1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <net/gre.h>
15 #include "efx_common.h"
16 #include "efx_channels.h"
17 #include "efx.h"
18 #include "mcdi.h"
19 #include "selftest.h"
20 #include "rx_common.h"
21 #include "tx_common.h"
22 #include "nic.h"
23 #include "mcdi_port_common.h"
24 #include "io.h"
25 #include "mcdi_pcol.h"
26
27 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
28 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
29 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
30 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
31 module_param(debug, uint, 0);
32 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
33
34 /* This is the time (in jiffies) between invocations of the hardware
35 * monitor.
36 * On Falcon-based NICs, this will:
37 * - Check the on-board hardware monitor;
38 * - Poll the link state and reconfigure the hardware as necessary.
39 * On Siena-based NICs for power systems with EEH support, this will give EEH a
40 * chance to start.
41 */
42 static unsigned int efx_monitor_interval = 1 * HZ;
43
44 /* How often and how many times to poll for a reset while waiting for a
45 * BIST that another function started to complete.
46 */
47 #define BIST_WAIT_DELAY_MS 100
48 #define BIST_WAIT_DELAY_COUNT 100
49
50 /* Default stats update time */
51 #define STATS_PERIOD_MS_DEFAULT 1000
52
53 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
54 const char *const efx_reset_type_names[] = {
55 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
56 [RESET_TYPE_ALL] = "ALL",
57 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
58 [RESET_TYPE_WORLD] = "WORLD",
59 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
60 [RESET_TYPE_DATAPATH] = "DATAPATH",
61 [RESET_TYPE_MC_BIST] = "MC_BIST",
62 [RESET_TYPE_DISABLE] = "DISABLE",
63 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
64 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
65 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
66 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
67 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
68 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
69 };
70
71 #define RESET_TYPE(type) \
72 STRING_TABLE_LOOKUP(type, efx_reset_type)
73
74 /* Loopback mode names (see LOOPBACK_MODE()) */
75 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
76 const char *const efx_loopback_mode_names[] = {
77 [LOOPBACK_NONE] = "NONE",
78 [LOOPBACK_DATA] = "DATAPATH",
79 [LOOPBACK_GMAC] = "GMAC",
80 [LOOPBACK_XGMII] = "XGMII",
81 [LOOPBACK_XGXS] = "XGXS",
82 [LOOPBACK_XAUI] = "XAUI",
83 [LOOPBACK_GMII] = "GMII",
84 [LOOPBACK_SGMII] = "SGMII",
85 [LOOPBACK_XGBR] = "XGBR",
86 [LOOPBACK_XFI] = "XFI",
87 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
88 [LOOPBACK_GMII_FAR] = "GMII_FAR",
89 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
90 [LOOPBACK_XFI_FAR] = "XFI_FAR",
91 [LOOPBACK_GPHY] = "GPHY",
92 [LOOPBACK_PHYXS] = "PHYXS",
93 [LOOPBACK_PCS] = "PCS",
94 [LOOPBACK_PMAPMD] = "PMA/PMD",
95 [LOOPBACK_XPORT] = "XPORT",
96 [LOOPBACK_XGMII_WS] = "XGMII_WS",
97 [LOOPBACK_XAUI_WS] = "XAUI_WS",
98 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
99 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
100 [LOOPBACK_GMII_WS] = "GMII_WS",
101 [LOOPBACK_XFI_WS] = "XFI_WS",
102 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
103 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
104 };
105
106 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
107 * queued onto this work queue. This is not a per-nic work queue, because
108 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
109 */
110 static struct workqueue_struct *reset_workqueue;
111
efx_create_reset_workqueue(void)112 int efx_create_reset_workqueue(void)
113 {
114 reset_workqueue = create_singlethread_workqueue("sfc_reset");
115 if (!reset_workqueue) {
116 printk(KERN_ERR "Failed to create reset workqueue\n");
117 return -ENOMEM;
118 }
119
120 return 0;
121 }
122
efx_queue_reset_work(struct efx_nic * efx)123 void efx_queue_reset_work(struct efx_nic *efx)
124 {
125 queue_work(reset_workqueue, &efx->reset_work);
126 }
127
efx_flush_reset_workqueue(struct efx_nic * efx)128 void efx_flush_reset_workqueue(struct efx_nic *efx)
129 {
130 cancel_work_sync(&efx->reset_work);
131 }
132
efx_destroy_reset_workqueue(void)133 void efx_destroy_reset_workqueue(void)
134 {
135 if (reset_workqueue) {
136 destroy_workqueue(reset_workqueue);
137 reset_workqueue = NULL;
138 }
139 }
140
141 /* We assume that efx->type->reconfigure_mac will always try to sync RX
142 * filters and therefore needs to read-lock the filter table against freeing
143 */
efx_mac_reconfigure(struct efx_nic * efx,bool mtu_only)144 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
145 {
146 if (efx->type->reconfigure_mac) {
147 down_read(&efx->filter_sem);
148 efx->type->reconfigure_mac(efx, mtu_only);
149 up_read(&efx->filter_sem);
150 }
151 }
152
153 /* Asynchronous work item for changing MAC promiscuity and multicast
154 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
155 * MAC directly.
