /*
1716 * extend the page
1717 */
1718 sp->header.self = *pxd;
1719
1720 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1721
1722 BT_MARK_DIRTY(smp, ip);
1723 /*
1724 * acquire a transaction lock on the extended/leaf page
1725 */
1726 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1727 dtlck = (struct dt_lock *) & tlck->lock;
1728 lv = & dtlck->lv[0];
1729
1730 /* update buffer extent descriptor of extended page */
1731 xlen = lengthPXD(pxd);
1732 xsize = xlen << JFS_SBI(sb)->l2bsize;
1733
1734 /*
1735 * copy old stbl to new stbl at start of extended area
1736 */
1737 oldstblindex = sp->header.stblindex;
1738 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1739 newstblindex = sp->header.maxslot;
1740 n = xsize >> L2DTSLOTSIZE;
1741 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1742 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1743 sp->header.nextindex);
1744
1745 /*
1746 * in-line extension: linelock old area of extended page
1747 */
1748 if (type == tlckEXTEND) {
1749 /* linelock header */
1750 lv->offset = 0;
1751 lv->length = 1;
1752 dtlck->index++;
1753 lv++;
1754
1755 /* linelock new stbl of extended page */
1756 lv->offset = newstblindex;
1757 lv->length = newstblsize;
1758 }
1759 /*
1760 * relocation: linelock whole relocated area
1761 */
1762 else {
1763 lv->offset = 0;
1764 lv->length = sp->header.maxslot + newstblsize;
1765 }
1766
1767 dtlck->index++;
1768
1769 sp->header.maxslot = n;
1770 sp->header.stblindex = newstblindex;
1771 /* sp->header.nextindex remains the same */
1772
1773 /*
1774 * add old stbl region at head of freelist
1775 */
1776 fsi = oldstblindex;
1777 f = &sp->slot[fsi];
1778 last = sp->header.freelist;
1779 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1780 f->next = last;
1781 last = fsi;
1782 }
1783 sp->header.freelist = last;
1784 sp->header.freecnt += oldstblsize;
1785
1786 /*
1787 * append free region of newly extended area at tail of freelist
1788 */
1789 /* init free region of newly extended area */
1790 fsi = n = newstblindex + newstblsize;
1791 f = &sp->slot[fsi];
1792 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1793 f->next = fsi;
1794 f->next = -1;
1795
1796 /* append new free region at tail of old freelist */
1797 fsi = sp->header.freelist;
1798 if (fsi == -1)
1799 sp->header.freelist = n;
1800 else {
1801 do {
1802 f = &sp->slot[fsi];
1803 fsi = f->next;
1804 } while (fsi != -1);
1805
1806 f->next = n;
1807 }
1808
1809 sp->header.freecnt += sp->header.maxslot - n;
1810
1811 /*
1812 * insert the new entry
1813 */
1814 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1815
1816 BT_MARK_DIRTY(pmp, ip);
1817 /*
1818 * linelock any freeslots residing in old extent
1819 */
1820 if (type == tlckEXTEND) {
1821 n = sp->header.maxslot >> 2;
1822 if (sp->header.freelist < n)
1823 dtLinelockFreelist(sp, n, &dtlck);
1824 }
1825
1826 /*
1827 * update parent entry on the parent/root page
1828 */
1829 /*
1830 * acquire a transaction lock on the parent/root page
1831 */
1832 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1833 dtlck = (struct dt_lock *) & tlck->lock;
1834 lv = & dtlck->lv[dtlck->index];
1835
1836 /* linelock parent entry - 1st slot */
1837 lv->offset = 1;
1838 lv->length = 1;
1839 dtlck->index++;
1840
1841 /* update the parent pxd for page extension */
1842 tpxd = (pxd_t *) & pp->slot[1];
1843 *tpxd = *pxd;
1844
1845 DT_PUTPAGE(pmp);
1846 return 0;
1847 }
1848
1849
1850 /*
1851 * dtSplitRoot()
1852 *
1853 * function:
1854 * split the full root page into
1855 * original/root/split page and new right page
1856 * i.e., root remains fixed in tree anchor (inode) and
1857 * the root is copied to a single new right child page
1858 * since root page << non-root page, and
1859 * the split root page contains a single entry for the
1860 * new right child page.
1861 *
1862 * parameter:
1863 *
1864 * return: 0 - success;
1865 * errno - failure;
1866 * return new page pinned;
1867 */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1868 static int dtSplitRoot(tid_t tid,
1869 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1870 {
1871 struct super_block *sb = ip->i_sb;
1872 struct metapage *smp;
1873 dtroot_t *sp;
1874 struct metapage *rmp;
1875 dtpage_t *rp;
1876 s64 rbn;
1877 int xlen;
1878 int xsize;
1879 struct dtslot *f;
1880 s8 *stbl;
1881 int fsi, stblsize, n;
1882 struct idtentry *s;
1883 pxd_t *ppxd;
1884 struct pxdlist *pxdlist;
1885 pxd_t *pxd;
1886 struct dt_lock *dtlck;
1887 struct tlock *tlck;
1888 struct lv *lv;
1889 int rc;
1890
1891 /* get split root page */
1892 smp = split->mp;
1893 sp = &JFS_IP(ip)->i_dtroot;
1894
1895 /*
1896 * allocate/initialize a single (right) child page
1897 *
1898 * N.B. at first split, a one (or two) block to fit new entry
1899 * is allocated; at subsequent split, a full page is allocated;
1900 */
1901 pxdlist = split->pxdlist;
1902 pxd = &pxdlist->pxd[pxdlist->npxd];
1903 pxdlist->npxd++;
1904 rbn = addressPXD(pxd);
1905 xlen = lengthPXD(pxd);
1906 xsize = xlen << JFS_SBI(sb)->l2bsize;
1907 rmp = get_metapage(ip, rbn, xsize, 1);
1908 if (!rmp)
1909 return -EIO;
1910
1911 rp = rmp->data;
1912
1913 /* Allocate blocks to quota. */
1914 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1915 if (rc) {
1916 release_metapage(rmp);
1917 return rc;
1918 }
1919
1920 BT_MARK_DIRTY(rmp, ip);
1921 /*
1922 * acquire a transaction lock on the new right page
1923 */
1924 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1925 dtlck = (struct dt_lock *) & tlck->lock;
1926
1927 rp->header.flag =
1928 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1929 rp->header.self = *pxd;
1930
1931 /* initialize sibling pointers */
1932 rp->header.next = 0;
1933 rp->header.prev = 0;
1934
1935 /*
1936 * move in-line root page into new right page extent
1937 */
1938 /* linelock header + copied entries + new stbl (1st slot) in new page */
1939 ASSERT(dtlck->index == 0);
1940 lv = & dtlck->lv[0];
1941 lv->offset = 0;
1942 lv->length = 10; /* 1 + 8 + 1 */
1943 dtlck->index++;
1944
1945 n = xsize >> L2DTSLOTSIZE;
1946 rp->header.maxslot = n;
1947 stblsize = (n + 31) >> L2DTSLOTSIZE;
1948
1949 /* copy old stbl to new stbl at start of extended area */
1950 rp->header.stblindex = DTROOTMAXSLOT;
1951 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1952 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1953 rp->header.nextindex = sp->header.nextindex;
1954
1955 /* copy old data area to start of new data area */
1956 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1957
1958 /*
1959 * append free region of newly extended area at tail of freelist
1960 */
1961 /* init free region of newly extended area */
1962 fsi = n = DTROOTMAXSLOT + stblsize;
1963 f = &rp->slot[fsi];
1964 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1965 f->next = fsi;
1966 f->next = -1;
1967
1968 /* append new free region at tail of old freelist */
1969 fsi = sp->header.freelist;
1970 if (fsi == -1)
1971 rp->header.freelist = n;
1972 else {
1973 rp->header.freelist = fsi;
1974
1975 do {
1976 f = &rp->slot[fsi];
1977 fsi = f->next;
1978 } while (fsi >= 0);
1979
1980 f->next = n;
1981 }
1982
1983 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1984
1985 /*
1986 * Update directory index table for entries now in right page
1987 */
1988 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1989 s64 lblock;
1990 struct metapage *mp = NULL;
1991 struct ldtentry *ldtentry;
1992
1993 stbl = DT_GETSTBL(rp);
1994 for (n = 0; n < rp->header.nextindex; n++) {
1995 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1996 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1997 rbn, n, &mp, &lblock);
1998 }
1999 if (mp)
2000 release_metapage(mp);
2001 }
2002 /*
2003 * insert the new entry into the new right/child page
2004 * (skip index in the new right page will not change)
2005 */
2006 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2007
2008 /*
2009 * reset parent/root page
2010 *
2011 * set the 1st entry offset to 0, which force the left-most key
2012 * at any level of the tree to be less than any search key.
2013 *
2014 * The btree comparison code guarantees that the left-most key on any
2015 * level of the tree is never used, so it doesn't need to be filled in.
2016 */
2017 BT_MARK_DIRTY(smp, ip);
2018 /*
2019 * acquire a transaction lock on the root page (in-memory inode)
2020 */
2021 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2022 dtlck = (struct dt_lock *) & tlck->lock;
2023
2024 /* linelock root */
2025 ASSERT(dtlck->index == 0);
2026 lv = & dtlck->lv[0];
2027 lv->offset = 0;
2028 lv->length = DTROOTMAXSLOT;
2029 dtlck->index++;
2030
2031 /* update page header of root */
2032 if (sp->header.flag & BT_LEAF) {
2033 sp->header.flag &= ~BT_LEAF;
2034 sp->header.flag |= BT_INTERNAL;
2035 }
2036
2037 /* init the first entry */
2038 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2039 ppxd = (pxd_t *) s;
2040 *ppxd = *pxd;
2041 s->next = -1;
2042 s->namlen = 0;
2043
2044 stbl = sp->header.stbl;
2045 stbl[0] = DTENTRYSTART;
2046 sp->header.nextindex = 1;
2047
2048 /* init freelist */
2049 fsi = DTENTRYSTART + 1;
2050 f = &sp->slot[fsi];
2051
2052 /* init free region of remaining area */
2053 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2054 f->next = fsi;
2055 f->next = -1;
2056
2057 sp->header.freelist = DTENTRYSTART + 1;
2058 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2059
2060 *rmpp = rmp;
2061
2062 return 0;
2063 }
2064
2065
2066 /*
2067 * dtDelete()
2068 *
2069 * function: delete the entry(s) referenced by a key.
