1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligibility is marked by calling one of the
70 * two following functions:
71 *
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 * back to full commit. This is useful in case of transient errors.
74 *
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 * the fast commits happening between ext4_fc_start_ineligible() and
77 * ext4_fc_stop_ineligible() and one fast commit after the call to
78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 * make one more fast commit to fall back to full commit after stop call so
80 * that it guaranteed that the fast commit ineligible operation contained
81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 * followed by at least 1 full commit.
83 *
84 * Atomicity of commits
85 * --------------------
86 * In order to guarantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
93 *
94 * - Create a new file A and remove existing file B
95 * - fsync()
96 * - Append contents to file A
97 * - Truncate file A
98 * - fsync()
99 *
100 * The fast commit space at the end of above operations would look like this:
101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
103 *
104 * Replay code should thus check for all the valid tails in the FC area.
105 *
106 * TODOs
107 * -----
108 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109 * eligible update must be protected within ext4_fc_start_update() and
110 * ext4_fc_stop_update(). These routines are called at much higher
111 * routines. This can be made more fine grained by combining with
112 * ext4_journal_start().
113 *
114 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
115 *
116 * 3) Handle more ineligible cases.
117 */
118
119 #include <trace/events/ext4.h>
120 static struct kmem_cache *ext4_fc_dentry_cachep;
121
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)122 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
123 {
124 BUFFER_TRACE(bh, "");
125 if (uptodate) {
126 ext4_debug("%s: Block %lld up-to-date",
127 __func__, bh->b_blocknr);
128 set_buffer_uptodate(bh);
129 } else {
130 ext4_debug("%s: Block %lld not up-to-date",
131 __func__, bh->b_blocknr);
132 clear_buffer_uptodate(bh);
133 }
134
135 unlock_buffer(bh);
136 }
137
ext4_fc_reset_inode(struct inode * inode)138 static inline void ext4_fc_reset_inode(struct inode *inode)
139 {
140 struct ext4_inode_info *ei = EXT4_I(inode);
141
142 ei->i_fc_lblk_start = 0;
143 ei->i_fc_lblk_len = 0;
144 }
145
ext4_fc_init_inode(struct inode * inode)146 void ext4_fc_init_inode(struct inode *inode)
147 {
148 struct ext4_inode_info *ei = EXT4_I(inode);
149
150 ext4_fc_reset_inode(inode);
151 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152 INIT_LIST_HEAD(&ei->i_fc_list);
153 init_waitqueue_head(&ei->i_fc_wait);
154 atomic_set(&ei->i_fc_updates, 0);
155 }
156
157 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)158 static void ext4_fc_wait_committing_inode(struct inode *inode)
159 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
160 {
161 wait_queue_head_t *wq;
162 struct ext4_inode_info *ei = EXT4_I(inode);
163
164 #if (BITS_PER_LONG < 64)
165 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
166 EXT4_STATE_FC_COMMITTING);
167 wq = bit_waitqueue(&ei->i_state_flags,
168 EXT4_STATE_FC_COMMITTING);
169 #else
170 DEFINE_WAIT_BIT(wait, &ei->i_flags,
171 EXT4_STATE_FC_COMMITTING);
172 wq = bit_waitqueue(&ei->i_flags,
173 EXT4_STATE_FC_COMMITTING);
174 #endif
175 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
176 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
177 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
178 schedule();
179 finish_wait(wq, &wait.wq_entry);
180 }
181
182 /*
183 * Inform Ext4's fast about start of an inode update
184 *
185 * This function is called by the high level call VFS callbacks before
186 * performing any inode update. This function blocks if there's an ongoing
187 * fast commit on the inode in question.
188 */
ext4_fc_start_update(struct inode * inode)189 void ext4_fc_start_update(struct inode *inode)
190 {
191 struct ext4_inode_info *ei = EXT4_I(inode);
192
193 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
194 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
195 return;
196
197 restart:
198 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
199 if (list_empty(&ei->i_fc_list))
200 goto out;
201
202 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
203 ext4_fc_wait_committing_inode(inode);
204 goto restart;
205 }
206 out:
207 atomic_inc(&ei->i_fc_updates);
208 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
209 }
210
211 /*
212 * Stop inode update and wake up waiting fast commits if any.
213 */
ext4_fc_stop_update(struct inode * inode)214 void ext4_fc_stop_update(struct inode *inode)
215 {
216 struct ext4_inode_info *ei = EXT4_I(inode);
217
218 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
219 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
220 return;
221
222 if (atomic_dec_and_test(&ei->i_fc_updates))
223 wake_up_all(&ei->i_fc_wait);
224 }
225
226 /*
227 * Remove inode from fast commit list. If the inode is being committed
228 * we wait until inode commit is done.
229 */
ext4_fc_del(struct inode * inode)230 void ext4_fc_del(struct inode *inode)
231 {
232 struct ext4_inode_info *ei = EXT4_I(inode);
233
234 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
236 return;
237
238 restart:
239 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
240 if (list_empty(&ei->i_fc_list)) {
241 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
242 return;
243 }
244
245 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
246 ext4_fc_wait_committing_inode(inode);
247 goto restart;
248 }
249 list_del_init(&ei->i_fc_list);
250 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
251 }
252
253 /*
254 * Mark file system as fast commit ineligible. This means that next commit
255 * operation would result in a full jbd2 commit.
256 */
ext4_fc_mark_ineligible(struct super_block * sb,int reason)257 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
258 {
259 struct ext4_sb_info *sbi = EXT4_SB(sb);
260
261 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
262 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
263 return;
264
265 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
266 WARN_ON(reason >= EXT4_FC_REASON_MAX);
267 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
268 }
269
270 /*
271 * Start a fast commit ineligible update. Any commits that happen while
272 * such an operation is in progress fall back to full commits.
273 */
ext4_fc_start_ineligible(struct super_block * sb,int reason)274 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
275 {
276 struct ext4_sb_info *sbi = EXT4_SB(sb);
277
278 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
279 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
280 return;
281
282 WARN_ON(reason >= EXT4_FC_REASON_MAX);
283 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
284 atomic_inc(&sbi->s_fc_ineligible_updates);
285 }
286
287 /*
288 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
289 * to ensure that after stopping the ineligible update, at least one full
290 * commit takes place.
291 */
ext4_fc_stop_ineligible(struct super_block * sb)292 void ext4_fc_stop_ineligible(struct super_block *sb)
293 {
294 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
295 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
296 return;
297
298 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
299 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
300 }
301
ext4_fc_is_ineligible(struct super_block * sb)302 static inline int ext4_fc_is_ineligible(struct super_block *sb)
303 {
304 return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
305 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
306 }
307
308 /*
309 * Generic fast commit tracking function. If this is the first time this we are
310 * called after a full commit, we initialize fast commit fields and then call
311 * __fc_track_fn() with update = 0. If we have already been called after a full
312 * commit, we pass update = 1. Based on that, the track function can determine
313 * if it needs to track a field for the first time or if it needs to just
314 * update the previously tracked value.
315 *
316 * If enqueue is set, this function enqueues the inode in fast commit list.
