• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  * Not all operations are supported by fast commits today (e.g extended
69  * attributes). Fast commit ineligibility is marked by calling one of the
70  * two following functions:
71  *
72  * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73  *   back to full commit. This is useful in case of transient errors.
74  *
75  * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76  *   the fast commits happening between ext4_fc_start_ineligible() and
77  *   ext4_fc_stop_ineligible() and one fast commit after the call to
78  *   ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79  *   make one more fast commit to fall back to full commit after stop call so
80  *   that it guaranteed that the fast commit ineligible operation contained
81  *   within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82  *   followed by at least 1 full commit.
83  *
84  * Atomicity of commits
85  * --------------------
86  * In order to guarantee atomicity during the commit operation, fast commit
87  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88  * tag contains CRC of the contents and TID of the transaction after which
89  * this fast commit should be applied. Recovery code replays fast commit
90  * logs only if there's at least 1 valid tail present. For every fast commit
91  * operation, there is 1 tail. This means, we may end up with multiple tails
92  * in the fast commit space. Here's an example:
93  *
94  * - Create a new file A and remove existing file B
95  * - fsync()
96  * - Append contents to file A
97  * - Truncate file A
98  * - fsync()
99  *
100  * The fast commit space at the end of above operations would look like this:
101  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
103  *
104  * Replay code should thus check for all the valid tails in the FC area.
105  *
106  * TODOs
107  * -----
108  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109  *    eligible update must be protected within ext4_fc_start_update() and
110  *    ext4_fc_stop_update(). These routines are called at much higher
111  *    routines. This can be made more fine grained by combining with
112  *    ext4_journal_start().
113  *
114  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115  *
116  * 3) Handle more ineligible cases.
117  */
118 
119 #include <trace/events/ext4.h>
120 static struct kmem_cache *ext4_fc_dentry_cachep;
121 
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)122 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123 {
124 	BUFFER_TRACE(bh, "");
125 	if (uptodate) {
126 		ext4_debug("%s: Block %lld up-to-date",
127 			   __func__, bh->b_blocknr);
128 		set_buffer_uptodate(bh);
129 	} else {
130 		ext4_debug("%s: Block %lld not up-to-date",
131 			   __func__, bh->b_blocknr);
132 		clear_buffer_uptodate(bh);
133 	}
134 
135 	unlock_buffer(bh);
136 }
137 
ext4_fc_reset_inode(struct inode * inode)138 static inline void ext4_fc_reset_inode(struct inode *inode)
139 {
140 	struct ext4_inode_info *ei = EXT4_I(inode);
141 
142 	ei->i_fc_lblk_start = 0;
143 	ei->i_fc_lblk_len = 0;
144 }
145 
ext4_fc_init_inode(struct inode * inode)146 void ext4_fc_init_inode(struct inode *inode)
147 {
148 	struct ext4_inode_info *ei = EXT4_I(inode);
149 
150 	ext4_fc_reset_inode(inode);
151 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152 	INIT_LIST_HEAD(&ei->i_fc_list);
153 	init_waitqueue_head(&ei->i_fc_wait);
154 	atomic_set(&ei->i_fc_updates, 0);
155 }
156 
157 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)158 static void ext4_fc_wait_committing_inode(struct inode *inode)
159 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
160 {
161 	wait_queue_head_t *wq;
162 	struct ext4_inode_info *ei = EXT4_I(inode);
163 
164 #if (BITS_PER_LONG < 64)
165 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
166 			EXT4_STATE_FC_COMMITTING);
167 	wq = bit_waitqueue(&ei->i_state_flags,
168 				EXT4_STATE_FC_COMMITTING);
169 #else
170 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
171 			EXT4_STATE_FC_COMMITTING);
172 	wq = bit_waitqueue(&ei->i_flags,
173 				EXT4_STATE_FC_COMMITTING);
174 #endif
175 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
176 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
177 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
178 	schedule();
179 	finish_wait(wq, &wait.wq_entry);
180 }
181 
182 /*
183  * Inform Ext4's fast about start of an inode update
184  *
185  * This function is called by the high level call VFS callbacks before
186  * performing any inode update. This function blocks if there's an ongoing
187  * fast commit on the inode in question.
188  */
ext4_fc_start_update(struct inode * inode)189 void ext4_fc_start_update(struct inode *inode)
190 {
191 	struct ext4_inode_info *ei = EXT4_I(inode);
192 
193 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
194 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
195 		return;
196 
197 restart:
198 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
199 	if (list_empty(&ei->i_fc_list))
200 		goto out;
201 
202 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
203 		ext4_fc_wait_committing_inode(inode);
204 		goto restart;
205 	}
206 out:
207 	atomic_inc(&ei->i_fc_updates);
208 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
209 }
210 
211 /*
212  * Stop inode update and wake up waiting fast commits if any.
213  */
ext4_fc_stop_update(struct inode * inode)214 void ext4_fc_stop_update(struct inode *inode)
215 {
216 	struct ext4_inode_info *ei = EXT4_I(inode);
217 
218 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
219 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
220 		return;
221 
222 	if (atomic_dec_and_test(&ei->i_fc_updates))
223 		wake_up_all(&ei->i_fc_wait);
224 }
225 
226 /*
227  * Remove inode from fast commit list. If the inode is being committed
228  * we wait until inode commit is done.
229  */
ext4_fc_del(struct inode * inode)230 void ext4_fc_del(struct inode *inode)
231 {
232 	struct ext4_inode_info *ei = EXT4_I(inode);
233 
234 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
235 	    (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
236 		return;
237 
238 restart:
239 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
240 	if (list_empty(&ei->i_fc_list)) {
241 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
242 		return;
243 	}
244 
245 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
246 		ext4_fc_wait_committing_inode(inode);
247 		goto restart;
248 	}
249 	list_del_init(&ei->i_fc_list);
250 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
251 }
252 
253 /*
254  * Mark file system as fast commit ineligible. This means that next commit
255  * operation would result in a full jbd2 commit.
256  */
ext4_fc_mark_ineligible(struct super_block * sb,int reason)257 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
258 {
259 	struct ext4_sb_info *sbi = EXT4_SB(sb);
260 
261 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
262 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
263 		return;
264 
265 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
266 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
267 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
268 }
269 
270 /*
271  * Start a fast commit ineligible update. Any commits that happen while
272  * such an operation is in progress fall back to full commits.
273  */
ext4_fc_start_ineligible(struct super_block * sb,int reason)274 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
275 {
276 	struct ext4_sb_info *sbi = EXT4_SB(sb);
277 
278 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
279 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
280 		return;
281 
282 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
283 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
284 	atomic_inc(&sbi->s_fc_ineligible_updates);
285 }
286 
287 /*
288  * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
289  * to ensure that after stopping the ineligible update, at least one full
290  * commit takes place.
291  */
ext4_fc_stop_ineligible(struct super_block * sb)292 void ext4_fc_stop_ineligible(struct super_block *sb)
293 {
294 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
295 	    (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
296 		return;
297 
298 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
299 	atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
300 }
301 
ext4_fc_is_ineligible(struct super_block * sb)302 static inline int ext4_fc_is_ineligible(struct super_block *sb)
303 {
304 	return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
305 		atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
306 }
307 
308 /*
309  * Generic fast commit tracking function. If this is the first time this we are
310  * called after a full commit, we initialize fast commit fields and then call
311  * __fc_track_fn() with update = 0. If we have already been called after a full
312  * commit, we pass update = 1. Based on that, the track function can determine
313  * if it needs to track a field for the first time or if it needs to just
314  * update the previously tracked value.
315  *
316  * If enqueue is set, this function enqueues the inode in fast commit list.
