• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Synopsys DesignWare Multimedia Card Interface driver
4  *  (Based on NXP driver for lpc 31xx)
5  *
6  * Copyright (C) 2009 NXP Semiconductors
7  * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
8  */
9 
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/of.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "dw_mmc.h"
40 
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS	(SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 				 SDMMC_INT_HTO | SDMMC_INT_SBE  | \
44 				 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS	(SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 				 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS	(DW_MCI_DATA_ERROR_FLAGS | \
48 				 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS	1
50 #define DW_MCI_RECV_STATUS	2
51 #define DW_MCI_DMA_THRESHOLD	16
52 
53 #define DW_MCI_FREQ_MAX	200000000	/* unit: HZ */
54 #define DW_MCI_FREQ_MIN	100000		/* unit: HZ */
55 
56 #define IDMAC_INT_CLR		(SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 				 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 				 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
59 				 SDMMC_IDMAC_INT_TI)
60 
61 #define DESC_RING_BUF_SZ	PAGE_SIZE
62 
63 struct idmac_desc_64addr {
64 	u32		des0;	/* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 	!((x) & cpu_to_le32(IDMAC_DES0_OWN))
67 
68 	u32		des1;	/* Reserved */
69 
70 	u32		des2;	/*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 	((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 	 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
74 
75 	u32		des3;	/* Reserved */
76 
77 	u32		des4;	/* Lower 32-bits of Buffer Address Pointer 1*/
78 	u32		des5;	/* Upper 32-bits of Buffer Address Pointer 1*/
79 
80 	u32		des6;	/* Lower 32-bits of Next Descriptor Address */
81 	u32		des7;	/* Upper 32-bits of Next Descriptor Address */
82 };
83 
84 struct idmac_desc {
85 	__le32		des0;	/* Control Descriptor */
86 #define IDMAC_DES0_DIC	BIT(1)
87 #define IDMAC_DES0_LD	BIT(2)
88 #define IDMAC_DES0_FD	BIT(3)
89 #define IDMAC_DES0_CH	BIT(4)
90 #define IDMAC_DES0_ER	BIT(5)
91 #define IDMAC_DES0_CES	BIT(30)
92 #define IDMAC_DES0_OWN	BIT(31)
93 
94 	__le32		des1;	/* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 	((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
97 
98 	__le32		des2;	/* buffer 1 physical address */
99 
100 	__le32		des3;	/* buffer 2 physical address */
101 };
102 
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH	0x1000
105 
106 #if defined(CONFIG_DEBUG_FS)
dw_mci_req_show(struct seq_file * s,void * v)107 static int dw_mci_req_show(struct seq_file *s, void *v)
108 {
109 	struct dw_mci_slot *slot = s->private;
110 	struct mmc_request *mrq;
111 	struct mmc_command *cmd;
112 	struct mmc_command *stop;
113 	struct mmc_data	*data;
114 
115 	/* Make sure we get a consistent snapshot */
116 	spin_lock_bh(&slot->host->lock);
117 	mrq = slot->mrq;
118 
119 	if (mrq) {
120 		cmd = mrq->cmd;
121 		data = mrq->data;
122 		stop = mrq->stop;
123 
124 		if (cmd)
125 			seq_printf(s,
126 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 				   cmd->opcode, cmd->arg, cmd->flags,
128 				   cmd->resp[0], cmd->resp[1], cmd->resp[2],
129 				   cmd->resp[2], cmd->error);
130 		if (data)
131 			seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
132 				   data->bytes_xfered, data->blocks,
133 				   data->blksz, data->flags, data->error);
134 		if (stop)
135 			seq_printf(s,
136 				   "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 				   stop->opcode, stop->arg, stop->flags,
138 				   stop->resp[0], stop->resp[1], stop->resp[2],
139 				   stop->resp[2], stop->error);
140 	}
141 
142 	spin_unlock_bh(&slot->host->lock);
143 
144 	return 0;
145 }
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
147 
dw_mci_regs_show(struct seq_file * s,void * v)148 static int dw_mci_regs_show(struct seq_file *s, void *v)
149 {
150 	struct dw_mci *host = s->private;
151 
152 	pm_runtime_get_sync(host->dev);
153 
154 	seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
155 	seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
156 	seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
157 	seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
158 	seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
159 	seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
160 
161 	pm_runtime_put_autosuspend(host->dev);
162 
163 	return 0;
164 }
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
166 
dw_mci_init_debugfs(struct dw_mci_slot * slot)167 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
168 {
169 	struct mmc_host	*mmc = slot->mmc;
170 	struct dw_mci *host = slot->host;
171 	struct dentry *root;
172 
173 	root = mmc->debugfs_root;
174 	if (!root)
175 		return;
176 
177 	debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
178 	debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
179 	debugfs_create_u32("state", S_IRUSR, root, &host->state);
180 	debugfs_create_xul("pending_events", S_IRUSR, root,
181 			   &host->pending_events);
182 	debugfs_create_xul("completed_events", S_IRUSR, root,
183 			   &host->completed_events);
184 }
185 #endif /* defined(CONFIG_DEBUG_FS) */
186 
dw_mci_ctrl_reset(struct dw_mci * host,u32 reset)187 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
188 {
189 	u32 ctrl;
190 
191 	ctrl = mci_readl(host, CTRL);
192 	ctrl |= reset;
193 	mci_writel(host, CTRL, ctrl);
194 
195 	/* wait till resets clear */
196 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
197 				      !(ctrl & reset),
198 				      1, 500 * USEC_PER_MSEC)) {
199 		dev_err(host->dev,
200 			"Timeout resetting block (ctrl reset %#x)\n",
201 			ctrl & reset);
202 		return false;
203 	}
204 
205 	return true;
206 }
207 
dw_mci_wait_while_busy(struct dw_mci * host,u32 cmd_flags)208 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
209 {
210 	u32 status;
211 
212 	/*
213 	 * Databook says that before issuing a new data transfer command
214 	 * we need to check to see if the card is busy.  Data transfer commands
215 	 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
216 	 *
217 	 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
218 	 * expected.
219 	 */
220 	if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
221 	    !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
222 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
223 					      status,
224 					      !(status & SDMMC_STATUS_BUSY),
225 					      10, 500 * USEC_PER_MSEC))
226 			dev_err(host->dev, "Busy; trying anyway\n");
227 	}
228 }
229 
mci_send_cmd(struct dw_mci_slot * slot,u32 cmd,u32 arg)230 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
231 {
232 	struct dw_mci *host = slot->host;
233 	unsigned int cmd_status = 0;
234 
235 	mci_writel(host, CMDARG, arg);
236 	wmb(); /* drain writebuffer */
237 	dw_mci_wait_while_busy(host, cmd);
238 	mci_writel(host, CMD, SDMMC_CMD_START | cmd);
239 
240 	if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
241 				      !(cmd_status & SDMMC_CMD_START),
242 				      1, 500 * USEC_PER_MSEC))
243 		dev_err(&slot->mmc->class_dev,
244 			"Timeout sending command (cmd %#x arg %#x status %#x)\n",
245 			cmd, arg, cmd_status);
246 }
247 
dw_mci_prepare_command(struct mmc_host * mmc,struct mmc_command * cmd)248 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
249 {
250 	struct dw_mci_slot *slot = mmc_priv(mmc);
251 	struct dw_mci *host = slot->host;
252 	u32 cmdr;
253 
254 	cmd->error = -EINPROGRESS;
255 	cmdr = cmd->opcode;
256 
257 	if (cmd->opcode == MMC_STOP_TRANSMISSION ||
258 	    cmd->opcode == MMC_GO_IDLE_STATE ||
259 	    cmd->opcode == MMC_GO_INACTIVE_STATE ||
260 	    (cmd->opcode == SD_IO_RW_DIRECT &&
261 	     ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
262 		cmdr |= SDMMC_CMD_STOP;
263 	else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
264 		cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
265 
266 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
267 		u32 clk_en_a;
268 
269 		/* Special bit makes CMD11 not die */
270 		cmdr |= SDMMC_CMD_VOLT_SWITCH;
271 
272 		/* Change state to continue to handle CMD11 weirdness */
273 		WARN_ON(slot->host->state != STATE_SENDING_CMD);
274 		slot->host->state = STATE_SENDING_CMD11;
275 
276 		/*
277 		 * We need to disable low power mode (automatic clock stop)
278 		 * while doing voltage switch so we don't confuse the card,
279 		 * since stopping the clock is a specific part of the UHS
280 		 * voltage change dance.
281 		 *
282 		 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
283 		 * unconditionally turned back on in dw_mci_setup_bus() if it's
284 		 * ever called with a non-zero clock.  That shouldn't happen
285 		 * until the voltage change is all done.
286 		 */
287 		clk_en_a = mci_readl(host, CLKENA);
288 		clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
289 		mci_writel(host, CLKENA, clk_en_a);
290 		mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
291 			     SDMMC_CMD_PRV_DAT_WAIT, 0);
292 	}
293 
294 	if (cmd->flags & MMC_RSP_PRESENT) {
295 		/* We expect a response, so set this bit */
296 		cmdr |= SDMMC_CMD_RESP_EXP;
297 		if (cmd->flags & MMC_RSP_136)
298 			cmdr |= SDMMC_CMD_RESP_LONG;
299 	}
300 
301 	if (cmd->flags & MMC_RSP_CRC)
302 		cmdr |= SDMMC_CMD_RESP_CRC;
303 
304 	if (cmd->data) {
305 		cmdr |= SDMMC_CMD_DAT_EXP;
306 		if (cmd->data->flags & MMC_DATA_WRITE)
307 			cmdr |= SDMMC_CMD_DAT_WR;
308 	}
309 
310 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
311 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
312 
313 	return cmdr;
314 }
315 
dw_mci_prep_stop_abort(struct dw_mci * host,struct mmc_command * cmd)316 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
317 {
318 	struct mmc_command *stop;
319 	u32 cmdr;
320 
321 	if (!cmd->data)
322 		return 0;
323 
324 	stop = &host->stop_abort;
325 	cmdr = cmd->opcode;
326 	memset(stop, 0, sizeof(struct mmc_command));
327 
328 	if (cmdr == MMC_READ_SINGLE_BLOCK ||
329 	    cmdr == MMC_READ_MULTIPLE_BLOCK ||
330 	    cmdr == MMC_WRITE_BLOCK ||
331 	    cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
332 	    cmdr == MMC_SEND_TUNING_BLOCK ||
333 	    cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
334 		stop->opcode = MMC_STOP_TRANSMISSION;
335 		stop->arg = 0;
336 		stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
337 	} else if (cmdr == SD_IO_RW_EXTENDED) {
338 		stop->opcode = SD_IO_RW_DIRECT;
339 		stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
340 			     ((cmd->arg >> 28) & 0x7);
341 		stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
342 	} else {
343 		return 0;
344 	}
345 
346 	cmdr = stop->opcode | SDMMC_CMD_STOP |
347 		SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
348 
349 	if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
350 		cmdr |= SDMMC_CMD_USE_HOLD_REG;
351 
352 	return cmdr;
353 }
354 
dw_mci_set_cto(struct dw_mci * host)355 static inline void dw_mci_set_cto(struct dw_mci *host)
356 {
357 	unsigned int cto_clks;
358 	unsigned int cto_div;
359 	unsigned int cto_ms;
360 	unsigned long irqflags;
361 
362 	cto_clks = mci_readl(host, TMOUT) & 0xff;
363 	cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
364 	if (cto_div == 0)
365 		cto_div = 1;
366 
367 	cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
368 				  host->bus_hz);
369 
370 	/* add a bit spare time */
371 	cto_ms += 10;
372 
373 	/*
374 	 * The durations we're working with are fairly short so we have to be
375 	 * extra careful about synchronization here.  Specifically in hardware a
376 	 * command timeout is _at most_ 5.1 ms, so that means we expect an
377 	 * interrupt (either command done or timeout) to come rather quickly
378 	 * after the mci_writel.  ...but just in case we have a long interrupt
379 	 * latency let's add a bit of paranoia.
380 	 *
381 	 * In general we'll assume that at least an interrupt will be asserted
382 	 * in hardware by the time the cto_timer runs.  ...and if it hasn't
383 	 * been asserted in hardware by that time then we'll assume it'll never
384 	 * come.
385 	 */
386 	spin_lock_irqsave(&host->irq_lock, irqflags);
387 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
388 		mod_timer(&host->cto_timer,
389 			jiffies + msecs_to_jiffies(cto_ms) + 1);
390 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
391 }
392 
dw_mci_start_command(struct dw_mci * host,struct mmc_command * cmd,u32 cmd_flags)393 static void dw_mci_start_command(struct dw_mci *host,
394 				 struct mmc_command *cmd, u32 cmd_flags)
395 {
396 	host->cmd = cmd;
397 	dev_vdbg(host->dev,
398 		 "start command: ARGR=0x%08x CMDR=0x%08x\n",
399 		 cmd->arg, cmd_flags);
400 
401 	mci_writel(host, CMDARG, cmd->arg);
402 	wmb(); /* drain writebuffer */
403 	dw_mci_wait_while_busy(host, cmd_flags);
404 
405 	mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
406 
407 	/* response expected command only */
408 	if (cmd_flags & SDMMC_CMD_RESP_EXP)
409 		dw_mci_set_cto(host);
410 }
411 
send_stop_abort(struct dw_mci * host,struct mmc_data * data)412 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
413 {
414 	struct mmc_command *stop = &host->stop_abort;
415 
416 	dw_mci_start_command(host, stop, host->stop_cmdr);
417 }
418 
419 /* DMA interface functions */
dw_mci_stop_dma(struct dw_mci * host)420 static void dw_mci_stop_dma(struct dw_mci *host)
421 {
422 	if (host->using_dma) {
423 		host->dma_ops->stop(host);
424 		host->dma_ops->cleanup(host);
425 	}
426 
427 	/* Data transfer was stopped by the interrupt handler */
428 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
429 }
430 
dw_mci_dma_cleanup(struct dw_mci * host)431 static void dw_mci_dma_cleanup(struct dw_mci *host)
432 {
433 	struct mmc_data *data = host->data;
434 
435 	if (data && data->host_cookie == COOKIE_MAPPED) {
436 		dma_unmap_sg(host->dev,
437 			     data->sg,
438 			     data->sg_len,
439 			     mmc_get_dma_dir(data));
440 		data->host_cookie = COOKIE_UNMAPPED;
441 	}
442 }
443 
dw_mci_idmac_reset(struct dw_mci * host)444 static void dw_mci_idmac_reset(struct dw_mci *host)
445 {
446 	u32 bmod = mci_readl(host, BMOD);
447 	/* Software reset of DMA */
448 	bmod |= SDMMC_IDMAC_SWRESET;
449 	mci_writel(host, BMOD, bmod);
450 }
451 
dw_mci_idmac_stop_dma(struct dw_mci * host)452 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
453 {
454 	u32 temp;
455 
456 	/* Disable and reset the IDMAC interface */
457 	temp = mci_readl(host, CTRL);
458 	temp &= ~SDMMC_CTRL_USE_IDMAC;
459 	temp |= SDMMC_CTRL_DMA_RESET;
460 	mci_writel(host, CTRL, temp);
461 
462 	/* Stop the IDMAC running */
463 	temp = mci_readl(host, BMOD);
464 	temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
465 	temp |= SDMMC_IDMAC_SWRESET;
466 	mci_writel(host, BMOD, temp);
467 }
468 
dw_mci_dmac_complete_dma(void * arg)469 static void dw_mci_dmac_complete_dma(void *arg)
470 {
471 	struct dw_mci *host = arg;
472 	struct mmc_data *data = host->data;
473 
474 	dev_vdbg(host->dev, "DMA complete\n");
475 
476 	if ((host->use_dma == TRANS_MODE_EDMAC) &&
477 	    data && (data->flags & MMC_DATA_READ))
478 		/* Invalidate cache after read */
479 		dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
480 				    data->sg,
481 				    data->sg_len,
482 				    DMA_FROM_DEVICE);
483 
484 	host->dma_ops->cleanup(host);
485 
486 	/*
487 	 * If the card was removed, data will be NULL. No point in trying to
488 	 * send the stop command or waiting for NBUSY in this case.
