1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Synopsys DesignWare Multimedia Card Interface driver
4 * (Based on NXP driver for lpc 31xx)
5 *
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8 */
9
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/of.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #include "dw_mmc.h"
40
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 SDMMC_INT_HTO | SDMMC_INT_SBE | \
44 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
48 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS 1
50 #define DW_MCI_RECV_STATUS 2
51 #define DW_MCI_DMA_THRESHOLD 16
52
53 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
54 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
55
56 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
59 SDMMC_IDMAC_INT_TI)
60
61 #define DESC_RING_BUF_SZ PAGE_SIZE
62
63 struct idmac_desc_64addr {
64 u32 des0; /* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
67
68 u32 des1; /* Reserved */
69
70 u32 des2; /*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74
75 u32 des3; /* Reserved */
76
77 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
78 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
79
80 u32 des6; /* Lower 32-bits of Next Descriptor Address */
81 u32 des7; /* Upper 32-bits of Next Descriptor Address */
82 };
83
84 struct idmac_desc {
85 __le32 des0; /* Control Descriptor */
86 #define IDMAC_DES0_DIC BIT(1)
87 #define IDMAC_DES0_LD BIT(2)
88 #define IDMAC_DES0_FD BIT(3)
89 #define IDMAC_DES0_CH BIT(4)
90 #define IDMAC_DES0_ER BIT(5)
91 #define IDMAC_DES0_CES BIT(30)
92 #define IDMAC_DES0_OWN BIT(31)
93
94 __le32 des1; /* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97
98 __le32 des2; /* buffer 1 physical address */
99
100 __le32 des3; /* buffer 2 physical address */
101 };
102
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH 0x1000
105
106 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)107 static int dw_mci_req_show(struct seq_file *s, void *v)
108 {
109 struct dw_mci_slot *slot = s->private;
110 struct mmc_request *mrq;
111 struct mmc_command *cmd;
112 struct mmc_command *stop;
113 struct mmc_data *data;
114
115 /* Make sure we get a consistent snapshot */
116 spin_lock_bh(&slot->host->lock);
117 mrq = slot->mrq;
118
119 if (mrq) {
120 cmd = mrq->cmd;
121 data = mrq->data;
122 stop = mrq->stop;
123
124 if (cmd)
125 seq_printf(s,
126 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 cmd->opcode, cmd->arg, cmd->flags,
128 cmd->resp[0], cmd->resp[1], cmd->resp[2],
129 cmd->resp[2], cmd->error);
130 if (data)
131 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
132 data->bytes_xfered, data->blocks,
133 data->blksz, data->flags, data->error);
134 if (stop)
135 seq_printf(s,
136 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 stop->opcode, stop->arg, stop->flags,
138 stop->resp[0], stop->resp[1], stop->resp[2],
139 stop->resp[2], stop->error);
140 }
141
142 spin_unlock_bh(&slot->host->lock);
143
144 return 0;
145 }
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
147
dw_mci_regs_show(struct seq_file * s,void * v)148 static int dw_mci_regs_show(struct seq_file *s, void *v)
149 {
150 struct dw_mci *host = s->private;
151
152 pm_runtime_get_sync(host->dev);
153
154 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
155 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
156 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
157 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
158 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
159 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
160
161 pm_runtime_put_autosuspend(host->dev);
162
163 return 0;
164 }
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
166
dw_mci_init_debugfs(struct dw_mci_slot * slot)167 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
168 {
169 struct mmc_host *mmc = slot->mmc;
170 struct dw_mci *host = slot->host;
171 struct dentry *root;
172
173 root = mmc->debugfs_root;
174 if (!root)
175 return;
176
177 debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
178 debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
179 debugfs_create_u32("state", S_IRUSR, root, &host->state);
180 debugfs_create_xul("pending_events", S_IRUSR, root,
181 &host->pending_events);
182 debugfs_create_xul("completed_events", S_IRUSR, root,
183 &host->completed_events);
184 }
185 #endif /* defined(CONFIG_DEBUG_FS) */
186
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)187 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
188 {
189 u32 ctrl;
190
191 ctrl = mci_readl(host, CTRL);
192 ctrl |= reset;
193 mci_writel(host, CTRL, ctrl);
194
195 /* wait till resets clear */
196 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
197 !(ctrl & reset),
198 1, 500 * USEC_PER_MSEC)) {
199 dev_err(host->dev,
200 "Timeout resetting block (ctrl reset %#x)\n",
201 ctrl & reset);
202 return false;
203 }
204
205 return true;
206 }
207
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)208 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
209 {
210 u32 status;
211
212 /*
213 * Databook says that before issuing a new data transfer command
214 * we need to check to see if the card is busy. Data transfer commands
215 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
216 *
217 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
218 * expected.
219 */
220 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
221 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
222 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
223 status,
224 !(status & SDMMC_STATUS_BUSY),
225 10, 500 * USEC_PER_MSEC))
226 dev_err(host->dev, "Busy; trying anyway\n");
227 }
228 }
229
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
231 {
232 struct dw_mci *host = slot->host;
233 unsigned int cmd_status = 0;
234
235 mci_writel(host, CMDARG, arg);
236 wmb(); /* drain writebuffer */
237 dw_mci_wait_while_busy(host, cmd);
238 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
239
240 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
241 !(cmd_status & SDMMC_CMD_START),
242 1, 500 * USEC_PER_MSEC))
243 dev_err(&slot->mmc->class_dev,
244 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
245 cmd, arg, cmd_status);
246 }
247
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)248 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
249 {
250 struct dw_mci_slot *slot = mmc_priv(mmc);
251 struct dw_mci *host = slot->host;
252 u32 cmdr;
253
254 cmd->error = -EINPROGRESS;
255 cmdr = cmd->opcode;
256
257 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
258 cmd->opcode == MMC_GO_IDLE_STATE ||
259 cmd->opcode == MMC_GO_INACTIVE_STATE ||
260 (cmd->opcode == SD_IO_RW_DIRECT &&
261 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
262 cmdr |= SDMMC_CMD_STOP;
263 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
264 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
265
266 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
267 u32 clk_en_a;
268
269 /* Special bit makes CMD11 not die */
270 cmdr |= SDMMC_CMD_VOLT_SWITCH;
271
272 /* Change state to continue to handle CMD11 weirdness */
273 WARN_ON(slot->host->state != STATE_SENDING_CMD);
274 slot->host->state = STATE_SENDING_CMD11;
275
276 /*
277 * We need to disable low power mode (automatic clock stop)
278 * while doing voltage switch so we don't confuse the card,
279 * since stopping the clock is a specific part of the UHS
280 * voltage change dance.
281 *
282 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
283 * unconditionally turned back on in dw_mci_setup_bus() if it's
284 * ever called with a non-zero clock. That shouldn't happen
285 * until the voltage change is all done.
286 */
287 clk_en_a = mci_readl(host, CLKENA);
288 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
289 mci_writel(host, CLKENA, clk_en_a);
290 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
291 SDMMC_CMD_PRV_DAT_WAIT, 0);
292 }
293
294 if (cmd->flags & MMC_RSP_PRESENT) {
295 /* We expect a response, so set this bit */
296 cmdr |= SDMMC_CMD_RESP_EXP;
297 if (cmd->flags & MMC_RSP_136)
298 cmdr |= SDMMC_CMD_RESP_LONG;
299 }
300
301 if (cmd->flags & MMC_RSP_CRC)
302 cmdr |= SDMMC_CMD_RESP_CRC;
303
304 if (cmd->data) {
305 cmdr |= SDMMC_CMD_DAT_EXP;
306 if (cmd->data->flags & MMC_DATA_WRITE)
307 cmdr |= SDMMC_CMD_DAT_WR;
308 }
309
310 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
311 cmdr |= SDMMC_CMD_USE_HOLD_REG;
312
313 return cmdr;
314 }
315
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)316 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
317 {
318 struct mmc_command *stop;
319 u32 cmdr;
320
321 if (!cmd->data)
322 return 0;
323
324 stop = &host->stop_abort;
325 cmdr = cmd->opcode;
326 memset(stop, 0, sizeof(struct mmc_command));
327
328 if (cmdr == MMC_READ_SINGLE_BLOCK ||
329 cmdr == MMC_READ_MULTIPLE_BLOCK ||
330 cmdr == MMC_WRITE_BLOCK ||
331 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
332 cmdr == MMC_SEND_TUNING_BLOCK ||
333 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
334 stop->opcode = MMC_STOP_TRANSMISSION;
335 stop->arg = 0;
336 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
337 } else if (cmdr == SD_IO_RW_EXTENDED) {
338 stop->opcode = SD_IO_RW_DIRECT;
339 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
340 ((cmd->arg >> 28) & 0x7);
341 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
342 } else {
343 return 0;
344 }
345
346 cmdr = stop->opcode | SDMMC_CMD_STOP |
347 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
348
349 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
350 cmdr |= SDMMC_CMD_USE_HOLD_REG;
351
352 return cmdr;
353 }
354
dw_mci_set_cto(struct dw_mci * host)355 static inline void dw_mci_set_cto(struct dw_mci *host)
356 {
357 unsigned int cto_clks;
358 unsigned int cto_div;
359 unsigned int cto_ms;
360 unsigned long irqflags;
361
362 cto_clks = mci_readl(host, TMOUT) & 0xff;
363 cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
364 if (cto_div == 0)
365 cto_div = 1;
366
367 cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
368 host->bus_hz);
369
370 /* add a bit spare time */
371 cto_ms += 10;
372
373 /*
374 * The durations we're working with are fairly short so we have to be
375 * extra careful about synchronization here. Specifically in hardware a
376 * command timeout is _at most_ 5.1 ms, so that means we expect an
377 * interrupt (either command done or timeout) to come rather quickly
378 * after the mci_writel. ...but just in case we have a long interrupt
379 * latency let's add a bit of paranoia.
380 *
381 * In general we'll assume that at least an interrupt will be asserted
382 * in hardware by the time the cto_timer runs. ...and if it hasn't
383 * been asserted in hardware by that time then we'll assume it'll never
384 * come.
385 */
386 spin_lock_irqsave(&host->irq_lock, irqflags);
387 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
388 mod_timer(&host->cto_timer,
389 jiffies + msecs_to_jiffies(cto_ms) + 1);
390 spin_unlock_irqrestore(&host->irq_lock, irqflags);
391 }
392
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)393 static void dw_mci_start_command(struct dw_mci *host,
394 struct mmc_command *cmd, u32 cmd_flags)
395 {
396 host->cmd = cmd;
397 dev_vdbg(host->dev,
398 "start command: ARGR=0x%08x CMDR=0x%08x\n",
399 cmd->arg, cmd_flags);
400
401 mci_writel(host, CMDARG, cmd->arg);
402 wmb(); /* drain writebuffer */
403 dw_mci_wait_while_busy(host, cmd_flags);
404
405 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
406
407 /* response expected command only */
408 if (cmd_flags & SDMMC_CMD_RESP_EXP)
409 dw_mci_set_cto(host);
410 }
411
send_stop_abort(struct dw_mci * host,struct mmc_data * data)412 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
413 {
414 struct mmc_command *stop = &host->stop_abort;
415
416 dw_mci_start_command(host, stop, host->stop_cmdr);
417 }
418
419 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)420 static void dw_mci_stop_dma(struct dw_mci *host)
421 {
422 if (host->using_dma) {
423 host->dma_ops->stop(host);
424 host->dma_ops->cleanup(host);
425 }
426
427 /* Data transfer was stopped by the interrupt handler */
428 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
429 }
430
dw_mci_dma_cleanup(struct dw_mci * host)431 static void dw_mci_dma_cleanup(struct dw_mci *host)
432 {
433 struct mmc_data *data = host->data;
434
435 if (data && data->host_cookie == COOKIE_MAPPED) {
436 dma_unmap_sg(host->dev,
437 data->sg,
438 data->sg_len,
439 mmc_get_dma_dir(data));
440 data->host_cookie = COOKIE_UNMAPPED;
441 }
442 }
443
dw_mci_idmac_reset(struct dw_mci * host)444 static void dw_mci_idmac_reset(struct dw_mci *host)
445 {
446 u32 bmod = mci_readl(host, BMOD);
447 /* Software reset of DMA */
448 bmod |= SDMMC_IDMAC_SWRESET;
449 mci_writel(host, BMOD, bmod);
450 }
451
dw_mci_idmac_stop_dma(struct dw_mci * host)452 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
453 {
454 u32 temp;
455
456 /* Disable and reset the IDMAC interface */
457 temp = mci_readl(host, CTRL);
458 temp &= ~SDMMC_CTRL_USE_IDMAC;
459 temp |= SDMMC_CTRL_DMA_RESET;
460 mci_writel(host, CTRL, temp);
461
462 /* Stop the IDMAC running */
463 temp = mci_readl(host, BMOD);
464 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
465 temp |= SDMMC_IDMAC_SWRESET;
466 mci_writel(host, BMOD, temp);
467 }
468
dw_mci_dmac_complete_dma(void * arg)469 static void dw_mci_dmac_complete_dma(void *arg)
470 {
471 struct dw_mci *host = arg;
472 struct mmc_data *data = host->data;
473
474 dev_vdbg(host->dev, "DMA complete\n");
475
476 if ((host->use_dma == TRANS_MODE_EDMAC) &&
477 data && (data->flags & MMC_DATA_READ))
478 /* Invalidate cache after read */
479 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
480 data->sg,
481 data->sg_len,
482 DMA_FROM_DEVICE);
483
484 host->dma_ops->cleanup(host);
485
486 /*
487 * If the card was removed, data will be NULL. No point in trying to
488 * send the stop command or waiting for NBUSY in this case.