317  */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)318 static int ext4_fc_track_template(
319 	handle_t *handle, struct inode *inode,
320 	int (*__fc_track_fn)(struct inode *, void *, bool),
321 	void *args, int enqueue)
322 {
323 	bool update = false;
324 	struct ext4_inode_info *ei = EXT4_I(inode);
325 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326 	tid_t tid = 0;
327 	int ret;
328 
329 	if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
330 	    (sbi->s_mount_state & EXT4_FC_REPLAY))
331 		return -EOPNOTSUPP;
332 
333 	if (ext4_fc_is_ineligible(inode->i_sb))
334 		return -EINVAL;
335 
336 	tid = handle->h_transaction->t_tid;
337 	mutex_lock(&ei->i_fc_lock);
338 	if (tid == ei->i_sync_tid) {
339 		update = true;
340 	} else {
341 		ext4_fc_reset_inode(inode);
342 		ei->i_sync_tid = tid;
343 	}
344 	ret = __fc_track_fn(inode, args, update);
345 	mutex_unlock(&ei->i_fc_lock);
346 
347 	if (!enqueue)
348 		return ret;
349 
350 	spin_lock(&sbi->s_fc_lock);
351 	if (list_empty(&EXT4_I(inode)->i_fc_list))
352 		list_add_tail(&EXT4_I(inode)->i_fc_list,
353 				(ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
354 				&sbi->s_fc_q[FC_Q_STAGING] :
355 				&sbi->s_fc_q[FC_Q_MAIN]);
356 	spin_unlock(&sbi->s_fc_lock);
357 
358 	return ret;
359 }
360 
361 struct __track_dentry_update_args {
362 	struct dentry *dentry;
363 	int op;
364 };
365 
366 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)367 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
368 {
369 	struct ext4_fc_dentry_update *node;
370 	struct ext4_inode_info *ei = EXT4_I(inode);
371 	struct __track_dentry_update_args *dentry_update =
372 		(struct __track_dentry_update_args *)arg;
373 	struct dentry *dentry = dentry_update->dentry;
374 	struct inode *dir = dentry->d_parent->d_inode;
375 	struct super_block *sb = inode->i_sb;
376 	struct ext4_sb_info *sbi = EXT4_SB(sb);
377 
378 	mutex_unlock(&ei->i_fc_lock);
379 
380 	if (IS_ENCRYPTED(dir)) {
381 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME);
382 		mutex_lock(&ei->i_fc_lock);
383 		return -EOPNOTSUPP;
384 	}
385 
386 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
387 	if (!node) {
388 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
389 		mutex_lock(&ei->i_fc_lock);
390 		return -ENOMEM;
391 	}
392 
393 	node->fcd_op = dentry_update->op;
394 	node->fcd_parent = dir->i_ino;
395 	node->fcd_ino = inode->i_ino;
396 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
397 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
398 		if (!node->fcd_name.name) {
399 			kmem_cache_free(ext4_fc_dentry_cachep, node);
400 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
401 			mutex_lock(&ei->i_fc_lock);
402 			return -ENOMEM;
403 		}
404 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
405 			dentry->d_name.len);
406 	} else {
407 		memcpy(node->fcd_iname, dentry->d_name.name,
408 			dentry->d_name.len);
409 		node->fcd_name.name = node->fcd_iname;
410 	}
411 	node->fcd_name.len = dentry->d_name.len;
412 
413 	spin_lock(&sbi->s_fc_lock);
414 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
415 		list_add_tail(&node->fcd_list,
416 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
417 	else
418 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419 	spin_unlock(&sbi->s_fc_lock);
420 	mutex_lock(&ei->i_fc_lock);
421 
422 	return 0;
423 }
424 
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)425 void __ext4_fc_track_unlink(handle_t *handle,
426 		struct inode *inode, struct dentry *dentry)
427 {
428 	struct __track_dentry_update_args args;
429 	int ret;
430 
431 	args.dentry = dentry;
432 	args.op = EXT4_FC_TAG_UNLINK;
433 
434 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
435 					(void *)&args, 0);
436 	trace_ext4_fc_track_unlink(inode, dentry, ret);
437 }
438 
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)439 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
440 {
441 	__ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
442 }
443 
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)444 void __ext4_fc_track_link(handle_t *handle,
445 	struct inode *inode, struct dentry *dentry)
446 {
447 	struct __track_dentry_update_args args;
448 	int ret;
449 
450 	args.dentry = dentry;
451 	args.op = EXT4_FC_TAG_LINK;
452 
453 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
454 					(void *)&args, 0);
455 	trace_ext4_fc_track_link(inode, dentry, ret);
456 }
457 
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)458 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
459 {
460 	__ext4_fc_track_link(handle, d_inode(dentry), dentry);
461 }
462 
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)463 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
464 			  struct dentry *dentry)
465 {
466 	struct __track_dentry_update_args args;
467 	int ret;
468 
469 	args.dentry = dentry;
470 	args.op = EXT4_FC_TAG_CREAT;
471 
472 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
473 					(void *)&args, 0);
474 	trace_ext4_fc_track_create(inode, dentry, ret);
475 }
476 
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)477 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
478 {
479 	__ext4_fc_track_create(handle, d_inode(dentry), dentry);
480 }
481 
482 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)483 static int __track_inode(struct inode *inode, void *arg, bool update)
484 {
485 	if (update)
486 		return -EEXIST;
487 
488 	EXT4_I(inode)->i_fc_lblk_len = 0;
489 
490 	return 0;
491 }
492 
ext4_fc_track_inode(handle_t * handle,struct inode * inode)493 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
494 {
495 	int ret;
496 
497 	if (S_ISDIR(inode->i_mode))
498 		return;
499 
500 	if (ext4_should_journal_data(inode)) {
501 		ext4_fc_mark_ineligible(inode->i_sb,
502 					EXT4_FC_REASON_INODE_JOURNAL_DATA);
503 		return;
504 	}
505 
506 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
507 	trace_ext4_fc_track_inode(inode, ret);
508 }
509 
510 struct __track_range_args {
511 	ext4_lblk_t start, end;
512 };
513 
514 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)515 static int __track_range(struct inode *inode, void *arg, bool update)
516 {
517 	struct ext4_inode_info *ei = EXT4_I(inode);
518 	ext4_lblk_t oldstart;
519 	struct __track_range_args *__arg =
520 		(struct __track_range_args *)arg;
521 
522 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
523 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
524 		return -ECANCELED;
525 	}
526 
527 	oldstart = ei->i_fc_lblk_start;
528 
529 	if (update && ei->i_fc_lblk_len > 0) {
530 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
531 		ei->i_fc_lblk_len =
532 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
533 				ei->i_fc_lblk_start + 1;
534 	} else {
535 		ei->i_fc_lblk_start = __arg->start;
536 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
537 	}
538 
539 	return 0;
540 }
541 
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)542 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
543 			 ext4_lblk_t end)
544 {
545 	struct __track_range_args args;
546 	int ret;
547 
548 	if (S_ISDIR(inode->i_mode))
549 		return;
550 
551 	args.start = start;
552 	args.end = end;
553 
554 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
555 
556 	trace_ext4_fc_track_range(inode, start, end, ret);
557 }
558 
ext4_fc_submit_bh(struct super_block * sb)559 static void ext4_fc_submit_bh(struct super_block *sb)
560 {
561 	int write_flags = REQ_SYNC;
562 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
563 
564 	/* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */
565 	if (test_opt(sb, BARRIER))
566 		write_flags |= REQ_FUA | REQ_PREFLUSH;
567 	lock_buffer(bh);
568 	set_buffer_dirty(bh);
569 	set_buffer_uptodate(bh);
570 	bh->b_end_io = ext4_end_buffer_io_sync;
571 	submit_bh(REQ_OP_WRITE, write_flags, bh);
572 	EXT4_SB(sb)->s_fc_bh = NULL;
573 }
574 
575 /* Ext4 commit path routines */
576 
577 /* memzero and update CRC */
ext4_fc_memzero(struct super_block * sb,void * dst,int len,u32 * crc)578 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
579 				u32 *crc)
580 {
581 	void *ret;
582 
583 	ret = memset(dst, 0, len);
584 	if (crc)
585 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
586 	return ret;
587 }
588 
589 /*
590  * Allocate len bytes on a fast commit buffer.
591  *
592  * During the commit time this function is used to manage fast commit
593  * block space. We don't split a fast commit log onto different
594  * blocks. So this function makes sure that if there's not enough space
595  * on the current block, the remaining space in the current block is
596  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
597  * new block is from jbd2 and CRC is updated to reflect the padding
598  * we added.
599  */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)600 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
601 {
602 	struct ext4_fc_tl *tl;
603 	struct ext4_sb_info *sbi = EXT4_SB(sb);
604 	struct buffer_head *bh;
605 	int bsize = sbi->s_journal->j_blocksize;
606 	int ret, off = sbi->s_fc_bytes % bsize;
607 	int pad_len;
608 
609 	/*
610 	 * After allocating len, we should have space at least for a 0 byte
611 	 * padding.
612 	 */
613 	if (len + sizeof(struct ext4_fc_tl) > bsize)
614 		return NULL;
615 
616 	if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
617 		/*
618 		 * Only allocate from current buffer if we have enough space for
619 		 * this request AND we have space to add a zero byte padding.