317 */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)318 static int ext4_fc_track_template(
319 handle_t *handle, struct inode *inode,
320 int (*__fc_track_fn)(struct inode *, void *, bool),
321 void *args, int enqueue)
322 {
323 bool update = false;
324 struct ext4_inode_info *ei = EXT4_I(inode);
325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326 tid_t tid = 0;
327 int ret;
328
329 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
330 (sbi->s_mount_state & EXT4_FC_REPLAY))
331 return -EOPNOTSUPP;
332
333 if (ext4_fc_is_ineligible(inode->i_sb))
334 return -EINVAL;
335
336 tid = handle->h_transaction->t_tid;
337 mutex_lock(&ei->i_fc_lock);
338 if (tid == ei->i_sync_tid) {
339 update = true;
340 } else {
341 ext4_fc_reset_inode(inode);
342 ei->i_sync_tid = tid;
343 }
344 ret = __fc_track_fn(inode, args, update);
345 mutex_unlock(&ei->i_fc_lock);
346
347 if (!enqueue)
348 return ret;
349
350 spin_lock(&sbi->s_fc_lock);
351 if (list_empty(&EXT4_I(inode)->i_fc_list))
352 list_add_tail(&EXT4_I(inode)->i_fc_list,
353 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
354 &sbi->s_fc_q[FC_Q_STAGING] :
355 &sbi->s_fc_q[FC_Q_MAIN]);
356 spin_unlock(&sbi->s_fc_lock);
357
358 return ret;
359 }
360
361 struct __track_dentry_update_args {
362 struct dentry *dentry;
363 int op;
364 };
365
366 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)367 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
368 {
369 struct ext4_fc_dentry_update *node;
370 struct ext4_inode_info *ei = EXT4_I(inode);
371 struct __track_dentry_update_args *dentry_update =
372 (struct __track_dentry_update_args *)arg;
373 struct dentry *dentry = dentry_update->dentry;
374 struct inode *dir = dentry->d_parent->d_inode;
375 struct super_block *sb = inode->i_sb;
376 struct ext4_sb_info *sbi = EXT4_SB(sb);
377
378 mutex_unlock(&ei->i_fc_lock);
379
380 if (IS_ENCRYPTED(dir)) {
381 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME);
382 mutex_lock(&ei->i_fc_lock);
383 return -EOPNOTSUPP;
384 }
385
386 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
387 if (!node) {
388 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
389 mutex_lock(&ei->i_fc_lock);
390 return -ENOMEM;
391 }
392
393 node->fcd_op = dentry_update->op;
394 node->fcd_parent = dir->i_ino;
395 node->fcd_ino = inode->i_ino;
396 if (dentry->d_name.len > DNAME_INLINE_LEN) {
397 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
398 if (!node->fcd_name.name) {
399 kmem_cache_free(ext4_fc_dentry_cachep, node);
400 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM);
401 mutex_lock(&ei->i_fc_lock);
402 return -ENOMEM;
403 }
404 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
405 dentry->d_name.len);
406 } else {
407 memcpy(node->fcd_iname, dentry->d_name.name,
408 dentry->d_name.len);
409 node->fcd_name.name = node->fcd_iname;
410 }
411 node->fcd_name.len = dentry->d_name.len;
412
413 spin_lock(&sbi->s_fc_lock);
414 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
415 list_add_tail(&node->fcd_list,
416 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
417 else
418 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419 spin_unlock(&sbi->s_fc_lock);
420 mutex_lock(&ei->i_fc_lock);
421
422 return 0;
423 }
424
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)425 void __ext4_fc_track_unlink(handle_t *handle,
426 struct inode *inode, struct dentry *dentry)
427 {
428 struct __track_dentry_update_args args;
429 int ret;
430
431 args.dentry = dentry;
432 args.op = EXT4_FC_TAG_UNLINK;
433
434 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
435 (void *)&args, 0);
436 trace_ext4_fc_track_unlink(inode, dentry, ret);
437 }
438
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)439 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
440 {
441 __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
442 }
443
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)444 void __ext4_fc_track_link(handle_t *handle,
445 struct inode *inode, struct dentry *dentry)
446 {
447 struct __track_dentry_update_args args;
448 int ret;
449
450 args.dentry = dentry;
451 args.op = EXT4_FC_TAG_LINK;
452
453 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
454 (void *)&args, 0);
455 trace_ext4_fc_track_link(inode, dentry, ret);
456 }
457
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)458 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
459 {
460 __ext4_fc_track_link(handle, d_inode(dentry), dentry);
461 }
462
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)463 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
464 struct dentry *dentry)
465 {
466 struct __track_dentry_update_args args;
467 int ret;
468
469 args.dentry = dentry;
470 args.op = EXT4_FC_TAG_CREAT;
471
472 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
473 (void *)&args, 0);
474 trace_ext4_fc_track_create(inode, dentry, ret);
475 }
476
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)477 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
478 {
479 __ext4_fc_track_create(handle, d_inode(dentry), dentry);
480 }
481
482 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)483 static int __track_inode(struct inode *inode, void *arg, bool update)
484 {
485 if (update)
486 return -EEXIST;
487
488 EXT4_I(inode)->i_fc_lblk_len = 0;
489
490 return 0;
491 }
492
ext4_fc_track_inode(handle_t * handle,struct inode * inode)493 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
494 {
495 int ret;
496
497 if (S_ISDIR(inode->i_mode))
498 return;
499
500 if (ext4_should_journal_data(inode)) {
501 ext4_fc_mark_ineligible(inode->i_sb,
502 EXT4_FC_REASON_INODE_JOURNAL_DATA);
503 return;
504 }
505
506 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
507 trace_ext4_fc_track_inode(inode, ret);
508 }
509
510 struct __track_range_args {
511 ext4_lblk_t start, end;
512 };
513
514 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)515 static int __track_range(struct inode *inode, void *arg, bool update)
516 {
517 struct ext4_inode_info *ei = EXT4_I(inode);
518 ext4_lblk_t oldstart;
519 struct __track_range_args *__arg =
520 (struct __track_range_args *)arg;
521
522 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
523 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
524 return -ECANCELED;
525 }
526
527 oldstart = ei->i_fc_lblk_start;
528
529 if (update && ei->i_fc_lblk_len > 0) {
530 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
531 ei->i_fc_lblk_len =
532 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
533 ei->i_fc_lblk_start + 1;
534 } else {
535 ei->i_fc_lblk_start = __arg->start;
536 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
537 }
538
539 return 0;
540 }
541
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)542 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
543 ext4_lblk_t end)
544 {
545 struct __track_range_args args;
546 int ret;
547
548 if (S_ISDIR(inode->i_mode))
549 return;
550
551 args.start = start;
552 args.end = end;
553
554 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
555
556 trace_ext4_fc_track_range(inode, start, end, ret);
557 }
558
ext4_fc_submit_bh(struct super_block * sb)559 static void ext4_fc_submit_bh(struct super_block *sb)
560 {
561 int write_flags = REQ_SYNC;
562 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
563
564 /* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */
565 if (test_opt(sb, BARRIER))
566 write_flags |= REQ_FUA | REQ_PREFLUSH;
567 lock_buffer(bh);
568 set_buffer_dirty(bh);
569 set_buffer_uptodate(bh);
570 bh->b_end_io = ext4_end_buffer_io_sync;
571 submit_bh(REQ_OP_WRITE, write_flags, bh);
572 EXT4_SB(sb)->s_fc_bh = NULL;
573 }
574
575 /* Ext4 commit path routines */
576
577 /* memzero and update CRC */
ext4_fc_memzero(struct super_block * sb,void * dst,int len,u32 * crc)578 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
579 u32 *crc)
580 {
581 void *ret;
582
583 ret = memset(dst, 0, len);
584 if (crc)
585 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
586 return ret;
587 }
588
589 /*
590 * Allocate len bytes on a fast commit buffer.
591 *
592 * During the commit time this function is used to manage fast commit
593 * block space. We don't split a fast commit log onto different
594 * blocks. So this function makes sure that if there's not enough space
595 * on the current block, the remaining space in the current block is
596 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
597 * new block is from jbd2 and CRC is updated to reflect the padding
598 * we added.
599 */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)600 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
601 {
602 struct ext4_fc_tl *tl;
603 struct ext4_sb_info *sbi = EXT4_SB(sb);
604 struct buffer_head *bh;
605 int bsize = sbi->s_journal->j_blocksize;
606 int ret, off = sbi->s_fc_bytes % bsize;
607 int pad_len;
608
609 /*
610 * After allocating len, we should have space at least for a 0 byte
611 * padding.
612 */
613 if (len + sizeof(struct ext4_fc_tl) > bsize)
614 return NULL;
615
616 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
617 /*
618 * Only allocate from current buffer if we have enough space for
619 * this request AND we have space to add a zero byte padding.