156 */
efx_mac_work(struct work_struct * data)157 static void efx_mac_work(struct work_struct *data)
158 {
159 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
160
161 mutex_lock(&efx->mac_lock);
162 if (efx->port_enabled)
163 efx_mac_reconfigure(efx, false);
164 mutex_unlock(&efx->mac_lock);
165 }
166
efx_set_mac_address(struct net_device * net_dev,void * data)167 int efx_set_mac_address(struct net_device *net_dev, void *data)
168 {
169 struct efx_nic *efx = netdev_priv(net_dev);
170 struct sockaddr *addr = data;
171 u8 *new_addr = addr->sa_data;
172 u8 old_addr[6];
173 int rc;
174
175 if (!is_valid_ether_addr(new_addr)) {
176 netif_err(efx, drv, efx->net_dev,
177 "invalid ethernet MAC address requested: %pM\n",
178 new_addr);
179 return -EADDRNOTAVAIL;
180 }
181
182 /* save old address */
183 ether_addr_copy(old_addr, net_dev->dev_addr);
184 ether_addr_copy(net_dev->dev_addr, new_addr);
185 if (efx->type->set_mac_address) {
186 rc = efx->type->set_mac_address(efx);
187 if (rc) {
188 ether_addr_copy(net_dev->dev_addr, old_addr);
189 return rc;
190 }
191 }
192
193 /* Reconfigure the MAC */
194 mutex_lock(&efx->mac_lock);
195 efx_mac_reconfigure(efx, false);
196 mutex_unlock(&efx->mac_lock);
197
198 return 0;
199 }
200
201 /* Context: netif_addr_lock held, BHs disabled. */
efx_set_rx_mode(struct net_device * net_dev)202 void efx_set_rx_mode(struct net_device *net_dev)
203 {
204 struct efx_nic *efx = netdev_priv(net_dev);
205
206 if (efx->port_enabled)
207 queue_work(efx->workqueue, &efx->mac_work);
208 /* Otherwise efx_start_port() will do this */
209 }
210
efx_set_features(struct net_device * net_dev,netdev_features_t data)211 int efx_set_features(struct net_device *net_dev, netdev_features_t data)
212 {
213 struct efx_nic *efx = netdev_priv(net_dev);
214 int rc;
215
216 /* If disabling RX n-tuple filtering, clear existing filters */
217 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
218 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
219 if (rc)
220 return rc;
221 }
222
223 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
224 * If rx-fcs is changed, mac_reconfigure updates that too.
225 */
226 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
227 NETIF_F_RXFCS)) {
228 /* efx_set_rx_mode() will schedule MAC work to update filters
229 * when a new features are finally set in net_dev.
230 */
231 efx_set_rx_mode(net_dev);
232 }
233
234 return 0;
235 }
236
237 /* This ensures that the kernel is kept informed (via
238 * netif_carrier_on/off) of the link status, and also maintains the
239 * link status's stop on the port's TX queue.
240 */
efx_link_status_changed(struct efx_nic * efx)241 void efx_link_status_changed(struct efx_nic *efx)
242 {
243 struct efx_link_state *link_state = &efx->link_state;
244
245 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
246 * that no events are triggered between unregister_netdev() and the
247 * driver unloading. A more general condition is that NETDEV_CHANGE
248 * can only be generated between NETDEV_UP and NETDEV_DOWN
249 */
250 if (!netif_running(efx->net_dev))
251 return;
252
253 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
254 efx->n_link_state_changes++;
255
256 if (link_state->up)
257 netif_carrier_on(efx->net_dev);
258 else
259 netif_carrier_off(efx->net_dev);
260 }
261
262 /* Status message for kernel log */
263 if (link_state->up)
264 netif_info(efx, link, efx->net_dev,
265 "link up at %uMbps %s-duplex (MTU %d)\n",
266 link_state->speed, link_state->fd ? "full" : "half",
267 efx->net_dev->mtu);
268 else
269 netif_info(efx, link, efx->net_dev, "link down\n");
270 }
271
efx_xdp_max_mtu(struct efx_nic * efx)272 unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
273 {
274 /* The maximum MTU that we can fit in a single page, allowing for
275 * framing, overhead and XDP headroom + tailroom.
276 */
277 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
278 efx->rx_prefix_size + efx->type->rx_buffer_padding +
279 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
280
281 return PAGE_SIZE - overhead;
282 }
283
284 /* Context: process, rtnl_lock() held. */
efx_change_mtu(struct net_device * net_dev,int new_mtu)285 int efx_change_mtu(struct net_device *net_dev, int new_mtu)
286 {
287 struct efx_nic *efx = netdev_priv(net_dev);
288 int rc;
289
290 rc = efx_check_disabled(efx);
291 if (rc)
292 return rc;
293
294 if (rtnl_dereference(efx->xdp_prog) &&
295 new_mtu > efx_xdp_max_mtu(efx)) {
296 netif_err(efx, drv, efx->net_dev,
297 "Requested MTU of %d too big for XDP (max: %d)\n",
298 new_mtu, efx_xdp_max_mtu(efx));
299 return -EINVAL;
300 }
301
302 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
303
304 efx_device_detach_sync(efx);
305 efx_stop_all(efx);
306
307 mutex_lock(&efx->mac_lock);
308 net_dev->mtu = new_mtu;
309 efx_mac_reconfigure(efx, true);
310 mutex_unlock(&efx->mac_lock);
311
312 efx_start_all(efx);
313 efx_device_attach_if_not_resetting(efx);
314 return 0;
315 }
316
317 /**************************************************************************
318 *
319 * Hardware monitor
320 *
321 **************************************************************************/
322
323 /* Run periodically off the general workqueue */
efx_monitor(struct work_struct * data)324 static void efx_monitor(struct work_struct *data)
325 {
326 struct efx_nic *efx = container_of(data, struct efx_nic,
327 monitor_work.work);
328
329 netif_vdbg(efx, timer, efx->net_dev,
330 "hardware monitor executing on CPU %d\n",
331 raw_smp_processor_id());
332 BUG_ON(efx->type->monitor == NULL);
333
334 /* If the mac_lock is already held then it is likely a port
335 * reconfiguration is already in place, which will likely do
336 * most of the work of monitor() anyway.