2070 *
2071 * parameter:
2072 *
2073 * return:
2074 */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2075 int dtDelete(tid_t tid,
2076 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2077 {
2078 int rc = 0;
2079 s64 bn;
2080 struct metapage *mp, *imp;
2081 dtpage_t *p;
2082 int index;
2083 struct btstack btstack;
2084 struct dt_lock *dtlck;
2085 struct tlock *tlck;
2086 struct lv *lv;
2087 int i;
2088 struct ldtentry *ldtentry;
2089 u8 *stbl;
2090 u32 table_index, next_index;
2091 struct metapage *nmp;
2092 dtpage_t *np;
2093
2094 /*
2095 * search for the entry to delete:
2096 *
2097 * dtSearch() returns (leaf page pinned, index at which to delete).
2098 */
2099 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2100 return rc;
2101
2102 /* retrieve search result */
2103 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2104
2105 /*
2106 * We need to find put the index of the next entry into the
2107 * directory index table in order to resume a readdir from this
2108 * entry.
2109 */
2110 if (DO_INDEX(ip)) {
2111 stbl = DT_GETSTBL(p);
2112 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2113 table_index = le32_to_cpu(ldtentry->index);
2114 if (index == (p->header.nextindex - 1)) {
2115 /*
2116 * Last entry in this leaf page
2117 */
2118 if ((p->header.flag & BT_ROOT)
2119 || (p->header.next == 0))
2120 next_index = -1;
2121 else {
2122 /* Read next leaf page */
2123 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2124 nmp, PSIZE, np, rc);
2125 if (rc)
2126 next_index = -1;
2127 else {
2128 stbl = DT_GETSTBL(np);
2129 ldtentry =
2130 (struct ldtentry *) & np->
2131 slot[stbl[0]];
2132 next_index =
2133 le32_to_cpu(ldtentry->index);
2134 DT_PUTPAGE(nmp);
2135 }
2136 }
2137 } else {
2138 ldtentry =
2139 (struct ldtentry *) & p->slot[stbl[index + 1]];
2140 next_index = le32_to_cpu(ldtentry->index);
2141 }
2142 free_index(tid, ip, table_index, next_index);
2143 }
2144 /*
2145 * the leaf page becomes empty, delete the page
2146 */
2147 if (p->header.nextindex == 1) {
2148 /* delete empty page */
2149 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2150 }
2151 /*
2152 * the leaf page has other entries remaining:
2153 *
2154 * delete the entry from the leaf page.
2155 */
2156 else {
2157 BT_MARK_DIRTY(mp, ip);
2158 /*
2159 * acquire a transaction lock on the leaf page
2160 */
2161 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2162 dtlck = (struct dt_lock *) & tlck->lock;
2163
2164 /*
2165 * Do not assume that dtlck->index will be zero. During a
2166 * rename within a directory, this transaction may have
2167 * modified this page already when adding the new entry.
2168 */
2169
2170 /* linelock header */
2171 if (dtlck->index >= dtlck->maxcnt)
2172 dtlck = (struct dt_lock *) txLinelock(dtlck);
2173 lv = & dtlck->lv[dtlck->index];
2174 lv->offset = 0;
2175 lv->length = 1;
2176 dtlck->index++;
2177
2178 /* linelock stbl of non-root leaf page */
2179 if (!(p->header.flag & BT_ROOT)) {
2180 if (dtlck->index >= dtlck->maxcnt)
2181 dtlck = (struct dt_lock *) txLinelock(dtlck);
2182 lv = & dtlck->lv[dtlck->index];
2183 i = index >> L2DTSLOTSIZE;
2184 lv->offset = p->header.stblindex + i;
2185 lv->length =
2186 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2187 i + 1;
2188 dtlck->index++;
2189 }
2190
2191 /* free the leaf entry */
2192 dtDeleteEntry(p, index, &dtlck);
2193
2194 /*
2195 * Update directory index table for entries moved in stbl
2196 */
2197 if (DO_INDEX(ip) && index < p->header.nextindex) {
2198 s64 lblock;
2199
2200 imp = NULL;
2201 stbl = DT_GETSTBL(p);
2202 for (i = index; i < p->header.nextindex; i++) {
2203 ldtentry =
2204 (struct ldtentry *) & p->slot[stbl[i]];
2205 modify_index(tid, ip,
2206 le32_to_cpu(ldtentry->index),
2207 bn, i, &imp, &lblock);
2208 }
2209 if (imp)
2210 release_metapage(imp);
2211 }
2212
2213 DT_PUTPAGE(mp);
2214 }
2215
2216 return rc;
2217 }
2218
2219
2220 /*
2221 * dtDeleteUp()
2222 *
2223 * function:
2224 * free empty pages as propagating deletion up the tree
2225 *
2226 * parameter:
2227 *
2228 * return:
2229 */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2230 static int dtDeleteUp(tid_t tid, struct inode *ip,
2231 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2232 {
2233 int rc = 0;
2234 struct metapage *mp;
2235 dtpage_t *p;
2236 int index, nextindex;
2237 int xlen;
2238 struct btframe *parent;
2239 struct dt_lock *dtlck;
2240 struct tlock *tlck;
2241 struct lv *lv;
2242 struct pxd_lock *pxdlock;
2243 int i;
2244
2245 /*
2246 * keep the root leaf page which has become empty
2247 */
2248 if (BT_IS_ROOT(fmp)) {
2249 /*
2250 * reset the root
2251 *
2252 * dtInitRoot() acquires txlock on the root
2253 */
2254 dtInitRoot(tid, ip, PARENT(ip));
2255
2256 DT_PUTPAGE(fmp);
2257
2258 return 0;
2259 }
2260
2261 /*
2262 * free the non-root leaf page
2263 */
2264 /*
2265 * acquire a transaction lock on the page
2266 *
2267 * write FREEXTENT|NOREDOPAGE log record
2268 * N.B. linelock is overlaid as freed extent descriptor, and
2269 * the buffer page is freed;
2270 */
2271 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2272 pxdlock = (struct pxd_lock *) & tlck->lock;
2273 pxdlock->flag = mlckFREEPXD;
2274 pxdlock->pxd = fp->header.self;
2275 pxdlock->index = 1;
2276
2277 /* update sibling pointers */
2278 if ((rc = dtRelink(tid, ip, fp))) {
2279 BT_PUTPAGE(fmp);
2280 return rc;
2281 }
2282
2283 xlen = lengthPXD(&fp->header.self);
2284
2285 /* Free quota allocation. */
2286 dquot_free_block(ip, xlen);
2287
2288 /* free/invalidate its buffer page */
2289 discard_metapage(fmp);
2290
2291 /*
2292 * propagate page deletion up the directory tree
2293 *
2294 * If the delete from the parent page makes it empty,
2295 * continue all the way up the tree.
2296 * stop if the root page is reached (which is never deleted) or
2297 * if the entry deletion does not empty the page.
2298 */
2299 while ((parent = BT_POP(btstack)) != NULL) {
2300 /* pin the parent page <sp> */
2301 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2302 if (rc)
2303 return rc;
2304
2305 /*
2306 * free the extent of the child page deleted
2307 */
2308 index = parent->index;
2309
2310 /*
2311 * delete the entry for the child page from parent
2312 */
2313 nextindex = p->header.nextindex;
2314
2315 /*
2316 * the parent has the single entry being deleted:
2317 *
2318 * free the parent page which has become empty.
2319 */
2320 if (nextindex == 1) {
2321 /*
2322 * keep the root internal page which has become empty
2323 */
2324 if (p->header.flag & BT_ROOT) {
2325 /*
2326 * reset the root
2327 *
2328 * dtInitRoot() acquires txlock on the root
2329 */
2330 dtInitRoot(tid, ip, PARENT(ip));
2331
2332 DT_PUTPAGE(mp);
2333
2334 return 0;
2335 }
2336 /*
2337 * free the parent page
2338 */
2339 else {
2340 /*
2341 * acquire a transaction lock on the page
2342 *
2343 * write FREEXTENT|NOREDOPAGE log record
2344 */
2345 tlck =
2346 txMaplock(tid, ip,
2347 tlckDTREE | tlckFREE);
2348 pxdlock = (struct pxd_lock *) & tlck->lock;
2349 pxdlock->flag = mlckFREEPXD;
2350 pxdlock->pxd = p->header.self;
2351 pxdlock->index = 1;
2352
2353 /* update sibling pointers */
2354 if ((rc = dtRelink(tid, ip, p))) {
2355 DT_PUTPAGE(mp);
2356 return rc;
2357 }
2358
2359 xlen = lengthPXD(&p->header.self);
2360
2361 /* Free quota allocation */
2362 dquot_free_block(ip, xlen);
2363
2364 /* free/invalidate its buffer page */
2365 discard_metapage(mp);
2366
2367 /* propagate up */
2368 continue;
2369 }
2370 }
2371
2372 /*
2373 * the parent has other entries remaining:
2374 *
2375 * delete the router entry from the parent page.
2376 */
2377 BT_MARK_DIRTY(mp, ip);
2378 /*
2379 * acquire a transaction lock on the page
2380 *
2381 * action: router entry deletion
2382 */
2383 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2384 dtlck = (struct dt_lock *) & tlck->lock;
2385
2386 /* linelock header */
2387 if (dtlck->index >= dtlck->maxcnt)
2388 dtlck = (struct dt_lock *) txLinelock(dtlck);
2389 lv = & dtlck->lv[dtlck->index];
2390 lv->offset = 0;
2391 lv->length = 1;
2392 dtlck->index++;
2393
2394 /* linelock stbl of non-root leaf page */
2395 if (!(p->header.flag & BT_ROOT)) {
2396 if (dtlck->index < dtlck->maxcnt)
2397 lv++;
2398 else {
2399 dtlck = (struct dt_lock *) txLinelock(dtlck);
2400 lv = & dtlck->lv[0];
2401 }
2402 i = index >> L2DTSLOTSIZE;
2403 lv->offset = p->header.stblindex + i;
2404 lv->length =
2405 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2406 i + 1;
2407 dtlck->index++;
2408 }
2409
2410 /* free the router entry */
2411 dtDeleteEntry(p, index, &dtlck);
2412
2413 /* reset key of new leftmost entry of level (for consistency) */
2414 if (index == 0 &&
2415 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2416 dtTruncateEntry(p, 0, &dtlck);
2417
2418 /* unpin the parent page */
2419 DT_PUTPAGE(mp);
2420
2421 /* exit propagation up */
2422 break;
2423 }
2424
2425 if (!DO_INDEX(ip))
2426 ip->i_size -= PSIZE;
2427
2428 return 0;
2429 }
2430
2431 #ifdef _NOTYET
2432 /*
2433 * NAME: dtRelocate()
2434 *
2435 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2436 * This function is mainly used by defragfs utility.