620 */
621 if (!sbi->s_fc_bh) {
622 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
623 if (ret)
624 return NULL;
625 sbi->s_fc_bh = bh;
626 }
627 sbi->s_fc_bytes += len;
628 return sbi->s_fc_bh->b_data + off;
629 }
630 /* Need to add PAD tag */
631 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
632 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
633 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
634 tl->fc_len = cpu_to_le16(pad_len);
635 if (crc)
636 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
637 if (pad_len > 0)
638 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
639 /* Don't leak uninitialized memory in the unused last byte. */
640 *((u8 *)(tl + 1) + pad_len) = 0;
641
642 ext4_fc_submit_bh(sb);
643
644 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
645 if (ret)
646 return NULL;
647 sbi->s_fc_bh = bh;
648 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
649 return sbi->s_fc_bh->b_data;
650 }
651
652 /* memcpy to fc reserved space and update CRC */
ext4_fc_memcpy(struct super_block * sb,void * dst,const void * src,int len,u32 * crc)653 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
654 int len, u32 *crc)
655 {
656 if (crc)
657 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
658 return memcpy(dst, src, len);
659 }
660
661 /*
662 * Complete a fast commit by writing tail tag.
663 *
664 * Writing tail tag marks the end of a fast commit. In order to guarantee
665 * atomicity, after writing tail tag, even if there's space remaining
666 * in the block, next commit shouldn't use it. That's why tail tag
667 * has the length as that of the remaining space on the block.
668 */
ext4_fc_write_tail(struct super_block * sb,u32 crc)669 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
670 {
671 struct ext4_sb_info *sbi = EXT4_SB(sb);
672 struct ext4_fc_tl tl;
673 struct ext4_fc_tail tail;
674 int off, bsize = sbi->s_journal->j_blocksize;
675 u8 *dst;
676
677 /*
678 * ext4_fc_reserve_space takes care of allocating an extra block if
679 * there's no enough space on this block for accommodating this tail.
680 */
681 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
682 if (!dst)
683 return -ENOSPC;
684
685 off = sbi->s_fc_bytes % bsize;
686
687 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
688 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
689 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
690
691 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
692 dst += sizeof(tl);
693 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
694 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
695 dst += sizeof(tail.fc_tid);
696 tail.fc_crc = cpu_to_le32(crc);
697 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
698 dst += sizeof(tail.fc_crc);
699 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
700
701 ext4_fc_submit_bh(sb);
702
703 return 0;
704 }
705
706 /*
707 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
708 * Returns false if there's not enough space.
709 */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)710 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
711 u32 *crc)
712 {
713 struct ext4_fc_tl tl;
714 u8 *dst;
715
716 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
717 if (!dst)
718 return false;
719
720 tl.fc_tag = cpu_to_le16(tag);
721 tl.fc_len = cpu_to_le16(len);
722
723 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
724 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
725
726 return true;
727 }
728
729 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u16 tag,int parent_ino,int ino,int dlen,const unsigned char * dname,u32 * crc)730 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
731 int parent_ino, int ino, int dlen,
732 const unsigned char *dname,
733 u32 *crc)
734 {
735 struct ext4_fc_dentry_info fcd;
736 struct ext4_fc_tl tl;
737 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
738 crc);
739
740 if (!dst)
741 return false;
742
743 fcd.fc_parent_ino = cpu_to_le32(parent_ino);
744 fcd.fc_ino = cpu_to_le32(ino);
745 tl.fc_tag = cpu_to_le16(tag);
746 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
747 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
748 dst += sizeof(tl);
749 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
750 dst += sizeof(fcd);
751 ext4_fc_memcpy(sb, dst, dname, dlen, crc);
752 dst += dlen;
753
754 return true;
755 }
756
757 /*
758 * Writes inode in the fast commit space under TLV with tag @tag.
759 * Returns 0 on success, error on failure.
760 */
ext4_fc_write_inode(struct inode * inode,u32 * crc)761 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
762 {
763 struct ext4_inode_info *ei = EXT4_I(inode);
764 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
765 int ret;
766 struct ext4_iloc iloc;
767 struct ext4_fc_inode fc_inode;
768 struct ext4_fc_tl tl;
769 u8 *dst;
770
771 ret = ext4_get_inode_loc(inode, &iloc);
772 if (ret)
773 return ret;
774
775 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
776 inode_len += ei->i_extra_isize;
777
778 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
779 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
780 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
781
782 ret = -ECANCELED;
783 dst = ext4_fc_reserve_space(inode->i_sb,
784 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
785 if (!dst)
786 goto err;
787
788 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
789 goto err;
790 dst += sizeof(tl);
791 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
792 goto err;
793 dst += sizeof(fc_inode);
794 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
795 inode_len, crc))
796 goto err;
797 ret = 0;
798 err:
799 brelse(iloc.bh);
800 return ret;
801 }
802
803 /*
804 * Writes updated data ranges for the inode in question. Updates CRC.
805 * Returns 0 on success, error otherwise.
806 */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)807 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
808 {
809 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
810 struct ext4_inode_info *ei = EXT4_I(inode);
811 struct ext4_map_blocks map;
812 struct ext4_fc_add_range fc_ext;
813 struct ext4_fc_del_range lrange;
814 struct ext4_extent *ex;
815 int ret;
816
817 mutex_lock(&ei->i_fc_lock);
818 if (ei->i_fc_lblk_len == 0) {
819 mutex_unlock(&ei->i_fc_lock);
820 return 0;
821 }
822 old_blk_size = ei->i_fc_lblk_start;
823 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
824 ei->i_fc_lblk_len = 0;
825 mutex_unlock(&ei->i_fc_lock);
826
827 cur_lblk_off = old_blk_size;
828 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
829 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
830
831 while (cur_lblk_off <= new_blk_size) {
832 map.m_lblk = cur_lblk_off;
833 map.m_len = new_blk_size - cur_lblk_off + 1;
834 ret = ext4_map_blocks(NULL, inode, &map, 0);
835 if (ret < 0)
836 return -ECANCELED;
837
838 if (map.m_len == 0) {
839 cur_lblk_off++;
840 continue;
841 }
842
843 if (ret == 0) {
844 lrange.fc_ino = cpu_to_le32(inode->i_ino);
845 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
846 lrange.fc_len = cpu_to_le32(map.m_len);
847 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
848 sizeof(lrange), (u8 *)&lrange, crc))
849 return -ENOSPC;
850 } else {
851 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
852 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
853
854 /* Limit the number of blocks in one extent */
855 map.m_len = min(max, map.m_len);
856
857 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
858 ex = (struct ext4_extent *)&fc_ext.fc_ex;
859 ex->ee_block = cpu_to_le32(map.m_lblk);
860 ex->ee_len = cpu_to_le16(map.m_len);
861 ext4_ext_store_pblock(ex, map.m_pblk);
862 if (map.m_flags & EXT4_MAP_UNWRITTEN)
863 ext4_ext_mark_unwritten(ex);
864 else
865 ext4_ext_mark_initialized(ex);
866 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
867 sizeof(fc_ext), (u8 *)&fc_ext, crc))
868 return -ENOSPC;
869 }
870
871 cur_lblk_off += map.m_len;
872 }
873
874 return 0;
875 }
876
877
878 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)879 static int ext4_fc_submit_inode_data_all(journal_t *journal)
880 {
881 struct super_block *sb = (struct super_block *)(journal->j_private);
882 struct ext4_sb_info *sbi = EXT4_SB(sb);
883 struct ext4_inode_info *ei;
884 struct list_head *pos;
885 int ret = 0;
886
887 spin_lock(&sbi->s_fc_lock);
888 ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
889 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
890 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
891 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
892 while (atomic_read(&ei->i_fc_updates)) {
893 DEFINE_WAIT(wait);
894
895 prepare_to_wait(&ei->i_fc_wait, &wait,
896 TASK_UNINTERRUPTIBLE);
897 if (atomic_read(&ei->i_fc_updates)) {
898 spin_unlock(&sbi->s_fc_lock);
899 schedule();
900 spin_lock(&sbi->s_fc_lock);
901 }
902 finish_wait(&ei->i_fc_wait, &wait);
903 }
904 spin_unlock(&sbi->s_fc_lock);
905 ret = jbd2_submit_inode_data(ei->jinode);
906 if (ret)
907 return ret;
908 spin_lock(&sbi->s_fc_lock);
909 }
910 spin_unlock(&sbi->s_fc_lock);
911
912 return ret;
913 }
914
915 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)916 static int ext4_fc_wait_inode_data_all(journal_t *journal)
917 {
918 struct super_block *sb = (struct super_block *)(journal->j_private);
919 struct ext4_sb_info *sbi = EXT4_SB(sb);
920 struct ext4_inode_info *pos, *n;
921 int ret = 0;
922
923 spin_lock(&sbi->s_fc_lock);
924 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
925 if (!ext4_test_inode_state(&pos->vfs_inode,
926 EXT4_STATE_FC_COMMITTING))
927 continue;
928 spin_unlock(&sbi->s_fc_lock);
929
930 ret = jbd2_wait_inode_data(journal, pos->jinode);
931 if (ret)
932 return ret;
933 spin_lock(&sbi->s_fc_lock);
934 }
935 spin_unlock(&sbi->s_fc_lock);
936
937 return 0;
938 }
939
940 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)941 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
942 __acquires(&sbi->s_fc_lock)
943 __releases(&sbi->s_fc_lock)
944 {
945 struct super_block *sb = (struct super_block *)(journal->j_private);
946 struct ext4_sb_info *sbi = EXT4_SB(sb);
947 struct ext4_fc_dentry_update *fc_dentry;
948 struct inode *inode;
949 struct list_head *pos, *n, *fcd_pos, *fcd_n;
950 struct ext4_inode_info *ei;
951 int ret;
952
953 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
954 return 0;
955 list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
956 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
957 fcd_list);
958 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
959 spin_unlock(&sbi->s_fc_lock);
960 if (!ext4_fc_add_dentry_tlv(
961 sb, fc_dentry->fcd_op,
962 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
963 fc_dentry->fcd_name.len,
964 fc_dentry->fcd_name.name, crc)) {
965 ret = -ENOSPC;
966 goto lock_and_exit;
967 }
968 spin_lock(&sbi->s_fc_lock);
969 continue;
970 }
971
972 inode = NULL;
973 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
974 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
975 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
976 inode = &ei->vfs_inode;
977 break;
978 }
979 }
980 /*
981 * If we don't find inode in our list, then it was deleted,
982 * in which case, we don't need to record it's create tag.