620 		 */
621 		if (!sbi->s_fc_bh) {
622 			ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
623 			if (ret)
624 				return NULL;
625 			sbi->s_fc_bh = bh;
626 		}
627 		sbi->s_fc_bytes += len;
628 		return sbi->s_fc_bh->b_data + off;
629 	}
630 	/* Need to add PAD tag */
631 	tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
632 	tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
633 	pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
634 	tl->fc_len = cpu_to_le16(pad_len);
635 	if (crc)
636 		*crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
637 	if (pad_len > 0)
638 		ext4_fc_memzero(sb, tl + 1, pad_len, crc);
639 	/* Don't leak uninitialized memory in the unused last byte. */
640 	*((u8 *)(tl + 1) + pad_len) = 0;
641 
642 	ext4_fc_submit_bh(sb);
643 
644 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
645 	if (ret)
646 		return NULL;
647 	sbi->s_fc_bh = bh;
648 	sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
649 	return sbi->s_fc_bh->b_data;
650 }
651 
652 /* memcpy to fc reserved space and update CRC */
ext4_fc_memcpy(struct super_block * sb,void * dst,const void * src,int len,u32 * crc)653 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
654 				int len, u32 *crc)
655 {
656 	if (crc)
657 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
658 	return memcpy(dst, src, len);
659 }
660 
661 /*
662  * Complete a fast commit by writing tail tag.
663  *
664  * Writing tail tag marks the end of a fast commit. In order to guarantee
665  * atomicity, after writing tail tag, even if there's space remaining
666  * in the block, next commit shouldn't use it. That's why tail tag
667  * has the length as that of the remaining space on the block.
668  */
ext4_fc_write_tail(struct super_block * sb,u32 crc)669 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
670 {
671 	struct ext4_sb_info *sbi = EXT4_SB(sb);
672 	struct ext4_fc_tl tl;
673 	struct ext4_fc_tail tail;
674 	int off, bsize = sbi->s_journal->j_blocksize;
675 	u8 *dst;
676 
677 	/*
678 	 * ext4_fc_reserve_space takes care of allocating an extra block if
679 	 * there's no enough space on this block for accommodating this tail.
680 	 */
681 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
682 	if (!dst)
683 		return -ENOSPC;
684 
685 	off = sbi->s_fc_bytes % bsize;
686 
687 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
688 	tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
689 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
690 
691 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
692 	dst += sizeof(tl);
693 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
694 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
695 	dst += sizeof(tail.fc_tid);
696 	tail.fc_crc = cpu_to_le32(crc);
697 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
698 	dst += sizeof(tail.fc_crc);
699 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
700 
701 	ext4_fc_submit_bh(sb);
702 
703 	return 0;
704 }
705 
706 /*
707  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
708  * Returns false if there's not enough space.
709  */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)710 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
711 			   u32 *crc)
712 {
713 	struct ext4_fc_tl tl;
714 	u8 *dst;
715 
716 	dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
717 	if (!dst)
718 		return false;
719 
720 	tl.fc_tag = cpu_to_le16(tag);
721 	tl.fc_len = cpu_to_le16(len);
722 
723 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
724 	ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
725 
726 	return true;
727 }
728 
729 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u16 tag,int parent_ino,int ino,int dlen,const unsigned char * dname,u32 * crc)730 static  bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
731 					int parent_ino, int ino, int dlen,
732 					const unsigned char *dname,
733 					u32 *crc)
734 {
735 	struct ext4_fc_dentry_info fcd;
736 	struct ext4_fc_tl tl;
737 	u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
738 					crc);
739 
740 	if (!dst)
741 		return false;
742 
743 	fcd.fc_parent_ino = cpu_to_le32(parent_ino);
744 	fcd.fc_ino = cpu_to_le32(ino);
745 	tl.fc_tag = cpu_to_le16(tag);
746 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
747 	ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
748 	dst += sizeof(tl);
749 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
750 	dst += sizeof(fcd);
751 	ext4_fc_memcpy(sb, dst, dname, dlen, crc);
752 	dst += dlen;
753 
754 	return true;
755 }
756 
757 /*
758  * Writes inode in the fast commit space under TLV with tag @tag.
759  * Returns 0 on success, error on failure.
760  */
ext4_fc_write_inode(struct inode * inode,u32 * crc)761 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
762 {
763 	struct ext4_inode_info *ei = EXT4_I(inode);
764 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
765 	int ret;
766 	struct ext4_iloc iloc;
767 	struct ext4_fc_inode fc_inode;
768 	struct ext4_fc_tl tl;
769 	u8 *dst;
770 
771 	ret = ext4_get_inode_loc(inode, &iloc);
772 	if (ret)
773 		return ret;
774 
775 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
776 		inode_len += ei->i_extra_isize;
777 
778 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
779 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
780 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
781 
782 	ret = -ECANCELED;
783 	dst = ext4_fc_reserve_space(inode->i_sb,
784 			sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
785 	if (!dst)
786 		goto err;
787 
788 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
789 		goto err;
790 	dst += sizeof(tl);
791 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
792 		goto err;
793 	dst += sizeof(fc_inode);
794 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
795 					inode_len, crc))
796 		goto err;
797 	ret = 0;
798 err:
799 	brelse(iloc.bh);
800 	return ret;
801 }
802 
803 /*
804  * Writes updated data ranges for the inode in question. Updates CRC.
805  * Returns 0 on success, error otherwise.
806  */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)807 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
808 {
809 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
810 	struct ext4_inode_info *ei = EXT4_I(inode);
811 	struct ext4_map_blocks map;
812 	struct ext4_fc_add_range fc_ext;
813 	struct ext4_fc_del_range lrange;
814 	struct ext4_extent *ex;
815 	int ret;
816 
817 	mutex_lock(&ei->i_fc_lock);
818 	if (ei->i_fc_lblk_len == 0) {
819 		mutex_unlock(&ei->i_fc_lock);
820 		return 0;
821 	}
822 	old_blk_size = ei->i_fc_lblk_start;
823 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
824 	ei->i_fc_lblk_len = 0;
825 	mutex_unlock(&ei->i_fc_lock);
826 
827 	cur_lblk_off = old_blk_size;
828 	jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
829 		  __func__, cur_lblk_off, new_blk_size, inode->i_ino);
830 
831 	while (cur_lblk_off <= new_blk_size) {
832 		map.m_lblk = cur_lblk_off;
833 		map.m_len = new_blk_size - cur_lblk_off + 1;
834 		ret = ext4_map_blocks(NULL, inode, &map, 0);
835 		if (ret < 0)
836 			return -ECANCELED;
837 
838 		if (map.m_len == 0) {
839 			cur_lblk_off++;
840 			continue;
841 		}
842 
843 		if (ret == 0) {
844 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
845 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
846 			lrange.fc_len = cpu_to_le32(map.m_len);
847 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
848 					    sizeof(lrange), (u8 *)&lrange, crc))
849 				return -ENOSPC;
850 		} else {
851 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
852 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
853 
854 			/* Limit the number of blocks in one extent */
855 			map.m_len = min(max, map.m_len);
856 
857 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
858 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
859 			ex->ee_block = cpu_to_le32(map.m_lblk);
860 			ex->ee_len = cpu_to_le16(map.m_len);
861 			ext4_ext_store_pblock(ex, map.m_pblk);
862 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
863 				ext4_ext_mark_unwritten(ex);
864 			else
865 				ext4_ext_mark_initialized(ex);
866 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
867 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
868 				return -ENOSPC;
869 		}
870 
871 		cur_lblk_off += map.m_len;
872 	}
873 
874 	return 0;
875 }
876 
877 
878 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)879 static int ext4_fc_submit_inode_data_all(journal_t *journal)
880 {
881 	struct super_block *sb = (struct super_block *)(journal->j_private);
882 	struct ext4_sb_info *sbi = EXT4_SB(sb);
883 	struct ext4_inode_info *ei;
884 	struct list_head *pos;
885 	int ret = 0;
886 
887 	spin_lock(&sbi->s_fc_lock);
888 	ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
889 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
890 		ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
891 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
892 		while (atomic_read(&ei->i_fc_updates)) {
893 			DEFINE_WAIT(wait);
894 
895 			prepare_to_wait(&ei->i_fc_wait, &wait,
896 						TASK_UNINTERRUPTIBLE);
897 			if (atomic_read(&ei->i_fc_updates)) {
898 				spin_unlock(&sbi->s_fc_lock);
899 				schedule();
900 				spin_lock(&sbi->s_fc_lock);
901 			}
902 			finish_wait(&ei->i_fc_wait, &wait);
903 		}
904 		spin_unlock(&sbi->s_fc_lock);
905 		ret = jbd2_submit_inode_data(ei->jinode);
906 		if (ret)
907 			return ret;
908 		spin_lock(&sbi->s_fc_lock);
909 	}
910 	spin_unlock(&sbi->s_fc_lock);
911 
912 	return ret;
913 }
914 
915 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)916 static int ext4_fc_wait_inode_data_all(journal_t *journal)
917 {
918 	struct super_block *sb = (struct super_block *)(journal->j_private);
919 	struct ext4_sb_info *sbi = EXT4_SB(sb);
920 	struct ext4_inode_info *pos, *n;
921 	int ret = 0;
922 
923 	spin_lock(&sbi->s_fc_lock);
924 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
925 		if (!ext4_test_inode_state(&pos->vfs_inode,
926 					   EXT4_STATE_FC_COMMITTING))
927 			continue;
928 		spin_unlock(&sbi->s_fc_lock);
929 
930 		ret = jbd2_wait_inode_data(journal, pos->jinode);
931 		if (ret)
932 			return ret;
933 		spin_lock(&sbi->s_fc_lock);
934 	}
935 	spin_unlock(&sbi->s_fc_lock);
936 
937 	return 0;
938 }
939 
940 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)941 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
942 __acquires(&sbi->s_fc_lock)
943 __releases(&sbi->s_fc_lock)
944 {
945 	struct super_block *sb = (struct super_block *)(journal->j_private);
946 	struct ext4_sb_info *sbi = EXT4_SB(sb);
947 	struct ext4_fc_dentry_update *fc_dentry;
948 	struct inode *inode;
949 	struct list_head *pos, *n, *fcd_pos, *fcd_n;
950 	struct ext4_inode_info *ei;
951 	int ret;
952 
953 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
954 		return 0;
955 	list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
956 		fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
957 					fcd_list);
958 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
959 			spin_unlock(&sbi->s_fc_lock);
960 			if (!ext4_fc_add_dentry_tlv(
961 				sb, fc_dentry->fcd_op,
962 				fc_dentry->fcd_parent, fc_dentry->fcd_ino,
963 				fc_dentry->fcd_name.len,
964 				fc_dentry->fcd_name.name, crc)) {
965 				ret = -ENOSPC;
966 				goto lock_and_exit;
967 			}
968 			spin_lock(&sbi->s_fc_lock);
969 			continue;
970 		}
971 
972 		inode = NULL;
973 		list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
974 			ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
975 			if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
976 				inode = &ei->vfs_inode;
977 				break;
978 			}
979 		}
980 		/*
981 		 * If we don't find inode in our list, then it was deleted,
982 		 * in which case, we don't need to record it's create tag.