337 */
338 if (mutex_trylock(&efx->mac_lock)) {
339 if (efx->port_enabled && efx->type->monitor)
340 efx->type->monitor(efx);
341 mutex_unlock(&efx->mac_lock);
342 }
343
344 efx_start_monitor(efx);
345 }
346
efx_start_monitor(struct efx_nic * efx)347 void efx_start_monitor(struct efx_nic *efx)
348 {
349 if (efx->type->monitor)
350 queue_delayed_work(efx->workqueue, &efx->monitor_work,
351 efx_monitor_interval);
352 }
353
354 /**************************************************************************
355 *
356 * Event queue processing
357 *
358 *************************************************************************/
359
360 /* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
efx_start_datapath(struct efx_nic * efx)364 static void efx_start_datapath(struct efx_nic *efx)
365 {
366 netdev_features_t old_features = efx->net_dev->features;
367 bool old_rx_scatter = efx->rx_scatter;
368 size_t rx_buf_len;
369
370 /* Calculate the rx buffer allocation parameters required to
371 * support the current MTU, including padding for header
372 * alignment and overruns.
373 */
374 efx->rx_dma_len = (efx->rx_prefix_size +
375 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
376 efx->type->rx_buffer_padding);
377 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM +
378 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
379
380 if (rx_buf_len <= PAGE_SIZE) {
381 efx->rx_scatter = efx->type->always_rx_scatter;
382 efx->rx_buffer_order = 0;
383 } else if (efx->type->can_rx_scatter) {
384 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
385 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
386 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
387 EFX_RX_BUF_ALIGNMENT) >
388 PAGE_SIZE);
389 efx->rx_scatter = true;
390 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
391 efx->rx_buffer_order = 0;
392 } else {
393 efx->rx_scatter = false;
394 efx->rx_buffer_order = get_order(rx_buf_len);
395 }
396
397 efx_rx_config_page_split(efx);
398 if (efx->rx_buffer_order)
399 netif_dbg(efx, drv, efx->net_dev,
400 "RX buf len=%u; page order=%u batch=%u\n",
401 efx->rx_dma_len, efx->rx_buffer_order,
402 efx->rx_pages_per_batch);
403 else
404 netif_dbg(efx, drv, efx->net_dev,
405 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
406 efx->rx_dma_len, efx->rx_page_buf_step,
407 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
408
409 /* Restore previously fixed features in hw_features and remove
410 * features which are fixed now
411 */
412 efx->net_dev->hw_features |= efx->net_dev->features;
413 efx->net_dev->hw_features &= ~efx->fixed_features;
414 efx->net_dev->features |= efx->fixed_features;
415 if (efx->net_dev->features != old_features)
416 netdev_features_change(efx->net_dev);
417
418 /* RX filters may also have scatter-enabled flags */
419 if ((efx->rx_scatter != old_rx_scatter) &&
420 efx->type->filter_update_rx_scatter)
421 efx->type->filter_update_rx_scatter(efx);
422
423 /* We must keep at least one descriptor in a TX ring empty.
424 * We could avoid this when the queue size does not exactly
425 * match the hardware ring size, but it's not that important.
426 * Therefore we stop the queue when one more skb might fill
427 * the ring completely. We wake it when half way back to
428 * empty.
429 */
430 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
431 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
432
433 /* Initialise the channels */
434 efx_start_channels(efx);
435
436 efx_ptp_start_datapath(efx);
437
438 if (netif_device_present(efx->net_dev))
439 netif_tx_wake_all_queues(efx->net_dev);
440 }
441
efx_stop_datapath(struct efx_nic * efx)442 static void efx_stop_datapath(struct efx_nic *efx)
443 {
444 EFX_ASSERT_RESET_SERIALISED(efx);
445 BUG_ON(efx->port_enabled);
446
447 efx_ptp_stop_datapath(efx);
448
449 efx_stop_channels(efx);
450 }
451
452 /**************************************************************************
453 *
454 * Port handling
455 *
456 **************************************************************************/
457
458 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
459 * force the Autoneg bit on.
460 */
efx_link_clear_advertising(struct efx_nic * efx)461 void efx_link_clear_advertising(struct efx_nic *efx)
462 {
463 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
464 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
465 }
466
efx_link_set_wanted_fc(struct efx_nic * efx,u8 wanted_fc)467 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
468 {
469 efx->wanted_fc = wanted_fc;
470 if (efx->link_advertising[0]) {
471 if (wanted_fc & EFX_FC_RX)
472 efx->link_advertising[0] |= (ADVERTISED_Pause |
473 ADVERTISED_Asym_Pause);
474 else
475 efx->link_advertising[0] &= ~(ADVERTISED_Pause |
476 ADVERTISED_Asym_Pause);
477 if (wanted_fc & EFX_FC_TX)
478 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
479 }
480 }
481
efx_start_port(struct efx_nic * efx)482 static void efx_start_port(struct efx_nic *efx)
483 {
484 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
485 BUG_ON(efx->port_enabled);
486
487 mutex_lock(&efx->mac_lock);
488 efx->port_enabled = true;
489
490 /* Ensure MAC ingress/egress is enabled */
491 efx_mac_reconfigure(efx, false);
492
493 mutex_unlock(&efx->mac_lock);
494 }
495
496 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
497 * and the async self-test, wait for them to finish and prevent them
498 * being scheduled again. This doesn't cover online resets, which
499 * should only be cancelled when removing the device.
500 */
efx_stop_port(struct efx_nic * efx)501 static void efx_stop_port(struct efx_nic *efx)
502 {
503 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
504
505 EFX_ASSERT_RESET_SERIALISED(efx);
506
507 mutex_lock(&efx->mac_lock);
508 efx->port_enabled = false;
509 mutex_unlock(&efx->mac_lock);
510
511 /* Serialise against efx_set_multicast_list() */
512 netif_addr_lock_bh(efx->net_dev);
513 netif_addr_unlock_bh(efx->net_dev);
514
515 cancel_delayed_work_sync(&efx->monitor_work);
516 efx_selftest_async_cancel(efx);
517 cancel_work_sync(&efx->mac_work);
518 }
519
520 /* If the interface is supposed to be running but is not, start
521 * the hardware and software data path, regular activity for the port
522 * (MAC statistics, link polling, etc.) and schedule the port to be
523 * reconfigured. Interrupts must already be enabled. This function
524 * is safe to call multiple times, so long as the NIC is not disabled.