2437 */
dtRelocate(tid_t tid,struct inode * ip,s64 lmxaddr,pxd_t * opxd,s64 nxaddr)2438 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2439 s64 nxaddr)
2440 {
2441 int rc = 0;
2442 struct metapage *mp, *pmp, *lmp, *rmp;
2443 dtpage_t *p, *pp, *rp = 0, *lp= 0;
2444 s64 bn;
2445 int index;
2446 struct btstack btstack;
2447 pxd_t *pxd;
2448 s64 oxaddr, nextbn, prevbn;
2449 int xlen, xsize;
2450 struct tlock *tlck;
2451 struct dt_lock *dtlck;
2452 struct pxd_lock *pxdlock;
2453 s8 *stbl;
2454 struct lv *lv;
2455
2456 oxaddr = addressPXD(opxd);
2457 xlen = lengthPXD(opxd);
2458
2459 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2460 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2461 xlen);
2462
2463 /*
2464 * 1. get the internal parent dtpage covering
2465 * router entry for the tartget page to be relocated;
2466 */
2467 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2468 if (rc)
2469 return rc;
2470
2471 /* retrieve search result */
2472 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2473 jfs_info("dtRelocate: parent router entry validated.");
2474
2475 /*
2476 * 2. relocate the target dtpage
2477 */
2478 /* read in the target page from src extent */
2479 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2480 if (rc) {
2481 /* release the pinned parent page */
2482 DT_PUTPAGE(pmp);
2483 return rc;
2484 }
2485
2486 /*
2487 * read in sibling pages if any to update sibling pointers;
2488 */
2489 rmp = NULL;
2490 if (p->header.next) {
2491 nextbn = le64_to_cpu(p->header.next);
2492 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2493 if (rc) {
2494 DT_PUTPAGE(mp);
2495 DT_PUTPAGE(pmp);
2496 return (rc);
2497 }
2498 }
2499
2500 lmp = NULL;
2501 if (p->header.prev) {
2502 prevbn = le64_to_cpu(p->header.prev);
2503 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2504 if (rc) {
2505 DT_PUTPAGE(mp);
2506 DT_PUTPAGE(pmp);
2507 if (rmp)
2508 DT_PUTPAGE(rmp);
2509 return (rc);
2510 }
2511 }
2512
2513 /* at this point, all xtpages to be updated are in memory */
2514
2515 /*
2516 * update sibling pointers of sibling dtpages if any;
2517 */
2518 if (lmp) {
2519 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2520 dtlck = (struct dt_lock *) & tlck->lock;
2521 /* linelock header */
2522 ASSERT(dtlck->index == 0);
2523 lv = & dtlck->lv[0];
2524 lv->offset = 0;
2525 lv->length = 1;
2526 dtlck->index++;
2527
2528 lp->header.next = cpu_to_le64(nxaddr);
2529 DT_PUTPAGE(lmp);
2530 }
2531
2532 if (rmp) {
2533 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2534 dtlck = (struct dt_lock *) & tlck->lock;
2535 /* linelock header */
2536 ASSERT(dtlck->index == 0);
2537 lv = & dtlck->lv[0];
2538 lv->offset = 0;
2539 lv->length = 1;
2540 dtlck->index++;
2541
2542 rp->header.prev = cpu_to_le64(nxaddr);
2543 DT_PUTPAGE(rmp);
2544 }
2545
2546 /*
2547 * update the target dtpage to be relocated
2548 *
2549 * write LOG_REDOPAGE of LOG_NEW type for dst page
2550 * for the whole target page (logredo() will apply
2551 * after image and update bmap for allocation of the
2552 * dst extent), and update bmap for allocation of
2553 * the dst extent;
2554 */
2555 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2556 dtlck = (struct dt_lock *) & tlck->lock;
2557 /* linelock header */
2558 ASSERT(dtlck->index == 0);
2559 lv = & dtlck->lv[0];
2560
2561 /* update the self address in the dtpage header */
2562 pxd = &p->header.self;
2563 PXDaddress(pxd, nxaddr);
2564
2565 /* the dst page is the same as the src page, i.e.,
2566 * linelock for afterimage of the whole page;
2567 */
2568 lv->offset = 0;
2569 lv->length = p->header.maxslot;
2570 dtlck->index++;
2571
2572 /* update the buffer extent descriptor of the dtpage */
2573 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2574
2575 /* unpin the relocated page */
2576 DT_PUTPAGE(mp);
2577 jfs_info("dtRelocate: target dtpage relocated.");
2578
2579 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2580 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2581 * will also force a bmap update ).
2582 */
2583
2584 /*
2585 * 3. acquire maplock for the source extent to be freed;
2586 */
2587 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2588 * for the source dtpage (logredo() will init NoRedoPage
2589 * filter and will also update bmap for free of the source
2590 * dtpage), and upadte bmap for free of the source dtpage;
2591 */
2592 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2593 pxdlock = (struct pxd_lock *) & tlck->lock;
2594 pxdlock->flag = mlckFREEPXD;
2595 PXDaddress(&pxdlock->pxd, oxaddr);
2596 PXDlength(&pxdlock->pxd, xlen);
2597 pxdlock->index = 1;
2598
2599 /*
2600 * 4. update the parent router entry for relocation;
2601 *
2602 * acquire tlck for the parent entry covering the target dtpage;
2603 * write LOG_REDOPAGE to apply after image only;
2604 */
2605 jfs_info("dtRelocate: update parent router entry.");
2606 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2607 dtlck = (struct dt_lock *) & tlck->lock;
2608 lv = & dtlck->lv[dtlck->index];
2609
2610 /* update the PXD with the new address */
2611 stbl = DT_GETSTBL(pp);
2612 pxd = (pxd_t *) & pp->slot[stbl[index]];
2613 PXDaddress(pxd, nxaddr);
2614 lv->offset = stbl[index];
2615 lv->length = 1;
2616 dtlck->index++;
2617
2618 /* unpin the parent dtpage */
2619 DT_PUTPAGE(pmp);
2620
2621 return rc;
2622 }
2623
2624 /*
2625 * NAME: dtSearchNode()
2626 *
2627 * FUNCTION: Search for an dtpage containing a specified address
2628 * This function is mainly used by defragfs utility.
2629 *
2630 * NOTE: Search result on stack, the found page is pinned at exit.
2631 * The result page must be an internal dtpage.
2632 * lmxaddr give the address of the left most page of the
2633 * dtree level, in which the required dtpage resides.
2634 */
dtSearchNode(struct inode * ip,s64 lmxaddr,pxd_t * kpxd,struct btstack * btstack)2635 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2636 struct btstack * btstack)
2637 {
2638 int rc = 0;
2639 s64 bn;
2640 struct metapage *mp;
2641 dtpage_t *p;
2642 int psize = 288; /* initial in-line directory */
2643 s8 *stbl;
2644 int i;
2645 pxd_t *pxd;
2646 struct btframe *btsp;
2647
2648 BT_CLR(btstack); /* reset stack */
2649
2650 /*
2651 * descend tree to the level with specified leftmost page
2652 *
2653 * by convention, root bn = 0.
2654 */
2655 for (bn = 0;;) {
2656 /* get/pin the page to search */
2657 DT_GETPAGE(ip, bn, mp, psize, p, rc);
2658 if (rc)
2659 return rc;
2660
2661 /* does the xaddr of leftmost page of the levevl
2662 * matches levevl search key ?
2663 */
2664 if (p->header.flag & BT_ROOT) {
2665 if (lmxaddr == 0)
2666 break;
2667 } else if (addressPXD(&p->header.self) == lmxaddr)
2668 break;
2669
2670 /*
2671 * descend down to leftmost child page
2672 */
2673 if (p->header.flag & BT_LEAF) {
2674 DT_PUTPAGE(mp);
2675 return -ESTALE;
2676 }
2677
2678 /* get the leftmost entry */
2679 stbl = DT_GETSTBL(p);
2680 pxd = (pxd_t *) & p->slot[stbl[0]];
2681
2682 /* get the child page block address */
2683 bn = addressPXD(pxd);
2684 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2685 /* unpin the parent page */
2686 DT_PUTPAGE(mp);
2687 }
2688
2689 /*
2690 * search each page at the current levevl
2691 */
2692 loop:
2693 stbl = DT_GETSTBL(p);
2694 for (i = 0; i < p->header.nextindex; i++) {
2695 pxd = (pxd_t *) & p->slot[stbl[i]];
2696
2697 /* found the specified router entry */
2698 if (addressPXD(pxd) == addressPXD(kpxd) &&
2699 lengthPXD(pxd) == lengthPXD(kpxd)) {
2700 btsp = btstack->top;
2701 btsp->bn = bn;
2702 btsp->index = i;
2703 btsp->mp = mp;
2704
2705 return 0;
2706 }
2707 }
2708
2709 /* get the right sibling page if any */
2710 if (p->header.next)
2711 bn = le64_to_cpu(p->header.next);
2712 else {
2713 DT_PUTPAGE(mp);
2714 return -ESTALE;
2715 }
2716
2717 /* unpin current page */
2718 DT_PUTPAGE(mp);
2719
2720 /* get the right sibling page */
2721 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2722 if (rc)
2723 return rc;
2724
2725 goto loop;
2726 }
2727 #endif /* _NOTYET */
2728
2729 /*
2730 * dtRelink()
2731 *
2732 * function:
2733 * link around a freed page.