983 		 */
984 		if (!inode)
985 			continue;
986 		spin_unlock(&sbi->s_fc_lock);
987 
988 		/*
989 		 * We first write the inode and then the create dirent. This
990 		 * allows the recovery code to create an unnamed inode first
991 		 * and then link it to a directory entry. This allows us
992 		 * to use namei.c routines almost as is and simplifies
993 		 * the recovery code.
994 		 */
995 		ret = ext4_fc_write_inode(inode, crc);
996 		if (ret)
997 			goto lock_and_exit;
998 
999 		ret = ext4_fc_write_inode_data(inode, crc);
1000 		if (ret)
1001 			goto lock_and_exit;
1002 
1003 		if (!ext4_fc_add_dentry_tlv(
1004 			sb, fc_dentry->fcd_op,
1005 			fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1006 			fc_dentry->fcd_name.len,
1007 			fc_dentry->fcd_name.name, crc)) {
1008 			ret = -ENOSPC;
1009 			goto lock_and_exit;
1010 		}
1011 
1012 		spin_lock(&sbi->s_fc_lock);
1013 	}
1014 	return 0;
1015 lock_and_exit:
1016 	spin_lock(&sbi->s_fc_lock);
1017 	return ret;
1018 }
1019 
ext4_fc_perform_commit(journal_t * journal)1020 static int ext4_fc_perform_commit(journal_t *journal)
1021 {
1022 	struct super_block *sb = (struct super_block *)(journal->j_private);
1023 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1024 	struct ext4_inode_info *iter;
1025 	struct ext4_fc_head head;
1026 	struct list_head *pos;
1027 	struct inode *inode;
1028 	struct blk_plug plug;
1029 	int ret = 0;
1030 	u32 crc = 0;
1031 
1032 	ret = ext4_fc_submit_inode_data_all(journal);
1033 	if (ret)
1034 		return ret;
1035 
1036 	ret = ext4_fc_wait_inode_data_all(journal);
1037 	if (ret)
1038 		return ret;
1039 
1040 	/*
1041 	 * If file system device is different from journal device, issue a cache
1042 	 * flush before we start writing fast commit blocks.
1043 	 */
1044 	if (journal->j_fs_dev != journal->j_dev)
1045 		blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS);
1046 
1047 	blk_start_plug(&plug);
1048 	if (sbi->s_fc_bytes == 0) {
1049 		/*
1050 		 * Add a head tag only if this is the first fast commit
1051 		 * in this TID.
1052 		 */
1053 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1054 		head.fc_tid = cpu_to_le32(
1055 			sbi->s_journal->j_running_transaction->t_tid);
1056 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1057 			(u8 *)&head, &crc)) {
1058 			ret = -ENOSPC;
1059 			goto out;
1060 		}
1061 	}
1062 
1063 	spin_lock(&sbi->s_fc_lock);
1064 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1065 	if (ret) {
1066 		spin_unlock(&sbi->s_fc_lock);
1067 		goto out;
1068 	}
1069 
1070 	list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1071 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1072 		inode = &iter->vfs_inode;
1073 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1074 			continue;
1075 
1076 		spin_unlock(&sbi->s_fc_lock);
1077 		ret = ext4_fc_write_inode_data(inode, &crc);
1078 		if (ret)
1079 			goto out;
1080 		ret = ext4_fc_write_inode(inode, &crc);
1081 		if (ret)
1082 			goto out;
1083 		spin_lock(&sbi->s_fc_lock);
1084 	}
1085 	spin_unlock(&sbi->s_fc_lock);
1086 
1087 	ret = ext4_fc_write_tail(sb, crc);
1088 
1089 out:
1090 	blk_finish_plug(&plug);
1091 	return ret;
1092 }
1093 
1094 /*
1095  * The main commit entry point. Performs a fast commit for transaction
1096  * commit_tid if needed. If it's not possible to perform a fast commit
1097  * due to various reasons, we fall back to full commit. Returns 0
1098  * on success, error otherwise.
1099  */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1100 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1101 {
1102 	struct super_block *sb = (struct super_block *)(journal->j_private);
1103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1104 	int nblks = 0, ret, bsize = journal->j_blocksize;
1105 	int subtid = atomic_read(&sbi->s_fc_subtid);
1106 	int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1107 	ktime_t start_time, commit_time;
1108 
1109 	trace_ext4_fc_commit_start(sb);
1110 
1111 	start_time = ktime_get();
1112 
1113 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1114 		(ext4_fc_is_ineligible(sb))) {
1115 		reason = EXT4_FC_REASON_INELIGIBLE;
1116 		goto out;
1117 	}
1118 
1119 restart_fc:
1120 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1121 	if (ret == -EALREADY) {
1122 		/* There was an ongoing commit, check if we need to restart */
1123 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1124 			commit_tid > journal->j_commit_sequence)
1125 			goto restart_fc;
1126 		reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1127 		goto out;
1128 	} else if (ret) {
1129 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1130 		reason = EXT4_FC_REASON_FC_START_FAILED;
1131 		goto out;
1132 	}
1133 
1134 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1135 	ret = ext4_fc_perform_commit(journal);
1136 	if (ret < 0) {
1137 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1138 		reason = EXT4_FC_REASON_FC_FAILED;
1139 		goto out;
1140 	}
1141 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1142 	ret = jbd2_fc_wait_bufs(journal, nblks);
1143 	if (ret < 0) {
1144 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1145 		reason = EXT4_FC_REASON_FC_FAILED;
1146 		goto out;
1147 	}
1148 	atomic_inc(&sbi->s_fc_subtid);
1149 	jbd2_fc_end_commit(journal);
1150 out:
1151 	/* Has any ineligible update happened since we started? */
1152 	if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1153 		sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1154 		reason = EXT4_FC_REASON_INELIGIBLE;
1155 	}
1156 
1157 	spin_lock(&sbi->s_fc_lock);
1158 	if (reason != EXT4_FC_REASON_OK &&
1159 		reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1160 		sbi->s_fc_stats.fc_ineligible_commits++;
1161 	} else {
1162 		sbi->s_fc_stats.fc_num_commits++;
1163 		sbi->s_fc_stats.fc_numblks += nblks;
1164 	}
1165 	spin_unlock(&sbi->s_fc_lock);
1166 	nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1167 	trace_ext4_fc_commit_stop(sb, nblks, reason);
1168 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1169 	/*
1170 	 * weight the commit time higher than the average time so we don't
1171 	 * react too strongly to vast changes in the commit time
1172 	 */
1173 	if (likely(sbi->s_fc_avg_commit_time))
1174 		sbi->s_fc_avg_commit_time = (commit_time +
1175 				sbi->s_fc_avg_commit_time * 3) / 4;
1176 	else
1177 		sbi->s_fc_avg_commit_time = commit_time;
1178 	jbd_debug(1,
1179 		"Fast commit ended with blks = %d, reason = %d, subtid - %d",
1180 		nblks, reason, subtid);
1181 	if (reason == EXT4_FC_REASON_FC_FAILED)
1182 		return jbd2_fc_end_commit_fallback(journal);
1183 	if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1184 		reason == EXT4_FC_REASON_INELIGIBLE)
1185 		return jbd2_complete_transaction(journal, commit_tid);
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Fast commit cleanup routine. This is called after every fast commit and
1191  * full commit. full is true if we are called after a full commit.
