1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_lock
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_lock
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146 bh_end_io_t *end_io)
147 {
148 /*
149 * buffer's verified bit is no longer valid after reading from
150 * disk again due to write out error, clear it to make sure we
151 * recheck the buffer contents.
152 */
153 clear_buffer_verified(bh);
154
155 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156 get_bh(bh);
157 submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161 bh_end_io_t *end_io)
162 {
163 BUG_ON(!buffer_locked(bh));
164
165 if (ext4_buffer_uptodate(bh)) {
166 unlock_buffer(bh);
167 return;
168 }
169 __ext4_read_bh(bh, op_flags, end_io);
170 }
171
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174 BUG_ON(!buffer_locked(bh));
175
176 if (ext4_buffer_uptodate(bh)) {
177 unlock_buffer(bh);
178 return 0;
179 }
180
181 __ext4_read_bh(bh, op_flags, end_io);
182
183 wait_on_buffer(bh);
184 if (buffer_uptodate(bh))
185 return 0;
186 return -EIO;
187 }
188
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191 lock_buffer(bh);
192 if (!wait) {
193 ext4_read_bh_nowait(bh, op_flags, NULL);
194 return 0;
195 }
196 return ext4_read_bh(bh, op_flags, NULL);
197 }
198
199 /*
200 * This works like __bread_gfp() except it uses ERR_PTR for error
201 * returns. Currently with sb_bread it's impossible to distinguish
202 * between ENOMEM and EIO situations (since both result in a NULL
203 * return.
204 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)205 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
206 sector_t block, int op_flags,
207 gfp_t gfp)
208 {
209 struct buffer_head *bh;
210 int ret;
211
212 bh = sb_getblk_gfp(sb, block, gfp);
213 if (bh == NULL)
214 return ERR_PTR(-ENOMEM);
215 if (ext4_buffer_uptodate(bh))
216 return bh;
217
218 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
219 if (ret) {
220 put_bh(bh);
221 return ERR_PTR(ret);
222 }
223 return bh;
224 }
225
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)226 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
227 int op_flags)
228 {
229 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
230 }
231
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)232 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
233 sector_t block)
234 {
235 return __ext4_sb_bread_gfp(sb, block, 0, 0);
236 }
237
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)238 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
239 {
240 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
241
242 if (likely(bh)) {
243 if (trylock_buffer(bh))
244 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
245 brelse(bh);
246 }
247 }
248
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)249 static int ext4_verify_csum_type(struct super_block *sb,
250 struct ext4_super_block *es)
251 {
252 if (!ext4_has_feature_metadata_csum(sb))
253 return 1;
254
255 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
256 }
257
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)258 static __le32 ext4_superblock_csum(struct super_block *sb,
259 struct ext4_super_block *es)
260 {
261 struct ext4_sb_info *sbi = EXT4_SB(sb);
262 int offset = offsetof(struct ext4_super_block, s_checksum);
263 __u32 csum;
264
265 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
266
267 return cpu_to_le32(csum);
268 }
269
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)270 static int ext4_superblock_csum_verify(struct super_block *sb,
271 struct ext4_super_block *es)
272 {
273 if (!ext4_has_metadata_csum(sb))
274 return 1;
275
276 return es->s_checksum == ext4_superblock_csum(sb, es);
277 }
278
ext4_superblock_csum_set(struct super_block * sb)279 void ext4_superblock_csum_set(struct super_block *sb)
280 {
281 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
282
283 if (!ext4_has_metadata_csum(sb))
284 return;
285
286 es->s_checksum = ext4_superblock_csum(sb, es);
287 }
288
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)289 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
290 struct ext4_group_desc *bg)
291 {
292 return le32_to_cpu(bg->bg_block_bitmap_lo) |
293 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
294 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
295 }
296
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)297 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
298 struct ext4_group_desc *bg)
299 {
300 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
301 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
302 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
303 }
304
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)305 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
306 struct ext4_group_desc *bg)
307 {
308 return le32_to_cpu(bg->bg_inode_table_lo) |
309 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
310 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
311 }
312
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)313 __u32 ext4_free_group_clusters(struct super_block *sb,
314 struct ext4_group_desc *bg)
315 {
316 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
317 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
318 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
319 }
320
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)321 __u32 ext4_free_inodes_count(struct super_block *sb,
322 struct ext4_group_desc *bg)
323 {
324 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
325 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
327 }
328
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)329 __u32 ext4_used_dirs_count(struct super_block *sb,
330 struct ext4_group_desc *bg)
331 {
332 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
333 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
335 }
336
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)337 __u32 ext4_itable_unused_count(struct super_block *sb,
338 struct ext4_group_desc *bg)
339 {
340 return le16_to_cpu(bg->bg_itable_unused_lo) |
341 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
343 }
344
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)345 void ext4_block_bitmap_set(struct super_block *sb,
346 struct ext4_group_desc *bg, ext4_fsblk_t blk)
347 {
348 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
349 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
350 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
351 }
352
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)353 void ext4_inode_bitmap_set(struct super_block *sb,
354 struct ext4_group_desc *bg, ext4_fsblk_t blk)
355 {
356 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
357 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
358 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
359 }
360
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)361 void ext4_inode_table_set(struct super_block *sb,
362 struct ext4_group_desc *bg, ext4_fsblk_t blk)
363 {
364 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
365 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
366 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
367 }
368
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)369 void ext4_free_group_clusters_set(struct super_block *sb,
370 struct ext4_group_desc *bg, __u32 count)
371 {
372 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
373 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
374 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
375 }
376
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)377 void ext4_free_inodes_set(struct super_block *sb,
378 struct ext4_group_desc *bg, __u32 count)
379 {
380 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
381 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
383 }
384
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)385 void ext4_used_dirs_set(struct super_block *sb,
386 struct ext4_group_desc *bg, __u32 count)
387 {
388 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
389 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
391 }
392
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)393 void ext4_itable_unused_set(struct super_block *sb,
394 struct ext4_group_desc *bg, __u32 count)
395 {
396 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
397 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
399 }
400
__ext4_update_tstamp(__le32 * lo,__u8 * hi)401 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
402 {
403 time64_t now = ktime_get_real_seconds();
404
405 now = clamp_val(now, 0, (1ull << 40) - 1);
406
407 *lo = cpu_to_le32(lower_32_bits(now));
408 *hi = upper_32_bits(now);
409 }
410
__ext4_get_tstamp(__le32 * lo,__u8 * hi)411 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
412 {
413 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
414 }
415 #define ext4_update_tstamp(es, tstamp) \
416 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
417 #define ext4_get_tstamp(es, tstamp) \
418 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419
420 /*
421 * The del_gendisk() function uninitializes the disk-specific data
422 * structures, including the bdi structure, without telling anyone
423 * else. Once this happens, any attempt to call mark_buffer_dirty()
424 * (for example, by ext4_commit_super), will cause a kernel OOPS.
