• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70 					struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72 				  struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_lock
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_lock
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116 
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 	.owner		= THIS_MODULE,
120 	.name		= "ext2",
121 	.mount		= ext4_mount,
122 	.kill_sb	= kill_block_super,
123 	.fs_flags	= FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131 
132 
133 static struct file_system_type ext3_fs_type = {
134 	.owner		= THIS_MODULE,
135 	.name		= "ext3",
136 	.mount		= ext4_mount,
137 	.kill_sb	= kill_block_super,
138 	.fs_flags	= FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 
144 
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146 				  bh_end_io_t *end_io)
147 {
148 	/*
149 	 * buffer's verified bit is no longer valid after reading from
150 	 * disk again due to write out error, clear it to make sure we
151 	 * recheck the buffer contents.
152 	 */
153 	clear_buffer_verified(bh);
154 
155 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156 	get_bh(bh);
157 	submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159 
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161 			 bh_end_io_t *end_io)
162 {
163 	BUG_ON(!buffer_locked(bh));
164 
165 	if (ext4_buffer_uptodate(bh)) {
166 		unlock_buffer(bh);
167 		return;
168 	}
169 	__ext4_read_bh(bh, op_flags, end_io);
170 }
171 
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174 	BUG_ON(!buffer_locked(bh));
175 
176 	if (ext4_buffer_uptodate(bh)) {
177 		unlock_buffer(bh);
178 		return 0;
179 	}
180 
181 	__ext4_read_bh(bh, op_flags, end_io);
182 
183 	wait_on_buffer(bh);
184 	if (buffer_uptodate(bh))
185 		return 0;
186 	return -EIO;
187 }
188 
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191 	lock_buffer(bh);
192 	if (!wait) {
193 		ext4_read_bh_nowait(bh, op_flags, NULL);
194 		return 0;
195 	}
196 	return ext4_read_bh(bh, op_flags, NULL);
197 }
198 
199 /*
200  * This works like __bread_gfp() except it uses ERR_PTR for error
201  * returns.  Currently with sb_bread it's impossible to distinguish
202  * between ENOMEM and EIO situations (since both result in a NULL
203  * return.
204  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)205 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
206 					       sector_t block, int op_flags,
207 					       gfp_t gfp)
208 {
209 	struct buffer_head *bh;
210 	int ret;
211 
212 	bh = sb_getblk_gfp(sb, block, gfp);
213 	if (bh == NULL)
214 		return ERR_PTR(-ENOMEM);
215 	if (ext4_buffer_uptodate(bh))
216 		return bh;
217 
218 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
219 	if (ret) {
220 		put_bh(bh);
221 		return ERR_PTR(ret);
222 	}
223 	return bh;
224 }
225 
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)226 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
227 				   int op_flags)
228 {
229 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
230 }
231 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)232 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
233 					    sector_t block)
234 {
235 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
236 }
237 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)238 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
239 {
240 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
241 
242 	if (likely(bh)) {
243 		if (trylock_buffer(bh))
244 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
245 		brelse(bh);
246 	}
247 }
248 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)249 static int ext4_verify_csum_type(struct super_block *sb,
250 				 struct ext4_super_block *es)
251 {
252 	if (!ext4_has_feature_metadata_csum(sb))
253 		return 1;
254 
255 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
256 }
257 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)258 static __le32 ext4_superblock_csum(struct super_block *sb,
259 				   struct ext4_super_block *es)
260 {
261 	struct ext4_sb_info *sbi = EXT4_SB(sb);
262 	int offset = offsetof(struct ext4_super_block, s_checksum);
263 	__u32 csum;
264 
265 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
266 
267 	return cpu_to_le32(csum);
268 }
269 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)270 static int ext4_superblock_csum_verify(struct super_block *sb,
271 				       struct ext4_super_block *es)
272 {
273 	if (!ext4_has_metadata_csum(sb))
274 		return 1;
275 
276 	return es->s_checksum == ext4_superblock_csum(sb, es);
277 }
278 
ext4_superblock_csum_set(struct super_block * sb)279 void ext4_superblock_csum_set(struct super_block *sb)
280 {
281 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
282 
283 	if (!ext4_has_metadata_csum(sb))
284 		return;
285 
286 	es->s_checksum = ext4_superblock_csum(sb, es);
287 }
288 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)289 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
290 			       struct ext4_group_desc *bg)
291 {
292 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
293 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
294 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
295 }
296 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)297 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
298 			       struct ext4_group_desc *bg)
299 {
300 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
301 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
302 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
303 }
304 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)305 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
306 			      struct ext4_group_desc *bg)
307 {
308 	return le32_to_cpu(bg->bg_inode_table_lo) |
309 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
310 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
311 }
312 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)313 __u32 ext4_free_group_clusters(struct super_block *sb,
314 			       struct ext4_group_desc *bg)
315 {
316 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
317 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
318 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
319 }
320 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)321 __u32 ext4_free_inodes_count(struct super_block *sb,
322 			      struct ext4_group_desc *bg)
323 {
324 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
325 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
327 }
328 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)329 __u32 ext4_used_dirs_count(struct super_block *sb,
330 			      struct ext4_group_desc *bg)
331 {
332 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
333 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
335 }
336 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)337 __u32 ext4_itable_unused_count(struct super_block *sb,
338 			      struct ext4_group_desc *bg)
339 {
340 	return le16_to_cpu(bg->bg_itable_unused_lo) |
341 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
343 }
344 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)345 void ext4_block_bitmap_set(struct super_block *sb,
346 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
347 {
348 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
349 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
350 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
351 }
352 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)353 void ext4_inode_bitmap_set(struct super_block *sb,
354 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
355 {
356 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
357 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
358 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
359 }
360 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)361 void ext4_inode_table_set(struct super_block *sb,
362 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
363 {
364 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
365 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
366 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
367 }
368 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)369 void ext4_free_group_clusters_set(struct super_block *sb,
370 				  struct ext4_group_desc *bg, __u32 count)
371 {
372 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
373 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
374 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
375 }
376 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)377 void ext4_free_inodes_set(struct super_block *sb,
378 			  struct ext4_group_desc *bg, __u32 count)
379 {
380 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
381 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
383 }
384 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)385 void ext4_used_dirs_set(struct super_block *sb,
386 			  struct ext4_group_desc *bg, __u32 count)
387 {
388 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
389 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
391 }
392 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)393 void ext4_itable_unused_set(struct super_block *sb,
394 			  struct ext4_group_desc *bg, __u32 count)
395 {
396 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
397 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
399 }
400 
__ext4_update_tstamp(__le32 * lo,__u8 * hi)401 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
402 {
403 	time64_t now = ktime_get_real_seconds();
404 
405 	now = clamp_val(now, 0, (1ull << 40) - 1);
406 
407 	*lo = cpu_to_le32(lower_32_bits(now));
408 	*hi = upper_32_bits(now);
409 }
410 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)411 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
412 {
413 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
414 }
415 #define ext4_update_tstamp(es, tstamp) \
416 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
417 #define ext4_get_tstamp(es, tstamp) \
418 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419 
420 /*
421  * The del_gendisk() function uninitializes the disk-specific data
422  * structures, including the bdi structure, without telling anyone
423  * else.  Once this happens, any attempt to call mark_buffer_dirty()
424  * (for example, by ext4_commit_super), will cause a kernel OOPS.
425  * This is a kludge to prevent these oops until we can put in a proper
426  * hook in del_gendisk() to inform the VFS and file system layers.
427  */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 	struct inode *bd_inode = sb->s_bdev->bd_inode;
431 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432 
433 	return bdi->dev == NULL;
434 }
435 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 	struct super_block		*sb = journal->j_private;
439 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
440 	int				error = is_journal_aborted(journal);
441 	struct ext4_journal_cb_entry	*jce;
442 
443 	BUG_ON(txn->t_state == T_FINISHED);
444 
445 	ext4_process_freed_data(sb, txn->t_tid);
446 
447 	spin_lock(&sbi->s_md_lock);
448 	while (!list_empty(&txn->t_private_list)) {
449 		jce = list_entry(txn->t_private_list.next,
450 				 struct ext4_journal_cb_entry, jce_list);
451 		list_del_init(&jce->jce_list);
452 		spin_unlock(&sbi->s_md_lock);
453 		jce->jce_func(sb, jce, error);
454 		spin_lock(&sbi->s_md_lock);
455 	}
456 	spin_unlock(&sbi->s_md_lock);
457 }
458 
459 /*
460  * This writepage callback for write_cache_pages()
461  * takes care of a few cases after page cleaning.
462  *
463  * write_cache_pages() already checks for dirty pages
464  * and calls clear_page_dirty_for_io(), which we want,
465  * to write protect the pages.
466  *
467  * However, we may have to redirty a page (see below.)
468  */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 					      struct writeback_control *wbc,
471 					      void *data)
472 {
473 	transaction_t *transaction = (transaction_t *) data;
474 	struct buffer_head *bh, *head;
475 	struct journal_head *jh;
476 
477 	bh = head = page_buffers(page);
478 	do {
479 		/*
480 		 * We have to redirty a page in these cases:
481 		 * 1) If buffer is dirty, it means the page was dirty because it
482 		 * contains a buffer that needs checkpointing. So the dirty bit
483 		 * needs to be preserved so that checkpointing writes the buffer
484 		 * properly.
485 		 * 2) If buffer is not part of the committing transaction
486 		 * (we may have just accidentally come across this buffer because
487 		 * inode range tracking is not exact) or if the currently running
488 		 * transaction already contains this buffer as well, dirty bit
489 		 * needs to be preserved so that the buffer gets writeprotected
490 		 * properly on running transaction's commit.
491 		 */
492 		jh = bh2jh(bh);
493 		if (buffer_dirty(bh) ||
494 		    (jh && (jh->b_transaction != transaction ||
495 			    jh->b_next_transaction))) {
496 			redirty_page_for_writepage(wbc, page);
497 			goto out;
498 		}
499 	} while ((bh = bh->b_this_page) != head);
500 
501 out:
502 	return AOP_WRITEPAGE_ACTIVATE;
503 }
504 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 	struct writeback_control wbc = {
509 		.sync_mode =  WB_SYNC_ALL,
510 		.nr_to_write = LONG_MAX,
511 		.range_start = jinode->i_dirty_start,
512 		.range_end = jinode->i_dirty_end,
513         };
514 
515 	return write_cache_pages(mapping, &wbc,
516 				 ext4_journalled_writepage_callback,
517 				 jinode->i_transaction);
518 }
519 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 	int ret;
523 
524 	if (ext4_should_journal_data(jinode->i_vfs_inode))
525 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 	else
527 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
528 
529 	return ret;
530 }
531 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 	int ret = 0;
535 
536 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
538 
539 	return ret;
540 }
541 
system_going_down(void)542 static bool system_going_down(void)
543 {
544 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 		|| system_state == SYSTEM_RESTART;
546 }
547 
548 struct ext4_err_translation {
549 	int code;
550 	int errno;
551 };
552 
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554 
555 static struct ext4_err_translation err_translation[] = {
556 	EXT4_ERR_TRANSLATE(EIO),
557 	EXT4_ERR_TRANSLATE(ENOMEM),
558 	EXT4_ERR_TRANSLATE(EFSBADCRC),
559 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 	EXT4_ERR_TRANSLATE(ENOSPC),
561 	EXT4_ERR_TRANSLATE(ENOKEY),
562 	EXT4_ERR_TRANSLATE(EROFS),
563 	EXT4_ERR_TRANSLATE(EFBIG),
564 	EXT4_ERR_TRANSLATE(EEXIST),
565 	EXT4_ERR_TRANSLATE(ERANGE),
566 	EXT4_ERR_TRANSLATE(EOVERFLOW),
567 	EXT4_ERR_TRANSLATE(EBUSY),
568 	EXT4_ERR_TRANSLATE(ENOTDIR),
569 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 	EXT4_ERR_TRANSLATE(EFAULT),
572 };
573 
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 	int i;
577 
578 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 		if (err_translation[i].errno == errno)
580 			return err_translation[i].code;
581 	return EXT4_ERR_UNKNOWN;
582 }
583 
__save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void __save_error_info(struct super_block *sb, int error,
585 			      __u32 ino, __u64 block,
586 			      const char *func, unsigned int line)
587 {
588 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
589 
590 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
591 	if (bdev_read_only(sb->s_bdev))
592 		return;
593 	/* We default to EFSCORRUPTED error... */
594 	if (error == 0)
595 		error = EFSCORRUPTED;
596 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
597 	ext4_update_tstamp(es, s_last_error_time);
598 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
599 	es->s_last_error_line = cpu_to_le32(line);
600 	es->s_last_error_ino = cpu_to_le32(ino);
601 	es->s_last_error_block = cpu_to_le64(block);
602 	es->s_last_error_errcode = ext4_errno_to_code(error);
603 	if (!es->s_first_error_time) {
604 		es->s_first_error_time = es->s_last_error_time;
605 		es->s_first_error_time_hi = es->s_last_error_time_hi;
606 		strncpy(es->s_first_error_func, func,
607 			sizeof(es->s_first_error_func));
608 		es->s_first_error_line = cpu_to_le32(line);
609 		es->s_first_error_ino = es->s_last_error_ino;
610 		es->s_first_error_block = es->s_last_error_block;
611 		es->s_first_error_errcode = es->s_last_error_errcode;
612 	}
613 	/*
614 	 * Start the daily error reporting function if it hasn't been
615 	 * started already
616 	 */
617 	if (!es->s_error_count)
618 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
619 	le32_add_cpu(&es->s_error_count, 1);
620 }
621 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)622 static void save_error_info(struct super_block *sb, int error,
623 			    __u32 ino, __u64 block,
624 			    const char *func, unsigned int line)
625 {
626 	__save_error_info(sb, error, ino, block, func, line);
627 	if (!bdev_read_only(sb->s_bdev))
628 		ext4_commit_super(sb, 1);
629 }
630 
631 /* Deal with the reporting of failure conditions on a filesystem such as
632  * inconsistencies detected or read IO failures.
633  *
634  * On ext2, we can store the error state of the filesystem in the
635  * superblock.  That is not possible on ext4, because we may have other
636  * write ordering constraints on the superblock which prevent us from
637  * writing it out straight away; and given that the journal is about to
638  * be aborted, we can't rely on the current, or future, transactions to
639  * write out the superblock safely.
640  *
641  * We'll just use the jbd2_journal_abort() error code to record an error in
642  * the journal instead.  On recovery, the journal will complain about
643  * that error until we've noted it down and cleared it.
644  */
645 
ext4_handle_error(struct super_block * sb)646 static void ext4_handle_error(struct super_block *sb)
647 {
648 	journal_t *journal = EXT4_SB(sb)->s_journal;
649 
650 	if (test_opt(sb, WARN_ON_ERROR))
651 		WARN_ON_ONCE(1);
652 
653 	if (sb_rdonly(sb) || test_opt(sb, ERRORS_CONT))
654 		return;
655 
656 	ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
657 	if (journal)
658 		jbd2_journal_abort(journal, -EIO);
659 	/*
660 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
661 	 * could panic during 'reboot -f' as the underlying device got already
662 	 * disabled.
663 	 */
664 	if (test_opt(sb, ERRORS_RO) || system_going_down()) {
665 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
666 		/*
667 		 * Make sure updated value of ->s_mount_flags will be visible
668 		 * before ->s_flags update
669 		 */
670 		smp_wmb();
671 		sb->s_flags |= SB_RDONLY;
672 	} else if (test_opt(sb, ERRORS_PANIC)) {
673 		panic("EXT4-fs (device %s): panic forced after error\n",
674 			sb->s_id);
675 	}
676 }
677 
678 #define ext4_error_ratelimit(sb)					\
679 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
680 			     "EXT4-fs error")
681 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,int error,__u64 block,const char * fmt,...)682 void __ext4_error(struct super_block *sb, const char *function,
683 		  unsigned int line, int error, __u64 block,
684 		  const char *fmt, ...)
685 {
686 	struct va_format vaf;
687 	va_list args;
688 
689 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
690 		return;
691 
692 	trace_ext4_error(sb, function, line);
693 	if (ext4_error_ratelimit(sb)) {
694 		va_start(args, fmt);
695 		vaf.fmt = fmt;
696 		vaf.va = &args;
697 		printk(KERN_CRIT
698 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
699 		       sb->s_id, function, line, current->comm, &vaf);
700 		va_end(args);
701 	}
702 	save_error_info(sb, error, 0, block, function, line);
703 	ext4_handle_error(sb);
704 }
705 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)706 void __ext4_error_inode(struct inode *inode, const char *function,
707 			unsigned int line, ext4_fsblk_t block, int error,
708 			const char *fmt, ...)
709 {
710 	va_list args;
711 	struct va_format vaf;
712 
713 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
714 		return;
715 
716 	trace_ext4_error(inode->i_sb, function, line);
717 	if (ext4_error_ratelimit(inode->i_sb)) {
718 		va_start(args, fmt);
719 		vaf.fmt = fmt;
720 		vaf.va = &args;
721 		if (block)
722 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
723 			       "inode #%lu: block %llu: comm %s: %pV\n",
724 			       inode->i_sb->s_id, function, line, inode->i_ino,
725 			       block, current->comm, &vaf);
726 		else
727 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
728 			       "inode #%lu: comm %s: %pV\n",
729 			       inode->i_sb->s_id, function, line, inode->i_ino,
730 			       current->comm, &vaf);
731 		va_end(args);
732 	}
733 	save_error_info(inode->i_sb, error, inode->i_ino, block,
734 			function, line);
735 	ext4_handle_error(inode->i_sb);
736 }
737 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)738 void __ext4_error_file(struct file *file, const char *function,
739 		       unsigned int line, ext4_fsblk_t block,
740 		       const char *fmt, ...)
741 {
742 	va_list args;
743 	struct va_format vaf;
744 	struct inode *inode = file_inode(file);
745 	char pathname[80], *path;
746 
747 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
748 		return;
749 
750 	trace_ext4_error(inode->i_sb, function, line);
751 	if (ext4_error_ratelimit(inode->i_sb)) {
752 		path = file_path(file, pathname, sizeof(pathname));
753 		if (IS_ERR(path))
754 			path = "(unknown)";
755 		va_start(args, fmt);
756 		vaf.fmt = fmt;
757 		vaf.va = &args;
758 		if (block)
759 			printk(KERN_CRIT
760 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
761 			       "block %llu: comm %s: path %s: %pV\n",
762 			       inode->i_sb->s_id, function, line, inode->i_ino,
763 			       block, current->comm, path, &vaf);
764 		else
765 			printk(KERN_CRIT
766 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
767 			       "comm %s: path %s: %pV\n",
768 			       inode->i_sb->s_id, function, line, inode->i_ino,
769 			       current->comm, path, &vaf);
770 		va_end(args);
771 	}
772 	save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
773 			function, line);
774 	ext4_handle_error(inode->i_sb);
775 }
776 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])777 const char *ext4_decode_error(struct super_block *sb, int errno,
778 			      char nbuf[16])
779 {
780 	char *errstr = NULL;
781 
782 	switch (errno) {
783 	case -EFSCORRUPTED:
784 		errstr = "Corrupt filesystem";
785 		break;
786 	case -EFSBADCRC:
787 		errstr = "Filesystem failed CRC";
788 		break;
789 	case -EIO:
790 		errstr = "IO failure";
791 		break;
792 	case -ENOMEM:
793 		errstr = "Out of memory";
794 		break;
795 	case -EROFS:
796 		if (!sb || (EXT4_SB(sb)->s_journal &&
797 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
798 			errstr = "Journal has aborted";
799 		else
800 			errstr = "Readonly filesystem";
801 		break;
802 	default:
803 		/* If the caller passed in an extra buffer for unknown
804 		 * errors, textualise them now.  Else we just return
805 		 * NULL. */
806 		if (nbuf) {
807 			/* Check for truncated error codes... */
808 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
809 				errstr = nbuf;
810 		}
811 		break;
812 	}
813 
814 	return errstr;
815 }
816 
817 /* __ext4_std_error decodes expected errors from journaling functions
818  * automatically and invokes the appropriate error response.  */
819 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)820 void __ext4_std_error(struct super_block *sb, const char *function,
821 		      unsigned int line, int errno)
822 {
823 	char nbuf[16];
824 	const char *errstr;
825 
826 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
827 		return;
828 
829 	/* Special case: if the error is EROFS, and we're not already
830 	 * inside a transaction, then there's really no point in logging
831 	 * an error. */
832 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
833 		return;
834 
835 	if (ext4_error_ratelimit(sb)) {
836 		errstr = ext4_decode_error(sb, errno, nbuf);
837 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
838 		       sb->s_id, function, line, errstr);
839 	}
840 
841 	save_error_info(sb, -errno, 0, 0, function, line);
842 	ext4_handle_error(sb);
843 }
844 
845 /*
846  * ext4_abort is a much stronger failure handler than ext4_error.  The
847  * abort function may be used to deal with unrecoverable failures such
848  * as journal IO errors or ENOMEM at a critical moment in log management.
849  *
850  * We unconditionally force the filesystem into an ABORT|READONLY state,
851  * unless the error response on the fs has been set to panic in which
852  * case we take the easy way out and panic immediately.
853  */
854 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,int error,const char * fmt,...)855 void __ext4_abort(struct super_block *sb, const char *function,
856 		  unsigned int line, int error, const char *fmt, ...)
857 {
858 	struct va_format vaf;
859 	va_list args;
860 
861 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
862 		return;
863 
864 	save_error_info(sb, error, 0, 0, function, line);
865 	va_start(args, fmt);
866 	vaf.fmt = fmt;
867 	vaf.va = &args;
868 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
869 	       sb->s_id, function, line, &vaf);
870 	va_end(args);
871 
872 	if (sb_rdonly(sb) == 0) {
873 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
874 		if (EXT4_SB(sb)->s_journal)
875 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
876 
877 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
878 		/*
879 		 * Make sure updated value of ->s_mount_flags will be visible
880 		 * before ->s_flags update
881 		 */
882 		smp_wmb();
883 		sb->s_flags |= SB_RDONLY;
884 	}
885 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
886 		panic("EXT4-fs panic from previous error\n");
887 }
888 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)889 void __ext4_msg(struct super_block *sb,
890 		const char *prefix, const char *fmt, ...)
891 {
892 	struct va_format vaf;
893 	va_list args;
894 
895 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
896 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
897 		return;
898 
899 	va_start(args, fmt);
900 	vaf.fmt = fmt;
901 	vaf.va = &args;
902 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
903 	va_end(args);
904 }
905 
ext4_warning_ratelimit(struct super_block * sb)906 static int ext4_warning_ratelimit(struct super_block *sb)
907 {
908 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
909 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
910 			    "EXT4-fs warning");
911 }
912 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)913 void __ext4_warning(struct super_block *sb, const char *function,
914 		    unsigned int line, const char *fmt, ...)
915 {
916 	struct va_format vaf;
917 	va_list args;
918 
919 	if (!ext4_warning_ratelimit(sb))
920 		return;
921 
922 	va_start(args, fmt);
923 	vaf.fmt = fmt;
924 	vaf.va = &args;
925 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
926 	       sb->s_id, function, line, &vaf);
927 	va_end(args);
928 }
929 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)930 void __ext4_warning_inode(const struct inode *inode, const char *function,
931 			  unsigned int line, const char *fmt, ...)
932 {
933 	struct va_format vaf;
934 	va_list args;
935 
936 	if (!ext4_warning_ratelimit(inode->i_sb))
937 		return;
938 
939 	va_start(args, fmt);
940 	vaf.fmt = fmt;
941 	vaf.va = &args;
942 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
943 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
944 	       function, line, inode->i_ino, current->comm, &vaf);
945 	va_end(args);
946 }
947 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)948 void __ext4_grp_locked_error(const char *function, unsigned int line,
949 			     struct super_block *sb, ext4_group_t grp,
950 			     unsigned long ino, ext4_fsblk_t block,
951 			     const char *fmt, ...)
952 __releases(bitlock)
953 __acquires(bitlock)
954 {
955 	struct va_format vaf;
956 	va_list args;
957 
958 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
959 		return;
960 
961 	trace_ext4_error(sb, function, line);
962 	__save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
963 
964 	if (ext4_error_ratelimit(sb)) {
965 		va_start(args, fmt);
966 		vaf.fmt = fmt;
967 		vaf.va = &args;
968 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
969 		       sb->s_id, function, line, grp);
970 		if (ino)
971 			printk(KERN_CONT "inode %lu: ", ino);
972 		if (block)
973 			printk(KERN_CONT "block %llu:",
974 			       (unsigned long long) block);
975 		printk(KERN_CONT "%pV\n", &vaf);
976 		va_end(args);
977 	}
978 
979 	if (test_opt(sb, WARN_ON_ERROR))
980 		WARN_ON_ONCE(1);
981 
982 	if (test_opt(sb, ERRORS_CONT)) {
983 		ext4_commit_super(sb, 0);
984 		return;
985 	}
986 
987 	ext4_unlock_group(sb, grp);
988 	ext4_commit_super(sb, 1);
989 	ext4_handle_error(sb);
990 	/*
991 	 * We only get here in the ERRORS_RO case; relocking the group
992 	 * may be dangerous, but nothing bad will happen since the
993 	 * filesystem will have already been marked read/only and the
994 	 * journal has been aborted.  We return 1 as a hint to callers
995 	 * who might what to use the return value from
996 	 * ext4_grp_locked_error() to distinguish between the
997 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
998 	 * aggressively from the ext4 function in question, with a
999 	 * more appropriate error code.