525 * Requires the RTNL lock.
526 */
efx_start_all(struct efx_nic * efx)527 void efx_start_all(struct efx_nic *efx)
528 {
529 EFX_ASSERT_RESET_SERIALISED(efx);
530 BUG_ON(efx->state == STATE_DISABLED);
531
532 /* Check that it is appropriate to restart the interface. All
533 * of these flags are safe to read under just the rtnl lock
534 */
535 if (efx->port_enabled || !netif_running(efx->net_dev) ||
536 efx->reset_pending)
537 return;
538
539 efx_start_port(efx);
540 efx_start_datapath(efx);
541
542 /* Start the hardware monitor if there is one */
543 efx_start_monitor(efx);
544
545 efx_selftest_async_start(efx);
546
547 /* Link state detection is normally event-driven; we have
548 * to poll now because we could have missed a change
549 */
550 mutex_lock(&efx->mac_lock);
551 if (efx_mcdi_phy_poll(efx))
552 efx_link_status_changed(efx);
553 mutex_unlock(&efx->mac_lock);
554
555 if (efx->type->start_stats) {
556 efx->type->start_stats(efx);
557 efx->type->pull_stats(efx);
558 spin_lock_bh(&efx->stats_lock);
559 efx->type->update_stats(efx, NULL, NULL);
560 spin_unlock_bh(&efx->stats_lock);
561 }
562 }
563
564 /* Quiesce the hardware and software data path, and regular activity
565 * for the port without bringing the link down. Safe to call multiple
566 * times with the NIC in almost any state, but interrupts should be
567 * enabled. Requires the RTNL lock.
568 */
efx_stop_all(struct efx_nic * efx)569 void efx_stop_all(struct efx_nic *efx)
570 {
571 EFX_ASSERT_RESET_SERIALISED(efx);
572
573 /* port_enabled can be read safely under the rtnl lock */
574 if (!efx->port_enabled)
575 return;
576
577 if (efx->type->update_stats) {
578 /* update stats before we go down so we can accurately count
579 * rx_nodesc_drops
580 */
581 efx->type->pull_stats(efx);
582 spin_lock_bh(&efx->stats_lock);
583 efx->type->update_stats(efx, NULL, NULL);
584 spin_unlock_bh(&efx->stats_lock);
585 efx->type->stop_stats(efx);
586 }
587
588 efx_stop_port(efx);
589
590 /* Stop the kernel transmit interface. This is only valid if
591 * the device is stopped or detached; otherwise the watchdog
592 * may fire immediately.
593 */
594 WARN_ON(netif_running(efx->net_dev) &&
595 netif_device_present(efx->net_dev));
596 netif_tx_disable(efx->net_dev);
597
598 efx_stop_datapath(efx);
599 }
600
601 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)602 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
603 {
604 struct efx_nic *efx = netdev_priv(net_dev);
605
606 spin_lock_bh(&efx->stats_lock);
607 efx_nic_update_stats_atomic(efx, NULL, stats);
608 spin_unlock_bh(&efx->stats_lock);
609 }
610
611 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
612 * the MAC appropriately. All other PHY configuration changes are pushed
613 * through phy_op->set_settings(), and pushed asynchronously to the MAC
614 * through efx_monitor().
615 *
616 * Callers must hold the mac_lock
617 */
__efx_reconfigure_port(struct efx_nic * efx)618 int __efx_reconfigure_port(struct efx_nic *efx)
619 {
620 enum efx_phy_mode phy_mode;
621 int rc = 0;
622
623 WARN_ON(!mutex_is_locked(&efx->mac_lock));
624
625 /* Disable PHY transmit in mac level loopbacks */
626 phy_mode = efx->phy_mode;
627 if (LOOPBACK_INTERNAL(efx))
628 efx->phy_mode |= PHY_MODE_TX_DISABLED;
629 else
630 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
631
632 if (efx->type->reconfigure_port)
633 rc = efx->type->reconfigure_port(efx);
634
635 if (rc)
636 efx->phy_mode = phy_mode;
637
638 return rc;
639 }
640
641 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
642 * disabled.
643 */
efx_reconfigure_port(struct efx_nic * efx)644 int efx_reconfigure_port(struct efx_nic *efx)
645 {
646 int rc;
647
648 EFX_ASSERT_RESET_SERIALISED(efx);
649
650 mutex_lock(&efx->mac_lock);
651 rc = __efx_reconfigure_port(efx);
652 mutex_unlock(&efx->mac_lock);
653
654 return rc;
655 }
656
657 /**************************************************************************
658 *
659 * Device reset and suspend
660 *
661 **************************************************************************/
662
efx_wait_for_bist_end(struct efx_nic * efx)663 static void efx_wait_for_bist_end(struct efx_nic *efx)
664 {
665 int i;
666
667 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
668 if (efx_mcdi_poll_reboot(efx))
669 goto out;
670 msleep(BIST_WAIT_DELAY_MS);
671 }
672
673 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
674 out:
675 /* Either way unset the BIST flag. If we found no reboot we probably
676 * won't recover, but we should try.
677 */
678 efx->mc_bist_for_other_fn = false;
679 }
680
681 /* Try recovery mechanisms.
682 * For now only EEH is supported.
683 * Returns 0 if the recovery mechanisms are unsuccessful.
684 * Returns a non-zero value otherwise.
685 */
efx_try_recovery(struct efx_nic * efx)686 int efx_try_recovery(struct efx_nic *efx)
687 {
688 #ifdef CONFIG_EEH
689 /* A PCI error can occur and not be seen by EEH because nothing
690 * happens on the PCI bus. In this case the driver may fail and
691 * schedule a 'recover or reset', leading to this recovery handler.
692 * Manually call the eeh failure check function.
693 */
694 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
695 if (eeh_dev_check_failure(eehdev)) {
696 /* The EEH mechanisms will handle the error and reset the
697 * device if necessary.