425 * This is a kludge to prevent these oops until we can put in a proper
426 * hook in del_gendisk() to inform the VFS and file system layers.
427 */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 struct inode *bd_inode = sb->s_bdev->bd_inode;
431 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432
433 return bdi->dev == NULL;
434 }
435
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 struct super_block *sb = journal->j_private;
439 struct ext4_sb_info *sbi = EXT4_SB(sb);
440 int error = is_journal_aborted(journal);
441 struct ext4_journal_cb_entry *jce;
442
443 BUG_ON(txn->t_state == T_FINISHED);
444
445 ext4_process_freed_data(sb, txn->t_tid);
446
447 spin_lock(&sbi->s_md_lock);
448 while (!list_empty(&txn->t_private_list)) {
449 jce = list_entry(txn->t_private_list.next,
450 struct ext4_journal_cb_entry, jce_list);
451 list_del_init(&jce->jce_list);
452 spin_unlock(&sbi->s_md_lock);
453 jce->jce_func(sb, jce, error);
454 spin_lock(&sbi->s_md_lock);
455 }
456 spin_unlock(&sbi->s_md_lock);
457 }
458
459 /*
460 * This writepage callback for write_cache_pages()
461 * takes care of a few cases after page cleaning.
462 *
463 * write_cache_pages() already checks for dirty pages
464 * and calls clear_page_dirty_for_io(), which we want,
465 * to write protect the pages.
466 *
467 * However, we may have to redirty a page (see below.)
468 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 struct writeback_control *wbc,
471 void *data)
472 {
473 transaction_t *transaction = (transaction_t *) data;
474 struct buffer_head *bh, *head;
475 struct journal_head *jh;
476
477 bh = head = page_buffers(page);
478 do {
479 /*
480 * We have to redirty a page in these cases:
481 * 1) If buffer is dirty, it means the page was dirty because it
482 * contains a buffer that needs checkpointing. So the dirty bit
483 * needs to be preserved so that checkpointing writes the buffer
484 * properly.
485 * 2) If buffer is not part of the committing transaction
486 * (we may have just accidentally come across this buffer because
487 * inode range tracking is not exact) or if the currently running
488 * transaction already contains this buffer as well, dirty bit
489 * needs to be preserved so that the buffer gets writeprotected
490 * properly on running transaction's commit.
491 */
492 jh = bh2jh(bh);
493 if (buffer_dirty(bh) ||
494 (jh && (jh->b_transaction != transaction ||
495 jh->b_next_transaction))) {
496 redirty_page_for_writepage(wbc, page);
497 goto out;
498 }
499 } while ((bh = bh->b_this_page) != head);
500
501 out:
502 return AOP_WRITEPAGE_ACTIVATE;
503 }
504
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 struct writeback_control wbc = {
509 .sync_mode = WB_SYNC_ALL,
510 .nr_to_write = LONG_MAX,
511 .range_start = jinode->i_dirty_start,
512 .range_end = jinode->i_dirty_end,
513 };
514
515 return write_cache_pages(mapping, &wbc,
516 ext4_journalled_writepage_callback,
517 jinode->i_transaction);
518 }
519
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 int ret;
523
524 if (ext4_should_journal_data(jinode->i_vfs_inode))
525 ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 else
527 ret = jbd2_journal_submit_inode_data_buffers(jinode);
528
529 return ret;
530 }
531
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 int ret = 0;
535
536 if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 ret = jbd2_journal_finish_inode_data_buffers(jinode);
538
539 return ret;
540 }
541
system_going_down(void)542 static bool system_going_down(void)
543 {
544 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 || system_state == SYSTEM_RESTART;
546 }
547
548 struct ext4_err_translation {
549 int code;
550 int errno;
551 };
552
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554
555 static struct ext4_err_translation err_translation[] = {
556 EXT4_ERR_TRANSLATE(EIO),
557 EXT4_ERR_TRANSLATE(ENOMEM),
558 EXT4_ERR_TRANSLATE(EFSBADCRC),
559 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 EXT4_ERR_TRANSLATE(ENOSPC),
561 EXT4_ERR_TRANSLATE(ENOKEY),
562 EXT4_ERR_TRANSLATE(EROFS),
563 EXT4_ERR_TRANSLATE(EFBIG),
564 EXT4_ERR_TRANSLATE(EEXIST),
565 EXT4_ERR_TRANSLATE(ERANGE),
566 EXT4_ERR_TRANSLATE(EOVERFLOW),
567 EXT4_ERR_TRANSLATE(EBUSY),
568 EXT4_ERR_TRANSLATE(ENOTDIR),
569 EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 EXT4_ERR_TRANSLATE(EFAULT),
572 };
573
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 int i;
577
578 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 if (err_translation[i].errno == errno)
580 return err_translation[i].code;
581 return EXT4_ERR_UNKNOWN;
582 }
583
__save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void __save_error_info(struct super_block *sb, int error,
585 __u32 ino, __u64 block,
586 const char *func, unsigned int line)
587 {
588 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
589
590 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
591 if (bdev_read_only(sb->s_bdev))
592 return;
593 /* We default to EFSCORRUPTED error... */
594 if (error == 0)
595 error = EFSCORRUPTED;
596 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
597 ext4_update_tstamp(es, s_last_error_time);
598 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
599 es->s_last_error_line = cpu_to_le32(line);
600 es->s_last_error_ino = cpu_to_le32(ino);
601 es->s_last_error_block = cpu_to_le64(block);
602 es->s_last_error_errcode = ext4_errno_to_code(error);
603 if (!es->s_first_error_time) {
604 es->s_first_error_time = es->s_last_error_time;
605 es->s_first_error_time_hi = es->s_last_error_time_hi;
606 strncpy(es->s_first_error_func, func,
607 sizeof(es->s_first_error_func));
608 es->s_first_error_line = cpu_to_le32(line);
609 es->s_first_error_ino = es->s_last_error_ino;
610 es->s_first_error_block = es->s_last_error_block;
611 es->s_first_error_errcode = es->s_last_error_errcode;
612 }
613 /*
614 * Start the daily error reporting function if it hasn't been
615 * started already
616 */
617 if (!es->s_error_count)
618 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
619 le32_add_cpu(&es->s_error_count, 1);
620 }
621
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)622 static void save_error_info(struct super_block *sb, int error,
623 __u32 ino, __u64 block,
624 const char *func, unsigned int line)
625 {
626 __save_error_info(sb, error, ino, block, func, line);
627 if (!bdev_read_only(sb->s_bdev))
628 ext4_commit_super(sb, 1);
629 }
630
631 /* Deal with the reporting of failure conditions on a filesystem such as
632 * inconsistencies detected or read IO failures.