489 	 */
490 	if (data) {
491 		set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
492 		tasklet_schedule(&host->tasklet);
493 	}
494 }
495 
dw_mci_idmac_init(struct dw_mci * host)496 static int dw_mci_idmac_init(struct dw_mci *host)
497 {
498 	int i;
499 
500 	if (host->dma_64bit_address == 1) {
501 		struct idmac_desc_64addr *p;
502 		/* Number of descriptors in the ring buffer */
503 		host->ring_size =
504 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
505 
506 		/* Forward link the descriptor list */
507 		for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
508 								i++, p++) {
509 			p->des6 = (host->sg_dma +
510 					(sizeof(struct idmac_desc_64addr) *
511 							(i + 1))) & 0xffffffff;
512 
513 			p->des7 = (u64)(host->sg_dma +
514 					(sizeof(struct idmac_desc_64addr) *
515 							(i + 1))) >> 32;
516 			/* Initialize reserved and buffer size fields to "0" */
517 			p->des0 = 0;
518 			p->des1 = 0;
519 			p->des2 = 0;
520 			p->des3 = 0;
521 		}
522 
523 		/* Set the last descriptor as the end-of-ring descriptor */
524 		p->des6 = host->sg_dma & 0xffffffff;
525 		p->des7 = (u64)host->sg_dma >> 32;
526 		p->des0 = IDMAC_DES0_ER;
527 
528 	} else {
529 		struct idmac_desc *p;
530 		/* Number of descriptors in the ring buffer */
531 		host->ring_size =
532 			DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
533 
534 		/* Forward link the descriptor list */
535 		for (i = 0, p = host->sg_cpu;
536 		     i < host->ring_size - 1;
537 		     i++, p++) {
538 			p->des3 = cpu_to_le32(host->sg_dma +
539 					(sizeof(struct idmac_desc) * (i + 1)));
540 			p->des0 = 0;
541 			p->des1 = 0;
542 		}
543 
544 		/* Set the last descriptor as the end-of-ring descriptor */
545 		p->des3 = cpu_to_le32(host->sg_dma);
546 		p->des0 = cpu_to_le32(IDMAC_DES0_ER);
547 	}
548 
549 	dw_mci_idmac_reset(host);
550 
551 	if (host->dma_64bit_address == 1) {
552 		/* Mask out interrupts - get Tx & Rx complete only */
553 		mci_writel(host, IDSTS64, IDMAC_INT_CLR);
554 		mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
555 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
556 
557 		/* Set the descriptor base address */
558 		mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
559 		mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
560 
561 	} else {
562 		/* Mask out interrupts - get Tx & Rx complete only */
563 		mci_writel(host, IDSTS, IDMAC_INT_CLR);
564 		mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
565 				SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
566 
567 		/* Set the descriptor base address */
568 		mci_writel(host, DBADDR, host->sg_dma);
569 	}
570 
571 	return 0;
572 }
573 
dw_mci_prepare_desc64(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)574 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
575 					 struct mmc_data *data,
576 					 unsigned int sg_len)
577 {
578 	unsigned int desc_len;
579 	struct idmac_desc_64addr *desc_first, *desc_last, *desc;
580 	u32 val;
581 	int i;
582 
583 	desc_first = desc_last = desc = host->sg_cpu;
584 
585 	for (i = 0; i < sg_len; i++) {
586 		unsigned int length = sg_dma_len(&data->sg[i]);
587 
588 		u64 mem_addr = sg_dma_address(&data->sg[i]);
589 
590 		for ( ; length ; desc++) {
591 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
592 				   length : DW_MCI_DESC_DATA_LENGTH;
593 
594 			length -= desc_len;
595 
596 			/*
597 			 * Wait for the former clear OWN bit operation
598 			 * of IDMAC to make sure that this descriptor
599 			 * isn't still owned by IDMAC as IDMAC's write
600 			 * ops and CPU's read ops are asynchronous.
601 			 */
602 			if (readl_poll_timeout_atomic(&desc->des0, val,
603 						!(val & IDMAC_DES0_OWN),
604 						10, 100 * USEC_PER_MSEC))
605 				goto err_own_bit;
606 
607 			/*
608 			 * Set the OWN bit and disable interrupts
609 			 * for this descriptor
610 			 */
611 			desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
612 						IDMAC_DES0_CH;
613 
614 			/* Buffer length */
615 			IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
616 
617 			/* Physical address to DMA to/from */
618 			desc->des4 = mem_addr & 0xffffffff;
619 			desc->des5 = mem_addr >> 32;
620 
621 			/* Update physical address for the next desc */
622 			mem_addr += desc_len;
623 
624 			/* Save pointer to the last descriptor */
625 			desc_last = desc;
626 		}
627 	}
628 
629 	/* Set first descriptor */
630 	desc_first->des0 |= IDMAC_DES0_FD;
631 
632 	/* Set last descriptor */
633 	desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
634 	desc_last->des0 |= IDMAC_DES0_LD;
635 
636 	return 0;
637 err_own_bit:
638 	/* restore the descriptor chain as it's polluted */
639 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
640 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
641 	dw_mci_idmac_init(host);
642 	return -EINVAL;
643 }
644 
645 
dw_mci_prepare_desc32(struct dw_mci * host,struct mmc_data * data,unsigned int sg_len)646 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
647 					 struct mmc_data *data,
648 					 unsigned int sg_len)
649 {
650 	unsigned int desc_len;
651 	struct idmac_desc *desc_first, *desc_last, *desc;
652 	u32 val;
653 	int i;
654 
655 	desc_first = desc_last = desc = host->sg_cpu;
656 
657 	for (i = 0; i < sg_len; i++) {
658 		unsigned int length = sg_dma_len(&data->sg[i]);
659 
660 		u32 mem_addr = sg_dma_address(&data->sg[i]);
661 
662 		for ( ; length ; desc++) {
663 			desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
664 				   length : DW_MCI_DESC_DATA_LENGTH;
665 
666 			length -= desc_len;
667 
668 			/*
669 			 * Wait for the former clear OWN bit operation
670 			 * of IDMAC to make sure that this descriptor
671 			 * isn't still owned by IDMAC as IDMAC's write
672 			 * ops and CPU's read ops are asynchronous.
673 			 */
674 			if (readl_poll_timeout_atomic(&desc->des0, val,
675 						      IDMAC_OWN_CLR64(val),
676 						      10,
677 						      100 * USEC_PER_MSEC))
678 				goto err_own_bit;
679 
680 			/*
681 			 * Set the OWN bit and disable interrupts
682 			 * for this descriptor
683 			 */
684 			desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
685 						 IDMAC_DES0_DIC |
686 						 IDMAC_DES0_CH);
687 
688 			/* Buffer length */
689 			IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
690 
691 			/* Physical address to DMA to/from */
692 			desc->des2 = cpu_to_le32(mem_addr);
693 
694 			/* Update physical address for the next desc */
695 			mem_addr += desc_len;
696 
697 			/* Save pointer to the last descriptor */
698 			desc_last = desc;
699 		}
700 	}
701 
702 	/* Set first descriptor */
703 	desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
704 
705 	/* Set last descriptor */
706 	desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
707 				       IDMAC_DES0_DIC));
708 	desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
709 
710 	return 0;
711 err_own_bit:
712 	/* restore the descriptor chain as it's polluted */
713 	dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
714 	memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
715 	dw_mci_idmac_init(host);
716 	return -EINVAL;
717 }
718 
dw_mci_idmac_start_dma(struct dw_mci * host,unsigned int sg_len)719 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
720 {
721 	u32 temp;
722 	int ret;
723 
724 	if (host->dma_64bit_address == 1)
725 		ret = dw_mci_prepare_desc64(host, host->data, sg_len);
726 	else
727 		ret = dw_mci_prepare_desc32(host, host->data, sg_len);
728 
729 	if (ret)
730 		goto out;
731 
732 	/* drain writebuffer */
733 	wmb();
734 
735 	/* Make sure to reset DMA in case we did PIO before this */
736 	dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
737 	dw_mci_idmac_reset(host);
738 
739 	/* Select IDMAC interface */
740 	temp = mci_readl(host, CTRL);
741 	temp |= SDMMC_CTRL_USE_IDMAC;
742 	mci_writel(host, CTRL, temp);
743 
744 	/* drain writebuffer */
745 	wmb();
746 
747 	/* Enable the IDMAC */
748 	temp = mci_readl(host, BMOD);
749 	temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
750 	mci_writel(host, BMOD, temp);
751 
752 	/* Start it running */
753 	mci_writel(host, PLDMND, 1);
754 
755 out:
756 	return ret;
757 }
758 
759 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
760 	.init = dw_mci_idmac_init,
761 	.start = dw_mci_idmac_start_dma,
762 	.stop = dw_mci_idmac_stop_dma,
763 	.complete = dw_mci_dmac_complete_dma,
764 	.cleanup = dw_mci_dma_cleanup,
765 };
766 
dw_mci_edmac_stop_dma(struct dw_mci * host)767 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
768 {
769 	dmaengine_terminate_async(host->dms->ch);
770 }
771 
dw_mci_edmac_start_dma(struct dw_mci * host,unsigned int sg_len)772 static int dw_mci_edmac_start_dma(struct dw_mci *host,
773 					    unsigned int sg_len)
774 {
775 	struct dma_slave_config cfg;
776 	struct dma_async_tx_descriptor *desc = NULL;
777 	struct scatterlist *sgl = host->data->sg;
778 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
779 	u32 sg_elems = host->data->sg_len;
780 	u32 fifoth_val;
781 	u32 fifo_offset = host->fifo_reg - host->regs;
782 	int ret = 0;
783 
784 	/* Set external dma config: burst size, burst width */
785 	memset(&cfg, 0, sizeof(cfg));
786 	cfg.dst_addr = host->phy_regs + fifo_offset;
787 	cfg.src_addr = cfg.dst_addr;
788 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
789 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 
791 	/* Match burst msize with external dma config */
792 	fifoth_val = mci_readl(host, FIFOTH);
793 	cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
794 	cfg.src_maxburst = cfg.dst_maxburst;
795 
796 	if (host->data->flags & MMC_DATA_WRITE)
797 		cfg.direction = DMA_MEM_TO_DEV;
798 	else
799 		cfg.direction = DMA_DEV_TO_MEM;
800 
801 	ret = dmaengine_slave_config(host->dms->ch, &cfg);
802 	if (ret) {
803 		dev_err(host->dev, "Failed to config edmac.\n");
804 		return -EBUSY;
805 	}
806 
807 	desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
808 				       sg_len, cfg.direction,
809 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
810 	if (!desc) {
811 		dev_err(host->dev, "Can't prepare slave sg.\n");
812 		return -EBUSY;
813 	}
814 
815 	/* Set dw_mci_dmac_complete_dma as callback */
816 	desc->callback = dw_mci_dmac_complete_dma;
817 	desc->callback_param = (void *)host;
818 	dmaengine_submit(desc);
819 
820 	/* Flush cache before write */
821 	if (host->data->flags & MMC_DATA_WRITE)
822 		dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
823 				       sg_elems, DMA_TO_DEVICE);
824 
825 	dma_async_issue_pending(host->dms->ch);
826 
827 	return 0;
828 }
829 
dw_mci_edmac_init(struct dw_mci * host)830 static int dw_mci_edmac_init(struct dw_mci *host)
831 {
832 	/* Request external dma channel */
833 	host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
834 	if (!host->dms)
835 		return -ENOMEM;
836 
837 	host->dms->ch = dma_request_chan(host->dev, "rx-tx");
838 	if (IS_ERR(host->dms->ch)) {
839 		int ret = PTR_ERR(host->dms->ch);
840 
841 		dev_err(host->dev, "Failed to get external DMA channel.\n");
842 		kfree(host->dms);
843 		host->dms = NULL;
844 		return ret;
845 	}
846 
847 	return 0;
848 }
849 
dw_mci_edmac_exit(struct dw_mci * host)850 static void dw_mci_edmac_exit(struct dw_mci *host)
851 {
852 	if (host->dms) {
853 		if (host->dms->ch) {
854 			dma_release_channel(host->dms->ch);
855 			host->dms->ch = NULL;
856 		}
857 		kfree(host->dms);
858 		host->dms = NULL;
859 	}
860 }
861 
862 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
863 	.init = dw_mci_edmac_init,
864 	.exit = dw_mci_edmac_exit,
865 	.start = dw_mci_edmac_start_dma,
866 	.stop = dw_mci_edmac_stop_dma,
867 	.complete = dw_mci_dmac_complete_dma,
868 	.cleanup = dw_mci_dma_cleanup,
869 };
870 
dw_mci_pre_dma_transfer(struct dw_mci * host,struct mmc_data * data,int cookie)871 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
872 				   struct mmc_data *data,
873 				   int cookie)
874 {
875 	struct scatterlist *sg;
876 	unsigned int i, sg_len;
877 
878 	if (data->host_cookie == COOKIE_PRE_MAPPED)
879 		return data->sg_len;
880 
881 	/*
882 	 * We don't do DMA on "complex" transfers, i.e. with
883 	 * non-word-aligned buffers or lengths. Also, we don't bother
884 	 * with all the DMA setup overhead for short transfers.