983 */
984 if (!inode)
985 continue;
986 spin_unlock(&sbi->s_fc_lock);
987
988 /*
989 * We first write the inode and then the create dirent. This
990 * allows the recovery code to create an unnamed inode first
991 * and then link it to a directory entry. This allows us
992 * to use namei.c routines almost as is and simplifies
993 * the recovery code.
994 */
995 ret = ext4_fc_write_inode(inode, crc);
996 if (ret)
997 goto lock_and_exit;
998
999 ret = ext4_fc_write_inode_data(inode, crc);
1000 if (ret)
1001 goto lock_and_exit;
1002
1003 if (!ext4_fc_add_dentry_tlv(
1004 sb, fc_dentry->fcd_op,
1005 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1006 fc_dentry->fcd_name.len,
1007 fc_dentry->fcd_name.name, crc)) {
1008 ret = -ENOSPC;
1009 goto lock_and_exit;
1010 }
1011
1012 spin_lock(&sbi->s_fc_lock);
1013 }
1014 return 0;
1015 lock_and_exit:
1016 spin_lock(&sbi->s_fc_lock);
1017 return ret;
1018 }
1019
ext4_fc_perform_commit(journal_t * journal)1020 static int ext4_fc_perform_commit(journal_t *journal)
1021 {
1022 struct super_block *sb = (struct super_block *)(journal->j_private);
1023 struct ext4_sb_info *sbi = EXT4_SB(sb);
1024 struct ext4_inode_info *iter;
1025 struct ext4_fc_head head;
1026 struct list_head *pos;
1027 struct inode *inode;
1028 struct blk_plug plug;
1029 int ret = 0;
1030 u32 crc = 0;
1031
1032 ret = ext4_fc_submit_inode_data_all(journal);
1033 if (ret)
1034 return ret;
1035
1036 ret = ext4_fc_wait_inode_data_all(journal);
1037 if (ret)
1038 return ret;
1039
1040 /*
1041 * If file system device is different from journal device, issue a cache
1042 * flush before we start writing fast commit blocks.
1043 */
1044 if (journal->j_fs_dev != journal->j_dev)
1045 blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS);
1046
1047 blk_start_plug(&plug);
1048 if (sbi->s_fc_bytes == 0) {
1049 /*
1050 * Add a head tag only if this is the first fast commit
1051 * in this TID.
1052 */
1053 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1054 head.fc_tid = cpu_to_le32(
1055 sbi->s_journal->j_running_transaction->t_tid);
1056 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1057 (u8 *)&head, &crc)) {
1058 ret = -ENOSPC;
1059 goto out;
1060 }
1061 }
1062
1063 spin_lock(&sbi->s_fc_lock);
1064 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1065 if (ret) {
1066 spin_unlock(&sbi->s_fc_lock);
1067 goto out;
1068 }
1069
1070 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1071 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1072 inode = &iter->vfs_inode;
1073 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1074 continue;
1075
1076 spin_unlock(&sbi->s_fc_lock);
1077 ret = ext4_fc_write_inode_data(inode, &crc);
1078 if (ret)
1079 goto out;
1080 ret = ext4_fc_write_inode(inode, &crc);
1081 if (ret)
1082 goto out;
1083 spin_lock(&sbi->s_fc_lock);
1084 }
1085 spin_unlock(&sbi->s_fc_lock);
1086
1087 ret = ext4_fc_write_tail(sb, crc);
1088
1089 out:
1090 blk_finish_plug(&plug);
1091 return ret;
1092 }
1093
1094 /*
1095 * The main commit entry point. Performs a fast commit for transaction
1096 * commit_tid if needed. If it's not possible to perform a fast commit
1097 * due to various reasons, we fall back to full commit. Returns 0
1098 * on success, error otherwise.
1099 */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1100 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1101 {
1102 struct super_block *sb = (struct super_block *)(journal->j_private);
1103 struct ext4_sb_info *sbi = EXT4_SB(sb);
1104 int nblks = 0, ret, bsize = journal->j_blocksize;
1105 int subtid = atomic_read(&sbi->s_fc_subtid);
1106 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1107 ktime_t start_time, commit_time;
1108
1109 trace_ext4_fc_commit_start(sb);
1110
1111 start_time = ktime_get();
1112
1113 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1114 (ext4_fc_is_ineligible(sb))) {
1115 reason = EXT4_FC_REASON_INELIGIBLE;
1116 goto out;
1117 }
1118
1119 restart_fc:
1120 ret = jbd2_fc_begin_commit(journal, commit_tid);
1121 if (ret == -EALREADY) {
1122 /* There was an ongoing commit, check if we need to restart */
1123 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1124 commit_tid > journal->j_commit_sequence)
1125 goto restart_fc;
1126 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1127 goto out;
1128 } else if (ret) {
1129 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1130 reason = EXT4_FC_REASON_FC_START_FAILED;
1131 goto out;
1132 }
1133
1134 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1135 ret = ext4_fc_perform_commit(journal);
1136 if (ret < 0) {
1137 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1138 reason = EXT4_FC_REASON_FC_FAILED;
1139 goto out;
1140 }
1141 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1142 ret = jbd2_fc_wait_bufs(journal, nblks);
1143 if (ret < 0) {
1144 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1145 reason = EXT4_FC_REASON_FC_FAILED;
1146 goto out;
1147 }
1148 atomic_inc(&sbi->s_fc_subtid);
1149 jbd2_fc_end_commit(journal);
1150 out:
1151 /* Has any ineligible update happened since we started? */
1152 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1153 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1154 reason = EXT4_FC_REASON_INELIGIBLE;
1155 }
1156
1157 spin_lock(&sbi->s_fc_lock);
1158 if (reason != EXT4_FC_REASON_OK &&
1159 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1160 sbi->s_fc_stats.fc_ineligible_commits++;
1161 } else {
1162 sbi->s_fc_stats.fc_num_commits++;
1163 sbi->s_fc_stats.fc_numblks += nblks;
1164 }
1165 spin_unlock(&sbi->s_fc_lock);
1166 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1167 trace_ext4_fc_commit_stop(sb, nblks, reason);
1168 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1169 /*
1170 * weight the commit time higher than the average time so we don't
1171 * react too strongly to vast changes in the commit time
1172 */
1173 if (likely(sbi->s_fc_avg_commit_time))
1174 sbi->s_fc_avg_commit_time = (commit_time +
1175 sbi->s_fc_avg_commit_time * 3) / 4;
1176 else
1177 sbi->s_fc_avg_commit_time = commit_time;
1178 jbd_debug(1,
1179 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1180 nblks, reason, subtid);
1181 if (reason == EXT4_FC_REASON_FC_FAILED)
1182 return jbd2_fc_end_commit_fallback(journal);
1183 if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1184 reason == EXT4_FC_REASON_INELIGIBLE)
1185 return jbd2_complete_transaction(journal, commit_tid);
1186 return 0;
1187 }
1188
1189 /*
1190 * Fast commit cleanup routine. This is called after every fast commit and
1191 * full commit. full is true if we are called after a full commit.