633 *
634 * On ext2, we can store the error state of the filesystem in the
635 * superblock. That is not possible on ext4, because we may have other
636 * write ordering constraints on the superblock which prevent us from
637 * writing it out straight away; and given that the journal is about to
638 * be aborted, we can't rely on the current, or future, transactions to
639 * write out the superblock safely.
640 *
641 * We'll just use the jbd2_journal_abort() error code to record an error in
642 * the journal instead. On recovery, the journal will complain about
643 * that error until we've noted it down and cleared it.
644 */
645
ext4_handle_error(struct super_block * sb)646 static void ext4_handle_error(struct super_block *sb)
647 {
648 journal_t *journal = EXT4_SB(sb)->s_journal;
649
650 if (test_opt(sb, WARN_ON_ERROR))
651 WARN_ON_ONCE(1);
652
653 if (sb_rdonly(sb) || test_opt(sb, ERRORS_CONT))
654 return;
655
656 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
657 if (journal)
658 jbd2_journal_abort(journal, -EIO);
659 /*
660 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
661 * could panic during 'reboot -f' as the underlying device got already
662 * disabled.
663 */
664 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
665 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
666 /*
667 * Make sure updated value of ->s_mount_flags will be visible
668 * before ->s_flags update
669 */
670 smp_wmb();
671 sb->s_flags |= SB_RDONLY;
672 } else if (test_opt(sb, ERRORS_PANIC)) {
673 panic("EXT4-fs (device %s): panic forced after error\n",
674 sb->s_id);
675 }
676 }
677
678 #define ext4_error_ratelimit(sb) \
679 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
680 "EXT4-fs error")
681
__ext4_error(struct super_block * sb,const char * function,unsigned int line,int error,__u64 block,const char * fmt,...)682 void __ext4_error(struct super_block *sb, const char *function,
683 unsigned int line, int error, __u64 block,
684 const char *fmt, ...)
685 {
686 struct va_format vaf;
687 va_list args;
688
689 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
690 return;
691
692 trace_ext4_error(sb, function, line);
693 if (ext4_error_ratelimit(sb)) {
694 va_start(args, fmt);
695 vaf.fmt = fmt;
696 vaf.va = &args;
697 printk(KERN_CRIT
698 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
699 sb->s_id, function, line, current->comm, &vaf);
700 va_end(args);
701 }
702 save_error_info(sb, error, 0, block, function, line);
703 ext4_handle_error(sb);
704 }
705
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)706 void __ext4_error_inode(struct inode *inode, const char *function,
707 unsigned int line, ext4_fsblk_t block, int error,
708 const char *fmt, ...)
709 {
710 va_list args;
711 struct va_format vaf;
712
713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
714 return;
715
716 trace_ext4_error(inode->i_sb, function, line);
717 if (ext4_error_ratelimit(inode->i_sb)) {
718 va_start(args, fmt);
719 vaf.fmt = fmt;
720 vaf.va = &args;
721 if (block)
722 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
723 "inode #%lu: block %llu: comm %s: %pV\n",
724 inode->i_sb->s_id, function, line, inode->i_ino,
725 block, current->comm, &vaf);
726 else
727 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
728 "inode #%lu: comm %s: %pV\n",
729 inode->i_sb->s_id, function, line, inode->i_ino,
730 current->comm, &vaf);
731 va_end(args);
732 }
733 save_error_info(inode->i_sb, error, inode->i_ino, block,
734 function, line);
735 ext4_handle_error(inode->i_sb);
736 }
737
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)738 void __ext4_error_file(struct file *file, const char *function,
739 unsigned int line, ext4_fsblk_t block,
740 const char *fmt, ...)
741 {
742 va_list args;
743 struct va_format vaf;
744 struct inode *inode = file_inode(file);
745 char pathname[80], *path;
746
747 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
748 return;
749
750 trace_ext4_error(inode->i_sb, function, line);
751 if (ext4_error_ratelimit(inode->i_sb)) {
752 path = file_path(file, pathname, sizeof(pathname));
753 if (IS_ERR(path))
754 path = "(unknown)";
755 va_start(args, fmt);
756 vaf.fmt = fmt;
757 vaf.va = &args;
758 if (block)
759 printk(KERN_CRIT
760 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
761 "block %llu: comm %s: path %s: %pV\n",
762 inode->i_sb->s_id, function, line, inode->i_ino,
763 block, current->comm, path, &vaf);
764 else
765 printk(KERN_CRIT
766 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
767 "comm %s: path %s: %pV\n",
768 inode->i_sb->s_id, function, line, inode->i_ino,
769 current->comm, path, &vaf);
770 va_end(args);
771 }
772 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
773 function, line);
774 ext4_handle_error(inode->i_sb);
775 }
776
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])777 const char *ext4_decode_error(struct super_block *sb, int errno,
778 char nbuf[16])
779 {
780 char *errstr = NULL;
781
782 switch (errno) {
783 case -EFSCORRUPTED:
784 errstr = "Corrupt filesystem";
785 break;
786 case -EFSBADCRC:
787 errstr = "Filesystem failed CRC";
788 break;
789 case -EIO:
790 errstr = "IO failure";
791 break;
792 case -ENOMEM:
793 errstr = "Out of memory";
794 break;
795 case -EROFS:
796 if (!sb || (EXT4_SB(sb)->s_journal &&
797 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
798 errstr = "Journal has aborted";
799 else
800 errstr = "Readonly filesystem";
801 break;
802 default:
803 /* If the caller passed in an extra buffer for unknown
804 * errors, textualise them now. Else we just return
805 * NULL. */
806 if (nbuf) {
807 /* Check for truncated error codes... */
808 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
809 errstr = nbuf;
810 }
811 break;
812 }
813
814 return errstr;
815 }
816
817 /* __ext4_std_error decodes expected errors from journaling functions
818 * automatically and invokes the appropriate error response. */
819
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)820 void __ext4_std_error(struct super_block *sb, const char *function,
821 unsigned int line, int errno)
822 {
823 char nbuf[16];
824 const char *errstr;
825
826 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
827 return;
828
829 /* Special case: if the error is EROFS, and we're not already
830 * inside a transaction, then there's really no point in logging
831 * an error. */
832 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
833 return;
834
835 if (ext4_error_ratelimit(sb)) {
836 errstr = ext4_decode_error(sb, errno, nbuf);
837 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
838 sb->s_id, function, line, errstr);
839 }
840
841 save_error_info(sb, -errno, 0, 0, function, line);
842 ext4_handle_error(sb);
843 }
844
845 /*
846 * ext4_abort is a much stronger failure handler than ext4_error. The
847 * abort function may be used to deal with unrecoverable failures such
848 * as journal IO errors or ENOMEM at a critical moment in log management.
