• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 
36 #include "mcdi_port_common.h"
37 #include "mcdi_pcol.h"
38 #include "workarounds.h"
39 
40 /**************************************************************************
41  *
42  * Configurable values
43  *
44  *************************************************************************/
45 
46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
47 MODULE_PARM_DESC(interrupt_mode,
48 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
49 
50 module_param(rss_cpus, uint, 0444);
51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
52 
53 /*
54  * Use separate channels for TX and RX events
55  *
56  * Set this to 1 to use separate channels for TX and RX. It allows us
57  * to control interrupt affinity separately for TX and RX.
58  *
59  * This is only used in MSI-X interrupt mode
60  */
61 bool efx_separate_tx_channels;
62 module_param(efx_separate_tx_channels, bool, 0444);
63 MODULE_PARM_DESC(efx_separate_tx_channels,
64 		 "Use separate channels for TX and RX");
65 
66 /* Initial interrupt moderation settings.  They can be modified after
67  * module load with ethtool.
68  *
69  * The default for RX should strike a balance between increasing the
70  * round-trip latency and reducing overhead.
71  */
72 static unsigned int rx_irq_mod_usec = 60;
73 
74 /* Initial interrupt moderation settings.  They can be modified after
75  * module load with ethtool.
76  *
77  * This default is chosen to ensure that a 10G link does not go idle
78  * while a TX queue is stopped after it has become full.  A queue is
79  * restarted when it drops below half full.  The time this takes (assuming
80  * worst case 3 descriptors per packet and 1024 descriptors) is
81  *   512 / 3 * 1.2 = 205 usec.
82  */
83 static unsigned int tx_irq_mod_usec = 150;
84 
85 static bool phy_flash_cfg;
86 module_param(phy_flash_cfg, bool, 0644);
87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
88 
89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
91 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
92 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
93 module_param(debug, uint, 0);
94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
95 
96 /**************************************************************************
97  *
98  * Utility functions and prototypes
99  *
100  *************************************************************************/
101 
102 static void efx_remove_port(struct efx_nic *efx);
103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
106 			u32 flags);
107 
108 /**************************************************************************
109  *
110  * Port handling
111  *
112  **************************************************************************/
113 
114 static void efx_fini_port(struct efx_nic *efx);
115 
efx_probe_port(struct efx_nic * efx)116 static int efx_probe_port(struct efx_nic *efx)
117 {
118 	int rc;
119 
120 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
121 
122 	if (phy_flash_cfg)
123 		efx->phy_mode = PHY_MODE_SPECIAL;
124 
125 	/* Connect up MAC/PHY operations table */
126 	rc = efx->type->probe_port(efx);
127 	if (rc)
128 		return rc;
129 
130 	/* Initialise MAC address to permanent address */
131 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
132 
133 	return 0;
134 }
135 
efx_init_port(struct efx_nic * efx)136 static int efx_init_port(struct efx_nic *efx)
137 {
138 	int rc;
139 
140 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
141 
142 	mutex_lock(&efx->mac_lock);
143 
144 	efx->port_initialized = true;
145 
146 	/* Ensure the PHY advertises the correct flow control settings */
147 	rc = efx_mcdi_port_reconfigure(efx);
148 	if (rc && rc != -EPERM)
149 		goto fail;
150 
151 	mutex_unlock(&efx->mac_lock);
152 	return 0;
153 
154 fail:
155 	mutex_unlock(&efx->mac_lock);
156 	return rc;
157 }
158 
efx_fini_port(struct efx_nic * efx)159 static void efx_fini_port(struct efx_nic *efx)
160 {
161 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
162 
163 	if (!efx->port_initialized)
164 		return;
165 
166 	efx->port_initialized = false;
167 
168 	efx->link_state.up = false;
169 	efx_link_status_changed(efx);
170 }
171 
efx_remove_port(struct efx_nic * efx)172 static void efx_remove_port(struct efx_nic *efx)
173 {
174 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
175 
176 	efx->type->remove_port(efx);
177 }
178 
179 /**************************************************************************
180  *
181  * NIC handling
182  *
183  **************************************************************************/
184 
185 static LIST_HEAD(efx_primary_list);
186 static LIST_HEAD(efx_unassociated_list);
187 
efx_same_controller(struct efx_nic * left,struct efx_nic * right)188 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
189 {
190 	return left->type == right->type &&
191 		left->vpd_sn && right->vpd_sn &&
192 		!strcmp(left->vpd_sn, right->vpd_sn);
193 }
194 
efx_associate(struct efx_nic * efx)195 static void efx_associate(struct efx_nic *efx)
196 {
197 	struct efx_nic *other, *next;
198 
199 	if (efx->primary == efx) {
200 		/* Adding primary function; look for secondaries */
201 
202 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
203 		list_add_tail(&efx->node, &efx_primary_list);
204 
205 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
206 					 node) {
207 			if (efx_same_controller(efx, other)) {
208 				list_del(&other->node);
209 				netif_dbg(other, probe, other->net_dev,
210 					  "moving to secondary list of %s %s\n",
211 					  pci_name(efx->pci_dev),
212 					  efx->net_dev->name);
213 				list_add_tail(&other->node,
214 					      &efx->secondary_list);