1192  */
ext4_fc_cleanup(journal_t * journal,int full)1193 static void ext4_fc_cleanup(journal_t *journal, int full)
1194 {
1195 	struct super_block *sb = journal->j_private;
1196 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1197 	struct ext4_inode_info *iter;
1198 	struct ext4_fc_dentry_update *fc_dentry;
1199 	struct list_head *pos, *n;
1200 
1201 	if (full && sbi->s_fc_bh)
1202 		sbi->s_fc_bh = NULL;
1203 
1204 	jbd2_fc_release_bufs(journal);
1205 
1206 	spin_lock(&sbi->s_fc_lock);
1207 	list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1208 		iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1209 		list_del_init(&iter->i_fc_list);
1210 		ext4_clear_inode_state(&iter->vfs_inode,
1211 				       EXT4_STATE_FC_COMMITTING);
1212 		ext4_fc_reset_inode(&iter->vfs_inode);
1213 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1214 		smp_mb();
1215 #if (BITS_PER_LONG < 64)
1216 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1217 #else
1218 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1219 #endif
1220 	}
1221 
1222 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1223 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1224 					     struct ext4_fc_dentry_update,
1225 					     fcd_list);
1226 		list_del_init(&fc_dentry->fcd_list);
1227 		spin_unlock(&sbi->s_fc_lock);
1228 
1229 		if (fc_dentry->fcd_name.name &&
1230 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1231 			kfree(fc_dentry->fcd_name.name);
1232 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1233 		spin_lock(&sbi->s_fc_lock);
1234 	}
1235 
1236 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1237 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1238 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1239 				&sbi->s_fc_q[FC_Q_MAIN]);
1240 
1241 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1242 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1243 
1244 	if (full)
1245 		sbi->s_fc_bytes = 0;
1246 	spin_unlock(&sbi->s_fc_lock);
1247 	trace_ext4_fc_stats(sb);
1248 }
1249 
1250 /* Ext4 Replay Path Routines */
1251 
1252 /* Helper struct for dentry replay routines */
1253 struct dentry_info_args {
1254 	int parent_ino, dname_len, ino, inode_len;
1255 	char *dname;
1256 };
1257 
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl * tl,u8 * val)1258 static inline void tl_to_darg(struct dentry_info_args *darg,
1259 			      struct  ext4_fc_tl *tl, u8 *val)
1260 {
1261 	struct ext4_fc_dentry_info fcd;
1262 
1263 	memcpy(&fcd, val, sizeof(fcd));
1264 
1265 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1266 	darg->ino = le32_to_cpu(fcd.fc_ino);
1267 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1268 	darg->dname_len = le16_to_cpu(tl->fc_len) -
1269 		sizeof(struct ext4_fc_dentry_info);
1270 }
1271 
1272 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1273 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1274 				 u8 *val)
1275 {
1276 	struct inode *inode, *old_parent;
1277 	struct qstr entry;
1278 	struct dentry_info_args darg;
1279 	int ret = 0;
1280 
1281 	tl_to_darg(&darg, tl, val);
1282 
1283 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1284 			darg.parent_ino, darg.dname_len);
1285 
1286 	entry.name = darg.dname;
1287 	entry.len = darg.dname_len;
1288 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1289 
1290 	if (IS_ERR(inode)) {
1291 		jbd_debug(1, "Inode %d not found", darg.ino);
1292 		return 0;
1293 	}
1294 
1295 	old_parent = ext4_iget(sb, darg.parent_ino,
1296 				EXT4_IGET_NORMAL);
1297 	if (IS_ERR(old_parent)) {
1298 		jbd_debug(1, "Dir with inode  %d not found", darg.parent_ino);
1299 		iput(inode);
1300 		return 0;
1301 	}
1302 
1303 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1304 	/* -ENOENT ok coz it might not exist anymore. */
1305 	if (ret == -ENOENT)
1306 		ret = 0;
1307 	iput(old_parent);
1308 	iput(inode);
1309 	return ret;
1310 }
1311 
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1312 static int ext4_fc_replay_link_internal(struct super_block *sb,
1313 				struct dentry_info_args *darg,
1314 				struct inode *inode)
1315 {
1316 	struct inode *dir = NULL;
1317 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1318 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1319 	int ret = 0;
1320 
1321 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1322 	if (IS_ERR(dir)) {
1323 		jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1324 		dir = NULL;
1325 		goto out;
1326 	}
1327 
1328 	dentry_dir = d_obtain_alias(dir);
1329 	if (IS_ERR(dentry_dir)) {
1330 		jbd_debug(1, "Failed to obtain dentry");
1331 		dentry_dir = NULL;
1332 		goto out;
1333 	}
1334 
1335 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1336 	if (!dentry_inode) {
1337 		jbd_debug(1, "Inode dentry not created.");
1338 		ret = -ENOMEM;
1339 		goto out;
1340 	}
1341 
1342 	ret = __ext4_link(dir, inode, dentry_inode);
1343 	/*
1344 	 * It's possible that link already existed since data blocks
1345 	 * for the dir in question got persisted before we crashed OR
1346 	 * we replayed this tag and crashed before the entire replay
1347 	 * could complete.
1348 	 */
1349 	if (ret && ret != -EEXIST) {
1350 		jbd_debug(1, "Failed to link\n");
1351 		goto out;
1352 	}
1353 
1354 	ret = 0;
1355 out:
1356 	if (dentry_dir) {
1357 		d_drop(dentry_dir);
1358 		dput(dentry_dir);
1359 	} else if (dir) {
1360 		iput(dir);
1361 	}
1362 	if (dentry_inode) {
1363 		d_drop(dentry_inode);
1364 		dput(dentry_inode);
1365 	}
1366 
1367 	return ret;
1368 }
1369 
1370 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1371 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1372 			       u8 *val)
1373 {
1374 	struct inode *inode;
1375 	struct dentry_info_args darg;
1376 	int ret = 0;
1377 
1378 	tl_to_darg(&darg, tl, val);
1379 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1380 			darg.parent_ino, darg.dname_len);
1381 
1382 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1383 	if (IS_ERR(inode)) {
1384 		jbd_debug(1, "Inode not found.");
1385 		return 0;
1386 	}
1387 
1388 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1389 	iput(inode);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * Record all the modified inodes during replay. We use this later to setup
1395  * block bitmaps correctly.