885 	 */
886 	if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
887 		return -EINVAL;
888 
889 	if (data->blksz & 3)
890 		return -EINVAL;
891 
892 	for_each_sg(data->sg, sg, data->sg_len, i) {
893 		if (sg->offset & 3 || sg->length & 3)
894 			return -EINVAL;
895 	}
896 
897 	sg_len = dma_map_sg(host->dev,
898 			    data->sg,
899 			    data->sg_len,
900 			    mmc_get_dma_dir(data));
901 	if (sg_len == 0)
902 		return -EINVAL;
903 
904 	data->host_cookie = cookie;
905 
906 	return sg_len;
907 }
908 
dw_mci_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)909 static void dw_mci_pre_req(struct mmc_host *mmc,
910 			   struct mmc_request *mrq)
911 {
912 	struct dw_mci_slot *slot = mmc_priv(mmc);
913 	struct mmc_data *data = mrq->data;
914 
915 	if (!slot->host->use_dma || !data)
916 		return;
917 
918 	/* This data might be unmapped at this time */
919 	data->host_cookie = COOKIE_UNMAPPED;
920 
921 	if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
922 				COOKIE_PRE_MAPPED) < 0)
923 		data->host_cookie = COOKIE_UNMAPPED;
924 }
925 
dw_mci_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)926 static void dw_mci_post_req(struct mmc_host *mmc,
927 			    struct mmc_request *mrq,
928 			    int err)
929 {
930 	struct dw_mci_slot *slot = mmc_priv(mmc);
931 	struct mmc_data *data = mrq->data;
932 
933 	if (!slot->host->use_dma || !data)
934 		return;
935 
936 	if (data->host_cookie != COOKIE_UNMAPPED)
937 		dma_unmap_sg(slot->host->dev,
938 			     data->sg,
939 			     data->sg_len,
940 			     mmc_get_dma_dir(data));
941 	data->host_cookie = COOKIE_UNMAPPED;
942 }
943 
dw_mci_get_cd(struct mmc_host * mmc)944 static int dw_mci_get_cd(struct mmc_host *mmc)
945 {
946 	int present;
947 	struct dw_mci_slot *slot = mmc_priv(mmc);
948 	struct dw_mci *host = slot->host;
949 	int gpio_cd = mmc_gpio_get_cd(mmc);
950 
951 	/* Use platform get_cd function, else try onboard card detect */
952 	if (((mmc->caps & MMC_CAP_NEEDS_POLL)
953 				|| !mmc_card_is_removable(mmc))) {
954 		present = 1;
955 
956 		if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
957 			if (mmc->caps & MMC_CAP_NEEDS_POLL) {
958 				dev_info(&mmc->class_dev,
959 					"card is polling.\n");
960 			} else {
961 				dev_info(&mmc->class_dev,
962 					"card is non-removable.\n");
963 			}
964 			set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
965 		}
966 
967 		return present;
968 	} else if (gpio_cd >= 0)
969 		present = gpio_cd;
970 	else
971 		present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
972 			== 0 ? 1 : 0;
973 
974 	spin_lock_bh(&host->lock);
975 	if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
976 		dev_dbg(&mmc->class_dev, "card is present\n");
977 	else if (!present &&
978 			!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
979 		dev_dbg(&mmc->class_dev, "card is not present\n");
980 	spin_unlock_bh(&host->lock);
981 
982 	return present;
983 }
984 
dw_mci_adjust_fifoth(struct dw_mci * host,struct mmc_data * data)985 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
986 {
987 	unsigned int blksz = data->blksz;
988 	static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
989 	u32 fifo_width = 1 << host->data_shift;
990 	u32 blksz_depth = blksz / fifo_width, fifoth_val;
991 	u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
992 	int idx = ARRAY_SIZE(mszs) - 1;
993 
994 	/* pio should ship this scenario */
995 	if (!host->use_dma)
996 		return;
997 
998 	tx_wmark = (host->fifo_depth) / 2;
999 	tx_wmark_invers = host->fifo_depth - tx_wmark;
1000 
1001 	/*
1002 	 * MSIZE is '1',
1003 	 * if blksz is not a multiple of the FIFO width
1004 	 */
1005 	if (blksz % fifo_width)
1006 		goto done;
1007 
1008 	do {
1009 		if (!((blksz_depth % mszs[idx]) ||
1010 		     (tx_wmark_invers % mszs[idx]))) {
1011 			msize = idx;
1012 			rx_wmark = mszs[idx] - 1;
1013 			break;
1014 		}
1015 	} while (--idx > 0);
1016 	/*
1017 	 * If idx is '0', it won't be tried
1018 	 * Thus, initial values are uesed
1019 	 */
1020 done:
1021 	fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1022 	mci_writel(host, FIFOTH, fifoth_val);
1023 }
1024 
dw_mci_ctrl_thld(struct dw_mci * host,struct mmc_data * data)1025 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1026 {
1027 	unsigned int blksz = data->blksz;
1028 	u32 blksz_depth, fifo_depth;
1029 	u16 thld_size;
1030 	u8 enable;
1031 
1032 	/*
1033 	 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1034 	 * in the FIFO region, so we really shouldn't access it).
1035 	 */
1036 	if (host->verid < DW_MMC_240A ||
1037 		(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1038 		return;
1039 
1040 	/*
1041 	 * Card write Threshold is introduced since 2.80a
1042 	 * It's used when HS400 mode is enabled.
1043 	 */
1044 	if (data->flags & MMC_DATA_WRITE &&
1045 		host->timing != MMC_TIMING_MMC_HS400)
1046 		goto disable;
1047 
1048 	if (data->flags & MMC_DATA_WRITE)
1049 		enable = SDMMC_CARD_WR_THR_EN;
1050 	else
1051 		enable = SDMMC_CARD_RD_THR_EN;
1052 
1053 	if (host->timing != MMC_TIMING_MMC_HS200 &&
1054 	    host->timing != MMC_TIMING_UHS_SDR104 &&
1055 	    host->timing != MMC_TIMING_MMC_HS400)
1056 		goto disable;
1057 
1058 	blksz_depth = blksz / (1 << host->data_shift);
1059 	fifo_depth = host->fifo_depth;
1060 
1061 	if (blksz_depth > fifo_depth)
1062 		goto disable;
1063 
1064 	/*
1065 	 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1066 	 * If (blksz_depth) <  (fifo_depth >> 1), should be thld_size = blksz
1067 	 * Currently just choose blksz.
1068 	 */
1069 	thld_size = blksz;
1070 	mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1071 	return;
1072 
1073 disable:
1074 	mci_writel(host, CDTHRCTL, 0);
1075 }
1076 
dw_mci_submit_data_dma(struct dw_mci * host,struct mmc_data * data)1077 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1078 {
1079 	unsigned long irqflags;
1080 	int sg_len;
1081 	u32 temp;
1082 
1083 	host->using_dma = 0;
1084 
1085 	/* If we don't have a channel, we can't do DMA */
1086 	if (!host->use_dma)
1087 		return -ENODEV;
1088 
1089 	sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1090 	if (sg_len < 0) {
1091 		host->dma_ops->stop(host);
1092 		return sg_len;
1093 	}
1094 
1095 	host->using_dma = 1;
1096 
1097 	if (host->use_dma == TRANS_MODE_IDMAC)
1098 		dev_vdbg(host->dev,
1099 			 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1100 			 (unsigned long)host->sg_cpu,
1101 			 (unsigned long)host->sg_dma,
1102 			 sg_len);
1103 
1104 	/*
1105 	 * Decide the MSIZE and RX/TX Watermark.
1106 	 * If current block size is same with previous size,
1107 	 * no need to update fifoth.
1108 	 */
1109 	if (host->prev_blksz != data->blksz)
1110 		dw_mci_adjust_fifoth(host, data);
1111 
1112 	/* Enable the DMA interface */
1113 	temp = mci_readl(host, CTRL);
1114 	temp |= SDMMC_CTRL_DMA_ENABLE;
1115 	mci_writel(host, CTRL, temp);
1116 
1117 	/* Disable RX/TX IRQs, let DMA handle it */
1118 	spin_lock_irqsave(&host->irq_lock, irqflags);
1119 	temp = mci_readl(host, INTMASK);
1120 	temp  &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1121 	mci_writel(host, INTMASK, temp);
1122 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1123 
1124 	if (host->dma_ops->start(host, sg_len)) {
1125 		host->dma_ops->stop(host);
1126 		/* We can't do DMA, try PIO for this one */
1127 		dev_dbg(host->dev,
1128 			"%s: fall back to PIO mode for current transfer\n",
1129 			__func__);
1130 		return -ENODEV;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
dw_mci_submit_data(struct dw_mci * host,struct mmc_data * data)1136 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1137 {
1138 	unsigned long irqflags;
1139 	int flags = SG_MITER_ATOMIC;
1140 	u32 temp;
1141 
1142 	data->error = -EINPROGRESS;
1143 
1144 	WARN_ON(host->data);
1145 	host->sg = NULL;
1146 	host->data = data;
1147 
1148 	if (data->flags & MMC_DATA_READ)
1149 		host->dir_status = DW_MCI_RECV_STATUS;
1150 	else
1151 		host->dir_status = DW_MCI_SEND_STATUS;
1152 
1153 	dw_mci_ctrl_thld(host, data);
1154 
1155 	if (dw_mci_submit_data_dma(host, data)) {
1156 		if (host->data->flags & MMC_DATA_READ)
1157 			flags |= SG_MITER_TO_SG;
1158 		else
1159 			flags |= SG_MITER_FROM_SG;
1160 
1161 		sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1162 		host->sg = data->sg;
1163 		host->part_buf_start = 0;
1164 		host->part_buf_count = 0;
1165 
1166 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1167 
1168 		spin_lock_irqsave(&host->irq_lock, irqflags);
1169 		temp = mci_readl(host, INTMASK);
1170 		temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1171 		mci_writel(host, INTMASK, temp);
1172 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1173 
1174 		temp = mci_readl(host, CTRL);
1175 		temp &= ~SDMMC_CTRL_DMA_ENABLE;
1176 		mci_writel(host, CTRL, temp);
1177 
1178 		/*
1179 		 * Use the initial fifoth_val for PIO mode. If wm_algined
1180 		 * is set, we set watermark same as data size.
1181 		 * If next issued data may be transfered by DMA mode,
1182 		 * prev_blksz should be invalidated.
1183 		 */
1184 		if (host->wm_aligned)
1185 			dw_mci_adjust_fifoth(host, data);
1186 		else
1187 			mci_writel(host, FIFOTH, host->fifoth_val);
1188 		host->prev_blksz = 0;
1189 	} else {
1190 		/*
1191 		 * Keep the current block size.
1192 		 * It will be used to decide whether to update
1193 		 * fifoth register next time.
1194 		 */
1195 		host->prev_blksz = data->blksz;
1196 	}
1197 }
1198 
dw_mci_setup_bus(struct dw_mci_slot * slot,bool force_clkinit)1199 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1200 {
1201 	struct dw_mci *host = slot->host;
1202 	unsigned int clock = slot->clock;
1203 	u32 div;
1204 	u32 clk_en_a;
1205 	u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1206 
1207 	/* We must continue to set bit 28 in CMD until the change is complete */
1208 	if (host->state == STATE_WAITING_CMD11_DONE)
1209 		sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1210 
1211 	slot->mmc->actual_clock = 0;
1212 
1213 	if (!clock) {
1214 		mci_writel(host, CLKENA, 0);
1215 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1216 	} else if (clock != host->current_speed || force_clkinit) {
1217 		div = host->bus_hz / clock;
1218 		if (host->bus_hz % clock && host->bus_hz > clock)
1219 			/*
1220 			 * move the + 1 after the divide to prevent
1221 			 * over-clocking the card.
1222 			 */
1223 			div += 1;
1224 
1225 		div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1226 
1227 		if ((clock != slot->__clk_old &&
1228 			!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1229 			force_clkinit) {
1230 			/* Silent the verbose log if calling from PM context */
1231 			if (!force_clkinit)
1232 				dev_info(&slot->mmc->class_dev,
1233 					 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1234 					 slot->id, host->bus_hz, clock,
1235 					 div ? ((host->bus_hz / div) >> 1) :
1236 					 host->bus_hz, div);
1237 
1238 			/*
1239 			 * If card is polling, display the message only
1240 			 * one time at boot time.
1241 			 */
1242 			if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1243 					slot->mmc->f_min == clock)
1244 				set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1245 		}
1246 
1247 		/* disable clock */
1248 		mci_writel(host, CLKENA, 0);
1249 		mci_writel(host, CLKSRC, 0);
1250 
1251 		/* inform CIU */
1252 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1253 
1254 		/* set clock to desired speed */
1255 		mci_writel(host, CLKDIV, div);
1256 
1257 		/* inform CIU */
1258 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1259 
1260 		/* enable clock; only low power if no SDIO */
1261 		clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1262 		if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1263 			clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1264 		mci_writel(host, CLKENA, clk_en_a);
1265 
1266 		/* inform CIU */
1267 		mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1268 
1269 		/* keep the last clock value that was requested from core */
1270 		slot->__clk_old = clock;
1271 		slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
1272 					  host->bus_hz;
1273 	}
1274 
1275 	host->current_speed = clock;
1276 
1277 	/* Set the current slot bus width */
1278 	mci_writel(host, CTYPE, (slot->ctype << slot->id));
1279 }
1280 
__dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_command * cmd)1281 static void __dw_mci_start_request(struct dw_mci *host,
1282 				   struct dw_mci_slot *slot,
1283 				   struct mmc_command *cmd)
1284 {
1285 	struct mmc_request *mrq;
1286 	struct mmc_data	*data;
1287 	u32 cmdflags;
1288 
1289 	mrq = slot->mrq;
1290 
1291 	host->mrq = mrq;
1292 
1293 	host->pending_events = 0;
1294 	host->completed_events = 0;
1295 	host->cmd_status = 0;
1296 	host->data_status = 0;
1297 	host->dir_status = 0;
1298 
1299 	data = cmd->data;
1300 	if (data) {
1301 		mci_writel(host, TMOUT, 0xFFFFFFFF);
1302 		mci_writel(host, BYTCNT, data->blksz*data->blocks);
1303 		mci_writel(host, BLKSIZ, data->blksz);
1304 	}
1305 
1306 	cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1307 
1308 	/* this is the first command, send the initialization clock */
1309 	if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1310 		cmdflags |= SDMMC_CMD_INIT;
1311 
1312 	if (data) {
1313 		dw_mci_submit_data(host, data);
1314 		wmb(); /* drain writebuffer */
1315 	}
1316 
1317 	dw_mci_start_command(host, cmd, cmdflags);
1318 
1319 	if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1320 		unsigned long irqflags;
1321 
1322 		/*
1323 		 * Databook says to fail after 2ms w/ no response, but evidence
1324 		 * shows that sometimes the cmd11 interrupt takes over 130ms.
1325 		 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1326 		 * is just about to roll over.
1327 		 *
1328 		 * We do this whole thing under spinlock and only if the
1329 		 * command hasn't already completed (indicating the the irq
1330 		 * already ran so we don't want the timeout).
1331 		 */
1332 		spin_lock_irqsave(&host->irq_lock, irqflags);
1333 		if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1334 			mod_timer(&host->cmd11_timer,
1335 				jiffies + msecs_to_jiffies(500) + 1);
1336 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
1337 	}
1338 
1339 	host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1340 }
1341 
dw_mci_start_request(struct dw_mci * host,struct dw_mci_slot * slot)1342 static void dw_mci_start_request(struct dw_mci *host,
1343 				 struct dw_mci_slot *slot)
1344 {
1345 	struct mmc_request *mrq = slot->mrq;
1346 	struct mmc_command *cmd;
1347 
1348 	cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1349 	__dw_mci_start_request(host, slot, cmd);
1350 }
1351 
1352 /* must be called with host->lock held */
dw_mci_queue_request(struct dw_mci * host,struct dw_mci_slot * slot,struct mmc_request * mrq)1353 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1354 				 struct mmc_request *mrq)
1355 {
1356 	dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1357 		 host->state);
1358 
1359 	slot->mrq = mrq;
1360 
1361 	if (host->state == STATE_WAITING_CMD11_DONE) {
1362 		dev_warn(&slot->mmc->class_dev,
1363 			 "Voltage change didn't complete\n");
1364 		/*
1365 		 * this case isn't expected to happen, so we can
1366 		 * either crash here or just try to continue on
1367 		 * in the closest possible state
1368 		 */
1369 		host->state = STATE_IDLE;
1370 	}
1371 
1372 	if (host->state == STATE_IDLE) {
1373 		host->state = STATE_SENDING_CMD;
1374 		dw_mci_start_request(host, slot);
1375 	} else {
1376 		list_add_tail(&slot->queue_node, &host->queue);
1377 	}
1378 }
1379 
dw_mci_request(struct mmc_host * mmc,struct mmc_request * mrq)1380 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1381 {
1382 	struct dw_mci_slot *slot = mmc_priv(mmc);
1383 	struct dw_mci *host = slot->host;
1384 
1385 	WARN_ON(slot->mrq);
1386 
1387 	/*
1388 	 * The check for card presence and queueing of the request must be
1389 	 * atomic, otherwise the card could be removed in between and the
1390 	 * request wouldn't fail until another card was inserted.