489 */
490 if (data) {
491 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
492 tasklet_schedule(&host->tasklet);
493 }
494 }
495
dw_mci_idmac_init(struct dw_mci * host)496 static int dw_mci_idmac_init(struct dw_mci *host)
497 {
498 int i;
499
500 if (host->dma_64bit_address == 1) {
501 struct idmac_desc_64addr *p;
502 /* Number of descriptors in the ring buffer */
503 host->ring_size =
504 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
505
506 /* Forward link the descriptor list */
507 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
508 i++, p++) {
509 p->des6 = (host->sg_dma +
510 (sizeof(struct idmac_desc_64addr) *
511 (i + 1))) & 0xffffffff;
512
513 p->des7 = (u64)(host->sg_dma +
514 (sizeof(struct idmac_desc_64addr) *
515 (i + 1))) >> 32;
516 /* Initialize reserved and buffer size fields to "0" */
517 p->des0 = 0;
518 p->des1 = 0;
519 p->des2 = 0;
520 p->des3 = 0;
521 }
522
523 /* Set the last descriptor as the end-of-ring descriptor */
524 p->des6 = host->sg_dma & 0xffffffff;
525 p->des7 = (u64)host->sg_dma >> 32;
526 p->des0 = IDMAC_DES0_ER;
527
528 } else {
529 struct idmac_desc *p;
530 /* Number of descriptors in the ring buffer */
531 host->ring_size =
532 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
533
534 /* Forward link the descriptor list */
535 for (i = 0, p = host->sg_cpu;
536 i < host->ring_size - 1;
537 i++, p++) {
538 p->des3 = cpu_to_le32(host->sg_dma +
539 (sizeof(struct idmac_desc) * (i + 1)));
540 p->des0 = 0;
541 p->des1 = 0;
542 }
543
544 /* Set the last descriptor as the end-of-ring descriptor */
545 p->des3 = cpu_to_le32(host->sg_dma);
546 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
547 }
548
549 dw_mci_idmac_reset(host);
550
551 if (host->dma_64bit_address == 1) {
552 /* Mask out interrupts - get Tx & Rx complete only */
553 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
554 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
555 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
556
557 /* Set the descriptor base address */
558 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
559 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
560
561 } else {
562 /* Mask out interrupts - get Tx & Rx complete only */
563 mci_writel(host, IDSTS, IDMAC_INT_CLR);
564 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
565 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
566
567 /* Set the descriptor base address */
568 mci_writel(host, DBADDR, host->sg_dma);
569 }
570
571 return 0;
572 }
573
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)574 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
575 struct mmc_data *data,
576 unsigned int sg_len)
577 {
578 unsigned int desc_len;
579 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
580 u32 val;
581 int i;
582
583 desc_first = desc_last = desc = host->sg_cpu;
584
585 for (i = 0; i < sg_len; i++) {
586 unsigned int length = sg_dma_len(&data->sg[i]);
587
588 u64 mem_addr = sg_dma_address(&data->sg[i]);
589
590 for ( ; length ; desc++) {
591 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
592 length : DW_MCI_DESC_DATA_LENGTH;
593
594 length -= desc_len;
595
596 /*
597 * Wait for the former clear OWN bit operation
598 * of IDMAC to make sure that this descriptor
599 * isn't still owned by IDMAC as IDMAC's write
600 * ops and CPU's read ops are asynchronous.
601 */
602 if (readl_poll_timeout_atomic(&desc->des0, val,
603 !(val & IDMAC_DES0_OWN),
604 10, 100 * USEC_PER_MSEC))
605 goto err_own_bit;
606
607 /*
608 * Set the OWN bit and disable interrupts
609 * for this descriptor
610 */
611 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
612 IDMAC_DES0_CH;
613
614 /* Buffer length */
615 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
616
617 /* Physical address to DMA to/from */
618 desc->des4 = mem_addr & 0xffffffff;
619 desc->des5 = mem_addr >> 32;
620
621 /* Update physical address for the next desc */
622 mem_addr += desc_len;
623
624 /* Save pointer to the last descriptor */
625 desc_last = desc;
626 }
627 }
628
629 /* Set first descriptor */
630 desc_first->des0 |= IDMAC_DES0_FD;
631
632 /* Set last descriptor */
633 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
634 desc_last->des0 |= IDMAC_DES0_LD;
635
636 return 0;
637 err_own_bit:
638 /* restore the descriptor chain as it's polluted */
639 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
640 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
641 dw_mci_idmac_init(host);
642 return -EINVAL;
643 }
644
645
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)646 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
647 struct mmc_data *data,
648 unsigned int sg_len)
649 {
650 unsigned int desc_len;
651 struct idmac_desc *desc_first, *desc_last, *desc;
652 u32 val;
653 int i;
654
655 desc_first = desc_last = desc = host->sg_cpu;
656
657 for (i = 0; i < sg_len; i++) {
658 unsigned int length = sg_dma_len(&data->sg[i]);
659
660 u32 mem_addr = sg_dma_address(&data->sg[i]);
661
662 for ( ; length ; desc++) {
663 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
664 length : DW_MCI_DESC_DATA_LENGTH;
665
666 length -= desc_len;
667
668 /*
669 * Wait for the former clear OWN bit operation
670 * of IDMAC to make sure that this descriptor
671 * isn't still owned by IDMAC as IDMAC's write
672 * ops and CPU's read ops are asynchronous.
673 */
674 if (readl_poll_timeout_atomic(&desc->des0, val,
675 IDMAC_OWN_CLR64(val),
676 10,
677 100 * USEC_PER_MSEC))
678 goto err_own_bit;
679
680 /*
681 * Set the OWN bit and disable interrupts
682 * for this descriptor
683 */
684 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
685 IDMAC_DES0_DIC |
686 IDMAC_DES0_CH);
687
688 /* Buffer length */
689 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
690
691 /* Physical address to DMA to/from */
692 desc->des2 = cpu_to_le32(mem_addr);
693
694 /* Update physical address for the next desc */
695 mem_addr += desc_len;
696
697 /* Save pointer to the last descriptor */
698 desc_last = desc;
699 }
700 }
701
702 /* Set first descriptor */
703 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
704
705 /* Set last descriptor */
706 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
707 IDMAC_DES0_DIC));
708 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
709
710 return 0;
711 err_own_bit:
712 /* restore the descriptor chain as it's polluted */
713 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
714 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
715 dw_mci_idmac_init(host);
716 return -EINVAL;
717 }
718
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)719 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
720 {
721 u32 temp;
722 int ret;
723
724 if (host->dma_64bit_address == 1)
725 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
726 else
727 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
728
729 if (ret)
730 goto out;
731
732 /* drain writebuffer */
733 wmb();
734
735 /* Make sure to reset DMA in case we did PIO before this */
736 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
737 dw_mci_idmac_reset(host);
738
739 /* Select IDMAC interface */
740 temp = mci_readl(host, CTRL);
741 temp |= SDMMC_CTRL_USE_IDMAC;
742 mci_writel(host, CTRL, temp);
743
744 /* drain writebuffer */
745 wmb();
746
747 /* Enable the IDMAC */
748 temp = mci_readl(host, BMOD);
749 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
750 mci_writel(host, BMOD, temp);
751
752 /* Start it running */
753 mci_writel(host, PLDMND, 1);
754
755 out:
756 return ret;
757 }
758
759 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
760 .init = dw_mci_idmac_init,
761 .start = dw_mci_idmac_start_dma,
762 .stop = dw_mci_idmac_stop_dma,
763 .complete = dw_mci_dmac_complete_dma,
764 .cleanup = dw_mci_dma_cleanup,
765 };
766
dw_mci_edmac_stop_dma(struct dw_mci * host)767 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
768 {
769 dmaengine_terminate_async(host->dms->ch);
770 }
771
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)772 static int dw_mci_edmac_start_dma(struct dw_mci *host,
773 unsigned int sg_len)
774 {
775 struct dma_slave_config cfg;
776 struct dma_async_tx_descriptor *desc = NULL;
777 struct scatterlist *sgl = host->data->sg;
778 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
779 u32 sg_elems = host->data->sg_len;
780 u32 fifoth_val;
781 u32 fifo_offset = host->fifo_reg - host->regs;
782 int ret = 0;
783
784 /* Set external dma config: burst size, burst width */
785 memset(&cfg, 0, sizeof(cfg));
786 cfg.dst_addr = host->phy_regs + fifo_offset;
787 cfg.src_addr = cfg.dst_addr;
788 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
789 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790
791 /* Match burst msize with external dma config */
792 fifoth_val = mci_readl(host, FIFOTH);
793 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
794 cfg.src_maxburst = cfg.dst_maxburst;
795
796 if (host->data->flags & MMC_DATA_WRITE)
797 cfg.direction = DMA_MEM_TO_DEV;
798 else
799 cfg.direction = DMA_DEV_TO_MEM;
800
801 ret = dmaengine_slave_config(host->dms->ch, &cfg);
802 if (ret) {
803 dev_err(host->dev, "Failed to config edmac.\n");
804 return -EBUSY;
805 }
806
807 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
808 sg_len, cfg.direction,
809 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
810 if (!desc) {
811 dev_err(host->dev, "Can't prepare slave sg.\n");
812 return -EBUSY;
813 }
814
815 /* Set dw_mci_dmac_complete_dma as callback */
816 desc->callback = dw_mci_dmac_complete_dma;
817 desc->callback_param = (void *)host;
818 dmaengine_submit(desc);
819
820 /* Flush cache before write */
821 if (host->data->flags & MMC_DATA_WRITE)
822 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
823 sg_elems, DMA_TO_DEVICE);
824
825 dma_async_issue_pending(host->dms->ch);
826
827 return 0;
828 }
829
dw_mci_edmac_init(struct dw_mci * host)830 static int dw_mci_edmac_init(struct dw_mci *host)
831 {
832 /* Request external dma channel */
833 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
834 if (!host->dms)
835 return -ENOMEM;
836
837 host->dms->ch = dma_request_chan(host->dev, "rx-tx");
838 if (IS_ERR(host->dms->ch)) {
839 int ret = PTR_ERR(host->dms->ch);
840
841 dev_err(host->dev, "Failed to get external DMA channel.\n");
842 kfree(host->dms);
843 host->dms = NULL;
844 return ret;
845 }
846
847 return 0;
848 }
849
dw_mci_edmac_exit(struct dw_mci * host)850 static void dw_mci_edmac_exit(struct dw_mci *host)
851 {
852 if (host->dms) {
853 if (host->dms->ch) {
854 dma_release_channel(host->dms->ch);
855 host->dms->ch = NULL;
856 }
857 kfree(host->dms);
858 host->dms = NULL;
859 }
860 }
861
862 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
863 .init = dw_mci_edmac_init,
864 .exit = dw_mci_edmac_exit,
865 .start = dw_mci_edmac_start_dma,
866 .stop = dw_mci_edmac_stop_dma,
867 .complete = dw_mci_dmac_complete_dma,
868 .cleanup = dw_mci_dma_cleanup,
869 };
870
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)871 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
872 struct mmc_data *data,
873 int cookie)
874 {
875 struct scatterlist *sg;
876 unsigned int i, sg_len;
877
878 if (data->host_cookie == COOKIE_PRE_MAPPED)
879 return data->sg_len;
880
881 /*
882 * We don't do DMA on "complex" transfers, i.e. with
883 * non-word-aligned buffers or lengths. Also, we don't bother
884 * with all the DMA setup overhead for short transfers.