1192 */
ext4_fc_cleanup(journal_t * journal,int full)1193 static void ext4_fc_cleanup(journal_t *journal, int full)
1194 {
1195 struct super_block *sb = journal->j_private;
1196 struct ext4_sb_info *sbi = EXT4_SB(sb);
1197 struct ext4_inode_info *iter;
1198 struct ext4_fc_dentry_update *fc_dentry;
1199 struct list_head *pos, *n;
1200
1201 if (full && sbi->s_fc_bh)
1202 sbi->s_fc_bh = NULL;
1203
1204 jbd2_fc_release_bufs(journal);
1205
1206 spin_lock(&sbi->s_fc_lock);
1207 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1208 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1209 list_del_init(&iter->i_fc_list);
1210 ext4_clear_inode_state(&iter->vfs_inode,
1211 EXT4_STATE_FC_COMMITTING);
1212 ext4_fc_reset_inode(&iter->vfs_inode);
1213 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1214 smp_mb();
1215 #if (BITS_PER_LONG < 64)
1216 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1217 #else
1218 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1219 #endif
1220 }
1221
1222 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1223 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1224 struct ext4_fc_dentry_update,
1225 fcd_list);
1226 list_del_init(&fc_dentry->fcd_list);
1227 spin_unlock(&sbi->s_fc_lock);
1228
1229 if (fc_dentry->fcd_name.name &&
1230 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1231 kfree(fc_dentry->fcd_name.name);
1232 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1233 spin_lock(&sbi->s_fc_lock);
1234 }
1235
1236 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1237 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1238 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1239 &sbi->s_fc_q[FC_Q_MAIN]);
1240
1241 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1242 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1243
1244 if (full)
1245 sbi->s_fc_bytes = 0;
1246 spin_unlock(&sbi->s_fc_lock);
1247 trace_ext4_fc_stats(sb);
1248 }
1249
1250 /* Ext4 Replay Path Routines */
1251
1252 /* Helper struct for dentry replay routines */
1253 struct dentry_info_args {
1254 int parent_ino, dname_len, ino, inode_len;
1255 char *dname;
1256 };
1257
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl * tl,u8 * val)1258 static inline void tl_to_darg(struct dentry_info_args *darg,
1259 struct ext4_fc_tl *tl, u8 *val)
1260 {
1261 struct ext4_fc_dentry_info fcd;
1262
1263 memcpy(&fcd, val, sizeof(fcd));
1264
1265 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1266 darg->ino = le32_to_cpu(fcd.fc_ino);
1267 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1268 darg->dname_len = le16_to_cpu(tl->fc_len) -
1269 sizeof(struct ext4_fc_dentry_info);
1270 }
1271
1272 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1273 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1274 u8 *val)
1275 {
1276 struct inode *inode, *old_parent;
1277 struct qstr entry;
1278 struct dentry_info_args darg;
1279 int ret = 0;
1280
1281 tl_to_darg(&darg, tl, val);
1282
1283 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1284 darg.parent_ino, darg.dname_len);
1285
1286 entry.name = darg.dname;
1287 entry.len = darg.dname_len;
1288 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1289
1290 if (IS_ERR(inode)) {
1291 jbd_debug(1, "Inode %d not found", darg.ino);
1292 return 0;
1293 }
1294
1295 old_parent = ext4_iget(sb, darg.parent_ino,
1296 EXT4_IGET_NORMAL);
1297 if (IS_ERR(old_parent)) {
1298 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino);
1299 iput(inode);
1300 return 0;
1301 }
1302
1303 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1304 /* -ENOENT ok coz it might not exist anymore. */
1305 if (ret == -ENOENT)
1306 ret = 0;
1307 iput(old_parent);
1308 iput(inode);
1309 return ret;
1310 }
1311
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1312 static int ext4_fc_replay_link_internal(struct super_block *sb,
1313 struct dentry_info_args *darg,
1314 struct inode *inode)
1315 {
1316 struct inode *dir = NULL;
1317 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1318 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1319 int ret = 0;
1320
1321 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1322 if (IS_ERR(dir)) {
1323 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1324 dir = NULL;
1325 goto out;
1326 }
1327
1328 dentry_dir = d_obtain_alias(dir);
1329 if (IS_ERR(dentry_dir)) {
1330 jbd_debug(1, "Failed to obtain dentry");
1331 dentry_dir = NULL;
1332 goto out;
1333 }
1334
1335 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1336 if (!dentry_inode) {
1337 jbd_debug(1, "Inode dentry not created.");
1338 ret = -ENOMEM;
1339 goto out;
1340 }
1341
1342 ret = __ext4_link(dir, inode, dentry_inode);
1343 /*
1344 * It's possible that link already existed since data blocks
1345 * for the dir in question got persisted before we crashed OR
1346 * we replayed this tag and crashed before the entire replay
1347 * could complete.
1348 */
1349 if (ret && ret != -EEXIST) {
1350 jbd_debug(1, "Failed to link\n");
1351 goto out;
1352 }
1353
1354 ret = 0;
1355 out:
1356 if (dentry_dir) {
1357 d_drop(dentry_dir);
1358 dput(dentry_dir);
1359 } else if (dir) {
1360 iput(dir);
1361 }
1362 if (dentry_inode) {
1363 d_drop(dentry_inode);
1364 dput(dentry_inode);
1365 }
1366
1367 return ret;
1368 }
1369
1370 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1371 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1372 u8 *val)
1373 {
1374 struct inode *inode;
1375 struct dentry_info_args darg;
1376 int ret = 0;
1377
1378 tl_to_darg(&darg, tl, val);
1379 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1380 darg.parent_ino, darg.dname_len);
1381
1382 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1383 if (IS_ERR(inode)) {
1384 jbd_debug(1, "Inode not found.");
1385 return 0;
1386 }
1387
1388 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1389 iput(inode);
1390 return ret;
1391 }
1392
1393 /*
1394 * Record all the modified inodes during replay. We use this later to setup
1395 * block bitmaps correctly.
1396 */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1397 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1398 {
1399 struct ext4_fc_replay_state *state;
1400 int i;
1401
1402 state = &EXT4_SB(sb)->s_fc_replay_state;
1403 for (i = 0; i < state->fc_modified_inodes_used; i++)
1404 if (state->fc_modified_inodes[i] == ino)
1405 return 0;
1406 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1407 int *fc_modified_inodes;
1408
1409 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1410 sizeof(int) * (state->fc_modified_inodes_size +
1411 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1412 GFP_KERNEL);
1413 if (!fc_modified_inodes)
1414 return -ENOMEM;
1415 state->fc_modified_inodes = fc_modified_inodes;
1416 state->fc_modified_inodes_size +=
1417 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1418 }
1419 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1420 return 0;
1421 }
1422
1423 /*
1424 * Inode replay function
1425 */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1426 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1427 u8 *val)
1428 {
1429 struct ext4_fc_inode fc_inode;
1430 struct ext4_inode *raw_inode;
1431 struct ext4_inode *raw_fc_inode;
1432 struct inode *inode = NULL;
1433 struct ext4_iloc iloc;
1434 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1435 struct ext4_extent_header *eh;
1436
1437 memcpy(&fc_inode, val, sizeof(fc_inode));
1438
1439 ino = le32_to_cpu(fc_inode.fc_ino);
1440 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1441
1442 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1443 if (!IS_ERR(inode)) {
1444 ext4_ext_clear_bb(inode);
1445 iput(inode);
1446 }
1447 inode = NULL;
1448
1449 ret = ext4_fc_record_modified_inode(sb, ino);
1450 if (ret)
1451 goto out;
1452
1453 raw_fc_inode = (struct ext4_inode *)
1454 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1455 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1456 if (ret)
1457 goto out;
1458
1459 inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1460 raw_inode = ext4_raw_inode(&iloc);
1461
1462 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1463 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1464 inode_len - offsetof(struct ext4_inode, i_generation));
1465 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1466 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1467 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1468 memset(eh, 0, sizeof(*eh));
1469 eh->eh_magic = EXT4_EXT_MAGIC;
1470 eh->eh_max = cpu_to_le16(
1471 (sizeof(raw_inode->i_block) -
1472 sizeof(struct ext4_extent_header))
1473 / sizeof(struct ext4_extent));
1474 }
1475 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1476 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1477 sizeof(raw_inode->i_block));
1478 }
1479
1480 /* Immediately update the inode on disk. */
1481 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1482 if (ret)
1483 goto out;
1484 ret = sync_dirty_buffer(iloc.bh);
1485 if (ret)
1486 goto out;
1487 ret = ext4_mark_inode_used(sb, ino);
1488 if (ret)
1489 goto out;
1490
1491 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1492 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1493 if (IS_ERR(inode)) {
1494 jbd_debug(1, "Inode not found.");
1495 return -EFSCORRUPTED;
1496 }
1497
1498 /*
1499 * Our allocator could have made different decisions than before
1500 * crashing. This should be fixed but until then, we calculate
1501 * the number of blocks the inode.