1000 	 */
1001 	ext4_lock_group(sb, grp);
1002 	return;
1003 }
1004 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1005 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1006 				     ext4_group_t group,
1007 				     unsigned int flags)
1008 {
1009 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1010 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1011 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1012 	int ret;
1013 
1014 	if (!grp || !gdp)
1015 		return;
1016 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1017 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1018 					    &grp->bb_state);
1019 		if (!ret)
1020 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1021 					   grp->bb_free);
1022 	}
1023 
1024 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1025 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1026 					    &grp->bb_state);
1027 		if (!ret && gdp) {
1028 			int count;
1029 
1030 			count = ext4_free_inodes_count(sb, gdp);
1031 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1032 					   count);
1033 		}
1034 	}
1035 }
1036 
ext4_update_dynamic_rev(struct super_block * sb)1037 void ext4_update_dynamic_rev(struct super_block *sb)
1038 {
1039 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1040 
1041 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1042 		return;
1043 
1044 	ext4_warning(sb,
1045 		     "updating to rev %d because of new feature flag, "
1046 		     "running e2fsck is recommended",
1047 		     EXT4_DYNAMIC_REV);
1048 
1049 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1050 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1051 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1052 	/* leave es->s_feature_*compat flags alone */
1053 	/* es->s_uuid will be set by e2fsck if empty */
1054 
1055 	/*
1056 	 * The rest of the superblock fields should be zero, and if not it
1057 	 * means they are likely already in use, so leave them alone.  We
1058 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1059 	 */
1060 }
1061 
1062 /*
1063  * Open the external journal device
1064  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1065 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1066 {
1067 	struct block_device *bdev;
1068 
1069 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1070 	if (IS_ERR(bdev))
1071 		goto fail;
1072 	return bdev;
1073 
1074 fail:
1075 	ext4_msg(sb, KERN_ERR,
1076 		 "failed to open journal device unknown-block(%u,%u) %ld",
1077 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1078 	return NULL;
1079 }
1080 
1081 /*
1082  * Release the journal device
1083  */
ext4_blkdev_put(struct block_device * bdev)1084 static void ext4_blkdev_put(struct block_device *bdev)
1085 {
1086 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1087 }
1088 
ext4_blkdev_remove(struct ext4_sb_info * sbi)1089 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1090 {
1091 	struct block_device *bdev;
1092 	bdev = sbi->s_journal_bdev;
1093 	if (bdev) {
1094 		/*
1095 		 * Invalidate the journal device's buffers.  We don't want them
1096 		 * floating about in memory - the physical journal device may
1097 		 * hotswapped, and it breaks the `ro-after' testing code.
1098 		 */
1099 		invalidate_bdev(bdev);
1100 		ext4_blkdev_put(bdev);
1101 		sbi->s_journal_bdev = NULL;
1102 	}
1103 }
1104 
orphan_list_entry(struct list_head * l)1105 static inline struct inode *orphan_list_entry(struct list_head *l)
1106 {
1107 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1108 }
1109 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1110 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1111 {
1112 	struct list_head *l;
1113 
1114 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1115 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1116 
1117 	printk(KERN_ERR "sb_info orphan list:\n");
1118 	list_for_each(l, &sbi->s_orphan) {
1119 		struct inode *inode = orphan_list_entry(l);
1120 		printk(KERN_ERR "  "
1121 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1122 		       inode->i_sb->s_id, inode->i_ino, inode,
1123 		       inode->i_mode, inode->i_nlink,
1124 		       NEXT_ORPHAN(inode));
1125 	}
1126 }
1127 
1128 #ifdef CONFIG_QUOTA
1129 static int ext4_quota_off(struct super_block *sb, int type);
1130 
ext4_quota_off_umount(struct super_block * sb)1131 static inline void ext4_quota_off_umount(struct super_block *sb)
1132 {
1133 	int type;
1134 
1135 	/* Use our quota_off function to clear inode flags etc. */
1136 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1137 		ext4_quota_off(sb, type);
1138 }
1139 
1140 /*
1141  * This is a helper function which is used in the mount/remount
1142  * codepaths (which holds s_umount) to fetch the quota file name.
1143  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1144 static inline char *get_qf_name(struct super_block *sb,
1145 				struct ext4_sb_info *sbi,
1146 				int type)
1147 {
1148 	return rcu_dereference_protected(sbi->s_qf_names[type],
1149 					 lockdep_is_held(&sb->s_umount));
1150 }
1151 #else
ext4_quota_off_umount(struct super_block * sb)1152 static inline void ext4_quota_off_umount(struct super_block *sb)
1153 {
1154 }
1155 #endif
1156 
ext4_put_super(struct super_block * sb)1157 static void ext4_put_super(struct super_block *sb)
1158 {
1159 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1160 	struct ext4_super_block *es = sbi->s_es;
1161 	struct buffer_head **group_desc;
1162 	struct flex_groups **flex_groups;
1163 	int aborted = 0;
1164 	int i, err;
1165 
1166 	/*
1167 	 * Unregister sysfs before destroying jbd2 journal.
1168 	 * Since we could still access attr_journal_task attribute via sysfs
1169 	 * path which could have sbi->s_journal->j_task as NULL
1170 	 * Unregister sysfs before flush sbi->s_error_work.
1171 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1172 	 * read metadata verify failed then will queue error work.
1173 	 * flush_stashed_error_work will call start_this_handle may trigger
1174 	 * BUG_ON.
1175 	 */
1176 	ext4_unregister_sysfs(sb);
1177 
1178 	ext4_unregister_li_request(sb);
1179 	ext4_quota_off_umount(sb);
1180 
1181 	destroy_workqueue(sbi->rsv_conversion_wq);
1182 
1183 	if (sbi->s_journal) {
1184 		aborted = is_journal_aborted(sbi->s_journal);
1185 		err = jbd2_journal_destroy(sbi->s_journal);
1186 		sbi->s_journal = NULL;
1187 		if ((err < 0) && !aborted) {
1188 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1189 		}
1190 	}
1191 
1192 	ext4_es_unregister_shrinker(sbi);
1193 	del_timer_sync(&sbi->s_err_report);
1194 	ext4_release_system_zone(sb);
1195 	ext4_mb_release(sb);
1196 	ext4_ext_release(sb);
1197 
1198 	if (!sb_rdonly(sb) && !aborted) {
1199 		ext4_clear_feature_journal_needs_recovery(sb);
1200 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1201 	}
1202 	if (!sb_rdonly(sb))
1203 		ext4_commit_super(sb, 1);
1204 
1205 	rcu_read_lock();
1206 	group_desc = rcu_dereference(sbi->s_group_desc);
1207 	for (i = 0; i < sbi->s_gdb_count; i++)
1208 		brelse(group_desc[i]);
1209 	kvfree(group_desc);
1210 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1211 	if (flex_groups) {
1212 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1213 			kvfree(flex_groups[i]);
1214 		kvfree(flex_groups);
1215 	}
1216 	rcu_read_unlock();
1217 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1218 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1219 	percpu_counter_destroy(&sbi->s_dirs_counter);
1220 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1221 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1222 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1223 #ifdef CONFIG_QUOTA
1224 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1225 		kfree(get_qf_name(sb, sbi, i));
1226 #endif
1227 
1228 	/* Debugging code just in case the in-memory inode orphan list
1229 	 * isn't empty.  The on-disk one can be non-empty if we've
1230 	 * detected an error and taken the fs readonly, but the
1231 	 * in-memory list had better be clean by this point. */
1232 	if (!list_empty(&sbi->s_orphan))
1233 		dump_orphan_list(sb, sbi);
1234 	J_ASSERT(list_empty(&sbi->s_orphan));
1235 
1236 	sync_blockdev(sb->s_bdev);
1237 	invalidate_bdev(sb->s_bdev);
1238 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1239 		sync_blockdev(sbi->s_journal_bdev);
1240 		ext4_blkdev_remove(sbi);
1241 	}
1242 
1243 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1244 	sbi->s_ea_inode_cache = NULL;
1245 
1246 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1247 	sbi->s_ea_block_cache = NULL;
1248 
1249 	ext4_stop_mmpd(sbi);
1250 
1251 	brelse(sbi->s_sbh);
1252 	sb->s_fs_info = NULL;
1253 	/*
1254 	 * Now that we are completely done shutting down the
1255 	 * superblock, we need to actually destroy the kobject.
1256 	 */
1257 	kobject_put(&sbi->s_kobj);
1258 	wait_for_completion(&sbi->s_kobj_unregister);
1259 	if (sbi->s_chksum_driver)
1260 		crypto_free_shash(sbi->s_chksum_driver);
1261 	kfree(sbi->s_blockgroup_lock);
1262 	fs_put_dax(sbi->s_daxdev);
1263 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1264 #ifdef CONFIG_UNICODE
1265 	utf8_unload(sb->s_encoding);
1266 #endif
1267 	kfree(sbi);
1268 }
1269 
1270 static struct kmem_cache *ext4_inode_cachep;
1271 
1272 /*
1273  * Called inside transaction, so use GFP_NOFS
1274  */
ext4_alloc_inode(struct super_block * sb)1275 static struct inode *ext4_alloc_inode(struct super_block *sb)
1276 {
1277 	struct ext4_inode_info *ei;
1278 
1279 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1280 	if (!ei)
1281 		return NULL;
1282 
1283 	inode_set_iversion(&ei->vfs_inode, 1);
1284 	ei->i_flags = 0;
1285 	spin_lock_init(&ei->i_raw_lock);
1286 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1287 	atomic_set(&ei->i_prealloc_active, 0);
1288 	spin_lock_init(&ei->i_prealloc_lock);
1289 	ext4_es_init_tree(&ei->i_es_tree);
1290 	rwlock_init(&ei->i_es_lock);
1291 	INIT_LIST_HEAD(&ei->i_es_list);
1292 	ei->i_es_all_nr = 0;
1293 	ei->i_es_shk_nr = 0;
1294 	ei->i_es_shrink_lblk = 0;
1295 	ei->i_reserved_data_blocks = 0;
1296 	spin_lock_init(&(ei->i_block_reservation_lock));
1297 	ext4_init_pending_tree(&ei->i_pending_tree);
1298 #ifdef CONFIG_QUOTA
1299 	ei->i_reserved_quota = 0;
1300 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1301 #endif
1302 	ei->jinode = NULL;
1303 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1304 	spin_lock_init(&ei->i_completed_io_lock);
1305 	ei->i_sync_tid = 0;
1306 	ei->i_datasync_tid = 0;
1307 	atomic_set(&ei->i_unwritten, 0);
1308 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1309 	ext4_fc_init_inode(&ei->vfs_inode);
1310 	mutex_init(&ei->i_fc_lock);
1311 	return &ei->vfs_inode;
1312 }
1313 
ext4_drop_inode(struct inode * inode)1314 static int ext4_drop_inode(struct inode *inode)
1315 {
1316 	int drop = generic_drop_inode(inode);
1317 
1318 	if (!drop)
1319 		drop = fscrypt_drop_inode(inode);
1320 
1321 	trace_ext4_drop_inode(inode, drop);
1322 	return drop;
1323 }
1324 
ext4_free_in_core_inode(struct inode * inode)1325 static void ext4_free_in_core_inode(struct inode *inode)
1326 {
1327 	fscrypt_free_inode(inode);
1328 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1329 		pr_warn("%s: inode %ld still in fc list",
1330 			__func__, inode->i_ino);
1331 	}
1332 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1333 }
1334 
ext4_destroy_inode(struct inode * inode)1335 static void ext4_destroy_inode(struct inode *inode)
1336 {
1337 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1338 		ext4_msg(inode->i_sb, KERN_ERR,
1339 			 "Inode %lu (%p): orphan list check failed!",
1340 			 inode->i_ino, EXT4_I(inode));
1341 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1342 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1343 				true);
1344 		dump_stack();
1345 	}
1346 
1347 	if (EXT4_I(inode)->i_reserved_data_blocks)
1348 		ext4_msg(inode->i_sb, KERN_ERR,
1349 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1350 			 inode->i_ino, EXT4_I(inode),
1351 			 EXT4_I(inode)->i_reserved_data_blocks);
1352 }
1353 
init_once(void * foo)1354 static void init_once(void *foo)
1355 {
1356 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1357 
1358 	INIT_LIST_HEAD(&ei->i_orphan);
1359 	init_rwsem(&ei->xattr_sem);
1360 	init_rwsem(&ei->i_data_sem);
1361 	init_rwsem(&ei->i_mmap_sem);
1362 	inode_init_once(&ei->vfs_inode);
1363 	ext4_fc_init_inode(&ei->vfs_inode);
1364 }
1365 
init_inodecache(void)1366 static int __init init_inodecache(void)
1367 {
1368 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1369 				sizeof(struct ext4_inode_info), 0,
1370 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1371 					SLAB_ACCOUNT),
1372 				offsetof(struct ext4_inode_info, i_data),
1373 				sizeof_field(struct ext4_inode_info, i_data),
1374 				init_once);
1375 	if (ext4_inode_cachep == NULL)
1376 		return -ENOMEM;
1377 	return 0;
1378 }
1379 
destroy_inodecache(void)1380 static void destroy_inodecache(void)
1381 {
1382 	/*
1383 	 * Make sure all delayed rcu free inodes are flushed before we
1384 	 * destroy cache.
1385 	 */
1386 	rcu_barrier();
1387 	kmem_cache_destroy(ext4_inode_cachep);
1388 }
1389 
ext4_clear_inode(struct inode * inode)1390 void ext4_clear_inode(struct inode *inode)
1391 {
1392 	ext4_fc_del(inode);
1393 	invalidate_inode_buffers(inode);
1394 	clear_inode(inode);
1395 	ext4_discard_preallocations(inode, 0);
1396 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1397 	dquot_drop(inode);
1398 	if (EXT4_I(inode)->jinode) {
1399 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1400 					       EXT4_I(inode)->jinode);
1401 		jbd2_free_inode(EXT4_I(inode)->jinode);
1402 		EXT4_I(inode)->jinode = NULL;
1403 	}
1404 	fscrypt_put_encryption_info(inode);
1405 	fsverity_cleanup_inode(inode);
1406 }
1407 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1409 					u64 ino, u32 generation)
1410 {
1411 	struct inode *inode;
1412 
1413 	/*
1414 	 * Currently we don't know the generation for parent directory, so
1415 	 * a generation of 0 means "accept any"
1416 	 */
1417 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1418 	if (IS_ERR(inode))
1419 		return ERR_CAST(inode);
1420 	if (generation && inode->i_generation != generation) {
1421 		iput(inode);
1422 		return ERR_PTR(-ESTALE);
1423 	}
1424 
1425 	return inode;
1426 }
1427 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1429 					int fh_len, int fh_type)
1430 {
1431 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1432 				    ext4_nfs_get_inode);
1433 }
1434 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1436 					int fh_len, int fh_type)
1437 {
1438 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1439 				    ext4_nfs_get_inode);
1440 }
1441 
ext4_nfs_commit_metadata(struct inode * inode)1442 static int ext4_nfs_commit_metadata(struct inode *inode)
1443 {
1444 	struct writeback_control wbc = {
1445 		.sync_mode = WB_SYNC_ALL
1446 	};
1447 
1448 	trace_ext4_nfs_commit_metadata(inode);
1449 	return ext4_write_inode(inode, &wbc);
1450 }
1451 
1452 /*
1453  * Try to release metadata pages (indirect blocks, directories) which are
1454  * mapped via the block device.  Since these pages could have journal heads
1455  * which would prevent try_to_free_buffers() from freeing them, we must use
1456  * jbd2 layer's try_to_free_buffers() function to release them.
1457  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1458 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1459 				 gfp_t wait)
1460 {
1461 	journal_t *journal = EXT4_SB(sb)->s_journal;
1462 
1463 	WARN_ON(PageChecked(page));
1464 	if (!page_has_buffers(page))
1465 		return 0;
1466 	if (journal)
1467 		return jbd2_journal_try_to_free_buffers(journal, page);
1468 
1469 	return try_to_free_buffers(page);
1470 }
1471 
1472 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1473 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1474 {
1475 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1476 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1477 }
1478 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1479 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1480 							void *fs_data)
1481 {
1482 	handle_t *handle = fs_data;
1483 	int res, res2, credits, retries = 0;
1484 
1485 	/*
1486 	 * Encrypting the root directory is not allowed because e2fsck expects
1487 	 * lost+found to exist and be unencrypted, and encrypting the root
1488 	 * directory would imply encrypting the lost+found directory as well as
1489 	 * the filename "lost+found" itself.
1490 	 */
1491 	if (inode->i_ino == EXT4_ROOT_INO)
1492 		return -EPERM;
1493 
1494 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1495 		return -EINVAL;
1496 
1497 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1498 		return -EOPNOTSUPP;
1499 
1500 	res = ext4_convert_inline_data(inode);
1501 	if (res)
1502 		return res;
1503 
1504 	/*
1505 	 * If a journal handle was specified, then the encryption context is
1506 	 * being set on a new inode via inheritance and is part of a larger
1507 	 * transaction to create the inode.  Otherwise the encryption context is
1508 	 * being set on an existing inode in its own transaction.  Only in the
1509 	 * latter case should the "retry on ENOSPC" logic be used.
1510 	 */
1511 
1512 	if (handle) {
1513 		res = ext4_xattr_set_handle(handle, inode,
1514 					    EXT4_XATTR_INDEX_ENCRYPTION,
1515 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1516 					    ctx, len, 0);
1517 		if (!res) {
1518 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1519 			ext4_clear_inode_state(inode,
1520 					EXT4_STATE_MAY_INLINE_DATA);
1521 			/*
1522 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1523 			 * S_DAX may be disabled
1524 			 */
1525 			ext4_set_inode_flags(inode, false);
1526 		}
1527 		return res;
1528 	}
1529 
1530 	res = dquot_initialize(inode);
1531 	if (res)
1532 		return res;
1533 retry:
1534 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1535 				     &credits);
1536 	if (res)
1537 		return res;
1538 
1539 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1540 	if (IS_ERR(handle))
1541 		return PTR_ERR(handle);
1542 
1543 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1544 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1545 				    ctx, len, 0);
1546 	if (!res) {
1547 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1548 		/*
1549 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1550 		 * S_DAX may be disabled
1551 		 */
1552 		ext4_set_inode_flags(inode, false);
1553 		res = ext4_mark_inode_dirty(handle, inode);
1554 		if (res)
1555 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1556 	}
1557 	res2 = ext4_journal_stop(handle);
1558 
1559 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1560 		goto retry;
1561 	if (!res)
1562 		res = res2;
1563 	return res;
1564 }
1565 
ext4_get_dummy_policy(struct super_block * sb)1566 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1567 {
1568 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1569 }
1570 
ext4_has_stable_inodes(struct super_block * sb)1571 static bool ext4_has_stable_inodes(struct super_block *sb)
1572 {
1573 	return ext4_has_feature_stable_inodes(sb);
1574 }
1575 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1576 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1577 				       int *ino_bits_ret, int *lblk_bits_ret)
1578 {
1579 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1580 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1581 }
1582 
1583 static const struct fscrypt_operations ext4_cryptops = {
1584 	.key_prefix		= "ext4:",
1585 	.get_context		= ext4_get_context,
1586 	.set_context		= ext4_set_context,
1587 	.get_dummy_policy	= ext4_get_dummy_policy,
1588 	.empty_dir		= ext4_empty_dir,
1589 	.has_stable_inodes	= ext4_has_stable_inodes,
1590 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1591 };
1592 #endif
1593 
1594 #ifdef CONFIG_QUOTA
1595 static const char * const quotatypes[] = INITQFNAMES;
1596 #define QTYPE2NAME(t) (quotatypes[t])
1597 
1598 static int ext4_write_dquot(struct dquot *dquot);
1599 static int ext4_acquire_dquot(struct dquot *dquot);
1600 static int ext4_release_dquot(struct dquot *dquot);
1601 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1602 static int ext4_write_info(struct super_block *sb, int type);
1603 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1604 			 const struct path *path);
1605 static int ext4_quota_on_mount(struct super_block *sb, int type);
1606 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1607 			       size_t len, loff_t off);
1608 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1609 				const char *data, size_t len, loff_t off);
1610 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1611 			     unsigned int flags);
1612 static int ext4_enable_quotas(struct super_block *sb);
1613 
ext4_get_dquots(struct inode * inode)1614 static struct dquot **ext4_get_dquots(struct inode *inode)
1615 {
1616 	return EXT4_I(inode)->i_dquot;
1617 }
1618 
1619 static const struct dquot_operations ext4_quota_operations = {
1620 	.get_reserved_space	= ext4_get_reserved_space,
1621 	.write_dquot		= ext4_write_dquot,
1622 	.acquire_dquot		= ext4_acquire_dquot,
1623 	.release_dquot		= ext4_release_dquot,
1624 	.mark_dirty		= ext4_mark_dquot_dirty,
1625 	.write_info		= ext4_write_info,
1626 	.alloc_dquot		= dquot_alloc,
1627 	.destroy_dquot		= dquot_destroy,
1628 	.get_projid		= ext4_get_projid,
1629 	.get_inode_usage	= ext4_get_inode_usage,
1630 	.get_next_id		= dquot_get_next_id,
1631 };
1632 
1633 static const struct quotactl_ops ext4_qctl_operations = {
1634 	.quota_on	= ext4_quota_on,
1635 	.quota_off	= ext4_quota_off,
1636 	.quota_sync	= dquot_quota_sync,
1637 	.get_state	= dquot_get_state,
1638 	.set_info	= dquot_set_dqinfo,
1639 	.get_dqblk	= dquot_get_dqblk,
1640 	.set_dqblk	= dquot_set_dqblk,
1641 	.get_nextdqblk	= dquot_get_next_dqblk,
1642 };
1643 #endif
1644 
1645 static const struct super_operations ext4_sops = {
1646 	.alloc_inode	= ext4_alloc_inode,
1647 	.free_inode	= ext4_free_in_core_inode,
1648 	.destroy_inode	= ext4_destroy_inode,
1649 	.write_inode	= ext4_write_inode,
1650 	.dirty_inode	= ext4_dirty_inode,
1651 	.drop_inode	= ext4_drop_inode,
1652 	.evict_inode	= ext4_evict_inode,
1653 	.put_super	= ext4_put_super,
1654 	.sync_fs	= ext4_sync_fs,
1655 	.freeze_fs	= ext4_freeze,
1656 	.unfreeze_fs	= ext4_unfreeze,
1657 	.statfs		= ext4_statfs,
1658 	.remount_fs	= ext4_remount,
1659 	.show_options	= ext4_show_options,
1660 #ifdef CONFIG_QUOTA
1661 	.quota_read	= ext4_quota_read,
1662 	.quota_write	= ext4_quota_write,
1663 	.get_dquots	= ext4_get_dquots,
1664 #endif
1665 	.bdev_try_to_free_page = bdev_try_to_free_page,
1666 };
1667 
1668 static const struct export_operations ext4_export_ops = {
1669 	.fh_to_dentry = ext4_fh_to_dentry,
1670 	.fh_to_parent = ext4_fh_to_parent,
1671 	.get_parent = ext4_get_parent,
1672 	.commit_metadata = ext4_nfs_commit_metadata,
1673 };
1674 
1675 enum {
1676 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1677 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1678 	Opt_nouid32, Opt_debug, Opt_removed,
1679 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1680 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1681 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1682 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1683 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1684 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1685 	Opt_inlinecrypt,
1686 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1687 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1688 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1689 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1690 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1691 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1692 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1693 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1694 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1695 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1696 	Opt_dioread_nolock, Opt_dioread_lock,
1697 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1698 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1699 	Opt_prefetch_block_bitmaps,
1700 #ifdef CONFIG_EXT4_DEBUG
1701 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1702 #endif
1703 };
1704 
1705 static const match_table_t tokens = {
1706 	{Opt_bsd_df, "bsddf"},
1707 	{Opt_minix_df, "minixdf"},
1708 	{Opt_grpid, "grpid"},
1709 	{Opt_grpid, "bsdgroups"},
1710 	{Opt_nogrpid, "nogrpid"},
1711 	{Opt_nogrpid, "sysvgroups"},
1712 	{Opt_resgid, "resgid=%u"},
1713 	{Opt_resuid, "resuid=%u"},
1714 	{Opt_sb, "sb=%u"},
1715 	{Opt_err_cont, "errors=continue"},
1716 	{Opt_err_panic, "errors=panic"},
1717 	{Opt_err_ro, "errors=remount-ro"},
1718 	{Opt_nouid32, "nouid32"},
1719 	{Opt_debug, "debug"},
1720 	{Opt_removed, "oldalloc"},
1721 	{Opt_removed, "orlov"},
1722 	{Opt_user_xattr, "user_xattr"},
1723 	{Opt_nouser_xattr, "nouser_xattr"},
1724 	{Opt_acl, "acl"},
1725 	{Opt_noacl, "noacl"},
1726 	{Opt_noload, "norecovery"},
1727 	{Opt_noload, "noload"},
1728 	{Opt_removed, "nobh"},
1729 	{Opt_removed, "bh"},
1730 	{Opt_commit, "commit=%u"},
1731 	{Opt_min_batch_time, "min_batch_time=%u"},
1732 	{Opt_max_batch_time, "max_batch_time=%u"},
1733 	{Opt_journal_dev, "journal_dev=%u"},
1734 	{Opt_journal_path, "journal_path=%s"},
1735 	{Opt_journal_checksum, "journal_checksum"},
1736 	{Opt_nojournal_checksum, "nojournal_checksum"},
1737 	{Opt_journal_async_commit, "journal_async_commit"},
1738 	{Opt_abort, "abort"},
1739 	{Opt_data_journal, "data=journal"},
1740 	{Opt_data_ordered, "data=ordered"},
1741 	{Opt_data_writeback, "data=writeback"},
1742 	{Opt_data_err_abort, "data_err=abort"},