885 */
886 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
887 return -EINVAL;
888
889 if (data->blksz & 3)
890 return -EINVAL;
891
892 for_each_sg(data->sg, sg, data->sg_len, i) {
893 if (sg->offset & 3 || sg->length & 3)
894 return -EINVAL;
895 }
896
897 sg_len = dma_map_sg(host->dev,
898 data->sg,
899 data->sg_len,
900 mmc_get_dma_dir(data));
901 if (sg_len == 0)
902 return -EINVAL;
903
904 data->host_cookie = cookie;
905
906 return sg_len;
907 }
908
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)909 static void dw_mci_pre_req(struct mmc_host *mmc,
910 struct mmc_request *mrq)
911 {
912 struct dw_mci_slot *slot = mmc_priv(mmc);
913 struct mmc_data *data = mrq->data;
914
915 if (!slot->host->use_dma || !data)
916 return;
917
918 /* This data might be unmapped at this time */
919 data->host_cookie = COOKIE_UNMAPPED;
920
921 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
922 COOKIE_PRE_MAPPED) < 0)
923 data->host_cookie = COOKIE_UNMAPPED;
924 }
925
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)926 static void dw_mci_post_req(struct mmc_host *mmc,
927 struct mmc_request *mrq,
928 int err)
929 {
930 struct dw_mci_slot *slot = mmc_priv(mmc);
931 struct mmc_data *data = mrq->data;
932
933 if (!slot->host->use_dma || !data)
934 return;
935
936 if (data->host_cookie != COOKIE_UNMAPPED)
937 dma_unmap_sg(slot->host->dev,
938 data->sg,
939 data->sg_len,
940 mmc_get_dma_dir(data));
941 data->host_cookie = COOKIE_UNMAPPED;
942 }
943
dw_mci_get_cd(struct mmc_host * mmc)944 static int dw_mci_get_cd(struct mmc_host *mmc)
945 {
946 int present;
947 struct dw_mci_slot *slot = mmc_priv(mmc);
948 struct dw_mci *host = slot->host;
949 int gpio_cd = mmc_gpio_get_cd(mmc);
950
951 /* Use platform get_cd function, else try onboard card detect */
952 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
953 || !mmc_card_is_removable(mmc))) {
954 present = 1;
955
956 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
957 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
958 dev_info(&mmc->class_dev,
959 "card is polling.\n");
960 } else {
961 dev_info(&mmc->class_dev,
962 "card is non-removable.\n");
963 }
964 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
965 }
966
967 return present;
968 } else if (gpio_cd >= 0)
969 present = gpio_cd;
970 else
971 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
972 == 0 ? 1 : 0;
973
974 spin_lock_bh(&host->lock);
975 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
976 dev_dbg(&mmc->class_dev, "card is present\n");
977 else if (!present &&
978 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
979 dev_dbg(&mmc->class_dev, "card is not present\n");
980 spin_unlock_bh(&host->lock);
981
982 return present;
983 }
984
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)985 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
986 {
987 unsigned int blksz = data->blksz;
988 static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
989 u32 fifo_width = 1 << host->data_shift;
990 u32 blksz_depth = blksz / fifo_width, fifoth_val;
991 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
992 int idx = ARRAY_SIZE(mszs) - 1;
993
994 /* pio should ship this scenario */
995 if (!host->use_dma)
996 return;
997
998 tx_wmark = (host->fifo_depth) / 2;
999 tx_wmark_invers = host->fifo_depth - tx_wmark;
1000
1001 /*
1002 * MSIZE is '1',
1003 * if blksz is not a multiple of the FIFO width
1004 */
1005 if (blksz % fifo_width)
1006 goto done;
1007
1008 do {
1009 if (!((blksz_depth % mszs[idx]) ||
1010 (tx_wmark_invers % mszs[idx]))) {
1011 msize = idx;
1012 rx_wmark = mszs[idx] - 1;
1013 break;
1014 }
1015 } while (--idx > 0);
1016 /*
1017 * If idx is '0', it won't be tried
1018 * Thus, initial values are uesed
1019 */
1020 done:
1021 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1022 mci_writel(host, FIFOTH, fifoth_val);
1023 }
1024
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1025 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1026 {
1027 unsigned int blksz = data->blksz;
1028 u32 blksz_depth, fifo_depth;
1029 u16 thld_size;
1030 u8 enable;
1031
1032 /*
1033 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1034 * in the FIFO region, so we really shouldn't access it).
1035 */
1036 if (host->verid < DW_MMC_240A ||
1037 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1038 return;
1039
1040 /*
1041 * Card write Threshold is introduced since 2.80a
1042 * It's used when HS400 mode is enabled.
1043 */
1044 if (data->flags & MMC_DATA_WRITE &&
1045 host->timing != MMC_TIMING_MMC_HS400)
1046 goto disable;
1047
1048 if (data->flags & MMC_DATA_WRITE)
1049 enable = SDMMC_CARD_WR_THR_EN;
1050 else
1051 enable = SDMMC_CARD_RD_THR_EN;
1052
1053 if (host->timing != MMC_TIMING_MMC_HS200 &&
1054 host->timing != MMC_TIMING_UHS_SDR104 &&
1055 host->timing != MMC_TIMING_MMC_HS400)
1056 goto disable;
1057
1058 blksz_depth = blksz / (1 << host->data_shift);
1059 fifo_depth = host->fifo_depth;
1060
1061 if (blksz_depth > fifo_depth)
1062 goto disable;
1063
1064 /*
1065 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1066 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1067 * Currently just choose blksz.
1068 */
1069 thld_size = blksz;
1070 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1071 return;
1072
1073 disable:
1074 mci_writel(host, CDTHRCTL, 0);
1075 }
1076
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1077 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1078 {
1079 unsigned long irqflags;
1080 int sg_len;
1081 u32 temp;
1082
1083 host->using_dma = 0;
1084
1085 /* If we don't have a channel, we can't do DMA */
1086 if (!host->use_dma)
1087 return -ENODEV;
1088
1089 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1090 if (sg_len < 0) {
1091 host->dma_ops->stop(host);
1092 return sg_len;
1093 }
1094
1095 host->using_dma = 1;
1096
1097 if (host->use_dma == TRANS_MODE_IDMAC)
1098 dev_vdbg(host->dev,
1099 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1100 (unsigned long)host->sg_cpu,
1101 (unsigned long)host->sg_dma,
1102 sg_len);
1103
1104 /*
1105 * Decide the MSIZE and RX/TX Watermark.
1106 * If current block size is same with previous size,
1107 * no need to update fifoth.
1108 */
1109 if (host->prev_blksz != data->blksz)
1110 dw_mci_adjust_fifoth(host, data);
1111
1112 /* Enable the DMA interface */
1113 temp = mci_readl(host, CTRL);
1114 temp |= SDMMC_CTRL_DMA_ENABLE;
1115 mci_writel(host, CTRL, temp);
1116
1117 /* Disable RX/TX IRQs, let DMA handle it */
1118 spin_lock_irqsave(&host->irq_lock, irqflags);
1119 temp = mci_readl(host, INTMASK);
1120 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1121 mci_writel(host, INTMASK, temp);
1122 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1123
1124 if (host->dma_ops->start(host, sg_len)) {
1125 host->dma_ops->stop(host);
1126 /* We can't do DMA, try PIO for this one */
1127 dev_dbg(host->dev,
1128 "%s: fall back to PIO mode for current transfer\n",
1129 __func__);
1130 return -ENODEV;
1131 }
1132
1133 return 0;
1134 }
1135
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1136 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1137 {
1138 unsigned long irqflags;
1139 int flags = SG_MITER_ATOMIC;
1140 u32 temp;
1141
1142 data->error = -EINPROGRESS;
1143
1144 WARN_ON(host->data);
1145 host->sg = NULL;
1146 host->data = data;
1147
1148 if (data->flags & MMC_DATA_READ)
1149 host->dir_status = DW_MCI_RECV_STATUS;
1150 else
1151 host->dir_status = DW_MCI_SEND_STATUS;
1152
1153 dw_mci_ctrl_thld(host, data);
1154
1155 if (dw_mci_submit_data_dma(host, data)) {
1156 if (host->data->flags & MMC_DATA_READ)
1157 flags |= SG_MITER_TO_SG;
1158 else
1159 flags |= SG_MITER_FROM_SG;
1160
1161 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1162 host->sg = data->sg;
1163 host->part_buf_start = 0;
1164 host->part_buf_count = 0;
1165
1166 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1167
1168 spin_lock_irqsave(&host->irq_lock, irqflags);
1169 temp = mci_readl(host, INTMASK);
1170 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1171 mci_writel(host, INTMASK, temp);
1172 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1173
1174 temp = mci_readl(host, CTRL);
1175 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1176 mci_writel(host, CTRL, temp);
1177
1178 /*
1179 * Use the initial fifoth_val for PIO mode. If wm_algined
1180 * is set, we set watermark same as data size.
1181 * If next issued data may be transfered by DMA mode,
1182 * prev_blksz should be invalidated.
1183 */
1184 if (host->wm_aligned)
1185 dw_mci_adjust_fifoth(host, data);
1186 else
1187 mci_writel(host, FIFOTH, host->fifoth_val);
1188 host->prev_blksz = 0;
1189 } else {
1190 /*
1191 * Keep the current block size.
1192 * It will be used to decide whether to update
1193 * fifoth register next time.
1194 */
1195 host->prev_blksz = data->blksz;
1196 }
1197 }
1198
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1199 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1200 {
1201 struct dw_mci *host = slot->host;
1202 unsigned int clock = slot->clock;
1203 u32 div;
1204 u32 clk_en_a;
1205 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1206
1207 /* We must continue to set bit 28 in CMD until the change is complete */
1208 if (host->state == STATE_WAITING_CMD11_DONE)
1209 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1210
1211 slot->mmc->actual_clock = 0;
1212
1213 if (!clock) {
1214 mci_writel(host, CLKENA, 0);
1215 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1216 } else if (clock != host->current_speed || force_clkinit) {
1217 div = host->bus_hz / clock;
1218 if (host->bus_hz % clock && host->bus_hz > clock)
1219 /*
1220 * move the + 1 after the divide to prevent
1221 * over-clocking the card.
1222 */
1223 div += 1;
1224
1225 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1226
1227 if ((clock != slot->__clk_old &&
1228 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1229 force_clkinit) {
1230 /* Silent the verbose log if calling from PM context */
1231 if (!force_clkinit)
1232 dev_info(&slot->mmc->class_dev,
1233 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1234 slot->id, host->bus_hz, clock,
1235 div ? ((host->bus_hz / div) >> 1) :
1236 host->bus_hz, div);
1237
1238 /*
1239 * If card is polling, display the message only
1240 * one time at boot time.
1241 */
1242 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1243 slot->mmc->f_min == clock)
1244 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1245 }
1246
1247 /* disable clock */
1248 mci_writel(host, CLKENA, 0);
1249 mci_writel(host, CLKSRC, 0);
1250
1251 /* inform CIU */
1252 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1253
1254 /* set clock to desired speed */
1255 mci_writel(host, CLKDIV, div);
1256
1257 /* inform CIU */
1258 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1259
1260 /* enable clock; only low power if no SDIO */
1261 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1262 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1263 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1264 mci_writel(host, CLKENA, clk_en_a);
1265
1266 /* inform CIU */
1267 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1268
1269 /* keep the last clock value that was requested from core */
1270 slot->__clk_old = clock;
1271 slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1272 host->bus_hz;
1273 }
1274
1275 host->current_speed = clock;
1276
1277 /* Set the current slot bus width */
1278 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1279 }
1280
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1281 static void __dw_mci_start_request(struct dw_mci *host,
1282 struct dw_mci_slot *slot,
1283 struct mmc_command *cmd)
1284 {
1285 struct mmc_request *mrq;
1286 struct mmc_data *data;
1287 u32 cmdflags;
1288
1289 mrq = slot->mrq;
1290
1291 host->mrq = mrq;
1292
1293 host->pending_events = 0;
1294 host->completed_events = 0;
1295 host->cmd_status = 0;
1296 host->data_status = 0;
1297 host->dir_status = 0;
1298
1299 data = cmd->data;
1300 if (data) {
1301 mci_writel(host, TMOUT, 0xFFFFFFFF);
1302 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1303 mci_writel(host, BLKSIZ, data->blksz);
1304 }
1305
1306 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1307
1308 /* this is the first command, send the initialization clock */
1309 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1310 cmdflags |= SDMMC_CMD_INIT;
1311
1312 if (data) {
1313 dw_mci_submit_data(host, data);
1314 wmb(); /* drain writebuffer */
1315 }
1316
1317 dw_mci_start_command(host, cmd, cmdflags);
1318
1319 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1320 unsigned long irqflags;
1321
1322 /*
1323 * Databook says to fail after 2ms w/ no response, but evidence
1324 * shows that sometimes the cmd11 interrupt takes over 130ms.
1325 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1326 * is just about to roll over.
1327 *
1328 * We do this whole thing under spinlock and only if the
1329 * command hasn't already completed (indicating the the irq
1330 * already ran so we don't want the timeout).
1331 */
1332 spin_lock_irqsave(&host->irq_lock, irqflags);
1333 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1334 mod_timer(&host->cmd11_timer,
1335 jiffies + msecs_to_jiffies(500) + 1);
1336 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1337 }
1338
1339 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1340 }
1341
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1342 static void dw_mci_start_request(struct dw_mci *host,
1343 struct dw_mci_slot *slot)
1344 {
1345 struct mmc_request *mrq = slot->mrq;
1346 struct mmc_command *cmd;
1347
1348 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1349 __dw_mci_start_request(host, slot, cmd);
1350 }
1351
1352 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1353 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1354 struct mmc_request *mrq)
1355 {
1356 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1357 host->state);
1358
1359 slot->mrq = mrq;
1360
1361 if (host->state == STATE_WAITING_CMD11_DONE) {
1362 dev_warn(&slot->mmc->class_dev,
1363 "Voltage change didn't complete\n");
1364 /*
1365 * this case isn't expected to happen, so we can
1366 * either crash here or just try to continue on
1367 * in the closest possible state
1368 */
1369 host->state = STATE_IDLE;
1370 }
1371
1372 if (host->state == STATE_IDLE) {
1373 host->state = STATE_SENDING_CMD;
1374 dw_mci_start_request(host, slot);
1375 } else {
1376 list_add_tail(&slot->queue_node, &host->queue);
1377 }
1378 }
1379
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1380 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1381 {
1382 struct dw_mci_slot *slot = mmc_priv(mmc);
1383 struct dw_mci *host = slot->host;
1384
1385 WARN_ON(slot->mrq);
1386
1387 /*
1388 * The check for card presence and queueing of the request must be
1389 * atomic, otherwise the card could be removed in between and the
1390 * request wouldn't fail until another card was inserted.