1502 */
1503 ext4_ext_replay_set_iblocks(inode);
1504
1505 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1506 ext4_reset_inode_seed(inode);
1507
1508 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1509 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1510 sync_dirty_buffer(iloc.bh);
1511 brelse(iloc.bh);
1512 out:
1513 iput(inode);
1514 if (!ret)
1515 blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1516
1517 return 0;
1518 }
1519
1520 /*
1521 * Dentry create replay function.
1522 *
1523 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1524 * inode for which we are trying to create a dentry here, should already have
1525 * been replayed before we start here.
1526 */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1527 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1528 u8 *val)
1529 {
1530 int ret = 0;
1531 struct inode *inode = NULL;
1532 struct inode *dir = NULL;
1533 struct dentry_info_args darg;
1534
1535 tl_to_darg(&darg, tl, val);
1536
1537 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1538 darg.parent_ino, darg.dname_len);
1539
1540 /* This takes care of update group descriptor and other metadata */
1541 ret = ext4_mark_inode_used(sb, darg.ino);
1542 if (ret)
1543 goto out;
1544
1545 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1546 if (IS_ERR(inode)) {
1547 jbd_debug(1, "inode %d not found.", darg.ino);
1548 inode = NULL;
1549 ret = -EINVAL;
1550 goto out;
1551 }
1552
1553 if (S_ISDIR(inode->i_mode)) {
1554 /*
1555 * If we are creating a directory, we need to make sure that the
1556 * dot and dot dot dirents are setup properly.
1557 */
1558 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1559 if (IS_ERR(dir)) {
1560 jbd_debug(1, "Dir %d not found.", darg.ino);
1561 goto out;
1562 }
1563 ret = ext4_init_new_dir(NULL, dir, inode);
1564 iput(dir);
1565 if (ret) {
1566 ret = 0;
1567 goto out;
1568 }
1569 }
1570 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1571 if (ret)
1572 goto out;
1573 set_nlink(inode, 1);
1574 ext4_mark_inode_dirty(NULL, inode);
1575 out:
1576 if (inode)
1577 iput(inode);
1578 return ret;
1579 }
1580
1581 /*
1582 * Record physical disk regions which are in use as per fast commit area,
1583 * and used by inodes during replay phase. Our simple replay phase
1584 * allocator excludes these regions from allocation.
1585 */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1586 int ext4_fc_record_regions(struct super_block *sb, int ino,
1587 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1588 {
1589 struct ext4_fc_replay_state *state;
1590 struct ext4_fc_alloc_region *region;
1591
1592 state = &EXT4_SB(sb)->s_fc_replay_state;
1593 /*
1594 * during replay phase, the fc_regions_valid may not same as
1595 * fc_regions_used, update it when do new additions.
1596 */
1597 if (replay && state->fc_regions_used != state->fc_regions_valid)
1598 state->fc_regions_used = state->fc_regions_valid;
1599 if (state->fc_regions_used == state->fc_regions_size) {
1600 struct ext4_fc_alloc_region *fc_regions;
1601
1602 fc_regions = krealloc(state->fc_regions,
1603 sizeof(struct ext4_fc_alloc_region) *
1604 (state->fc_regions_size +
1605 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1606 GFP_KERNEL);
1607 if (!fc_regions)
1608 return -ENOMEM;
1609 state->fc_regions_size +=
1610 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1611 state->fc_regions = fc_regions;
1612 }
1613 region = &state->fc_regions[state->fc_regions_used++];
1614 region->ino = ino;
1615 region->lblk = lblk;
1616 region->pblk = pblk;
1617 region->len = len;
1618
1619 if (replay)
1620 state->fc_regions_valid++;
1621
1622 return 0;
1623 }
1624
1625 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1626 static int ext4_fc_replay_add_range(struct super_block *sb,
1627 struct ext4_fc_tl *tl, u8 *val)
1628 {
1629 struct ext4_fc_add_range fc_add_ex;
1630 struct ext4_extent newex, *ex;
1631 struct inode *inode;
1632 ext4_lblk_t start, cur;
1633 int remaining, len;
1634 ext4_fsblk_t start_pblk;
1635 struct ext4_map_blocks map;
1636 struct ext4_ext_path *path = NULL;
1637 int ret;
1638
1639 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1640 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1641
1642 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1643 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1644 ext4_ext_get_actual_len(ex));
1645
1646 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1647 if (IS_ERR(inode)) {
1648 jbd_debug(1, "Inode not found.");
1649 return 0;
1650 }
1651
1652 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1653 if (ret)
1654 goto out;
1655
1656 start = le32_to_cpu(ex->ee_block);
1657 start_pblk = ext4_ext_pblock(ex);
1658 len = ext4_ext_get_actual_len(ex);
1659
1660 cur = start;
1661 remaining = len;
1662 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1663 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1664 inode->i_ino);
1665
1666 while (remaining > 0) {
1667 map.m_lblk = cur;
1668 map.m_len = remaining;
1669 map.m_pblk = 0;
1670 ret = ext4_map_blocks(NULL, inode, &map, 0);
1671
1672 if (ret < 0)
1673 goto out;
1674
1675 if (ret == 0) {
1676 /* Range is not mapped */
1677 path = ext4_find_extent(inode, cur, NULL, 0);
1678 if (IS_ERR(path))
1679 goto out;
1680 memset(&newex, 0, sizeof(newex));
1681 newex.ee_block = cpu_to_le32(cur);
1682 ext4_ext_store_pblock(
1683 &newex, start_pblk + cur - start);
1684 newex.ee_len = cpu_to_le16(map.m_len);
1685 if (ext4_ext_is_unwritten(ex))
1686 ext4_ext_mark_unwritten(&newex);
1687 down_write(&EXT4_I(inode)->i_data_sem);
1688 ret = ext4_ext_insert_extent(
1689 NULL, inode, &path, &newex, 0);
1690 up_write((&EXT4_I(inode)->i_data_sem));
1691 ext4_ext_drop_refs(path);
1692 kfree(path);
1693 if (ret)
1694 goto out;
1695 goto next;
1696 }
1697
1698 if (start_pblk + cur - start != map.m_pblk) {
1699 /*
1700 * Logical to physical mapping changed. This can happen
1701 * if this range was removed and then reallocated to
1702 * map to new physical blocks during a fast commit.
1703 */
1704 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1705 ext4_ext_is_unwritten(ex),
1706 start_pblk + cur - start);
1707 if (ret)
1708 goto out;
1709 /*
1710 * Mark the old blocks as free since they aren't used
1711 * anymore. We maintain an array of all the modified
1712 * inodes. In case these blocks are still used at either
1713 * a different logical range in the same inode or in
1714 * some different inode, we will mark them as allocated
1715 * at the end of the FC replay using our array of
1716 * modified inodes.