215 				other->primary = efx;
216 			}
217 		}
218 	} else {
219 		/* Adding secondary function; look for primary */
220 
221 		list_for_each_entry(other, &efx_primary_list, node) {
222 			if (efx_same_controller(efx, other)) {
223 				netif_dbg(efx, probe, efx->net_dev,
224 					  "adding to secondary list of %s %s\n",
225 					  pci_name(other->pci_dev),
226 					  other->net_dev->name);
227 				list_add_tail(&efx->node,
228 					      &other->secondary_list);
229 				efx->primary = other;
230 				return;
231 			}
232 		}
233 
234 		netif_dbg(efx, probe, efx->net_dev,
235 			  "adding to unassociated list\n");
236 		list_add_tail(&efx->node, &efx_unassociated_list);
237 	}
238 }
239 
efx_dissociate(struct efx_nic * efx)240 static void efx_dissociate(struct efx_nic *efx)
241 {
242 	struct efx_nic *other, *next;
243 
244 	list_del(&efx->node);
245 	efx->primary = NULL;
246 
247 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
248 		list_del(&other->node);
249 		netif_dbg(other, probe, other->net_dev,
250 			  "moving to unassociated list\n");
251 		list_add_tail(&other->node, &efx_unassociated_list);
252 		other->primary = NULL;
253 	}
254 }
255 
efx_probe_nic(struct efx_nic * efx)256 static int efx_probe_nic(struct efx_nic *efx)
257 {
258 	int rc;
259 
260 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
261 
262 	/* Carry out hardware-type specific initialisation */
263 	rc = efx->type->probe(efx);
264 	if (rc)
265 		return rc;
266 
267 	do {
268 		if (!efx->max_channels || !efx->max_tx_channels) {
269 			netif_err(efx, drv, efx->net_dev,
270 				  "Insufficient resources to allocate"
271 				  " any channels\n");
272 			rc = -ENOSPC;
273 			goto fail1;
274 		}
275 
276 		/* Determine the number of channels and queues by trying
277 		 * to hook in MSI-X interrupts.
278 		 */
279 		rc = efx_probe_interrupts(efx);
280 		if (rc)
281 			goto fail1;
282 
283 		rc = efx_set_channels(efx);
284 		if (rc)
285 			goto fail1;
286 
287 		/* dimension_resources can fail with EAGAIN */
288 		rc = efx->type->dimension_resources(efx);
289 		if (rc != 0 && rc != -EAGAIN)
290 			goto fail2;
291 
292 		if (rc == -EAGAIN)
293 			/* try again with new max_channels */
294 			efx_remove_interrupts(efx);
295 
296 	} while (rc == -EAGAIN);
297 
298 	if (efx->n_channels > 1)
299 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
300 				    sizeof(efx->rss_context.rx_hash_key));
301 	efx_set_default_rx_indir_table(efx, &efx->rss_context);
302 
303 	/* Initialise the interrupt moderation settings */
304 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
305 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
306 				true);
307 
308 	return 0;
309 
310 fail2:
311 	efx_remove_interrupts(efx);
312 fail1:
313 	efx->type->remove(efx);
314 	return rc;
315 }
316 
efx_remove_nic(struct efx_nic * efx)317 static void efx_remove_nic(struct efx_nic *efx)
318 {
319 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
320 
321 	efx_remove_interrupts(efx);
322 	efx->type->remove(efx);
323 }
324 
325 /**************************************************************************
326  *
327  * NIC startup/shutdown
328  *
329  *************************************************************************/
330 
efx_probe_all(struct efx_nic * efx)331 static int efx_probe_all(struct efx_nic *efx)
332 {
333 	int rc;
334 
335 	rc = efx_probe_nic(efx);
336 	if (rc) {
337 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
338 		goto fail1;
339 	}
340 
341 	rc = efx_probe_port(efx);
342 	if (rc) {
343 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
344 		goto fail2;
345 	}
346 
347 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
348 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
349 		rc = -EINVAL;
350 		goto fail3;
351 	}
352 
353 #ifdef CONFIG_SFC_SRIOV
354 	rc = efx->type->vswitching_probe(efx);
355 	if (rc) /* not fatal; the PF will still work fine */
356 		netif_warn(efx, probe, efx->net_dev,
357 			   "failed to setup vswitching rc=%d;"
358 			   " VFs may not function\n", rc);
359 #endif
360 
361 	rc = efx_probe_filters(efx);
362 	if (rc) {
363 		netif_err(efx, probe, efx->net_dev,
364 			  "failed to create filter tables\n");
365 		goto fail4;
366 	}
367 
368 	rc = efx_probe_channels(efx);
369 	if (rc)
370 		goto fail5;
371 
372 	efx->state = STATE_NET_DOWN;
373 
374 	return 0;
375 
376  fail5:
377 	efx_remove_filters(efx);
378  fail4:
379 #ifdef CONFIG_SFC_SRIOV
380 	efx->type->vswitching_remove(efx);
381 #endif
382  fail3:
383 	efx_remove_port(efx);
384  fail2:
385 	efx_remove_nic(efx);
386  fail1:
387 	return rc;
388 }
389 
efx_remove_all(struct efx_nic * efx)390 static void efx_remove_all(struct efx_nic *efx)
391 {
392 	rtnl_lock();
393 	efx_xdp_setup_prog(efx, NULL);
394 	rtnl_unlock();
395 
396 	efx_remove_channels(efx);
397 	efx_remove_filters(efx);
398 #ifdef CONFIG_SFC_SRIOV
399 	efx->type->vswitching_remove(efx);
400 #endif
401 	efx_remove_port(efx);
402 	efx_remove_nic(efx);
403 }
404 
405 /**************************************************************************
406  *
407  * Interrupt moderation
408  *
409  **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)410 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
411 {
412 	if (usecs == 0)
413 		return 0;
414 	if (usecs * 1000 < efx->timer_quantum_ns)
415 		return 1; /* never round down to 0 */
416 	return usecs * 1000 / efx->timer_quantum_ns;
417 }
418 
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)419 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
420 {
421 	/* We must round up when converting ticks to microseconds
422 	 * because we round down when converting the other way.