698 */
699 return 1;
700 }
701 #endif
702 return 0;
703 }
704
705 /* Tears down the entire software state and most of the hardware state
706 * before reset.
707 */
efx_reset_down(struct efx_nic * efx,enum reset_type method)708 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
709 {
710 EFX_ASSERT_RESET_SERIALISED(efx);
711
712 if (method == RESET_TYPE_MCDI_TIMEOUT)
713 efx->type->prepare_flr(efx);
714
715 efx_stop_all(efx);
716 efx_disable_interrupts(efx);
717
718 mutex_lock(&efx->mac_lock);
719 down_write(&efx->filter_sem);
720 mutex_lock(&efx->rss_lock);
721 efx->type->fini(efx);
722 }
723
724 /* Context: netif_tx_lock held, BHs disabled. */
efx_watchdog(struct net_device * net_dev,unsigned int txqueue)725 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
726 {
727 struct efx_nic *efx = netdev_priv(net_dev);
728
729 netif_err(efx, tx_err, efx->net_dev,
730 "TX stuck with port_enabled=%d: resetting channels\n",
731 efx->port_enabled);
732
733 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
734 }
735
736 /* This function will always ensure that the locks acquired in
737 * efx_reset_down() are released. A failure return code indicates
738 * that we were unable to reinitialise the hardware, and the
739 * driver should be disabled. If ok is false, then the rx and tx
740 * engines are not restarted, pending a RESET_DISABLE.
741 */
efx_reset_up(struct efx_nic * efx,enum reset_type method,bool ok)742 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
743 {
744 int rc;
745
746 EFX_ASSERT_RESET_SERIALISED(efx);
747
748 if (method == RESET_TYPE_MCDI_TIMEOUT)
749 efx->type->finish_flr(efx);
750
751 /* Ensure that SRAM is initialised even if we're disabling the device */
752 rc = efx->type->init(efx);
753 if (rc) {
754 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
755 goto fail;
756 }
757
758 if (!ok)
759 goto fail;
760
761 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
762 method != RESET_TYPE_DATAPATH) {
763 rc = efx_mcdi_port_reconfigure(efx);
764 if (rc && rc != -EPERM)
765 netif_err(efx, drv, efx->net_dev,
766 "could not restore PHY settings\n");
767 }
768
769 rc = efx_enable_interrupts(efx);
770 if (rc)
771 goto fail;
772
773 #ifdef CONFIG_SFC_SRIOV
774 rc = efx->type->vswitching_restore(efx);
775 if (rc) /* not fatal; the PF will still work fine */
776 netif_warn(efx, probe, efx->net_dev,
777 "failed to restore vswitching rc=%d;"
778 " VFs may not function\n", rc);
779 #endif
780
781 if (efx->type->rx_restore_rss_contexts)
782 efx->type->rx_restore_rss_contexts(efx);
783 mutex_unlock(&efx->rss_lock);
784 efx->type->filter_table_restore(efx);
785 up_write(&efx->filter_sem);
786 if (efx->type->sriov_reset)
787 efx->type->sriov_reset(efx);
788
789 mutex_unlock(&efx->mac_lock);
790
791 efx_start_all(efx);
792
793 if (efx->type->udp_tnl_push_ports)
794 efx->type->udp_tnl_push_ports(efx);
795
796 return 0;
797
798 fail:
799 efx->port_initialized = false;
800
801 mutex_unlock(&efx->rss_lock);
802 up_write(&efx->filter_sem);
803 mutex_unlock(&efx->mac_lock);
804
805 return rc;
806 }
807
808 /* Reset the NIC using the specified method. Note that the reset may
809 * fail, in which case the card will be left in an unusable state.
810 *
811 * Caller must hold the rtnl_lock.
812 */
efx_reset(struct efx_nic * efx,enum reset_type method)813 int efx_reset(struct efx_nic *efx, enum reset_type method)
814 {
815 int rc, rc2 = 0;
816 bool disabled;
817
818 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
819 RESET_TYPE(method));
820
821 efx_device_detach_sync(efx);
822 /* efx_reset_down() grabs locks that prevent recovery on EF100.
823 * EF100 reset is handled in the efx_nic_type callback below.
824 */
825 if (efx_nic_rev(efx) != EFX_REV_EF100)
826 efx_reset_down(efx, method);
827
828 rc = efx->type->reset(efx, method);
829 if (rc) {
830 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
831 goto out;
832 }
833
834 /* Clear flags for the scopes we covered. We assume the NIC and
835 * driver are now quiescent so that there is no race here.
836 */
837 if (method < RESET_TYPE_MAX_METHOD)
838 efx->reset_pending &= -(1 << (method + 1));
839 else /* it doesn't fit into the well-ordered scope hierarchy */
840 __clear_bit(method, &efx->reset_pending);
841
842 /* Reinitialise bus-mastering, which may have been turned off before
843 * the reset was scheduled. This is still appropriate, even in the
844 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
845 * can respond to requests.
846 */
847 pci_set_master(efx->pci_dev);
848
849 out:
850 /* Leave device stopped if necessary */
851 disabled = rc ||
852 method == RESET_TYPE_DISABLE ||
853 method == RESET_TYPE_RECOVER_OR_DISABLE;
854 if (efx_nic_rev(efx) != EFX_REV_EF100)
855 rc2 = efx_reset_up(efx, method, !disabled);
856 if (rc2) {
857 disabled = true;
858 if (!rc)
859 rc = rc2;
860 }
861
862 if (disabled) {
863 dev_close(efx->net_dev);
864 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
865 efx->state = STATE_DISABLED;
866 } else {
867 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
868 efx_device_attach_if_not_resetting(efx);
869 }
870 return rc;
871 }
872
873 /* The worker thread exists so that code that cannot sleep can
874 * schedule a reset for later.