1391 */
1392
1393 if (!dw_mci_get_cd(mmc)) {
1394 mrq->cmd->error = -ENOMEDIUM;
1395 mmc_request_done(mmc, mrq);
1396 return;
1397 }
1398
1399 spin_lock_bh(&host->lock);
1400
1401 dw_mci_queue_request(host, slot, mrq);
1402
1403 spin_unlock_bh(&host->lock);
1404 }
1405
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1406 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1407 {
1408 struct dw_mci_slot *slot = mmc_priv(mmc);
1409 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1410 u32 regs;
1411 int ret;
1412
1413 switch (ios->bus_width) {
1414 case MMC_BUS_WIDTH_4:
1415 slot->ctype = SDMMC_CTYPE_4BIT;
1416 break;
1417 case MMC_BUS_WIDTH_8:
1418 slot->ctype = SDMMC_CTYPE_8BIT;
1419 break;
1420 default:
1421 /* set default 1 bit mode */
1422 slot->ctype = SDMMC_CTYPE_1BIT;
1423 }
1424
1425 regs = mci_readl(slot->host, UHS_REG);
1426
1427 /* DDR mode set */
1428 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1429 ios->timing == MMC_TIMING_UHS_DDR50 ||
1430 ios->timing == MMC_TIMING_MMC_HS400)
1431 regs |= ((0x1 << slot->id) << 16);
1432 else
1433 regs &= ~((0x1 << slot->id) << 16);
1434
1435 mci_writel(slot->host, UHS_REG, regs);
1436 slot->host->timing = ios->timing;
1437
1438 /*
1439 * Use mirror of ios->clock to prevent race with mmc
1440 * core ios update when finding the minimum.
1441 */
1442 slot->clock = ios->clock;
1443
1444 if (drv_data && drv_data->set_ios)
1445 drv_data->set_ios(slot->host, ios);
1446
1447 switch (ios->power_mode) {
1448 case MMC_POWER_UP:
1449 if (!IS_ERR(mmc->supply.vmmc)) {
1450 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1451 ios->vdd);
1452 if (ret) {
1453 dev_err(slot->host->dev,
1454 "failed to enable vmmc regulator\n");
1455 /*return, if failed turn on vmmc*/
1456 return;
1457 }
1458 }
1459 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1460 regs = mci_readl(slot->host, PWREN);
1461 regs |= (1 << slot->id);
1462 mci_writel(slot->host, PWREN, regs);
1463 break;
1464 case MMC_POWER_ON:
1465 if (!slot->host->vqmmc_enabled) {
1466 if (!IS_ERR(mmc->supply.vqmmc)) {
1467 ret = regulator_enable(mmc->supply.vqmmc);
1468 if (ret < 0)
1469 dev_err(slot->host->dev,
1470 "failed to enable vqmmc\n");
1471 else
1472 slot->host->vqmmc_enabled = true;
1473
1474 } else {
1475 /* Keep track so we don't reset again */
1476 slot->host->vqmmc_enabled = true;
1477 }
1478
1479 /* Reset our state machine after powering on */
1480 dw_mci_ctrl_reset(slot->host,
1481 SDMMC_CTRL_ALL_RESET_FLAGS);
1482 }
1483
1484 /* Adjust clock / bus width after power is up */
1485 dw_mci_setup_bus(slot, false);
1486
1487 break;
1488 case MMC_POWER_OFF:
1489 /* Turn clock off before power goes down */
1490 dw_mci_setup_bus(slot, false);
1491
1492 if (!IS_ERR(mmc->supply.vmmc))
1493 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1494
1495 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1496 regulator_disable(mmc->supply.vqmmc);
1497 slot->host->vqmmc_enabled = false;
1498
1499 regs = mci_readl(slot->host, PWREN);
1500 regs &= ~(1 << slot->id);
1501 mci_writel(slot->host, PWREN, regs);
1502 break;
1503 default:
1504 break;
1505 }
1506
1507 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1508 slot->host->state = STATE_IDLE;
1509 }
1510
dw_mci_card_busy(struct mmc_host * mmc)1511 static int dw_mci_card_busy(struct mmc_host *mmc)
1512 {
1513 struct dw_mci_slot *slot = mmc_priv(mmc);
1514 u32 status;
1515
1516 /*
1517 * Check the busy bit which is low when DAT[3:0]
1518 * (the data lines) are 0000
1519 */
1520 status = mci_readl(slot->host, STATUS);
1521
1522 return !!(status & SDMMC_STATUS_BUSY);
1523 }
1524
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1525 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1526 {
1527 struct dw_mci_slot *slot = mmc_priv(mmc);
1528 struct dw_mci *host = slot->host;
1529 const struct dw_mci_drv_data *drv_data = host->drv_data;
1530 u32 uhs;
1531 u32 v18 = SDMMC_UHS_18V << slot->id;
1532 int ret;
1533
1534 if (drv_data && drv_data->switch_voltage)
1535 return drv_data->switch_voltage(mmc, ios);
1536
1537 /*
1538 * Program the voltage. Note that some instances of dw_mmc may use
1539 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1540 * does no harm but you need to set the regulator directly. Try both.
1541 */
1542 uhs = mci_readl(host, UHS_REG);
1543 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1544 uhs &= ~v18;
1545 else
1546 uhs |= v18;
1547
1548 if (!IS_ERR(mmc->supply.vqmmc)) {
1549 ret = mmc_regulator_set_vqmmc(mmc, ios);
1550 if (ret < 0) {
1551 dev_dbg(&mmc->class_dev,
1552 "Regulator set error %d - %s V\n",
1553 ret, uhs & v18 ? "1.8" : "3.3");
1554 return ret;
1555 }
1556 }
1557 mci_writel(host, UHS_REG, uhs);
1558
1559 return 0;
1560 }
1561
dw_mci_get_ro(struct mmc_host * mmc)1562 static int dw_mci_get_ro(struct mmc_host *mmc)
1563 {
1564 int read_only;
1565 struct dw_mci_slot *slot = mmc_priv(mmc);
1566 int gpio_ro = mmc_gpio_get_ro(mmc);
1567
1568 /* Use platform get_ro function, else try on board write protect */
1569 if (gpio_ro >= 0)
1570 read_only = gpio_ro;
1571 else
1572 read_only =
1573 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1574
1575 dev_dbg(&mmc->class_dev, "card is %s\n",
1576 read_only ? "read-only" : "read-write");
1577
1578 return read_only;
1579 }
1580
dw_mci_hw_reset(struct mmc_host * mmc)1581 static void dw_mci_hw_reset(struct mmc_host *mmc)
1582 {
1583 struct dw_mci_slot *slot = mmc_priv(mmc);
1584 struct dw_mci *host = slot->host;
1585 int reset;
1586
1587 if (host->use_dma == TRANS_MODE_IDMAC)
1588 dw_mci_idmac_reset(host);
1589
1590 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1591 SDMMC_CTRL_FIFO_RESET))
1592 return;
1593
1594 /*
1595 * According to eMMC spec, card reset procedure:
1596 * tRstW >= 1us: RST_n pulse width
1597 * tRSCA >= 200us: RST_n to Command time
1598 * tRSTH >= 1us: RST_n high period
1599 */
1600 reset = mci_readl(host, RST_N);
1601 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1602 mci_writel(host, RST_N, reset);
1603 usleep_range(1, 2);
1604 reset |= SDMMC_RST_HWACTIVE << slot->id;
1605 mci_writel(host, RST_N, reset);
1606 usleep_range(200, 300);
1607 }
1608
dw_mci_init_card(struct mmc_host * mmc,struct mmc_card * card)1609 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1610 {
1611 struct dw_mci_slot *slot = mmc_priv(mmc);
1612 struct dw_mci *host = slot->host;
1613
1614 /*
1615 * Low power mode will stop the card clock when idle. According to the
1616 * description of the CLKENA register we should disable low power mode
1617 * for SDIO cards if we need SDIO interrupts to work.
1618 */
1619 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1620 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1621 u32 clk_en_a_old;
1622 u32 clk_en_a;
1623
1624 clk_en_a_old = mci_readl(host, CLKENA);
1625
1626 if (card->type == MMC_TYPE_SDIO ||
1627 card->type == MMC_TYPE_SD_COMBO) {
1628 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1629 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1630 } else {
1631 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1632 clk_en_a = clk_en_a_old | clken_low_pwr;
1633 }
1634
1635 if (clk_en_a != clk_en_a_old) {
1636 mci_writel(host, CLKENA, clk_en_a);
1637 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1638 SDMMC_CMD_PRV_DAT_WAIT, 0);
1639 }
1640 }
1641 }
1642
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1643 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1644 {
1645 struct dw_mci *host = slot->host;
1646 unsigned long irqflags;
1647 u32 int_mask;
1648
1649 spin_lock_irqsave(&host->irq_lock, irqflags);
1650
1651 /* Enable/disable Slot Specific SDIO interrupt */
1652 int_mask = mci_readl(host, INTMASK);
1653 if (enb)
1654 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1655 else
1656 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1657 mci_writel(host, INTMASK, int_mask);
1658
1659 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1660 }
1661
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1662 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1663 {
1664 struct dw_mci_slot *slot = mmc_priv(mmc);
1665 struct dw_mci *host = slot->host;
1666
1667 __dw_mci_enable_sdio_irq(slot, enb);
1668
1669 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1670 if (enb)
1671 pm_runtime_get_noresume(host->dev);
1672 else
1673 pm_runtime_put_noidle(host->dev);
1674 }
1675
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1676 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1677 {
1678 struct dw_mci_slot *slot = mmc_priv(mmc);
1679
1680 __dw_mci_enable_sdio_irq(slot, 1);
1681 }
1682
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1683 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1684 {
1685 struct dw_mci_slot *slot = mmc_priv(mmc);
1686 struct dw_mci *host = slot->host;
1687 const struct dw_mci_drv_data *drv_data = host->drv_data;
1688 int err = -EINVAL;
1689
1690 if (drv_data && drv_data->execute_tuning)
1691 err = drv_data->execute_tuning(slot, opcode);
1692 return err;
1693 }
1694
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1695 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1696 struct mmc_ios *ios)
1697 {
1698 struct dw_mci_slot *slot = mmc_priv(mmc);
1699 struct dw_mci *host = slot->host;
1700 const struct dw_mci_drv_data *drv_data = host->drv_data;
1701
1702 if (drv_data && drv_data->prepare_hs400_tuning)
1703 return drv_data->prepare_hs400_tuning(host, ios);
1704
1705 return 0;
1706 }
1707
dw_mci_reset(struct dw_mci * host)1708 static bool dw_mci_reset(struct dw_mci *host)
1709 {
1710 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1711 bool ret = false;
1712 u32 status = 0;
1713
1714 /*
1715 * Resetting generates a block interrupt, hence setting
1716 * the scatter-gather pointer to NULL.
1717 */
1718 if (host->sg) {
1719 sg_miter_stop(&host->sg_miter);
1720 host->sg = NULL;
1721 }
1722
1723 if (host->use_dma)
1724 flags |= SDMMC_CTRL_DMA_RESET;
1725
1726 if (dw_mci_ctrl_reset(host, flags)) {
1727 /*
1728 * In all cases we clear the RAWINTS
1729 * register to clear any interrupts.