423 	 */
424 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
425 }
426 
427 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)428 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
429 			    unsigned int rx_usecs, bool rx_adaptive,
430 			    bool rx_may_override_tx)
431 {
432 	struct efx_channel *channel;
433 	unsigned int timer_max_us;
434 
435 	EFX_ASSERT_RESET_SERIALISED(efx);
436 
437 	timer_max_us = efx->timer_max_ns / 1000;
438 
439 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
440 		return -EINVAL;
441 
442 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
443 	    !rx_may_override_tx) {
444 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
445 			  "RX and TX IRQ moderation must be equal\n");
446 		return -EINVAL;
447 	}
448 
449 	efx->irq_rx_adaptive = rx_adaptive;
450 	efx->irq_rx_moderation_us = rx_usecs;
451 	efx_for_each_channel(channel, efx) {
452 		if (efx_channel_has_rx_queue(channel))
453 			channel->irq_moderation_us = rx_usecs;
454 		else if (efx_channel_has_tx_queues(channel))
455 			channel->irq_moderation_us = tx_usecs;
456 		else if (efx_channel_is_xdp_tx(channel))
457 			channel->irq_moderation_us = tx_usecs;
458 	}
459 
460 	return 0;
461 }
462 
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)463 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
464 			    unsigned int *rx_usecs, bool *rx_adaptive)
465 {
466 	*rx_adaptive = efx->irq_rx_adaptive;
467 	*rx_usecs = efx->irq_rx_moderation_us;
468 
469 	/* If channels are shared between RX and TX, so is IRQ
470 	 * moderation.  Otherwise, IRQ moderation is the same for all
471 	 * TX channels and is not adaptive.
472 	 */
473 	if (efx->tx_channel_offset == 0) {
474 		*tx_usecs = *rx_usecs;
475 	} else {
476 		struct efx_channel *tx_channel;
477 
478 		tx_channel = efx->channel[efx->tx_channel_offset];
479 		*tx_usecs = tx_channel->irq_moderation_us;
480 	}
481 }
482 
483 /**************************************************************************
484  *
485  * ioctls
486  *
487  *************************************************************************/
488 
489 /* Net device ioctl
490  * Context: process, rtnl_lock() held.
491  */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)492 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
493 {
494 	struct efx_nic *efx = netdev_priv(net_dev);
495 	struct mii_ioctl_data *data = if_mii(ifr);
496 
497 	if (cmd == SIOCSHWTSTAMP)
498 		return efx_ptp_set_ts_config(efx, ifr);
499 	if (cmd == SIOCGHWTSTAMP)
500 		return efx_ptp_get_ts_config(efx, ifr);
501 
502 	/* Convert phy_id from older PRTAD/DEVAD format */
503 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
504 	    (data->phy_id & 0xfc00) == 0x0400)
505 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
506 
507 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
508 }
509 
510 /**************************************************************************
511  *
512  * Kernel net device interface
513  *
514  *************************************************************************/
515 
516 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)517 int efx_net_open(struct net_device *net_dev)
518 {
519 	struct efx_nic *efx = netdev_priv(net_dev);
520 	int rc;
521 
522 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
523 		  raw_smp_processor_id());
524 
525 	rc = efx_check_disabled(efx);
526 	if (rc)
527 		return rc;
528 	if (efx->phy_mode & PHY_MODE_SPECIAL)
529 		return -EBUSY;
530 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
531 		return -EIO;
532 
533 	/* Notify the kernel of the link state polled during driver load,
534 	 * before the monitor starts running */
535 	efx_link_status_changed(efx);
536 
537 	efx_start_all(efx);
538 	if (efx->state == STATE_DISABLED || efx->reset_pending)
539 		netif_device_detach(efx->net_dev);
540 	else
541 		efx->state = STATE_NET_UP;
542 
543 	return 0;
544 }
545 
546 /* Context: process, rtnl_lock() held.
547  * Note that the kernel will ignore our return code; this method
548  * should really be a void.