875 */
efx_reset_work(struct work_struct * data)876 static void efx_reset_work(struct work_struct *data)
877 {
878 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
879 unsigned long pending;
880 enum reset_type method;
881
882 pending = READ_ONCE(efx->reset_pending);
883 method = fls(pending) - 1;
884
885 if (method == RESET_TYPE_MC_BIST)
886 efx_wait_for_bist_end(efx);
887
888 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
889 method == RESET_TYPE_RECOVER_OR_ALL) &&
890 efx_try_recovery(efx))
891 return;
892
893 if (!pending)
894 return;
895
896 rtnl_lock();
897
898 /* We checked the state in efx_schedule_reset() but it may
899 * have changed by now. Now that we have the RTNL lock,
900 * it cannot change again.
901 */
902 if (efx_net_active(efx->state))
903 (void)efx_reset(efx, method);
904
905 rtnl_unlock();
906 }
907
efx_schedule_reset(struct efx_nic * efx,enum reset_type type)908 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
909 {
910 enum reset_type method;
911
912 if (efx_recovering(efx->state)) {
913 netif_dbg(efx, drv, efx->net_dev,
914 "recovering: skip scheduling %s reset\n",
915 RESET_TYPE(type));
916 return;
917 }
918
919 switch (type) {
920 case RESET_TYPE_INVISIBLE:
921 case RESET_TYPE_ALL:
922 case RESET_TYPE_RECOVER_OR_ALL:
923 case RESET_TYPE_WORLD:
924 case RESET_TYPE_DISABLE:
925 case RESET_TYPE_RECOVER_OR_DISABLE:
926 case RESET_TYPE_DATAPATH:
927 case RESET_TYPE_MC_BIST:
928 case RESET_TYPE_MCDI_TIMEOUT:
929 method = type;
930 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
931 RESET_TYPE(method));
932 break;
933 default:
934 method = efx->type->map_reset_reason(type);
935 netif_dbg(efx, drv, efx->net_dev,
936 "scheduling %s reset for %s\n",
937 RESET_TYPE(method), RESET_TYPE(type));
938 break;
939 }
940
941 set_bit(method, &efx->reset_pending);
942 smp_mb(); /* ensure we change reset_pending before checking state */
943
944 /* If we're not READY then just leave the flags set as the cue
945 * to abort probing or reschedule the reset later.
946 */
947 if (!efx_net_active(READ_ONCE(efx->state)))
948 return;
949
950 /* efx_process_channel() will no longer read events once a
951 * reset is scheduled. So switch back to poll'd MCDI completions.
952 */
953 efx_mcdi_mode_poll(efx);
954
955 efx_queue_reset_work(efx);
956 }
957
958 /**************************************************************************
959 *
960 * Dummy NIC operations
961 *
962 * Can be used for some unimplemented operations
963 * Needed so all function pointers are valid and do not have to be tested
964 * before use
965 *
966 **************************************************************************/
efx_port_dummy_op_int(struct efx_nic * efx)967 int efx_port_dummy_op_int(struct efx_nic *efx)
968 {
969 return 0;
970 }
efx_port_dummy_op_void(struct efx_nic * efx)971 void efx_port_dummy_op_void(struct efx_nic *efx) {}
972
973 /**************************************************************************
974 *
975 * Data housekeeping
976 *
977 **************************************************************************/
978
979 /* This zeroes out and then fills in the invariants in a struct
980 * efx_nic (including all sub-structures).
981 */
efx_init_struct(struct efx_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)982 int efx_init_struct(struct efx_nic *efx,
983 struct pci_dev *pci_dev, struct net_device *net_dev)
984 {
985 int rc = -ENOMEM;
986
987 /* Initialise common structures */
988 INIT_LIST_HEAD(&efx->node);
989 INIT_LIST_HEAD(&efx->secondary_list);
990 spin_lock_init(&efx->biu_lock);
991 #ifdef CONFIG_SFC_MTD
992 INIT_LIST_HEAD(&efx->mtd_list);
993 #endif
994 INIT_WORK(&efx->reset_work, efx_reset_work);
995 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
996 efx_selftest_async_init(efx);
997 efx->pci_dev = pci_dev;
998 efx->msg_enable = debug;
999 efx->state = STATE_UNINIT;
1000 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1001
1002 efx->net_dev = net_dev;
1003 efx->rx_prefix_size = efx->type->rx_prefix_size;
1004 efx->rx_ip_align =
1005 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1006 efx->rx_packet_hash_offset =
1007 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1008 efx->rx_packet_ts_offset =
1009 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1010 INIT_LIST_HEAD(&efx->rss_context.list);
1011 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1012 mutex_init(&efx->rss_lock);
1013 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1014 spin_lock_init(&efx->stats_lock);
1015 efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1016 efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1017 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1018 mutex_init(&efx->mac_lock);
1019 init_rwsem(&efx->filter_sem);
1020 #ifdef CONFIG_RFS_ACCEL
1021 mutex_init(&efx->rps_mutex);
1022 spin_lock_init(&efx->rps_hash_lock);
1023 /* Failure to allocate is not fatal, but may degrade ARFS performance */
1024 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1025 sizeof(*efx->rps_hash_table), GFP_KERNEL);
1026 #endif
1027 efx->mdio.dev = net_dev;
1028 INIT_WORK(&efx->mac_work, efx_mac_work);
1029 init_waitqueue_head(&efx->flush_wq);
1030
1031 efx->tx_queues_per_channel = 1;
1032 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1033 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1034
1035 efx->mem_bar = UINT_MAX;
1036
1037 rc = efx_init_channels(efx);
1038 if (rc)
1039 goto fail;
1040
1041 /* Would be good to use the net_dev name, but we're too early */