1743 	{Opt_data_err_ignore, "data_err=ignore"},
1744 	{Opt_offusrjquota, "usrjquota="},
1745 	{Opt_usrjquota, "usrjquota=%s"},
1746 	{Opt_offgrpjquota, "grpjquota="},
1747 	{Opt_grpjquota, "grpjquota=%s"},
1748 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1749 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1750 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1751 	{Opt_grpquota, "grpquota"},
1752 	{Opt_noquota, "noquota"},
1753 	{Opt_quota, "quota"},
1754 	{Opt_usrquota, "usrquota"},
1755 	{Opt_prjquota, "prjquota"},
1756 	{Opt_barrier, "barrier=%u"},
1757 	{Opt_barrier, "barrier"},
1758 	{Opt_nobarrier, "nobarrier"},
1759 	{Opt_i_version, "i_version"},
1760 	{Opt_dax, "dax"},
1761 	{Opt_dax_always, "dax=always"},
1762 	{Opt_dax_inode, "dax=inode"},
1763 	{Opt_dax_never, "dax=never"},
1764 	{Opt_stripe, "stripe=%u"},
1765 	{Opt_delalloc, "delalloc"},
1766 	{Opt_warn_on_error, "warn_on_error"},
1767 	{Opt_nowarn_on_error, "nowarn_on_error"},
1768 	{Opt_lazytime, "lazytime"},
1769 	{Opt_nolazytime, "nolazytime"},
1770 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1771 	{Opt_nodelalloc, "nodelalloc"},
1772 	{Opt_removed, "mblk_io_submit"},
1773 	{Opt_removed, "nomblk_io_submit"},
1774 	{Opt_block_validity, "block_validity"},
1775 	{Opt_noblock_validity, "noblock_validity"},
1776 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1777 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1778 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1779 	{Opt_auto_da_alloc, "auto_da_alloc"},
1780 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1781 	{Opt_dioread_nolock, "dioread_nolock"},
1782 	{Opt_dioread_lock, "nodioread_nolock"},
1783 	{Opt_dioread_lock, "dioread_lock"},
1784 	{Opt_discard, "discard"},
1785 	{Opt_nodiscard, "nodiscard"},
1786 	{Opt_init_itable, "init_itable=%u"},
1787 	{Opt_init_itable, "init_itable"},
1788 	{Opt_noinit_itable, "noinit_itable"},
1789 #ifdef CONFIG_EXT4_DEBUG
1790 	{Opt_fc_debug_force, "fc_debug_force"},
1791 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1792 #endif
1793 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1794 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1795 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1796 	{Opt_inlinecrypt, "inlinecrypt"},
1797 	{Opt_nombcache, "nombcache"},
1798 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1799 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1800 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1801 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1802 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1803 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1804 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1805 	{Opt_err, NULL},
1806 };
1807 
get_sb_block(void ** data)1808 static ext4_fsblk_t get_sb_block(void **data)
1809 {
1810 	ext4_fsblk_t	sb_block;
1811 	char		*options = (char *) *data;
1812 
1813 	if (!options || strncmp(options, "sb=", 3) != 0)
1814 		return 1;	/* Default location */
1815 
1816 	options += 3;
1817 	/* TODO: use simple_strtoll with >32bit ext4 */
1818 	sb_block = simple_strtoul(options, &options, 0);
1819 	if (*options && *options != ',') {
1820 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1821 		       (char *) *data);
1822 		return 1;
1823 	}
1824 	if (*options == ',')
1825 		options++;
1826 	*data = (void *) options;
1827 
1828 	return sb_block;
1829 }
1830 
1831 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1832 static const char deprecated_msg[] =
1833 	"Mount option \"%s\" will be removed by %s\n"
1834 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1835 
1836 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1837 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1838 {
1839 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1840 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1841 	int ret = -1;
1842 
1843 	if (sb_any_quota_loaded(sb) && !old_qname) {
1844 		ext4_msg(sb, KERN_ERR,
1845 			"Cannot change journaled "
1846 			"quota options when quota turned on");
1847 		return -1;
1848 	}
1849 	if (ext4_has_feature_quota(sb)) {
1850 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1851 			 "ignored when QUOTA feature is enabled");
1852 		return 1;
1853 	}
1854 	qname = match_strdup(args);
1855 	if (!qname) {
1856 		ext4_msg(sb, KERN_ERR,
1857 			"Not enough memory for storing quotafile name");
1858 		return -1;
1859 	}
1860 	if (old_qname) {
1861 		if (strcmp(old_qname, qname) == 0)
1862 			ret = 1;
1863 		else
1864 			ext4_msg(sb, KERN_ERR,
1865 				 "%s quota file already specified",
1866 				 QTYPE2NAME(qtype));
1867 		goto errout;
1868 	}
1869 	if (strchr(qname, '/')) {
1870 		ext4_msg(sb, KERN_ERR,
1871 			"quotafile must be on filesystem root");
1872 		goto errout;
1873 	}
1874 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1875 	set_opt(sb, QUOTA);
1876 	return 1;
1877 errout:
1878 	kfree(qname);
1879 	return ret;
1880 }
1881 
clear_qf_name(struct super_block * sb,int qtype)1882 static int clear_qf_name(struct super_block *sb, int qtype)
1883 {
1884 
1885 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1886 	char *old_qname = get_qf_name(sb, sbi, qtype);
1887 
1888 	if (sb_any_quota_loaded(sb) && old_qname) {
1889 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1890 			" when quota turned on");
1891 		return -1;
1892 	}
1893 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1894 	synchronize_rcu();
1895 	kfree(old_qname);
1896 	return 1;
1897 }
1898 #endif
1899 
1900 #define MOPT_SET	0x0001
1901 #define MOPT_CLEAR	0x0002
1902 #define MOPT_NOSUPPORT	0x0004
1903 #define MOPT_EXPLICIT	0x0008
1904 #define MOPT_CLEAR_ERR	0x0010
1905 #define MOPT_GTE0	0x0020
1906 #ifdef CONFIG_QUOTA
1907 #define MOPT_Q		0
1908 #define MOPT_QFMT	0x0040
1909 #else
1910 #define MOPT_Q		MOPT_NOSUPPORT
1911 #define MOPT_QFMT	MOPT_NOSUPPORT
1912 #endif
1913 #define MOPT_DATAJ	0x0080
1914 #define MOPT_NO_EXT2	0x0100
1915 #define MOPT_NO_EXT3	0x0200
1916 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1917 #define MOPT_STRING	0x0400
1918 #define MOPT_SKIP	0x0800
1919 #define	MOPT_2		0x1000
1920 
1921 static const struct mount_opts {
1922 	int	token;
1923 	int	mount_opt;
1924 	int	flags;
1925 } ext4_mount_opts[] = {
1926 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1927 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1928 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1929 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1930 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1931 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1932 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1933 	 MOPT_EXT4_ONLY | MOPT_SET},
1934 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1935 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1936 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1937 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1938 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1939 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1941 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1942 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1943 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1944 	{Opt_commit, 0, MOPT_NO_EXT2},
1945 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1946 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1947 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1948 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1949 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1950 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1951 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1952 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1953 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1954 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1955 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1956 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1957 	 MOPT_NO_EXT2},
1958 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1959 	 MOPT_NO_EXT2},
1960 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1961 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1962 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1963 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1964 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1965 	{Opt_commit, 0, MOPT_GTE0},
1966 	{Opt_max_batch_time, 0, MOPT_GTE0},
1967 	{Opt_min_batch_time, 0, MOPT_GTE0},
1968 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1969 	{Opt_init_itable, 0, MOPT_GTE0},
1970 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1971 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1972 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1973 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1974 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1975 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1976 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1977 	{Opt_stripe, 0, MOPT_GTE0},
1978 	{Opt_resuid, 0, MOPT_GTE0},
1979 	{Opt_resgid, 0, MOPT_GTE0},
1980 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1981 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1982 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1983 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1984 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1985 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1986 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1987 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1988 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1989 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1990 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1991 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1992 #else
1993 	{Opt_acl, 0, MOPT_NOSUPPORT},
1994 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1995 #endif
1996 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1997 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1998 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1999 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
2000 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
2001 							MOPT_SET | MOPT_Q},
2002 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
2003 							MOPT_SET | MOPT_Q},
2004 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2005 							MOPT_SET | MOPT_Q},
2006 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2007 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2008 							MOPT_CLEAR | MOPT_Q},
2009 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2010 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2011 	{Opt_offusrjquota, 0, MOPT_Q},
2012 	{Opt_offgrpjquota, 0, MOPT_Q},
2013 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2014 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2015 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2016 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2017 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2018 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2019 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2020 	 MOPT_SET},
2021 #ifdef CONFIG_EXT4_DEBUG
2022 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2023 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2024 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2025 #endif
2026 	{Opt_err, 0, 0}
2027 };
2028 
2029 #ifdef CONFIG_UNICODE
2030 static const struct ext4_sb_encodings {
2031 	__u16 magic;
2032 	char *name;
2033 	char *version;
2034 } ext4_sb_encoding_map[] = {
2035 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2036 };
2037 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2038 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2039 				 const struct ext4_sb_encodings **encoding,
2040 				 __u16 *flags)
2041 {
2042 	__u16 magic = le16_to_cpu(es->s_encoding);
2043 	int i;
2044 
2045 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2046 		if (magic == ext4_sb_encoding_map[i].magic)
2047 			break;
2048 
2049 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2050 		return -EINVAL;
2051 
2052 	*encoding = &ext4_sb_encoding_map[i];
2053 	*flags = le16_to_cpu(es->s_encoding_flags);
2054 
2055 	return 0;
2056 }
2057 #endif
2058 
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2059 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2060 					  const char *opt,
2061 					  const substring_t *arg,
2062 					  bool is_remount)
2063 {
2064 #ifdef CONFIG_FS_ENCRYPTION
2065 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2066 	int err;
2067 
2068 	if (!ext4_has_feature_encrypt(sb)) {
2069 		ext4_msg(sb, KERN_WARNING,
2070 			 "test_dummy_encryption requires encrypt feature");
2071 		return -1;
2072 	}
2073 
2074 	/*
2075 	 * This mount option is just for testing, and it's not worthwhile to
2076 	 * implement the extra complexity (e.g. RCU protection) that would be
2077 	 * needed to allow it to be set or changed during remount.  We do allow
2078 	 * it to be specified during remount, but only if there is no change.
2079 	 */
2080 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2081 		ext4_msg(sb, KERN_WARNING,
2082 			 "Can't set test_dummy_encryption on remount");
2083 		return -1;
2084 	}
2085 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2086 						&sbi->s_dummy_enc_policy);
2087 	if (err) {
2088 		if (err == -EEXIST)
2089 			ext4_msg(sb, KERN_WARNING,
2090 				 "Can't change test_dummy_encryption on remount");
2091 		else if (err == -EINVAL)
2092 			ext4_msg(sb, KERN_WARNING,
2093 				 "Value of option \"%s\" is unrecognized", opt);
2094 		else
2095 			ext4_msg(sb, KERN_WARNING,
2096 				 "Error processing option \"%s\" [%d]",
2097 				 opt, err);
2098 		return -1;
2099 	}
2100 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2101 	return 1;
2102 #else
2103 	ext4_msg(sb, KERN_WARNING,
2104 		 "test_dummy_encryption option not supported");
2105 	return -1;
2106 
2107 #endif
2108 }
2109 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2110 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2111 			    substring_t *args, unsigned long *journal_devnum,
2112 			    unsigned int *journal_ioprio, int is_remount)
2113 {
2114 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2115 	const struct mount_opts *m;
2116 	kuid_t uid;
2117 	kgid_t gid;
2118 	int arg = 0;
2119 
2120 #ifdef CONFIG_QUOTA
2121 	if (token == Opt_usrjquota)
2122 		return set_qf_name(sb, USRQUOTA, &args[0]);
2123 	else if (token == Opt_grpjquota)
2124 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2125 	else if (token == Opt_offusrjquota)
2126 		return clear_qf_name(sb, USRQUOTA);
2127 	else if (token == Opt_offgrpjquota)
2128 		return clear_qf_name(sb, GRPQUOTA);
2129 #endif
2130 	switch (token) {
2131 	case Opt_noacl:
2132 	case Opt_nouser_xattr:
2133 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2134 		break;
2135 	case Opt_sb:
2136 		return 1;	/* handled by get_sb_block() */
2137 	case Opt_removed:
2138 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2139 		return 1;
2140 	case Opt_abort:
2141 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2142 		return 1;
2143 	case Opt_i_version:
2144 		sb->s_flags |= SB_I_VERSION;
2145 		return 1;
2146 	case Opt_lazytime:
2147 		sb->s_flags |= SB_LAZYTIME;
2148 		return 1;
2149 	case Opt_nolazytime:
2150 		sb->s_flags &= ~SB_LAZYTIME;
2151 		return 1;
2152 	case Opt_inlinecrypt:
2153 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2154 		sb->s_flags |= SB_INLINECRYPT;
2155 #else
2156 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2157 #endif
2158 		return 1;
2159 	}
2160 
2161 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162 		if (token == m->token)
2163 			break;
2164 
2165 	if (m->token == Opt_err) {
2166 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2167 			 "or missing value", opt);
2168 		return -1;
2169 	}
2170 
2171 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2172 		ext4_msg(sb, KERN_ERR,
2173 			 "Mount option \"%s\" incompatible with ext2", opt);
2174 		return -1;
2175 	}
2176 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2177 		ext4_msg(sb, KERN_ERR,
2178 			 "Mount option \"%s\" incompatible with ext3", opt);
2179 		return -1;
2180 	}
2181 
2182 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2183 		return -1;
2184 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2185 		return -1;
2186 	if (m->flags & MOPT_EXPLICIT) {
2187 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2188 			set_opt2(sb, EXPLICIT_DELALLOC);
2189 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2190 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2191 		} else
2192 			return -1;
2193 	}
2194 	if (m->flags & MOPT_CLEAR_ERR)
2195 		clear_opt(sb, ERRORS_MASK);
2196 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2197 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2198 			 "options when quota turned on");
2199 		return -1;
2200 	}
2201 
2202 	if (m->flags & MOPT_NOSUPPORT) {
2203 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2204 	} else if (token == Opt_commit) {
2205 		if (arg == 0)
2206 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2207 		else if (arg > INT_MAX / HZ) {
2208 			ext4_msg(sb, KERN_ERR,
2209 				 "Invalid commit interval %d, "
2210 				 "must be smaller than %d",
2211 				 arg, INT_MAX / HZ);
2212 			return -1;
2213 		}
2214 		sbi->s_commit_interval = HZ * arg;
2215 	} else if (token == Opt_debug_want_extra_isize) {
2216 		if ((arg & 1) ||
2217 		    (arg < 4) ||
2218 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2219 			ext4_msg(sb, KERN_ERR,
2220 				 "Invalid want_extra_isize %d", arg);
2221 			return -1;
2222 		}
2223 		sbi->s_want_extra_isize = arg;
2224 	} else if (token == Opt_max_batch_time) {
2225 		sbi->s_max_batch_time = arg;
2226 	} else if (token == Opt_min_batch_time) {
2227 		sbi->s_min_batch_time = arg;
2228 	} else if (token == Opt_inode_readahead_blks) {
2229 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2230 			ext4_msg(sb, KERN_ERR,
2231 				 "EXT4-fs: inode_readahead_blks must be "
2232 				 "0 or a power of 2 smaller than 2^31");
2233 			return -1;
2234 		}
2235 		sbi->s_inode_readahead_blks = arg;
2236 	} else if (token == Opt_init_itable) {
2237 		set_opt(sb, INIT_INODE_TABLE);
2238 		if (!args->from)
2239 			arg = EXT4_DEF_LI_WAIT_MULT;
2240 		sbi->s_li_wait_mult = arg;
2241 	} else if (token == Opt_max_dir_size_kb) {
2242 		sbi->s_max_dir_size_kb = arg;
2243 #ifdef CONFIG_EXT4_DEBUG
2244 	} else if (token == Opt_fc_debug_max_replay) {
2245 		sbi->s_fc_debug_max_replay = arg;
2246 #endif
2247 	} else if (token == Opt_stripe) {
2248 		sbi->s_stripe = arg;
2249 	} else if (token == Opt_resuid) {
2250 		uid = make_kuid(current_user_ns(), arg);
2251 		if (!uid_valid(uid)) {
2252 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2253 			return -1;
2254 		}
2255 		sbi->s_resuid = uid;
2256 	} else if (token == Opt_resgid) {
2257 		gid = make_kgid(current_user_ns(), arg);
2258 		if (!gid_valid(gid)) {
2259 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2260 			return -1;
2261 		}
2262 		sbi->s_resgid = gid;
2263 	} else if (token == Opt_journal_dev) {
2264 		if (is_remount) {
2265 			ext4_msg(sb, KERN_ERR,
2266 				 "Cannot specify journal on remount");
2267 			return -1;
2268 		}
2269 		*journal_devnum = arg;
2270 	} else if (token == Opt_journal_path) {
2271 		char *journal_path;
2272 		struct inode *journal_inode;
2273 		struct path path;
2274 		int error;
2275 
2276 		if (is_remount) {
2277 			ext4_msg(sb, KERN_ERR,
2278 				 "Cannot specify journal on remount");
2279 			return -1;
2280 		}
2281 		journal_path = match_strdup(&args[0]);
2282 		if (!journal_path) {
2283 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2284 				"journal device string");
2285 			return -1;
2286 		}
2287 
2288 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2289 		if (error) {
2290 			ext4_msg(sb, KERN_ERR, "error: could not find "
2291 				"journal device path: error %d", error);
2292 			kfree(journal_path);
2293 			return -1;
2294 		}
2295 
2296 		journal_inode = d_inode(path.dentry);
2297 		if (!S_ISBLK(journal_inode->i_mode)) {
2298 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2299 				"is not a block device", journal_path);
2300 			path_put(&path);
2301 			kfree(journal_path);
2302 			return -1;
2303 		}
2304 
2305 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2306 		path_put(&path);
2307 		kfree(journal_path);
2308 	} else if (token == Opt_journal_ioprio) {
2309 		if (arg > 7) {
2310 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2311 				 " (must be 0-7)");
2312 			return -1;
2313 		}
2314 		*journal_ioprio =
2315 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2316 	} else if (token == Opt_test_dummy_encryption) {
2317 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2318 						      is_remount);
2319 	} else if (m->flags & MOPT_DATAJ) {
2320 		if (is_remount) {
2321 			if (!sbi->s_journal)
2322 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2323 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2324 				ext4_msg(sb, KERN_ERR,
2325 					 "Cannot change data mode on remount");
2326 				return -1;
2327 			}
2328 		} else {
2329 			clear_opt(sb, DATA_FLAGS);
2330 			sbi->s_mount_opt |= m->mount_opt;
2331 		}
2332 #ifdef CONFIG_QUOTA
2333 	} else if (m->flags & MOPT_QFMT) {
2334 		if (sb_any_quota_loaded(sb) &&
2335 		    sbi->s_jquota_fmt != m->mount_opt) {
2336 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2337 				 "quota options when quota turned on");
2338 			return -1;
2339 		}
2340 		if (ext4_has_feature_quota(sb)) {
2341 			ext4_msg(sb, KERN_INFO,
2342 				 "Quota format mount options ignored "
2343 				 "when QUOTA feature is enabled");
2344 			return 1;
2345 		}
2346 		sbi->s_jquota_fmt = m->mount_opt;
2347 #endif
2348 	} else if (token == Opt_dax || token == Opt_dax_always ||
2349 		   token == Opt_dax_inode || token == Opt_dax_never) {
2350 #ifdef CONFIG_FS_DAX
2351 		switch (token) {
2352 		case Opt_dax:
2353 		case Opt_dax_always:
2354 			if (is_remount &&
2355 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2356 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2357 			fail_dax_change_remount:
2358 				ext4_msg(sb, KERN_ERR, "can't change "
2359 					 "dax mount option while remounting");
2360 				return -1;
2361 			}
2362 			if (is_remount &&
2363 			    (test_opt(sb, DATA_FLAGS) ==
2364 			     EXT4_MOUNT_JOURNAL_DATA)) {
2365 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2366 					     "both data=journal and dax");
2367 				    return -1;
2368 			}
2369 			ext4_msg(sb, KERN_WARNING,
2370 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2371 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2372 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2373 			break;
2374 		case Opt_dax_never:
2375 			if (is_remount &&
2376 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2377 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2378 				goto fail_dax_change_remount;
2379 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2380 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 			break;
2382 		case Opt_dax_inode:
2383 			if (is_remount &&
2384 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2385 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2386 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2387 				goto fail_dax_change_remount;
2388 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2389 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2390 			/* Strictly for printing options */
2391 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2392 			break;
2393 		}
2394 #else
2395 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2396 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2397 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2398 		return -1;
2399 #endif
2400 	} else if (token == Opt_data_err_abort) {
2401 		sbi->s_mount_opt |= m->mount_opt;
2402 	} else if (token == Opt_data_err_ignore) {
2403 		sbi->s_mount_opt &= ~m->mount_opt;
2404 	} else {
2405 		if (!args->from)
2406 			arg = 1;
2407 		if (m->flags & MOPT_CLEAR)
2408 			arg = !arg;
2409 		else if (unlikely(!(m->flags & MOPT_SET))) {
2410 			ext4_msg(sb, KERN_WARNING,
2411 				 "buggy handling of option %s", opt);
2412 			WARN_ON(1);
2413 			return -1;
2414 		}
2415 		if (m->flags & MOPT_2) {
2416 			if (arg != 0)
2417 				sbi->s_mount_opt2 |= m->mount_opt;
2418 			else
2419 				sbi->s_mount_opt2 &= ~m->mount_opt;
2420 		} else {
2421 			if (arg != 0)
2422 				sbi->s_mount_opt |= m->mount_opt;
2423 			else
2424 				sbi->s_mount_opt &= ~m->mount_opt;
2425 		}
2426 	}
2427 	return 1;
2428 }
2429 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2430 static int parse_options(char *options, struct super_block *sb,
2431 			 unsigned long *journal_devnum,
2432 			 unsigned int *journal_ioprio,
2433 			 int is_remount)
2434 {
2435 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2436 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2437 	substring_t args[MAX_OPT_ARGS];
2438 	int token;
2439 
2440 	if (!options)
2441 		return 1;
2442 
2443 	while ((p = strsep(&options, ",")) != NULL) {
2444 		if (!*p)
2445 			continue;
2446 		/*
2447 		 * Initialize args struct so we know whether arg was
2448 		 * found; some options take optional arguments.
2449 		 */
2450 		args[0].to = args[0].from = NULL;
2451 		token = match_token(p, tokens, args);
2452 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2453 				     journal_ioprio, is_remount) < 0)
2454 			return 0;
2455 	}
2456 #ifdef CONFIG_QUOTA
2457 	/*
2458 	 * We do the test below only for project quotas. 'usrquota' and
2459 	 * 'grpquota' mount options are allowed even without quota feature
2460 	 * to support legacy quotas in quota files.