1396  */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1397 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1398 {
1399 	struct ext4_fc_replay_state *state;
1400 	int i;
1401 
1402 	state = &EXT4_SB(sb)->s_fc_replay_state;
1403 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1404 		if (state->fc_modified_inodes[i] == ino)
1405 			return 0;
1406 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1407 		int *fc_modified_inodes;
1408 
1409 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1410 				sizeof(int) * (state->fc_modified_inodes_size +
1411 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1412 				GFP_KERNEL);
1413 		if (!fc_modified_inodes)
1414 			return -ENOMEM;
1415 		state->fc_modified_inodes = fc_modified_inodes;
1416 		state->fc_modified_inodes_size +=
1417 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1418 	}
1419 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1420 	return 0;
1421 }
1422 
1423 /*
1424  * Inode replay function
1425  */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1426 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1427 				u8 *val)
1428 {
1429 	struct ext4_fc_inode fc_inode;
1430 	struct ext4_inode *raw_inode;
1431 	struct ext4_inode *raw_fc_inode;
1432 	struct inode *inode = NULL;
1433 	struct ext4_iloc iloc;
1434 	int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1435 	struct ext4_extent_header *eh;
1436 
1437 	memcpy(&fc_inode, val, sizeof(fc_inode));
1438 
1439 	ino = le32_to_cpu(fc_inode.fc_ino);
1440 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1441 
1442 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1443 	if (!IS_ERR(inode)) {
1444 		ext4_ext_clear_bb(inode);
1445 		iput(inode);
1446 	}
1447 	inode = NULL;
1448 
1449 	ret = ext4_fc_record_modified_inode(sb, ino);
1450 	if (ret)
1451 		goto out;
1452 
1453 	raw_fc_inode = (struct ext4_inode *)
1454 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1455 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1456 	if (ret)
1457 		goto out;
1458 
1459 	inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1460 	raw_inode = ext4_raw_inode(&iloc);
1461 
1462 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1463 	memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1464 		inode_len - offsetof(struct ext4_inode, i_generation));
1465 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1466 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1467 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1468 			memset(eh, 0, sizeof(*eh));
1469 			eh->eh_magic = EXT4_EXT_MAGIC;
1470 			eh->eh_max = cpu_to_le16(
1471 				(sizeof(raw_inode->i_block) -
1472 				 sizeof(struct ext4_extent_header))
1473 				 / sizeof(struct ext4_extent));
1474 		}
1475 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1476 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1477 			sizeof(raw_inode->i_block));
1478 	}
1479 
1480 	/* Immediately update the inode on disk. */
1481 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1482 	if (ret)
1483 		goto out;
1484 	ret = sync_dirty_buffer(iloc.bh);
1485 	if (ret)
1486 		goto out;
1487 	ret = ext4_mark_inode_used(sb, ino);
1488 	if (ret)
1489 		goto out;
1490 
1491 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1492 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1493 	if (IS_ERR(inode)) {
1494 		jbd_debug(1, "Inode not found.");
1495 		return -EFSCORRUPTED;
1496 	}
1497 
1498 	/*
1499 	 * Our allocator could have made different decisions than before
1500 	 * crashing. This should be fixed but until then, we calculate
1501 	 * the number of blocks the inode.
1502 	 */
1503 	ext4_ext_replay_set_iblocks(inode);
1504 
1505 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1506 	ext4_reset_inode_seed(inode);
1507 
1508 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1509 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1510 	sync_dirty_buffer(iloc.bh);
1511 	brelse(iloc.bh);
1512 out:
1513 	iput(inode);
1514 	if (!ret)
1515 		blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1516 
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Dentry create replay function.
1522  *
1523  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1524  * inode for which we are trying to create a dentry here, should already have
1525  * been replayed before we start here.
1526  */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1527 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1528 				 u8 *val)
1529 {
1530 	int ret = 0;
1531 	struct inode *inode = NULL;
1532 	struct inode *dir = NULL;
1533 	struct dentry_info_args darg;
1534 
1535 	tl_to_darg(&darg, tl, val);
1536 
1537 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1538 			darg.parent_ino, darg.dname_len);
1539 
1540 	/* This takes care of update group descriptor and other metadata */
1541 	ret = ext4_mark_inode_used(sb, darg.ino);
1542 	if (ret)
1543 		goto out;
1544 
1545 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1546 	if (IS_ERR(inode)) {
1547 		jbd_debug(1, "inode %d not found.", darg.ino);
1548 		inode = NULL;
1549 		ret = -EINVAL;
1550 		goto out;
1551 	}
1552 
1553 	if (S_ISDIR(inode->i_mode)) {
1554 		/*
1555 		 * If we are creating a directory, we need to make sure that the
1556 		 * dot and dot dot dirents are setup properly.
1557 		 */
1558 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1559 		if (IS_ERR(dir)) {
1560 			jbd_debug(1, "Dir %d not found.", darg.ino);
1561 			goto out;
1562 		}
1563 		ret = ext4_init_new_dir(NULL, dir, inode);
1564 		iput(dir);
1565 		if (ret) {
1566 			ret = 0;
1567 			goto out;
1568 		}
1569 	}
1570 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1571 	if (ret)
1572 		goto out;
1573 	set_nlink(inode, 1);
1574 	ext4_mark_inode_dirty(NULL, inode);
1575 out:
1576 	if (inode)
1577 		iput(inode);
1578 	return ret;
1579 }
1580 
1581 /*
1582  * Record physical disk regions which are in use as per fast commit area,
1583  * and used by inodes during replay phase. Our simple replay phase
1584  * allocator excludes these regions from allocation.
1585  */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1586 int ext4_fc_record_regions(struct super_block *sb, int ino,
1587 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1588 {
1589 	struct ext4_fc_replay_state *state;
1590 	struct ext4_fc_alloc_region *region;
1591 
1592 	state = &EXT4_SB(sb)->s_fc_replay_state;
1593 	/*
1594 	 * during replay phase, the fc_regions_valid may not same as
1595 	 * fc_regions_used, update it when do new additions.
1596 	 */
1597 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1598 		state->fc_regions_used = state->fc_regions_valid;
1599 	if (state->fc_regions_used == state->fc_regions_size) {
1600 		struct ext4_fc_alloc_region *fc_regions;
1601 
1602 		fc_regions = krealloc(state->fc_regions,
1603 				      sizeof(struct ext4_fc_alloc_region) *
1604 				      (state->fc_regions_size +
1605 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1606 				      GFP_KERNEL);
1607 		if (!fc_regions)
1608 			return -ENOMEM;
1609 		state->fc_regions_size +=
1610 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1611 		state->fc_regions = fc_regions;
1612 	}
1613 	region = &state->fc_regions[state->fc_regions_used++];
1614 	region->ino = ino;
1615 	region->lblk = lblk;
1616 	region->pblk = pblk;
1617 	region->len = len;
1618 
1619 	if (replay)
1620 		state->fc_regions_valid++;
1621 
1622 	return 0;
1623 }
1624 
1625 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1626 static int ext4_fc_replay_add_range(struct super_block *sb,
1627 				    struct ext4_fc_tl *tl, u8 *val)
1628 {
1629 	struct ext4_fc_add_range fc_add_ex;
1630 	struct ext4_extent newex, *ex;
1631 	struct inode *inode;
1632 	ext4_lblk_t start, cur;
1633 	int remaining, len;
1634 	ext4_fsblk_t start_pblk;
1635 	struct ext4_map_blocks map;
1636 	struct ext4_ext_path *path = NULL;
1637 	int ret;
1638 
1639 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1640 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1641 
1642 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1643 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1644 		ext4_ext_get_actual_len(ex));
1645 
1646 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1647 	if (IS_ERR(inode)) {
1648 		jbd_debug(1, "Inode not found.");
1649 		return 0;
1650 	}
1651 
1652 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1653 	if (ret)
1654 		goto out;
1655 
1656 	start = le32_to_cpu(ex->ee_block);
1657 	start_pblk = ext4_ext_pblock(ex);
1658 	len = ext4_ext_get_actual_len(ex);
1659 
1660 	cur = start;
1661 	remaining = len;
1662 	jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1663 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1664 		  inode->i_ino);
1665 
1666 	while (remaining > 0) {
1667 		map.m_lblk = cur;
1668 		map.m_len = remaining;
1669 		map.m_pblk = 0;
1670 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1671 
1672 		if (ret < 0)
1673 			goto out;
1674 
1675 		if (ret == 0) {
1676 			/* Range is not mapped */
1677 			path = ext4_find_extent(inode, cur, NULL, 0);
1678 			if (IS_ERR(path))
1679 				goto out;
1680 			memset(&newex, 0, sizeof(newex));
1681 			newex.ee_block = cpu_to_le32(cur);
1682 			ext4_ext_store_pblock(
1683 				&newex, start_pblk + cur - start);
1684 			newex.ee_len = cpu_to_le16(map.m_len);
1685 			if (ext4_ext_is_unwritten(ex))
1686 				ext4_ext_mark_unwritten(&newex);
1687 			down_write(&EXT4_I(inode)->i_data_sem);
1688 			ret = ext4_ext_insert_extent(
1689 				NULL, inode, &path, &newex, 0);
1690 			up_write((&EXT4_I(inode)->i_data_sem));
1691 			ext4_ext_drop_refs(path);
1692 			kfree(path);
1693 			if (ret)
1694 				goto out;
1695 			goto next;
1696 		}
1697 
1698 		if (start_pblk + cur - start != map.m_pblk) {
1699 			/*
1700 			 * Logical to physical mapping changed. This can happen
1701 			 * if this range was removed and then reallocated to
1702 			 * map to new physical blocks during a fast commit.