1042 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1043 pci_name(pci_dev));
1044 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1045 if (!efx->workqueue) {
1046 rc = -ENOMEM;
1047 goto fail;
1048 }
1049
1050 return 0;
1051
1052 fail:
1053 efx_fini_struct(efx);
1054 return rc;
1055 }
1056
efx_fini_struct(struct efx_nic * efx)1057 void efx_fini_struct(struct efx_nic *efx)
1058 {
1059 #ifdef CONFIG_RFS_ACCEL
1060 kfree(efx->rps_hash_table);
1061 #endif
1062
1063 efx_fini_channels(efx);
1064
1065 kfree(efx->vpd_sn);
1066
1067 if (efx->workqueue) {
1068 destroy_workqueue(efx->workqueue);
1069 efx->workqueue = NULL;
1070 }
1071 }
1072
1073 /* This configures the PCI device to enable I/O and DMA. */
efx_init_io(struct efx_nic * efx,int bar,dma_addr_t dma_mask,unsigned int mem_map_size)1074 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1075 unsigned int mem_map_size)
1076 {
1077 struct pci_dev *pci_dev = efx->pci_dev;
1078 int rc;
1079
1080 efx->mem_bar = UINT_MAX;
1081
1082 netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
1083
1084 rc = pci_enable_device(pci_dev);
1085 if (rc) {
1086 netif_err(efx, probe, efx->net_dev,
1087 "failed to enable PCI device\n");
1088 goto fail1;
1089 }
1090
1091 pci_set_master(pci_dev);
1092
1093 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1094 if (rc) {
1095 netif_err(efx, probe, efx->net_dev,
1096 "could not find a suitable DMA mask\n");
1097 goto fail2;
1098 }
1099 netif_dbg(efx, probe, efx->net_dev,
1100 "using DMA mask %llx\n", (unsigned long long)dma_mask);
1101
1102 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1103 if (!efx->membase_phys) {
1104 netif_err(efx, probe, efx->net_dev,
1105 "ERROR: No BAR%d mapping from the BIOS. "
1106 "Try pci=realloc on the kernel command line\n", bar);
1107 rc = -ENODEV;
1108 goto fail3;
1109 }
1110
1111 rc = pci_request_region(pci_dev, bar, "sfc");
1112 if (rc) {
1113 netif_err(efx, probe, efx->net_dev,
1114 "request for memory BAR[%d] failed\n", bar);
1115 rc = -EIO;
1116 goto fail3;
1117 }
1118 efx->mem_bar = bar;
1119 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1120 if (!efx->membase) {
1121 netif_err(efx, probe, efx->net_dev,
1122 "could not map memory BAR[%d] at %llx+%x\n", bar,
1123 (unsigned long long)efx->membase_phys, mem_map_size);
1124 rc = -ENOMEM;
1125 goto fail4;
1126 }
1127 netif_dbg(efx, probe, efx->net_dev,
1128 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1129 (unsigned long long)efx->membase_phys, mem_map_size,
1130 efx->membase);
1131
1132 return 0;
1133
1134 fail4:
1135 pci_release_region(efx->pci_dev, bar);
1136 fail3:
1137 efx->membase_phys = 0;
1138 fail2:
1139 pci_disable_device(efx->pci_dev);
1140 fail1:
1141 return rc;
1142 }
1143
efx_fini_io(struct efx_nic * efx)1144 void efx_fini_io(struct efx_nic *efx)
1145 {
1146 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1147
1148 if (efx->membase) {
1149 iounmap(efx->membase);
1150 efx->membase = NULL;
1151 }
1152
1153 if (efx->membase_phys) {
1154 pci_release_region(efx->pci_dev, efx->mem_bar);
1155 efx->membase_phys = 0;
1156 efx->mem_bar = UINT_MAX;
1157 }
1158
1159 /* Don't disable bus-mastering if VFs are assigned */
1160 if (!pci_vfs_assigned(efx->pci_dev))
1161 pci_disable_device(efx->pci_dev);
1162 }
1163
1164 #ifdef CONFIG_SFC_MCDI_LOGGING
show_mcdi_log(struct device * dev,struct device_attribute * attr,char * buf)1165 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
1166 char *buf)
1167 {
1168 struct efx_nic *efx = dev_get_drvdata(dev);
1169 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1170
1171 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1172 }
1173
set_mcdi_log(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1174 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
1175 const char *buf, size_t count)
1176 {
1177 struct efx_nic *efx = dev_get_drvdata(dev);
1178 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1179 bool enable = count > 0 && *buf != '0';
1180
1181 mcdi->logging_enabled = enable;
1182 return count;
1183 }
1184
1185 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
1186
efx_init_mcdi_logging(struct efx_nic * efx)1187 void efx_init_mcdi_logging(struct efx_nic *efx)
1188 {
1189 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1190
1191 if (rc) {
1192 netif_warn(efx, drv, efx->net_dev,
1193 "failed to init net dev attributes\n");
1194 }
1195 }
1196
efx_fini_mcdi_logging(struct efx_nic * efx)1197 void efx_fini_mcdi_logging(struct efx_nic *efx)
1198 {
1199 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1200 }
1201 #endif
1202
1203 /* A PCI error affecting this device was detected.
1204 * At this point MMIO and DMA may be disabled.
1205 * Stop the software path and request a slot reset.
1206 */
efx_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)1207 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1208 pci_channel_state_t state)
1209 {
1210 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1211 struct efx_nic *efx = pci_get_drvdata(pdev);
1212
1213 if (state == pci_channel_io_perm_failure)
1214 return PCI_ERS_RESULT_DISCONNECT;
1215
1216 rtnl_lock();
1217
1218 if (efx->state != STATE_DISABLED) {
1219 efx->state = efx_recover(efx->state);
1220 efx->reset_pending = 0;
1221
1222 efx_device_detach_sync(efx);
1223
1224 efx_stop_all(efx);
1225 efx_disable_interrupts(efx);
1226
1227 status = PCI_ERS_RESULT_NEED_RESET;
1228 } else {
1229 /* If the interface is disabled we don't want to do anything
1230 * with it.