2461 	 */
2462 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2463 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2464 			 "Cannot enable project quota enforcement.");
2465 		return 0;
2466 	}
2467 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2468 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2469 	if (usr_qf_name || grp_qf_name) {
2470 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2471 			clear_opt(sb, USRQUOTA);
2472 
2473 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2474 			clear_opt(sb, GRPQUOTA);
2475 
2476 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2477 			ext4_msg(sb, KERN_ERR, "old and new quota "
2478 					"format mixing");
2479 			return 0;
2480 		}
2481 
2482 		if (!sbi->s_jquota_fmt) {
2483 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2484 					"not specified");
2485 			return 0;
2486 		}
2487 	}
2488 #endif
2489 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2490 		int blocksize =
2491 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2492 		if (blocksize < PAGE_SIZE)
2493 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2494 				 "experimental mount option 'dioread_nolock' "
2495 				 "for blocksize < PAGE_SIZE");
2496 	}
2497 	return 1;
2498 }
2499 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2500 static inline void ext4_show_quota_options(struct seq_file *seq,
2501 					   struct super_block *sb)
2502 {
2503 #if defined(CONFIG_QUOTA)
2504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 	char *usr_qf_name, *grp_qf_name;
2506 
2507 	if (sbi->s_jquota_fmt) {
2508 		char *fmtname = "";
2509 
2510 		switch (sbi->s_jquota_fmt) {
2511 		case QFMT_VFS_OLD:
2512 			fmtname = "vfsold";
2513 			break;
2514 		case QFMT_VFS_V0:
2515 			fmtname = "vfsv0";
2516 			break;
2517 		case QFMT_VFS_V1:
2518 			fmtname = "vfsv1";
2519 			break;
2520 		}
2521 		seq_printf(seq, ",jqfmt=%s", fmtname);
2522 	}
2523 
2524 	rcu_read_lock();
2525 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2526 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2527 	if (usr_qf_name)
2528 		seq_show_option(seq, "usrjquota", usr_qf_name);
2529 	if (grp_qf_name)
2530 		seq_show_option(seq, "grpjquota", grp_qf_name);
2531 	rcu_read_unlock();
2532 #endif
2533 }
2534 
token2str(int token)2535 static const char *token2str(int token)
2536 {
2537 	const struct match_token *t;
2538 
2539 	for (t = tokens; t->token != Opt_err; t++)
2540 		if (t->token == token && !strchr(t->pattern, '='))
2541 			break;
2542 	return t->pattern;
2543 }
2544 
2545 /*
2546  * Show an option if
2547  *  - it's set to a non-default value OR
2548  *  - if the per-sb default is different from the global default
2549  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2550 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2551 			      int nodefs)
2552 {
2553 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2554 	struct ext4_super_block *es = sbi->s_es;
2555 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2556 	const struct mount_opts *m;
2557 	char sep = nodefs ? '\n' : ',';
2558 
2559 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2560 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2561 
2562 	if (sbi->s_sb_block != 1)
2563 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2564 
2565 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2566 		int want_set = m->flags & MOPT_SET;
2567 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2568 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2569 			continue;
2570 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2571 			continue; /* skip if same as the default */
2572 		if ((want_set &&
2573 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2574 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2575 			continue; /* select Opt_noFoo vs Opt_Foo */
2576 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2577 	}
2578 
2579 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2580 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2581 		SEQ_OPTS_PRINT("resuid=%u",
2582 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2583 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2584 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2585 		SEQ_OPTS_PRINT("resgid=%u",
2586 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2587 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2588 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2589 		SEQ_OPTS_PUTS("errors=remount-ro");
2590 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2591 		SEQ_OPTS_PUTS("errors=continue");
2592 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2593 		SEQ_OPTS_PUTS("errors=panic");
2594 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2595 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2596 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2597 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2598 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2599 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2600 	if (sb->s_flags & SB_I_VERSION)
2601 		SEQ_OPTS_PUTS("i_version");
2602 	if (nodefs || sbi->s_stripe)
2603 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2604 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2605 			(sbi->s_mount_opt ^ def_mount_opt)) {
2606 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2607 			SEQ_OPTS_PUTS("data=journal");
2608 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2609 			SEQ_OPTS_PUTS("data=ordered");
2610 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2611 			SEQ_OPTS_PUTS("data=writeback");
2612 	}
2613 	if (nodefs ||
2614 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2615 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2616 			       sbi->s_inode_readahead_blks);
2617 
2618 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2619 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2620 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2621 	if (nodefs || sbi->s_max_dir_size_kb)
2622 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2623 	if (test_opt(sb, DATA_ERR_ABORT))
2624 		SEQ_OPTS_PUTS("data_err=abort");
2625 
2626 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2627 
2628 	if (sb->s_flags & SB_INLINECRYPT)
2629 		SEQ_OPTS_PUTS("inlinecrypt");
2630 
2631 	if (test_opt(sb, DAX_ALWAYS)) {
2632 		if (IS_EXT2_SB(sb))
2633 			SEQ_OPTS_PUTS("dax");
2634 		else
2635 			SEQ_OPTS_PUTS("dax=always");
2636 	} else if (test_opt2(sb, DAX_NEVER)) {
2637 		SEQ_OPTS_PUTS("dax=never");
2638 	} else if (test_opt2(sb, DAX_INODE)) {
2639 		SEQ_OPTS_PUTS("dax=inode");
2640 	}
2641 	ext4_show_quota_options(seq, sb);
2642 	return 0;
2643 }
2644 
ext4_show_options(struct seq_file * seq,struct dentry * root)2645 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2646 {
2647 	return _ext4_show_options(seq, root->d_sb, 0);
2648 }
2649 
ext4_seq_options_show(struct seq_file * seq,void * offset)2650 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2651 {
2652 	struct super_block *sb = seq->private;
2653 	int rc;
2654 
2655 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2656 	rc = _ext4_show_options(seq, sb, 1);
2657 	seq_puts(seq, "\n");
2658 	return rc;
2659 }
2660 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2661 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2662 			    int read_only)
2663 {
2664 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2665 	int err = 0;
2666 
2667 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2668 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2669 			 "forcing read-only mode");
2670 		err = -EROFS;
2671 		goto done;
2672 	}
2673 	if (read_only)
2674 		goto done;
2675 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2676 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2677 			 "running e2fsck is recommended");
2678 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2679 		ext4_msg(sb, KERN_WARNING,
2680 			 "warning: mounting fs with errors, "
2681 			 "running e2fsck is recommended");
2682 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2683 		 le16_to_cpu(es->s_mnt_count) >=
2684 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2685 		ext4_msg(sb, KERN_WARNING,
2686 			 "warning: maximal mount count reached, "
2687 			 "running e2fsck is recommended");
2688 	else if (le32_to_cpu(es->s_checkinterval) &&
2689 		 (ext4_get_tstamp(es, s_lastcheck) +
2690 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2691 		ext4_msg(sb, KERN_WARNING,
2692 			 "warning: checktime reached, "
2693 			 "running e2fsck is recommended");
2694 	if (!sbi->s_journal)
2695 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2696 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2697 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2698 	le16_add_cpu(&es->s_mnt_count, 1);
2699 	ext4_update_tstamp(es, s_mtime);
2700 	if (sbi->s_journal)
2701 		ext4_set_feature_journal_needs_recovery(sb);
2702 
2703 	err = ext4_commit_super(sb, 1);
2704 done:
2705 	if (test_opt(sb, DEBUG))
2706 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2707 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2708 			sb->s_blocksize,
2709 			sbi->s_groups_count,
2710 			EXT4_BLOCKS_PER_GROUP(sb),
2711 			EXT4_INODES_PER_GROUP(sb),
2712 			sbi->s_mount_opt, sbi->s_mount_opt2);
2713 
2714 	cleancache_init_fs(sb);
2715 	return err;
2716 }
2717 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2718 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2719 {
2720 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 	struct flex_groups **old_groups, **new_groups;
2722 	int size, i, j;
2723 
2724 	if (!sbi->s_log_groups_per_flex)
2725 		return 0;
2726 
2727 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2728 	if (size <= sbi->s_flex_groups_allocated)
2729 		return 0;
2730 
2731 	new_groups = kvzalloc(roundup_pow_of_two(size *
2732 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2733 	if (!new_groups) {
2734 		ext4_msg(sb, KERN_ERR,
2735 			 "not enough memory for %d flex group pointers", size);
2736 		return -ENOMEM;
2737 	}
2738 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2739 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2740 					 sizeof(struct flex_groups)),
2741 					 GFP_KERNEL);
2742 		if (!new_groups[i]) {
2743 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2744 				kvfree(new_groups[j]);
2745 			kvfree(new_groups);
2746 			ext4_msg(sb, KERN_ERR,
2747 				 "not enough memory for %d flex groups", size);
2748 			return -ENOMEM;
2749 		}
2750 	}
2751 	rcu_read_lock();
2752 	old_groups = rcu_dereference(sbi->s_flex_groups);
2753 	if (old_groups)
2754 		memcpy(new_groups, old_groups,
2755 		       (sbi->s_flex_groups_allocated *
2756 			sizeof(struct flex_groups *)));
2757 	rcu_read_unlock();
2758 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2759 	sbi->s_flex_groups_allocated = size;
2760 	if (old_groups)
2761 		ext4_kvfree_array_rcu(old_groups);
2762 	return 0;
2763 }
2764 
ext4_fill_flex_info(struct super_block * sb)2765 static int ext4_fill_flex_info(struct super_block *sb)
2766 {
2767 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2768 	struct ext4_group_desc *gdp = NULL;
2769 	struct flex_groups *fg;
2770 	ext4_group_t flex_group;
2771 	int i, err;
2772 
2773 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2774 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2775 		sbi->s_log_groups_per_flex = 0;
2776 		return 1;
2777 	}
2778 
2779 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2780 	if (err)
2781 		goto failed;
2782 
2783 	for (i = 0; i < sbi->s_groups_count; i++) {
2784 		gdp = ext4_get_group_desc(sb, i, NULL);
2785 
2786 		flex_group = ext4_flex_group(sbi, i);
2787 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2788 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2789 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2790 			     &fg->free_clusters);
2791 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2792 	}
2793 
2794 	return 1;
2795 failed:
2796 	return 0;
2797 }
2798 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2799 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2800 				   struct ext4_group_desc *gdp)
2801 {
2802 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2803 	__u16 crc = 0;
2804 	__le32 le_group = cpu_to_le32(block_group);
2805 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2806 
2807 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2808 		/* Use new metadata_csum algorithm */
2809 		__u32 csum32;
2810 		__u16 dummy_csum = 0;
2811 
2812 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2813 				     sizeof(le_group));
2814 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2815 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2816 				     sizeof(dummy_csum));
2817 		offset += sizeof(dummy_csum);
2818 		if (offset < sbi->s_desc_size)
2819 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2820 					     sbi->s_desc_size - offset);
2821 
2822 		crc = csum32 & 0xFFFF;
2823 		goto out;
2824 	}
2825 
2826 	/* old crc16 code */
2827 	if (!ext4_has_feature_gdt_csum(sb))
2828 		return 0;
2829 
2830 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2831 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2832 	crc = crc16(crc, (__u8 *)gdp, offset);
2833 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2834 	/* for checksum of struct ext4_group_desc do the rest...*/
2835 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2836 		crc = crc16(crc, (__u8 *)gdp + offset,
2837 			    sbi->s_desc_size - offset);
2838 
2839 out:
2840 	return cpu_to_le16(crc);
2841 }
2842 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2843 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2844 				struct ext4_group_desc *gdp)
2845 {
2846 	if (ext4_has_group_desc_csum(sb) &&
2847 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2848 		return 0;
2849 
2850 	return 1;
2851 }
2852 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2853 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2854 			      struct ext4_group_desc *gdp)
2855 {
2856 	if (!ext4_has_group_desc_csum(sb))
2857 		return;
2858 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2859 }
2860 
2861 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2862 static int ext4_check_descriptors(struct super_block *sb,
2863 				  ext4_fsblk_t sb_block,
2864 				  ext4_group_t *first_not_zeroed)
2865 {
2866 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2867 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2868 	ext4_fsblk_t last_block;
2869 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2870 	ext4_fsblk_t block_bitmap;
2871 	ext4_fsblk_t inode_bitmap;
2872 	ext4_fsblk_t inode_table;
2873 	int flexbg_flag = 0;
2874 	ext4_group_t i, grp = sbi->s_groups_count;
2875 
2876 	if (ext4_has_feature_flex_bg(sb))
2877 		flexbg_flag = 1;
2878 
2879 	ext4_debug("Checking group descriptors");
2880 
2881 	for (i = 0; i < sbi->s_groups_count; i++) {
2882 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2883 
2884 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2885 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2886 		else
2887 			last_block = first_block +
2888 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2889 
2890 		if ((grp == sbi->s_groups_count) &&
2891 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2892 			grp = i;
2893 
2894 		block_bitmap = ext4_block_bitmap(sb, gdp);
2895 		if (block_bitmap == sb_block) {
2896 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 				 "Block bitmap for group %u overlaps "
2898 				 "superblock", i);
2899 			if (!sb_rdonly(sb))
2900 				return 0;
2901 		}
2902 		if (block_bitmap >= sb_block + 1 &&
2903 		    block_bitmap <= last_bg_block) {
2904 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2905 				 "Block bitmap for group %u overlaps "
2906 				 "block group descriptors", i);
2907 			if (!sb_rdonly(sb))
2908 				return 0;
2909 		}
2910 		if (block_bitmap < first_block || block_bitmap > last_block) {
2911 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2912 			       "Block bitmap for group %u not in group "
2913 			       "(block %llu)!", i, block_bitmap);
2914 			return 0;
2915 		}
2916 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2917 		if (inode_bitmap == sb_block) {
2918 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 				 "Inode bitmap for group %u overlaps "
2920 				 "superblock", i);
2921 			if (!sb_rdonly(sb))
2922 				return 0;
2923 		}
2924 		if (inode_bitmap >= sb_block + 1 &&
2925 		    inode_bitmap <= last_bg_block) {
2926 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2927 				 "Inode bitmap for group %u overlaps "
2928 				 "block group descriptors", i);
2929 			if (!sb_rdonly(sb))
2930 				return 0;
2931 		}
2932 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2933 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2934 			       "Inode bitmap for group %u not in group "
2935 			       "(block %llu)!", i, inode_bitmap);
2936 			return 0;
2937 		}
2938 		inode_table = ext4_inode_table(sb, gdp);
2939 		if (inode_table == sb_block) {
2940 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 				 "Inode table for group %u overlaps "
2942 				 "superblock", i);
2943 			if (!sb_rdonly(sb))
2944 				return 0;
2945 		}
2946 		if (inode_table >= sb_block + 1 &&
2947 		    inode_table <= last_bg_block) {
2948 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 				 "Inode table for group %u overlaps "
2950 				 "block group descriptors", i);
2951 			if (!sb_rdonly(sb))
2952 				return 0;
2953 		}
2954 		if (inode_table < first_block ||
2955 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2956 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2957 			       "Inode table for group %u not in group "
2958 			       "(block %llu)!", i, inode_table);
2959 			return 0;
2960 		}
2961 		ext4_lock_group(sb, i);
2962 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2963 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2964 				 "Checksum for group %u failed (%u!=%u)",
2965 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2966 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2967 			if (!sb_rdonly(sb)) {
2968 				ext4_unlock_group(sb, i);
2969 				return 0;
2970 			}
2971 		}
2972 		ext4_unlock_group(sb, i);
2973 		if (!flexbg_flag)
2974 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2975 	}
2976 	if (NULL != first_not_zeroed)
2977 		*first_not_zeroed = grp;
2978 	return 1;
2979 }
2980 
2981 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2982  * the superblock) which were deleted from all directories, but held open by
2983  * a process at the time of a crash.  We walk the list and try to delete these
2984  * inodes at recovery time (only with a read-write filesystem).
2985  *
2986  * In order to keep the orphan inode chain consistent during traversal (in
2987  * case of crash during recovery), we link each inode into the superblock
2988  * orphan list_head and handle it the same way as an inode deletion during
2989  * normal operation (which journals the operations for us).
2990  *
2991  * We only do an iget() and an iput() on each inode, which is very safe if we
2992  * accidentally point at an in-use or already deleted inode.  The worst that
2993  * can happen in this case is that we get a "bit already cleared" message from
2994  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2995  * e2fsck was run on this filesystem, and it must have already done the orphan
2996  * inode cleanup for us, so we can safely abort without any further action.
2997  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2998 static void ext4_orphan_cleanup(struct super_block *sb,
2999 				struct ext4_super_block *es)
3000 {
3001 	unsigned int s_flags = sb->s_flags;
3002 	int ret, nr_orphans = 0, nr_truncates = 0;
3003 #ifdef CONFIG_QUOTA
3004 	int quota_update = 0;
3005 	int i;
3006 #endif
3007 	if (!es->s_last_orphan) {
3008 		jbd_debug(4, "no orphan inodes to clean up\n");
3009 		return;
3010 	}
3011 
3012 	if (bdev_read_only(sb->s_bdev)) {
3013 		ext4_msg(sb, KERN_ERR, "write access "
3014 			"unavailable, skipping orphan cleanup");
3015 		return;
3016 	}
3017 
3018 	/* Check if feature set would not allow a r/w mount */
3019 	if (!ext4_feature_set_ok(sb, 0)) {
3020 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3021 			 "unknown ROCOMPAT features");
3022 		return;
3023 	}
3024 
3025 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3026 		/* don't clear list on RO mount w/ errors */
3027 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3028 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3029 				  "clearing orphan list.\n");
3030 			es->s_last_orphan = 0;
3031 		}
3032 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3033 		return;
3034 	}
3035 
3036 	if (s_flags & SB_RDONLY) {
3037 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3038 		sb->s_flags &= ~SB_RDONLY;
3039 	}
3040 #ifdef CONFIG_QUOTA
3041 	/*
3042 	 * Turn on quotas which were not enabled for read-only mounts if
3043 	 * filesystem has quota feature, so that they are updated correctly.
3044 	 */
3045 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3046 		int ret = ext4_enable_quotas(sb);
3047 
3048 		if (!ret)
3049 			quota_update = 1;
3050 		else
3051 			ext4_msg(sb, KERN_ERR,
3052 				"Cannot turn on quotas: error %d", ret);
3053 	}
3054 
3055 	/* Turn on journaled quotas used for old sytle */
3056 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3057 		if (EXT4_SB(sb)->s_qf_names[i]) {
3058 			int ret = ext4_quota_on_mount(sb, i);
3059 
3060 			if (!ret)
3061 				quota_update = 1;
3062 			else
3063 				ext4_msg(sb, KERN_ERR,
3064 					"Cannot turn on journaled "
3065 					"quota: type %d: error %d", i, ret);
3066 		}
3067 	}
3068 #endif
3069 
3070 	while (es->s_last_orphan) {
3071 		struct inode *inode;
3072 
3073 		/*
3074 		 * We may have encountered an error during cleanup; if
3075 		 * so, skip the rest.
3076 		 */
3077 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3078 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3079 			es->s_last_orphan = 0;
3080 			break;
3081 		}
3082 
3083 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3084 		if (IS_ERR(inode)) {
3085 			es->s_last_orphan = 0;
3086 			break;
3087 		}
3088 
3089 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3090 		dquot_initialize(inode);
3091 		if (inode->i_nlink) {
3092 			if (test_opt(sb, DEBUG))
3093 				ext4_msg(sb, KERN_DEBUG,
3094 					"%s: truncating inode %lu to %lld bytes",
3095 					__func__, inode->i_ino, inode->i_size);
3096 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3097 				  inode->i_ino, inode->i_size);
3098 			inode_lock(inode);
3099 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3100 			ret = ext4_truncate(inode);
3101 			if (ret) {
3102 				/*
3103 				 * We need to clean up the in-core orphan list
3104 				 * manually if ext4_truncate() failed to get a
3105 				 * transaction handle.
3106 				 */
3107 				ext4_orphan_del(NULL, inode);
3108 				ext4_std_error(inode->i_sb, ret);
3109 			}
3110 			inode_unlock(inode);
3111 			nr_truncates++;
3112 		} else {
3113 			if (test_opt(sb, DEBUG))
3114 				ext4_msg(sb, KERN_DEBUG,
3115 					"%s: deleting unreferenced inode %lu",
3116 					__func__, inode->i_ino);
3117 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3118 				  inode->i_ino);
3119 			nr_orphans++;
3120 		}
3121 		iput(inode);  /* The delete magic happens here! */
3122 	}
3123 
3124 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3125 
3126 	if (nr_orphans)
3127 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3128 		       PLURAL(nr_orphans));
3129 	if (nr_truncates)
3130 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3131 		       PLURAL(nr_truncates));
3132 #ifdef CONFIG_QUOTA
3133 	/* Turn off quotas if they were enabled for orphan cleanup */
3134 	if (quota_update) {
3135 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3136 			if (sb_dqopt(sb)->files[i])
3137 				dquot_quota_off(sb, i);
3138 		}
3139 	}
3140 #endif
3141 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3142 }
3143 
3144 /*
3145  * Maximal extent format file size.
3146  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3147  * extent format containers, within a sector_t, and within i_blocks
3148  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3149  * so that won't be a limiting factor.
3150  *
3151  * However there is other limiting factor. We do store extents in the form
3152  * of starting block and length, hence the resulting length of the extent
3153  * covering maximum file size must fit into on-disk format containers as
3154  * well. Given that length is always by 1 unit bigger than max unit (because
3155  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3156  *
3157  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3158  */
ext4_max_size(int blkbits,int has_huge_files)3159 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3160 {
3161 	loff_t res;
3162 	loff_t upper_limit = MAX_LFS_FILESIZE;
3163 
3164 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3165 
3166 	if (!has_huge_files) {
3167 		upper_limit = (1LL << 32) - 1;
3168 
3169 		/* total blocks in file system block size */
3170 		upper_limit >>= (blkbits - 9);
3171 		upper_limit <<= blkbits;
3172 	}
3173 
3174 	/*
3175 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3176 	 * by one fs block, so ee_len can cover the extent of maximum file
3177 	 * size
3178 	 */
3179 	res = (1LL << 32) - 1;
3180 	res <<= blkbits;
3181 
3182 	/* Sanity check against vm- & vfs- imposed limits */
3183 	if (res > upper_limit)
3184 		res = upper_limit;
3185 
3186 	return res;
3187 }
3188 
3189 /*
3190  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3191  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3192  * We need to be 1 filesystem block less than the 2^48 sector limit.
3193  */
ext4_max_bitmap_size(int bits,int has_huge_files)3194 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3195 {
3196 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3197 	int meta_blocks;
3198 
3199 	/*
3200 	 * This is calculated to be the largest file size for a dense, block
3201 	 * mapped file such that the file's total number of 512-byte sectors,
3202 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3203 	 *
3204 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3205 	 * number of 512-byte sectors of the file.
3206 	 */
3207 	if (!has_huge_files) {
3208 		/*
3209 		 * !has_huge_files or implies that the inode i_block field
3210 		 * represents total file blocks in 2^32 512-byte sectors ==
3211 		 * size of vfs inode i_blocks * 8
3212 		 */
3213 		upper_limit = (1LL << 32) - 1;
3214 
3215 		/* total blocks in file system block size */
3216 		upper_limit >>= (bits - 9);
3217 
3218 	} else {
3219 		/*
3220 		 * We use 48 bit ext4_inode i_blocks
3221 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3222 		 * represent total number of blocks in
3223 		 * file system block size
3224 		 */
3225 		upper_limit = (1LL << 48) - 1;
3226 
3227 	}
3228 
3229 	/* indirect blocks */
3230 	meta_blocks = 1;
3231 	/* double indirect blocks */
3232 	meta_blocks += 1 + (1LL << (bits-2));
3233 	/* tripple indirect blocks */
3234 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3235 
3236 	upper_limit -= meta_blocks;
3237 	upper_limit <<= bits;
3238 
3239 	res += 1LL << (bits-2);
3240 	res += 1LL << (2*(bits-2));
3241 	res += 1LL << (3*(bits-2));
3242 	res <<= bits;
3243 	if (res > upper_limit)
3244 		res = upper_limit;
3245 
3246 	if (res > MAX_LFS_FILESIZE)
3247 		res = MAX_LFS_FILESIZE;
3248 
3249 	return (loff_t)res;
3250 }
3251 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3252 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3253 				   ext4_fsblk_t logical_sb_block, int nr)
3254 {
3255 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3256 	ext4_group_t bg, first_meta_bg;
3257 	int has_super = 0;
3258 
3259 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3260 
3261 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3262 		return logical_sb_block + nr + 1;
3263 	bg = sbi->s_desc_per_block * nr;
3264 	if (ext4_bg_has_super(sb, bg))
3265 		has_super = 1;
3266 
3267 	/*
3268 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3269 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3270 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3271 	 * compensate.
3272 	 */
3273 	if (sb->s_blocksize == 1024 && nr == 0 &&
3274 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3275 		has_super++;
3276 
3277 	return (has_super + ext4_group_first_block_no(sb, bg));
3278 }
3279 
3280 /**
3281  * ext4_get_stripe_size: Get the stripe size.
3282  * @sbi: In memory super block info
3283  *
3284  * If we have specified it via mount option, then
3285  * use the mount option value. If the value specified at mount time is
3286  * greater than the blocks per group use the super block value.
3287  * If the super block value is greater than blocks per group return 0.
3288  * Allocator needs it be less than blocks per group.
3289  *
3290  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3291 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3292 {
3293 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3294 	unsigned long stripe_width =
3295 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3296 	int ret;
3297 
3298 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3299 		ret = sbi->s_stripe;
3300 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3301 		ret = stripe_width;
3302 	else if (stride && stride <= sbi->s_blocks_per_group)
3303 		ret = stride;
3304 	else
3305 		ret = 0;
3306 
3307 	/*
3308 	 * If the stripe width is 1, this makes no sense and
3309 	 * we set it to 0 to turn off stripe handling code.
3310 	 */
3311 	if (ret <= 1)
3312 		ret = 0;
3313 
3314 	return ret;
3315 }
3316 
3317 /*
3318  * Check whether this filesystem can be mounted based on
3319  * the features present and the RDONLY/RDWR mount requested.
3320  * Returns 1 if this filesystem can be mounted as requested,
3321  * 0 if it cannot be.
3322  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3323 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3324 {
3325 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3326 		ext4_msg(sb, KERN_ERR,
3327 			"Couldn't mount because of "
3328 			"unsupported optional features (%x)",
3329 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3330 			~EXT4_FEATURE_INCOMPAT_SUPP));
3331 		return 0;
3332 	}
3333 
3334 #ifndef CONFIG_UNICODE
3335 	if (ext4_has_feature_casefold(sb)) {
3336 		ext4_msg(sb, KERN_ERR,
3337 			 "Filesystem with casefold feature cannot be "
3338 			 "mounted without CONFIG_UNICODE");
3339 		return 0;
3340 	}
3341 #endif
3342 
3343 	if (readonly)
3344 		return 1;
3345 
3346 	if (ext4_has_feature_readonly(sb)) {
3347 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3348 		sb->s_flags |= SB_RDONLY;
3349 		return 1;
3350 	}
3351 
3352 	/* Check that feature set is OK for a read-write mount */
3353 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3354 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3355 			 "unsupported optional features (%x)",
3356 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3357 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3358 		return 0;
3359 	}
3360 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3361 		ext4_msg(sb, KERN_ERR,
3362 			 "Can't support bigalloc feature without "
3363 			 "extents feature\n");
3364 		return 0;
3365 	}
3366 
3367 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3368 	if (!readonly && (ext4_has_feature_quota(sb) ||
3369 			  ext4_has_feature_project(sb))) {
3370 		ext4_msg(sb, KERN_ERR,
3371 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3372 		return 0;
3373 	}
3374 #endif  /* CONFIG_QUOTA */
3375 	return 1;
3376 }
3377 
3378 /*
3379  * This function is called once a day if we have errors logged
3380  * on the file system
3381  */
print_daily_error_info(struct timer_list * t)3382 static void print_daily_error_info(struct timer_list *t)
3383 {
3384 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3385 	struct super_block *sb = sbi->s_sb;
3386 	struct ext4_super_block *es = sbi->s_es;
3387 
3388 	if (es->s_error_count)
3389 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3390 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3391 			 le32_to_cpu(es->s_error_count));
3392 	if (es->s_first_error_time) {
3393 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3394 		       sb->s_id,
3395 		       ext4_get_tstamp(es, s_first_error_time),
3396 		       (int) sizeof(es->s_first_error_func),
3397 		       es->s_first_error_func,
3398 		       le32_to_cpu(es->s_first_error_line));
3399 		if (es->s_first_error_ino)
3400 			printk(KERN_CONT ": inode %u",
3401 			       le32_to_cpu(es->s_first_error_ino));
3402 		if (es->s_first_error_block)
3403 			printk(KERN_CONT ": block %llu", (unsigned long long)
3404 			       le64_to_cpu(es->s_first_error_block));
3405 		printk(KERN_CONT "\n");
3406 	}
3407 	if (es->s_last_error_time) {
3408 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3409 		       sb->s_id,
3410 		       ext4_get_tstamp(es, s_last_error_time),
3411 		       (int) sizeof(es->s_last_error_func),
3412 		       es->s_last_error_func,
3413 		       le32_to_cpu(es->s_last_error_line));
3414 		if (es->s_last_error_ino)
3415 			printk(KERN_CONT ": inode %u",
3416 			       le32_to_cpu(es->s_last_error_ino));
3417 		if (es->s_last_error_block)
3418 			printk(KERN_CONT ": block %llu", (unsigned long long)
3419 			       le64_to_cpu(es->s_last_error_block));
3420 		printk(KERN_CONT "\n");
3421 	}
3422 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3423 }
3424 
3425 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3426 static int ext4_run_li_request(struct ext4_li_request *elr)
3427 {
3428 	struct ext4_group_desc *gdp = NULL;
3429 	struct super_block *sb = elr->lr_super;
3430 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3431 	ext4_group_t group = elr->lr_next_group;
3432 	unsigned int prefetch_ios = 0;
3433 	int ret = 0;
3434 	u64 start_time;
3435 
3436 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3437 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3438 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3439 		if (prefetch_ios)
3440 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3441 					      prefetch_ios);
3442 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3443 					    prefetch_ios);
3444 		if (group >= elr->lr_next_group) {
3445 			ret = 1;
3446 			if (elr->lr_first_not_zeroed != ngroups &&
3447 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3448 				elr->lr_next_group = elr->lr_first_not_zeroed;
3449 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3450 				ret = 0;
3451 			}
3452 		}
3453 		return ret;
3454 	}
3455 
3456 	for (; group < ngroups; group++) {
3457 		gdp = ext4_get_group_desc(sb, group, NULL);
3458 		if (!gdp) {
3459 			ret = 1;
3460 			break;
3461 		}
3462 
3463 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3464 			break;
3465 	}
3466 
3467 	if (group >= ngroups)
3468 		ret = 1;
3469 
3470 	if (!ret) {
3471 		start_time = ktime_get_real_ns();
3472 		ret = ext4_init_inode_table(sb, group,
3473 					    elr->lr_timeout ? 0 : 1);
3474 		trace_ext4_lazy_itable_init(sb, group);
3475 		if (elr->lr_timeout == 0) {
3476 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3477 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3478 		}
3479 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3480 		elr->lr_next_group = group + 1;
3481 	}
3482 	return ret;
3483 }
3484 
3485 /*
3486  * Remove lr_request from the list_request and free the
3487  * request structure. Should be called with li_list_mtx held
3488  */
ext4_remove_li_request(struct ext4_li_request * elr)3489 static void ext4_remove_li_request(struct ext4_li_request *elr)
3490 {
3491 	if (!elr)
3492 		return;
3493 
3494 	list_del(&elr->lr_request);
3495 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3496 	kfree(elr);
3497 }
3498 
ext4_unregister_li_request(struct super_block * sb)3499 static void ext4_unregister_li_request(struct super_block *sb)
3500 {
3501 	mutex_lock(&ext4_li_mtx);
3502 	if (!ext4_li_info) {
3503 		mutex_unlock(&ext4_li_mtx);
3504 		return;
3505 	}
3506 
3507 	mutex_lock(&ext4_li_info->li_list_mtx);
3508 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3509 	mutex_unlock(&ext4_li_info->li_list_mtx);
3510 	mutex_unlock(&ext4_li_mtx);
3511 }
3512 
3513 static struct task_struct *ext4_lazyinit_task;
3514 
3515 /*
3516  * This is the function where ext4lazyinit thread lives. It walks
3517  * through the request list searching for next scheduled filesystem.