2734 *
2735 * parameter:
2736 * fp: page to be freed
2737 *
2738 * return:
2739 */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2740 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2741 {
2742 int rc;
2743 struct metapage *mp;
2744 s64 nextbn, prevbn;
2745 struct tlock *tlck;
2746 struct dt_lock *dtlck;
2747 struct lv *lv;
2748
2749 nextbn = le64_to_cpu(p->header.next);
2750 prevbn = le64_to_cpu(p->header.prev);
2751
2752 /* update prev pointer of the next page */
2753 if (nextbn != 0) {
2754 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2755 if (rc)
2756 return rc;
2757
2758 BT_MARK_DIRTY(mp, ip);
2759 /*
2760 * acquire a transaction lock on the next page
2761 *
2762 * action: update prev pointer;
2763 */
2764 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2765 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2766 tlck, ip, mp);
2767 dtlck = (struct dt_lock *) & tlck->lock;
2768
2769 /* linelock header */
2770 if (dtlck->index >= dtlck->maxcnt)
2771 dtlck = (struct dt_lock *) txLinelock(dtlck);
2772 lv = & dtlck->lv[dtlck->index];
2773 lv->offset = 0;
2774 lv->length = 1;
2775 dtlck->index++;
2776
2777 p->header.prev = cpu_to_le64(prevbn);
2778 DT_PUTPAGE(mp);
2779 }
2780
2781 /* update next pointer of the previous page */
2782 if (prevbn != 0) {
2783 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2784 if (rc)
2785 return rc;
2786
2787 BT_MARK_DIRTY(mp, ip);
2788 /*
2789 * acquire a transaction lock on the prev page
2790 *
2791 * action: update next pointer;
2792 */
2793 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2794 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2795 tlck, ip, mp);
2796 dtlck = (struct dt_lock *) & tlck->lock;
2797
2798 /* linelock header */
2799 if (dtlck->index >= dtlck->maxcnt)
2800 dtlck = (struct dt_lock *) txLinelock(dtlck);
2801 lv = & dtlck->lv[dtlck->index];
2802 lv->offset = 0;
2803 lv->length = 1;
2804 dtlck->index++;
2805
2806 p->header.next = cpu_to_le64(nextbn);
2807 DT_PUTPAGE(mp);
2808 }
2809
2810 return 0;
2811 }
2812
2813
2814 /*
2815 * dtInitRoot()
2816 *
2817 * initialize directory root (inline in inode)
2818 */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2819 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2820 {
2821 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2822 dtroot_t *p;
2823 int fsi;
2824 struct dtslot *f;
2825 struct tlock *tlck;
2826 struct dt_lock *dtlck;
2827 struct lv *lv;
2828 u16 xflag_save;
2829
2830 /*
2831 * If this was previously an non-empty directory, we need to remove
2832 * the old directory table.
2833 */
2834 if (DO_INDEX(ip)) {
2835 if (!jfs_dirtable_inline(ip)) {
2836 struct tblock *tblk = tid_to_tblock(tid);
2837 /*
2838 * We're playing games with the tid's xflag. If
2839 * we're removing a regular file, the file's xtree
2840 * is committed with COMMIT_PMAP, but we always
2841 * commit the directories xtree with COMMIT_PWMAP.
2842 */
2843 xflag_save = tblk->xflag;
2844 tblk->xflag = 0;
2845 /*
2846 * xtTruncate isn't guaranteed to fully truncate
2847 * the xtree. The caller needs to check i_size
2848 * after committing the transaction to see if
2849 * additional truncation is needed. The
2850 * COMMIT_Stale flag tells caller that we
2851 * initiated the truncation.
2852 */
2853 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2854 set_cflag(COMMIT_Stale, ip);
2855
2856 tblk->xflag = xflag_save;
2857 } else
2858 ip->i_size = 1;
2859
2860 jfs_ip->next_index = 2;
2861 } else
2862 ip->i_size = IDATASIZE;
2863
2864 /*
2865 * acquire a transaction lock on the root
2866 *
2867 * action: directory initialization;
2868 */
2869 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2870 tlckDTREE | tlckENTRY | tlckBTROOT);
2871 dtlck = (struct dt_lock *) & tlck->lock;
2872
2873 /* linelock root */
2874 ASSERT(dtlck->index == 0);
2875 lv = & dtlck->lv[0];
2876 lv->offset = 0;
2877 lv->length = DTROOTMAXSLOT;
2878 dtlck->index++;
2879
2880 p = &jfs_ip->i_dtroot;
2881
2882 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2883
2884 p->header.nextindex = 0;
2885
2886 /* init freelist */
2887 fsi = 1;
2888 f = &p->slot[fsi];
2889
2890 /* init data area of root */
2891 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2892 f->next = fsi;
2893 f->next = -1;
2894
2895 p->header.freelist = 1;
2896 p->header.freecnt = 8;
2897
2898 /* init '..' entry */
2899 p->header.idotdot = cpu_to_le32(idotdot);
2900
2901 return;
2902 }
2903
2904 /*
2905 * add_missing_indices()
2906 *
2907 * function: Fix dtree page in which one or more entries has an invalid index.
2908 * fsck.jfs should really fix this, but it currently does not.
2909 * Called from jfs_readdir when bad index is detected.
2910 */
add_missing_indices(struct inode * inode,s64 bn)2911 static void add_missing_indices(struct inode *inode, s64 bn)
2912 {
2913 struct ldtentry *d;
2914 struct dt_lock *dtlck;
2915 int i;
2916 uint index;
2917 struct lv *lv;
2918 struct metapage *mp;
2919 dtpage_t *p;
2920 int rc;
2921 s8 *stbl;
2922 tid_t tid;
2923 struct tlock *tlck;
2924
2925 tid = txBegin(inode->i_sb, 0);
2926
2927 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2928
2929 if (rc) {
2930 printk(KERN_ERR "DT_GETPAGE failed!\n");
2931 goto end;
2932 }
2933 BT_MARK_DIRTY(mp, inode);
2934
2935 ASSERT(p->header.flag & BT_LEAF);
2936
2937 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2938 if (BT_IS_ROOT(mp))
2939 tlck->type |= tlckBTROOT;
2940
2941 dtlck = (struct dt_lock *) &tlck->lock;
2942
2943 stbl = DT_GETSTBL(p);
2944 for (i = 0; i < p->header.nextindex; i++) {
2945 d = (struct ldtentry *) &p->slot[stbl[i]];
2946 index = le32_to_cpu(d->index);
2947 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2948 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2949 if (dtlck->index >= dtlck->maxcnt)
2950 dtlck = (struct dt_lock *) txLinelock(dtlck);
2951 lv = &dtlck->lv[dtlck->index];
2952 lv->offset = stbl[i];
2953 lv->length = 1;
2954 dtlck->index++;
2955 }
2956 }
2957
2958 DT_PUTPAGE(mp);
2959 (void) txCommit(tid, 1, &inode, 0);
2960 end:
2961 txEnd(tid);
2962 }
2963
2964 /*
2965 * Buffer to hold directory entry info while traversing a dtree page
2966 * before being fed to the filldir function
2967 */
2968 struct jfs_dirent {
2969 loff_t position;
2970 int ino;
2971 u16 name_len;
2972 char name[];
2973 };
2974
2975 /*
2976 * function to determine next variable-sized jfs_dirent in buffer
2977 */
next_jfs_dirent(struct jfs_dirent * dirent)2978 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2979 {
2980 return (struct jfs_dirent *)
2981 ((char *)dirent +
2982 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2983 sizeof (loff_t) - 1) &
2984 ~(sizeof (loff_t) - 1)));
2985 }
2986
2987 /*
2988 * jfs_readdir()
2989 *
2990 * function: read directory entries sequentially
2991 * from the specified entry offset
2992 *
2993 * parameter:
2994 *
2995 * return: offset = (pn, index) of start entry
2996 * of next jfs_readdir()/dtRead()
2997 */
jfs_readdir(struct file * file,struct dir_context * ctx)2998 int jfs_readdir(struct file *file, struct dir_context *ctx)
2999 {
3000 struct inode *ip = file_inode(file);
3001 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3002 int rc = 0;
3003 loff_t dtpos; /* legacy OS/2 style position */
3004 struct dtoffset {
3005 s16 pn;
3006 s16 index;
3007 s32 unused;
3008 } *dtoffset = (struct dtoffset *) &dtpos;
3009 s64 bn;
3010 struct metapage *mp;
3011 dtpage_t *p;
3012 int index;
3013 s8 *stbl;
3014 struct btstack btstack;
3015 int i, next;
3016 struct ldtentry *d;
3017 struct dtslot *t;
3018 int d_namleft, len, outlen;
3019 unsigned long dirent_buf;
3020 char *name_ptr;
3021 u32 dir_index;
3022 int do_index = 0;
3023 uint loop_count = 0;
3024 struct jfs_dirent *jfs_dirent;
3025 int jfs_dirents;
3026 int overflow, fix_page, page_fixed = 0;
3027 static int unique_pos = 2; /* If we can't fix broken index */
3028
3029 if (ctx->pos == DIREND)
3030 return 0;
3031
3032 if (DO_INDEX(ip)) {
3033 /*
3034 * persistent index is stored in directory entries.
3035 * Special cases: 0 = .
3036 * 1 = ..
3037 * -1 = End of directory
3038 */
3039 do_index = 1;
3040
3041 dir_index = (u32) ctx->pos;
3042
3043 /*
3044 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
3045 * we return to the vfs is one greater than the one we use
3046 * internally.
3047 */
3048 if (dir_index)
3049 dir_index--;
3050
3051 if (dir_index > 1) {
3052 struct dir_table_slot dirtab_slot;
3053
3054 if (dtEmpty(ip) ||
3055 (dir_index >= JFS_IP(ip)->next_index)) {
3056 /* Stale position. Directory has shrunk */
3057 ctx->pos = DIREND;
3058 return 0;
3059 }
3060 repeat:
3061 rc = read_index(ip, dir_index, &dirtab_slot);
3062 if (rc) {
3063 ctx->pos = DIREND;
3064 return rc;
3065 }
3066 if (dirtab_slot.flag == DIR_INDEX_FREE) {
3067 if (loop_count++ > JFS_IP(ip)->next_index) {
3068 jfs_err("jfs_readdir detected infinite loop!");
3069 ctx->pos = DIREND;
3070 return 0;
3071 }
3072 dir_index = le32_to_cpu(dirtab_slot.addr2);
3073 if (dir_index == -1) {
3074 ctx->pos = DIREND;
3075 return 0;
3076 }
3077 goto repeat;
3078 }
3079 bn = addressDTS(&dirtab_slot);
3080 index = dirtab_slot.slot;
3081 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3082 if (rc) {
3083 ctx->pos = DIREND;
3084 return 0;
3085 }
3086 if (p->header.flag & BT_INTERNAL) {
3087 jfs_err("jfs_readdir: bad index table");
3088 DT_PUTPAGE(mp);
3089 ctx->pos = DIREND;
3090 return 0;
3091 }
3092 } else {
3093 if (dir_index == 0) {
3094 /*
3095 * self "."
3096 */
3097 ctx->pos = 1;
3098 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3099 return 0;
3100 }
3101 /*
3102 * parent ".."
3103 */
3104 ctx->pos = 2;
3105 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3106 return 0;
3107
3108 /*
3109 * Find first entry of left-most leaf
3110 */
3111 if (dtEmpty(ip)) {
3112 ctx->pos = DIREND;
3113 return 0;
3114 }
3115
3116 if ((rc = dtReadFirst(ip, &btstack)))
3117 return rc;
3118
3119 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3120 }
3121 } else {
3122 /*
3123 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3124 *
3125 * pn = 0; index = 1: First entry "."