1231 */
1232 status = PCI_ERS_RESULT_RECOVERED;
1233 }
1234
1235 rtnl_unlock();
1236
1237 pci_disable_device(pdev);
1238
1239 return status;
1240 }
1241
1242 /* Fake a successful reset, which will be performed later in efx_io_resume. */
efx_io_slot_reset(struct pci_dev * pdev)1243 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1244 {
1245 struct efx_nic *efx = pci_get_drvdata(pdev);
1246 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1247
1248 if (pci_enable_device(pdev)) {
1249 netif_err(efx, hw, efx->net_dev,
1250 "Cannot re-enable PCI device after reset.\n");
1251 status = PCI_ERS_RESULT_DISCONNECT;
1252 }
1253
1254 return status;
1255 }
1256
1257 /* Perform the actual reset and resume I/O operations. */
efx_io_resume(struct pci_dev * pdev)1258 static void efx_io_resume(struct pci_dev *pdev)
1259 {
1260 struct efx_nic *efx = pci_get_drvdata(pdev);
1261 int rc;
1262
1263 rtnl_lock();
1264
1265 if (efx->state == STATE_DISABLED)
1266 goto out;
1267
1268 rc = efx_reset(efx, RESET_TYPE_ALL);
1269 if (rc) {
1270 netif_err(efx, hw, efx->net_dev,
1271 "efx_reset failed after PCI error (%d)\n", rc);
1272 } else {
1273 efx->state = efx_recovered(efx->state);
1274 netif_dbg(efx, hw, efx->net_dev,
1275 "Done resetting and resuming IO after PCI error.\n");
1276 }
1277
1278 out:
1279 rtnl_unlock();
1280 }
1281
1282 /* For simplicity and reliability, we always require a slot reset and try to
1283 * reset the hardware when a pci error affecting the device is detected.
1284 * We leave both the link_reset and mmio_enabled callback unimplemented:
1285 * with our request for slot reset the mmio_enabled callback will never be
1286 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1287 */
1288 const struct pci_error_handlers efx_err_handlers = {
1289 .error_detected = efx_io_error_detected,
1290 .slot_reset = efx_io_slot_reset,
1291 .resume = efx_io_resume,
1292 };
1293
1294 /* Determine whether the NIC will be able to handle TX offloads for a given
1295 * encapsulated packet.
1296 */
efx_can_encap_offloads(struct efx_nic * efx,struct sk_buff * skb)1297 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1298 {
1299 struct gre_base_hdr *greh;
1300 __be16 dst_port;
1301 u8 ipproto;
1302
1303 /* Does the NIC support encap offloads?
1304 * If not, we should never get here, because we shouldn't have
1305 * advertised encap offload feature flags in the first place.
1306 */
1307 if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1308 return false;
1309
1310 /* Determine encapsulation protocol in use */
1311 switch (skb->protocol) {
1312 case htons(ETH_P_IP):
1313 ipproto = ip_hdr(skb)->protocol;
1314 break;
1315 case htons(ETH_P_IPV6):
1316 /* If there are extension headers, this will cause us to
1317 * think we can't offload something that we maybe could have.
1318 */
1319 ipproto = ipv6_hdr(skb)->nexthdr;
1320 break;
1321 default:
1322 /* Not IP, so can't offload it */
1323 return false;
1324 }
1325 switch (ipproto) {
1326 case IPPROTO_GRE:
1327 /* We support NVGRE but not IP over GRE or random gretaps.
1328 * Specifically, the NIC will accept GRE as encapsulated if
1329 * the inner protocol is Ethernet, but only handle it
1330 * correctly if the GRE header is 8 bytes long. Moreover,
1331 * it will not update the Checksum or Sequence Number fields
1332 * if they are present. (The Routing Present flag,
1333 * GRE_ROUTING, cannot be set else the header would be more
1334 * than 8 bytes long; so we don't have to worry about it.)
1335 */
1336 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1337 return false;
1338 if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1339 return false;
1340 if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1341 return false;
1342 greh = (struct gre_base_hdr *)skb_transport_header(skb);
1343 return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1344 case IPPROTO_UDP:
1345 /* If the port is registered for a UDP tunnel, we assume the
1346 * packet is for that tunnel, and the NIC will handle it as
1347 * such. If not, the NIC won't know what to do with it.
1348 */
1349 dst_port = udp_hdr(skb)->dest;
1350 return efx->type->udp_tnl_has_port(efx, dst_port);
1351 default:
1352 return false;
1353 }
1354 }
1355
efx_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1356 netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1357 netdev_features_t features)
1358 {
1359 struct efx_nic *efx = netdev_priv(dev);
1360
1361 if (skb->encapsulation) {
1362 if (features & NETIF_F_GSO_MASK)
1363 /* Hardware can only do TSO with at most 208 bytes
1364 * of headers.
1365 */
1366 if (skb_inner_transport_offset(skb) >
1367 EFX_TSO2_MAX_HDRLEN)
1368 features &= ~(NETIF_F_GSO_MASK);
1369 if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1370 if (!efx_can_encap_offloads(efx, skb))
1371 features &= ~(NETIF_F_GSO_MASK |
1372 NETIF_F_CSUM_MASK);
1373 }
1374 return features;
1375 }
1376
efx_get_phys_port_id(struct net_device * net_dev,struct netdev_phys_item_id * ppid)1377 int efx_get_phys_port_id(struct net_device *net_dev,
1378 struct netdev_phys_item_id *ppid)
1379 {
1380 struct efx_nic *efx = netdev_priv(net_dev);
1381
1382 if (efx->type->get_phys_port_id)
1383 return efx->type->get_phys_port_id(efx, ppid);
1384 else
1385 return -EOPNOTSUPP;
1386 }
1387
efx_get_phys_port_name(struct net_device * net_dev,char * name,size_t len)1388 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1389 {
1390 struct efx_nic *efx = netdev_priv(net_dev);
1391
1392 if (snprintf(name, len, "p%u", efx->port_num) >= len)
1393 return -EINVAL;
1394 return 0;
1395 }
1396