1391 	 */
1392 
1393 	if (!dw_mci_get_cd(mmc)) {
1394 		mrq->cmd->error = -ENOMEDIUM;
1395 		mmc_request_done(mmc, mrq);
1396 		return;
1397 	}
1398 
1399 	spin_lock_bh(&host->lock);
1400 
1401 	dw_mci_queue_request(host, slot, mrq);
1402 
1403 	spin_unlock_bh(&host->lock);
1404 }
1405 
dw_mci_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1406 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1407 {
1408 	struct dw_mci_slot *slot = mmc_priv(mmc);
1409 	const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1410 	u32 regs;
1411 	int ret;
1412 
1413 	switch (ios->bus_width) {
1414 	case MMC_BUS_WIDTH_4:
1415 		slot->ctype = SDMMC_CTYPE_4BIT;
1416 		break;
1417 	case MMC_BUS_WIDTH_8:
1418 		slot->ctype = SDMMC_CTYPE_8BIT;
1419 		break;
1420 	default:
1421 		/* set default 1 bit mode */
1422 		slot->ctype = SDMMC_CTYPE_1BIT;
1423 	}
1424 
1425 	regs = mci_readl(slot->host, UHS_REG);
1426 
1427 	/* DDR mode set */
1428 	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1429 	    ios->timing == MMC_TIMING_UHS_DDR50 ||
1430 	    ios->timing == MMC_TIMING_MMC_HS400)
1431 		regs |= ((0x1 << slot->id) << 16);
1432 	else
1433 		regs &= ~((0x1 << slot->id) << 16);
1434 
1435 	mci_writel(slot->host, UHS_REG, regs);
1436 	slot->host->timing = ios->timing;
1437 
1438 	/*
1439 	 * Use mirror of ios->clock to prevent race with mmc
1440 	 * core ios update when finding the minimum.
1441 	 */
1442 	slot->clock = ios->clock;
1443 
1444 	if (drv_data && drv_data->set_ios)
1445 		drv_data->set_ios(slot->host, ios);
1446 
1447 	switch (ios->power_mode) {
1448 	case MMC_POWER_UP:
1449 		if (!IS_ERR(mmc->supply.vmmc)) {
1450 			ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1451 					ios->vdd);
1452 			if (ret) {
1453 				dev_err(slot->host->dev,
1454 					"failed to enable vmmc regulator\n");
1455 				/*return, if failed turn on vmmc*/
1456 				return;
1457 			}
1458 		}
1459 		set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1460 		regs = mci_readl(slot->host, PWREN);
1461 		regs |= (1 << slot->id);
1462 		mci_writel(slot->host, PWREN, regs);
1463 		break;
1464 	case MMC_POWER_ON:
1465 		if (!slot->host->vqmmc_enabled) {
1466 			if (!IS_ERR(mmc->supply.vqmmc)) {
1467 				ret = regulator_enable(mmc->supply.vqmmc);
1468 				if (ret < 0)
1469 					dev_err(slot->host->dev,
1470 						"failed to enable vqmmc\n");
1471 				else
1472 					slot->host->vqmmc_enabled = true;
1473 
1474 			} else {
1475 				/* Keep track so we don't reset again */
1476 				slot->host->vqmmc_enabled = true;
1477 			}
1478 
1479 			/* Reset our state machine after powering on */
1480 			dw_mci_ctrl_reset(slot->host,
1481 					  SDMMC_CTRL_ALL_RESET_FLAGS);
1482 		}
1483 
1484 		/* Adjust clock / bus width after power is up */
1485 		dw_mci_setup_bus(slot, false);
1486 
1487 		break;
1488 	case MMC_POWER_OFF:
1489 		/* Turn clock off before power goes down */
1490 		dw_mci_setup_bus(slot, false);
1491 
1492 		if (!IS_ERR(mmc->supply.vmmc))
1493 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1494 
1495 		if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1496 			regulator_disable(mmc->supply.vqmmc);
1497 		slot->host->vqmmc_enabled = false;
1498 
1499 		regs = mci_readl(slot->host, PWREN);
1500 		regs &= ~(1 << slot->id);
1501 		mci_writel(slot->host, PWREN, regs);
1502 		break;
1503 	default:
1504 		break;
1505 	}
1506 
1507 	if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1508 		slot->host->state = STATE_IDLE;
1509 }
1510 
dw_mci_card_busy(struct mmc_host * mmc)1511 static int dw_mci_card_busy(struct mmc_host *mmc)
1512 {
1513 	struct dw_mci_slot *slot = mmc_priv(mmc);
1514 	u32 status;
1515 
1516 	/*
1517 	 * Check the busy bit which is low when DAT[3:0]
1518 	 * (the data lines) are 0000
1519 	 */
1520 	status = mci_readl(slot->host, STATUS);
1521 
1522 	return !!(status & SDMMC_STATUS_BUSY);
1523 }
1524 
dw_mci_switch_voltage(struct mmc_host * mmc,struct mmc_ios * ios)1525 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1526 {
1527 	struct dw_mci_slot *slot = mmc_priv(mmc);
1528 	struct dw_mci *host = slot->host;
1529 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1530 	u32 uhs;
1531 	u32 v18 = SDMMC_UHS_18V << slot->id;
1532 	int ret;
1533 
1534 	if (drv_data && drv_data->switch_voltage)
1535 		return drv_data->switch_voltage(mmc, ios);
1536 
1537 	/*
1538 	 * Program the voltage.  Note that some instances of dw_mmc may use
1539 	 * the UHS_REG for this.  For other instances (like exynos) the UHS_REG
1540 	 * does no harm but you need to set the regulator directly.  Try both.
1541 	 */
1542 	uhs = mci_readl(host, UHS_REG);
1543 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1544 		uhs &= ~v18;
1545 	else
1546 		uhs |= v18;
1547 
1548 	if (!IS_ERR(mmc->supply.vqmmc)) {
1549 		ret = mmc_regulator_set_vqmmc(mmc, ios);
1550 		if (ret < 0) {
1551 			dev_dbg(&mmc->class_dev,
1552 					 "Regulator set error %d - %s V\n",
1553 					 ret, uhs & v18 ? "1.8" : "3.3");
1554 			return ret;
1555 		}
1556 	}
1557 	mci_writel(host, UHS_REG, uhs);
1558 
1559 	return 0;
1560 }
1561 
dw_mci_get_ro(struct mmc_host * mmc)1562 static int dw_mci_get_ro(struct mmc_host *mmc)
1563 {
1564 	int read_only;
1565 	struct dw_mci_slot *slot = mmc_priv(mmc);
1566 	int gpio_ro = mmc_gpio_get_ro(mmc);
1567 
1568 	/* Use platform get_ro function, else try on board write protect */
1569 	if (gpio_ro >= 0)
1570 		read_only = gpio_ro;
1571 	else
1572 		read_only =
1573 			mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1574 
1575 	dev_dbg(&mmc->class_dev, "card is %s\n",
1576 		read_only ? "read-only" : "read-write");
1577 
1578 	return read_only;
1579 }
1580 
dw_mci_hw_reset(struct mmc_host * mmc)1581 static void dw_mci_hw_reset(struct mmc_host *mmc)
1582 {
1583 	struct dw_mci_slot *slot = mmc_priv(mmc);
1584 	struct dw_mci *host = slot->host;
1585 	int reset;
1586 
1587 	if (host->use_dma == TRANS_MODE_IDMAC)
1588 		dw_mci_idmac_reset(host);
1589 
1590 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1591 				     SDMMC_CTRL_FIFO_RESET))
1592 		return;
1593 
1594 	/*
1595 	 * According to eMMC spec, card reset procedure:
1596 	 * tRstW >= 1us:   RST_n pulse width
1597 	 * tRSCA >= 200us: RST_n to Command time
1598 	 * tRSTH >= 1us:   RST_n high period
1599 	 */
1600 	reset = mci_readl(host, RST_N);
1601 	reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1602 	mci_writel(host, RST_N, reset);
1603 	usleep_range(1, 2);
1604 	reset |= SDMMC_RST_HWACTIVE << slot->id;
1605 	mci_writel(host, RST_N, reset);
1606 	usleep_range(200, 300);
1607 }
1608 
dw_mci_init_card(struct mmc_host * mmc,struct mmc_card * card)1609 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1610 {
1611 	struct dw_mci_slot *slot = mmc_priv(mmc);
1612 	struct dw_mci *host = slot->host;
1613 
1614 	/*
1615 	 * Low power mode will stop the card clock when idle.  According to the
1616 	 * description of the CLKENA register we should disable low power mode
1617 	 * for SDIO cards if we need SDIO interrupts to work.
1618 	 */
1619 	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1620 		const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1621 		u32 clk_en_a_old;
1622 		u32 clk_en_a;
1623 
1624 		clk_en_a_old = mci_readl(host, CLKENA);
1625 
1626 		if (card->type == MMC_TYPE_SDIO ||
1627 		    card->type == MMC_TYPE_SD_COMBO) {
1628 			set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1629 			clk_en_a = clk_en_a_old & ~clken_low_pwr;
1630 		} else {
1631 			clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1632 			clk_en_a = clk_en_a_old | clken_low_pwr;
1633 		}
1634 
1635 		if (clk_en_a != clk_en_a_old) {
1636 			mci_writel(host, CLKENA, clk_en_a);
1637 			mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1638 				     SDMMC_CMD_PRV_DAT_WAIT, 0);
1639 		}
1640 	}
1641 }
1642 
__dw_mci_enable_sdio_irq(struct dw_mci_slot * slot,int enb)1643 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1644 {
1645 	struct dw_mci *host = slot->host;
1646 	unsigned long irqflags;
1647 	u32 int_mask;
1648 
1649 	spin_lock_irqsave(&host->irq_lock, irqflags);
1650 
1651 	/* Enable/disable Slot Specific SDIO interrupt */
1652 	int_mask = mci_readl(host, INTMASK);
1653 	if (enb)
1654 		int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1655 	else
1656 		int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1657 	mci_writel(host, INTMASK, int_mask);
1658 
1659 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1660 }
1661 
dw_mci_enable_sdio_irq(struct mmc_host * mmc,int enb)1662 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1663 {
1664 	struct dw_mci_slot *slot = mmc_priv(mmc);
1665 	struct dw_mci *host = slot->host;
1666 
1667 	__dw_mci_enable_sdio_irq(slot, enb);
1668 
1669 	/* Avoid runtime suspending the device when SDIO IRQ is enabled */
1670 	if (enb)
1671 		pm_runtime_get_noresume(host->dev);
1672 	else
1673 		pm_runtime_put_noidle(host->dev);
1674 }
1675 
dw_mci_ack_sdio_irq(struct mmc_host * mmc)1676 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1677 {
1678 	struct dw_mci_slot *slot = mmc_priv(mmc);
1679 
1680 	__dw_mci_enable_sdio_irq(slot, 1);
1681 }
1682 
dw_mci_execute_tuning(struct mmc_host * mmc,u32 opcode)1683 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1684 {
1685 	struct dw_mci_slot *slot = mmc_priv(mmc);
1686 	struct dw_mci *host = slot->host;
1687 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1688 	int err = -EINVAL;
1689 
1690 	if (drv_data && drv_data->execute_tuning)
1691 		err = drv_data->execute_tuning(slot, opcode);
1692 	return err;
1693 }
1694 
dw_mci_prepare_hs400_tuning(struct mmc_host * mmc,struct mmc_ios * ios)1695 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1696 				       struct mmc_ios *ios)
1697 {
1698 	struct dw_mci_slot *slot = mmc_priv(mmc);
1699 	struct dw_mci *host = slot->host;
1700 	const struct dw_mci_drv_data *drv_data = host->drv_data;
1701 
1702 	if (drv_data && drv_data->prepare_hs400_tuning)
1703 		return drv_data->prepare_hs400_tuning(host, ios);
1704 
1705 	return 0;
1706 }
1707 
dw_mci_reset(struct dw_mci * host)1708 static bool dw_mci_reset(struct dw_mci *host)
1709 {
1710 	u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1711 	bool ret = false;
1712 	u32 status = 0;
1713 
1714 	/*
1715 	 * Resetting generates a block interrupt, hence setting
1716 	 * the scatter-gather pointer to NULL.
1717 	 */
1718 	if (host->sg) {
1719 		sg_miter_stop(&host->sg_miter);
1720 		host->sg = NULL;
1721 	}
1722 
1723 	if (host->use_dma)
1724 		flags |= SDMMC_CTRL_DMA_RESET;
1725 
1726 	if (dw_mci_ctrl_reset(host, flags)) {
1727 		/*
1728 		 * In all cases we clear the RAWINTS
1729 		 * register to clear any interrupts.