3126 * pn = 0; index = 2: Second entry ".."
3127 * pn > 0: Real entries, pn=1 -> leftmost page
3128 * pn = index = -1: No more entries
3129 */
3130 dtpos = ctx->pos;
3131 if (dtpos < 2) {
3132 /* build "." entry */
3133 ctx->pos = 1;
3134 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
3135 return 0;
3136 dtoffset->index = 2;
3137 ctx->pos = dtpos;
3138 }
3139
3140 if (dtoffset->pn == 0) {
3141 if (dtoffset->index == 2) {
3142 /* build ".." entry */
3143 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
3144 return 0;
3145 } else {
3146 jfs_err("jfs_readdir called with invalid offset!");
3147 }
3148 dtoffset->pn = 1;
3149 dtoffset->index = 0;
3150 ctx->pos = dtpos;
3151 }
3152
3153 if (dtEmpty(ip)) {
3154 ctx->pos = DIREND;
3155 return 0;
3156 }
3157
3158 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
3159 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
3160 rc);
3161 ctx->pos = DIREND;
3162 return 0;
3163 }
3164 /* get start leaf page and index */
3165 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3166
3167 /* offset beyond directory eof ? */
3168 if (bn < 0) {
3169 ctx->pos = DIREND;
3170 return 0;
3171 }
3172 }
3173
3174 dirent_buf = __get_free_page(GFP_KERNEL);
3175 if (dirent_buf == 0) {
3176 DT_PUTPAGE(mp);
3177 jfs_warn("jfs_readdir: __get_free_page failed!");
3178 ctx->pos = DIREND;
3179 return -ENOMEM;
3180 }
3181
3182 while (1) {
3183 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3184 jfs_dirents = 0;
3185 overflow = fix_page = 0;
3186
3187 stbl = DT_GETSTBL(p);
3188
3189 for (i = index; i < p->header.nextindex; i++) {
3190 d = (struct ldtentry *) & p->slot[stbl[i]];
3191
3192 if (((long) jfs_dirent + d->namlen + 1) >
3193 (dirent_buf + PAGE_SIZE)) {
3194 /* DBCS codepages could overrun dirent_buf */
3195 index = i;
3196 overflow = 1;
3197 break;
3198 }
3199
3200 d_namleft = d->namlen;
3201 name_ptr = jfs_dirent->name;
3202 jfs_dirent->ino = le32_to_cpu(d->inumber);
3203
3204 if (do_index) {
3205 len = min(d_namleft, DTLHDRDATALEN);
3206 jfs_dirent->position = le32_to_cpu(d->index);
3207 /*
3208 * d->index should always be valid, but it
3209 * isn't. fsck.jfs doesn't create the
3210 * directory index for the lost+found
3211 * directory. Rather than let it go,
3212 * we can try to fix it.
3213 */
3214 if ((jfs_dirent->position < 2) ||
3215 (jfs_dirent->position >=
3216 JFS_IP(ip)->next_index)) {
3217 if (!page_fixed && !isReadOnly(ip)) {
3218 fix_page = 1;
3219 /*
3220 * setting overflow and setting
3221 * index to i will cause the
3222 * same page to be processed
3223 * again starting here
3224 */
3225 overflow = 1;
3226 index = i;
3227 break;
3228 }
3229 jfs_dirent->position = unique_pos++;
3230 }
3231 /*
3232 * We add 1 to the index because we may
3233 * use a value of 2 internally, and NFSv4
3234 * doesn't like that.
3235 */
3236 jfs_dirent->position++;
3237 } else {
3238 jfs_dirent->position = dtpos;
3239 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3240 }
3241
3242 /* copy the name of head/only segment */
3243 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3244 codepage);
3245 jfs_dirent->name_len = outlen;
3246
3247 /* copy name in the additional segment(s) */
3248 next = d->next;
3249 while (next >= 0) {
3250 t = (struct dtslot *) & p->slot[next];
3251 name_ptr += outlen;
3252 d_namleft -= len;
3253 /* Sanity Check */
3254 if (d_namleft == 0) {
3255 jfs_error(ip->i_sb,
3256 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
3257 (long)ip->i_ino,
3258 (long long)bn,
3259 i);
3260 goto skip_one;
3261 }
3262 len = min(d_namleft, DTSLOTDATALEN);
3263 outlen = jfs_strfromUCS_le(name_ptr, t->name,
3264 len, codepage);
3265 jfs_dirent->name_len += outlen;
3266
3267 next = t->next;
3268 }
3269
3270 jfs_dirents++;
3271 jfs_dirent = next_jfs_dirent(jfs_dirent);
3272 skip_one:
3273 if (!do_index)
3274 dtoffset->index++;
3275 }
3276
3277 if (!overflow) {
3278 /* Point to next leaf page */
3279 if (p->header.flag & BT_ROOT)
3280 bn = 0;
3281 else {
3282 bn = le64_to_cpu(p->header.next);
3283 index = 0;
3284 /* update offset (pn:index) for new page */
3285 if (!do_index) {
3286 dtoffset->pn++;
3287 dtoffset->index = 0;
3288 }
3289 }
3290 page_fixed = 0;
3291 }
3292
3293 /* unpin previous leaf page */
3294 DT_PUTPAGE(mp);
3295
3296 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3297 while (jfs_dirents--) {
3298 ctx->pos = jfs_dirent->position;
3299 if (!dir_emit(ctx, jfs_dirent->name,
3300 jfs_dirent->name_len,
3301 jfs_dirent->ino, DT_UNKNOWN))
3302 goto out;
3303 jfs_dirent = next_jfs_dirent(jfs_dirent);
3304 }
3305
3306 if (fix_page) {
3307 add_missing_indices(ip, bn);
3308 page_fixed = 1;
3309 }
3310
3311 if (!overflow && (bn == 0)) {
3312 ctx->pos = DIREND;
3313 break;
3314 }
3315
3316 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3317 if (rc) {
3318 free_page(dirent_buf);
3319 return rc;
3320 }
3321 }
3322
3323 out:
3324 free_page(dirent_buf);
3325
3326 return rc;
3327 }
3328
3329
3330 /*
3331 * dtReadFirst()
3332 *
3333 * function: get the leftmost page of the directory
3334 */
dtReadFirst(struct inode * ip,struct btstack * btstack)3335 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3336 {
3337 int rc = 0;
3338 s64 bn;
3339 int psize = 288; /* initial in-line directory */
3340 struct metapage *mp;
3341 dtpage_t *p;
3342 s8 *stbl;
3343 struct btframe *btsp;
3344 pxd_t *xd;
3345
3346 BT_CLR(btstack); /* reset stack */
3347
3348 /*
3349 * descend leftmost path of the tree
3350 *
3351 * by convention, root bn = 0.
3352 */
3353 for (bn = 0;;) {
3354 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3355 if (rc)
3356 return rc;
3357
3358 /*
3359 * leftmost leaf page
3360 */
3361 if (p->header.flag & BT_LEAF) {
3362 /* return leftmost entry */
3363 btsp = btstack->top;
3364 btsp->bn = bn;
3365 btsp->index = 0;
3366 btsp->mp = mp;
3367
3368 return 0;
3369 }
3370
3371 /*
3372 * descend down to leftmost child page
3373 */
3374 if (BT_STACK_FULL(btstack)) {
3375 DT_PUTPAGE(mp);
3376 jfs_error(ip->i_sb, "btstack overrun\n");
3377 BT_STACK_DUMP(btstack);
3378 return -EIO;
3379 }
3380 /* push (bn, index) of the parent page/entry */
3381 BT_PUSH(btstack, bn, 0);
3382
3383 /* get the leftmost entry */
3384 stbl = DT_GETSTBL(p);
3385 xd = (pxd_t *) & p->slot[stbl[0]];
3386
3387 /* get the child page block address */
3388 bn = addressPXD(xd);
3389 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3390
3391 /* unpin the parent page */
3392 DT_PUTPAGE(mp);
3393 }
3394 }
3395
3396
3397 /*
3398 * dtReadNext()
3399 *
3400 * function: get the page of the specified offset (pn:index)
3401 *
3402 * return: if (offset > eof), bn = -1;
3403 *
3404 * note: if index > nextindex of the target leaf page,
3405 * start with 1st entry of next leaf page;
3406 */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3407 static int dtReadNext(struct inode *ip, loff_t * offset,
3408 struct btstack * btstack)
3409 {
3410 int rc = 0;
3411 struct dtoffset {
3412 s16 pn;
3413 s16 index;
3414 s32 unused;
3415 } *dtoffset = (struct dtoffset *) offset;
3416 s64 bn;
3417 struct metapage *mp;
3418 dtpage_t *p;
3419 int index;
3420 int pn;
3421 s8 *stbl;
3422 struct btframe *btsp, *parent;
3423 pxd_t *xd;
3424
3425 /*
3426 * get leftmost leaf page pinned
3427 */
3428 if ((rc = dtReadFirst(ip, btstack)))
3429 return rc;
3430
3431 /* get leaf page */
3432 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3433
3434 /* get the start offset (pn:index) */
3435 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3436 index = dtoffset->index;
3437
3438 /* start at leftmost page ? */
3439 if (pn == 0) {
3440 /* offset beyond eof ? */
3441 if (index < p->header.nextindex)
3442 goto out;
3443
3444 if (p->header.flag & BT_ROOT) {
3445 bn = -1;
3446 goto out;
3447 }
3448
3449 /* start with 1st entry of next leaf page */
3450 dtoffset->pn++;
3451 dtoffset->index = index = 0;
3452 goto a;
3453 }
3454
3455 /* start at non-leftmost page: scan parent pages for large pn */
3456 if (p->header.flag & BT_ROOT) {
3457 bn = -1;
3458 goto out;
3459 }
3460
3461 /* start after next leaf page ? */
3462 if (pn > 1)
3463 goto b;
3464
3465 /* get leaf page pn = 1 */
3466 a:
3467 bn = le64_to_cpu(p->header.next);
3468
3469 /* unpin leaf page */
3470 DT_PUTPAGE(mp);
3471
3472 /* offset beyond eof ? */
3473 if (bn == 0) {
3474 bn = -1;
3475 goto out;
3476 }
3477
3478 goto c;
3479
3480 /*
3481 * scan last internal page level to get target leaf page
3482 */
3483 b:
3484 /* unpin leftmost leaf page */
3485 DT_PUTPAGE(mp);
3486
3487 /* get left most parent page */
3488 btsp = btstack->top;
3489 parent = btsp - 1;
3490 bn = parent->bn;
3491 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3492 if (rc)
3493 return rc;
3494
3495 /* scan parent pages at last internal page level */
3496 while (pn >= p->header.nextindex) {
3497 pn -= p->header.nextindex;
3498
3499 /* get next parent page address */
3500 bn = le64_to_cpu(p->header.next);
3501
3502 /* unpin current parent page */
3503 DT_PUTPAGE(mp);
3504
3505 /* offset beyond eof ? */
3506 if (bn == 0) {
3507 bn = -1;
3508 goto out;
3509 }
3510
3511 /* get next parent page */
3512 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3513 if (rc)
3514 return rc;
3515
3516 /* update parent page stack frame */
3517 parent->bn = bn;
3518 }
3519
3520 /* get leaf page address */
3521 stbl = DT_GETSTBL(p);
3522 xd = (pxd_t *) & p->slot[stbl[pn]];
3523 bn = addressPXD(xd);
3524
3525 /* unpin parent page */
3526 DT_PUTPAGE(mp);
3527
3528 /*
3529 * get target leaf page
3530 */
3531 c:
3532 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3533 if (rc)
3534 return rc;
3535
3536 /*
3537 * leaf page has been completed:
3538 * start with 1st entry of next leaf page
3539 */
3540 if (index >= p->header.nextindex) {
3541 bn = le64_to_cpu(p->header.next);
3542
3543 /* unpin leaf page */
3544 DT_PUTPAGE(mp);
3545
3546 /* offset beyond eof ? */
3547 if (bn == 0) {
3548 bn = -1;
3549 goto out;
3550 }
3551
3552 /* get next leaf page */
3553 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3554 if (rc)
3555 return rc;
3556
3557 /* start with 1st entry of next leaf page */
3558 dtoffset->pn++;
3559 dtoffset->index = 0;
3560 }
3561
3562 out:
3563 /* return target leaf page pinned */
3564 btsp = btstack->top;
3565 btsp->bn = bn;
3566 btsp->index = dtoffset->index;
3567 btsp->mp = mp;
3568
3569 return 0;
3570 }
3571
3572
3573 /*
3574 * dtCompare()
3575 *
3576 * function: compare search key with an internal entry
3577 *
3578 * return:
3579 * < 0 if k is < record
3580 * = 0 if k is = record
3581 * > 0 if k is > record
3582 */
dtCompare(struct component_name * key,dtpage_t * p,int si)3583 static int dtCompare(struct component_name * key, /* search key */
3584 dtpage_t * p, /* directory page */
3585 int si)
3586 { /* entry slot index */
3587 wchar_t *kname;
3588 __le16 *name;
3589 int klen, namlen, len, rc;
3590 struct idtentry *ih;
3591 struct dtslot *t;
3592
3593 /*
3594 * force the left-most key on internal pages, at any level of
3595 * the tree, to be less than any search key.