1703 			 */
1704 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1705 					ext4_ext_is_unwritten(ex),
1706 					start_pblk + cur - start);
1707 			if (ret)
1708 				goto out;
1709 			/*
1710 			 * Mark the old blocks as free since they aren't used
1711 			 * anymore. We maintain an array of all the modified
1712 			 * inodes. In case these blocks are still used at either
1713 			 * a different logical range in the same inode or in
1714 			 * some different inode, we will mark them as allocated
1715 			 * at the end of the FC replay using our array of
1716 			 * modified inodes.
1717 			 */
1718 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1719 			goto next;
1720 		}
1721 
1722 		/* Range is mapped and needs a state change */
1723 		jbd_debug(1, "Converting from %ld to %d %lld",
1724 				map.m_flags & EXT4_MAP_UNWRITTEN,
1725 			ext4_ext_is_unwritten(ex), map.m_pblk);
1726 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1727 					ext4_ext_is_unwritten(ex), map.m_pblk);
1728 		if (ret)
1729 			goto out;
1730 		/*
1731 		 * We may have split the extent tree while toggling the state.
1732 		 * Try to shrink the extent tree now.
1733 		 */
1734 		ext4_ext_replay_shrink_inode(inode, start + len);
1735 next:
1736 		cur += map.m_len;
1737 		remaining -= map.m_len;
1738 	}
1739 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1740 					sb->s_blocksize_bits);
1741 out:
1742 	iput(inode);
1743 	return 0;
1744 }
1745 
1746 /* Replay DEL_RANGE tag */
1747 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1748 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1749 			 u8 *val)
1750 {
1751 	struct inode *inode;
1752 	struct ext4_fc_del_range lrange;
1753 	struct ext4_map_blocks map;
1754 	ext4_lblk_t cur, remaining;
1755 	int ret;
1756 
1757 	memcpy(&lrange, val, sizeof(lrange));
1758 	cur = le32_to_cpu(lrange.fc_lblk);
1759 	remaining = le32_to_cpu(lrange.fc_len);
1760 
1761 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1762 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1763 
1764 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1765 	if (IS_ERR(inode)) {
1766 		jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1767 		return 0;
1768 	}
1769 
1770 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1771 	if (ret)
1772 		goto out;
1773 
1774 	jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1775 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1776 			le32_to_cpu(lrange.fc_len));
1777 	while (remaining > 0) {
1778 		map.m_lblk = cur;
1779 		map.m_len = remaining;
1780 
1781 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1782 		if (ret < 0)
1783 			goto out;
1784 		if (ret > 0) {
1785 			remaining -= ret;
1786 			cur += ret;
1787 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1788 		} else {
1789 			remaining -= map.m_len;
1790 			cur += map.m_len;
1791 		}
1792 	}
1793 
1794 	down_write(&EXT4_I(inode)->i_data_sem);
1795 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1796 				le32_to_cpu(lrange.fc_lblk) +
1797 				le32_to_cpu(lrange.fc_len) - 1);
1798 	up_write(&EXT4_I(inode)->i_data_sem);
1799 	if (ret)
1800 		goto out;
1801 	ext4_ext_replay_shrink_inode(inode,
1802 		i_size_read(inode) >> sb->s_blocksize_bits);
1803 	ext4_mark_inode_dirty(NULL, inode);
1804 out:
1805 	iput(inode);
1806 	return 0;
1807 }
1808 
tag2str(u16 tag)1809 static inline const char *tag2str(u16 tag)
1810 {
1811 	switch (tag) {
1812 	case EXT4_FC_TAG_LINK:
1813 		return "TAG_ADD_ENTRY";
1814 	case EXT4_FC_TAG_UNLINK:
1815 		return "TAG_DEL_ENTRY";
1816 	case EXT4_FC_TAG_ADD_RANGE:
1817 		return "TAG_ADD_RANGE";
1818 	case EXT4_FC_TAG_CREAT:
1819 		return "TAG_CREAT_DENTRY";
1820 	case EXT4_FC_TAG_DEL_RANGE:
1821 		return "TAG_DEL_RANGE";
1822 	case EXT4_FC_TAG_INODE:
1823 		return "TAG_INODE";
1824 	case EXT4_FC_TAG_PAD:
1825 		return "TAG_PAD";
1826 	case EXT4_FC_TAG_TAIL:
1827 		return "TAG_TAIL";
1828 	case EXT4_FC_TAG_HEAD:
1829 		return "TAG_HEAD";
1830 	default:
1831 		return "TAG_ERROR";
1832 	}
1833 }
1834 
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1835 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1836 {
1837 	struct ext4_fc_replay_state *state;
1838 	struct inode *inode;
1839 	struct ext4_ext_path *path = NULL;
1840 	struct ext4_map_blocks map;
1841 	int i, ret, j;
1842 	ext4_lblk_t cur, end;
1843 
1844 	state = &EXT4_SB(sb)->s_fc_replay_state;
1845 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1846 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1847 			EXT4_IGET_NORMAL);
1848 		if (IS_ERR(inode)) {
1849 			jbd_debug(1, "Inode %d not found.",
1850 				state->fc_modified_inodes[i]);
1851 			continue;
1852 		}
1853 		cur = 0;
1854 		end = EXT_MAX_BLOCKS;
1855 		while (cur < end) {
1856 			map.m_lblk = cur;
1857 			map.m_len = end - cur;
1858 
1859 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1860 			if (ret < 0)
1861 				break;
1862 
1863 			if (ret > 0) {
1864 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1865 				if (!IS_ERR(path)) {
1866 					for (j = 0; j < path->p_depth; j++)
1867 						ext4_mb_mark_bb(inode->i_sb,
1868 							path[j].p_block, 1, 1);
1869 					ext4_ext_drop_refs(path);
1870 					kfree(path);
1871 				}
1872 				cur += ret;
1873 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1874 							map.m_len, 1);
1875 			} else {
1876 				cur = cur + (map.m_len ? map.m_len : 1);
1877 			}
1878 		}
1879 		iput(inode);
1880 	}
1881 }
1882 
1883 /*
1884  * Check if block is in excluded regions for block allocation. The simple
1885  * allocator that runs during replay phase is calls this function to see
1886  * if it is okay to use a block.
1887  */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1888 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1889 {
1890 	int i;
1891 	struct ext4_fc_replay_state *state;
1892 
1893 	state = &EXT4_SB(sb)->s_fc_replay_state;
1894 	for (i = 0; i < state->fc_regions_valid; i++) {
1895 		if (state->fc_regions[i].ino == 0 ||
1896 			state->fc_regions[i].len == 0)
1897 			continue;
1898 		if (blk >= state->fc_regions[i].pblk &&
1899 		    blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1900 			return true;
1901 	}
1902 	return false;
1903 }
1904 
1905 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1906 void ext4_fc_replay_cleanup(struct super_block *sb)
1907 {
1908 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1909 
1910 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1911 	kfree(sbi->s_fc_replay_state.fc_regions);
1912 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1913 }
1914 
1915 /*
1916  * Recovery Scan phase handler
1917  *
1918  * This function is called during the scan phase and is responsible
1919  * for doing following things:
1920  * - Make sure the fast commit area has valid tags for replay
1921  * - Count number of tags that need to be replayed by the replay handler
1922  * - Verify CRC
1923  * - Create a list of excluded blocks for allocation during replay phase
1924  *
1925  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1926  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1927  * to indicate that scan has finished and JBD2 can now start replay phase.
1928  * It returns a negative error to indicate that there was an error. At the end
1929  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1930  * to indicate the number of tags that need to replayed during the replay phase.