1730 		 */
1731 		mci_writel(host, RINTSTS, 0xFFFFFFFF);
1732 
1733 		if (!host->use_dma) {
1734 			ret = true;
1735 			goto ciu_out;
1736 		}
1737 
1738 		/* Wait for dma_req to be cleared */
1739 		if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1740 					      status,
1741 					      !(status & SDMMC_STATUS_DMA_REQ),
1742 					      1, 500 * USEC_PER_MSEC)) {
1743 			dev_err(host->dev,
1744 				"%s: Timeout waiting for dma_req to be cleared\n",
1745 				__func__);
1746 			goto ciu_out;
1747 		}
1748 
1749 		/* when using DMA next we reset the fifo again */
1750 		if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1751 			goto ciu_out;
1752 	} else {
1753 		/* if the controller reset bit did clear, then set clock regs */
1754 		if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1755 			dev_err(host->dev,
1756 				"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1757 				__func__);
1758 			goto ciu_out;
1759 		}
1760 	}
1761 
1762 	if (host->use_dma == TRANS_MODE_IDMAC)
1763 		/* It is also required that we reinit idmac */
1764 		dw_mci_idmac_init(host);
1765 
1766 	ret = true;
1767 
1768 ciu_out:
1769 	/* After a CTRL reset we need to have CIU set clock registers  */
1770 	mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1771 
1772 	return ret;
1773 }
1774 
1775 static const struct mmc_host_ops dw_mci_ops = {
1776 	.request		= dw_mci_request,
1777 	.pre_req		= dw_mci_pre_req,
1778 	.post_req		= dw_mci_post_req,
1779 	.set_ios		= dw_mci_set_ios,
1780 	.get_ro			= dw_mci_get_ro,
1781 	.get_cd			= dw_mci_get_cd,
1782 	.hw_reset               = dw_mci_hw_reset,
1783 	.enable_sdio_irq	= dw_mci_enable_sdio_irq,
1784 	.ack_sdio_irq		= dw_mci_ack_sdio_irq,
1785 	.execute_tuning		= dw_mci_execute_tuning,
1786 	.card_busy		= dw_mci_card_busy,
1787 	.start_signal_voltage_switch = dw_mci_switch_voltage,
1788 	.init_card		= dw_mci_init_card,
1789 	.prepare_hs400_tuning	= dw_mci_prepare_hs400_tuning,
1790 };
1791 
dw_mci_request_end(struct dw_mci * host,struct mmc_request * mrq)1792 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1793 	__releases(&host->lock)
1794 	__acquires(&host->lock)
1795 {
1796 	struct dw_mci_slot *slot;
1797 	struct mmc_host	*prev_mmc = host->slot->mmc;
1798 
1799 	WARN_ON(host->cmd || host->data);
1800 
1801 	host->slot->mrq = NULL;
1802 	host->mrq = NULL;
1803 	if (!list_empty(&host->queue)) {
1804 		slot = list_entry(host->queue.next,
1805 				  struct dw_mci_slot, queue_node);
1806 		list_del(&slot->queue_node);
1807 		dev_vdbg(host->dev, "list not empty: %s is next\n",
1808 			 mmc_hostname(slot->mmc));
1809 		host->state = STATE_SENDING_CMD;
1810 		dw_mci_start_request(host, slot);
1811 	} else {
1812 		dev_vdbg(host->dev, "list empty\n");
1813 
1814 		if (host->state == STATE_SENDING_CMD11)
1815 			host->state = STATE_WAITING_CMD11_DONE;
1816 		else
1817 			host->state = STATE_IDLE;
1818 	}
1819 
1820 	spin_unlock(&host->lock);
1821 	mmc_request_done(prev_mmc, mrq);
1822 	spin_lock(&host->lock);
1823 }
1824 
dw_mci_command_complete(struct dw_mci * host,struct mmc_command * cmd)1825 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1826 {
1827 	u32 status = host->cmd_status;
1828 
1829 	host->cmd_status = 0;
1830 
1831 	/* Read the response from the card (up to 16 bytes) */
1832 	if (cmd->flags & MMC_RSP_PRESENT) {
1833 		if (cmd->flags & MMC_RSP_136) {
1834 			cmd->resp[3] = mci_readl(host, RESP0);
1835 			cmd->resp[2] = mci_readl(host, RESP1);
1836 			cmd->resp[1] = mci_readl(host, RESP2);
1837 			cmd->resp[0] = mci_readl(host, RESP3);
1838 		} else {
1839 			cmd->resp[0] = mci_readl(host, RESP0);
1840 			cmd->resp[1] = 0;
1841 			cmd->resp[2] = 0;
1842 			cmd->resp[3] = 0;
1843 		}
1844 	}
1845 
1846 	if (status & SDMMC_INT_RTO)
1847 		cmd->error = -ETIMEDOUT;
1848 	else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1849 		cmd->error = -EILSEQ;
1850 	else if (status & SDMMC_INT_RESP_ERR)
1851 		cmd->error = -EIO;
1852 	else
1853 		cmd->error = 0;
1854 
1855 	return cmd->error;
1856 }
1857 
dw_mci_data_complete(struct dw_mci * host,struct mmc_data * data)1858 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1859 {
1860 	u32 status = host->data_status;
1861 
1862 	if (status & DW_MCI_DATA_ERROR_FLAGS) {
1863 		if (status & SDMMC_INT_DRTO) {
1864 			data->error = -ETIMEDOUT;
1865 		} else if (status & SDMMC_INT_DCRC) {
1866 			data->error = -EILSEQ;
1867 		} else if (status & SDMMC_INT_EBE) {
1868 			if (host->dir_status ==
1869 				DW_MCI_SEND_STATUS) {
1870 				/*
1871 				 * No data CRC status was returned.
1872 				 * The number of bytes transferred
1873 				 * will be exaggerated in PIO mode.
1874 				 */
1875 				data->bytes_xfered = 0;
1876 				data->error = -ETIMEDOUT;
1877 			} else if (host->dir_status ==
1878 					DW_MCI_RECV_STATUS) {
1879 				data->error = -EILSEQ;
1880 			}
1881 		} else {
1882 			/* SDMMC_INT_SBE is included */
1883 			data->error = -EILSEQ;
1884 		}
1885 
1886 		dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1887 
1888 		/*
1889 		 * After an error, there may be data lingering
1890 		 * in the FIFO
1891 		 */
1892 		dw_mci_reset(host);
1893 	} else {
1894 		data->bytes_xfered = data->blocks * data->blksz;
1895 		data->error = 0;
1896 	}
1897 
1898 	return data->error;
1899 }
1900 
dw_mci_set_drto(struct dw_mci * host)1901 static void dw_mci_set_drto(struct dw_mci *host)
1902 {
1903 	unsigned int drto_clks;
1904 	unsigned int drto_div;
1905 	unsigned int drto_ms;
1906 	unsigned long irqflags;
1907 
1908 	drto_clks = mci_readl(host, TMOUT) >> 8;
1909 	drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
1910 	if (drto_div == 0)
1911 		drto_div = 1;
1912 
1913 	drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
1914 				   host->bus_hz);
1915 
1916 	/* add a bit spare time */
1917 	drto_ms += 10;
1918 
1919 	spin_lock_irqsave(&host->irq_lock, irqflags);
1920 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1921 		mod_timer(&host->dto_timer,
1922 			  jiffies + msecs_to_jiffies(drto_ms));
1923 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
1924 }
1925 
dw_mci_clear_pending_cmd_complete(struct dw_mci * host)1926 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
1927 {
1928 	if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1929 		return false;
1930 
1931 	/*
1932 	 * Really be certain that the timer has stopped.  This is a bit of
1933 	 * paranoia and could only really happen if we had really bad
1934 	 * interrupt latency and the interrupt routine and timeout were
1935 	 * running concurrently so that the del_timer() in the interrupt
1936 	 * handler couldn't run.
1937 	 */
1938 	WARN_ON(del_timer_sync(&host->cto_timer));
1939 	clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
1940 
1941 	return true;
1942 }
1943 
dw_mci_clear_pending_data_complete(struct dw_mci * host)1944 static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
1945 {
1946 	if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
1947 		return false;
1948 
1949 	/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1950 	WARN_ON(del_timer_sync(&host->dto_timer));
1951 	clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
1952 
1953 	return true;
1954 }
1955 
dw_mci_tasklet_func(unsigned long priv)1956 static void dw_mci_tasklet_func(unsigned long priv)
1957 {
1958 	struct dw_mci *host = (struct dw_mci *)priv;
1959 	struct mmc_data	*data;
1960 	struct mmc_command *cmd;
1961 	struct mmc_request *mrq;
1962 	enum dw_mci_state state;
1963 	enum dw_mci_state prev_state;
1964 	unsigned int err;
1965 
1966 	spin_lock(&host->lock);
1967 
1968 	state = host->state;
1969 	data = host->data;
1970 	mrq = host->mrq;
1971 
1972 	do {
1973 		prev_state = state;
1974 
1975 		switch (state) {
1976 		case STATE_IDLE:
1977 		case STATE_WAITING_CMD11_DONE:
1978 			break;
1979 
1980 		case STATE_SENDING_CMD11:
1981 		case STATE_SENDING_CMD:
1982 			if (!dw_mci_clear_pending_cmd_complete(host))
1983 				break;
1984 
1985 			cmd = host->cmd;
1986 			host->cmd = NULL;
1987 			set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1988 			err = dw_mci_command_complete(host, cmd);
1989 			if (cmd == mrq->sbc && !err) {
1990 				__dw_mci_start_request(host, host->slot,
1991 						       mrq->cmd);
1992 				goto unlock;
1993 			}
1994 
1995 			if (cmd->data && err) {
1996 				/*
1997 				 * During UHS tuning sequence, sending the stop
1998 				 * command after the response CRC error would
1999 				 * throw the system into a confused state
2000 				 * causing all future tuning phases to report
2001 				 * failure.
2002 				 *
2003 				 * In such case controller will move into a data
2004 				 * transfer state after a response error or
2005 				 * response CRC error. Let's let that finish
2006 				 * before trying to send a stop, so we'll go to
2007 				 * STATE_SENDING_DATA.
2008 				 *
2009 				 * Although letting the data transfer take place
2010 				 * will waste a bit of time (we already know
2011 				 * the command was bad), it can't cause any
2012 				 * errors since it's possible it would have
2013 				 * taken place anyway if this tasklet got
2014 				 * delayed. Allowing the transfer to take place
2015 				 * avoids races and keeps things simple.
2016 				 */
2017 				if (err != -ETIMEDOUT &&
2018 				    host->dir_status == DW_MCI_RECV_STATUS) {
2019 					state = STATE_SENDING_DATA;
2020 					continue;
2021 				}
2022 
2023 				send_stop_abort(host, data);
2024 				dw_mci_stop_dma(host);
2025 				state = STATE_SENDING_STOP;
2026 				break;
2027 			}
2028 
2029 			if (!cmd->data || err) {
2030 				dw_mci_request_end(host, mrq);
2031 				goto unlock;
2032 			}
2033 
2034 			prev_state = state = STATE_SENDING_DATA;
2035 			fallthrough;
2036 
2037 		case STATE_SENDING_DATA:
2038 			/*
2039 			 * We could get a data error and never a transfer
2040 			 * complete so we'd better check for it here.
2041 			 *
2042 			 * Note that we don't really care if we also got a
2043 			 * transfer complete; stopping the DMA and sending an
2044 			 * abort won't hurt.
2045 			 */
2046 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2047 					       &host->pending_events)) {
2048 				if (!(host->data_status & (SDMMC_INT_DRTO |
2049 							   SDMMC_INT_EBE)))
2050 					send_stop_abort(host, data);
2051 				dw_mci_stop_dma(host);
2052 				state = STATE_DATA_ERROR;
2053 				break;
2054 			}
2055 
2056 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2057 						&host->pending_events)) {
2058 				/*
2059 				 * If all data-related interrupts don't come
2060 				 * within the given time in reading data state.
2061 				 */
2062 				if (host->dir_status == DW_MCI_RECV_STATUS)
2063 					dw_mci_set_drto(host);
2064 				break;
2065 			}
2066 
2067 			set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2068 
2069 			/*
2070 			 * Handle an EVENT_DATA_ERROR that might have shown up
2071 			 * before the transfer completed.  This might not have
2072 			 * been caught by the check above because the interrupt
2073 			 * could have gone off between the previous check and
2074 			 * the check for transfer complete.
2075 			 *
2076 			 * Technically this ought not be needed assuming we
2077 			 * get a DATA_COMPLETE eventually (we'll notice the
2078 			 * error and end the request), but it shouldn't hurt.
2079 			 *
2080 			 * This has the advantage of sending the stop command.
2081 			 */
2082 			if (test_and_clear_bit(EVENT_DATA_ERROR,
2083 					       &host->pending_events)) {
2084 				if (!(host->data_status & (SDMMC_INT_DRTO |
2085 							   SDMMC_INT_EBE)))
2086 					send_stop_abort(host, data);
2087 				dw_mci_stop_dma(host);
2088 				state = STATE_DATA_ERROR;
2089 				break;
2090 			}
2091 			prev_state = state = STATE_DATA_BUSY;
2092 
2093 			fallthrough;
2094 
2095 		case STATE_DATA_BUSY:
2096 			if (!dw_mci_clear_pending_data_complete(host)) {
2097 				/*
2098 				 * If data error interrupt comes but data over
2099 				 * interrupt doesn't come within the given time.
2100 				 * in reading data state.
2101 				 */
2102 				if (host->dir_status == DW_MCI_RECV_STATUS)
2103 					dw_mci_set_drto(host);
2104 				break;
2105 			}
2106 
2107 			host->data = NULL;
2108 			set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2109 			err = dw_mci_data_complete(host, data);
2110 
2111 			if (!err) {
2112 				if (!data->stop || mrq->sbc) {
2113 					if (mrq->sbc && data->stop)
2114 						data->stop->error = 0;
2115 					dw_mci_request_end(host, mrq);
2116 					goto unlock;
2117 				}
2118 
2119 				/* stop command for open-ended transfer*/
2120 				if (data->stop)
2121 					send_stop_abort(host, data);
2122 			} else {
2123 				/*
2124 				 * If we don't have a command complete now we'll
2125 				 * never get one since we just reset everything;
2126 				 * better end the request.
2127 				 *
2128 				 * If we do have a command complete we'll fall
2129 				 * through to the SENDING_STOP command and
2130 				 * everything will be peachy keen.
2131 				 */
2132 				if (!test_bit(EVENT_CMD_COMPLETE,
2133 					      &host->pending_events)) {
2134 					host->cmd = NULL;
2135 					dw_mci_request_end(host, mrq);
2136 					goto unlock;
2137 				}
2138 			}
2139 
2140 			/*
2141 			 * If err has non-zero,
2142 			 * stop-abort command has been already issued.