849 *
850 * We unconditionally force the filesystem into an ABORT|READONLY state,
851 * unless the error response on the fs has been set to panic in which
852 * case we take the easy way out and panic immediately.
853 */
854
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,int error,const char * fmt,...)855 void __ext4_abort(struct super_block *sb, const char *function,
856 unsigned int line, int error, const char *fmt, ...)
857 {
858 struct va_format vaf;
859 va_list args;
860
861 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
862 return;
863
864 save_error_info(sb, error, 0, 0, function, line);
865 va_start(args, fmt);
866 vaf.fmt = fmt;
867 vaf.va = &args;
868 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
869 sb->s_id, function, line, &vaf);
870 va_end(args);
871
872 if (sb_rdonly(sb) == 0) {
873 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
874 if (EXT4_SB(sb)->s_journal)
875 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
876
877 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
878 /*
879 * Make sure updated value of ->s_mount_flags will be visible
880 * before ->s_flags update
881 */
882 smp_wmb();
883 sb->s_flags |= SB_RDONLY;
884 }
885 if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
886 panic("EXT4-fs panic from previous error\n");
887 }
888
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)889 void __ext4_msg(struct super_block *sb,
890 const char *prefix, const char *fmt, ...)
891 {
892 struct va_format vaf;
893 va_list args;
894
895 atomic_inc(&EXT4_SB(sb)->s_msg_count);
896 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
897 return;
898
899 va_start(args, fmt);
900 vaf.fmt = fmt;
901 vaf.va = &args;
902 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
903 va_end(args);
904 }
905
ext4_warning_ratelimit(struct super_block * sb)906 static int ext4_warning_ratelimit(struct super_block *sb)
907 {
908 atomic_inc(&EXT4_SB(sb)->s_warning_count);
909 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
910 "EXT4-fs warning");
911 }
912
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)913 void __ext4_warning(struct super_block *sb, const char *function,
914 unsigned int line, const char *fmt, ...)
915 {
916 struct va_format vaf;
917 va_list args;
918
919 if (!ext4_warning_ratelimit(sb))
920 return;
921
922 va_start(args, fmt);
923 vaf.fmt = fmt;
924 vaf.va = &args;
925 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
926 sb->s_id, function, line, &vaf);
927 va_end(args);
928 }
929
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)930 void __ext4_warning_inode(const struct inode *inode, const char *function,
931 unsigned int line, const char *fmt, ...)
932 {
933 struct va_format vaf;
934 va_list args;
935
936 if (!ext4_warning_ratelimit(inode->i_sb))
937 return;
938
939 va_start(args, fmt);
940 vaf.fmt = fmt;
941 vaf.va = &args;
942 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
943 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
944 function, line, inode->i_ino, current->comm, &vaf);
945 va_end(args);
946 }
947
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)948 void __ext4_grp_locked_error(const char *function, unsigned int line,
949 struct super_block *sb, ext4_group_t grp,
950 unsigned long ino, ext4_fsblk_t block,
951 const char *fmt, ...)
952 __releases(bitlock)
953 __acquires(bitlock)
954 {
955 struct va_format vaf;
956 va_list args;
957
958 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
959 return;
960
961 trace_ext4_error(sb, function, line);
962 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
963
964 if (ext4_error_ratelimit(sb)) {
965 va_start(args, fmt);
966 vaf.fmt = fmt;
967 vaf.va = &args;
968 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
969 sb->s_id, function, line, grp);
970 if (ino)
971 printk(KERN_CONT "inode %lu: ", ino);
972 if (block)
973 printk(KERN_CONT "block %llu:",
974 (unsigned long long) block);
975 printk(KERN_CONT "%pV\n", &vaf);
976 va_end(args);
977 }
978
979 if (test_opt(sb, WARN_ON_ERROR))
980 WARN_ON_ONCE(1);
981
982 if (test_opt(sb, ERRORS_CONT)) {
983 ext4_commit_super(sb, 0);
984 return;
985 }
986
987 ext4_unlock_group(sb, grp);
988 ext4_commit_super(sb, 1);
989 ext4_handle_error(sb);
990 /*
991 * We only get here in the ERRORS_RO case; relocking the group
992 * may be dangerous, but nothing bad will happen since the
993 * filesystem will have already been marked read/only and the
994 * journal has been aborted. We return 1 as a hint to callers
995 * who might what to use the return value from
996 * ext4_grp_locked_error() to distinguish between the
997 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
998 * aggressively from the ext4 function in question, with a
999 * more appropriate error code.