1730 */
1731 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1732
1733 if (!host->use_dma) {
1734 ret = true;
1735 goto ciu_out;
1736 }
1737
1738 /* Wait for dma_req to be cleared */
1739 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1740 status,
1741 !(status & SDMMC_STATUS_DMA_REQ),
1742 1, 500 * USEC_PER_MSEC)) {
1743 dev_err(host->dev,
1744 "%s: Timeout waiting for dma_req to be cleared\n",
1745 __func__);
1746 goto ciu_out;
1747 }
1748
1749 /* when using DMA next we reset the fifo again */
1750 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1751 goto ciu_out;
1752 } else {
1753 /* if the controller reset bit did clear, then set clock regs */
1754 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1755 dev_err(host->dev,
1756 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1757 __func__);
1758 goto ciu_out;
1759 }
1760 }
1761
1762 if (host->use_dma == TRANS_MODE_IDMAC)
1763 /* It is also required that we reinit idmac */
1764 dw_mci_idmac_init(host);
1765
1766 ret = true;
1767
1768 ciu_out:
1769 /* After a CTRL reset we need to have CIU set clock registers */
1770 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1771
1772 return ret;
1773 }
1774
1775 static const struct mmc_host_ops dw_mci_ops = {
1776 .request = dw_mci_request,
1777 .pre_req = dw_mci_pre_req,
1778 .post_req = dw_mci_post_req,
1779 .set_ios = dw_mci_set_ios,
1780 .get_ro = dw_mci_get_ro,
1781 .get_cd = dw_mci_get_cd,
1782 .hw_reset = dw_mci_hw_reset,
1783 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1784 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1785 .execute_tuning = dw_mci_execute_tuning,
1786 .card_busy = dw_mci_card_busy,
1787 .start_signal_voltage_switch = dw_mci_switch_voltage,
1788 .init_card = dw_mci_init_card,
1789 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1790 };
1791
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1792 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1793 __releases(&host->lock)
1794 __acquires(&host->lock)
1795 {
1796 struct dw_mci_slot *slot;
1797 struct mmc_host *prev_mmc = host->slot->mmc;
1798
1799 WARN_ON(host->cmd || host->data);
1800
1801 host->slot->mrq = NULL;
1802 host->mrq = NULL;
1803 if (!list_empty(&host->queue)) {
1804 slot = list_entry(host->queue.next,
1805 struct dw_mci_slot, queue_node);
1806 list_del(&slot->queue_node);
1807 dev_vdbg(host->dev, "list not empty: %s is next\n",
1808 mmc_hostname(slot->mmc));
1809 host->state = STATE_SENDING_CMD;
1810 dw_mci_start_request(host, slot);
1811 } else {
1812 dev_vdbg(host->dev, "list empty\n");
1813
1814 if (host->state == STATE_SENDING_CMD11)
1815 host->state = STATE_WAITING_CMD11_DONE;
1816 else
1817 host->state = STATE_IDLE;
1818 }
1819
1820 spin_unlock(&host->lock);
1821 mmc_request_done(prev_mmc, mrq);
1822 spin_lock(&host->lock);
1823 }
1824
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1825 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1826 {
1827 u32 status = host->cmd_status;
1828
1829 host->cmd_status = 0;
1830
1831 /* Read the response from the card (up to 16 bytes) */
1832 if (cmd->flags & MMC_RSP_PRESENT) {
1833 if (cmd->flags & MMC_RSP_136) {
1834 cmd->resp[3] = mci_readl(host, RESP0);
1835 cmd->resp[2] = mci_readl(host, RESP1);
1836 cmd->resp[1] = mci_readl(host, RESP2);
1837 cmd->resp[0] = mci_readl(host, RESP3);
1838 } else {
1839 cmd->resp[0] = mci_readl(host, RESP0);
1840 cmd->resp[1] = 0;
1841 cmd->resp[2] = 0;
1842 cmd->resp[3] = 0;
1843 }
1844 }
1845
1846 if (status & SDMMC_INT_RTO)
1847 cmd->error = -ETIMEDOUT;
1848 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1849 cmd->error = -EILSEQ;
1850 else if (status & SDMMC_INT_RESP_ERR)
1851 cmd->error = -EIO;
1852 else
1853 cmd->error = 0;
1854
1855 return cmd->error;
1856 }
1857
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1858 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1859 {
1860 u32 status = host->data_status;
1861
1862 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1863 if (status & SDMMC_INT_DRTO) {
1864 data->error = -ETIMEDOUT;
1865 } else if (status & SDMMC_INT_DCRC) {
1866 data->error = -EILSEQ;
1867 } else if (status & SDMMC_INT_EBE) {
1868 if (host->dir_status ==
1869 DW_MCI_SEND_STATUS) {
1870 /*
1871 * No data CRC status was returned.
1872 * The number of bytes transferred
1873 * will be exaggerated in PIO mode.
1874 */
1875 data->bytes_xfered = 0;
1876 data->error = -ETIMEDOUT;
1877 } else if (host->dir_status ==
1878 DW_MCI_RECV_STATUS) {
1879 data->error = -EILSEQ;
1880 }
1881 } else {
1882 /* SDMMC_INT_SBE is included */
1883 data->error = -EILSEQ;
1884 }
1885
1886 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1887
1888 /*
1889 * After an error, there may be data lingering
1890 * in the FIFO
1891 */
1892 dw_mci_reset(host);
1893 } else {
1894 data->bytes_xfered = data->blocks * data->blksz;
1895 data->error = 0;
1896 }
1897
1898 return data->error;
1899 }
1900
dw_mci_set_drto(struct dw_mci * host)1901 static void dw_mci_set_drto(struct dw_mci *host)
1902 {
1903 unsigned int drto_clks;
1904 unsigned int drto_div;
1905 unsigned int drto_ms;
1906 unsigned long irqflags;
1907
1908 drto_clks = mci_readl(host, TMOUT) >> 8;
1909 drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1910 if (drto_div == 0)
1911 drto_div = 1;
1912
1913 drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1914 host->bus_hz);
1915
1916 /* add a bit spare time */
1917 drto_ms += 10;
1918
1919 spin_lock_irqsave(&host->irq_lock, irqflags);
1920 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1921 mod_timer(&host->dto_timer,
1922 jiffies + msecs_to_jiffies(drto_ms));
1923 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1924 }
1925
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)1926 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1927 {
1928 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1929 return false;
1930
1931 /*
1932 * Really be certain that the timer has stopped. This is a bit of
1933 * paranoia and could only really happen if we had really bad
1934 * interrupt latency and the interrupt routine and timeout were
1935 * running concurrently so that the del_timer() in the interrupt
1936 * handler couldn't run.
1937 */
1938 WARN_ON(del_timer_sync(&host->cto_timer));
1939 clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1940
1941 return true;
1942 }
1943
dw_mci_clear_pending_data_complete(struct dw_mci * host)1944 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1945 {
1946 if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1947 return false;
1948
1949 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1950 WARN_ON(del_timer_sync(&host->dto_timer));
1951 clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1952
1953 return true;
1954 }
1955
dw_mci_tasklet_func(unsigned long priv)1956 static void dw_mci_tasklet_func(unsigned long priv)
1957 {
1958 struct dw_mci *host = (struct dw_mci *)priv;
1959 struct mmc_data *data;
1960 struct mmc_command *cmd;
1961 struct mmc_request *mrq;
1962 enum dw_mci_state state;
1963 enum dw_mci_state prev_state;
1964 unsigned int err;
1965
1966 spin_lock(&host->lock);
1967
1968 state = host->state;
1969 data = host->data;
1970 mrq = host->mrq;
1971
1972 do {
1973 prev_state = state;
1974
1975 switch (state) {
1976 case STATE_IDLE:
1977 case STATE_WAITING_CMD11_DONE:
1978 break;
1979
1980 case STATE_SENDING_CMD11:
1981 case STATE_SENDING_CMD:
1982 if (!dw_mci_clear_pending_cmd_complete(host))
1983 break;
1984
1985 cmd = host->cmd;
1986 host->cmd = NULL;
1987 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1988 err = dw_mci_command_complete(host, cmd);
1989 if (cmd == mrq->sbc && !err) {
1990 __dw_mci_start_request(host, host->slot,
1991 mrq->cmd);
1992 goto unlock;
1993 }
1994
1995 if (cmd->data && err) {
1996 /*
1997 * During UHS tuning sequence, sending the stop
1998 * command after the response CRC error would
1999 * throw the system into a confused state
2000 * causing all future tuning phases to report
2001 * failure.
2002 *
2003 * In such case controller will move into a data
2004 * transfer state after a response error or
2005 * response CRC error. Let's let that finish
2006 * before trying to send a stop, so we'll go to
2007 * STATE_SENDING_DATA.
2008 *
2009 * Although letting the data transfer take place
2010 * will waste a bit of time (we already know
2011 * the command was bad), it can't cause any
2012 * errors since it's possible it would have
2013 * taken place anyway if this tasklet got
2014 * delayed. Allowing the transfer to take place
2015 * avoids races and keeps things simple.
2016 */
2017 if (err != -ETIMEDOUT &&
2018 host->dir_status == DW_MCI_RECV_STATUS) {
2019 state = STATE_SENDING_DATA;
2020 continue;
2021 }
2022
2023 send_stop_abort(host, data);
2024 dw_mci_stop_dma(host);
2025 state = STATE_SENDING_STOP;
2026 break;
2027 }
2028
2029 if (!cmd->data || err) {
2030 dw_mci_request_end(host, mrq);
2031 goto unlock;
2032 }
2033
2034 prev_state = state = STATE_SENDING_DATA;
2035 fallthrough;
2036
2037 case STATE_SENDING_DATA:
2038 /*
2039 * We could get a data error and never a transfer
2040 * complete so we'd better check for it here.
2041 *
2042 * Note that we don't really care if we also got a
2043 * transfer complete; stopping the DMA and sending an
2044 * abort won't hurt.
2045 */
2046 if (test_and_clear_bit(EVENT_DATA_ERROR,
2047 &host->pending_events)) {
2048 if (!(host->data_status & (SDMMC_INT_DRTO |
2049 SDMMC_INT_EBE)))
2050 send_stop_abort(host, data);
2051 dw_mci_stop_dma(host);
2052 state = STATE_DATA_ERROR;
2053 break;
2054 }
2055
2056 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2057 &host->pending_events)) {
2058 /*
2059 * If all data-related interrupts don't come
2060 * within the given time in reading data state.
2061 */
2062 if (host->dir_status == DW_MCI_RECV_STATUS)
2063 dw_mci_set_drto(host);
2064 break;
2065 }
2066
2067 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2068
2069 /*
2070 * Handle an EVENT_DATA_ERROR that might have shown up
2071 * before the transfer completed. This might not have
2072 * been caught by the check above because the interrupt
2073 * could have gone off between the previous check and
2074 * the check for transfer complete.
2075 *
2076 * Technically this ought not be needed assuming we
2077 * get a DATA_COMPLETE eventually (we'll notice the
2078 * error and end the request), but it shouldn't hurt.
2079 *
2080 * This has the advantage of sending the stop command.
2081 */
2082 if (test_and_clear_bit(EVENT_DATA_ERROR,
2083 &host->pending_events)) {
2084 if (!(host->data_status & (SDMMC_INT_DRTO |
2085 SDMMC_INT_EBE)))
2086 send_stop_abort(host, data);
2087 dw_mci_stop_dma(host);
2088 state = STATE_DATA_ERROR;
2089 break;
2090 }
2091 prev_state = state = STATE_DATA_BUSY;
2092
2093 fallthrough;
2094
2095 case STATE_DATA_BUSY:
2096 if (!dw_mci_clear_pending_data_complete(host)) {
2097 /*
2098 * If data error interrupt comes but data over
2099 * interrupt doesn't come within the given time.
2100 * in reading data state.
2101 */
2102 if (host->dir_status == DW_MCI_RECV_STATUS)
2103 dw_mci_set_drto(host);
2104 break;
2105 }
2106
2107 host->data = NULL;
2108 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2109 err = dw_mci_data_complete(host, data);
2110
2111 if (!err) {
2112 if (!data->stop || mrq->sbc) {
2113 if (mrq->sbc && data->stop)
2114 data->stop->error = 0;
2115 dw_mci_request_end(host, mrq);
2116 goto unlock;
2117 }
2118
2119 /* stop command for open-ended transfer*/
2120 if (data->stop)
2121 send_stop_abort(host, data);
2122 } else {
2123 /*
2124 * If we don't have a command complete now we'll
2125 * never get one since we just reset everything;
2126 * better end the request.
2127 *
2128 * If we do have a command complete we'll fall
2129 * through to the SENDING_STOP command and
2130 * everything will be peachy keen.
2131 */
2132 if (!test_bit(EVENT_CMD_COMPLETE,
2133 &host->pending_events)) {
2134 host->cmd = NULL;
2135 dw_mci_request_end(host, mrq);
2136 goto unlock;
2137 }
2138 }
2139
2140 /*
2141 * If err has non-zero,
2142 * stop-abort command has been already issued.