3518  * When such a fs is found, run the lazy initialization request
3519  * (ext4_rn_li_request) and keep track of the time spend in this
3520  * function. Based on that time we compute next schedule time of
3521  * the request. When walking through the list is complete, compute
3522  * next waking time and put itself into sleep.
3523  */
ext4_lazyinit_thread(void * arg)3524 static int ext4_lazyinit_thread(void *arg)
3525 {
3526 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3527 	struct list_head *pos, *n;
3528 	struct ext4_li_request *elr;
3529 	unsigned long next_wakeup, cur;
3530 
3531 	BUG_ON(NULL == eli);
3532 	set_freezable();
3533 
3534 cont_thread:
3535 	while (true) {
3536 		next_wakeup = MAX_JIFFY_OFFSET;
3537 
3538 		mutex_lock(&eli->li_list_mtx);
3539 		if (list_empty(&eli->li_request_list)) {
3540 			mutex_unlock(&eli->li_list_mtx);
3541 			goto exit_thread;
3542 		}
3543 		list_for_each_safe(pos, n, &eli->li_request_list) {
3544 			int err = 0;
3545 			int progress = 0;
3546 			elr = list_entry(pos, struct ext4_li_request,
3547 					 lr_request);
3548 
3549 			if (time_before(jiffies, elr->lr_next_sched)) {
3550 				if (time_before(elr->lr_next_sched, next_wakeup))
3551 					next_wakeup = elr->lr_next_sched;
3552 				continue;
3553 			}
3554 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3555 				if (sb_start_write_trylock(elr->lr_super)) {
3556 					progress = 1;
3557 					/*
3558 					 * We hold sb->s_umount, sb can not
3559 					 * be removed from the list, it is
3560 					 * now safe to drop li_list_mtx
3561 					 */
3562 					mutex_unlock(&eli->li_list_mtx);
3563 					err = ext4_run_li_request(elr);
3564 					sb_end_write(elr->lr_super);
3565 					mutex_lock(&eli->li_list_mtx);
3566 					n = pos->next;
3567 				}
3568 				up_read((&elr->lr_super->s_umount));
3569 			}
3570 			/* error, remove the lazy_init job */
3571 			if (err) {
3572 				ext4_remove_li_request(elr);
3573 				continue;
3574 			}
3575 			if (!progress) {
3576 				elr->lr_next_sched = jiffies +
3577 					(prandom_u32()
3578 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3579 			}
3580 			if (time_before(elr->lr_next_sched, next_wakeup))
3581 				next_wakeup = elr->lr_next_sched;
3582 		}
3583 		mutex_unlock(&eli->li_list_mtx);
3584 
3585 		try_to_freeze();
3586 
3587 		cur = jiffies;
3588 		if ((time_after_eq(cur, next_wakeup)) ||
3589 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3590 			cond_resched();
3591 			continue;
3592 		}
3593 
3594 		schedule_timeout_interruptible(next_wakeup - cur);
3595 
3596 		if (kthread_should_stop()) {
3597 			ext4_clear_request_list();
3598 			goto exit_thread;
3599 		}
3600 	}
3601 
3602 exit_thread:
3603 	/*
3604 	 * It looks like the request list is empty, but we need
3605 	 * to check it under the li_list_mtx lock, to prevent any
3606 	 * additions into it, and of course we should lock ext4_li_mtx
3607 	 * to atomically free the list and ext4_li_info, because at
3608 	 * this point another ext4 filesystem could be registering
3609 	 * new one.
3610 	 */
3611 	mutex_lock(&ext4_li_mtx);
3612 	mutex_lock(&eli->li_list_mtx);
3613 	if (!list_empty(&eli->li_request_list)) {
3614 		mutex_unlock(&eli->li_list_mtx);
3615 		mutex_unlock(&ext4_li_mtx);
3616 		goto cont_thread;
3617 	}
3618 	mutex_unlock(&eli->li_list_mtx);
3619 	kfree(ext4_li_info);
3620 	ext4_li_info = NULL;
3621 	mutex_unlock(&ext4_li_mtx);
3622 
3623 	return 0;
3624 }
3625 
ext4_clear_request_list(void)3626 static void ext4_clear_request_list(void)
3627 {
3628 	struct list_head *pos, *n;
3629 	struct ext4_li_request *elr;
3630 
3631 	mutex_lock(&ext4_li_info->li_list_mtx);
3632 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3633 		elr = list_entry(pos, struct ext4_li_request,
3634 				 lr_request);
3635 		ext4_remove_li_request(elr);
3636 	}
3637 	mutex_unlock(&ext4_li_info->li_list_mtx);
3638 }
3639 
ext4_run_lazyinit_thread(void)3640 static int ext4_run_lazyinit_thread(void)
3641 {
3642 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3643 					 ext4_li_info, "ext4lazyinit");
3644 	if (IS_ERR(ext4_lazyinit_task)) {
3645 		int err = PTR_ERR(ext4_lazyinit_task);
3646 		ext4_clear_request_list();
3647 		kfree(ext4_li_info);
3648 		ext4_li_info = NULL;
3649 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3650 				 "initialization thread\n",
3651 				 err);
3652 		return err;
3653 	}
3654 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Check whether it make sense to run itable init. thread or not.
3660  * If there is at least one uninitialized inode table, return
3661  * corresponding group number, else the loop goes through all
3662  * groups and return total number of groups.
3663  */
ext4_has_uninit_itable(struct super_block * sb)3664 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3665 {
3666 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3667 	struct ext4_group_desc *gdp = NULL;
3668 
3669 	if (!ext4_has_group_desc_csum(sb))
3670 		return ngroups;
3671 
3672 	for (group = 0; group < ngroups; group++) {
3673 		gdp = ext4_get_group_desc(sb, group, NULL);
3674 		if (!gdp)
3675 			continue;
3676 
3677 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3678 			break;
3679 	}
3680 
3681 	return group;
3682 }
3683 
ext4_li_info_new(void)3684 static int ext4_li_info_new(void)
3685 {
3686 	struct ext4_lazy_init *eli = NULL;
3687 
3688 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3689 	if (!eli)
3690 		return -ENOMEM;
3691 
3692 	INIT_LIST_HEAD(&eli->li_request_list);
3693 	mutex_init(&eli->li_list_mtx);
3694 
3695 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3696 
3697 	ext4_li_info = eli;
3698 
3699 	return 0;
3700 }
3701 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3702 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3703 					    ext4_group_t start)
3704 {
3705 	struct ext4_li_request *elr;
3706 
3707 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3708 	if (!elr)
3709 		return NULL;
3710 
3711 	elr->lr_super = sb;
3712 	elr->lr_first_not_zeroed = start;
3713 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3714 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3715 	else {
3716 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3717 		elr->lr_next_group = start;
3718 	}
3719 
3720 	/*
3721 	 * Randomize first schedule time of the request to
3722 	 * spread the inode table initialization requests
3723 	 * better.
3724 	 */
3725 	elr->lr_next_sched = jiffies + (prandom_u32() %
3726 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3727 	return elr;
3728 }
3729 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3730 int ext4_register_li_request(struct super_block *sb,
3731 			     ext4_group_t first_not_zeroed)
3732 {
3733 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3734 	struct ext4_li_request *elr = NULL;
3735 	ext4_group_t ngroups = sbi->s_groups_count;
3736 	int ret = 0;
3737 
3738 	mutex_lock(&ext4_li_mtx);
3739 	if (sbi->s_li_request != NULL) {
3740 		/*
3741 		 * Reset timeout so it can be computed again, because
3742 		 * s_li_wait_mult might have changed.
3743 		 */
3744 		sbi->s_li_request->lr_timeout = 0;
3745 		goto out;
3746 	}
3747 
3748 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3749 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3750 	     !test_opt(sb, INIT_INODE_TABLE)))
3751 		goto out;
3752 
3753 	elr = ext4_li_request_new(sb, first_not_zeroed);
3754 	if (!elr) {
3755 		ret = -ENOMEM;
3756 		goto out;
3757 	}
3758 
3759 	if (NULL == ext4_li_info) {
3760 		ret = ext4_li_info_new();
3761 		if (ret)
3762 			goto out;
3763 	}
3764 
3765 	mutex_lock(&ext4_li_info->li_list_mtx);
3766 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3767 	mutex_unlock(&ext4_li_info->li_list_mtx);
3768 
3769 	sbi->s_li_request = elr;
3770 	/*
3771 	 * set elr to NULL here since it has been inserted to
3772 	 * the request_list and the removal and free of it is
3773 	 * handled by ext4_clear_request_list from now on.
3774 	 */
3775 	elr = NULL;
3776 
3777 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3778 		ret = ext4_run_lazyinit_thread();
3779 		if (ret)
3780 			goto out;
3781 	}
3782 out:
3783 	mutex_unlock(&ext4_li_mtx);
3784 	if (ret)
3785 		kfree(elr);
3786 	return ret;
3787 }
3788 
3789 /*
3790  * We do not need to lock anything since this is called on
3791  * module unload.
3792  */
ext4_destroy_lazyinit_thread(void)3793 static void ext4_destroy_lazyinit_thread(void)
3794 {
3795 	/*
3796 	 * If thread exited earlier
3797 	 * there's nothing to be done.
3798 	 */
3799 	if (!ext4_li_info || !ext4_lazyinit_task)
3800 		return;
3801 
3802 	kthread_stop(ext4_lazyinit_task);
3803 }
3804 
set_journal_csum_feature_set(struct super_block * sb)3805 static int set_journal_csum_feature_set(struct super_block *sb)
3806 {
3807 	int ret = 1;
3808 	int compat, incompat;
3809 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3810 
3811 	if (ext4_has_metadata_csum(sb)) {
3812 		/* journal checksum v3 */
3813 		compat = 0;
3814 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3815 	} else {
3816 		/* journal checksum v1 */
3817 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3818 		incompat = 0;
3819 	}
3820 
3821 	jbd2_journal_clear_features(sbi->s_journal,
3822 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3823 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3824 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3825 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3826 		ret = jbd2_journal_set_features(sbi->s_journal,
3827 				compat, 0,
3828 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3829 				incompat);
3830 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3831 		ret = jbd2_journal_set_features(sbi->s_journal,
3832 				compat, 0,
3833 				incompat);
3834 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3835 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3836 	} else {
3837 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3838 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3839 	}
3840 
3841 	return ret;
3842 }
3843 
3844 /*
3845  * Note: calculating the overhead so we can be compatible with
3846  * historical BSD practice is quite difficult in the face of
3847  * clusters/bigalloc.  This is because multiple metadata blocks from
3848  * different block group can end up in the same allocation cluster.
3849  * Calculating the exact overhead in the face of clustered allocation
3850  * requires either O(all block bitmaps) in memory or O(number of block
3851  * groups**2) in time.  We will still calculate the superblock for
3852  * older file systems --- and if we come across with a bigalloc file
3853  * system with zero in s_overhead_clusters the estimate will be close to
3854  * correct especially for very large cluster sizes --- but for newer
3855  * file systems, it's better to calculate this figure once at mkfs
3856  * time, and store it in the superblock.  If the superblock value is
3857  * present (even for non-bigalloc file systems), we will use it.
3858  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3859 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3860 			  char *buf)
3861 {
3862 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3863 	struct ext4_group_desc	*gdp;
3864 	ext4_fsblk_t		first_block, last_block, b;
3865 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3866 	int			s, j, count = 0;
3867 	int			has_super = ext4_bg_has_super(sb, grp);
3868 
3869 	if (!ext4_has_feature_bigalloc(sb))
3870 		return (has_super + ext4_bg_num_gdb(sb, grp) +
3871 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3872 			sbi->s_itb_per_group + 2);
3873 
3874 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3875 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3876 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3877 	for (i = 0; i < ngroups; i++) {
3878 		gdp = ext4_get_group_desc(sb, i, NULL);
3879 		b = ext4_block_bitmap(sb, gdp);
3880 		if (b >= first_block && b <= last_block) {
3881 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3882 			count++;
3883 		}
3884 		b = ext4_inode_bitmap(sb, gdp);
3885 		if (b >= first_block && b <= last_block) {
3886 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3887 			count++;
3888 		}
3889 		b = ext4_inode_table(sb, gdp);
3890 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3891 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3892 				int c = EXT4_B2C(sbi, b - first_block);
3893 				ext4_set_bit(c, buf);
3894 				count++;
3895 			}
3896 		if (i != grp)
3897 			continue;
3898 		s = 0;
3899 		if (ext4_bg_has_super(sb, grp)) {
3900 			ext4_set_bit(s++, buf);
3901 			count++;
3902 		}
3903 		j = ext4_bg_num_gdb(sb, grp);
3904 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3905 			ext4_error(sb, "Invalid number of block group "
3906 				   "descriptor blocks: %d", j);
3907 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3908 		}
3909 		count += j;
3910 		for (; j > 0; j--)
3911 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3912 	}
3913 	if (!count)
3914 		return 0;
3915 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3916 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3917 }
3918 
3919 /*
3920  * Compute the overhead and stash it in sbi->s_overhead
3921  */
ext4_calculate_overhead(struct super_block * sb)3922 int ext4_calculate_overhead(struct super_block *sb)
3923 {
3924 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3925 	struct ext4_super_block *es = sbi->s_es;
3926 	struct inode *j_inode;
3927 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3928 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3929 	ext4_fsblk_t overhead = 0;
3930 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3931 
3932 	if (!buf)
3933 		return -ENOMEM;
3934 
3935 	/*
3936 	 * Compute the overhead (FS structures).  This is constant
3937 	 * for a given filesystem unless the number of block groups
3938 	 * changes so we cache the previous value until it does.
3939 	 */
3940 
3941 	/*
3942 	 * All of the blocks before first_data_block are overhead
3943 	 */
3944 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3945 
3946 	/*
3947 	 * Add the overhead found in each block group
3948 	 */
3949 	for (i = 0; i < ngroups; i++) {
3950 		int blks;
3951 
3952 		blks = count_overhead(sb, i, buf);
3953 		overhead += blks;
3954 		if (blks)
3955 			memset(buf, 0, PAGE_SIZE);
3956 		cond_resched();
3957 	}
3958 
3959 	/*
3960 	 * Add the internal journal blocks whether the journal has been
3961 	 * loaded or not
3962 	 */
3963 	if (sbi->s_journal && !sbi->s_journal_bdev)
3964 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3965 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3966 		/* j_inum for internal journal is non-zero */
3967 		j_inode = ext4_get_journal_inode(sb, j_inum);
3968 		if (j_inode) {
3969 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3970 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3971 			iput(j_inode);
3972 		} else {
3973 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3974 		}
3975 	}
3976 	sbi->s_overhead = overhead;
3977 	smp_wmb();
3978 	free_page((unsigned long) buf);
3979 	return 0;
3980 }
3981 
ext4_set_resv_clusters(struct super_block * sb)3982 static void ext4_set_resv_clusters(struct super_block *sb)
3983 {
3984 	ext4_fsblk_t resv_clusters;
3985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3986 
3987 	/*
3988 	 * There's no need to reserve anything when we aren't using extents.
3989 	 * The space estimates are exact, there are no unwritten extents,
3990 	 * hole punching doesn't need new metadata... This is needed especially
3991 	 * to keep ext2/3 backward compatibility.
3992 	 */
3993 	if (!ext4_has_feature_extents(sb))
3994 		return;
3995 	/*
3996 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3997 	 * This should cover the situations where we can not afford to run
3998 	 * out of space like for example punch hole, or converting
3999 	 * unwritten extents in delalloc path. In most cases such
4000 	 * allocation would require 1, or 2 blocks, higher numbers are
4001 	 * very rare.
4002 	 */
4003 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4004 			 sbi->s_cluster_bits);
4005 
4006 	do_div(resv_clusters, 50);
4007 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4008 
4009 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4010 }
4011 
ext4_fill_super(struct super_block * sb,void * data,int silent)4012 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4013 {
4014 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4015 	char *orig_data = kstrdup(data, GFP_KERNEL);
4016 	struct buffer_head *bh, **group_desc;
4017 	struct ext4_super_block *es = NULL;
4018 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4019 	struct flex_groups **flex_groups;
4020 	ext4_fsblk_t block;
4021 	ext4_fsblk_t sb_block = get_sb_block(&data);
4022 	ext4_fsblk_t logical_sb_block;
4023 	unsigned long offset = 0;
4024 	unsigned long journal_devnum = 0;
4025 	unsigned long def_mount_opts;
4026 	struct inode *root;
4027 	const char *descr;
4028 	int ret = -ENOMEM;
4029 	int blocksize, clustersize;
4030 	unsigned int db_count;
4031 	unsigned int i;
4032 	int needs_recovery, has_huge_files;
4033 	__u64 blocks_count;
4034 	int err = 0;
4035 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4036 	ext4_group_t first_not_zeroed;
4037 
4038 	if ((data && !orig_data) || !sbi)
4039 		goto out_free_base;
4040 
4041 	sbi->s_daxdev = dax_dev;
4042 	sbi->s_blockgroup_lock =
4043 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4044 	if (!sbi->s_blockgroup_lock)
4045 		goto out_free_base;
4046 
4047 	sb->s_fs_info = sbi;
4048 	sbi->s_sb = sb;
4049 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4050 	sbi->s_sb_block = sb_block;
4051 	if (sb->s_bdev->bd_part)
4052 		sbi->s_sectors_written_start =
4053 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4054 
4055 	/* Cleanup superblock name */
4056 	strreplace(sb->s_id, '/', '!');
4057 
4058 	/* -EINVAL is default */
4059 	ret = -EINVAL;
4060 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4061 	if (!blocksize) {
4062 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4063 		goto out_fail;
4064 	}
4065 
4066 	/*
4067 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4068 	 * block sizes.  We need to calculate the offset from buffer start.
4069 	 */
4070 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4071 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4072 		offset = do_div(logical_sb_block, blocksize);
4073 	} else {
4074 		logical_sb_block = sb_block;
4075 	}
4076 
4077 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4078 	if (IS_ERR(bh)) {
4079 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4080 		ret = PTR_ERR(bh);
4081 		bh = NULL;
4082 		goto out_fail;
4083 	}
4084 	/*
4085 	 * Note: s_es must be initialized as soon as possible because
4086 	 *       some ext4 macro-instructions depend on its value
4087 	 */
4088 	es = (struct ext4_super_block *) (bh->b_data + offset);
4089 	sbi->s_es = es;
4090 	sb->s_magic = le16_to_cpu(es->s_magic);
4091 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4092 		goto cantfind_ext4;
4093 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4094 
4095 	/* Warn if metadata_csum and gdt_csum are both set. */
4096 	if (ext4_has_feature_metadata_csum(sb) &&
4097 	    ext4_has_feature_gdt_csum(sb))
4098 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4099 			     "redundant flags; please run fsck.");
4100 
4101 	/* Check for a known checksum algorithm */
4102 	if (!ext4_verify_csum_type(sb, es)) {
4103 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4104 			 "unknown checksum algorithm.");
4105 		silent = 1;
4106 		goto cantfind_ext4;
4107 	}
4108 
4109 	/* Load the checksum driver */
4110 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4111 	if (IS_ERR(sbi->s_chksum_driver)) {
4112 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4113 		ret = PTR_ERR(sbi->s_chksum_driver);
4114 		sbi->s_chksum_driver = NULL;
4115 		goto failed_mount;
4116 	}
4117 
4118 	/* Check superblock checksum */
4119 	if (!ext4_superblock_csum_verify(sb, es)) {
4120 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4121 			 "invalid superblock checksum.  Run e2fsck?");
4122 		silent = 1;
4123 		ret = -EFSBADCRC;
4124 		goto cantfind_ext4;
4125 	}
4126 
4127 	/* Precompute checksum seed for all metadata */
4128 	if (ext4_has_feature_csum_seed(sb))
4129 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4130 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4131 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4132 					       sizeof(es->s_uuid));
4133 
4134 	/* Set defaults before we parse the mount options */
4135 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4136 	set_opt(sb, INIT_INODE_TABLE);
4137 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4138 		set_opt(sb, DEBUG);
4139 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4140 		set_opt(sb, GRPID);
4141 	if (def_mount_opts & EXT4_DEFM_UID16)
4142 		set_opt(sb, NO_UID32);
4143 	/* xattr user namespace & acls are now defaulted on */
4144 	set_opt(sb, XATTR_USER);
4145 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4146 	set_opt(sb, POSIX_ACL);
4147 #endif
4148 	if (ext4_has_feature_fast_commit(sb))
4149 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4150 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4151 	if (ext4_has_metadata_csum(sb))
4152 		set_opt(sb, JOURNAL_CHECKSUM);
4153 
4154 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4155 		set_opt(sb, JOURNAL_DATA);
4156 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4157 		set_opt(sb, ORDERED_DATA);
4158 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4159 		set_opt(sb, WRITEBACK_DATA);
4160 
4161 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4162 		set_opt(sb, ERRORS_PANIC);
4163 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4164 		set_opt(sb, ERRORS_CONT);
4165 	else
4166 		set_opt(sb, ERRORS_RO);
4167 	/* block_validity enabled by default; disable with noblock_validity */
4168 	set_opt(sb, BLOCK_VALIDITY);
4169 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4170 		set_opt(sb, DISCARD);
4171 
4172 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4173 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4174 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4175 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4176 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4177 
4178 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4179 		set_opt(sb, BARRIER);
4180 
4181 	/*
4182 	 * enable delayed allocation by default
4183 	 * Use -o nodelalloc to turn it off
4184 	 */
4185 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4186 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4187 		set_opt(sb, DELALLOC);
4188 
4189 	/*
4190 	 * set default s_li_wait_mult for lazyinit, for the case there is
4191 	 * no mount option specified.
4192 	 */
4193 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4194 
4195 	if (le32_to_cpu(es->s_log_block_size) >
4196 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4197 		ext4_msg(sb, KERN_ERR,
4198 			 "Invalid log block size: %u",
4199 			 le32_to_cpu(es->s_log_block_size));
4200 		goto failed_mount;
4201 	}
4202 	if (le32_to_cpu(es->s_log_cluster_size) >
4203 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4204 		ext4_msg(sb, KERN_ERR,
4205 			 "Invalid log cluster size: %u",
4206 			 le32_to_cpu(es->s_log_cluster_size));
4207 		goto failed_mount;
4208 	}
4209 
4210 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4211 
4212 	if (blocksize == PAGE_SIZE)
4213 		set_opt(sb, DIOREAD_NOLOCK);
4214 
4215 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4216 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4217 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4218 	} else {
4219 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4220 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4221 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4222 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4223 				 sbi->s_first_ino);
4224 			goto failed_mount;
4225 		}
4226 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4227 		    (!is_power_of_2(sbi->s_inode_size)) ||
4228 		    (sbi->s_inode_size > blocksize)) {
4229 			ext4_msg(sb, KERN_ERR,
4230 			       "unsupported inode size: %d",
4231 			       sbi->s_inode_size);
4232 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4233 			goto failed_mount;
4234 		}
4235 		/*
4236 		 * i_atime_extra is the last extra field available for
4237 		 * [acm]times in struct ext4_inode. Checking for that
4238 		 * field should suffice to ensure we have extra space
4239 		 * for all three.