1000 */
1001 ext4_lock_group(sb, grp);
1002 return;
1003 }
1004
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1005 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1006 ext4_group_t group,
1007 unsigned int flags)
1008 {
1009 struct ext4_sb_info *sbi = EXT4_SB(sb);
1010 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1011 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1012 int ret;
1013
1014 if (!grp || !gdp)
1015 return;
1016 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1017 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1018 &grp->bb_state);
1019 if (!ret)
1020 percpu_counter_sub(&sbi->s_freeclusters_counter,
1021 grp->bb_free);
1022 }
1023
1024 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1025 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1026 &grp->bb_state);
1027 if (!ret && gdp) {
1028 int count;
1029
1030 count = ext4_free_inodes_count(sb, gdp);
1031 percpu_counter_sub(&sbi->s_freeinodes_counter,
1032 count);
1033 }
1034 }
1035 }
1036
ext4_update_dynamic_rev(struct super_block * sb)1037 void ext4_update_dynamic_rev(struct super_block *sb)
1038 {
1039 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1040
1041 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1042 return;
1043
1044 ext4_warning(sb,
1045 "updating to rev %d because of new feature flag, "
1046 "running e2fsck is recommended",
1047 EXT4_DYNAMIC_REV);
1048
1049 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1050 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1051 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1052 /* leave es->s_feature_*compat flags alone */
1053 /* es->s_uuid will be set by e2fsck if empty */
1054
1055 /*
1056 * The rest of the superblock fields should be zero, and if not it
1057 * means they are likely already in use, so leave them alone. We
1058 * can leave it up to e2fsck to clean up any inconsistencies there.
1059 */
1060 }
1061
1062 /*
1063 * Open the external journal device
1064 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1065 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1066 {
1067 struct block_device *bdev;
1068
1069 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1070 if (IS_ERR(bdev))
1071 goto fail;
1072 return bdev;
1073
1074 fail:
1075 ext4_msg(sb, KERN_ERR,
1076 "failed to open journal device unknown-block(%u,%u) %ld",
1077 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1078 return NULL;
1079 }
1080
1081 /*
1082 * Release the journal device
1083 */
ext4_blkdev_put(struct block_device * bdev)1084 static void ext4_blkdev_put(struct block_device *bdev)
1085 {
1086 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1087 }
1088
ext4_blkdev_remove(struct ext4_sb_info * sbi)1089 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1090 {
1091 struct block_device *bdev;
1092 bdev = sbi->s_journal_bdev;
1093 if (bdev) {
1094 /*
1095 * Invalidate the journal device's buffers. We don't want them
1096 * floating about in memory - the physical journal device may
1097 * hotswapped, and it breaks the `ro-after' testing code.
1098 */
1099 invalidate_bdev(bdev);
1100 ext4_blkdev_put(bdev);
1101 sbi->s_journal_bdev = NULL;
1102 }
1103 }
1104
orphan_list_entry(struct list_head * l)1105 static inline struct inode *orphan_list_entry(struct list_head *l)
1106 {
1107 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1108 }
1109
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1110 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1111 {
1112 struct list_head *l;
1113
1114 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1115 le32_to_cpu(sbi->s_es->s_last_orphan));
1116
1117 printk(KERN_ERR "sb_info orphan list:\n");
1118 list_for_each(l, &sbi->s_orphan) {
1119 struct inode *inode = orphan_list_entry(l);
1120 printk(KERN_ERR " "
1121 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1122 inode->i_sb->s_id, inode->i_ino, inode,
1123 inode->i_mode, inode->i_nlink,
1124 NEXT_ORPHAN(inode));
1125 }
1126 }
1127
1128 #ifdef CONFIG_QUOTA
1129 static int ext4_quota_off(struct super_block *sb, int type);
1130
ext4_quota_off_umount(struct super_block * sb)1131 static inline void ext4_quota_off_umount(struct super_block *sb)
1132 {
1133 int type;
1134
1135 /* Use our quota_off function to clear inode flags etc. */
1136 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1137 ext4_quota_off(sb, type);
1138 }
1139
1140 /*
1141 * This is a helper function which is used in the mount/remount
1142 * codepaths (which holds s_umount) to fetch the quota file name.
1143 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1144 static inline char *get_qf_name(struct super_block *sb,
1145 struct ext4_sb_info *sbi,
1146 int type)
1147 {
1148 return rcu_dereference_protected(sbi->s_qf_names[type],
1149 lockdep_is_held(&sb->s_umount));
1150 }
1151 #else
ext4_quota_off_umount(struct super_block * sb)1152 static inline void ext4_quota_off_umount(struct super_block *sb)
1153 {
1154 }
1155 #endif
1156
ext4_put_super(struct super_block * sb)1157 static void ext4_put_super(struct super_block *sb)
1158 {
1159 struct ext4_sb_info *sbi = EXT4_SB(sb);
1160 struct ext4_super_block *es = sbi->s_es;
1161 struct buffer_head **group_desc;
1162 struct flex_groups **flex_groups;
1163 int aborted = 0;
1164 int i, err;
1165
1166 /*
1167 * Unregister sysfs before destroying jbd2 journal.
1168 * Since we could still access attr_journal_task attribute via sysfs
1169 * path which could have sbi->s_journal->j_task as NULL
1170 * Unregister sysfs before flush sbi->s_error_work.
1171 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1172 * read metadata verify failed then will queue error work.
1173 * flush_stashed_error_work will call start_this_handle may trigger
1174 * BUG_ON.
1175 */
1176 ext4_unregister_sysfs(sb);
1177
1178 ext4_unregister_li_request(sb);
1179 ext4_quota_off_umount(sb);
1180
1181 destroy_workqueue(sbi->rsv_conversion_wq);
1182
1183 if (sbi->s_journal) {
1184 aborted = is_journal_aborted(sbi->s_journal);
1185 err = jbd2_journal_destroy(sbi->s_journal);
1186 sbi->s_journal = NULL;
1187 if ((err < 0) && !aborted) {
1188 ext4_abort(sb, -err, "Couldn't clean up the journal");
1189 }
1190 }
1191
1192 ext4_es_unregister_shrinker(sbi);
1193 del_timer_sync(&sbi->s_err_report);
1194 ext4_release_system_zone(sb);
1195 ext4_mb_release(sb);
1196 ext4_ext_release(sb);
1197
1198 if (!sb_rdonly(sb) && !aborted) {
1199 ext4_clear_feature_journal_needs_recovery(sb);
1200 es->s_state = cpu_to_le16(sbi->s_mount_state);
1201 }
1202 if (!sb_rdonly(sb))
1203 ext4_commit_super(sb, 1);
1204
1205 rcu_read_lock();
1206 group_desc = rcu_dereference(sbi->s_group_desc);
1207 for (i = 0; i < sbi->s_gdb_count; i++)
1208 brelse(group_desc[i]);
1209 kvfree(group_desc);
1210 flex_groups = rcu_dereference(sbi->s_flex_groups);
1211 if (flex_groups) {
1212 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1213 kvfree(flex_groups[i]);
1214 kvfree(flex_groups);
1215 }
1216 rcu_read_unlock();
1217 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1218 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1219 percpu_counter_destroy(&sbi->s_dirs_counter);
1220 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1221 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1222 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1223 #ifdef CONFIG_QUOTA
1224 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1225 kfree(get_qf_name(sb, sbi, i));
1226 #endif
1227
1228 /* Debugging code just in case the in-memory inode orphan list
1229 * isn't empty. The on-disk one can be non-empty if we've
1230 * detected an error and taken the fs readonly, but the
1231 * in-memory list had better be clean by this point. */
1232 if (!list_empty(&sbi->s_orphan))
1233 dump_orphan_list(sb, sbi);
1234 J_ASSERT(list_empty(&sbi->s_orphan));
1235
1236 sync_blockdev(sb->s_bdev);
1237 invalidate_bdev(sb->s_bdev);
1238 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1239 sync_blockdev(sbi->s_journal_bdev);
1240 ext4_blkdev_remove(sbi);
1241 }
1242
1243 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1244 sbi->s_ea_inode_cache = NULL;
1245
1246 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1247 sbi->s_ea_block_cache = NULL;
1248
1249 ext4_stop_mmpd(sbi);
1250
1251 brelse(sbi->s_sbh);
1252 sb->s_fs_info = NULL;
1253 /*
1254 * Now that we are completely done shutting down the
1255 * superblock, we need to actually destroy the kobject.