2143 */
2144 prev_state = state = STATE_SENDING_STOP;
2145
2146 fallthrough;
2147
2148 case STATE_SENDING_STOP:
2149 if (!dw_mci_clear_pending_cmd_complete(host))
2150 break;
2151
2152 /* CMD error in data command */
2153 if (mrq->cmd->error && mrq->data)
2154 dw_mci_reset(host);
2155
2156 host->cmd = NULL;
2157 host->data = NULL;
2158
2159 if (!mrq->sbc && mrq->stop)
2160 dw_mci_command_complete(host, mrq->stop);
2161 else
2162 host->cmd_status = 0;
2163
2164 dw_mci_request_end(host, mrq);
2165 goto unlock;
2166
2167 case STATE_DATA_ERROR:
2168 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2169 &host->pending_events))
2170 break;
2171
2172 state = STATE_DATA_BUSY;
2173 break;
2174 }
2175 } while (state != prev_state);
2176
2177 host->state = state;
2178 unlock:
2179 spin_unlock(&host->lock);
2180
2181 }
2182
2183 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2184 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2185 {
2186 memcpy((void *)&host->part_buf, buf, cnt);
2187 host->part_buf_count = cnt;
2188 }
2189
2190 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2191 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2192 {
2193 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2194 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2195 host->part_buf_count += cnt;
2196 return cnt;
2197 }
2198
2199 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2200 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2201 {
2202 cnt = min_t(int, cnt, host->part_buf_count);
2203 if (cnt) {
2204 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2205 cnt);
2206 host->part_buf_count -= cnt;
2207 host->part_buf_start += cnt;
2208 }
2209 return cnt;
2210 }
2211
2212 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2213 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2214 {
2215 memcpy(buf, &host->part_buf, cnt);
2216 host->part_buf_start = cnt;
2217 host->part_buf_count = (1 << host->data_shift) - cnt;
2218 }
2219
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2220 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2221 {
2222 struct mmc_data *data = host->data;
2223 int init_cnt = cnt;
2224
2225 /* try and push anything in the part_buf */
2226 if (unlikely(host->part_buf_count)) {
2227 int len = dw_mci_push_part_bytes(host, buf, cnt);
2228
2229 buf += len;
2230 cnt -= len;
2231 if (host->part_buf_count == 2) {
2232 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2233 host->part_buf_count = 0;
2234 }
2235 }
2236 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2237 if (unlikely((unsigned long)buf & 0x1)) {
2238 while (cnt >= 2) {
2239 u16 aligned_buf[64];
2240 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2241 int items = len >> 1;
2242 int i;
2243 /* memcpy from input buffer into aligned buffer */
2244 memcpy(aligned_buf, buf, len);
2245 buf += len;
2246 cnt -= len;
2247 /* push data from aligned buffer into fifo */
2248 for (i = 0; i < items; ++i)
2249 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2250 }
2251 } else
2252 #endif
2253 {
2254 u16 *pdata = buf;
2255
2256 for (; cnt >= 2; cnt -= 2)
2257 mci_fifo_writew(host->fifo_reg, *pdata++);
2258 buf = pdata;
2259 }
2260 /* put anything remaining in the part_buf */
2261 if (cnt) {
2262 dw_mci_set_part_bytes(host, buf, cnt);
2263 /* Push data if we have reached the expected data length */
2264 if ((data->bytes_xfered + init_cnt) ==
2265 (data->blksz * data->blocks))
2266 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2267 }
2268 }
2269
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2270 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2271 {
2272 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2273 if (unlikely((unsigned long)buf & 0x1)) {
2274 while (cnt >= 2) {
2275 /* pull data from fifo into aligned buffer */
2276 u16 aligned_buf[64];
2277 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2278 int items = len >> 1;
2279 int i;
2280
2281 for (i = 0; i < items; ++i)
2282 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2283 /* memcpy from aligned buffer into output buffer */
2284 memcpy(buf, aligned_buf, len);
2285 buf += len;
2286 cnt -= len;
2287 }
2288 } else
2289 #endif
2290 {
2291 u16 *pdata = buf;
2292
2293 for (; cnt >= 2; cnt -= 2)
2294 *pdata++ = mci_fifo_readw(host->fifo_reg);
2295 buf = pdata;
2296 }
2297 if (cnt) {
2298 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2299 dw_mci_pull_final_bytes(host, buf, cnt);
2300 }
2301 }
2302
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2303 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2304 {
2305 struct mmc_data *data = host->data;
2306 int init_cnt = cnt;
2307
2308 /* try and push anything in the part_buf */
2309 if (unlikely(host->part_buf_count)) {
2310 int len = dw_mci_push_part_bytes(host, buf, cnt);
2311
2312 buf += len;
2313 cnt -= len;
2314 if (host->part_buf_count == 4) {
2315 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2316 host->part_buf_count = 0;
2317 }
2318 }
2319 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2320 if (unlikely((unsigned long)buf & 0x3)) {
2321 while (cnt >= 4) {
2322 u32 aligned_buf[32];
2323 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2324 int items = len >> 2;
2325 int i;
2326 /* memcpy from input buffer into aligned buffer */
2327 memcpy(aligned_buf, buf, len);
2328 buf += len;
2329 cnt -= len;
2330 /* push data from aligned buffer into fifo */
2331 for (i = 0; i < items; ++i)
2332 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2333 }
2334 } else
2335 #endif
2336 {
2337 u32 *pdata = buf;
2338
2339 for (; cnt >= 4; cnt -= 4)
2340 mci_fifo_writel(host->fifo_reg, *pdata++);
2341 buf = pdata;
2342 }
2343 /* put anything remaining in the part_buf */
2344 if (cnt) {
2345 dw_mci_set_part_bytes(host, buf, cnt);
2346 /* Push data if we have reached the expected data length */
2347 if ((data->bytes_xfered + init_cnt) ==
2348 (data->blksz * data->blocks))
2349 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2350 }
2351 }
2352
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2353 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2354 {
2355 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2356 if (unlikely((unsigned long)buf & 0x3)) {
2357 while (cnt >= 4) {
2358 /* pull data from fifo into aligned buffer */
2359 u32 aligned_buf[32];
2360 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2361 int items = len >> 2;
2362 int i;
2363
2364 for (i = 0; i < items; ++i)
2365 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2366 /* memcpy from aligned buffer into output buffer */
2367 memcpy(buf, aligned_buf, len);
2368 buf += len;
2369 cnt -= len;
2370 }
2371 } else
2372 #endif
2373 {
2374 u32 *pdata = buf;
2375
2376 for (; cnt >= 4; cnt -= 4)
2377 *pdata++ = mci_fifo_readl(host->fifo_reg);
2378 buf = pdata;
2379 }
2380 if (cnt) {
2381 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2382 dw_mci_pull_final_bytes(host, buf, cnt);
2383 }
2384 }
2385
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2386 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2387 {
2388 struct mmc_data *data = host->data;
2389 int init_cnt = cnt;
2390
2391 /* try and push anything in the part_buf */
2392 if (unlikely(host->part_buf_count)) {
2393 int len = dw_mci_push_part_bytes(host, buf, cnt);
2394
2395 buf += len;
2396 cnt -= len;
2397
2398 if (host->part_buf_count == 8) {
2399 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2400 host->part_buf_count = 0;
2401 }
2402 }
2403 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2404 if (unlikely((unsigned long)buf & 0x7)) {
2405 while (cnt >= 8) {
2406 u64 aligned_buf[16];
2407 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2408 int items = len >> 3;
2409 int i;
2410 /* memcpy from input buffer into aligned buffer */
2411 memcpy(aligned_buf, buf, len);
2412 buf += len;
2413 cnt -= len;
2414 /* push data from aligned buffer into fifo */
2415 for (i = 0; i < items; ++i)
2416 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2417 }
2418 } else
2419 #endif
2420 {
2421 u64 *pdata = buf;
2422
2423 for (; cnt >= 8; cnt -= 8)
2424 mci_fifo_writeq(host->fifo_reg, *pdata++);
2425 buf = pdata;
2426 }
2427 /* put anything remaining in the part_buf */
2428 if (cnt) {
2429 dw_mci_set_part_bytes(host, buf, cnt);
2430 /* Push data if we have reached the expected data length */
2431 if ((data->bytes_xfered + init_cnt) ==
2432 (data->blksz * data->blocks))
2433 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2434 }
2435 }
2436
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2437 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2438 {
2439 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2440 if (unlikely((unsigned long)buf & 0x7)) {
2441 while (cnt >= 8) {
2442 /* pull data from fifo into aligned buffer */
2443 u64 aligned_buf[16];
2444 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2445 int items = len >> 3;
2446 int i;
2447
2448 for (i = 0; i < items; ++i)
2449 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2450
2451 /* memcpy from aligned buffer into output buffer */
2452 memcpy(buf, aligned_buf, len);
2453 buf += len;
2454 cnt -= len;
2455 }
2456 } else
2457 #endif
2458 {
2459 u64 *pdata = buf;
2460
2461 for (; cnt >= 8; cnt -= 8)
2462 *pdata++ = mci_fifo_readq(host->fifo_reg);
2463 buf = pdata;
2464 }
2465 if (cnt) {
2466 host->part_buf = mci_fifo_readq(host->fifo_reg);
2467 dw_mci_pull_final_bytes(host, buf, cnt);
2468 }
2469 }
2470
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2471 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2472 {
2473 int len;
2474
2475 /* get remaining partial bytes */
2476 len = dw_mci_pull_part_bytes(host, buf, cnt);
2477 if (unlikely(len == cnt))
2478 return;
2479 buf += len;
2480 cnt -= len;
2481
2482 /* get the rest of the data */
2483 host->pull_data(host, buf, cnt);
2484 }
2485
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2486 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2487 {
2488 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2489 void *buf;
2490 unsigned int offset;
2491 struct mmc_data *data = host->data;
2492 int shift = host->data_shift;
2493 u32 status;
2494 unsigned int len;
2495 unsigned int remain, fcnt;
2496
2497 do {
2498 if (!sg_miter_next(sg_miter))
2499 goto done;
2500
2501 host->sg = sg_miter->piter.sg;
2502 buf = sg_miter->addr;
2503 remain = sg_miter->length;
2504 offset = 0;
2505
2506 do {
2507 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2508 << shift) + host->part_buf_count;
2509 len = min(remain, fcnt);
2510 if (!len)
2511 break;
2512 dw_mci_pull_data(host, (void *)(buf + offset), len);
2513 data->bytes_xfered += len;
2514 offset += len;
2515 remain -= len;
2516 } while (remain);
2517
2518 sg_miter->consumed = offset;
2519 status = mci_readl(host, MINTSTS);
2520 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2521 /* if the RXDR is ready read again */
2522 } while ((status & SDMMC_INT_RXDR) ||
2523 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2524
2525 if (!remain) {
2526 if (!sg_miter_next(sg_miter))
2527 goto done;
2528 sg_miter->consumed = 0;
2529 }
2530 sg_miter_stop(sg_miter);
2531 return;
2532
2533 done:
2534 sg_miter_stop(sg_miter);
2535 host->sg = NULL;
2536 smp_wmb(); /* drain writebuffer */
2537 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2538 }
2539
dw_mci_write_data_pio(struct dw_mci * host)2540 static void dw_mci_write_data_pio(struct dw_mci *host)
2541 {
2542 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2543 void *buf;
2544 unsigned int offset;
2545 struct mmc_data *data = host->data;
2546 int shift = host->data_shift;
2547 u32 status;
2548 unsigned int len;
2549 unsigned int fifo_depth = host->fifo_depth;
2550 unsigned int remain, fcnt;
2551
2552 do {
2553 if (!sg_miter_next(sg_miter))
2554 goto done;
2555
2556 host->sg = sg_miter->piter.sg;
2557 buf = sg_miter->addr;
2558 remain = sg_miter->length;
2559 offset = 0;
2560
2561 do {
2562 fcnt = ((fifo_depth -
2563 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2564 << shift) - host->part_buf_count;
2565 len = min(remain, fcnt);
2566 if (!len)
2567 break;
2568 host->push_data(host, (void *)(buf + offset), len);
2569 data->bytes_xfered += len;
2570 offset += len;
2571 remain -= len;
2572 } while (remain);
2573
2574 sg_miter->consumed = offset;
2575 status = mci_readl(host, MINTSTS);
2576 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2577 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2578
2579 if (!remain) {
2580 if (!sg_miter_next(sg_miter))
2581 goto done;
2582 sg_miter->consumed = 0;
2583 }
2584 sg_miter_stop(sg_miter);
2585 return;
2586
2587 done:
2588 sg_miter_stop(sg_miter);
2589 host->sg = NULL;
2590 smp_wmb(); /* drain writebuffer */
2591 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2592 }
2593
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2594 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2595 {
2596 del_timer(&host->cto_timer);
2597
2598 if (!host->cmd_status)
2599 host->cmd_status = status;
2600
2601 smp_wmb(); /* drain writebuffer */
2602
2603 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2604 tasklet_schedule(&host->tasklet);
2605 }
2606
dw_mci_handle_cd(struct dw_mci * host)2607 static void dw_mci_handle_cd(struct dw_mci *host)
2608 {
2609 struct dw_mci_slot *slot = host->slot;
2610
2611 if (slot->mmc->ops->card_event)
2612 slot->mmc->ops->card_event(slot->mmc);
2613 mmc_detect_change(slot->mmc,
2614 msecs_to_jiffies(host->pdata->detect_delay_ms));
2615 }
2616
dw_mci_interrupt(int irq,void * dev_id)2617 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2618 {
2619 struct dw_mci *host = dev_id;
2620 u32 pending;
2621 struct dw_mci_slot *slot = host->slot;
2622 unsigned long irqflags;
2623
2624 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2625
2626 if (pending) {
2627 /* Check volt switch first, since it can look like an error */
2628 if ((host->state == STATE_SENDING_CMD11) &&
2629 (pending & SDMMC_INT_VOLT_SWITCH)) {
2630 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2631 pending &= ~SDMMC_INT_VOLT_SWITCH;
2632
2633 /*
2634 * Hold the lock; we know cmd11_timer can't be kicked
2635 * off after the lock is released, so safe to delete.