3596 * this obviates having to update the leftmost key on an internal
3597 * page when the user inserts a new key in the tree smaller than
3598 * anything that has been stored.
3599 *
3600 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3601 * at any internal page at any level of the tree,
3602 * it descends to child of the entry anyway -
3603 * ? make the entry as min size dummy entry)
3604 *
3605 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3606 * return (1);
3607 */
3608
3609 kname = key->name;
3610 klen = key->namlen;
3611
3612 ih = (struct idtentry *) & p->slot[si];
3613 si = ih->next;
3614 name = ih->name;
3615 namlen = ih->namlen;
3616 len = min(namlen, DTIHDRDATALEN);
3617
3618 /* compare with head/only segment */
3619 len = min(klen, len);
3620 if ((rc = UniStrncmp_le(kname, name, len)))
3621 return rc;
3622
3623 klen -= len;
3624 namlen -= len;
3625
3626 /* compare with additional segment(s) */
3627 kname += len;
3628 while (klen > 0 && namlen > 0) {
3629 /* compare with next name segment */
3630 t = (struct dtslot *) & p->slot[si];
3631 len = min(namlen, DTSLOTDATALEN);
3632 len = min(klen, len);
3633 name = t->name;
3634 if ((rc = UniStrncmp_le(kname, name, len)))
3635 return rc;
3636
3637 klen -= len;
3638 namlen -= len;
3639 kname += len;
3640 si = t->next;
3641 }
3642
3643 return (klen - namlen);
3644 }
3645
3646
3647
3648
3649 /*
3650 * ciCompare()
3651 *
3652 * function: compare search key with an (leaf/internal) entry
3653 *
3654 * return:
3655 * < 0 if k is < record
3656 * = 0 if k is = record
3657 * > 0 if k is > record
3658 */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3659 static int ciCompare(struct component_name * key, /* search key */
3660 dtpage_t * p, /* directory page */
3661 int si, /* entry slot index */
3662 int flag)
3663 {
3664 wchar_t *kname, x;
3665 __le16 *name;
3666 int klen, namlen, len, rc;
3667 struct ldtentry *lh;
3668 struct idtentry *ih;
3669 struct dtslot *t;
3670 int i;
3671
3672 /*
3673 * force the left-most key on internal pages, at any level of
3674 * the tree, to be less than any search key.
3675 * this obviates having to update the leftmost key on an internal
3676 * page when the user inserts a new key in the tree smaller than
3677 * anything that has been stored.
3678 *
3679 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3680 * at any internal page at any level of the tree,
3681 * it descends to child of the entry anyway -
3682 * ? make the entry as min size dummy entry)
3683 *
3684 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3685 * return (1);
3686 */
3687
3688 kname = key->name;
3689 klen = key->namlen;
3690
3691 /*
3692 * leaf page entry
3693 */
3694 if (p->header.flag & BT_LEAF) {
3695 lh = (struct ldtentry *) & p->slot[si];
3696 si = lh->next;
3697 name = lh->name;
3698 namlen = lh->namlen;
3699 if (flag & JFS_DIR_INDEX)
3700 len = min(namlen, DTLHDRDATALEN);
3701 else
3702 len = min(namlen, DTLHDRDATALEN_LEGACY);
3703 }
3704 /*
3705 * internal page entry
3706 */
3707 else {
3708 ih = (struct idtentry *) & p->slot[si];
3709 si = ih->next;
3710 name = ih->name;
3711 namlen = ih->namlen;
3712 len = min(namlen, DTIHDRDATALEN);
3713 }
3714
3715 /* compare with head/only segment */
3716 len = min(klen, len);
3717 for (i = 0; i < len; i++, kname++, name++) {
3718 /* only uppercase if case-insensitive support is on */
3719 if ((flag & JFS_OS2) == JFS_OS2)
3720 x = UniToupper(le16_to_cpu(*name));
3721 else
3722 x = le16_to_cpu(*name);
3723 if ((rc = *kname - x))
3724 return rc;
3725 }
3726
3727 klen -= len;
3728 namlen -= len;
3729
3730 /* compare with additional segment(s) */
3731 while (klen > 0 && namlen > 0) {
3732 /* compare with next name segment */
3733 t = (struct dtslot *) & p->slot[si];
3734 len = min(namlen, DTSLOTDATALEN);
3735 len = min(klen, len);
3736 name = t->name;
3737 for (i = 0; i < len; i++, kname++, name++) {
3738 /* only uppercase if case-insensitive support is on */
3739 if ((flag & JFS_OS2) == JFS_OS2)
3740 x = UniToupper(le16_to_cpu(*name));
3741 else
3742 x = le16_to_cpu(*name);
3743
3744 if ((rc = *kname - x))
3745 return rc;
3746 }
3747
3748 klen -= len;
3749 namlen -= len;
3750 si = t->next;
3751 }
3752
3753 return (klen - namlen);
3754 }
3755
3756
3757 /*
3758 * ciGetLeafPrefixKey()
3759 *
3760 * function: compute prefix of suffix compression
3761 * from two adjacent leaf entries
3762 * across page boundary
3763 *
3764 * return: non-zero on error
3765 *
3766 */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3767 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3768 int ri, struct component_name * key, int flag)
3769 {
3770 int klen, namlen;
3771 wchar_t *pl, *pr, *kname;
3772 struct component_name lkey;
3773 struct component_name rkey;
3774
3775 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3776 GFP_KERNEL);
3777 if (lkey.name == NULL)
3778 return -ENOMEM;
3779
3780 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3781 GFP_KERNEL);
3782 if (rkey.name == NULL) {
3783 kfree(lkey.name);
3784 return -ENOMEM;
3785 }
3786
3787 /* get left and right key */
3788 dtGetKey(lp, li, &lkey, flag);
3789 lkey.name[lkey.namlen] = 0;
3790
3791 if ((flag & JFS_OS2) == JFS_OS2)
3792 ciToUpper(&lkey);
3793
3794 dtGetKey(rp, ri, &rkey, flag);
3795 rkey.name[rkey.namlen] = 0;
3796
3797
3798 if ((flag & JFS_OS2) == JFS_OS2)
3799 ciToUpper(&rkey);
3800
3801 /* compute prefix */
3802 klen = 0;
3803 kname = key->name;
3804 namlen = min(lkey.namlen, rkey.namlen);
3805 for (pl = lkey.name, pr = rkey.name;
3806 namlen; pl++, pr++, namlen--, klen++, kname++) {
3807 *kname = *pr;
3808 if (*pl != *pr) {
3809 key->namlen = klen + 1;
3810 goto free_names;
3811 }
3812 }
3813
3814 /* l->namlen <= r->namlen since l <= r */
3815 if (lkey.namlen < rkey.namlen) {
3816 *kname = *pr;
3817 key->namlen = klen + 1;
3818 } else /* l->namelen == r->namelen */
3819 key->namlen = klen;
3820
3821 free_names:
3822 kfree(lkey.name);
3823 kfree(rkey.name);
3824 return 0;
3825 }
3826
3827
3828
3829 /*
3830 * dtGetKey()
3831 *
3832 * function: get key of the entry
3833 */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3834 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3835 struct component_name * key, int flag)
3836 {
3837 int si;
3838 s8 *stbl;
3839 struct ldtentry *lh;
3840 struct idtentry *ih;
3841 struct dtslot *t;
3842 int namlen, len;
3843 wchar_t *kname;
3844 __le16 *name;
3845
3846 /* get entry */
3847 stbl = DT_GETSTBL(p);
3848 si = stbl[i];
3849 if (p->header.flag & BT_LEAF) {
3850 lh = (struct ldtentry *) & p->slot[si];
3851 si = lh->next;
3852 namlen = lh->namlen;
3853 name = lh->name;
3854 if (flag & JFS_DIR_INDEX)
3855 len = min(namlen, DTLHDRDATALEN);
3856 else
3857 len = min(namlen, DTLHDRDATALEN_LEGACY);
3858 } else {
3859 ih = (struct idtentry *) & p->slot[si];
3860 si = ih->next;
3861 namlen = ih->namlen;
3862 name = ih->name;
3863 len = min(namlen, DTIHDRDATALEN);
3864 }
3865
3866 key->namlen = namlen;
3867 kname = key->name;
3868
3869 /*
3870 * move head/only segment
3871 */
3872 UniStrncpy_from_le(kname, name, len);
3873
3874 /*
3875 * move additional segment(s)
3876 */
3877 while (si >= 0) {
3878 /* get next segment */
3879 t = &p->slot[si];
3880 kname += len;
3881 namlen -= len;
3882 len = min(namlen, DTSLOTDATALEN);
3883 UniStrncpy_from_le(kname, t->name, len);
3884
3885 si = t->next;
3886 }
3887 }
3888
3889
3890 /*
3891 * dtInsertEntry()
3892 *
3893 * function: allocate free slot(s) and
3894 * write a leaf/internal entry
3895 *
3896 * return: entry slot index
3897 */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3898 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3899 ddata_t * data, struct dt_lock ** dtlock)
3900 {
3901 struct dtslot *h, *t;
3902 struct ldtentry *lh = NULL;
3903 struct idtentry *ih = NULL;
3904 int hsi, fsi, klen, len, nextindex;
3905 wchar_t *kname;
3906 __le16 *name;