549  */
efx_net_stop(struct net_device * net_dev)550 int efx_net_stop(struct net_device *net_dev)
551 {
552 	struct efx_nic *efx = netdev_priv(net_dev);
553 
554 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
555 		  raw_smp_processor_id());
556 
557 	/* Stop the device and flush all the channels */
558 	efx_stop_all(efx);
559 
560 	return 0;
561 }
562 
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)563 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
564 {
565 	struct efx_nic *efx = netdev_priv(net_dev);
566 
567 	if (efx->type->vlan_rx_add_vid)
568 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
569 	else
570 		return -EOPNOTSUPP;
571 }
572 
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)573 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
574 {
575 	struct efx_nic *efx = netdev_priv(net_dev);
576 
577 	if (efx->type->vlan_rx_kill_vid)
578 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
579 	else
580 		return -EOPNOTSUPP;
581 }
582 
583 static const struct net_device_ops efx_netdev_ops = {
584 	.ndo_open		= efx_net_open,
585 	.ndo_stop		= efx_net_stop,
586 	.ndo_get_stats64	= efx_net_stats,
587 	.ndo_tx_timeout		= efx_watchdog,
588 	.ndo_start_xmit		= efx_hard_start_xmit,
589 	.ndo_validate_addr	= eth_validate_addr,
590 	.ndo_do_ioctl		= efx_ioctl,
591 	.ndo_change_mtu		= efx_change_mtu,
592 	.ndo_set_mac_address	= efx_set_mac_address,
593 	.ndo_set_rx_mode	= efx_set_rx_mode,
594 	.ndo_set_features	= efx_set_features,
595 	.ndo_features_check	= efx_features_check,
596 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
597 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
598 #ifdef CONFIG_SFC_SRIOV
599 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
600 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
601 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
602 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
603 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
604 #endif
605 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
606 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
607 	.ndo_setup_tc		= efx_setup_tc,
608 #ifdef CONFIG_RFS_ACCEL
609 	.ndo_rx_flow_steer	= efx_filter_rfs,
610 #endif
611 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
612 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
613 	.ndo_xdp_xmit		= efx_xdp_xmit,
614 	.ndo_bpf		= efx_xdp
615 };
616 
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)617 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
618 {
619 	struct bpf_prog *old_prog;
620 
621 	if (efx->xdp_rxq_info_failed) {
622 		netif_err(efx, drv, efx->net_dev,
623 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
624 		return -EINVAL;
625 	}
626 
627 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
628 		netif_err(efx, drv, efx->net_dev,
629 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
630 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
631 		return -EINVAL;
632 	}
633 
634 	old_prog = rtnl_dereference(efx->xdp_prog);
635 	rcu_assign_pointer(efx->xdp_prog, prog);
636 	/* Release the reference that was originally passed by the caller. */
637 	if (old_prog)
638 		bpf_prog_put(old_prog);
639 
640 	return 0;
641 }
642 
643 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)644 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
645 {
646 	struct efx_nic *efx = netdev_priv(dev);
647 
648 	switch (xdp->command) {
649 	case XDP_SETUP_PROG:
650 		return efx_xdp_setup_prog(efx, xdp->prog);
651 	default:
652 		return -EINVAL;
653 	}
654 }
655 
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)656 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
657 			u32 flags)
658 {
659 	struct efx_nic *efx = netdev_priv(dev);
660 
661 	if (!netif_running(dev))
662 		return -EINVAL;
663 
664 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
665 }
666 
efx_update_name(struct efx_nic * efx)667 static void efx_update_name(struct efx_nic *efx)
668 {
669 	strcpy(efx->name, efx->net_dev->name);
670 	efx_mtd_rename(efx);
671 	efx_set_channel_names(efx);
672 }
673 
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)674 static int efx_netdev_event(struct notifier_block *this,
675 			    unsigned long event, void *ptr)
676 {
677 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
678 
679 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
680 	    event == NETDEV_CHANGENAME)
681 		efx_update_name(netdev_priv(net_dev));
682 
683 	return NOTIFY_DONE;
684 }
685 
686 static struct notifier_block efx_netdev_notifier = {
687 	.notifier_call = efx_netdev_event,
688 };
689 
690 static ssize_t
show_phy_type(struct device * dev,struct device_attribute * attr,char * buf)691 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
692 {
693 	struct efx_nic *efx = dev_get_drvdata(dev);
694 	return sprintf(buf, "%d\n", efx->phy_type);
695 }
696 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
697 
efx_register_netdev(struct efx_nic * efx)698 static int efx_register_netdev(struct efx_nic *efx)
699 {
700 	struct net_device *net_dev = efx->net_dev;
701 	struct efx_channel *channel;
702 	int rc;
703 
704 	net_dev->watchdog_timeo = 5 * HZ;
705 	net_dev->irq = efx->pci_dev->irq;
706 	net_dev->netdev_ops = &efx_netdev_ops;
707 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
708 		net_dev->priv_flags |= IFF_UNICAST_FLT;
709 	net_dev->ethtool_ops = &efx_ethtool_ops;
710 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
711 	net_dev->min_mtu = EFX_MIN_MTU;
712 	net_dev->max_mtu = EFX_MAX_MTU;
713 
714 	rtnl_lock();
715 
716 	/* Enable resets to be scheduled and check whether any were
717 	 * already requested.  If so, the NIC is probably hosed so we
718 	 * abort.