4240 		 */
4241 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4242 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4243 			sb->s_time_gran = 1;
4244 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4245 		} else {
4246 			sb->s_time_gran = NSEC_PER_SEC;
4247 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4248 		}
4249 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4250 	}
4251 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4252 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4253 			EXT4_GOOD_OLD_INODE_SIZE;
4254 		if (ext4_has_feature_extra_isize(sb)) {
4255 			unsigned v, max = (sbi->s_inode_size -
4256 					   EXT4_GOOD_OLD_INODE_SIZE);
4257 
4258 			v = le16_to_cpu(es->s_want_extra_isize);
4259 			if (v > max) {
4260 				ext4_msg(sb, KERN_ERR,
4261 					 "bad s_want_extra_isize: %d", v);
4262 				goto failed_mount;
4263 			}
4264 			if (sbi->s_want_extra_isize < v)
4265 				sbi->s_want_extra_isize = v;
4266 
4267 			v = le16_to_cpu(es->s_min_extra_isize);
4268 			if (v > max) {
4269 				ext4_msg(sb, KERN_ERR,
4270 					 "bad s_min_extra_isize: %d", v);
4271 				goto failed_mount;
4272 			}
4273 			if (sbi->s_want_extra_isize < v)
4274 				sbi->s_want_extra_isize = v;
4275 		}
4276 	}
4277 
4278 	if (sbi->s_es->s_mount_opts[0]) {
4279 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4280 					      sizeof(sbi->s_es->s_mount_opts),
4281 					      GFP_KERNEL);
4282 		if (!s_mount_opts)
4283 			goto failed_mount;
4284 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4285 				   &journal_ioprio, 0)) {
4286 			ext4_msg(sb, KERN_WARNING,
4287 				 "failed to parse options in superblock: %s",
4288 				 s_mount_opts);
4289 		}
4290 		kfree(s_mount_opts);
4291 	}
4292 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4293 	if (!parse_options((char *) data, sb, &journal_devnum,
4294 			   &journal_ioprio, 0))
4295 		goto failed_mount;
4296 
4297 #ifdef CONFIG_UNICODE
4298 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4299 		const struct ext4_sb_encodings *encoding_info;
4300 		struct unicode_map *encoding;
4301 		__u16 encoding_flags;
4302 
4303 		if (ext4_sb_read_encoding(es, &encoding_info,
4304 					  &encoding_flags)) {
4305 			ext4_msg(sb, KERN_ERR,
4306 				 "Encoding requested by superblock is unknown");
4307 			goto failed_mount;
4308 		}
4309 
4310 		encoding = utf8_load(encoding_info->version);
4311 		if (IS_ERR(encoding)) {
4312 			ext4_msg(sb, KERN_ERR,
4313 				 "can't mount with superblock charset: %s-%s "
4314 				 "not supported by the kernel. flags: 0x%x.",
4315 				 encoding_info->name, encoding_info->version,
4316 				 encoding_flags);
4317 			goto failed_mount;
4318 		}
4319 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4320 			 "%s-%s with flags 0x%hx", encoding_info->name,
4321 			 encoding_info->version?:"\b", encoding_flags);
4322 
4323 		sb->s_encoding = encoding;
4324 		sb->s_encoding_flags = encoding_flags;
4325 	}
4326 #endif
4327 
4328 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4329 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4330 		/* can't mount with both data=journal and dioread_nolock. */
4331 		clear_opt(sb, DIOREAD_NOLOCK);
4332 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4333 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4334 			ext4_msg(sb, KERN_ERR, "can't mount with "
4335 				 "both data=journal and delalloc");
4336 			goto failed_mount;
4337 		}
4338 		if (test_opt(sb, DAX_ALWAYS)) {
4339 			ext4_msg(sb, KERN_ERR, "can't mount with "
4340 				 "both data=journal and dax");
4341 			goto failed_mount;
4342 		}
4343 		if (ext4_has_feature_encrypt(sb)) {
4344 			ext4_msg(sb, KERN_WARNING,
4345 				 "encrypted files will use data=ordered "
4346 				 "instead of data journaling mode");
4347 		}
4348 		if (test_opt(sb, DELALLOC))
4349 			clear_opt(sb, DELALLOC);
4350 	} else {
4351 		sb->s_iflags |= SB_I_CGROUPWB;
4352 	}
4353 
4354 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4355 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4356 
4357 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4358 	    (ext4_has_compat_features(sb) ||
4359 	     ext4_has_ro_compat_features(sb) ||
4360 	     ext4_has_incompat_features(sb)))
4361 		ext4_msg(sb, KERN_WARNING,
4362 		       "feature flags set on rev 0 fs, "
4363 		       "running e2fsck is recommended");
4364 
4365 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4366 		set_opt2(sb, HURD_COMPAT);
4367 		if (ext4_has_feature_64bit(sb)) {
4368 			ext4_msg(sb, KERN_ERR,
4369 				 "The Hurd can't support 64-bit file systems");
4370 			goto failed_mount;
4371 		}
4372 
4373 		/*
4374 		 * ea_inode feature uses l_i_version field which is not
4375 		 * available in HURD_COMPAT mode.
4376 		 */
4377 		if (ext4_has_feature_ea_inode(sb)) {
4378 			ext4_msg(sb, KERN_ERR,
4379 				 "ea_inode feature is not supported for Hurd");
4380 			goto failed_mount;
4381 		}
4382 	}
4383 
4384 	if (IS_EXT2_SB(sb)) {
4385 		if (ext2_feature_set_ok(sb))
4386 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4387 				 "using the ext4 subsystem");
4388 		else {
4389 			/*
4390 			 * If we're probing be silent, if this looks like
4391 			 * it's actually an ext[34] filesystem.
4392 			 */
4393 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4394 				goto failed_mount;
4395 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4396 				 "to feature incompatibilities");
4397 			goto failed_mount;
4398 		}
4399 	}
4400 
4401 	if (IS_EXT3_SB(sb)) {
4402 		if (ext3_feature_set_ok(sb))
4403 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4404 				 "using the ext4 subsystem");
4405 		else {
4406 			/*
4407 			 * If we're probing be silent, if this looks like
4408 			 * it's actually an ext4 filesystem.
4409 			 */
4410 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4411 				goto failed_mount;
4412 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4413 				 "to feature incompatibilities");
4414 			goto failed_mount;
4415 		}
4416 	}
4417 
4418 	/*
4419 	 * Check feature flags regardless of the revision level, since we
4420 	 * previously didn't change the revision level when setting the flags,
4421 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4422 	 */
4423 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4424 		goto failed_mount;
4425 
4426 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4427 		ext4_msg(sb, KERN_ERR,
4428 			 "Number of reserved GDT blocks insanely large: %d",
4429 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4430 		goto failed_mount;
4431 	}
4432 
4433 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4434 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4435 
4436 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4437 		if (ext4_has_feature_inline_data(sb)) {
4438 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4439 					" that may contain inline data");
4440 			goto failed_mount;
4441 		}
4442 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4443 			ext4_msg(sb, KERN_ERR,
4444 				"DAX unsupported by block device.");
4445 			goto failed_mount;
4446 		}
4447 	}
4448 
4449 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4450 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4451 			 es->s_encryption_level);
4452 		goto failed_mount;
4453 	}
4454 
4455 	if (sb->s_blocksize != blocksize) {
4456 		/*
4457 		 * bh must be released before kill_bdev(), otherwise
4458 		 * it won't be freed and its page also. kill_bdev()
4459 		 * is called by sb_set_blocksize().
4460 		 */
4461 		brelse(bh);
4462 		/* Validate the filesystem blocksize */
4463 		if (!sb_set_blocksize(sb, blocksize)) {
4464 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4465 					blocksize);
4466 			bh = NULL;
4467 			goto failed_mount;
4468 		}
4469 
4470 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4471 		offset = do_div(logical_sb_block, blocksize);
4472 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4473 		if (IS_ERR(bh)) {
4474 			ext4_msg(sb, KERN_ERR,
4475 			       "Can't read superblock on 2nd try");
4476 			ret = PTR_ERR(bh);
4477 			bh = NULL;
4478 			goto failed_mount;
4479 		}
4480 		es = (struct ext4_super_block *)(bh->b_data + offset);
4481 		sbi->s_es = es;
4482 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4483 			ext4_msg(sb, KERN_ERR,
4484 			       "Magic mismatch, very weird!");
4485 			goto failed_mount;
4486 		}
4487 	}
4488 
4489 	has_huge_files = ext4_has_feature_huge_file(sb);
4490 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4491 						      has_huge_files);
4492 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4493 
4494 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4495 	if (ext4_has_feature_64bit(sb)) {
4496 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4497 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4498 		    !is_power_of_2(sbi->s_desc_size)) {
4499 			ext4_msg(sb, KERN_ERR,
4500 			       "unsupported descriptor size %lu",
4501 			       sbi->s_desc_size);
4502 			goto failed_mount;
4503 		}
4504 	} else
4505 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4506 
4507 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4508 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4509 
4510 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4511 	if (sbi->s_inodes_per_block == 0)
4512 		goto cantfind_ext4;
4513 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4514 	    sbi->s_inodes_per_group > blocksize * 8) {
4515 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4516 			 sbi->s_inodes_per_group);
4517 		goto failed_mount;
4518 	}
4519 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4520 					sbi->s_inodes_per_block;
4521 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4522 	sbi->s_sbh = bh;
4523 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4524 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4525 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4526 
4527 	for (i = 0; i < 4; i++)
4528 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4529 	sbi->s_def_hash_version = es->s_def_hash_version;
4530 	if (ext4_has_feature_dir_index(sb)) {
4531 		i = le32_to_cpu(es->s_flags);
4532 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4533 			sbi->s_hash_unsigned = 3;
4534 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4535 #ifdef __CHAR_UNSIGNED__
4536 			if (!sb_rdonly(sb))
4537 				es->s_flags |=
4538 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4539 			sbi->s_hash_unsigned = 3;
4540 #else
4541 			if (!sb_rdonly(sb))
4542 				es->s_flags |=
4543 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4544 #endif
4545 		}
4546 	}
4547 
4548 	/* Handle clustersize */
4549 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4550 	if (ext4_has_feature_bigalloc(sb)) {
4551 		if (clustersize < blocksize) {
4552 			ext4_msg(sb, KERN_ERR,
4553 				 "cluster size (%d) smaller than "
4554 				 "block size (%d)", clustersize, blocksize);
4555 			goto failed_mount;
4556 		}
4557 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4558 			le32_to_cpu(es->s_log_block_size);
4559 		sbi->s_clusters_per_group =
4560 			le32_to_cpu(es->s_clusters_per_group);
4561 		if (sbi->s_clusters_per_group > blocksize * 8) {
4562 			ext4_msg(sb, KERN_ERR,
4563 				 "#clusters per group too big: %lu",
4564 				 sbi->s_clusters_per_group);
4565 			goto failed_mount;
4566 		}
4567 		if (sbi->s_blocks_per_group !=
4568 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4569 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4570 				 "clusters per group (%lu) inconsistent",
4571 				 sbi->s_blocks_per_group,
4572 				 sbi->s_clusters_per_group);
4573 			goto failed_mount;
4574 		}
4575 	} else {
4576 		if (clustersize != blocksize) {
4577 			ext4_msg(sb, KERN_ERR,
4578 				 "fragment/cluster size (%d) != "
4579 				 "block size (%d)", clustersize, blocksize);
4580 			goto failed_mount;
4581 		}
4582 		if (sbi->s_blocks_per_group > blocksize * 8) {
4583 			ext4_msg(sb, KERN_ERR,
4584 				 "#blocks per group too big: %lu",
4585 				 sbi->s_blocks_per_group);
4586 			goto failed_mount;
4587 		}
4588 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4589 		sbi->s_cluster_bits = 0;
4590 	}
4591 	sbi->s_cluster_ratio = clustersize / blocksize;
4592 
4593 	/* Do we have standard group size of clustersize * 8 blocks ? */
4594 	if (sbi->s_blocks_per_group == clustersize << 3)
4595 		set_opt2(sb, STD_GROUP_SIZE);
4596 
4597 	/*
4598 	 * Test whether we have more sectors than will fit in sector_t,
4599 	 * and whether the max offset is addressable by the page cache.
4600 	 */
4601 	err = generic_check_addressable(sb->s_blocksize_bits,
4602 					ext4_blocks_count(es));
4603 	if (err) {
4604 		ext4_msg(sb, KERN_ERR, "filesystem"
4605 			 " too large to mount safely on this system");
4606 		goto failed_mount;
4607 	}
4608 
4609 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4610 		goto cantfind_ext4;
4611 
4612 	/* check blocks count against device size */
4613 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4614 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4615 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4616 		       "exceeds size of device (%llu blocks)",
4617 		       ext4_blocks_count(es), blocks_count);
4618 		goto failed_mount;
4619 	}
4620 
4621 	/*
4622 	 * It makes no sense for the first data block to be beyond the end
4623 	 * of the filesystem.
4624 	 */
4625 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4626 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4627 			 "block %u is beyond end of filesystem (%llu)",
4628 			 le32_to_cpu(es->s_first_data_block),
4629 			 ext4_blocks_count(es));
4630 		goto failed_mount;
4631 	}
4632 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4633 	    (sbi->s_cluster_ratio == 1)) {
4634 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4635 			 "block is 0 with a 1k block and cluster size");
4636 		goto failed_mount;
4637 	}
4638 
4639 	blocks_count = (ext4_blocks_count(es) -
4640 			le32_to_cpu(es->s_first_data_block) +
4641 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4642 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4643 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4644 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4645 		       "(block count %llu, first data block %u, "
4646 		       "blocks per group %lu)", blocks_count,
4647 		       ext4_blocks_count(es),
4648 		       le32_to_cpu(es->s_first_data_block),
4649 		       EXT4_BLOCKS_PER_GROUP(sb));
4650 		goto failed_mount;
4651 	}
4652 	sbi->s_groups_count = blocks_count;
4653 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4654 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4655 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4656 	    le32_to_cpu(es->s_inodes_count)) {
4657 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4658 			 le32_to_cpu(es->s_inodes_count),
4659 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4660 		ret = -EINVAL;
4661 		goto failed_mount;
4662 	}
4663 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4664 		   EXT4_DESC_PER_BLOCK(sb);
4665 	if (ext4_has_feature_meta_bg(sb)) {
4666 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4667 			ext4_msg(sb, KERN_WARNING,
4668 				 "first meta block group too large: %u "
4669 				 "(group descriptor block count %u)",
4670 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4671 			goto failed_mount;
4672 		}
4673 	}
4674 	rcu_assign_pointer(sbi->s_group_desc,
4675 			   kvmalloc_array(db_count,
4676 					  sizeof(struct buffer_head *),
4677 					  GFP_KERNEL));
4678 	if (sbi->s_group_desc == NULL) {
4679 		ext4_msg(sb, KERN_ERR, "not enough memory");
4680 		ret = -ENOMEM;
4681 		goto failed_mount;
4682 	}
4683 
4684 	bgl_lock_init(sbi->s_blockgroup_lock);
4685 
4686 	/* Pre-read the descriptors into the buffer cache */
4687 	for (i = 0; i < db_count; i++) {
4688 		block = descriptor_loc(sb, logical_sb_block, i);
4689 		ext4_sb_breadahead_unmovable(sb, block);
4690 	}
4691 
4692 	for (i = 0; i < db_count; i++) {
4693 		struct buffer_head *bh;
4694 
4695 		block = descriptor_loc(sb, logical_sb_block, i);
4696 		bh = ext4_sb_bread_unmovable(sb, block);
4697 		if (IS_ERR(bh)) {
4698 			ext4_msg(sb, KERN_ERR,
4699 			       "can't read group descriptor %d", i);
4700 			db_count = i;
4701 			ret = PTR_ERR(bh);
4702 			bh = NULL;
4703 			goto failed_mount2;
4704 		}
4705 		rcu_read_lock();
4706 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4707 		rcu_read_unlock();
4708 	}
4709 	sbi->s_gdb_count = db_count;
4710 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4711 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4712 		ret = -EFSCORRUPTED;
4713 		goto failed_mount2;
4714 	}
4715 
4716 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4717 
4718 	/* Register extent status tree shrinker */
4719 	if (ext4_es_register_shrinker(sbi))
4720 		goto failed_mount3;
4721 
4722 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4723 	sbi->s_extent_max_zeroout_kb = 32;
4724 
4725 	/*
4726 	 * set up enough so that it can read an inode
4727 	 */
4728 	sb->s_op = &ext4_sops;
4729 	sb->s_export_op = &ext4_export_ops;
4730 	sb->s_xattr = ext4_xattr_handlers;
4731 #ifdef CONFIG_FS_ENCRYPTION
4732 	sb->s_cop = &ext4_cryptops;
4733 #endif
4734 #ifdef CONFIG_FS_VERITY
4735 	sb->s_vop = &ext4_verityops;
4736 #endif
4737 #ifdef CONFIG_QUOTA
4738 	sb->dq_op = &ext4_quota_operations;
4739 	if (ext4_has_feature_quota(sb))
4740 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4741 	else
4742 		sb->s_qcop = &ext4_qctl_operations;
4743 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4744 #endif
4745 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4746 
4747 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4748 	mutex_init(&sbi->s_orphan_lock);
4749 
4750 	/* Initialize fast commit stuff */
4751 	atomic_set(&sbi->s_fc_subtid, 0);
4752 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4753 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4754 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4755 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4756 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4757 	sbi->s_fc_bytes = 0;
4758 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4759 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4760 	spin_lock_init(&sbi->s_fc_lock);
4761 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4762 	sbi->s_fc_replay_state.fc_regions = NULL;
4763 	sbi->s_fc_replay_state.fc_regions_size = 0;
4764 	sbi->s_fc_replay_state.fc_regions_used = 0;
4765 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4766 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4767 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4768 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4769 
4770 	sb->s_root = NULL;
4771 
4772 	needs_recovery = (es->s_last_orphan != 0 ||
4773 			  ext4_has_feature_journal_needs_recovery(sb));
4774 
4775 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4776 		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4777 		if (err)
4778 			goto failed_mount3a;
4779 	}
4780 
4781 	/*
4782 	 * The first inode we look at is the journal inode.  Don't try
4783 	 * root first: it may be modified in the journal!
4784 	 */
4785 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4786 		err = ext4_load_journal(sb, es, journal_devnum);
4787 		if (err)
4788 			goto failed_mount3a;
4789 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4790 		   ext4_has_feature_journal_needs_recovery(sb)) {
4791 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4792 		       "suppressed and not mounted read-only");
4793 		goto failed_mount3a;
4794 	} else {
4795 		/* Nojournal mode, all journal mount options are illegal */
4796 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4797 			ext4_msg(sb, KERN_ERR, "can't mount with "
4798 				 "journal_async_commit, fs mounted w/o journal");
4799 			goto failed_mount3a;
4800 		}
4801 
4802 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4803 			ext4_msg(sb, KERN_ERR, "can't mount with "
4804 				 "journal_checksum, fs mounted w/o journal");
4805 			goto failed_mount3a;
4806 		}
4807 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4808 			ext4_msg(sb, KERN_ERR, "can't mount with "
4809 				 "commit=%lu, fs mounted w/o journal",
4810 				 sbi->s_commit_interval / HZ);
4811 			goto failed_mount3a;
4812 		}
4813 		if (EXT4_MOUNT_DATA_FLAGS &
4814 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4815 			ext4_msg(sb, KERN_ERR, "can't mount with "
4816 				 "data=, fs mounted w/o journal");
4817 			goto failed_mount3a;
4818 		}
4819 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4820 		clear_opt(sb, JOURNAL_CHECKSUM);
4821 		clear_opt(sb, DATA_FLAGS);
4822 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4823 		sbi->s_journal = NULL;
4824 		needs_recovery = 0;
4825 		goto no_journal;
4826 	}
4827 
4828 	if (ext4_has_feature_64bit(sb) &&
4829 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4830 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4831 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4832 		goto failed_mount_wq;
4833 	}
4834 
4835 	if (!set_journal_csum_feature_set(sb)) {
4836 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4837 			 "feature set");
4838 		goto failed_mount_wq;
4839 	}
4840 
4841 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4842 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4843 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4844 		ext4_msg(sb, KERN_ERR,
4845 			"Failed to set fast commit journal feature");
4846 		goto failed_mount_wq;
4847 	}
4848 
4849 	/* We have now updated the journal if required, so we can
4850 	 * validate the data journaling mode. */
4851 	switch (test_opt(sb, DATA_FLAGS)) {
4852 	case 0:
4853 		/* No mode set, assume a default based on the journal
4854 		 * capabilities: ORDERED_DATA if the journal can
4855 		 * cope, else JOURNAL_DATA
4856 		 */
4857 		if (jbd2_journal_check_available_features
4858 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4859 			set_opt(sb, ORDERED_DATA);
4860 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4861 		} else {
4862 			set_opt(sb, JOURNAL_DATA);
4863 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4864 		}
4865 		break;
4866 
4867 	case EXT4_MOUNT_ORDERED_DATA:
4868 	case EXT4_MOUNT_WRITEBACK_DATA:
4869 		if (!jbd2_journal_check_available_features
4870 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4871 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4872 			       "requested data journaling mode");
4873 			goto failed_mount_wq;
4874 		}
4875 	default:
4876 		break;
4877 	}
4878 
4879 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4880 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4881 		ext4_msg(sb, KERN_ERR, "can't mount with "
4882 			"journal_async_commit in data=ordered mode");
4883 		goto failed_mount_wq;
4884 	}
4885 
4886 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4887 
4888 	sbi->s_journal->j_submit_inode_data_buffers =
4889 		ext4_journal_submit_inode_data_buffers;
4890 	sbi->s_journal->j_finish_inode_data_buffers =
4891 		ext4_journal_finish_inode_data_buffers;
4892 
4893 no_journal:
4894 	if (!test_opt(sb, NO_MBCACHE)) {
4895 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4896 		if (!sbi->s_ea_block_cache) {
4897 			ext4_msg(sb, KERN_ERR,
4898 				 "Failed to create ea_block_cache");
4899 			goto failed_mount_wq;
4900 		}
4901 
4902 		if (ext4_has_feature_ea_inode(sb)) {
4903 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4904 			if (!sbi->s_ea_inode_cache) {
4905 				ext4_msg(sb, KERN_ERR,
4906 					 "Failed to create ea_inode_cache");
4907 				goto failed_mount_wq;
4908 			}
4909 		}
4910 	}
4911 
4912 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4913 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4914 		goto failed_mount_wq;
4915 	}
4916 
4917 	/*
4918 	 * Get the # of file system overhead blocks from the
4919 	 * superblock if present.
4920 	 */
4921 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4922 	/* ignore the precalculated value if it is ridiculous */
4923 	if (sbi->s_overhead > ext4_blocks_count(es))
4924 		sbi->s_overhead = 0;
4925 	/*
4926 	 * If the bigalloc feature is not enabled recalculating the
4927 	 * overhead doesn't take long, so we might as well just redo
4928 	 * it to make sure we are using the correct value.
4929 	 */
4930 	if (!ext4_has_feature_bigalloc(sb))
4931 		sbi->s_overhead = 0;
4932 	if (sbi->s_overhead == 0) {
4933 		err = ext4_calculate_overhead(sb);
4934 		if (err)
4935 			goto failed_mount_wq;
4936 	}
4937 
4938 	/*
4939 	 * The maximum number of concurrent works can be high and
4940 	 * concurrency isn't really necessary.  Limit it to 1.
4941 	 */
4942 	EXT4_SB(sb)->rsv_conversion_wq =
4943 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4944 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4945 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4946 		ret = -ENOMEM;
4947 		goto failed_mount4;
4948 	}
4949 
4950 	/*
4951 	 * The jbd2_journal_load will have done any necessary log recovery,
4952 	 * so we can safely mount the rest of the filesystem now.
4953 	 */
4954 
4955 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4956 	if (IS_ERR(root)) {
4957 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4958 		ret = PTR_ERR(root);
4959 		root = NULL;
4960 		goto failed_mount4;
4961 	}
4962 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4963 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4964 		iput(root);
4965 		goto failed_mount4;
4966 	}
4967 
4968 	sb->s_root = d_make_root(root);
4969 	if (!sb->s_root) {
4970 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4971 		ret = -ENOMEM;
4972 		goto failed_mount4;
4973 	}
4974 
4975 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4976 	if (ret == -EROFS) {
4977 		sb->s_flags |= SB_RDONLY;
4978 		ret = 0;
4979 	} else if (ret)
4980 		goto failed_mount4a;
4981 
4982 	ext4_set_resv_clusters(sb);
4983 
4984 	if (test_opt(sb, BLOCK_VALIDITY)) {
4985 		err = ext4_setup_system_zone(sb);
4986 		if (err) {
4987 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4988 				 "zone (%d)", err);
4989 			goto failed_mount4a;
4990 		}
4991 	}
4992 	ext4_fc_replay_cleanup(sb);
4993 
4994 	ext4_ext_init(sb);
4995 	err = ext4_mb_init(sb);
4996 	if (err) {
4997 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4998 			 err);
4999 		goto failed_mount5;
5000 	}
5001 
5002 	/*
5003 	 * We can only set up the journal commit callback once
5004 	 * mballoc is initialized
5005 	 */
5006 	if (sbi->s_journal)
5007 		sbi->s_journal->j_commit_callback =
5008 			ext4_journal_commit_callback;
5009 
5010 	block = ext4_count_free_clusters(sb);
5011 	ext4_free_blocks_count_set(sbi->s_es,
5012 				   EXT4_C2B(sbi, block));
5013 	ext4_superblock_csum_set(sb);
5014 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5015 				  GFP_KERNEL);
5016 	if (!err) {
5017 		unsigned long freei = ext4_count_free_inodes(sb);
5018 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5019 		ext4_superblock_csum_set(sb);
5020 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5021 					  GFP_KERNEL);
5022 	}
5023 	if (!err)
5024 		err = percpu_counter_init(&sbi->s_dirs_counter,
5025 					  ext4_count_dirs(sb), GFP_KERNEL);
5026 	if (!err)
5027 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5028 					  GFP_KERNEL);
5029 	if (!err)
5030 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5031 					  GFP_KERNEL);
5032 	if (!err)
5033 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5034 
5035 	if (err) {
5036 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5037 		goto failed_mount6;
5038 	}
5039 
5040 	if (ext4_has_feature_flex_bg(sb))
5041 		if (!ext4_fill_flex_info(sb)) {
5042 			ext4_msg(sb, KERN_ERR,
5043 			       "unable to initialize "
5044 			       "flex_bg meta info!");
5045 			ret = -ENOMEM;
5046 			goto failed_mount6;
5047 		}
5048 
5049 	err = ext4_register_li_request(sb, first_not_zeroed);
5050 	if (err)
5051 		goto failed_mount6;
5052 
5053 	err = ext4_register_sysfs(sb);
5054 	if (err)
5055 		goto failed_mount7;
5056 
5057 #ifdef CONFIG_QUOTA
5058 	/* Enable quota usage during mount. */
5059 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5060 		err = ext4_enable_quotas(sb);
5061 		if (err)
5062 			goto failed_mount8;
5063 	}
5064 #endif  /* CONFIG_QUOTA */
5065 
5066 	/*
5067 	 * Save the original bdev mapping's wb_err value which could be
5068 	 * used to detect the metadata async write error.