1256 */
1257 kobject_put(&sbi->s_kobj);
1258 wait_for_completion(&sbi->s_kobj_unregister);
1259 if (sbi->s_chksum_driver)
1260 crypto_free_shash(sbi->s_chksum_driver);
1261 kfree(sbi->s_blockgroup_lock);
1262 fs_put_dax(sbi->s_daxdev);
1263 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1264 #ifdef CONFIG_UNICODE
1265 utf8_unload(sb->s_encoding);
1266 #endif
1267 kfree(sbi);
1268 }
1269
1270 static struct kmem_cache *ext4_inode_cachep;
1271
1272 /*
1273 * Called inside transaction, so use GFP_NOFS
1274 */
ext4_alloc_inode(struct super_block * sb)1275 static struct inode *ext4_alloc_inode(struct super_block *sb)
1276 {
1277 struct ext4_inode_info *ei;
1278
1279 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1280 if (!ei)
1281 return NULL;
1282
1283 inode_set_iversion(&ei->vfs_inode, 1);
1284 ei->i_flags = 0;
1285 spin_lock_init(&ei->i_raw_lock);
1286 INIT_LIST_HEAD(&ei->i_prealloc_list);
1287 atomic_set(&ei->i_prealloc_active, 0);
1288 spin_lock_init(&ei->i_prealloc_lock);
1289 ext4_es_init_tree(&ei->i_es_tree);
1290 rwlock_init(&ei->i_es_lock);
1291 INIT_LIST_HEAD(&ei->i_es_list);
1292 ei->i_es_all_nr = 0;
1293 ei->i_es_shk_nr = 0;
1294 ei->i_es_shrink_lblk = 0;
1295 ei->i_reserved_data_blocks = 0;
1296 spin_lock_init(&(ei->i_block_reservation_lock));
1297 ext4_init_pending_tree(&ei->i_pending_tree);
1298 #ifdef CONFIG_QUOTA
1299 ei->i_reserved_quota = 0;
1300 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1301 #endif
1302 ei->jinode = NULL;
1303 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1304 spin_lock_init(&ei->i_completed_io_lock);
1305 ei->i_sync_tid = 0;
1306 ei->i_datasync_tid = 0;
1307 atomic_set(&ei->i_unwritten, 0);
1308 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1309 ext4_fc_init_inode(&ei->vfs_inode);
1310 mutex_init(&ei->i_fc_lock);
1311 return &ei->vfs_inode;
1312 }
1313
ext4_drop_inode(struct inode * inode)1314 static int ext4_drop_inode(struct inode *inode)
1315 {
1316 int drop = generic_drop_inode(inode);
1317
1318 if (!drop)
1319 drop = fscrypt_drop_inode(inode);
1320
1321 trace_ext4_drop_inode(inode, drop);
1322 return drop;
1323 }
1324
ext4_free_in_core_inode(struct inode * inode)1325 static void ext4_free_in_core_inode(struct inode *inode)
1326 {
1327 fscrypt_free_inode(inode);
1328 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1329 pr_warn("%s: inode %ld still in fc list",
1330 __func__, inode->i_ino);
1331 }
1332 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1333 }
1334
ext4_destroy_inode(struct inode * inode)1335 static void ext4_destroy_inode(struct inode *inode)
1336 {
1337 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1338 ext4_msg(inode->i_sb, KERN_ERR,
1339 "Inode %lu (%p): orphan list check failed!",
1340 inode->i_ino, EXT4_I(inode));
1341 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1342 EXT4_I(inode), sizeof(struct ext4_inode_info),
1343 true);
1344 dump_stack();
1345 }
1346
1347 if (EXT4_I(inode)->i_reserved_data_blocks)
1348 ext4_msg(inode->i_sb, KERN_ERR,
1349 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1350 inode->i_ino, EXT4_I(inode),
1351 EXT4_I(inode)->i_reserved_data_blocks);
1352 }
1353
init_once(void * foo)1354 static void init_once(void *foo)
1355 {
1356 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1357
1358 INIT_LIST_HEAD(&ei->i_orphan);
1359 init_rwsem(&ei->xattr_sem);
1360 init_rwsem(&ei->i_data_sem);
1361 init_rwsem(&ei->i_mmap_sem);
1362 inode_init_once(&ei->vfs_inode);
1363 ext4_fc_init_inode(&ei->vfs_inode);
1364 }
1365
init_inodecache(void)1366 static int __init init_inodecache(void)
1367 {
1368 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1369 sizeof(struct ext4_inode_info), 0,
1370 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1371 SLAB_ACCOUNT),
1372 offsetof(struct ext4_inode_info, i_data),
1373 sizeof_field(struct ext4_inode_info, i_data),
1374 init_once);
1375 if (ext4_inode_cachep == NULL)
1376 return -ENOMEM;
1377 return 0;
1378 }
1379
destroy_inodecache(void)1380 static void destroy_inodecache(void)
1381 {
1382 /*
1383 * Make sure all delayed rcu free inodes are flushed before we
1384 * destroy cache.