719 	 */
720 	if (efx->reset_pending) {
721 		netif_err(efx, probe, efx->net_dev,
722 			  "aborting probe due to scheduled reset\n");
723 		rc = -EIO;
724 		goto fail_locked;
725 	}
726 
727 	rc = dev_alloc_name(net_dev, net_dev->name);
728 	if (rc < 0)
729 		goto fail_locked;
730 	efx_update_name(efx);
731 
732 	/* Always start with carrier off; PHY events will detect the link */
733 	netif_carrier_off(net_dev);
734 
735 	rc = register_netdevice(net_dev);
736 	if (rc)
737 		goto fail_locked;
738 
739 	efx_for_each_channel(channel, efx) {
740 		struct efx_tx_queue *tx_queue;
741 		efx_for_each_channel_tx_queue(tx_queue, channel)
742 			efx_init_tx_queue_core_txq(tx_queue);
743 	}
744 
745 	efx_associate(efx);
746 
747 	efx->state = STATE_NET_DOWN;
748 
749 	rtnl_unlock();
750 
751 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
752 	if (rc) {
753 		netif_err(efx, drv, efx->net_dev,
754 			  "failed to init net dev attributes\n");
755 		goto fail_registered;
756 	}
757 
758 	efx_init_mcdi_logging(efx);
759 
760 	return 0;
761 
762 fail_registered:
763 	rtnl_lock();
764 	efx_dissociate(efx);
765 	unregister_netdevice(net_dev);
766 fail_locked:
767 	efx->state = STATE_UNINIT;
768 	rtnl_unlock();
769 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
770 	return rc;
771 }
772 
efx_unregister_netdev(struct efx_nic * efx)773 static void efx_unregister_netdev(struct efx_nic *efx)
774 {
775 	if (!efx->net_dev)
776 		return;
777 
778 	BUG_ON(netdev_priv(efx->net_dev) != efx);
779 
780 	if (efx_dev_registered(efx)) {
781 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
782 		efx_fini_mcdi_logging(efx);
783 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
784 		unregister_netdev(efx->net_dev);
785 	}
786 }
787 
788 /**************************************************************************
789  *
790  * List of NICs we support
791  *
792  **************************************************************************/
793 
794 /* PCI device ID table */
795 static const struct pci_device_id efx_pci_table[] = {
796 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
797 	 .driver_data = (unsigned long) &siena_a0_nic_type},
798 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
799 	 .driver_data = (unsigned long) &siena_a0_nic_type},
800 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
801 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
802 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
803 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
804 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
805 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
806 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
807 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
808 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
809 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
810 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
811 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
812 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
813 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
814 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
815 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
816 	{0}			/* end of list */
817 };
818 
819 /**************************************************************************
820  *
821  * Data housekeeping
822  *
823  **************************************************************************/
824 
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)825 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
826 {
827 	u64 n_rx_nodesc_trunc = 0;
828 	struct efx_channel *channel;
829 
830 	efx_for_each_channel(channel, efx)
831 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
832 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
833 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
834 }
835 
836 /**************************************************************************
837  *
838  * PCI interface
839  *
840  **************************************************************************/
841 
842 /* Main body of final NIC shutdown code
843  * This is called only at module unload (or hotplug removal).
844  */
efx_pci_remove_main(struct efx_nic * efx)845 static void efx_pci_remove_main(struct efx_nic *efx)
846 {
847 	/* Flush reset_work. It can no longer be scheduled since we
848 	 * are not READY.
849 	 */
850 	WARN_ON(efx_net_active(efx->state));
851 	efx_flush_reset_workqueue(efx);
852 
853 	efx_disable_interrupts(efx);
854 	efx_clear_interrupt_affinity(efx);
855 	efx_nic_fini_interrupt(efx);
856 	efx_fini_port(efx);
857 	efx->type->fini(efx);
858 	efx_fini_napi(efx);
859 	efx_remove_all(efx);
860 }
861 
862 /* Final NIC shutdown
863  * This is called only at module unload (or hotplug removal).  A PF can call
864  * this on its VFs to ensure they are unbound first.
865  */
efx_pci_remove(struct pci_dev * pci_dev)866 static void efx_pci_remove(struct pci_dev *pci_dev)
867 {
868 	struct efx_nic *efx;
869 
870 	efx = pci_get_drvdata(pci_dev);
871 	if (!efx)
872 		return;
873 
874 	/* Mark the NIC as fini, then stop the interface */
875 	rtnl_lock();
876 	efx_dissociate(efx);
877 	dev_close(efx->net_dev);
878 	efx_disable_interrupts(efx);
879 	efx->state = STATE_UNINIT;
880 	rtnl_unlock();
881 
882 	if (efx->type->sriov_fini)
883 		efx->type->sriov_fini(efx);
884 
885 	efx_unregister_netdev(efx);
886 
887 	efx_mtd_remove(efx);
888 
889 	efx_pci_remove_main(efx);
890 
891 	efx_fini_io(efx);
892 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
893 
894 	efx_fini_struct(efx);
895 	free_netdev(efx->net_dev);
896 
897 	pci_disable_pcie_error_reporting(pci_dev);
898 };
899 
900 /* NIC VPD information
901  * Called during probe to display the part number of the
902  * installed NIC.  VPD is potentially very large but this should
903  * always appear within the first 512 bytes.