2636 */
2637 spin_lock_irqsave(&host->irq_lock, irqflags);
2638 dw_mci_cmd_interrupt(host, pending);
2639 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2640
2641 del_timer(&host->cmd11_timer);
2642 }
2643
2644 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2645 spin_lock_irqsave(&host->irq_lock, irqflags);
2646
2647 del_timer(&host->cto_timer);
2648 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2649 host->cmd_status = pending;
2650 smp_wmb(); /* drain writebuffer */
2651 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2652
2653 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2654 }
2655
2656 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2657 /* if there is an error report DATA_ERROR */
2658 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2659 host->data_status = pending;
2660 smp_wmb(); /* drain writebuffer */
2661 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2662 tasklet_schedule(&host->tasklet);
2663 }
2664
2665 if (pending & SDMMC_INT_DATA_OVER) {
2666 spin_lock_irqsave(&host->irq_lock, irqflags);
2667
2668 del_timer(&host->dto_timer);
2669
2670 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2671 if (!host->data_status)
2672 host->data_status = pending;
2673 smp_wmb(); /* drain writebuffer */
2674 if (host->dir_status == DW_MCI_RECV_STATUS) {
2675 if (host->sg != NULL)
2676 dw_mci_read_data_pio(host, true);
2677 }
2678 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2679 tasklet_schedule(&host->tasklet);
2680
2681 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2682 }
2683
2684 if (pending & SDMMC_INT_RXDR) {
2685 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2686 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2687 dw_mci_read_data_pio(host, false);
2688 }
2689
2690 if (pending & SDMMC_INT_TXDR) {
2691 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2692 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2693 dw_mci_write_data_pio(host);
2694 }
2695
2696 if (pending & SDMMC_INT_CMD_DONE) {
2697 spin_lock_irqsave(&host->irq_lock, irqflags);
2698
2699 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2700 dw_mci_cmd_interrupt(host, pending);
2701
2702 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2703 }
2704
2705 if (pending & SDMMC_INT_CD) {
2706 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2707 dw_mci_handle_cd(host);
2708 }
2709
2710 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2711 mci_writel(host, RINTSTS,
2712 SDMMC_INT_SDIO(slot->sdio_id));
2713 __dw_mci_enable_sdio_irq(slot, 0);
2714 sdio_signal_irq(slot->mmc);
2715 }
2716
2717 }
2718
2719 if (host->use_dma != TRANS_MODE_IDMAC)
2720 return IRQ_HANDLED;
2721
2722 /* Handle IDMA interrupts */
2723 if (host->dma_64bit_address == 1) {
2724 pending = mci_readl(host, IDSTS64);
2725 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2726 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2727 SDMMC_IDMAC_INT_RI);
2728 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2729 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2730 host->dma_ops->complete((void *)host);
2731 }
2732 } else {
2733 pending = mci_readl(host, IDSTS);
2734 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2735 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2736 SDMMC_IDMAC_INT_RI);
2737 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2738 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2739 host->dma_ops->complete((void *)host);
2740 }
2741 }
2742
2743 return IRQ_HANDLED;
2744 }
2745
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2746 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2747 {
2748 struct dw_mci *host = slot->host;
2749 const struct dw_mci_drv_data *drv_data = host->drv_data;
2750 struct mmc_host *mmc = slot->mmc;
2751 int ctrl_id;
2752
2753 if (host->pdata->caps)
2754 mmc->caps = host->pdata->caps;
2755
2756 if (host->pdata->pm_caps)
2757 mmc->pm_caps = host->pdata->pm_caps;
2758
2759 if (host->dev->of_node) {
2760 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2761 if (ctrl_id < 0)
2762 ctrl_id = 0;
2763 } else {
2764 ctrl_id = to_platform_device(host->dev)->id;
2765 }
2766
2767 if (drv_data && drv_data->caps) {
2768 if (ctrl_id >= drv_data->num_caps) {
2769 dev_err(host->dev, "invalid controller id %d\n",
2770 ctrl_id);
2771 return -EINVAL;
2772 }
2773 mmc->caps |= drv_data->caps[ctrl_id];
2774 }
2775
2776 if (host->pdata->caps2)
2777 mmc->caps2 = host->pdata->caps2;
2778
2779 mmc->f_min = DW_MCI_FREQ_MIN;
2780 if (!mmc->f_max)
2781 mmc->f_max = DW_MCI_FREQ_MAX;
2782
2783 /* Process SDIO IRQs through the sdio_irq_work. */
2784 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2785 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2786
2787 return 0;
2788 }
2789
dw_mci_init_slot(struct dw_mci * host)2790 static int dw_mci_init_slot(struct dw_mci *host)
2791 {
2792 struct mmc_host *mmc;
2793 struct dw_mci_slot *slot;
2794 int ret;
2795
2796 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2797 if (!mmc)
2798 return -ENOMEM;
2799
2800 slot = mmc_priv(mmc);
2801 slot->id = 0;
2802 slot->sdio_id = host->sdio_id0 + slot->id;
2803 slot->mmc = mmc;
2804 slot->host = host;
2805 host->slot = slot;
2806
2807 mmc->ops = &dw_mci_ops;
2808
2809 /*if there are external regulators, get them*/
2810 ret = mmc_regulator_get_supply(mmc);
2811 if (ret)
2812 goto err_host_allocated;
2813
2814 if (!mmc->ocr_avail)
2815 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2816
2817 ret = mmc_of_parse(mmc);
2818 if (ret)
2819 goto err_host_allocated;
2820
2821 ret = dw_mci_init_slot_caps(slot);
2822 if (ret)
2823 goto err_host_allocated;
2824
2825 /* Useful defaults if platform data is unset. */
2826 if (host->use_dma == TRANS_MODE_IDMAC) {
2827 mmc->max_segs = host->ring_size;
2828 mmc->max_blk_size = 65535;
2829 mmc->max_seg_size = 0x1000;
2830 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2831 mmc->max_blk_count = mmc->max_req_size / 512;
2832 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2833 mmc->max_segs = 64;
2834 mmc->max_blk_size = 65535;
2835 mmc->max_blk_count = 65535;
2836 mmc->max_req_size =
2837 mmc->max_blk_size * mmc->max_blk_count;
2838 mmc->max_seg_size = mmc->max_req_size;
2839 } else {
2840 /* TRANS_MODE_PIO */
2841 mmc->max_segs = 64;
2842 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2843 mmc->max_blk_count = 512;
2844 mmc->max_req_size = mmc->max_blk_size *
2845 mmc->max_blk_count;
2846 mmc->max_seg_size = mmc->max_req_size;
2847 }
2848
2849 dw_mci_get_cd(mmc);
2850
2851 ret = mmc_add_host(mmc);
2852 if (ret)
2853 goto err_host_allocated;
2854
2855 #if defined(CONFIG_DEBUG_FS)
2856 dw_mci_init_debugfs(slot);
2857 #endif
2858
2859 return 0;
2860
2861 err_host_allocated:
2862 mmc_free_host(mmc);
2863 return ret;
2864 }
2865
dw_mci_cleanup_slot(struct dw_mci_slot * slot)2866 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2867 {
2868 /* Debugfs stuff is cleaned up by mmc core */
2869 mmc_remove_host(slot->mmc);
2870 slot->host->slot = NULL;
2871 mmc_free_host(slot->mmc);
2872 }
2873
dw_mci_init_dma(struct dw_mci * host)2874 static void dw_mci_init_dma(struct dw_mci *host)
2875 {
2876 int addr_config;
2877 struct device *dev = host->dev;
2878
2879 /*
2880 * Check tansfer mode from HCON[17:16]
2881 * Clear the ambiguous description of dw_mmc databook:
2882 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2883 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2884 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2885 * 2b'11: Non DW DMA Interface -> pio only
2886 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2887 * simpler request/acknowledge handshake mechanism and both of them
2888 * are regarded as external dma master for dw_mmc.
2889 */
2890 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2891 if (host->use_dma == DMA_INTERFACE_IDMA) {
2892 host->use_dma = TRANS_MODE_IDMAC;
2893 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2894 host->use_dma == DMA_INTERFACE_GDMA) {
2895 host->use_dma = TRANS_MODE_EDMAC;
2896 } else {
2897 goto no_dma;
2898 }
2899
2900 /* Determine which DMA interface to use */
2901 if (host->use_dma == TRANS_MODE_IDMAC) {
2902 /*
2903 * Check ADDR_CONFIG bit in HCON to find
2904 * IDMAC address bus width
2905 */
2906 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2907
2908 if (addr_config == 1) {
2909 /* host supports IDMAC in 64-bit address mode */
2910 host->dma_64bit_address = 1;
2911 dev_info(host->dev,
2912 "IDMAC supports 64-bit address mode.\n");
2913 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2914 dma_set_coherent_mask(host->dev,
2915 DMA_BIT_MASK(64));
2916 } else {
2917 /* host supports IDMAC in 32-bit address mode */
2918 host->dma_64bit_address = 0;
2919 dev_info(host->dev,
2920 "IDMAC supports 32-bit address mode.\n");
2921 }
2922
2923 /* Alloc memory for sg translation */
2924 host->sg_cpu = dmam_alloc_coherent(host->dev,
2925 DESC_RING_BUF_SZ,
2926 &host->sg_dma, GFP_KERNEL);
2927 if (!host->sg_cpu) {
2928 dev_err(host->dev,
2929 "%s: could not alloc DMA memory\n",
2930 __func__);
2931 goto no_dma;
2932 }
2933
2934 host->dma_ops = &dw_mci_idmac_ops;
2935 dev_info(host->dev, "Using internal DMA controller.\n");
2936 } else {
2937 /* TRANS_MODE_EDMAC: check dma bindings again */
2938 if ((device_property_read_string_array(dev, "dma-names",
2939 NULL, 0) < 0) ||
2940 !device_property_present(dev, "dmas")) {
2941 goto no_dma;
2942 }
2943 host->dma_ops = &dw_mci_edmac_ops;
2944 dev_info(host->dev, "Using external DMA controller.\n");
2945 }
2946
2947 if (host->dma_ops->init && host->dma_ops->start &&
2948 host->dma_ops->stop && host->dma_ops->cleanup) {
2949 if (host->dma_ops->init(host)) {
2950 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2951 __func__);
2952 goto no_dma;
2953 }
2954 } else {
2955 dev_err(host->dev, "DMA initialization not found.\n");
2956 goto no_dma;
2957 }
2958
2959 return;
2960
2961 no_dma:
2962 dev_info(host->dev, "Using PIO mode.\n");
2963 host->use_dma = TRANS_MODE_PIO;
2964 }
2965
dw_mci_cmd11_timer(struct timer_list * t)2966 static void dw_mci_cmd11_timer(struct timer_list *t)
2967 {
2968 struct dw_mci *host = from_timer(host, t, cmd11_timer);
2969
2970 if (host->state != STATE_SENDING_CMD11) {
2971 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2972 return;
2973 }
2974
2975 host->cmd_status = SDMMC_INT_RTO;
2976 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2977 tasklet_schedule(&host->tasklet);
2978 }
2979
dw_mci_cto_timer(struct timer_list * t)2980 static void dw_mci_cto_timer(struct timer_list *t)
2981 {
2982 struct dw_mci *host = from_timer(host, t, cto_timer);
2983 unsigned long irqflags;
2984 u32 pending;
2985
2986 spin_lock_irqsave(&host->irq_lock, irqflags);
2987
2988 /*
2989 * If somehow we have very bad interrupt latency it's remotely possible
2990 * that the timer could fire while the interrupt is still pending or
2991 * while the interrupt is midway through running. Let's be paranoid
2992 * and detect those two cases. Note that this is paranoia is somewhat
2993 * justified because in this function we don't actually cancel the
2994 * pending command in the controller--we just assume it will never come.
2995 */
2996 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2997 if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
2998 /* The interrupt should fire; no need to act but we can warn */
2999 dev_warn(host->dev, "Unexpected interrupt latency\n");
3000 goto exit;
3001 }
3002 if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3003 /* Presumably interrupt handler couldn't delete the timer */
3004 dev_warn(host->dev, "CTO timeout when already completed\n");
3005 goto exit;
3006 }
3007
3008 /*
3009 * Continued paranoia to make sure we're in the state we expect.
3010 * This paranoia isn't really justified but it seems good to be safe.
3011 */
3012 switch (host->state) {
3013 case STATE_SENDING_CMD11:
3014 case STATE_SENDING_CMD:
3015 case STATE_SENDING_STOP:
3016 /*
3017 * If CMD_DONE interrupt does NOT come in sending command
3018 * state, we should notify the driver to terminate current
3019 * transfer and report a command timeout to the core.
3020 */
3021 host->cmd_status = SDMMC_INT_RTO;
3022 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3023 tasklet_schedule(&host->tasklet);
3024 break;
3025 default:
3026 dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3027 host->state);
3028 break;
3029 }
3030
3031 exit:
3032 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3033 }
3034
dw_mci_dto_timer(struct timer_list * t)3035 static void dw_mci_dto_timer(struct timer_list *t)
3036 {
3037 struct dw_mci *host = from_timer(host, t, dto_timer);
3038 unsigned long irqflags;
3039 u32 pending;
3040
3041 spin_lock_irqsave(&host->irq_lock, irqflags);
3042
3043 /*
3044 * The DTO timer is much longer than the CTO timer, so it's even less
3045 * likely that we'll these cases, but it pays to be paranoid.
3046 */
3047 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3048 if (pending & SDMMC_INT_DATA_OVER) {
3049 /* The interrupt should fire; no need to act but we can warn */
3050 dev_warn(host->dev, "Unexpected data interrupt latency\n");
3051 goto exit;
3052 }
3053 if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3054 /* Presumably interrupt handler couldn't delete the timer */
3055 dev_warn(host->dev, "DTO timeout when already completed\n");
3056 goto exit;
3057 }
3058
3059 /*
3060 * Continued paranoia to make sure we're in the state we expect.
3061 * This paranoia isn't really justified but it seems good to be safe.
3062 */
3063 switch (host->state) {
3064 case STATE_SENDING_DATA:
3065 case STATE_DATA_BUSY:
3066 /*
3067 * If DTO interrupt does NOT come in sending data state,
3068 * we should notify the driver to terminate current transfer
3069 * and report a data timeout to the core.