5069 	 */
5070 	spin_lock_init(&sbi->s_bdev_wb_lock);
5071 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5072 				 &sbi->s_bdev_wb_err);
5073 	sb->s_bdev->bd_super = sb;
5074 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5075 	ext4_orphan_cleanup(sb, es);
5076 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5077 	if (needs_recovery) {
5078 		ext4_msg(sb, KERN_INFO, "recovery complete");
5079 		err = ext4_mark_recovery_complete(sb, es);
5080 		if (err)
5081 			goto failed_mount8;
5082 	}
5083 	if (EXT4_SB(sb)->s_journal) {
5084 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5085 			descr = " journalled data mode";
5086 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5087 			descr = " ordered data mode";
5088 		else
5089 			descr = " writeback data mode";
5090 	} else
5091 		descr = "out journal";
5092 
5093 	if (test_opt(sb, DISCARD)) {
5094 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5095 		if (!blk_queue_discard(q))
5096 			ext4_msg(sb, KERN_WARNING,
5097 				 "mounting with \"discard\" option, but "
5098 				 "the device does not support discard");
5099 	}
5100 
5101 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5102 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5103 			 "Opts: %.*s%s%s", descr,
5104 			 (int) sizeof(sbi->s_es->s_mount_opts),
5105 			 sbi->s_es->s_mount_opts,
5106 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5107 
5108 	if (es->s_error_count)
5109 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5110 
5111 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5112 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5113 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5114 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5115 	atomic_set(&sbi->s_warning_count, 0);
5116 	atomic_set(&sbi->s_msg_count, 0);
5117 
5118 	kfree(orig_data);
5119 	return 0;
5120 
5121 cantfind_ext4:
5122 	if (!silent)
5123 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5124 	goto failed_mount;
5125 
5126 failed_mount8:
5127 	ext4_unregister_sysfs(sb);
5128 	kobject_put(&sbi->s_kobj);
5129 failed_mount7:
5130 	ext4_unregister_li_request(sb);
5131 failed_mount6:
5132 	ext4_mb_release(sb);
5133 	rcu_read_lock();
5134 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5135 	if (flex_groups) {
5136 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5137 			kvfree(flex_groups[i]);
5138 		kvfree(flex_groups);
5139 	}
5140 	rcu_read_unlock();
5141 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5142 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5143 	percpu_counter_destroy(&sbi->s_dirs_counter);
5144 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5145 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5146 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5147 failed_mount5:
5148 	ext4_ext_release(sb);
5149 	ext4_release_system_zone(sb);
5150 failed_mount4a:
5151 	dput(sb->s_root);
5152 	sb->s_root = NULL;
5153 failed_mount4:
5154 	ext4_msg(sb, KERN_ERR, "mount failed");
5155 	if (EXT4_SB(sb)->rsv_conversion_wq)
5156 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5157 failed_mount_wq:
5158 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5159 	sbi->s_ea_inode_cache = NULL;
5160 
5161 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5162 	sbi->s_ea_block_cache = NULL;
5163 
5164 	if (sbi->s_journal) {
5165 		jbd2_journal_destroy(sbi->s_journal);
5166 		sbi->s_journal = NULL;
5167 	}
5168 failed_mount3a:
5169 	ext4_es_unregister_shrinker(sbi);
5170 failed_mount3:
5171 	del_timer_sync(&sbi->s_err_report);
5172 	ext4_stop_mmpd(sbi);
5173 failed_mount2:
5174 	rcu_read_lock();
5175 	group_desc = rcu_dereference(sbi->s_group_desc);
5176 	for (i = 0; i < db_count; i++)
5177 		brelse(group_desc[i]);
5178 	kvfree(group_desc);
5179 	rcu_read_unlock();
5180 failed_mount:
5181 	if (sbi->s_chksum_driver)
5182 		crypto_free_shash(sbi->s_chksum_driver);
5183 
5184 #ifdef CONFIG_UNICODE
5185 	utf8_unload(sb->s_encoding);
5186 #endif
5187 
5188 #ifdef CONFIG_QUOTA
5189 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5190 		kfree(get_qf_name(sb, sbi, i));
5191 #endif
5192 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5193 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5194 	brelse(bh);
5195 	ext4_blkdev_remove(sbi);
5196 out_fail:
5197 	invalidate_bdev(sb->s_bdev);
5198 	sb->s_fs_info = NULL;
5199 	kfree(sbi->s_blockgroup_lock);
5200 out_free_base:
5201 	kfree(sbi);
5202 	kfree(orig_data);
5203 	fs_put_dax(dax_dev);
5204 	return err ? err : ret;
5205 }
5206 
5207 /*
5208  * Setup any per-fs journal parameters now.  We'll do this both on
5209  * initial mount, once the journal has been initialised but before we've
5210  * done any recovery; and again on any subsequent remount.
5211  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5212 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5213 {
5214 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5215 
5216 	journal->j_commit_interval = sbi->s_commit_interval;
5217 	journal->j_min_batch_time = sbi->s_min_batch_time;
5218 	journal->j_max_batch_time = sbi->s_max_batch_time;
5219 	ext4_fc_init(sb, journal);
5220 
5221 	write_lock(&journal->j_state_lock);
5222 	if (test_opt(sb, BARRIER))
5223 		journal->j_flags |= JBD2_BARRIER;
5224 	else
5225 		journal->j_flags &= ~JBD2_BARRIER;
5226 	if (test_opt(sb, DATA_ERR_ABORT))
5227 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5228 	else
5229 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5230 	write_unlock(&journal->j_state_lock);
5231 }
5232 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5233 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5234 					     unsigned int journal_inum)
5235 {
5236 	struct inode *journal_inode;
5237 
5238 	/*
5239 	 * Test for the existence of a valid inode on disk.  Bad things
5240 	 * happen if we iget() an unused inode, as the subsequent iput()
5241 	 * will try to delete it.
5242 	 */
5243 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5244 	if (IS_ERR(journal_inode)) {
5245 		ext4_msg(sb, KERN_ERR, "no journal found");
5246 		return NULL;
5247 	}
5248 	if (!journal_inode->i_nlink) {
5249 		make_bad_inode(journal_inode);
5250 		iput(journal_inode);
5251 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5252 		return NULL;
5253 	}
5254 
5255 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5256 		  journal_inode, journal_inode->i_size);
5257 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5258 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5259 		iput(journal_inode);
5260 		return NULL;
5261 	}
5262 	return journal_inode;
5263 }
5264 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5265 static journal_t *ext4_get_journal(struct super_block *sb,
5266 				   unsigned int journal_inum)
5267 {
5268 	struct inode *journal_inode;
5269 	journal_t *journal;
5270 
5271 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5272 		return NULL;
5273 
5274 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5275 	if (!journal_inode)
5276 		return NULL;
5277 
5278 	journal = jbd2_journal_init_inode(journal_inode);
5279 	if (!journal) {
5280 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5281 		iput(journal_inode);
5282 		return NULL;
5283 	}
5284 	journal->j_private = sb;
5285 	ext4_init_journal_params(sb, journal);
5286 	return journal;
5287 }
5288 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5289 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5290 				       dev_t j_dev)
5291 {
5292 	struct buffer_head *bh;
5293 	journal_t *journal;
5294 	ext4_fsblk_t start;
5295 	ext4_fsblk_t len;
5296 	int hblock, blocksize;
5297 	ext4_fsblk_t sb_block;
5298 	unsigned long offset;
5299 	struct ext4_super_block *es;
5300 	struct block_device *bdev;
5301 
5302 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5303 		return NULL;
5304 
5305 	bdev = ext4_blkdev_get(j_dev, sb);
5306 	if (bdev == NULL)
5307 		return NULL;
5308 
5309 	blocksize = sb->s_blocksize;
5310 	hblock = bdev_logical_block_size(bdev);
5311 	if (blocksize < hblock) {
5312 		ext4_msg(sb, KERN_ERR,
5313 			"blocksize too small for journal device");
5314 		goto out_bdev;
5315 	}
5316 
5317 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5318 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5319 	set_blocksize(bdev, blocksize);
5320 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5321 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5322 		       "external journal");
5323 		goto out_bdev;
5324 	}
5325 
5326 	es = (struct ext4_super_block *) (bh->b_data + offset);
5327 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5328 	    !(le32_to_cpu(es->s_feature_incompat) &
5329 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5330 		ext4_msg(sb, KERN_ERR, "external journal has "
5331 					"bad superblock");
5332 		brelse(bh);
5333 		goto out_bdev;
5334 	}
5335 
5336 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5337 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5338 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5339 		ext4_msg(sb, KERN_ERR, "external journal has "
5340 				       "corrupt superblock");
5341 		brelse(bh);
5342 		goto out_bdev;
5343 	}
5344 
5345 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5346 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5347 		brelse(bh);
5348 		goto out_bdev;
5349 	}
5350 
5351 	len = ext4_blocks_count(es);
5352 	start = sb_block + 1;
5353 	brelse(bh);	/* we're done with the superblock */
5354 
5355 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5356 					start, len, blocksize);
5357 	if (!journal) {
5358 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5359 		goto out_bdev;
5360 	}
5361 	journal->j_private = sb;
5362 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5363 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5364 		goto out_journal;
5365 	}
5366 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5367 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5368 					"user (unsupported) - %d",
5369 			be32_to_cpu(journal->j_superblock->s_nr_users));
5370 		goto out_journal;
5371 	}
5372 	EXT4_SB(sb)->s_journal_bdev = bdev;
5373 	ext4_init_journal_params(sb, journal);
5374 	return journal;
5375 
5376 out_journal:
5377 	jbd2_journal_destroy(journal);
5378 out_bdev:
5379 	ext4_blkdev_put(bdev);
5380 	return NULL;
5381 }
5382 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5383 static int ext4_load_journal(struct super_block *sb,
5384 			     struct ext4_super_block *es,
5385 			     unsigned long journal_devnum)
5386 {
5387 	journal_t *journal;
5388 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5389 	dev_t journal_dev;
5390 	int err = 0;
5391 	int really_read_only;
5392 	int journal_dev_ro;
5393 
5394 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5395 		return -EFSCORRUPTED;
5396 
5397 	if (journal_devnum &&
5398 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5399 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5400 			"numbers have changed");
5401 		journal_dev = new_decode_dev(journal_devnum);
5402 	} else
5403 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5404 
5405 	if (journal_inum && journal_dev) {
5406 		ext4_msg(sb, KERN_ERR,
5407 			 "filesystem has both journal inode and journal device!");
5408 		return -EINVAL;
5409 	}
5410 
5411 	if (journal_inum) {
5412 		journal = ext4_get_journal(sb, journal_inum);
5413 		if (!journal)
5414 			return -EINVAL;
5415 	} else {
5416 		journal = ext4_get_dev_journal(sb, journal_dev);
5417 		if (!journal)
5418 			return -EINVAL;
5419 	}
5420 
5421 	journal_dev_ro = bdev_read_only(journal->j_dev);
5422 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5423 
5424 	if (journal_dev_ro && !sb_rdonly(sb)) {
5425 		ext4_msg(sb, KERN_ERR,
5426 			 "journal device read-only, try mounting with '-o ro'");
5427 		err = -EROFS;
5428 		goto err_out;
5429 	}
5430 
5431 	/*
5432 	 * Are we loading a blank journal or performing recovery after a
5433 	 * crash?  For recovery, we need to check in advance whether we
5434 	 * can get read-write access to the device.
5435 	 */
5436 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5437 		if (sb_rdonly(sb)) {
5438 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5439 					"required on readonly filesystem");
5440 			if (really_read_only) {
5441 				ext4_msg(sb, KERN_ERR, "write access "
5442 					"unavailable, cannot proceed "
5443 					"(try mounting with noload)");
5444 				err = -EROFS;
5445 				goto err_out;
5446 			}
5447 			ext4_msg(sb, KERN_INFO, "write access will "
5448 			       "be enabled during recovery");
5449 		}
5450 	}
5451 
5452 	if (!(journal->j_flags & JBD2_BARRIER))
5453 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5454 
5455 	if (!ext4_has_feature_journal_needs_recovery(sb))
5456 		err = jbd2_journal_wipe(journal, !really_read_only);
5457 	if (!err) {
5458 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5459 		if (save)
5460 			memcpy(save, ((char *) es) +
5461 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5462 		err = jbd2_journal_load(journal);
5463 		if (save)
5464 			memcpy(((char *) es) + EXT4_S_ERR_START,
5465 			       save, EXT4_S_ERR_LEN);
5466 		kfree(save);
5467 	}
5468 
5469 	if (err) {
5470 		ext4_msg(sb, KERN_ERR, "error loading journal");
5471 		goto err_out;
5472 	}
5473 
5474 	EXT4_SB(sb)->s_journal = journal;
5475 	err = ext4_clear_journal_err(sb, es);
5476 	if (err) {
5477 		EXT4_SB(sb)->s_journal = NULL;
5478 		jbd2_journal_destroy(journal);
5479 		return err;
5480 	}
5481 
5482 	if (!really_read_only && journal_devnum &&
5483 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5484 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5485 
5486 		/* Make sure we flush the recovery flag to disk. */
5487 		ext4_commit_super(sb, 1);
5488 	}
5489 
5490 	return 0;
5491 
5492 err_out:
5493 	jbd2_journal_destroy(journal);
5494 	return err;
5495 }
5496 
ext4_commit_super(struct super_block * sb,int sync)5497 static int ext4_commit_super(struct super_block *sb, int sync)
5498 {
5499 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5500 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5501 	int error = 0;
5502 
5503 	if (!sbh)
5504 		return -EINVAL;
5505 	if (block_device_ejected(sb))
5506 		return -ENODEV;
5507 
5508 	/*
5509 	 * If the file system is mounted read-only, don't update the
5510 	 * superblock write time.  This avoids updating the superblock
5511 	 * write time when we are mounting the root file system
5512 	 * read/only but we need to replay the journal; at that point,
5513 	 * for people who are east of GMT and who make their clock
5514 	 * tick in localtime for Windows bug-for-bug compatibility,
5515 	 * the clock is set in the future, and this will cause e2fsck
5516 	 * to complain and force a full file system check.
5517 	 */
5518 	if (!(sb->s_flags & SB_RDONLY))
5519 		ext4_update_tstamp(es, s_wtime);
5520 	if (sb->s_bdev->bd_part)
5521 		es->s_kbytes_written =
5522 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5523 			    ((part_stat_read(sb->s_bdev->bd_part,
5524 					     sectors[STAT_WRITE]) -
5525 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
5526 	else
5527 		es->s_kbytes_written =
5528 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5529 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5530 		ext4_free_blocks_count_set(es,
5531 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5532 				&EXT4_SB(sb)->s_freeclusters_counter)));
5533 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5534 		es->s_free_inodes_count =
5535 			cpu_to_le32(percpu_counter_sum_positive(
5536 				&EXT4_SB(sb)->s_freeinodes_counter));
5537 	BUFFER_TRACE(sbh, "marking dirty");
5538 	ext4_superblock_csum_set(sb);
5539 	if (sync)
5540 		lock_buffer(sbh);
5541 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5542 		/*
5543 		 * Oh, dear.  A previous attempt to write the
5544 		 * superblock failed.  This could happen because the
5545 		 * USB device was yanked out.  Or it could happen to
5546 		 * be a transient write error and maybe the block will
5547 		 * be remapped.  Nothing we can do but to retry the
5548 		 * write and hope for the best.
5549 		 */
5550 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5551 		       "superblock detected");
5552 		clear_buffer_write_io_error(sbh);
5553 		set_buffer_uptodate(sbh);
5554 	}
5555 	mark_buffer_dirty(sbh);
5556 	if (sync) {
5557 		unlock_buffer(sbh);
5558 		error = __sync_dirty_buffer(sbh,
5559 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5560 		if (buffer_write_io_error(sbh)) {
5561 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
5562 			       "superblock");
5563 			clear_buffer_write_io_error(sbh);
5564 			set_buffer_uptodate(sbh);
5565 		}
5566 	}
5567 	return error;
5568 }
5569 
5570 /*
5571  * Have we just finished recovery?  If so, and if we are mounting (or
5572  * remounting) the filesystem readonly, then we will end up with a
5573  * consistent fs on disk.  Record that fact.
5574  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5575 static int ext4_mark_recovery_complete(struct super_block *sb,
5576 				       struct ext4_super_block *es)
5577 {
5578 	int err;
5579 	journal_t *journal = EXT4_SB(sb)->s_journal;
5580 
5581 	if (!ext4_has_feature_journal(sb)) {
5582 		if (journal != NULL) {
5583 			ext4_error(sb, "Journal got removed while the fs was "
5584 				   "mounted!");
5585 			return -EFSCORRUPTED;
5586 		}
5587 		return 0;
5588 	}
5589 	jbd2_journal_lock_updates(journal);
5590 	err = jbd2_journal_flush(journal);
5591 	if (err < 0)
5592 		goto out;
5593 
5594 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5595 		ext4_clear_feature_journal_needs_recovery(sb);
5596 		ext4_commit_super(sb, 1);
5597 	}
5598 out:
5599 	jbd2_journal_unlock_updates(journal);
5600 	return err;
5601 }
5602 
5603 /*
5604  * If we are mounting (or read-write remounting) a filesystem whose journal
5605  * has recorded an error from a previous lifetime, move that error to the
5606  * main filesystem now.
5607  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5608 static int ext4_clear_journal_err(struct super_block *sb,
5609 				   struct ext4_super_block *es)
5610 {
5611 	journal_t *journal;
5612 	int j_errno;
5613 	const char *errstr;
5614 
5615 	if (!ext4_has_feature_journal(sb)) {
5616 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5617 		return -EFSCORRUPTED;
5618 	}
5619 
5620 	journal = EXT4_SB(sb)->s_journal;
5621 
5622 	/*
5623 	 * Now check for any error status which may have been recorded in the
5624 	 * journal by a prior ext4_error() or ext4_abort()
5625 	 */
5626 
5627 	j_errno = jbd2_journal_errno(journal);
5628 	if (j_errno) {
5629 		char nbuf[16];
5630 
5631 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5632 		ext4_warning(sb, "Filesystem error recorded "
5633 			     "from previous mount: %s", errstr);
5634 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5635 
5636 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5637 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5638 		ext4_commit_super(sb, 1);
5639 
5640 		jbd2_journal_clear_err(journal);
5641 		jbd2_journal_update_sb_errno(journal);
5642 	}
5643 	return 0;
5644 }
5645 
5646 /*
5647  * Force the running and committing transactions to commit,
5648  * and wait on the commit.
5649  */
ext4_force_commit(struct super_block * sb)5650 int ext4_force_commit(struct super_block *sb)
5651 {
5652 	journal_t *journal;
5653 
5654 	if (sb_rdonly(sb))
5655 		return 0;
5656 
5657 	journal = EXT4_SB(sb)->s_journal;
5658 	return ext4_journal_force_commit(journal);
5659 }
5660 
ext4_sync_fs(struct super_block * sb,int wait)5661 static int ext4_sync_fs(struct super_block *sb, int wait)
5662 {
5663 	int ret = 0;
5664 	tid_t target;
5665 	bool needs_barrier = false;
5666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5667 
5668 	if (unlikely(ext4_forced_shutdown(sbi)))
5669 		return 0;
5670 
5671 	trace_ext4_sync_fs(sb, wait);
5672 	flush_workqueue(sbi->rsv_conversion_wq);
5673 	/*
5674 	 * Writeback quota in non-journalled quota case - journalled quota has
5675 	 * no dirty dquots
5676 	 */
5677 	dquot_writeback_dquots(sb, -1);
5678 	/*
5679 	 * Data writeback is possible w/o journal transaction, so barrier must
5680 	 * being sent at the end of the function. But we can skip it if
5681 	 * transaction_commit will do it for us.
5682 	 */
5683 	if (sbi->s_journal) {
5684 		target = jbd2_get_latest_transaction(sbi->s_journal);
5685 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5686 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5687 			needs_barrier = true;
5688 
5689 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5690 			if (wait)
5691 				ret = jbd2_log_wait_commit(sbi->s_journal,
5692 							   target);
5693 		}
5694 	} else if (wait && test_opt(sb, BARRIER))
5695 		needs_barrier = true;
5696 	if (needs_barrier) {
5697 		int err;
5698 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5699 		if (!ret)
5700 			ret = err;
5701 	}
5702 
5703 	return ret;
5704 }
5705 
5706 /*
5707  * LVM calls this function before a (read-only) snapshot is created.  This
5708  * gives us a chance to flush the journal completely and mark the fs clean.
5709  *
5710  * Note that only this function cannot bring a filesystem to be in a clean
5711  * state independently. It relies on upper layer to stop all data & metadata
5712  * modifications.
5713  */
ext4_freeze(struct super_block * sb)5714 static int ext4_freeze(struct super_block *sb)
5715 {
5716 	int error = 0;
5717 	journal_t *journal;
5718 
5719 	if (sb_rdonly(sb))
5720 		return 0;
5721 
5722 	journal = EXT4_SB(sb)->s_journal;
5723 
5724 	if (journal) {
5725 		/* Now we set up the journal barrier. */
5726 		jbd2_journal_lock_updates(journal);
5727 
5728 		/*
5729 		 * Don't clear the needs_recovery flag if we failed to
5730 		 * flush the journal.
5731 		 */
5732 		error = jbd2_journal_flush(journal);
5733 		if (error < 0)
5734 			goto out;
5735 
5736 		/* Journal blocked and flushed, clear needs_recovery flag. */
5737 		ext4_clear_feature_journal_needs_recovery(sb);
5738 	}
5739 
5740 	error = ext4_commit_super(sb, 1);
5741 out:
5742 	if (journal)
5743 		/* we rely on upper layer to stop further updates */
5744 		jbd2_journal_unlock_updates(journal);
5745 	return error;
5746 }
5747 
5748 /*
5749  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5750  * flag here, even though the filesystem is not technically dirty yet.
5751  */
ext4_unfreeze(struct super_block * sb)5752 static int ext4_unfreeze(struct super_block *sb)
5753 {
5754 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5755 		return 0;
5756 
5757 	if (EXT4_SB(sb)->s_journal) {
5758 		/* Reset the needs_recovery flag before the fs is unlocked. */
5759 		ext4_set_feature_journal_needs_recovery(sb);
5760 	}
5761 
5762 	ext4_commit_super(sb, 1);
5763 	return 0;
5764 }
5765 
5766 /*
5767  * Structure to save mount options for ext4_remount's benefit
5768  */
5769 struct ext4_mount_options {
5770 	unsigned long s_mount_opt;
5771 	unsigned long s_mount_opt2;
5772 	kuid_t s_resuid;
5773 	kgid_t s_resgid;
5774 	unsigned long s_commit_interval;
5775 	u32 s_min_batch_time, s_max_batch_time;
5776 #ifdef CONFIG_QUOTA
5777 	int s_jquota_fmt;
5778 	char *s_qf_names[EXT4_MAXQUOTAS];
5779 #endif
5780 };
5781 
ext4_remount(struct super_block * sb,int * flags,char * data)5782 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5783 {
5784 	struct ext4_super_block *es;
5785 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5786 	unsigned long old_sb_flags, vfs_flags;
5787 	struct ext4_mount_options old_opts;
5788 	ext4_group_t g;
5789 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5790 	int err = 0;
5791 #ifdef CONFIG_QUOTA
5792 	int enable_quota = 0;
5793 	int i, j;
5794 	char *to_free[EXT4_MAXQUOTAS];
5795 #endif
5796 	char *orig_data = kstrdup(data, GFP_KERNEL);
5797 
5798 	if (data && !orig_data)
5799 		return -ENOMEM;
5800 
5801 	/* Store the original options */
5802 	old_sb_flags = sb->s_flags;
5803 	old_opts.s_mount_opt = sbi->s_mount_opt;
5804 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5805 	old_opts.s_resuid = sbi->s_resuid;
5806 	old_opts.s_resgid = sbi->s_resgid;
5807 	old_opts.s_commit_interval = sbi->s_commit_interval;
5808 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5809 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5810 #ifdef CONFIG_QUOTA
5811 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5812 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5813 		if (sbi->s_qf_names[i]) {
5814 			char *qf_name = get_qf_name(sb, sbi, i);
5815 
5816 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5817 			if (!old_opts.s_qf_names[i]) {
5818 				for (j = 0; j < i; j++)
5819 					kfree(old_opts.s_qf_names[j]);
5820 				kfree(orig_data);
5821 				return -ENOMEM;
5822 			}
5823 		} else
5824 			old_opts.s_qf_names[i] = NULL;
5825 #endif
5826 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5827 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5828 
5829 	/*
5830 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5831 	 * either way we need to make sure it matches in both *flags and
5832 	 * s_flags. Copy those selected flags from *flags to s_flags
5833 	 */
5834 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5835 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5836 
5837 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5838 		err = -EINVAL;
5839 		goto restore_opts;
5840 	}
5841 
5842 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5843 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5844 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5845 			 "during remount not supported; ignoring");
5846 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5847 	}
5848 
5849 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5850 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5851 			ext4_msg(sb, KERN_ERR, "can't mount with "
5852 				 "both data=journal and delalloc");
5853 			err = -EINVAL;
5854 			goto restore_opts;
5855 		}
5856 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5857 			ext4_msg(sb, KERN_ERR, "can't mount with "
5858 				 "both data=journal and dioread_nolock");
5859 			err = -EINVAL;
5860 			goto restore_opts;
5861 		}
5862 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5863 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5864 			ext4_msg(sb, KERN_ERR, "can't mount with "
5865 				"journal_async_commit in data=ordered mode");
5866 			err = -EINVAL;
5867 			goto restore_opts;
5868 		}
5869 	}
5870 
5871 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5872 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5873 		err = -EINVAL;
5874 		goto restore_opts;
5875 	}
5876 
5877 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5878 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5879 
5880 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5881 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5882 
5883 	es = sbi->s_es;
5884 
5885 	if (sbi->s_journal) {
5886 		ext4_init_journal_params(sb, sbi->s_journal);
5887 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5888 	}
5889 
5890 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5891 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5892 			err = -EROFS;
5893 			goto restore_opts;
5894 		}
5895 
5896 		if (*flags & SB_RDONLY) {
5897 			err = sync_filesystem(sb);
5898 			if (err < 0)
5899 				goto restore_opts;
5900 			err = dquot_suspend(sb, -1);
5901 			if (err < 0)
5902 				goto restore_opts;
5903 
5904 			/*
5905 			 * First of all, the unconditional stuff we have to do
5906 			 * to disable replay of the journal when we next remount
5907 			 */
5908 			sb->s_flags |= SB_RDONLY;
5909 
5910 			/*
5911 			 * OK, test if we are remounting a valid rw partition
5912 			 * readonly, and if so set the rdonly flag and then
5913 			 * mark the partition as valid again.
5914 			 */
5915 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5916 			    (sbi->s_mount_state & EXT4_VALID_FS))
5917 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5918 
5919 			if (sbi->s_journal) {
5920 				/*
5921 				 * We let remount-ro finish even if marking fs
5922 				 * as clean failed...
5923 				 */
5924 				ext4_mark_recovery_complete(sb, es);
5925 			}
5926 		} else {
5927 			/* Make sure we can mount this feature set readwrite */
5928 			if (ext4_has_feature_readonly(sb) ||
5929 			    !ext4_feature_set_ok(sb, 0)) {
5930 				err = -EROFS;
5931 				goto restore_opts;
5932 			}
5933 			/*
5934 			 * Make sure the group descriptor checksums
5935 			 * are sane.  If they aren't, refuse to remount r/w.