2143 			 */
2144 			prev_state = state = STATE_SENDING_STOP;
2145 
2146 			fallthrough;
2147 
2148 		case STATE_SENDING_STOP:
2149 			if (!dw_mci_clear_pending_cmd_complete(host))
2150 				break;
2151 
2152 			/* CMD error in data command */
2153 			if (mrq->cmd->error && mrq->data)
2154 				dw_mci_reset(host);
2155 
2156 			host->cmd = NULL;
2157 			host->data = NULL;
2158 
2159 			if (!mrq->sbc && mrq->stop)
2160 				dw_mci_command_complete(host, mrq->stop);
2161 			else
2162 				host->cmd_status = 0;
2163 
2164 			dw_mci_request_end(host, mrq);
2165 			goto unlock;
2166 
2167 		case STATE_DATA_ERROR:
2168 			if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2169 						&host->pending_events))
2170 				break;
2171 
2172 			state = STATE_DATA_BUSY;
2173 			break;
2174 		}
2175 	} while (state != prev_state);
2176 
2177 	host->state = state;
2178 unlock:
2179 	spin_unlock(&host->lock);
2180 
2181 }
2182 
2183 /* push final bytes to part_buf, only use during push */
dw_mci_set_part_bytes(struct dw_mci * host,void * buf,int cnt)2184 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2185 {
2186 	memcpy((void *)&host->part_buf, buf, cnt);
2187 	host->part_buf_count = cnt;
2188 }
2189 
2190 /* append bytes to part_buf, only use during push */
dw_mci_push_part_bytes(struct dw_mci * host,void * buf,int cnt)2191 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2192 {
2193 	cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2194 	memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2195 	host->part_buf_count += cnt;
2196 	return cnt;
2197 }
2198 
2199 /* pull first bytes from part_buf, only use during pull */
dw_mci_pull_part_bytes(struct dw_mci * host,void * buf,int cnt)2200 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2201 {
2202 	cnt = min_t(int, cnt, host->part_buf_count);
2203 	if (cnt) {
2204 		memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2205 		       cnt);
2206 		host->part_buf_count -= cnt;
2207 		host->part_buf_start += cnt;
2208 	}
2209 	return cnt;
2210 }
2211 
2212 /* pull final bytes from the part_buf, assuming it's just been filled */
dw_mci_pull_final_bytes(struct dw_mci * host,void * buf,int cnt)2213 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2214 {
2215 	memcpy(buf, &host->part_buf, cnt);
2216 	host->part_buf_start = cnt;
2217 	host->part_buf_count = (1 << host->data_shift) - cnt;
2218 }
2219 
dw_mci_push_data16(struct dw_mci * host,void * buf,int cnt)2220 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2221 {
2222 	struct mmc_data *data = host->data;
2223 	int init_cnt = cnt;
2224 
2225 	/* try and push anything in the part_buf */
2226 	if (unlikely(host->part_buf_count)) {
2227 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2228 
2229 		buf += len;
2230 		cnt -= len;
2231 		if (host->part_buf_count == 2) {
2232 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2233 			host->part_buf_count = 0;
2234 		}
2235 	}
2236 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2237 	if (unlikely((unsigned long)buf & 0x1)) {
2238 		while (cnt >= 2) {
2239 			u16 aligned_buf[64];
2240 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2241 			int items = len >> 1;
2242 			int i;
2243 			/* memcpy from input buffer into aligned buffer */
2244 			memcpy(aligned_buf, buf, len);
2245 			buf += len;
2246 			cnt -= len;
2247 			/* push data from aligned buffer into fifo */
2248 			for (i = 0; i < items; ++i)
2249 				mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2250 		}
2251 	} else
2252 #endif
2253 	{
2254 		u16 *pdata = buf;
2255 
2256 		for (; cnt >= 2; cnt -= 2)
2257 			mci_fifo_writew(host->fifo_reg, *pdata++);
2258 		buf = pdata;
2259 	}
2260 	/* put anything remaining in the part_buf */
2261 	if (cnt) {
2262 		dw_mci_set_part_bytes(host, buf, cnt);
2263 		 /* Push data if we have reached the expected data length */
2264 		if ((data->bytes_xfered + init_cnt) ==
2265 		    (data->blksz * data->blocks))
2266 			mci_fifo_writew(host->fifo_reg, host->part_buf16);
2267 	}
2268 }
2269 
dw_mci_pull_data16(struct dw_mci * host,void * buf,int cnt)2270 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2271 {
2272 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2273 	if (unlikely((unsigned long)buf & 0x1)) {
2274 		while (cnt >= 2) {
2275 			/* pull data from fifo into aligned buffer */
2276 			u16 aligned_buf[64];
2277 			int len = min(cnt & -2, (int)sizeof(aligned_buf));
2278 			int items = len >> 1;
2279 			int i;
2280 
2281 			for (i = 0; i < items; ++i)
2282 				aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2283 			/* memcpy from aligned buffer into output buffer */
2284 			memcpy(buf, aligned_buf, len);
2285 			buf += len;
2286 			cnt -= len;
2287 		}
2288 	} else
2289 #endif
2290 	{
2291 		u16 *pdata = buf;
2292 
2293 		for (; cnt >= 2; cnt -= 2)
2294 			*pdata++ = mci_fifo_readw(host->fifo_reg);
2295 		buf = pdata;
2296 	}
2297 	if (cnt) {
2298 		host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2299 		dw_mci_pull_final_bytes(host, buf, cnt);
2300 	}
2301 }
2302 
dw_mci_push_data32(struct dw_mci * host,void * buf,int cnt)2303 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2304 {
2305 	struct mmc_data *data = host->data;
2306 	int init_cnt = cnt;
2307 
2308 	/* try and push anything in the part_buf */
2309 	if (unlikely(host->part_buf_count)) {
2310 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2311 
2312 		buf += len;
2313 		cnt -= len;
2314 		if (host->part_buf_count == 4) {
2315 			mci_fifo_writel(host->fifo_reg,	host->part_buf32);
2316 			host->part_buf_count = 0;
2317 		}
2318 	}
2319 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2320 	if (unlikely((unsigned long)buf & 0x3)) {
2321 		while (cnt >= 4) {
2322 			u32 aligned_buf[32];
2323 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2324 			int items = len >> 2;
2325 			int i;
2326 			/* memcpy from input buffer into aligned buffer */
2327 			memcpy(aligned_buf, buf, len);
2328 			buf += len;
2329 			cnt -= len;
2330 			/* push data from aligned buffer into fifo */
2331 			for (i = 0; i < items; ++i)
2332 				mci_fifo_writel(host->fifo_reg,	aligned_buf[i]);
2333 		}
2334 	} else
2335 #endif
2336 	{
2337 		u32 *pdata = buf;
2338 
2339 		for (; cnt >= 4; cnt -= 4)
2340 			mci_fifo_writel(host->fifo_reg, *pdata++);
2341 		buf = pdata;
2342 	}
2343 	/* put anything remaining in the part_buf */
2344 	if (cnt) {
2345 		dw_mci_set_part_bytes(host, buf, cnt);
2346 		 /* Push data if we have reached the expected data length */
2347 		if ((data->bytes_xfered + init_cnt) ==
2348 		    (data->blksz * data->blocks))
2349 			mci_fifo_writel(host->fifo_reg, host->part_buf32);
2350 	}
2351 }
2352 
dw_mci_pull_data32(struct dw_mci * host,void * buf,int cnt)2353 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2354 {
2355 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2356 	if (unlikely((unsigned long)buf & 0x3)) {
2357 		while (cnt >= 4) {
2358 			/* pull data from fifo into aligned buffer */
2359 			u32 aligned_buf[32];
2360 			int len = min(cnt & -4, (int)sizeof(aligned_buf));
2361 			int items = len >> 2;
2362 			int i;
2363 
2364 			for (i = 0; i < items; ++i)
2365 				aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2366 			/* memcpy from aligned buffer into output buffer */
2367 			memcpy(buf, aligned_buf, len);
2368 			buf += len;
2369 			cnt -= len;
2370 		}
2371 	} else
2372 #endif
2373 	{
2374 		u32 *pdata = buf;
2375 
2376 		for (; cnt >= 4; cnt -= 4)
2377 			*pdata++ = mci_fifo_readl(host->fifo_reg);
2378 		buf = pdata;
2379 	}
2380 	if (cnt) {
2381 		host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2382 		dw_mci_pull_final_bytes(host, buf, cnt);
2383 	}
2384 }
2385 
dw_mci_push_data64(struct dw_mci * host,void * buf,int cnt)2386 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2387 {
2388 	struct mmc_data *data = host->data;
2389 	int init_cnt = cnt;
2390 
2391 	/* try and push anything in the part_buf */
2392 	if (unlikely(host->part_buf_count)) {
2393 		int len = dw_mci_push_part_bytes(host, buf, cnt);
2394 
2395 		buf += len;
2396 		cnt -= len;
2397 
2398 		if (host->part_buf_count == 8) {
2399 			mci_fifo_writeq(host->fifo_reg,	host->part_buf);
2400 			host->part_buf_count = 0;
2401 		}
2402 	}
2403 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2404 	if (unlikely((unsigned long)buf & 0x7)) {
2405 		while (cnt >= 8) {
2406 			u64 aligned_buf[16];
2407 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2408 			int items = len >> 3;
2409 			int i;
2410 			/* memcpy from input buffer into aligned buffer */
2411 			memcpy(aligned_buf, buf, len);
2412 			buf += len;
2413 			cnt -= len;
2414 			/* push data from aligned buffer into fifo */
2415 			for (i = 0; i < items; ++i)
2416 				mci_fifo_writeq(host->fifo_reg,	aligned_buf[i]);
2417 		}
2418 	} else
2419 #endif
2420 	{
2421 		u64 *pdata = buf;
2422 
2423 		for (; cnt >= 8; cnt -= 8)
2424 			mci_fifo_writeq(host->fifo_reg, *pdata++);
2425 		buf = pdata;
2426 	}
2427 	/* put anything remaining in the part_buf */
2428 	if (cnt) {
2429 		dw_mci_set_part_bytes(host, buf, cnt);
2430 		/* Push data if we have reached the expected data length */
2431 		if ((data->bytes_xfered + init_cnt) ==
2432 		    (data->blksz * data->blocks))
2433 			mci_fifo_writeq(host->fifo_reg, host->part_buf);
2434 	}
2435 }
2436 
dw_mci_pull_data64(struct dw_mci * host,void * buf,int cnt)2437 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2438 {
2439 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2440 	if (unlikely((unsigned long)buf & 0x7)) {
2441 		while (cnt >= 8) {
2442 			/* pull data from fifo into aligned buffer */
2443 			u64 aligned_buf[16];
2444 			int len = min(cnt & -8, (int)sizeof(aligned_buf));
2445 			int items = len >> 3;
2446 			int i;
2447 
2448 			for (i = 0; i < items; ++i)
2449 				aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2450 
2451 			/* memcpy from aligned buffer into output buffer */
2452 			memcpy(buf, aligned_buf, len);
2453 			buf += len;
2454 			cnt -= len;
2455 		}
2456 	} else
2457 #endif
2458 	{
2459 		u64 *pdata = buf;
2460 
2461 		for (; cnt >= 8; cnt -= 8)
2462 			*pdata++ = mci_fifo_readq(host->fifo_reg);
2463 		buf = pdata;
2464 	}
2465 	if (cnt) {
2466 		host->part_buf = mci_fifo_readq(host->fifo_reg);
2467 		dw_mci_pull_final_bytes(host, buf, cnt);
2468 	}
2469 }
2470 
dw_mci_pull_data(struct dw_mci * host,void * buf,int cnt)2471 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2472 {
2473 	int len;
2474 
2475 	/* get remaining partial bytes */
2476 	len = dw_mci_pull_part_bytes(host, buf, cnt);
2477 	if (unlikely(len == cnt))
2478 		return;
2479 	buf += len;
2480 	cnt -= len;
2481 
2482 	/* get the rest of the data */
2483 	host->pull_data(host, buf, cnt);
2484 }
2485 
dw_mci_read_data_pio(struct dw_mci * host,bool dto)2486 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2487 {
2488 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2489 	void *buf;
2490 	unsigned int offset;
2491 	struct mmc_data	*data = host->data;
2492 	int shift = host->data_shift;
2493 	u32 status;
2494 	unsigned int len;
2495 	unsigned int remain, fcnt;
2496 
2497 	do {
2498 		if (!sg_miter_next(sg_miter))
2499 			goto done;
2500 
2501 		host->sg = sg_miter->piter.sg;
2502 		buf = sg_miter->addr;
2503 		remain = sg_miter->length;
2504 		offset = 0;
2505 
2506 		do {
2507 			fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2508 					<< shift) + host->part_buf_count;
2509 			len = min(remain, fcnt);
2510 			if (!len)
2511 				break;
2512 			dw_mci_pull_data(host, (void *)(buf + offset), len);
2513 			data->bytes_xfered += len;
2514 			offset += len;
2515 			remain -= len;
2516 		} while (remain);
2517 
2518 		sg_miter->consumed = offset;
2519 		status = mci_readl(host, MINTSTS);
2520 		mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2521 	/* if the RXDR is ready read again */
2522 	} while ((status & SDMMC_INT_RXDR) ||
2523 		 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2524 
2525 	if (!remain) {
2526 		if (!sg_miter_next(sg_miter))
2527 			goto done;
2528 		sg_miter->consumed = 0;
2529 	}
2530 	sg_miter_stop(sg_miter);
2531 	return;
2532 
2533 done:
2534 	sg_miter_stop(sg_miter);
2535 	host->sg = NULL;
2536 	smp_wmb(); /* drain writebuffer */
2537 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2538 }
2539 
dw_mci_write_data_pio(struct dw_mci * host)2540 static void dw_mci_write_data_pio(struct dw_mci *host)
2541 {
2542 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
2543 	void *buf;
2544 	unsigned int offset;
2545 	struct mmc_data	*data = host->data;
2546 	int shift = host->data_shift;
2547 	u32 status;
2548 	unsigned int len;
2549 	unsigned int fifo_depth = host->fifo_depth;
2550 	unsigned int remain, fcnt;
2551 
2552 	do {
2553 		if (!sg_miter_next(sg_miter))
2554 			goto done;
2555 
2556 		host->sg = sg_miter->piter.sg;
2557 		buf = sg_miter->addr;
2558 		remain = sg_miter->length;
2559 		offset = 0;
2560 
2561 		do {
2562 			fcnt = ((fifo_depth -
2563 				 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2564 					<< shift) - host->part_buf_count;
2565 			len = min(remain, fcnt);
2566 			if (!len)
2567 				break;
2568 			host->push_data(host, (void *)(buf + offset), len);
2569 			data->bytes_xfered += len;
2570 			offset += len;
2571 			remain -= len;
2572 		} while (remain);
2573 
2574 		sg_miter->consumed = offset;
2575 		status = mci_readl(host, MINTSTS);
2576 		mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2577 	} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2578 
2579 	if (!remain) {
2580 		if (!sg_miter_next(sg_miter))
2581 			goto done;
2582 		sg_miter->consumed = 0;
2583 	}
2584 	sg_miter_stop(sg_miter);
2585 	return;
2586 
2587 done:
2588 	sg_miter_stop(sg_miter);
2589 	host->sg = NULL;
2590 	smp_wmb(); /* drain writebuffer */
2591 	set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2592 }
2593 
dw_mci_cmd_interrupt(struct dw_mci * host,u32 status)2594 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2595 {
2596 	del_timer(&host->cto_timer);
2597 
2598 	if (!host->cmd_status)
2599 		host->cmd_status = status;
2600 
2601 	smp_wmb(); /* drain writebuffer */
2602 
2603 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2604 	tasklet_schedule(&host->tasklet);
2605 }
2606 
dw_mci_handle_cd(struct dw_mci * host)2607 static void dw_mci_handle_cd(struct dw_mci *host)
2608 {
2609 	struct dw_mci_slot *slot = host->slot;
2610 
2611 	if (slot->mmc->ops->card_event)
2612 		slot->mmc->ops->card_event(slot->mmc);
2613 	mmc_detect_change(slot->mmc,
2614 		msecs_to_jiffies(host->pdata->detect_delay_ms));
2615 }
2616 
dw_mci_interrupt(int irq,void * dev_id)2617 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2618 {
2619 	struct dw_mci *host = dev_id;
2620 	u32 pending;
2621 	struct dw_mci_slot *slot = host->slot;
2622 	unsigned long irqflags;
2623 
2624 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2625 
2626 	if (pending) {
2627 		/* Check volt switch first, since it can look like an error */
2628 		if ((host->state == STATE_SENDING_CMD11) &&
2629 		    (pending & SDMMC_INT_VOLT_SWITCH)) {
2630 			mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2631 			pending &= ~SDMMC_INT_VOLT_SWITCH;
2632 
2633 			/*
2634 			 * Hold the lock; we know cmd11_timer can't be kicked
2635 			 * off after the lock is released, so safe to delete.