904  */
905 #define SFC_VPD_LEN 512
efx_probe_vpd_strings(struct efx_nic * efx)906 static void efx_probe_vpd_strings(struct efx_nic *efx)
907 {
908 	struct pci_dev *dev = efx->pci_dev;
909 	char vpd_data[SFC_VPD_LEN];
910 	ssize_t vpd_size;
911 	int ro_start, ro_size, i, j;
912 
913 	/* Get the vpd data from the device */
914 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
915 	if (vpd_size <= 0) {
916 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
917 		return;
918 	}
919 
920 	/* Get the Read only section */
921 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
922 	if (ro_start < 0) {
923 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
924 		return;
925 	}
926 
927 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
928 	j = ro_size;
929 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
930 	if (i + j > vpd_size)
931 		j = vpd_size - i;
932 
933 	/* Get the Part number */
934 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
935 	if (i < 0) {
936 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
937 		return;
938 	}
939 
940 	j = pci_vpd_info_field_size(&vpd_data[i]);
941 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
942 	if (i + j > vpd_size) {
943 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
944 		return;
945 	}
946 
947 	netif_info(efx, drv, efx->net_dev,
948 		   "Part Number : %.*s\n", j, &vpd_data[i]);
949 
950 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
951 	j = ro_size;
952 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
953 	if (i < 0) {
954 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
955 		return;
956 	}
957 
958 	j = pci_vpd_info_field_size(&vpd_data[i]);
959 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
960 	if (i + j > vpd_size) {
961 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
962 		return;
963 	}
964 
965 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
966 	if (!efx->vpd_sn)
967 		return;
968 
969 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
970 }
971 
972 
973 /* Main body of NIC initialisation
974  * This is called at module load (or hotplug insertion, theoretically).
975  */
efx_pci_probe_main(struct efx_nic * efx)976 static int efx_pci_probe_main(struct efx_nic *efx)
977 {
978 	int rc;
979 
980 	/* Do start-of-day initialisation */
981 	rc = efx_probe_all(efx);
982 	if (rc)
983 		goto fail1;
984 
985 	efx_init_napi(efx);
986 
987 	down_write(&efx->filter_sem);
988 	rc = efx->type->init(efx);
989 	up_write(&efx->filter_sem);
990 	if (rc) {
991 		netif_err(efx, probe, efx->net_dev,
992 			  "failed to initialise NIC\n");
993 		goto fail3;
994 	}
995 
996 	rc = efx_init_port(efx);
997 	if (rc) {
998 		netif_err(efx, probe, efx->net_dev,
999 			  "failed to initialise port\n");
1000 		goto fail4;
1001 	}
1002 
1003 	rc = efx_nic_init_interrupt(efx);
1004 	if (rc)
1005 		goto fail5;
1006 
1007 	efx_set_interrupt_affinity(efx);
1008 	rc = efx_enable_interrupts(efx);
1009 	if (rc)
1010 		goto fail6;
1011 
1012 	return 0;
1013 
1014  fail6:
1015 	efx_clear_interrupt_affinity(efx);
1016 	efx_nic_fini_interrupt(efx);
1017  fail5:
1018 	efx_fini_port(efx);
1019  fail4:
1020 	efx->type->fini(efx);
1021  fail3:
1022 	efx_fini_napi(efx);
1023 	efx_remove_all(efx);
1024  fail1:
1025 	return rc;
1026 }
1027 
efx_pci_probe_post_io(struct efx_nic * efx)1028 static int efx_pci_probe_post_io(struct efx_nic *efx)
1029 {
1030 	struct net_device *net_dev = efx->net_dev;
1031 	int rc = efx_pci_probe_main(efx);
1032 
1033 	if (rc)
1034 		return rc;
1035 
1036 	if (efx->type->sriov_init) {
1037 		rc = efx->type->sriov_init(efx);
1038 		if (rc)
1039 			netif_err(efx, probe, efx->net_dev,
1040 				  "SR-IOV can't be enabled rc %d\n", rc);
1041 	}
1042 
1043 	/* Determine netdevice features */
1044 	net_dev->features |= efx->type->offload_features;
1045 
1046 	/* Add TSO features */
1047 	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1048 		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1049 
1050 	/* Mask for features that also apply to VLAN devices */
1051 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1052 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1053 				   NETIF_F_RXCSUM);
1054 
1055 	/* Determine user configurable features */
1056 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1057 
1058 	/* Disable receiving frames with bad FCS, by default. */
1059 	net_dev->features &= ~NETIF_F_RXALL;
1060 
1061 	/* Disable VLAN filtering by default.  It may be enforced if
1062 	 * the feature is fixed (i.e. VLAN filters are required to
1063 	 * receive VLAN tagged packets due to vPort restrictions).
1064 	 */
1065 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1066 	net_dev->features |= efx->fixed_features;
1067 
1068 	rc = efx_register_netdev(efx);
1069 	if (!rc)
1070 		return 0;
1071 
1072 	efx_pci_remove_main(efx);
1073 	return rc;
1074 }
1075 
1076 /* NIC initialisation
1077  *
1078  * This is called at module load (or hotplug insertion,
1079  * theoretically).  It sets up PCI mappings, resets the NIC,
1080  * sets up and registers the network devices with the kernel and hooks
1081  * the interrupt service routine.  It does not prepare the device for
1082  * transmission; this is left to the first time one of the network
1083  * interfaces is brought up (i.e. efx_net_open).