3907 s8 *stbl;
3908 pxd_t *xd;
3909 struct dt_lock *dtlck = *dtlock;
3910 struct lv *lv;
3911 int xsi, n;
3912 s64 bn = 0;
3913 struct metapage *mp = NULL;
3914
3915 klen = key->namlen;
3916 kname = key->name;
3917
3918 /* allocate a free slot */
3919 hsi = fsi = p->header.freelist;
3920 h = &p->slot[fsi];
3921 p->header.freelist = h->next;
3922 --p->header.freecnt;
3923
3924 /* open new linelock */
3925 if (dtlck->index >= dtlck->maxcnt)
3926 dtlck = (struct dt_lock *) txLinelock(dtlck);
3927
3928 lv = & dtlck->lv[dtlck->index];
3929 lv->offset = hsi;
3930
3931 /* write head/only segment */
3932 if (p->header.flag & BT_LEAF) {
3933 lh = (struct ldtentry *) h;
3934 lh->next = h->next;
3935 lh->inumber = cpu_to_le32(data->leaf.ino);
3936 lh->namlen = klen;
3937 name = lh->name;
3938 if (data->leaf.ip) {
3939 len = min(klen, DTLHDRDATALEN);
3940 if (!(p->header.flag & BT_ROOT))
3941 bn = addressPXD(&p->header.self);
3942 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3943 data->leaf.ip,
3944 bn, index));
3945 } else
3946 len = min(klen, DTLHDRDATALEN_LEGACY);
3947 } else {
3948 ih = (struct idtentry *) h;
3949 ih->next = h->next;
3950 xd = (pxd_t *) ih;
3951 *xd = data->xd;
3952 ih->namlen = klen;
3953 name = ih->name;
3954 len = min(klen, DTIHDRDATALEN);
3955 }
3956
3957 UniStrncpy_to_le(name, kname, len);
3958
3959 n = 1;
3960 xsi = hsi;
3961
3962 /* write additional segment(s) */
3963 t = h;
3964 klen -= len;
3965 while (klen) {
3966 /* get free slot */
3967 fsi = p->header.freelist;
3968 t = &p->slot[fsi];
3969 p->header.freelist = t->next;
3970 --p->header.freecnt;
3971
3972 /* is next slot contiguous ? */
3973 if (fsi != xsi + 1) {
3974 /* close current linelock */
3975 lv->length = n;
3976 dtlck->index++;
3977
3978 /* open new linelock */
3979 if (dtlck->index < dtlck->maxcnt)
3980 lv++;
3981 else {
3982 dtlck = (struct dt_lock *) txLinelock(dtlck);
3983 lv = & dtlck->lv[0];
3984 }
3985
3986 lv->offset = fsi;
3987 n = 0;
3988 }
3989
3990 kname += len;
3991 len = min(klen, DTSLOTDATALEN);
3992 UniStrncpy_to_le(t->name, kname, len);
3993
3994 n++;
3995 xsi = fsi;
3996 klen -= len;
3997 }
3998
3999 /* close current linelock */
4000 lv->length = n;
4001 dtlck->index++;
4002
4003 *dtlock = dtlck;
4004
4005 /* terminate last/only segment */
4006 if (h == t) {
4007 /* single segment entry */
4008 if (p->header.flag & BT_LEAF)
4009 lh->next = -1;
4010 else
4011 ih->next = -1;
4012 } else
4013 /* multi-segment entry */
4014 t->next = -1;
4015
4016 /* if insert into middle, shift right succeeding entries in stbl */
4017 stbl = DT_GETSTBL(p);
4018 nextindex = p->header.nextindex;
4019 if (index < nextindex) {
4020 memmove(stbl + index + 1, stbl + index, nextindex - index);
4021
4022 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4023 s64 lblock;
4024
4025 /*
4026 * Need to update slot number for entries that moved
4027 * in the stbl
4028 */
4029 mp = NULL;
4030 for (n = index + 1; n <= nextindex; n++) {
4031 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4032 modify_index(data->leaf.tid, data->leaf.ip,
4033 le32_to_cpu(lh->index), bn, n,
4034 &mp, &lblock);
4035 }
4036 if (mp)
4037 release_metapage(mp);
4038 }
4039 }
4040
4041 stbl[index] = hsi;
4042
4043 /* advance next available entry index of stbl */
4044 ++p->header.nextindex;
4045 }
4046
4047
4048 /*
4049 * dtMoveEntry()
4050 *
4051 * function: move entries from split/left page to new/right page
4052 *
4053 * nextindex of dst page and freelist/freecnt of both pages
4054 * are updated.
4055 */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)4056 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4057 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4058 int do_index)
4059 {
4060 int ssi, next; /* src slot index */
4061 int di; /* dst entry index */
4062 int dsi; /* dst slot index */
4063 s8 *sstbl, *dstbl; /* sorted entry table */
4064 int snamlen, len;
4065 struct ldtentry *slh, *dlh = NULL;
4066 struct idtentry *sih, *dih = NULL;
4067 struct dtslot *h, *s, *d;
4068 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4069 struct lv *slv, *dlv;
4070 int xssi, ns, nd;
4071 int sfsi;
4072
4073 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4074 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4075
4076 dsi = dp->header.freelist; /* first (whole page) free slot */
4077 sfsi = sp->header.freelist;
4078
4079 /* linelock destination entry slot */
4080 dlv = & ddtlck->lv[ddtlck->index];
4081 dlv->offset = dsi;
4082
4083 /* linelock source entry slot */
4084 slv = & sdtlck->lv[sdtlck->index];
4085 slv->offset = sstbl[si];
4086 xssi = slv->offset - 1;
4087
4088 /*
4089 * move entries
4090 */
4091 ns = nd = 0;
4092 for (di = 0; si < sp->header.nextindex; si++, di++) {
4093 ssi = sstbl[si];
4094 dstbl[di] = dsi;
4095
4096 /* is next slot contiguous ? */
4097 if (ssi != xssi + 1) {
4098 /* close current linelock */
4099 slv->length = ns;
4100 sdtlck->index++;
4101
4102 /* open new linelock */
4103 if (sdtlck->index < sdtlck->maxcnt)
4104 slv++;
4105 else {
4106 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4107 slv = & sdtlck->lv[0];
4108 }
4109
4110 slv->offset = ssi;
4111 ns = 0;
4112 }
4113
4114 /*
4115 * move head/only segment of an entry
4116 */
4117 /* get dst slot */
4118 h = d = &dp->slot[dsi];
4119
4120 /* get src slot and move */
4121 s = &sp->slot[ssi];
4122 if (sp->header.flag & BT_LEAF) {
4123 /* get source entry */
4124 slh = (struct ldtentry *) s;
4125 dlh = (struct ldtentry *) h;
4126 snamlen = slh->namlen;
4127
4128 if (do_index) {
4129 len = min(snamlen, DTLHDRDATALEN);
4130 dlh->index = slh->index; /* little-endian */
4131 } else
4132 len = min(snamlen, DTLHDRDATALEN_LEGACY);
4133
4134 memcpy(dlh, slh, 6 + len * 2);
4135
4136 next = slh->next;
4137
4138 /* update dst head/only segment next field */
4139 dsi++;
4140 dlh->next = dsi;
4141 } else {
4142 sih = (struct idtentry *) s;
4143 snamlen = sih->namlen;
4144
4145 len = min(snamlen, DTIHDRDATALEN);
4146 dih = (struct idtentry *) h;
4147 memcpy(dih, sih, 10 + len * 2);
4148 next = sih->next;
4149
4150 dsi++;
4151 dih->next = dsi;
4152 }
4153
4154 /* free src head/only segment */
4155 s->next = sfsi;
4156 s->cnt = 1;
4157 sfsi = ssi;
4158
4159 ns++;
4160 nd++;
4161 xssi = ssi;
4162
4163 /*
4164 * move additional segment(s) of the entry
4165 */
4166 snamlen -= len;
4167 while ((ssi = next) >= 0) {
4168 /* is next slot contiguous ? */
4169 if (ssi != xssi + 1) {
4170 /* close current linelock */
4171 slv->length = ns;
4172 sdtlck->index++;
4173
4174 /* open new linelock */
4175 if (sdtlck->index < sdtlck->maxcnt)
4176 slv++;
4177 else {
4178 sdtlck =
4179 (struct dt_lock *)
4180 txLinelock(sdtlck);
4181 slv = & sdtlck->lv[0];
4182 }
4183
4184 slv->offset = ssi;
4185 ns = 0;
4186 }
4187
4188 /* get next source segment */
4189 s = &sp->slot[ssi];
4190
4191 /* get next destination free slot */
4192 d++;
4193
4194 len = min(snamlen, DTSLOTDATALEN);
4195 UniStrncpy_le(d->name, s->name, len);
4196
4197 ns++;
4198 nd++;
4199 xssi = ssi;
4200
4201 dsi++;
4202 d->next = dsi;
4203
4204 /* free source segment */
4205 next = s->next;
4206 s->next = sfsi;
4207 s->cnt = 1;
4208 sfsi = ssi;
4209
4210 snamlen -= len;
4211 } /* end while */
4212
4213 /* terminate dst last/only segment */
4214 if (h == d) {
4215 /* single segment entry */
4216 if (dp->header.flag & BT_LEAF)
4217 dlh->next = -1;
4218 else
4219 dih->next = -1;
4220 } else
4221 /* multi-segment entry */
4222 d->next = -1;
4223 } /* end for */
4224
4225 /* close current linelock */
4226 slv->length = ns;
4227 sdtlck->index++;
4228 *sdtlock = sdtlck;
4229
4230 dlv->length = nd;
4231 ddtlck->index++;
4232 *ddtlock = ddtlck;
4233
4234 /* update source header */
4235 sp->header.freelist = sfsi;
4236 sp->header.freecnt += nd;
4237
4238 /* update destination header */
4239 dp->header.nextindex = di;
4240
4241 dp->header.freelist = dsi;