2636 			 */
2637 			spin_lock_irqsave(&host->irq_lock, irqflags);
2638 			dw_mci_cmd_interrupt(host, pending);
2639 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2640 
2641 			del_timer(&host->cmd11_timer);
2642 		}
2643 
2644 		if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2645 			spin_lock_irqsave(&host->irq_lock, irqflags);
2646 
2647 			del_timer(&host->cto_timer);
2648 			mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2649 			host->cmd_status = pending;
2650 			smp_wmb(); /* drain writebuffer */
2651 			set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2652 
2653 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2654 		}
2655 
2656 		if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2657 			/* if there is an error report DATA_ERROR */
2658 			mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2659 			host->data_status = pending;
2660 			smp_wmb(); /* drain writebuffer */
2661 			set_bit(EVENT_DATA_ERROR, &host->pending_events);
2662 			tasklet_schedule(&host->tasklet);
2663 		}
2664 
2665 		if (pending & SDMMC_INT_DATA_OVER) {
2666 			spin_lock_irqsave(&host->irq_lock, irqflags);
2667 
2668 			del_timer(&host->dto_timer);
2669 
2670 			mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2671 			if (!host->data_status)
2672 				host->data_status = pending;
2673 			smp_wmb(); /* drain writebuffer */
2674 			if (host->dir_status == DW_MCI_RECV_STATUS) {
2675 				if (host->sg != NULL)
2676 					dw_mci_read_data_pio(host, true);
2677 			}
2678 			set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2679 			tasklet_schedule(&host->tasklet);
2680 
2681 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2682 		}
2683 
2684 		if (pending & SDMMC_INT_RXDR) {
2685 			mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2686 			if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2687 				dw_mci_read_data_pio(host, false);
2688 		}
2689 
2690 		if (pending & SDMMC_INT_TXDR) {
2691 			mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2692 			if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2693 				dw_mci_write_data_pio(host);
2694 		}
2695 
2696 		if (pending & SDMMC_INT_CMD_DONE) {
2697 			spin_lock_irqsave(&host->irq_lock, irqflags);
2698 
2699 			mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2700 			dw_mci_cmd_interrupt(host, pending);
2701 
2702 			spin_unlock_irqrestore(&host->irq_lock, irqflags);
2703 		}
2704 
2705 		if (pending & SDMMC_INT_CD) {
2706 			mci_writel(host, RINTSTS, SDMMC_INT_CD);
2707 			dw_mci_handle_cd(host);
2708 		}
2709 
2710 		if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2711 			mci_writel(host, RINTSTS,
2712 				   SDMMC_INT_SDIO(slot->sdio_id));
2713 			__dw_mci_enable_sdio_irq(slot, 0);
2714 			sdio_signal_irq(slot->mmc);
2715 		}
2716 
2717 	}
2718 
2719 	if (host->use_dma != TRANS_MODE_IDMAC)
2720 		return IRQ_HANDLED;
2721 
2722 	/* Handle IDMA interrupts */
2723 	if (host->dma_64bit_address == 1) {
2724 		pending = mci_readl(host, IDSTS64);
2725 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2726 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2727 							SDMMC_IDMAC_INT_RI);
2728 			mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2729 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2730 				host->dma_ops->complete((void *)host);
2731 		}
2732 	} else {
2733 		pending = mci_readl(host, IDSTS);
2734 		if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2735 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2736 							SDMMC_IDMAC_INT_RI);
2737 			mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2738 			if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2739 				host->dma_ops->complete((void *)host);
2740 		}
2741 	}
2742 
2743 	return IRQ_HANDLED;
2744 }
2745 
dw_mci_init_slot_caps(struct dw_mci_slot * slot)2746 static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
2747 {
2748 	struct dw_mci *host = slot->host;
2749 	const struct dw_mci_drv_data *drv_data = host->drv_data;
2750 	struct mmc_host *mmc = slot->mmc;
2751 	int ctrl_id;
2752 
2753 	if (host->pdata->caps)
2754 		mmc->caps = host->pdata->caps;
2755 
2756 	if (host->pdata->pm_caps)
2757 		mmc->pm_caps = host->pdata->pm_caps;
2758 
2759 	if (host->dev->of_node) {
2760 		ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2761 		if (ctrl_id < 0)
2762 			ctrl_id = 0;
2763 	} else {
2764 		ctrl_id = to_platform_device(host->dev)->id;
2765 	}
2766 
2767 	if (drv_data && drv_data->caps) {
2768 		if (ctrl_id >= drv_data->num_caps) {
2769 			dev_err(host->dev, "invalid controller id %d\n",
2770 				ctrl_id);
2771 			return -EINVAL;
2772 		}
2773 		mmc->caps |= drv_data->caps[ctrl_id];
2774 	}
2775 
2776 	if (host->pdata->caps2)
2777 		mmc->caps2 = host->pdata->caps2;
2778 
2779 	mmc->f_min = DW_MCI_FREQ_MIN;
2780 	if (!mmc->f_max)
2781 		mmc->f_max = DW_MCI_FREQ_MAX;
2782 
2783 	/* Process SDIO IRQs through the sdio_irq_work. */
2784 	if (mmc->caps & MMC_CAP_SDIO_IRQ)
2785 		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2786 
2787 	return 0;
2788 }
2789 
dw_mci_init_slot(struct dw_mci * host)2790 static int dw_mci_init_slot(struct dw_mci *host)
2791 {
2792 	struct mmc_host *mmc;
2793 	struct dw_mci_slot *slot;
2794 	int ret;
2795 
2796 	mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2797 	if (!mmc)
2798 		return -ENOMEM;
2799 
2800 	slot = mmc_priv(mmc);
2801 	slot->id = 0;
2802 	slot->sdio_id = host->sdio_id0 + slot->id;
2803 	slot->mmc = mmc;
2804 	slot->host = host;
2805 	host->slot = slot;
2806 
2807 	mmc->ops = &dw_mci_ops;
2808 
2809 	/*if there are external regulators, get them*/
2810 	ret = mmc_regulator_get_supply(mmc);
2811 	if (ret)
2812 		goto err_host_allocated;
2813 
2814 	if (!mmc->ocr_avail)
2815 		mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2816 
2817 	ret = mmc_of_parse(mmc);
2818 	if (ret)
2819 		goto err_host_allocated;
2820 
2821 	ret = dw_mci_init_slot_caps(slot);
2822 	if (ret)
2823 		goto err_host_allocated;
2824 
2825 	/* Useful defaults if platform data is unset. */
2826 	if (host->use_dma == TRANS_MODE_IDMAC) {
2827 		mmc->max_segs = host->ring_size;
2828 		mmc->max_blk_size = 65535;
2829 		mmc->max_seg_size = 0x1000;
2830 		mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2831 		mmc->max_blk_count = mmc->max_req_size / 512;
2832 	} else if (host->use_dma == TRANS_MODE_EDMAC) {
2833 		mmc->max_segs = 64;
2834 		mmc->max_blk_size = 65535;
2835 		mmc->max_blk_count = 65535;
2836 		mmc->max_req_size =
2837 				mmc->max_blk_size * mmc->max_blk_count;
2838 		mmc->max_seg_size = mmc->max_req_size;
2839 	} else {
2840 		/* TRANS_MODE_PIO */
2841 		mmc->max_segs = 64;
2842 		mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2843 		mmc->max_blk_count = 512;
2844 		mmc->max_req_size = mmc->max_blk_size *
2845 				    mmc->max_blk_count;
2846 		mmc->max_seg_size = mmc->max_req_size;
2847 	}
2848 
2849 	dw_mci_get_cd(mmc);
2850 
2851 	ret = mmc_add_host(mmc);
2852 	if (ret)
2853 		goto err_host_allocated;
2854 
2855 #if defined(CONFIG_DEBUG_FS)
2856 	dw_mci_init_debugfs(slot);
2857 #endif
2858 
2859 	return 0;
2860 
2861 err_host_allocated:
2862 	mmc_free_host(mmc);
2863 	return ret;
2864 }
2865 
dw_mci_cleanup_slot(struct dw_mci_slot * slot)2866 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2867 {
2868 	/* Debugfs stuff is cleaned up by mmc core */
2869 	mmc_remove_host(slot->mmc);
2870 	slot->host->slot = NULL;
2871 	mmc_free_host(slot->mmc);
2872 }
2873 
dw_mci_init_dma(struct dw_mci * host)2874 static void dw_mci_init_dma(struct dw_mci *host)
2875 {
2876 	int addr_config;
2877 	struct device *dev = host->dev;
2878 
2879 	/*
2880 	* Check tansfer mode from HCON[17:16]
2881 	* Clear the ambiguous description of dw_mmc databook:
2882 	* 2b'00: No DMA Interface -> Actually means using Internal DMA block
2883 	* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2884 	* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2885 	* 2b'11: Non DW DMA Interface -> pio only
2886 	* Compared to DesignWare DMA Interface, Generic DMA Interface has a
2887 	* simpler request/acknowledge handshake mechanism and both of them
2888 	* are regarded as external dma master for dw_mmc.
2889 	*/
2890 	host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2891 	if (host->use_dma == DMA_INTERFACE_IDMA) {
2892 		host->use_dma = TRANS_MODE_IDMAC;
2893 	} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2894 		   host->use_dma == DMA_INTERFACE_GDMA) {
2895 		host->use_dma = TRANS_MODE_EDMAC;
2896 	} else {
2897 		goto no_dma;
2898 	}
2899 
2900 	/* Determine which DMA interface to use */
2901 	if (host->use_dma == TRANS_MODE_IDMAC) {
2902 		/*
2903 		* Check ADDR_CONFIG bit in HCON to find
2904 		* IDMAC address bus width
2905 		*/
2906 		addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2907 
2908 		if (addr_config == 1) {
2909 			/* host supports IDMAC in 64-bit address mode */
2910 			host->dma_64bit_address = 1;
2911 			dev_info(host->dev,
2912 				 "IDMAC supports 64-bit address mode.\n");
2913 			if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2914 				dma_set_coherent_mask(host->dev,
2915 						      DMA_BIT_MASK(64));
2916 		} else {
2917 			/* host supports IDMAC in 32-bit address mode */
2918 			host->dma_64bit_address = 0;
2919 			dev_info(host->dev,
2920 				 "IDMAC supports 32-bit address mode.\n");
2921 		}
2922 
2923 		/* Alloc memory for sg translation */
2924 		host->sg_cpu = dmam_alloc_coherent(host->dev,
2925 						   DESC_RING_BUF_SZ,
2926 						   &host->sg_dma, GFP_KERNEL);
2927 		if (!host->sg_cpu) {
2928 			dev_err(host->dev,
2929 				"%s: could not alloc DMA memory\n",
2930 				__func__);
2931 			goto no_dma;
2932 		}
2933 
2934 		host->dma_ops = &dw_mci_idmac_ops;
2935 		dev_info(host->dev, "Using internal DMA controller.\n");
2936 	} else {
2937 		/* TRANS_MODE_EDMAC: check dma bindings again */
2938 		if ((device_property_read_string_array(dev, "dma-names",
2939 						       NULL, 0) < 0) ||
2940 		    !device_property_present(dev, "dmas")) {
2941 			goto no_dma;
2942 		}
2943 		host->dma_ops = &dw_mci_edmac_ops;
2944 		dev_info(host->dev, "Using external DMA controller.\n");
2945 	}
2946 
2947 	if (host->dma_ops->init && host->dma_ops->start &&
2948 	    host->dma_ops->stop && host->dma_ops->cleanup) {
2949 		if (host->dma_ops->init(host)) {
2950 			dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2951 				__func__);
2952 			goto no_dma;
2953 		}
2954 	} else {
2955 		dev_err(host->dev, "DMA initialization not found.\n");
2956 		goto no_dma;
2957 	}
2958 
2959 	return;
2960 
2961 no_dma:
2962 	dev_info(host->dev, "Using PIO mode.\n");
2963 	host->use_dma = TRANS_MODE_PIO;
2964 }
2965 
dw_mci_cmd11_timer(struct timer_list * t)2966 static void dw_mci_cmd11_timer(struct timer_list *t)
2967 {
2968 	struct dw_mci *host = from_timer(host, t, cmd11_timer);
2969 
2970 	if (host->state != STATE_SENDING_CMD11) {
2971 		dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2972 		return;
2973 	}
2974 
2975 	host->cmd_status = SDMMC_INT_RTO;
2976 	set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2977 	tasklet_schedule(&host->tasklet);
2978 }
2979 
dw_mci_cto_timer(struct timer_list * t)2980 static void dw_mci_cto_timer(struct timer_list *t)
2981 {
2982 	struct dw_mci *host = from_timer(host, t, cto_timer);
2983 	unsigned long irqflags;
2984 	u32 pending;
2985 
2986 	spin_lock_irqsave(&host->irq_lock, irqflags);
2987 
2988 	/*
2989 	 * If somehow we have very bad interrupt latency it's remotely possible
2990 	 * that the timer could fire while the interrupt is still pending or
2991 	 * while the interrupt is midway through running.  Let's be paranoid
2992 	 * and detect those two cases.  Note that this is paranoia is somewhat
2993 	 * justified because in this function we don't actually cancel the
2994 	 * pending command in the controller--we just assume it will never come.
2995 	 */
2996 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2997 	if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
2998 		/* The interrupt should fire; no need to act but we can warn */
2999 		dev_warn(host->dev, "Unexpected interrupt latency\n");
3000 		goto exit;
3001 	}
3002 	if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
3003 		/* Presumably interrupt handler couldn't delete the timer */
3004 		dev_warn(host->dev, "CTO timeout when already completed\n");
3005 		goto exit;
3006 	}
3007 
3008 	/*
3009 	 * Continued paranoia to make sure we're in the state we expect.
3010 	 * This paranoia isn't really justified but it seems good to be safe.
3011 	 */
3012 	switch (host->state) {
3013 	case STATE_SENDING_CMD11:
3014 	case STATE_SENDING_CMD:
3015 	case STATE_SENDING_STOP:
3016 		/*
3017 		 * If CMD_DONE interrupt does NOT come in sending command
3018 		 * state, we should notify the driver to terminate current
3019 		 * transfer and report a command timeout to the core.
3020 		 */
3021 		host->cmd_status = SDMMC_INT_RTO;
3022 		set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
3023 		tasklet_schedule(&host->tasklet);
3024 		break;
3025 	default:
3026 		dev_warn(host->dev, "Unexpected command timeout, state %d\n",
3027 			 host->state);
3028 		break;
3029 	}
3030 
3031 exit:
3032 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3033 }
3034 
dw_mci_dto_timer(struct timer_list * t)3035 static void dw_mci_dto_timer(struct timer_list *t)
3036 {
3037 	struct dw_mci *host = from_timer(host, t, dto_timer);
3038 	unsigned long irqflags;
3039 	u32 pending;
3040 
3041 	spin_lock_irqsave(&host->irq_lock, irqflags);
3042 
3043 	/*
3044 	 * The DTO timer is much longer than the CTO timer, so it's even less
3045 	 * likely that we'll these cases, but it pays to be paranoid.
3046 	 */
3047 	pending = mci_readl(host, MINTSTS); /* read-only mask reg */
3048 	if (pending & SDMMC_INT_DATA_OVER) {
3049 		/* The interrupt should fire; no need to act but we can warn */
3050 		dev_warn(host->dev, "Unexpected data interrupt latency\n");
3051 		goto exit;
3052 	}
3053 	if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
3054 		/* Presumably interrupt handler couldn't delete the timer */
3055 		dev_warn(host->dev, "DTO timeout when already completed\n");
3056 		goto exit;
3057 	}
3058 
3059 	/*
3060 	 * Continued paranoia to make sure we're in the state we expect.