1084  */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1085 static int efx_pci_probe(struct pci_dev *pci_dev,
1086 			 const struct pci_device_id *entry)
1087 {
1088 	struct net_device *net_dev;
1089 	struct efx_nic *efx;
1090 	int rc;
1091 
1092 	/* Allocate and initialise a struct net_device and struct efx_nic */
1093 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1094 				     EFX_MAX_RX_QUEUES);
1095 	if (!net_dev)
1096 		return -ENOMEM;
1097 	efx = netdev_priv(net_dev);
1098 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1099 	efx->fixed_features |= NETIF_F_HIGHDMA;
1100 
1101 	pci_set_drvdata(pci_dev, efx);
1102 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1103 	rc = efx_init_struct(efx, pci_dev, net_dev);
1104 	if (rc)
1105 		goto fail1;
1106 
1107 	netif_info(efx, probe, efx->net_dev,
1108 		   "Solarflare NIC detected\n");
1109 
1110 	if (!efx->type->is_vf)
1111 		efx_probe_vpd_strings(efx);
1112 
1113 	/* Set up basic I/O (BAR mappings etc) */
1114 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1115 			 efx->type->mem_map_size(efx));
1116 	if (rc)
1117 		goto fail2;
1118 
1119 	rc = efx_pci_probe_post_io(efx);
1120 	if (rc) {
1121 		/* On failure, retry once immediately.
1122 		 * If we aborted probe due to a scheduled reset, dismiss it.
1123 		 */
1124 		efx->reset_pending = 0;
1125 		rc = efx_pci_probe_post_io(efx);
1126 		if (rc) {
1127 			/* On another failure, retry once more
1128 			 * after a 50-305ms delay.
1129 			 */
1130 			unsigned char r;
1131 
1132 			get_random_bytes(&r, 1);
1133 			msleep((unsigned int)r + 50);
1134 			efx->reset_pending = 0;
1135 			rc = efx_pci_probe_post_io(efx);
1136 		}
1137 	}
1138 	if (rc)
1139 		goto fail3;
1140 
1141 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1142 
1143 	/* Try to create MTDs, but allow this to fail */
1144 	rtnl_lock();
1145 	rc = efx_mtd_probe(efx);
1146 	rtnl_unlock();
1147 	if (rc && rc != -EPERM)
1148 		netif_warn(efx, probe, efx->net_dev,
1149 			   "failed to create MTDs (%d)\n", rc);
1150 
1151 	(void)pci_enable_pcie_error_reporting(pci_dev);
1152 
1153 	if (efx->type->udp_tnl_push_ports)
1154 		efx->type->udp_tnl_push_ports(efx);
1155 
1156 	return 0;
1157 
1158  fail3:
1159 	efx_fini_io(efx);
1160  fail2:
1161 	efx_fini_struct(efx);
1162  fail1:
1163 	WARN_ON(rc > 0);
1164 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1165 	free_netdev(net_dev);
1166 	return rc;
1167 }
1168 
1169 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1170  * enabled on success
1171  */
1172 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1173 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1174 {
1175 	int rc;
1176 	struct efx_nic *efx = pci_get_drvdata(dev);
1177 
1178 	if (efx->type->sriov_configure) {
1179 		rc = efx->type->sriov_configure(efx, num_vfs);
1180 		if (rc)
1181 			return rc;
1182 		else
1183 			return num_vfs;
1184 	} else
1185 		return -EOPNOTSUPP;
1186 }
1187 #endif
1188 
efx_pm_freeze(struct device * dev)1189 static int efx_pm_freeze(struct device *dev)
1190 {
1191 	struct efx_nic *efx = dev_get_drvdata(dev);
1192 
1193 	rtnl_lock();
1194 
1195 	if (efx_net_active(efx->state)) {
1196 		efx_device_detach_sync(efx);
1197 
1198 		efx_stop_all(efx);
1199 		efx_disable_interrupts(efx);
1200 
1201 		efx->state = efx_freeze(efx->state);
1202 	}
1203 
1204 	rtnl_unlock();
1205 
1206 	return 0;
1207 }
1208 
efx_pm_thaw(struct device * dev)1209 static int efx_pm_thaw(struct device *dev)
1210 {
1211 	int rc;
1212 	struct efx_nic *efx = dev_get_drvdata(dev);
1213 
1214 	rtnl_lock();
1215 
1216 	if (efx_frozen(efx->state)) {
1217 		rc = efx_enable_interrupts(efx);
1218 		if (rc)
1219 			goto fail;
1220 
1221 		mutex_lock(&efx->mac_lock);
1222 		efx_mcdi_port_reconfigure(efx);
1223 		mutex_unlock(&efx->mac_lock);
1224 
1225 		efx_start_all(efx);
1226 
1227 		efx_device_attach_if_not_resetting(efx);
1228 
1229 		efx->state = efx_thaw(efx->state);
1230 
1231 		efx->type->resume_wol(efx);
1232 	}
1233 
1234 	rtnl_unlock();
1235 
1236 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1237 	efx_queue_reset_work(efx);