1931  */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)1932 static int ext4_fc_replay_scan(journal_t *journal,
1933 				struct buffer_head *bh, int off,
1934 				tid_t expected_tid)
1935 {
1936 	struct super_block *sb = journal->j_private;
1937 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1938 	struct ext4_fc_replay_state *state;
1939 	int ret = JBD2_FC_REPLAY_CONTINUE;
1940 	struct ext4_fc_add_range ext;
1941 	struct ext4_fc_tl tl;
1942 	struct ext4_fc_tail tail;
1943 	__u8 *start, *end, *cur, *val;
1944 	struct ext4_fc_head head;
1945 	struct ext4_extent *ex;
1946 
1947 	state = &sbi->s_fc_replay_state;
1948 
1949 	start = (u8 *)bh->b_data;
1950 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1951 
1952 	if (state->fc_replay_expected_off == 0) {
1953 		state->fc_cur_tag = 0;
1954 		state->fc_replay_num_tags = 0;
1955 		state->fc_crc = 0;
1956 		state->fc_regions = NULL;
1957 		state->fc_regions_valid = state->fc_regions_used =
1958 			state->fc_regions_size = 0;
1959 		/* Check if we can stop early */
1960 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1961 			!= EXT4_FC_TAG_HEAD)
1962 			return 0;
1963 	}
1964 
1965 	if (off != state->fc_replay_expected_off) {
1966 		ret = -EFSCORRUPTED;
1967 		goto out_err;
1968 	}
1969 
1970 	state->fc_replay_expected_off++;
1971 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1972 		memcpy(&tl, cur, sizeof(tl));
1973 		val = cur + sizeof(tl);
1974 		jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1975 			  tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1976 		switch (le16_to_cpu(tl.fc_tag)) {
1977 		case EXT4_FC_TAG_ADD_RANGE:
1978 			memcpy(&ext, val, sizeof(ext));
1979 			ex = (struct ext4_extent *)&ext.fc_ex;
1980 			ret = ext4_fc_record_regions(sb,
1981 				le32_to_cpu(ext.fc_ino),
1982 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1983 				ext4_ext_get_actual_len(ex), 0);
1984 			if (ret < 0)
1985 				break;
1986 			ret = JBD2_FC_REPLAY_CONTINUE;
1987 			fallthrough;
1988 		case EXT4_FC_TAG_DEL_RANGE:
1989 		case EXT4_FC_TAG_LINK:
1990 		case EXT4_FC_TAG_UNLINK:
1991 		case EXT4_FC_TAG_CREAT:
1992 		case EXT4_FC_TAG_INODE:
1993 		case EXT4_FC_TAG_PAD:
1994 			state->fc_cur_tag++;
1995 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1996 					sizeof(tl) + le16_to_cpu(tl.fc_len));
1997 			break;
1998 		case EXT4_FC_TAG_TAIL:
1999 			state->fc_cur_tag++;
2000 			memcpy(&tail, val, sizeof(tail));
2001 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2002 						sizeof(tl) +
2003 						offsetof(struct ext4_fc_tail,
2004 						fc_crc));
2005 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2006 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2007 				state->fc_replay_num_tags = state->fc_cur_tag;
2008 				state->fc_regions_valid =
2009 					state->fc_regions_used;
2010 			} else {
2011 				ret = state->fc_replay_num_tags ?
2012 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2013 			}
2014 			state->fc_crc = 0;
2015 			break;
2016 		case EXT4_FC_TAG_HEAD:
2017 			memcpy(&head, val, sizeof(head));
2018 			if (le32_to_cpu(head.fc_features) &
2019 				~EXT4_FC_SUPPORTED_FEATURES) {
2020 				ret = -EOPNOTSUPP;
2021 				break;
2022 			}
2023 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2024 				ret = JBD2_FC_REPLAY_STOP;
2025 				break;
2026 			}
2027 			state->fc_cur_tag++;
2028 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2029 					    sizeof(tl) + le16_to_cpu(tl.fc_len));
2030 			break;
2031 		default:
2032 			ret = state->fc_replay_num_tags ?
2033 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2034 		}
2035 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2036 			break;
2037 	}
2038 
2039 out_err:
2040 	trace_ext4_fc_replay_scan(sb, ret, off);
2041 	return ret;
2042 }
2043 
2044 /*
2045  * Main recovery path entry point.
2046  * The meaning of return codes is similar as above.
2047  */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2048 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2049 				enum passtype pass, int off, tid_t expected_tid)
2050 {
2051 	struct super_block *sb = journal->j_private;
2052 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 	struct ext4_fc_tl tl;
2054 	__u8 *start, *end, *cur, *val;
2055 	int ret = JBD2_FC_REPLAY_CONTINUE;
2056 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2057 	struct ext4_fc_tail tail;
2058 
2059 	if (pass == PASS_SCAN) {
2060 		state->fc_current_pass = PASS_SCAN;
2061 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2062 	}
2063 
2064 	if (state->fc_current_pass != pass) {
2065 		state->fc_current_pass = pass;
2066 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2067 	}
2068 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2069 		jbd_debug(1, "Replay stops\n");
2070 		ext4_fc_set_bitmaps_and_counters(sb);
2071 		return 0;
2072 	}
2073 
2074 #ifdef CONFIG_EXT4_DEBUG
2075 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2076 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2077 		return JBD2_FC_REPLAY_STOP;
2078 	}
2079 #endif
2080 
2081 	start = (u8 *)bh->b_data;
2082 	end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2083 
2084 	for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2085 		memcpy(&tl, cur, sizeof(tl));
2086 		val = cur + sizeof(tl);
2087 
2088 		if (state->fc_replay_num_tags == 0) {
2089 			ret = JBD2_FC_REPLAY_STOP;
2090 			ext4_fc_set_bitmaps_and_counters(sb);
2091 			break;
2092 		}
2093 		jbd_debug(3, "Replay phase, tag:%s\n",
2094 				tag2str(le16_to_cpu(tl.fc_tag)));
2095 		state->fc_replay_num_tags--;
2096 		switch (le16_to_cpu(tl.fc_tag)) {
2097 		case EXT4_FC_TAG_LINK:
2098 			ret = ext4_fc_replay_link(sb, &tl, val);
2099 			break;
2100 		case EXT4_FC_TAG_UNLINK:
2101 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2102 			break;
2103 		case EXT4_FC_TAG_ADD_RANGE:
2104 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2105 			break;
2106 		case EXT4_FC_TAG_CREAT:
2107 			ret = ext4_fc_replay_create(sb, &tl, val);
2108 			break;
2109 		case EXT4_FC_TAG_DEL_RANGE:
2110 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2111 			break;
2112 		case EXT4_FC_TAG_INODE:
2113 			ret = ext4_fc_replay_inode(sb, &tl, val);
2114 			break;
2115 		case EXT4_FC_TAG_PAD:
2116 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2117 					     le16_to_cpu(tl.fc_len), 0);
2118 			break;
2119 		case EXT4_FC_TAG_TAIL:
2120 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2121 					     le16_to_cpu(tl.fc_len), 0);
2122 			memcpy(&tail, val, sizeof(tail));
2123 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2124 			break;
2125 		case EXT4_FC_TAG_HEAD:
2126 			break;
2127 		default:
2128 			trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2129 					     le16_to_cpu(tl.fc_len), 0);
2130 			ret = -ECANCELED;
2131 			break;
2132 		}
2133 		if (ret < 0)
2134 			break;
2135 		ret = JBD2_FC_REPLAY_CONTINUE;
2136 	}
2137 	return ret;
2138 }
2139 
ext4_fc_init(struct super_block * sb,journal_t * journal)2140 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2141 {
2142 	/*
2143 	 * We set replay callback even if fast commit disabled because we may
2144 	 * could still have fast commit blocks that need to be replayed even if
2145 	 * fast commit has now been turned off.
2146 	 */
2147 	journal->j_fc_replay_callback = ext4_fc_replay;
2148 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2149 		return;
2150 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2151 }
2152 
2153 static const char * const fc_ineligible_reasons[] = {
2154 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2155 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2156 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2157 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2158 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2159 	[EXT4_FC_REASON_RESIZE] = "Resize",
2160 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2161 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2162 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2163 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2164 };
2165 
ext4_fc_info_show(struct seq_file * seq,void * v)2166 int ext4_fc_info_show(struct seq_file *seq, void *v)
2167 {
2168 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2169 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2170 	int i;
2171 
2172 	if (v != SEQ_START_TOKEN)
2173 		return 0;
2174 
2175 	seq_printf(seq,
2176 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2177 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2178 		   stats->fc_numblks,
2179 		   div_u64(sbi->s_fc_avg_commit_time, 1000));
2180 	seq_puts(seq, "Ineligible reasons:\n");
2181 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2182 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2183 			stats->fc_ineligible_reason_count[i]);
2184 
2185 	return 0;
2186 }
2187 
ext4_fc_init_dentry_cache(void)2188 int __init ext4_fc_init_dentry_cache(void)
2189 {
2190 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2191 					   SLAB_RECLAIM_ACCOUNT);
2192 
2193 	if (ext4_fc_dentry_cachep == NULL)
2194 		return -ENOMEM;
2195 
2196 	return 0;
2197 }
2198 
ext4_fc_destroy_dentry_cache(void)2199 void ext4_fc_destroy_dentry_cache(void)
2200 {
2201 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2202 }
2203