1385 */
1386 rcu_barrier();
1387 kmem_cache_destroy(ext4_inode_cachep);
1388 }
1389
ext4_clear_inode(struct inode * inode)1390 void ext4_clear_inode(struct inode *inode)
1391 {
1392 ext4_fc_del(inode);
1393 invalidate_inode_buffers(inode);
1394 clear_inode(inode);
1395 ext4_discard_preallocations(inode, 0);
1396 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1397 dquot_drop(inode);
1398 if (EXT4_I(inode)->jinode) {
1399 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1400 EXT4_I(inode)->jinode);
1401 jbd2_free_inode(EXT4_I(inode)->jinode);
1402 EXT4_I(inode)->jinode = NULL;
1403 }
1404 fscrypt_put_encryption_info(inode);
1405 fsverity_cleanup_inode(inode);
1406 }
1407
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1409 u64 ino, u32 generation)
1410 {
1411 struct inode *inode;
1412
1413 /*
1414 * Currently we don't know the generation for parent directory, so
1415 * a generation of 0 means "accept any"
1416 */
1417 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1418 if (IS_ERR(inode))
1419 return ERR_CAST(inode);
1420 if (generation && inode->i_generation != generation) {
1421 iput(inode);
1422 return ERR_PTR(-ESTALE);
1423 }
1424
1425 return inode;
1426 }
1427
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1429 int fh_len, int fh_type)
1430 {
1431 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1432 ext4_nfs_get_inode);
1433 }
1434
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1436 int fh_len, int fh_type)
1437 {
1438 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1439 ext4_nfs_get_inode);
1440 }
1441
ext4_nfs_commit_metadata(struct inode * inode)1442 static int ext4_nfs_commit_metadata(struct inode *inode)
1443 {
1444 struct writeback_control wbc = {
1445 .sync_mode = WB_SYNC_ALL
1446 };
1447
1448 trace_ext4_nfs_commit_metadata(inode);
1449 return ext4_write_inode(inode, &wbc);
1450 }
1451
1452 /*
1453 * Try to release metadata pages (indirect blocks, directories) which are
1454 * mapped via the block device. Since these pages could have journal heads
1455 * which would prevent try_to_free_buffers() from freeing them, we must use
1456 * jbd2 layer's try_to_free_buffers() function to release them.
1457 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1458 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1459 gfp_t wait)
1460 {
1461 journal_t *journal = EXT4_SB(sb)->s_journal;
1462
1463 WARN_ON(PageChecked(page));
1464 if (!page_has_buffers(page))
1465 return 0;
1466 if (journal)
1467 return jbd2_journal_try_to_free_buffers(journal, page);
1468
1469 return try_to_free_buffers(page);
1470 }
1471
1472 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1473 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1474 {
1475 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1476 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1477 }
1478
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1479 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1480 void *fs_data)
1481 {
1482 handle_t *handle = fs_data;
1483 int res, res2, credits, retries = 0;
1484
1485 /*
1486 * Encrypting the root directory is not allowed because e2fsck expects
1487 * lost+found to exist and be unencrypted, and encrypting the root
1488 * directory would imply encrypting the lost+found directory as well as
1489 * the filename "lost+found" itself.
1490 */
1491 if (inode->i_ino == EXT4_ROOT_INO)
1492 return -EPERM;
1493
1494 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1495 return -EINVAL;
1496
1497 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1498 return -EOPNOTSUPP;
1499
1500 res = ext4_convert_inline_data(inode);
1501 if (res)
1502 return res;
1503
1504 /*
1505 * If a journal handle was specified, then the encryption context is
1506 * being set on a new inode via inheritance and is part of a larger
1507 * transaction to create the inode. Otherwise the encryption context is
1508 * being set on an existing inode in its own transaction. Only in the
1509 * latter case should the "retry on ENOSPC" logic be used.
1510 */
1511
1512 if (handle) {
1513 res = ext4_xattr_set_handle(handle, inode,
1514 EXT4_XATTR_INDEX_ENCRYPTION,
1515 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1516 ctx, len, 0);
1517 if (!res) {
1518 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1519 ext4_clear_inode_state(inode,
1520 EXT4_STATE_MAY_INLINE_DATA);
1521 /*
1522 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1523 * S_DAX may be disabled
1524 */
1525 ext4_set_inode_flags(inode, false);
1526 }
1527 return res;
1528 }
1529
1530 res = dquot_initialize(inode);
1531 if (res)
1532 return res;
1533 retry:
1534 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1535 &credits);
1536 if (res)
1537 return res;
1538
1539 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1540 if (IS_ERR(handle))
1541 return PTR_ERR(handle);
1542
1543 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1544 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1545 ctx, len, 0);
1546 if (!res) {
1547 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1548 /*
1549 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1550 * S_DAX may be disabled
1551 */
1552 ext4_set_inode_flags(inode, false);
1553 res = ext4_mark_inode_dirty(handle, inode);
1554 if (res)
1555 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1556 }
1557 res2 = ext4_journal_stop(handle);
1558
1559 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1560 goto retry;
1561 if (!res)
1562 res = res2;
1563 return res;
1564 }
1565
ext4_get_dummy_policy(struct super_block * sb)1566 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1567 {
1568 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1569 }
1570
ext4_has_stable_inodes(struct super_block * sb)1571 static bool ext4_has_stable_inodes(struct super_block *sb)
1572 {
1573 return ext4_has_feature_stable_inodes(sb);
1574 }
1575
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1576 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1577 int *ino_bits_ret, int *lblk_bits_ret)
1578 {
1579 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1580 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1581 }
1582
1583 static const struct fscrypt_operations ext4_cryptops = {
1584 .key_prefix = "ext4:",
1585 .get_context = ext4_get_context,
1586 .set_context = ext4_set_context,
1587 .get_dummy_policy = ext4_get_dummy_policy,