3070 */
3071 host->data_status = SDMMC_INT_DRTO;
3072 set_bit(EVENT_DATA_ERROR, &host->pending_events);
3073 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3074 tasklet_schedule(&host->tasklet);
3075 break;
3076 default:
3077 dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3078 host->state);
3079 break;
3080 }
3081
3082 exit:
3083 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3084 }
3085
3086 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3087 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3088 {
3089 struct dw_mci_board *pdata;
3090 struct device *dev = host->dev;
3091 const struct dw_mci_drv_data *drv_data = host->drv_data;
3092 int ret;
3093 u32 clock_frequency;
3094
3095 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3096 if (!pdata)
3097 return ERR_PTR(-ENOMEM);
3098
3099 /* find reset controller when exist */
3100 pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3101 if (IS_ERR(pdata->rstc)) {
3102 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3103 return ERR_PTR(-EPROBE_DEFER);
3104 }
3105
3106 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3107 dev_info(dev,
3108 "fifo-depth property not found, using value of FIFOTH register as default\n");
3109
3110 device_property_read_u32(dev, "card-detect-delay",
3111 &pdata->detect_delay_ms);
3112
3113 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3114
3115 if (device_property_present(dev, "fifo-watermark-aligned"))
3116 host->wm_aligned = true;
3117
3118 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3119 pdata->bus_hz = clock_frequency;
3120
3121 if (drv_data && drv_data->parse_dt) {
3122 ret = drv_data->parse_dt(host);
3123 if (ret)
3124 return ERR_PTR(ret);
3125 }
3126
3127 return pdata;
3128 }
3129
3130 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3131 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3132 {
3133 return ERR_PTR(-EINVAL);
3134 }
3135 #endif /* CONFIG_OF */
3136
dw_mci_enable_cd(struct dw_mci * host)3137 static void dw_mci_enable_cd(struct dw_mci *host)
3138 {
3139 unsigned long irqflags;
3140 u32 temp;
3141
3142 /*
3143 * No need for CD if all slots have a non-error GPIO
3144 * as well as broken card detection is found.
3145 */
3146 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3147 return;
3148
3149 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3150 spin_lock_irqsave(&host->irq_lock, irqflags);
3151 temp = mci_readl(host, INTMASK);
3152 temp |= SDMMC_INT_CD;
3153 mci_writel(host, INTMASK, temp);
3154 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3155 }
3156 }
3157
dw_mci_probe(struct dw_mci * host)3158 int dw_mci_probe(struct dw_mci *host)
3159 {
3160 const struct dw_mci_drv_data *drv_data = host->drv_data;
3161 int width, i, ret = 0;
3162 u32 fifo_size;
3163
3164 if (!host->pdata) {
3165 host->pdata = dw_mci_parse_dt(host);
3166 if (IS_ERR(host->pdata))
3167 return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3168 "platform data not available\n");
3169 }
3170
3171 host->biu_clk = devm_clk_get(host->dev, "biu");
3172 if (IS_ERR(host->biu_clk)) {
3173 dev_dbg(host->dev, "biu clock not available\n");
3174 } else {
3175 ret = clk_prepare_enable(host->biu_clk);
3176 if (ret) {
3177 dev_err(host->dev, "failed to enable biu clock\n");
3178 return ret;
3179 }
3180 }
3181
3182 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3183 if (IS_ERR(host->ciu_clk)) {
3184 dev_dbg(host->dev, "ciu clock not available\n");
3185 host->bus_hz = host->pdata->bus_hz;
3186 } else {
3187 ret = clk_prepare_enable(host->ciu_clk);
3188 if (ret) {
3189 dev_err(host->dev, "failed to enable ciu clock\n");
3190 goto err_clk_biu;
3191 }
3192
3193 if (host->pdata->bus_hz) {
3194 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3195 if (ret)
3196 dev_warn(host->dev,
3197 "Unable to set bus rate to %uHz\n",
3198 host->pdata->bus_hz);
3199 }
3200 host->bus_hz = clk_get_rate(host->ciu_clk);
3201 }
3202
3203 if (!host->bus_hz) {
3204 dev_err(host->dev,
3205 "Platform data must supply bus speed\n");
3206 ret = -ENODEV;
3207 goto err_clk_ciu;
3208 }
3209
3210 if (!IS_ERR(host->pdata->rstc)) {
3211 reset_control_assert(host->pdata->rstc);
3212 usleep_range(10, 50);
3213 reset_control_deassert(host->pdata->rstc);
3214 }
3215
3216 if (drv_data && drv_data->init) {
3217 ret = drv_data->init(host);
3218 if (ret) {
3219 dev_err(host->dev,
3220 "implementation specific init failed\n");
3221 goto err_clk_ciu;
3222 }
3223 }
3224
3225 timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3226 timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3227 timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3228
3229 spin_lock_init(&host->lock);
3230 spin_lock_init(&host->irq_lock);
3231 INIT_LIST_HEAD(&host->queue);
3232
3233 /*
3234 * Get the host data width - this assumes that HCON has been set with
3235 * the correct values.
3236 */
3237 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3238 if (!i) {
3239 host->push_data = dw_mci_push_data16;
3240 host->pull_data = dw_mci_pull_data16;
3241 width = 16;
3242 host->data_shift = 1;
3243 } else if (i == 2) {
3244 host->push_data = dw_mci_push_data64;
3245 host->pull_data = dw_mci_pull_data64;
3246 width = 64;
3247 host->data_shift = 3;
3248 } else {
3249 /* Check for a reserved value, and warn if it is */
3250 WARN((i != 1),
3251 "HCON reports a reserved host data width!\n"
3252 "Defaulting to 32-bit access.\n");
3253 host->push_data = dw_mci_push_data32;
3254 host->pull_data = dw_mci_pull_data32;
3255 width = 32;
3256 host->data_shift = 2;
3257 }
3258
3259 /* Reset all blocks */
3260 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3261 ret = -ENODEV;
3262 goto err_clk_ciu;
3263 }
3264
3265 host->dma_ops = host->pdata->dma_ops;
3266 dw_mci_init_dma(host);
3267
3268 /* Clear the interrupts for the host controller */
3269 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3270 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3271
3272 /* Put in max timeout */
3273 mci_writel(host, TMOUT, 0xFFFFFFFF);
3274
3275 /*
3276 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3277 * Tx Mark = fifo_size / 2 DMA Size = 8
3278 */
3279 if (!host->pdata->fifo_depth) {
3280 /*
3281 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3282 * have been overwritten by the bootloader, just like we're
3283 * about to do, so if you know the value for your hardware, you
3284 * should put it in the platform data.
3285 */
3286 fifo_size = mci_readl(host, FIFOTH);
3287 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3288 } else {
3289 fifo_size = host->pdata->fifo_depth;
3290 }
3291 host->fifo_depth = fifo_size;
3292 host->fifoth_val =
3293 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3294 mci_writel(host, FIFOTH, host->fifoth_val);
3295
3296 /* disable clock to CIU */
3297 mci_writel(host, CLKENA, 0);
3298 mci_writel(host, CLKSRC, 0);
3299
3300 /*
3301 * In 2.40a spec, Data offset is changed.
3302 * Need to check the version-id and set data-offset for DATA register.
3303 */
3304 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3305 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3306
3307 if (host->data_addr_override)
3308 host->fifo_reg = host->regs + host->data_addr_override;
3309 else if (host->verid < DW_MMC_240A)
3310 host->fifo_reg = host->regs + DATA_OFFSET;
3311 else
3312 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3313
3314 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3315 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3316 host->irq_flags, "dw-mci", host);
3317 if (ret)
3318 goto err_dmaunmap;
3319
3320 /*
3321 * Enable interrupts for command done, data over, data empty,
3322 * receive ready and error such as transmit, receive timeout, crc error
3323 */
3324 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3325 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3326 DW_MCI_ERROR_FLAGS);
3327 /* Enable mci interrupt */
3328 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3329
3330 dev_info(host->dev,
3331 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3332 host->irq, width, fifo_size);
3333
3334 /* We need at least one slot to succeed */
3335 ret = dw_mci_init_slot(host);
3336 if (ret) {
3337 dev_dbg(host->dev, "slot %d init failed\n", i);
3338 goto err_dmaunmap;
3339 }
3340
3341 /* Now that slots are all setup, we can enable card detect */
3342 dw_mci_enable_cd(host);
3343
3344 return 0;
3345
3346 err_dmaunmap:
3347 if (host->use_dma && host->dma_ops->exit)
3348 host->dma_ops->exit(host);
3349
3350 if (!IS_ERR(host->pdata->rstc))
3351 reset_control_assert(host->pdata->rstc);
3352
3353 err_clk_ciu:
3354 clk_disable_unprepare(host->ciu_clk);
3355
3356 err_clk_biu:
3357 clk_disable_unprepare(host->biu_clk);
3358
3359 return ret;
3360 }
3361 EXPORT_SYMBOL(dw_mci_probe);
3362
dw_mci_remove(struct dw_mci * host)3363 void dw_mci_remove(struct dw_mci *host)
3364 {
3365 dev_dbg(host->dev, "remove slot\n");
3366 if (host->slot)
3367 dw_mci_cleanup_slot(host->slot);
3368
3369 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3370 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3371
3372 /* disable clock to CIU */
3373 mci_writel(host, CLKENA, 0);
3374 mci_writel(host, CLKSRC, 0);
3375
3376 if (host->use_dma && host->dma_ops->exit)
3377 host->dma_ops->exit(host);
3378
3379 if (!IS_ERR(host->pdata->rstc))
3380 reset_control_assert(host->pdata->rstc);
3381
3382 clk_disable_unprepare(host->ciu_clk);
3383 clk_disable_unprepare(host->biu_clk);
3384 }
3385 EXPORT_SYMBOL(dw_mci_remove);
3386
3387
3388
3389 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3390 int dw_mci_runtime_suspend(struct device *dev)
3391 {
3392 struct dw_mci *host = dev_get_drvdata(dev);
3393
3394 if (host->use_dma && host->dma_ops->exit)
3395 host->dma_ops->exit(host);
3396
3397 clk_disable_unprepare(host->ciu_clk);
3398
3399 if (host->slot &&
3400 (mmc_can_gpio_cd(host->slot->mmc) ||
3401 !mmc_card_is_removable(host->slot->mmc)))
3402 clk_disable_unprepare(host->biu_clk);
3403
3404 return 0;
3405 }
3406 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3407
dw_mci_runtime_resume(struct device * dev)3408 int dw_mci_runtime_resume(struct device *dev)
3409 {
3410 int ret = 0;
3411 struct dw_mci *host = dev_get_drvdata(dev);
3412
3413 if (host->slot &&
3414 (mmc_can_gpio_cd(host->slot->mmc) ||
3415 !mmc_card_is_removable(host->slot->mmc))) {
3416 ret = clk_prepare_enable(host->biu_clk);
3417 if (ret)
3418 return ret;
3419 }
3420
3421 ret = clk_prepare_enable(host->ciu_clk);
3422 if (ret)
3423 goto err;
3424
3425 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3426 clk_disable_unprepare(host->ciu_clk);
3427 ret = -ENODEV;
3428 goto err;
3429 }
3430
3431 if (host->use_dma && host->dma_ops->init)
3432 host->dma_ops->init(host);
3433
3434 /*
3435 * Restore the initial value at FIFOTH register
3436 * And Invalidate the prev_blksz with zero
3437 */
3438 mci_writel(host, FIFOTH, host->fifoth_val);
3439 host->prev_blksz = 0;
3440
3441 /* Put in max timeout */
3442 mci_writel(host, TMOUT, 0xFFFFFFFF);
3443
3444 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3445 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3446 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3447 DW_MCI_ERROR_FLAGS);
3448 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3449
3450
3451 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3452 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3453
3454 /* Force setup bus to guarantee available clock output */
3455 dw_mci_setup_bus(host->slot, true);
3456
3457 /* Re-enable SDIO interrupts. */
3458 if (sdio_irq_claimed(host->slot->mmc))
3459 __dw_mci_enable_sdio_irq(host->slot, 1);
3460
3461 /* Now that slots are all setup, we can enable card detect */
3462 dw_mci_enable_cd(host);
3463
3464 return 0;
3465
3466 err:
3467 if (host->slot &&
3468 (mmc_can_gpio_cd(host->slot->mmc) ||
3469 !mmc_card_is_removable(host->slot->mmc)))
3470 clk_disable_unprepare(host->biu_clk);
3471
3472 return ret;
3473 }
3474 EXPORT_SYMBOL(dw_mci_runtime_resume);
3475 #endif /* CONFIG_PM */
3476
dw_mci_init(void)3477 static int __init dw_mci_init(void)
3478 {
3479 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3480 return 0;
3481 }
3482
dw_mci_exit(void)3483 static void __exit dw_mci_exit(void)
3484 {
3485 }
3486
3487 module_init(dw_mci_init);
3488 module_exit(dw_mci_exit);
3489
3490 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3491 MODULE_AUTHOR("NXP Semiconductor VietNam");
3492 MODULE_AUTHOR("Imagination Technologies Ltd");
3493 MODULE_LICENSE("GPL v2");
3494