4242 dp->header.freecnt -= nd;
4243 }
4244
4245
4246 /*
4247 * dtDeleteEntry()
4248 *
4249 * function: free a (leaf/internal) entry
4250 *
4251 * log freelist header, stbl, and each segment slot of entry
4252 * (even though last/only segment next field is modified,
4253 * physical image logging requires all segment slots of
4254 * the entry logged to avoid applying previous updates
4255 * to the same slots)
4256 */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)4257 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4258 {
4259 int fsi; /* free entry slot index */
4260 s8 *stbl;
4261 struct dtslot *t;
4262 int si, freecnt;
4263 struct dt_lock *dtlck = *dtlock;
4264 struct lv *lv;
4265 int xsi, n;
4266
4267 /* get free entry slot index */
4268 stbl = DT_GETSTBL(p);
4269 fsi = stbl[fi];
4270
4271 /* open new linelock */
4272 if (dtlck->index >= dtlck->maxcnt)
4273 dtlck = (struct dt_lock *) txLinelock(dtlck);
4274 lv = & dtlck->lv[dtlck->index];
4275
4276 lv->offset = fsi;
4277
4278 /* get the head/only segment */
4279 t = &p->slot[fsi];
4280 if (p->header.flag & BT_LEAF)
4281 si = ((struct ldtentry *) t)->next;
4282 else
4283 si = ((struct idtentry *) t)->next;
4284 t->next = si;
4285 t->cnt = 1;
4286
4287 n = freecnt = 1;
4288 xsi = fsi;
4289
4290 /* find the last/only segment */
4291 while (si >= 0) {
4292 /* is next slot contiguous ? */
4293 if (si != xsi + 1) {
4294 /* close current linelock */
4295 lv->length = n;
4296 dtlck->index++;
4297
4298 /* open new linelock */
4299 if (dtlck->index < dtlck->maxcnt)
4300 lv++;
4301 else {
4302 dtlck = (struct dt_lock *) txLinelock(dtlck);
4303 lv = & dtlck->lv[0];
4304 }
4305
4306 lv->offset = si;
4307 n = 0;
4308 }
4309
4310 n++;
4311 xsi = si;
4312 freecnt++;
4313
4314 t = &p->slot[si];
4315 t->cnt = 1;
4316 si = t->next;
4317 }
4318
4319 /* close current linelock */
4320 lv->length = n;
4321 dtlck->index++;
4322
4323 *dtlock = dtlck;
4324
4325 /* update freelist */
4326 t->next = p->header.freelist;
4327 p->header.freelist = fsi;
4328 p->header.freecnt += freecnt;
4329
4330 /* if delete from middle,
4331 * shift left the succedding entries in the stbl
4332 */
4333 si = p->header.nextindex;
4334 if (fi < si - 1)
4335 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4336
4337 p->header.nextindex--;
4338 }
4339
4340
4341 /*
4342 * dtTruncateEntry()
4343 *
4344 * function: truncate a (leaf/internal) entry
4345 *
4346 * log freelist header, stbl, and each segment slot of entry
4347 * (even though last/only segment next field is modified,
4348 * physical image logging requires all segment slots of
4349 * the entry logged to avoid applying previous updates
4350 * to the same slots)
4351 */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4352 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4353 {
4354 int tsi; /* truncate entry slot index */
4355 s8 *stbl;
4356 struct dtslot *t;
4357 int si, freecnt;
4358 struct dt_lock *dtlck = *dtlock;
4359 struct lv *lv;
4360 int fsi, xsi, n;
4361
4362 /* get free entry slot index */
4363 stbl = DT_GETSTBL(p);
4364 tsi = stbl[ti];
4365
4366 /* open new linelock */
4367 if (dtlck->index >= dtlck->maxcnt)
4368 dtlck = (struct dt_lock *) txLinelock(dtlck);
4369 lv = & dtlck->lv[dtlck->index];
4370
4371 lv->offset = tsi;
4372
4373 /* get the head/only segment */
4374 t = &p->slot[tsi];
4375 ASSERT(p->header.flag & BT_INTERNAL);
4376 ((struct idtentry *) t)->namlen = 0;
4377 si = ((struct idtentry *) t)->next;
4378 ((struct idtentry *) t)->next = -1;
4379
4380 n = 1;
4381 freecnt = 0;
4382 fsi = si;
4383 xsi = tsi;
4384
4385 /* find the last/only segment */
4386 while (si >= 0) {
4387 /* is next slot contiguous ? */
4388 if (si != xsi + 1) {
4389 /* close current linelock */
4390 lv->length = n;
4391 dtlck->index++;
4392
4393 /* open new linelock */
4394 if (dtlck->index < dtlck->maxcnt)
4395 lv++;
4396 else {
4397 dtlck = (struct dt_lock *) txLinelock(dtlck);
4398 lv = & dtlck->lv[0];
4399 }
4400
4401 lv->offset = si;
4402 n = 0;
4403 }
4404
4405 n++;
4406 xsi = si;
4407 freecnt++;
4408
4409 t = &p->slot[si];
4410 t->cnt = 1;
4411 si = t->next;
4412 }
4413
4414 /* close current linelock */
4415 lv->length = n;
4416 dtlck->index++;
4417
4418 *dtlock = dtlck;
4419
4420 /* update freelist */
4421 if (freecnt == 0)
4422 return;
4423 t->next = p->header.freelist;
4424 p->header.freelist = fsi;
4425 p->header.freecnt += freecnt;
4426 }
4427
4428
4429 /*
4430 * dtLinelockFreelist()
4431 */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4432 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4433 int m, /* max slot index */
4434 struct dt_lock ** dtlock)
4435 {
4436 int fsi; /* free entry slot index */
4437 struct dtslot *t;
4438 int si;
4439 struct dt_lock *dtlck = *dtlock;
4440 struct lv *lv;
4441 int xsi, n;
4442
4443 /* get free entry slot index */
4444 fsi = p->header.freelist;
4445
4446 /* open new linelock */
4447 if (dtlck->index >= dtlck->maxcnt)
4448 dtlck = (struct dt_lock *) txLinelock(dtlck);
4449 lv = & dtlck->lv[dtlck->index];
4450
4451 lv->offset = fsi;
4452
4453 n = 1;
4454 xsi = fsi;
4455
4456 t = &p->slot[fsi];
4457 si = t->next;
4458
4459 /* find the last/only segment */
4460 while (si < m && si >= 0) {
4461 /* is next slot contiguous ? */
4462 if (si != xsi + 1) {
4463 /* close current linelock */
4464 lv->length = n;
4465 dtlck->index++;
4466
4467 /* open new linelock */
4468 if (dtlck->index < dtlck->maxcnt)
4469 lv++;
4470 else {
4471 dtlck = (struct dt_lock *) txLinelock(dtlck);
4472 lv = & dtlck->lv[0];
4473 }
4474
4475 lv->offset = si;
4476 n = 0;
4477 }
4478
4479 n++;
4480 xsi = si;
4481
4482 t = &p->slot[si];
4483 si = t->next;
4484 }
4485
4486 /* close current linelock */
4487 lv->length = n;
4488 dtlck->index++;
4489
4490 *dtlock = dtlck;
4491 }
4492
4493
4494 /*
4495 * NAME: dtModify
4496 *
4497 * FUNCTION: Modify the inode number part of a directory entry
4498 *
4499 * PARAMETERS:
4500 * tid - Transaction id
4501 * ip - Inode of parent directory
4502 * key - Name of entry to be modified
4503 * orig_ino - Original inode number expected in entry
4504 * new_ino - New inode number to put into entry
4505 * flag - JFS_RENAME
4506 *
4507 * RETURNS:
4508 * -ESTALE - If entry found does not match orig_ino passed in
4509 * -ENOENT - If no entry can be found to match key
4510 * 0 - If successfully modified entry
4511 */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4512 int dtModify(tid_t tid, struct inode *ip,
4513 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4514 {
4515 int rc;
4516 s64 bn;
4517 struct metapage *mp;
4518 dtpage_t *p;
4519 int index;
4520 struct btstack btstack;
4521 struct tlock *tlck;
4522 struct dt_lock *dtlck;
4523 struct lv *lv;
4524 s8 *stbl;
4525 int entry_si; /* entry slot index */
4526 struct ldtentry *entry;
4527
4528 /*
4529 * search for the entry to modify:
4530 *
4531 * dtSearch() returns (leaf page pinned, index at which to modify).
4532 */
4533 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4534 return rc;
4535
4536 /* retrieve search result */
4537 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4538
4539 BT_MARK_DIRTY(mp, ip);
4540 /*
4541 * acquire a transaction lock on the leaf page of named entry
4542 */
4543 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4544 dtlck = (struct dt_lock *) & tlck->lock;
4545
4546 /* get slot index of the entry */
4547 stbl = DT_GETSTBL(p);
4548 entry_si = stbl[index];
4549
4550 /* linelock entry */
4551 ASSERT(dtlck->index == 0);
4552 lv = & dtlck->lv[0];
4553 lv->offset = entry_si;
4554 lv->length = 1;
4555 dtlck->index++;
4556
4557 /* get the head/only segment */
4558 entry = (struct ldtentry *) & p->slot[entry_si];
4559
4560 /* substitute the inode number of the entry */
4561 entry->inumber = cpu_to_le32(new_ino);
4562
4563 /* unpin the leaf page */
4564 DT_PUTPAGE(mp);
4565
4566 return 0;
4567 }
4568