1717 */
1718 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1719 goto next;
1720 }
1721
1722 /* Range is mapped and needs a state change */
1723 jbd_debug(1, "Converting from %ld to %d %lld",
1724 map.m_flags & EXT4_MAP_UNWRITTEN,
1725 ext4_ext_is_unwritten(ex), map.m_pblk);
1726 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1727 ext4_ext_is_unwritten(ex), map.m_pblk);
1728 if (ret)
1729 goto out;
1730 /*
1731 * We may have split the extent tree while toggling the state.
1732 * Try to shrink the extent tree now.
1733 */
1734 ext4_ext_replay_shrink_inode(inode, start + len);
1735 next:
1736 cur += map.m_len;
1737 remaining -= map.m_len;
1738 }
1739 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1740 sb->s_blocksize_bits);
1741 out:
1742 iput(inode);
1743 return 0;
1744 }
1745
1746 /* Replay DEL_RANGE tag */
1747 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl * tl,u8 * val)1748 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1749 u8 *val)
1750 {
1751 struct inode *inode;
1752 struct ext4_fc_del_range lrange;
1753 struct ext4_map_blocks map;
1754 ext4_lblk_t cur, remaining;
1755 int ret;
1756
1757 memcpy(&lrange, val, sizeof(lrange));
1758 cur = le32_to_cpu(lrange.fc_lblk);
1759 remaining = le32_to_cpu(lrange.fc_len);
1760
1761 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1762 le32_to_cpu(lrange.fc_ino), cur, remaining);
1763
1764 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1765 if (IS_ERR(inode)) {
1766 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1767 return 0;
1768 }
1769
1770 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1771 if (ret)
1772 goto out;
1773
1774 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1775 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1776 le32_to_cpu(lrange.fc_len));
1777 while (remaining > 0) {
1778 map.m_lblk = cur;
1779 map.m_len = remaining;
1780
1781 ret = ext4_map_blocks(NULL, inode, &map, 0);
1782 if (ret < 0)
1783 goto out;
1784 if (ret > 0) {
1785 remaining -= ret;
1786 cur += ret;
1787 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1788 } else {
1789 remaining -= map.m_len;
1790 cur += map.m_len;
1791 }
1792 }
1793
1794 down_write(&EXT4_I(inode)->i_data_sem);
1795 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1796 le32_to_cpu(lrange.fc_lblk) +
1797 le32_to_cpu(lrange.fc_len) - 1);
1798 up_write(&EXT4_I(inode)->i_data_sem);
1799 if (ret)
1800 goto out;
1801 ext4_ext_replay_shrink_inode(inode,
1802 i_size_read(inode) >> sb->s_blocksize_bits);
1803 ext4_mark_inode_dirty(NULL, inode);
1804 out:
1805 iput(inode);
1806 return 0;
1807 }
1808
tag2str(u16 tag)1809 static inline const char *tag2str(u16 tag)
1810 {
1811 switch (tag) {
1812 case EXT4_FC_TAG_LINK:
1813 return "TAG_ADD_ENTRY";
1814 case EXT4_FC_TAG_UNLINK:
1815 return "TAG_DEL_ENTRY";
1816 case EXT4_FC_TAG_ADD_RANGE:
1817 return "TAG_ADD_RANGE";
1818 case EXT4_FC_TAG_CREAT:
1819 return "TAG_CREAT_DENTRY";
1820 case EXT4_FC_TAG_DEL_RANGE:
1821 return "TAG_DEL_RANGE";
1822 case EXT4_FC_TAG_INODE:
1823 return "TAG_INODE";
1824 case EXT4_FC_TAG_PAD:
1825 return "TAG_PAD";
1826 case EXT4_FC_TAG_TAIL:
1827 return "TAG_TAIL";
1828 case EXT4_FC_TAG_HEAD:
1829 return "TAG_HEAD";
1830 default:
1831 return "TAG_ERROR";
1832 }
1833 }
1834
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1835 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1836 {
1837 struct ext4_fc_replay_state *state;
1838 struct inode *inode;
1839 struct ext4_ext_path *path = NULL;
1840 struct ext4_map_blocks map;
1841 int i, ret, j;
1842 ext4_lblk_t cur, end;
1843
1844 state = &EXT4_SB(sb)->s_fc_replay_state;
1845 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1846 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1847 EXT4_IGET_NORMAL);
1848 if (IS_ERR(inode)) {
1849 jbd_debug(1, "Inode %d not found.",
1850 state->fc_modified_inodes[i]);
1851 continue;
1852 }
1853 cur = 0;
1854 end = EXT_MAX_BLOCKS;
1855 while (cur < end) {
1856 map.m_lblk = cur;
1857 map.m_len = end - cur;
1858
1859 ret = ext4_map_blocks(NULL, inode, &map, 0);
1860 if (ret < 0)
1861 break;
1862
1863 if (ret > 0) {
1864 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1865 if (!IS_ERR(path)) {
1866 for (j = 0; j < path->p_depth; j++)
1867 ext4_mb_mark_bb(inode->i_sb,
1868 path[j].p_block, 1, 1);
1869 ext4_ext_drop_refs(path);
1870 kfree(path);
1871 }
1872 cur += ret;
1873 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1874 map.m_len, 1);
1875 } else {
1876 cur = cur + (map.m_len ? map.m_len : 1);
1877 }
1878 }
1879 iput(inode);
1880 }
1881 }
1882
1883 /*
1884 * Check if block is in excluded regions for block allocation. The simple
1885 * allocator that runs during replay phase is calls this function to see
1886 * if it is okay to use a block.
1887 */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1888 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1889 {
1890 int i;
1891 struct ext4_fc_replay_state *state;
1892
1893 state = &EXT4_SB(sb)->s_fc_replay_state;
1894 for (i = 0; i < state->fc_regions_valid; i++) {
1895 if (state->fc_regions[i].ino == 0 ||
1896 state->fc_regions[i].len == 0)
1897 continue;
1898 if (blk >= state->fc_regions[i].pblk &&
1899 blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1900 return true;
1901 }
1902 return false;
1903 }
1904
1905 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1906 void ext4_fc_replay_cleanup(struct super_block *sb)
1907 {
1908 struct ext4_sb_info *sbi = EXT4_SB(sb);
1909
1910 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1911 kfree(sbi->s_fc_replay_state.fc_regions);
1912 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1913 }
1914
1915 /*
1916 * Recovery Scan phase handler
1917 *
1918 * This function is called during the scan phase and is responsible
1919 * for doing following things:
1920 * - Make sure the fast commit area has valid tags for replay
1921 * - Count number of tags that need to be replayed by the replay handler
1922 * - Verify CRC
1923 * - Create a list of excluded blocks for allocation during replay phase
1924 *
1925 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1926 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1927 * to indicate that scan has finished and JBD2 can now start replay phase.
1928 * It returns a negative error to indicate that there was an error. At the end
1929 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1930 * to indicate the number of tags that need to replayed during the replay phase.