3061 	 * This paranoia isn't really justified but it seems good to be safe.
3062 	 */
3063 	switch (host->state) {
3064 	case STATE_SENDING_DATA:
3065 	case STATE_DATA_BUSY:
3066 		/*
3067 		 * If DTO interrupt does NOT come in sending data state,
3068 		 * we should notify the driver to terminate current transfer
3069 		 * and report a data timeout to the core.
3070 		 */
3071 		host->data_status = SDMMC_INT_DRTO;
3072 		set_bit(EVENT_DATA_ERROR, &host->pending_events);
3073 		set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
3074 		tasklet_schedule(&host->tasklet);
3075 		break;
3076 	default:
3077 		dev_warn(host->dev, "Unexpected data timeout, state %d\n",
3078 			 host->state);
3079 		break;
3080 	}
3081 
3082 exit:
3083 	spin_unlock_irqrestore(&host->irq_lock, irqflags);
3084 }
3085 
3086 #ifdef CONFIG_OF
dw_mci_parse_dt(struct dw_mci * host)3087 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3088 {
3089 	struct dw_mci_board *pdata;
3090 	struct device *dev = host->dev;
3091 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3092 	int ret;
3093 	u32 clock_frequency;
3094 
3095 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3096 	if (!pdata)
3097 		return ERR_PTR(-ENOMEM);
3098 
3099 	/* find reset controller when exist */
3100 	pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
3101 	if (IS_ERR(pdata->rstc)) {
3102 		if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
3103 			return ERR_PTR(-EPROBE_DEFER);
3104 	}
3105 
3106 	if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
3107 		dev_info(dev,
3108 			 "fifo-depth property not found, using value of FIFOTH register as default\n");
3109 
3110 	device_property_read_u32(dev, "card-detect-delay",
3111 				 &pdata->detect_delay_ms);
3112 
3113 	device_property_read_u32(dev, "data-addr", &host->data_addr_override);
3114 
3115 	if (device_property_present(dev, "fifo-watermark-aligned"))
3116 		host->wm_aligned = true;
3117 
3118 	if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
3119 		pdata->bus_hz = clock_frequency;
3120 
3121 	if (drv_data && drv_data->parse_dt) {
3122 		ret = drv_data->parse_dt(host);
3123 		if (ret)
3124 			return ERR_PTR(ret);
3125 	}
3126 
3127 	return pdata;
3128 }
3129 
3130 #else /* CONFIG_OF */
dw_mci_parse_dt(struct dw_mci * host)3131 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3132 {
3133 	return ERR_PTR(-EINVAL);
3134 }
3135 #endif /* CONFIG_OF */
3136 
dw_mci_enable_cd(struct dw_mci * host)3137 static void dw_mci_enable_cd(struct dw_mci *host)
3138 {
3139 	unsigned long irqflags;
3140 	u32 temp;
3141 
3142 	/*
3143 	 * No need for CD if all slots have a non-error GPIO
3144 	 * as well as broken card detection is found.
3145 	 */
3146 	if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3147 		return;
3148 
3149 	if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3150 		spin_lock_irqsave(&host->irq_lock, irqflags);
3151 		temp = mci_readl(host, INTMASK);
3152 		temp  |= SDMMC_INT_CD;
3153 		mci_writel(host, INTMASK, temp);
3154 		spin_unlock_irqrestore(&host->irq_lock, irqflags);
3155 	}
3156 }
3157 
dw_mci_probe(struct dw_mci * host)3158 int dw_mci_probe(struct dw_mci *host)
3159 {
3160 	const struct dw_mci_drv_data *drv_data = host->drv_data;
3161 	int width, i, ret = 0;
3162 	u32 fifo_size;
3163 
3164 	if (!host->pdata) {
3165 		host->pdata = dw_mci_parse_dt(host);
3166 		if (IS_ERR(host->pdata))
3167 			return dev_err_probe(host->dev, PTR_ERR(host->pdata),
3168 					     "platform data not available\n");
3169 	}
3170 
3171 	host->biu_clk = devm_clk_get(host->dev, "biu");
3172 	if (IS_ERR(host->biu_clk)) {
3173 		dev_dbg(host->dev, "biu clock not available\n");
3174 	} else {
3175 		ret = clk_prepare_enable(host->biu_clk);
3176 		if (ret) {
3177 			dev_err(host->dev, "failed to enable biu clock\n");
3178 			return ret;
3179 		}
3180 	}
3181 
3182 	host->ciu_clk = devm_clk_get(host->dev, "ciu");
3183 	if (IS_ERR(host->ciu_clk)) {
3184 		dev_dbg(host->dev, "ciu clock not available\n");
3185 		host->bus_hz = host->pdata->bus_hz;
3186 	} else {
3187 		ret = clk_prepare_enable(host->ciu_clk);
3188 		if (ret) {
3189 			dev_err(host->dev, "failed to enable ciu clock\n");
3190 			goto err_clk_biu;
3191 		}
3192 
3193 		if (host->pdata->bus_hz) {
3194 			ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3195 			if (ret)
3196 				dev_warn(host->dev,
3197 					 "Unable to set bus rate to %uHz\n",
3198 					 host->pdata->bus_hz);
3199 		}
3200 		host->bus_hz = clk_get_rate(host->ciu_clk);
3201 	}
3202 
3203 	if (!host->bus_hz) {
3204 		dev_err(host->dev,
3205 			"Platform data must supply bus speed\n");
3206 		ret = -ENODEV;
3207 		goto err_clk_ciu;
3208 	}
3209 
3210 	if (!IS_ERR(host->pdata->rstc)) {
3211 		reset_control_assert(host->pdata->rstc);
3212 		usleep_range(10, 50);
3213 		reset_control_deassert(host->pdata->rstc);
3214 	}
3215 
3216 	if (drv_data && drv_data->init) {
3217 		ret = drv_data->init(host);
3218 		if (ret) {
3219 			dev_err(host->dev,
3220 				"implementation specific init failed\n");
3221 			goto err_clk_ciu;
3222 		}
3223 	}
3224 
3225 	timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
3226 	timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
3227 	timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
3228 
3229 	spin_lock_init(&host->lock);
3230 	spin_lock_init(&host->irq_lock);
3231 	INIT_LIST_HEAD(&host->queue);
3232 
3233 	/*
3234 	 * Get the host data width - this assumes that HCON has been set with
3235 	 * the correct values.
3236 	 */
3237 	i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3238 	if (!i) {
3239 		host->push_data = dw_mci_push_data16;
3240 		host->pull_data = dw_mci_pull_data16;
3241 		width = 16;
3242 		host->data_shift = 1;
3243 	} else if (i == 2) {
3244 		host->push_data = dw_mci_push_data64;
3245 		host->pull_data = dw_mci_pull_data64;
3246 		width = 64;
3247 		host->data_shift = 3;
3248 	} else {
3249 		/* Check for a reserved value, and warn if it is */
3250 		WARN((i != 1),
3251 		     "HCON reports a reserved host data width!\n"
3252 		     "Defaulting to 32-bit access.\n");
3253 		host->push_data = dw_mci_push_data32;
3254 		host->pull_data = dw_mci_pull_data32;
3255 		width = 32;
3256 		host->data_shift = 2;
3257 	}
3258 
3259 	/* Reset all blocks */
3260 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3261 		ret = -ENODEV;
3262 		goto err_clk_ciu;
3263 	}
3264 
3265 	host->dma_ops = host->pdata->dma_ops;
3266 	dw_mci_init_dma(host);
3267 
3268 	/* Clear the interrupts for the host controller */
3269 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3270 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3271 
3272 	/* Put in max timeout */
3273 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3274 
3275 	/*
3276 	 * FIFO threshold settings  RxMark  = fifo_size / 2 - 1,
3277 	 *                          Tx Mark = fifo_size / 2 DMA Size = 8
3278 	 */
3279 	if (!host->pdata->fifo_depth) {
3280 		/*
3281 		 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3282 		 * have been overwritten by the bootloader, just like we're
3283 		 * about to do, so if you know the value for your hardware, you
3284 		 * should put it in the platform data.
3285 		 */
3286 		fifo_size = mci_readl(host, FIFOTH);
3287 		fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3288 	} else {
3289 		fifo_size = host->pdata->fifo_depth;
3290 	}
3291 	host->fifo_depth = fifo_size;
3292 	host->fifoth_val =
3293 		SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3294 	mci_writel(host, FIFOTH, host->fifoth_val);
3295 
3296 	/* disable clock to CIU */
3297 	mci_writel(host, CLKENA, 0);
3298 	mci_writel(host, CLKSRC, 0);
3299 
3300 	/*
3301 	 * In 2.40a spec, Data offset is changed.
3302 	 * Need to check the version-id and set data-offset for DATA register.
3303 	 */
3304 	host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3305 	dev_info(host->dev, "Version ID is %04x\n", host->verid);
3306 
3307 	if (host->data_addr_override)
3308 		host->fifo_reg = host->regs + host->data_addr_override;
3309 	else if (host->verid < DW_MMC_240A)
3310 		host->fifo_reg = host->regs + DATA_OFFSET;
3311 	else
3312 		host->fifo_reg = host->regs + DATA_240A_OFFSET;
3313 
3314 	tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3315 	ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3316 			       host->irq_flags, "dw-mci", host);
3317 	if (ret)
3318 		goto err_dmaunmap;
3319 
3320 	/*
3321 	 * Enable interrupts for command done, data over, data empty,
3322 	 * receive ready and error such as transmit, receive timeout, crc error
3323 	 */
3324 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3325 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3326 		   DW_MCI_ERROR_FLAGS);
3327 	/* Enable mci interrupt */
3328 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3329 
3330 	dev_info(host->dev,
3331 		 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3332 		 host->irq, width, fifo_size);
3333 
3334 	/* We need at least one slot to succeed */
3335 	ret = dw_mci_init_slot(host);
3336 	if (ret) {
3337 		dev_dbg(host->dev, "slot %d init failed\n", i);
3338 		goto err_dmaunmap;
3339 	}
3340 
3341 	/* Now that slots are all setup, we can enable card detect */
3342 	dw_mci_enable_cd(host);
3343 
3344 	return 0;
3345 
3346 err_dmaunmap:
3347 	if (host->use_dma && host->dma_ops->exit)
3348 		host->dma_ops->exit(host);
3349 
3350 	if (!IS_ERR(host->pdata->rstc))
3351 		reset_control_assert(host->pdata->rstc);
3352 
3353 err_clk_ciu:
3354 	clk_disable_unprepare(host->ciu_clk);
3355 
3356 err_clk_biu:
3357 	clk_disable_unprepare(host->biu_clk);
3358 
3359 	return ret;
3360 }
3361 EXPORT_SYMBOL(dw_mci_probe);
3362 
dw_mci_remove(struct dw_mci * host)3363 void dw_mci_remove(struct dw_mci *host)
3364 {
3365 	dev_dbg(host->dev, "remove slot\n");
3366 	if (host->slot)
3367 		dw_mci_cleanup_slot(host->slot);
3368 
3369 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3370 	mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3371 
3372 	/* disable clock to CIU */
3373 	mci_writel(host, CLKENA, 0);
3374 	mci_writel(host, CLKSRC, 0);
3375 
3376 	if (host->use_dma && host->dma_ops->exit)
3377 		host->dma_ops->exit(host);
3378 
3379 	if (!IS_ERR(host->pdata->rstc))
3380 		reset_control_assert(host->pdata->rstc);
3381 
3382 	clk_disable_unprepare(host->ciu_clk);
3383 	clk_disable_unprepare(host->biu_clk);
3384 }
3385 EXPORT_SYMBOL(dw_mci_remove);
3386 
3387 
3388 
3389 #ifdef CONFIG_PM
dw_mci_runtime_suspend(struct device * dev)3390 int dw_mci_runtime_suspend(struct device *dev)
3391 {
3392 	struct dw_mci *host = dev_get_drvdata(dev);
3393 
3394 	if (host->use_dma && host->dma_ops->exit)
3395 		host->dma_ops->exit(host);
3396 
3397 	clk_disable_unprepare(host->ciu_clk);
3398 
3399 	if (host->slot &&
3400 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3401 	     !mmc_card_is_removable(host->slot->mmc)))
3402 		clk_disable_unprepare(host->biu_clk);
3403 
3404 	return 0;
3405 }
3406 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3407 
dw_mci_runtime_resume(struct device * dev)3408 int dw_mci_runtime_resume(struct device *dev)
3409 {
3410 	int ret = 0;
3411 	struct dw_mci *host = dev_get_drvdata(dev);
3412 
3413 	if (host->slot &&
3414 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3415 	     !mmc_card_is_removable(host->slot->mmc))) {
3416 		ret = clk_prepare_enable(host->biu_clk);
3417 		if (ret)
3418 			return ret;
3419 	}
3420 
3421 	ret = clk_prepare_enable(host->ciu_clk);
3422 	if (ret)
3423 		goto err;
3424 
3425 	if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3426 		clk_disable_unprepare(host->ciu_clk);
3427 		ret = -ENODEV;
3428 		goto err;
3429 	}
3430 
3431 	if (host->use_dma && host->dma_ops->init)
3432 		host->dma_ops->init(host);
3433 
3434 	/*
3435 	 * Restore the initial value at FIFOTH register
3436 	 * And Invalidate the prev_blksz with zero
3437 	 */
3438 	mci_writel(host, FIFOTH, host->fifoth_val);
3439 	host->prev_blksz = 0;
3440 
3441 	/* Put in max timeout */
3442 	mci_writel(host, TMOUT, 0xFFFFFFFF);
3443 
3444 	mci_writel(host, RINTSTS, 0xFFFFFFFF);
3445 	mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3446 		   SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3447 		   DW_MCI_ERROR_FLAGS);
3448 	mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3449 
3450 
3451 	if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3452 		dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3453 
3454 	/* Force setup bus to guarantee available clock output */
3455 	dw_mci_setup_bus(host->slot, true);
3456 
3457 	/* Re-enable SDIO interrupts. */
3458 	if (sdio_irq_claimed(host->slot->mmc))
3459 		__dw_mci_enable_sdio_irq(host->slot, 1);
3460 
3461 	/* Now that slots are all setup, we can enable card detect */
3462 	dw_mci_enable_cd(host);
3463 
3464 	return 0;
3465 
3466 err:
3467 	if (host->slot &&
3468 	    (mmc_can_gpio_cd(host->slot->mmc) ||
3469 	     !mmc_card_is_removable(host->slot->mmc)))
3470 		clk_disable_unprepare(host->biu_clk);
3471 
3472 	return ret;
3473 }
3474 EXPORT_SYMBOL(dw_mci_runtime_resume);
3475 #endif /* CONFIG_PM */
3476 
dw_mci_init(void)3477 static int __init dw_mci_init(void)
3478 {
3479 	pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3480 	return 0;
3481 }
3482 
dw_mci_exit(void)3483 static void __exit dw_mci_exit(void)
3484 {
3485 }
3486 
3487 module_init(dw_mci_init);
3488 module_exit(dw_mci_exit);
3489 
3490 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3491 MODULE_AUTHOR("NXP Semiconductor VietNam");
3492 MODULE_AUTHOR("Imagination Technologies Ltd");
3493 MODULE_LICENSE("GPL v2");
3494