1238 
1239 	return 0;
1240 
1241 fail:
1242 	rtnl_unlock();
1243 
1244 	return rc;
1245 }
1246 
efx_pm_poweroff(struct device * dev)1247 static int efx_pm_poweroff(struct device *dev)
1248 {
1249 	struct pci_dev *pci_dev = to_pci_dev(dev);
1250 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1251 
1252 	efx->type->fini(efx);
1253 
1254 	efx->reset_pending = 0;
1255 
1256 	pci_save_state(pci_dev);
1257 	return pci_set_power_state(pci_dev, PCI_D3hot);
1258 }
1259 
1260 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1261 static int efx_pm_resume(struct device *dev)
1262 {
1263 	struct pci_dev *pci_dev = to_pci_dev(dev);
1264 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1265 	int rc;
1266 
1267 	rc = pci_set_power_state(pci_dev, PCI_D0);
1268 	if (rc)
1269 		return rc;
1270 	pci_restore_state(pci_dev);
1271 	rc = pci_enable_device(pci_dev);
1272 	if (rc)
1273 		return rc;
1274 	pci_set_master(efx->pci_dev);
1275 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1276 	if (rc)
1277 		return rc;
1278 	down_write(&efx->filter_sem);
1279 	rc = efx->type->init(efx);
1280 	up_write(&efx->filter_sem);
1281 	if (rc)
1282 		return rc;
1283 	rc = efx_pm_thaw(dev);
1284 	return rc;
1285 }
1286 
efx_pm_suspend(struct device * dev)1287 static int efx_pm_suspend(struct device *dev)
1288 {
1289 	int rc;
1290 
1291 	efx_pm_freeze(dev);
1292 	rc = efx_pm_poweroff(dev);
1293 	if (rc)
1294 		efx_pm_resume(dev);
1295 	return rc;
1296 }
1297 
1298 static const struct dev_pm_ops efx_pm_ops = {
1299 	.suspend	= efx_pm_suspend,
1300 	.resume		= efx_pm_resume,
1301 	.freeze		= efx_pm_freeze,
1302 	.thaw		= efx_pm_thaw,
1303 	.poweroff	= efx_pm_poweroff,
1304 	.restore	= efx_pm_resume,
1305 };
1306 
1307 static struct pci_driver efx_pci_driver = {
1308 	.name		= KBUILD_MODNAME,
1309 	.id_table	= efx_pci_table,
1310 	.probe		= efx_pci_probe,
1311 	.remove		= efx_pci_remove,
1312 	.driver.pm	= &efx_pm_ops,
1313 	.err_handler	= &efx_err_handlers,
1314 #ifdef CONFIG_SFC_SRIOV
1315 	.sriov_configure = efx_pci_sriov_configure,
1316 #endif
1317 };
1318 
1319 /**************************************************************************
1320  *
1321  * Kernel module interface
1322  *
1323  *************************************************************************/
1324 
efx_init_module(void)1325 static int __init efx_init_module(void)
1326 {
1327 	int rc;
1328 
1329 	printk(KERN_INFO "Solarflare NET driver\n");
1330 
1331 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1332 	if (rc)
1333 		goto err_notifier;
1334 
1335 #ifdef CONFIG_SFC_SRIOV
1336 	rc = efx_init_sriov();
1337 	if (rc)
1338 		goto err_sriov;
1339 #endif
1340 
1341 	rc = efx_create_reset_workqueue();
1342 	if (rc)
1343 		goto err_reset;
1344 
1345 	rc = pci_register_driver(&efx_pci_driver);
1346 	if (rc < 0)
1347 		goto err_pci;
1348 
1349 	rc = pci_register_driver(&ef100_pci_driver);
1350 	if (rc < 0)
1351 		goto err_pci_ef100;
1352 
1353 	return 0;
1354 
1355  err_pci_ef100:
1356 	pci_unregister_driver(&efx_pci_driver);
1357  err_pci:
1358 	efx_destroy_reset_workqueue();
1359  err_reset:
1360 #ifdef CONFIG_SFC_SRIOV
1361 	efx_fini_sriov();
1362  err_sriov:
1363 #endif
1364 	unregister_netdevice_notifier(&efx_netdev_notifier);
1365  err_notifier:
1366 	return rc;
1367 }
1368 
efx_exit_module(void)1369 static void __exit efx_exit_module(void)
1370 {
1371 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1372 
1373 	pci_unregister_driver(&ef100_pci_driver);
1374 	pci_unregister_driver(&efx_pci_driver);
1375 	efx_destroy_reset_workqueue();
1376 #ifdef CONFIG_SFC_SRIOV
1377 	efx_fini_sriov();
1378 #endif
1379 	unregister_netdevice_notifier(&efx_netdev_notifier);
1380 
1381 }
1382 
1383 module_init(efx_init_module);
1384 module_exit(efx_exit_module);
1385 
1386 MODULE_AUTHOR("Solarflare Communications and "
1387 	      "Michael Brown <mbrown@fensystems.co.uk>");
1388 MODULE_DESCRIPTION("Solarflare network driver");
1389 MODULE_LICENSE("GPL");
1390 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1391