1931 */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)1932 static int ext4_fc_replay_scan(journal_t *journal,
1933 struct buffer_head *bh, int off,
1934 tid_t expected_tid)
1935 {
1936 struct super_block *sb = journal->j_private;
1937 struct ext4_sb_info *sbi = EXT4_SB(sb);
1938 struct ext4_fc_replay_state *state;
1939 int ret = JBD2_FC_REPLAY_CONTINUE;
1940 struct ext4_fc_add_range ext;
1941 struct ext4_fc_tl tl;
1942 struct ext4_fc_tail tail;
1943 __u8 *start, *end, *cur, *val;
1944 struct ext4_fc_head head;
1945 struct ext4_extent *ex;
1946
1947 state = &sbi->s_fc_replay_state;
1948
1949 start = (u8 *)bh->b_data;
1950 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1951
1952 if (state->fc_replay_expected_off == 0) {
1953 state->fc_cur_tag = 0;
1954 state->fc_replay_num_tags = 0;
1955 state->fc_crc = 0;
1956 state->fc_regions = NULL;
1957 state->fc_regions_valid = state->fc_regions_used =
1958 state->fc_regions_size = 0;
1959 /* Check if we can stop early */
1960 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1961 != EXT4_FC_TAG_HEAD)
1962 return 0;
1963 }
1964
1965 if (off != state->fc_replay_expected_off) {
1966 ret = -EFSCORRUPTED;
1967 goto out_err;
1968 }
1969
1970 state->fc_replay_expected_off++;
1971 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1972 memcpy(&tl, cur, sizeof(tl));
1973 val = cur + sizeof(tl);
1974 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1975 tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1976 switch (le16_to_cpu(tl.fc_tag)) {
1977 case EXT4_FC_TAG_ADD_RANGE:
1978 memcpy(&ext, val, sizeof(ext));
1979 ex = (struct ext4_extent *)&ext.fc_ex;
1980 ret = ext4_fc_record_regions(sb,
1981 le32_to_cpu(ext.fc_ino),
1982 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1983 ext4_ext_get_actual_len(ex), 0);
1984 if (ret < 0)
1985 break;
1986 ret = JBD2_FC_REPLAY_CONTINUE;
1987 fallthrough;
1988 case EXT4_FC_TAG_DEL_RANGE:
1989 case EXT4_FC_TAG_LINK:
1990 case EXT4_FC_TAG_UNLINK:
1991 case EXT4_FC_TAG_CREAT:
1992 case EXT4_FC_TAG_INODE:
1993 case EXT4_FC_TAG_PAD:
1994 state->fc_cur_tag++;
1995 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1996 sizeof(tl) + le16_to_cpu(tl.fc_len));
1997 break;
1998 case EXT4_FC_TAG_TAIL:
1999 state->fc_cur_tag++;
2000 memcpy(&tail, val, sizeof(tail));
2001 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2002 sizeof(tl) +
2003 offsetof(struct ext4_fc_tail,
2004 fc_crc));
2005 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2006 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2007 state->fc_replay_num_tags = state->fc_cur_tag;
2008 state->fc_regions_valid =
2009 state->fc_regions_used;
2010 } else {
2011 ret = state->fc_replay_num_tags ?
2012 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2013 }
2014 state->fc_crc = 0;
2015 break;
2016 case EXT4_FC_TAG_HEAD:
2017 memcpy(&head, val, sizeof(head));
2018 if (le32_to_cpu(head.fc_features) &
2019 ~EXT4_FC_SUPPORTED_FEATURES) {
2020 ret = -EOPNOTSUPP;
2021 break;
2022 }
2023 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2024 ret = JBD2_FC_REPLAY_STOP;
2025 break;
2026 }
2027 state->fc_cur_tag++;
2028 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2029 sizeof(tl) + le16_to_cpu(tl.fc_len));
2030 break;
2031 default:
2032 ret = state->fc_replay_num_tags ?
2033 JBD2_FC_REPLAY_STOP : -ECANCELED;
2034 }
2035 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2036 break;
2037 }
2038
2039 out_err:
2040 trace_ext4_fc_replay_scan(sb, ret, off);
2041 return ret;
2042 }
2043
2044 /*
2045 * Main recovery path entry point.
2046 * The meaning of return codes is similar as above.
2047 */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2048 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2049 enum passtype pass, int off, tid_t expected_tid)
2050 {
2051 struct super_block *sb = journal->j_private;
2052 struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 struct ext4_fc_tl tl;
2054 __u8 *start, *end, *cur, *val;
2055 int ret = JBD2_FC_REPLAY_CONTINUE;
2056 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2057 struct ext4_fc_tail tail;
2058
2059 if (pass == PASS_SCAN) {
2060 state->fc_current_pass = PASS_SCAN;
2061 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2062 }
2063
2064 if (state->fc_current_pass != pass) {
2065 state->fc_current_pass = pass;
2066 sbi->s_mount_state |= EXT4_FC_REPLAY;
2067 }
2068 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2069 jbd_debug(1, "Replay stops\n");
2070 ext4_fc_set_bitmaps_and_counters(sb);
2071 return 0;
2072 }
2073
2074 #ifdef CONFIG_EXT4_DEBUG
2075 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2076 pr_warn("Dropping fc block %d because max_replay set\n", off);
2077 return JBD2_FC_REPLAY_STOP;
2078 }
2079 #endif
2080
2081 start = (u8 *)bh->b_data;
2082 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2083
2084 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2085 memcpy(&tl, cur, sizeof(tl));
2086 val = cur + sizeof(tl);
2087
2088 if (state->fc_replay_num_tags == 0) {
2089 ret = JBD2_FC_REPLAY_STOP;
2090 ext4_fc_set_bitmaps_and_counters(sb);
2091 break;
2092 }
2093 jbd_debug(3, "Replay phase, tag:%s\n",
2094 tag2str(le16_to_cpu(tl.fc_tag)));
2095 state->fc_replay_num_tags--;
2096 switch (le16_to_cpu(tl.fc_tag)) {
2097 case EXT4_FC_TAG_LINK:
2098 ret = ext4_fc_replay_link(sb, &tl, val);
2099 break;
2100 case EXT4_FC_TAG_UNLINK:
2101 ret = ext4_fc_replay_unlink(sb, &tl, val);
2102 break;
2103 case EXT4_FC_TAG_ADD_RANGE:
2104 ret = ext4_fc_replay_add_range(sb, &tl, val);
2105 break;
2106 case EXT4_FC_TAG_CREAT:
2107 ret = ext4_fc_replay_create(sb, &tl, val);
2108 break;
2109 case EXT4_FC_TAG_DEL_RANGE:
2110 ret = ext4_fc_replay_del_range(sb, &tl, val);
2111 break;
2112 case EXT4_FC_TAG_INODE:
2113 ret = ext4_fc_replay_inode(sb, &tl, val);
2114 break;
2115 case EXT4_FC_TAG_PAD:
2116 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2117 le16_to_cpu(tl.fc_len), 0);
2118 break;
2119 case EXT4_FC_TAG_TAIL:
2120 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2121 le16_to_cpu(tl.fc_len), 0);
2122 memcpy(&tail, val, sizeof(tail));
2123 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2124 break;
2125 case EXT4_FC_TAG_HEAD:
2126 break;
2127 default:
2128 trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2129 le16_to_cpu(tl.fc_len), 0);
2130 ret = -ECANCELED;
2131 break;
2132 }
2133 if (ret < 0)
2134 break;
2135 ret = JBD2_FC_REPLAY_CONTINUE;
2136 }
2137 return ret;
2138 }
2139
ext4_fc_init(struct super_block * sb,journal_t * journal)2140 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2141 {
2142 /*
2143 * We set replay callback even if fast commit disabled because we may
2144 * could still have fast commit blocks that need to be replayed even if
2145 * fast commit has now been turned off.
2146 */
2147 journal->j_fc_replay_callback = ext4_fc_replay;
2148 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2149 return;
2150 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2151 }
2152
2153 static const char * const fc_ineligible_reasons[] = {
2154 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2155 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2156 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2157 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2158 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2159 [EXT4_FC_REASON_RESIZE] = "Resize",
2160 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2161 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2162 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2163 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2164 };
2165
ext4_fc_info_show(struct seq_file * seq,void * v)2166 int ext4_fc_info_show(struct seq_file *seq, void *v)
2167 {
2168 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2169 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2170 int i;
2171
2172 if (v != SEQ_START_TOKEN)
2173 return 0;
2174
2175 seq_printf(seq,
2176 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2177 stats->fc_num_commits, stats->fc_ineligible_commits,
2178 stats->fc_numblks,
2179 div_u64(sbi->s_fc_avg_commit_time, 1000));
2180 seq_puts(seq, "Ineligible reasons:\n");
2181 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2182 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2183 stats->fc_ineligible_reason_count[i]);
2184
2185 return 0;
2186 }
2187
ext4_fc_init_dentry_cache(void)2188 int __init ext4_fc_init_dentry_cache(void)
2189 {
2190 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2191 SLAB_RECLAIM_ACCOUNT);
2192
2193 if (ext4_fc_dentry_cachep == NULL)
2194 return -ENOMEM;
2195
2196 return 0;
2197 }
2198
ext4_fc_destroy_dentry_cache(void)2199 void ext4_fc_destroy_dentry_cache(void)
2200 {
2201 kmem_cache_destroy(ext4_fc_dentry_cachep);
2202 }
2203