5936 			 */
5937 			for (g = 0; g < sbi->s_groups_count; g++) {
5938 				struct ext4_group_desc *gdp =
5939 					ext4_get_group_desc(sb, g, NULL);
5940 
5941 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5942 					ext4_msg(sb, KERN_ERR,
5943 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5944 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5945 					       le16_to_cpu(gdp->bg_checksum));
5946 					err = -EFSBADCRC;
5947 					goto restore_opts;
5948 				}
5949 			}
5950 
5951 			/*
5952 			 * If we have an unprocessed orphan list hanging
5953 			 * around from a previously readonly bdev mount,
5954 			 * require a full umount/remount for now.
5955 			 */
5956 			if (es->s_last_orphan) {
5957 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5958 				       "remount RDWR because of unprocessed "
5959 				       "orphan inode list.  Please "
5960 				       "umount/remount instead");
5961 				err = -EINVAL;
5962 				goto restore_opts;
5963 			}
5964 
5965 			/*
5966 			 * Mounting a RDONLY partition read-write, so reread
5967 			 * and store the current valid flag.  (It may have
5968 			 * been changed by e2fsck since we originally mounted
5969 			 * the partition.)
5970 			 */
5971 			if (sbi->s_journal) {
5972 				err = ext4_clear_journal_err(sb, es);
5973 				if (err)
5974 					goto restore_opts;
5975 			}
5976 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
5977 					      ~EXT4_FC_REPLAY);
5978 
5979 			err = ext4_setup_super(sb, es, 0);
5980 			if (err)
5981 				goto restore_opts;
5982 
5983 			sb->s_flags &= ~SB_RDONLY;
5984 			if (ext4_has_feature_mmp(sb)) {
5985 				err = ext4_multi_mount_protect(sb,
5986 						le64_to_cpu(es->s_mmp_block));
5987 				if (err)
5988 					goto restore_opts;
5989 			}
5990 #ifdef CONFIG_QUOTA
5991 			enable_quota = 1;
5992 #endif
5993 		}
5994 	}
5995 
5996 	/*
5997 	 * Handle creation of system zone data early because it can fail.
5998 	 * Releasing of existing data is done when we are sure remount will
5999 	 * succeed.
6000 	 */
6001 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6002 		err = ext4_setup_system_zone(sb);
6003 		if (err)
6004 			goto restore_opts;
6005 	}
6006 
6007 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6008 		err = ext4_commit_super(sb, 1);
6009 		if (err)
6010 			goto restore_opts;
6011 	}
6012 
6013 #ifdef CONFIG_QUOTA
6014 	if (enable_quota) {
6015 		if (sb_any_quota_suspended(sb))
6016 			dquot_resume(sb, -1);
6017 		else if (ext4_has_feature_quota(sb)) {
6018 			err = ext4_enable_quotas(sb);
6019 			if (err)
6020 				goto restore_opts;
6021 		}
6022 	}
6023 	/* Release old quota file names */
6024 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6025 		kfree(old_opts.s_qf_names[i]);
6026 #endif
6027 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6028 		ext4_release_system_zone(sb);
6029 
6030 	/*
6031 	 * Reinitialize lazy itable initialization thread based on
6032 	 * current settings
6033 	 */
6034 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6035 		ext4_unregister_li_request(sb);
6036 	else {
6037 		ext4_group_t first_not_zeroed;
6038 		first_not_zeroed = ext4_has_uninit_itable(sb);
6039 		ext4_register_li_request(sb, first_not_zeroed);
6040 	}
6041 
6042 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6043 		ext4_stop_mmpd(sbi);
6044 
6045 	/*
6046 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6047 	 * either way we need to make sure it matches in both *flags and
6048 	 * s_flags. Copy those selected flags from s_flags to *flags
6049 	 */
6050 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6051 
6052 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6053 	kfree(orig_data);
6054 	return 0;
6055 
6056 restore_opts:
6057 	/*
6058 	 * If there was a failing r/w to ro transition, we may need to
6059 	 * re-enable quota
6060 	 */
6061 	if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6062 	    sb_any_quota_suspended(sb))
6063 		dquot_resume(sb, -1);
6064 	sb->s_flags = old_sb_flags;
6065 	sbi->s_mount_opt = old_opts.s_mount_opt;
6066 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6067 	sbi->s_resuid = old_opts.s_resuid;
6068 	sbi->s_resgid = old_opts.s_resgid;
6069 	sbi->s_commit_interval = old_opts.s_commit_interval;
6070 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6071 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6072 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6073 		ext4_release_system_zone(sb);
6074 #ifdef CONFIG_QUOTA
6075 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6076 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6077 		to_free[i] = get_qf_name(sb, sbi, i);
6078 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6079 	}
6080 	synchronize_rcu();
6081 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6082 		kfree(to_free[i]);
6083 #endif
6084 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6085 		ext4_stop_mmpd(sbi);
6086 	kfree(orig_data);
6087 	return err;
6088 }
6089 
6090 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6091 static int ext4_statfs_project(struct super_block *sb,
6092 			       kprojid_t projid, struct kstatfs *buf)
6093 {
6094 	struct kqid qid;
6095 	struct dquot *dquot;
6096 	u64 limit;
6097 	u64 curblock;
6098 
6099 	qid = make_kqid_projid(projid);
6100 	dquot = dqget(sb, qid);
6101 	if (IS_ERR(dquot))
6102 		return PTR_ERR(dquot);
6103 	spin_lock(&dquot->dq_dqb_lock);
6104 
6105 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6106 			     dquot->dq_dqb.dqb_bhardlimit);
6107 	limit >>= sb->s_blocksize_bits;
6108 
6109 	if (limit && buf->f_blocks > limit) {
6110 		curblock = (dquot->dq_dqb.dqb_curspace +
6111 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6112 		buf->f_blocks = limit;
6113 		buf->f_bfree = buf->f_bavail =
6114 			(buf->f_blocks > curblock) ?
6115 			 (buf->f_blocks - curblock) : 0;
6116 	}
6117 
6118 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6119 			     dquot->dq_dqb.dqb_ihardlimit);
6120 	if (limit && buf->f_files > limit) {
6121 		buf->f_files = limit;
6122 		buf->f_ffree =
6123 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6124 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6125 	}
6126 
6127 	spin_unlock(&dquot->dq_dqb_lock);
6128 	dqput(dquot);
6129 	return 0;
6130 }
6131 #endif
6132 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6133 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6134 {
6135 	struct super_block *sb = dentry->d_sb;
6136 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6137 	struct ext4_super_block *es = sbi->s_es;
6138 	ext4_fsblk_t overhead = 0, resv_blocks;
6139 	u64 fsid;
6140 	s64 bfree;
6141 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6142 
6143 	if (!test_opt(sb, MINIX_DF))
6144 		overhead = sbi->s_overhead;
6145 
6146 	buf->f_type = EXT4_SUPER_MAGIC;
6147 	buf->f_bsize = sb->s_blocksize;
6148 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6149 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6150 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6151 	/* prevent underflow in case that few free space is available */
6152 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6153 	buf->f_bavail = buf->f_bfree -
6154 			(ext4_r_blocks_count(es) + resv_blocks);
6155 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6156 		buf->f_bavail = 0;
6157 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6158 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6159 	buf->f_namelen = EXT4_NAME_LEN;
6160 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6161 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6162 	buf->f_fsid = u64_to_fsid(fsid);
6163 
6164 #ifdef CONFIG_QUOTA
6165 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6166 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6167 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6168 #endif
6169 	return 0;
6170 }
6171 
6172 
6173 #ifdef CONFIG_QUOTA
6174 
6175 /*
6176  * Helper functions so that transaction is started before we acquire dqio_sem
6177  * to keep correct lock ordering of transaction > dqio_sem
6178  */
dquot_to_inode(struct dquot * dquot)6179 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6180 {
6181 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6182 }
6183 
ext4_write_dquot(struct dquot * dquot)6184 static int ext4_write_dquot(struct dquot *dquot)
6185 {
6186 	int ret, err;
6187 	handle_t *handle;
6188 	struct inode *inode;
6189 
6190 	inode = dquot_to_inode(dquot);
6191 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6192 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6193 	if (IS_ERR(handle))
6194 		return PTR_ERR(handle);
6195 	ret = dquot_commit(dquot);
6196 	err = ext4_journal_stop(handle);
6197 	if (!ret)
6198 		ret = err;
6199 	return ret;
6200 }
6201 
ext4_acquire_dquot(struct dquot * dquot)6202 static int ext4_acquire_dquot(struct dquot *dquot)
6203 {
6204 	int ret, err;
6205 	handle_t *handle;
6206 
6207 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6208 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6209 	if (IS_ERR(handle))
6210 		return PTR_ERR(handle);
6211 	ret = dquot_acquire(dquot);
6212 	err = ext4_journal_stop(handle);
6213 	if (!ret)
6214 		ret = err;
6215 	return ret;
6216 }
6217 
ext4_release_dquot(struct dquot * dquot)6218 static int ext4_release_dquot(struct dquot *dquot)
6219 {
6220 	int ret, err;
6221 	handle_t *handle;
6222 
6223 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6224 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6225 	if (IS_ERR(handle)) {
6226 		/* Release dquot anyway to avoid endless cycle in dqput() */
6227 		dquot_release(dquot);
6228 		return PTR_ERR(handle);
6229 	}
6230 	ret = dquot_release(dquot);
6231 	err = ext4_journal_stop(handle);
6232 	if (!ret)
6233 		ret = err;
6234 	return ret;
6235 }
6236 
ext4_mark_dquot_dirty(struct dquot * dquot)6237 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6238 {
6239 	struct super_block *sb = dquot->dq_sb;
6240 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6241 
6242 	/* Are we journaling quotas? */
6243 	if (ext4_has_feature_quota(sb) ||
6244 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6245 		dquot_mark_dquot_dirty(dquot);
6246 		return ext4_write_dquot(dquot);
6247 	} else {
6248 		return dquot_mark_dquot_dirty(dquot);
6249 	}
6250 }
6251 
ext4_write_info(struct super_block * sb,int type)6252 static int ext4_write_info(struct super_block *sb, int type)
6253 {
6254 	int ret, err;
6255 	handle_t *handle;
6256 
6257 	/* Data block + inode block */
6258 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6259 	if (IS_ERR(handle))
6260 		return PTR_ERR(handle);
6261 	ret = dquot_commit_info(sb, type);
6262 	err = ext4_journal_stop(handle);
6263 	if (!ret)
6264 		ret = err;
6265 	return ret;
6266 }
6267 
6268 /*
6269  * Turn on quotas during mount time - we need to find
6270  * the quota file and such...
6271  */
ext4_quota_on_mount(struct super_block * sb,int type)6272 static int ext4_quota_on_mount(struct super_block *sb, int type)
6273 {
6274 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6275 					EXT4_SB(sb)->s_jquota_fmt, type);
6276 }
6277 
lockdep_set_quota_inode(struct inode * inode,int subclass)6278 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6279 {
6280 	struct ext4_inode_info *ei = EXT4_I(inode);
6281 
6282 	/* The first argument of lockdep_set_subclass has to be
6283 	 * *exactly* the same as the argument to init_rwsem() --- in
6284 	 * this case, in init_once() --- or lockdep gets unhappy
6285 	 * because the name of the lock is set using the
6286 	 * stringification of the argument to init_rwsem().
6287 	 */
6288 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6289 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6290 }
6291 
6292 /*
6293  * Standard function to be called on quota_on
6294  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6295 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6296 			 const struct path *path)
6297 {
6298 	int err;
6299 
6300 	if (!test_opt(sb, QUOTA))
6301 		return -EINVAL;
6302 
6303 	/* Quotafile not on the same filesystem? */
6304 	if (path->dentry->d_sb != sb)
6305 		return -EXDEV;
6306 
6307 	/* Quota already enabled for this file? */
6308 	if (IS_NOQUOTA(d_inode(path->dentry)))
6309 		return -EBUSY;
6310 
6311 	/* Journaling quota? */
6312 	if (EXT4_SB(sb)->s_qf_names[type]) {
6313 		/* Quotafile not in fs root? */
6314 		if (path->dentry->d_parent != sb->s_root)
6315 			ext4_msg(sb, KERN_WARNING,
6316 				"Quota file not on filesystem root. "
6317 				"Journaled quota will not work");
6318 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6319 	} else {
6320 		/*
6321 		 * Clear the flag just in case mount options changed since
6322 		 * last time.
6323 		 */
6324 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6325 	}
6326 
6327 	/*
6328 	 * When we journal data on quota file, we have to flush journal to see
6329 	 * all updates to the file when we bypass pagecache...
6330 	 */
6331 	if (EXT4_SB(sb)->s_journal &&
6332 	    ext4_should_journal_data(d_inode(path->dentry))) {
6333 		/*
6334 		 * We don't need to lock updates but journal_flush() could
6335 		 * otherwise be livelocked...
6336 		 */
6337 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6338 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6339 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6340 		if (err)
6341 			return err;
6342 	}
6343 
6344 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6345 	err = dquot_quota_on(sb, type, format_id, path);
6346 	if (!err) {
6347 		struct inode *inode = d_inode(path->dentry);
6348 		handle_t *handle;
6349 
6350 		/*
6351 		 * Set inode flags to prevent userspace from messing with quota
6352 		 * files. If this fails, we return success anyway since quotas
6353 		 * are already enabled and this is not a hard failure.
6354 		 */
6355 		inode_lock(inode);
6356 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6357 		if (IS_ERR(handle))
6358 			goto unlock_inode;
6359 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6360 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6361 				S_NOATIME | S_IMMUTABLE);
6362 		err = ext4_mark_inode_dirty(handle, inode);
6363 		ext4_journal_stop(handle);
6364 	unlock_inode:
6365 		inode_unlock(inode);
6366 		if (err)
6367 			dquot_quota_off(sb, type);
6368 	}
6369 	if (err)
6370 		lockdep_set_quota_inode(path->dentry->d_inode,
6371 					     I_DATA_SEM_NORMAL);
6372 	return err;
6373 }
6374 
ext4_check_quota_inum(int type,unsigned long qf_inum)6375 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6376 {
6377 	switch (type) {
6378 	case USRQUOTA:
6379 		return qf_inum == EXT4_USR_QUOTA_INO;
6380 	case GRPQUOTA:
6381 		return qf_inum == EXT4_GRP_QUOTA_INO;
6382 	case PRJQUOTA:
6383 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6384 	default:
6385 		BUG();
6386 	}
6387 }
6388 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6389 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6390 			     unsigned int flags)
6391 {
6392 	int err;
6393 	struct inode *qf_inode;
6394 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6395 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6396 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6397 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6398 	};
6399 
6400 	BUG_ON(!ext4_has_feature_quota(sb));
6401 
6402 	if (!qf_inums[type])
6403 		return -EPERM;
6404 
6405 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6406 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6407 				qf_inums[type], type);
6408 		return -EUCLEAN;
6409 	}
6410 
6411 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6412 	if (IS_ERR(qf_inode)) {
6413 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6414 				qf_inums[type], type);
6415 		return PTR_ERR(qf_inode);
6416 	}
6417 
6418 	/* Don't account quota for quota files to avoid recursion */
6419 	qf_inode->i_flags |= S_NOQUOTA;
6420 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6421 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6422 	if (err)
6423 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6424 	iput(qf_inode);
6425 
6426 	return err;
6427 }
6428 
6429 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6430 static int ext4_enable_quotas(struct super_block *sb)
6431 {
6432 	int type, err = 0;
6433 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6434 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6435 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6436 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6437 	};
6438 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6439 		test_opt(sb, USRQUOTA),
6440 		test_opt(sb, GRPQUOTA),
6441 		test_opt(sb, PRJQUOTA),
6442 	};
6443 
6444 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6445 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6446 		if (qf_inums[type]) {
6447 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6448 				DQUOT_USAGE_ENABLED |
6449 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6450 			if (err) {
6451 				ext4_warning(sb,
6452 					"Failed to enable quota tracking "
6453 					"(type=%d, err=%d, ino=%lu). "
6454 					"Please run e2fsck to fix.", type,
6455 					err, qf_inums[type]);
6456 				for (type--; type >= 0; type--) {
6457 					struct inode *inode;
6458 
6459 					inode = sb_dqopt(sb)->files[type];
6460 					if (inode)
6461 						inode = igrab(inode);
6462 					dquot_quota_off(sb, type);
6463 					if (inode) {
6464 						lockdep_set_quota_inode(inode,
6465 							I_DATA_SEM_NORMAL);
6466 						iput(inode);
6467 					}
6468 				}
6469 
6470 				return err;
6471 			}
6472 		}
6473 	}
6474 	return 0;
6475 }
6476 
ext4_quota_off(struct super_block * sb,int type)6477 static int ext4_quota_off(struct super_block *sb, int type)
6478 {
6479 	struct inode *inode = sb_dqopt(sb)->files[type];
6480 	handle_t *handle;
6481 	int err;
6482 
6483 	/* Force all delayed allocation blocks to be allocated.
6484 	 * Caller already holds s_umount sem */
6485 	if (test_opt(sb, DELALLOC))
6486 		sync_filesystem(sb);
6487 
6488 	if (!inode || !igrab(inode))
6489 		goto out;
6490 
6491 	err = dquot_quota_off(sb, type);
6492 	if (err || ext4_has_feature_quota(sb))
6493 		goto out_put;
6494 
6495 	inode_lock(inode);
6496 	/*
6497 	 * Update modification times of quota files when userspace can
6498 	 * start looking at them. If we fail, we return success anyway since
6499 	 * this is not a hard failure and quotas are already disabled.
6500 	 */
6501 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6502 	if (IS_ERR(handle)) {
6503 		err = PTR_ERR(handle);
6504 		goto out_unlock;
6505 	}
6506 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6507 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6508 	inode->i_mtime = inode->i_ctime = current_time(inode);
6509 	err = ext4_mark_inode_dirty(handle, inode);
6510 	ext4_journal_stop(handle);
6511 out_unlock:
6512 	inode_unlock(inode);
6513 out_put:
6514 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6515 	iput(inode);
6516 	return err;
6517 out:
6518 	return dquot_quota_off(sb, type);
6519 }
6520 
6521 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6522  * acquiring the locks... As quota files are never truncated and quota code
6523  * itself serializes the operations (and no one else should touch the files)
6524  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6525 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6526 			       size_t len, loff_t off)
6527 {
6528 	struct inode *inode = sb_dqopt(sb)->files[type];
6529 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6530 	int offset = off & (sb->s_blocksize - 1);
6531 	int tocopy;
6532 	size_t toread;
6533 	struct buffer_head *bh;
6534 	loff_t i_size = i_size_read(inode);
6535 
6536 	if (off > i_size)
6537 		return 0;
6538 	if (off+len > i_size)
6539 		len = i_size-off;
6540 	toread = len;
6541 	while (toread > 0) {
6542 		tocopy = sb->s_blocksize - offset < toread ?
6543 				sb->s_blocksize - offset : toread;
6544 		bh = ext4_bread(NULL, inode, blk, 0);
6545 		if (IS_ERR(bh))
6546 			return PTR_ERR(bh);
6547 		if (!bh)	/* A hole? */
6548 			memset(data, 0, tocopy);
6549 		else
6550 			memcpy(data, bh->b_data+offset, tocopy);
6551 		brelse(bh);
6552 		offset = 0;
6553 		toread -= tocopy;
6554 		data += tocopy;
6555 		blk++;
6556 	}
6557 	return len;
6558 }
6559 
6560 /* Write to quotafile (we know the transaction is already started and has
6561  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6562 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6563 				const char *data, size_t len, loff_t off)
6564 {
6565 	struct inode *inode = sb_dqopt(sb)->files[type];
6566 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6567 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6568 	int retries = 0;
6569 	struct buffer_head *bh;
6570 	handle_t *handle = journal_current_handle();
6571 
6572 	if (!handle) {
6573 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6574 			" cancelled because transaction is not started",
6575 			(unsigned long long)off, (unsigned long long)len);
6576 		return -EIO;
6577 	}
6578 	/*
6579 	 * Since we account only one data block in transaction credits,
6580 	 * then it is impossible to cross a block boundary.
6581 	 */
6582 	if (sb->s_blocksize - offset < len) {
6583 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6584 			" cancelled because not block aligned",
6585 			(unsigned long long)off, (unsigned long long)len);
6586 		return -EIO;
6587 	}
6588 
6589 	do {
6590 		bh = ext4_bread(handle, inode, blk,
6591 				EXT4_GET_BLOCKS_CREATE |
6592 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6593 	} while (PTR_ERR(bh) == -ENOSPC &&
6594 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6595 	if (IS_ERR(bh))
6596 		return PTR_ERR(bh);
6597 	if (!bh)
6598 		goto out;
6599 	BUFFER_TRACE(bh, "get write access");
6600 	err = ext4_journal_get_write_access(handle, bh);
6601 	if (err) {
6602 		brelse(bh);
6603 		return err;
6604 	}
6605 	lock_buffer(bh);
6606 	memcpy(bh->b_data+offset, data, len);
6607 	flush_dcache_page(bh->b_page);
6608 	unlock_buffer(bh);
6609 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6610 	brelse(bh);
6611 out:
6612 	if (inode->i_size < off + len) {
6613 		i_size_write(inode, off + len);
6614 		EXT4_I(inode)->i_disksize = inode->i_size;
6615 		err2 = ext4_mark_inode_dirty(handle, inode);
6616 		if (unlikely(err2 && !err))
6617 			err = err2;
6618 	}
6619 	return err ? err : len;
6620 }
6621 #endif
6622 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6623 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6624 		       const char *dev_name, void *data)
6625 {
6626 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6627 }
6628 
6629 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6630 static inline void register_as_ext2(void)
6631 {
6632 	int err = register_filesystem(&ext2_fs_type);
6633 	if (err)
6634 		printk(KERN_WARNING
6635 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6636 }
6637 
unregister_as_ext2(void)6638 static inline void unregister_as_ext2(void)
6639 {
6640 	unregister_filesystem(&ext2_fs_type);
6641 }
6642 
ext2_feature_set_ok(struct super_block * sb)6643 static inline int ext2_feature_set_ok(struct super_block *sb)
6644 {
6645 	if (ext4_has_unknown_ext2_incompat_features(sb))
6646 		return 0;
6647 	if (sb_rdonly(sb))
6648 		return 1;
6649 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6650 		return 0;
6651 	return 1;
6652 }
6653 #else
register_as_ext2(void)6654 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6655 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6656 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6657 #endif
6658 
register_as_ext3(void)6659 static inline void register_as_ext3(void)
6660 {
6661 	int err = register_filesystem(&ext3_fs_type);
6662 	if (err)
6663 		printk(KERN_WARNING
6664 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6665 }
6666 
unregister_as_ext3(void)6667 static inline void unregister_as_ext3(void)
6668 {
6669 	unregister_filesystem(&ext3_fs_type);
6670 }
6671 
ext3_feature_set_ok(struct super_block * sb)6672 static inline int ext3_feature_set_ok(struct super_block *sb)
6673 {
6674 	if (ext4_has_unknown_ext3_incompat_features(sb))
6675 		return 0;
6676 	if (!ext4_has_feature_journal(sb))
6677 		return 0;
6678 	if (sb_rdonly(sb))
6679 		return 1;
6680 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6681 		return 0;
6682 	return 1;
6683 }
6684 
6685 static struct file_system_type ext4_fs_type = {
6686 	.owner		= THIS_MODULE,
6687 	.name		= "ext4",
6688 	.mount		= ext4_mount,
6689 	.kill_sb	= kill_block_super,
6690 	.fs_flags	= FS_REQUIRES_DEV,
6691 };
6692 MODULE_ALIAS_FS("ext4");
6693 
6694 /* Shared across all ext4 file systems */
6695 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6696 
ext4_init_fs(void)6697 static int __init ext4_init_fs(void)
6698 {
6699 	int i, err;
6700 
6701 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6702 	ext4_li_info = NULL;
6703 	mutex_init(&ext4_li_mtx);
6704 
6705 	/* Build-time check for flags consistency */
6706 	ext4_check_flag_values();
6707 
6708 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6709 		init_waitqueue_head(&ext4__ioend_wq[i]);
6710 
6711 	err = ext4_init_es();
6712 	if (err)
6713 		return err;
6714 
6715 	err = ext4_init_pending();
6716 	if (err)
6717 		goto out7;
6718 
6719 	err = ext4_init_post_read_processing();
6720 	if (err)
6721 		goto out6;
6722 
6723 	err = ext4_init_pageio();
6724 	if (err)
6725 		goto out5;
6726 
6727 	err = ext4_init_system_zone();
6728 	if (err)
6729 		goto out4;
6730 
6731 	err = ext4_init_sysfs();
6732 	if (err)
6733 		goto out3;
6734 
6735 	err = ext4_init_mballoc();
6736 	if (err)
6737 		goto out2;
6738 	err = init_inodecache();
6739 	if (err)
6740 		goto out1;
6741 
6742 	err = ext4_fc_init_dentry_cache();
6743 	if (err)
6744 		goto out05;
6745 
6746 	register_as_ext3();
6747 	register_as_ext2();
6748 	err = register_filesystem(&ext4_fs_type);
6749 	if (err)
6750 		goto out;
6751 
6752 	return 0;
6753 out:
6754 	unregister_as_ext2();
6755 	unregister_as_ext3();
6756 	ext4_fc_destroy_dentry_cache();
6757 out05:
6758 	destroy_inodecache();
6759 out1:
6760 	ext4_exit_mballoc();
6761 out2:
6762 	ext4_exit_sysfs();
6763 out3:
6764 	ext4_exit_system_zone();
6765 out4:
6766 	ext4_exit_pageio();
6767 out5:
6768 	ext4_exit_post_read_processing();
6769 out6:
6770 	ext4_exit_pending();
6771 out7:
6772 	ext4_exit_es();
6773 
6774 	return err;
6775 }
6776 
ext4_exit_fs(void)6777 static void __exit ext4_exit_fs(void)
6778 {
6779 	ext4_destroy_lazyinit_thread();
6780 	unregister_as_ext2();
6781 	unregister_as_ext3();
6782 	unregister_filesystem(&ext4_fs_type);
6783 	ext4_fc_destroy_dentry_cache();
6784 	destroy_inodecache();
6785 	ext4_exit_mballoc();
6786 	ext4_exit_sysfs();
6787 	ext4_exit_system_zone();
6788 	ext4_exit_pageio();
6789 	ext4_exit_post_read_processing();
6790 	ext4_exit_es();
6791 	ext4_exit_pending();
6792 }
6793 
6794 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6795 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6796 MODULE_LICENSE("GPL");
6797 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
6798 MODULE_SOFTDEP("pre: crc32c");
6799 module_init(ext4_init_fs)
6800 module_exit(ext4_exit_fs)
6801