1588 .empty_dir = ext4_empty_dir,
1589 .has_stable_inodes = ext4_has_stable_inodes,
1590 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1591 };
1592 #endif
1593
1594 #ifdef CONFIG_QUOTA
1595 static const char * const quotatypes[] = INITQFNAMES;
1596 #define QTYPE2NAME(t) (quotatypes[t])
1597
1598 static int ext4_write_dquot(struct dquot *dquot);
1599 static int ext4_acquire_dquot(struct dquot *dquot);
1600 static int ext4_release_dquot(struct dquot *dquot);
1601 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1602 static int ext4_write_info(struct super_block *sb, int type);
1603 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1604 const struct path *path);
1605 static int ext4_quota_on_mount(struct super_block *sb, int type);
1606 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1607 size_t len, loff_t off);
1608 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1609 const char *data, size_t len, loff_t off);
1610 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1611 unsigned int flags);
1612 static int ext4_enable_quotas(struct super_block *sb);
1613
ext4_get_dquots(struct inode * inode)1614 static struct dquot **ext4_get_dquots(struct inode *inode)
1615 {
1616 return EXT4_I(inode)->i_dquot;
1617 }
1618
1619 static const struct dquot_operations ext4_quota_operations = {
1620 .get_reserved_space = ext4_get_reserved_space,
1621 .write_dquot = ext4_write_dquot,
1622 .acquire_dquot = ext4_acquire_dquot,
1623 .release_dquot = ext4_release_dquot,
1624 .mark_dirty = ext4_mark_dquot_dirty,
1625 .write_info = ext4_write_info,
1626 .alloc_dquot = dquot_alloc,
1627 .destroy_dquot = dquot_destroy,
1628 .get_projid = ext4_get_projid,
1629 .get_inode_usage = ext4_get_inode_usage,
1630 .get_next_id = dquot_get_next_id,
1631 };
1632
1633 static const struct quotactl_ops ext4_qctl_operations = {
1634 .quota_on = ext4_quota_on,
1635 .quota_off = ext4_quota_off,
1636 .quota_sync = dquot_quota_sync,
1637 .get_state = dquot_get_state,
1638 .set_info = dquot_set_dqinfo,
1639 .get_dqblk = dquot_get_dqblk,
1640 .set_dqblk = dquot_set_dqblk,
1641 .get_nextdqblk = dquot_get_next_dqblk,
1642 };
1643 #endif
1644
1645 static const struct super_operations ext4_sops = {
1646 .alloc_inode = ext4_alloc_inode,
1647 .free_inode = ext4_free_in_core_inode,
1648 .destroy_inode = ext4_destroy_inode,
1649 .write_inode = ext4_write_inode,
1650 .dirty_inode = ext4_dirty_inode,
1651 .drop_inode = ext4_drop_inode,
1652 .evict_inode = ext4_evict_inode,
1653 .put_super = ext4_put_super,
1654 .sync_fs = ext4_sync_fs,
1655 .freeze_fs = ext4_freeze,
1656 .unfreeze_fs = ext4_unfreeze,
1657 .statfs = ext4_statfs,
1658 .remount_fs = ext4_remount,
1659 .show_options = ext4_show_options,
1660 #ifdef CONFIG_QUOTA
1661 .quota_read = ext4_quota_read,
1662 .quota_write = ext4_quota_write,
1663 .get_dquots = ext4_get_dquots,
1664 #endif
1665 .bdev_try_to_free_page = bdev_try_to_free_page,
1666 };
1667
1668 static const struct export_operations ext4_export_ops = {
1669 .fh_to_dentry = ext4_fh_to_dentry,
1670 .fh_to_parent = ext4_fh_to_parent,
1671 .get_parent = ext4_get_parent,
1672 .commit_metadata = ext4_nfs_commit_metadata,
1673 };
1674
1675 enum {
1676 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1677 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1678 Opt_nouid32, Opt_debug, Opt_removed,
1679 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1680 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1681 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1682 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1683 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1684 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1685 Opt_inlinecrypt,
1686 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1687 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1688 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1689 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1690 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1691 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1692 Opt_nowarn_on_error, Opt_mblk_io_submit,
1693 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1694 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1695 Opt_inode_readahead_blks, Opt_journal_ioprio,
1696 Opt_dioread_nolock, Opt_dioread_lock,
1697 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1698 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1699 Opt_prefetch_block_bitmaps,
1700 #ifdef CONFIG_EXT4_DEBUG
1701 Opt_fc_debug_max_replay, Opt_fc_debug_force
1702 #endif
1703 };
1704
1705 static const match_table_t tokens = {
1706 {Opt_bsd_df, "bsddf"},
1707 {Opt_minix_df, "minixdf"},
1708 {Opt_grpid, "grpid"},
1709 {Opt_grpid, "bsdgroups"},
1710 {Opt_nogrpid, "nogrpid"},
1711 {Opt_nogrpid, "sysvgroups"},
1712 {Opt_resgid, "resgid=%u"},
1713 {Opt_resuid, "resuid=%u"},
1714 {Opt_sb, "sb=%u"},
1715 {Opt_err_cont, "errors=continue"},
1716 {Opt_err_panic, "errors=panic"},
1717 {Opt_err_ro, "errors=remount-ro"},
1718 {Opt_nouid32, "nouid32"},
1719 {Opt_debug, "debug"},
1720 {Opt_removed, "oldalloc"},
1721 {Opt_removed, "orlov"},
1722 {Opt_user_xattr, "user_xattr"},
1723 {Opt_nouser_xattr, "nouser_xattr"},
1724 {Opt_acl, "acl"},
1725 {Opt_noacl, "noacl"},
1726 {Opt_noload, "norecovery"},
1727 {Opt_noload, "noload"},
1728 {Opt_removed, "nobh"},
1729 {Opt_removed, "bh"},
1730 {Opt_commit, "commit=%u"},
1731 {Opt_min_batch_time, "min_batch_time=%u"},
1732 {Opt_max_batch_time, "max_batch_time=%u"},
1733 {Opt_journal_dev, "journal_dev=%u"},
1734 {Opt_journal_path, "journal_path=%s"},
1735 {Opt_journal_checksum, "journal_checksum"},
1736 {Opt_nojournal_checksum, "nojournal_checksum"},
1737 {Opt_journal_async_commit, "journal_async_commit"},
1738 {Opt_abort, "abort"},
1739 {Opt_data_journal, "data=journal"},
1740 {Opt_data_ordered, "data=ordered"},
1741 {Opt_data_writeback, "data=writeback"},
1742 {Opt_data_err_abort, "data_err=abort"},
1743 {Opt_data_err_ignore, "data_err=ignore"},
1744 {Opt_offusrjquota, "usrjquota="},
1745 {Opt_usrjquota, "usrjquota=%s"},
1746 {Opt_offgrpjquota, "grpjquota="},
1747 {Opt_grpjquota, "grpjquota=%s"},
1748 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1749 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1750 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1751 {Opt_grpquota, "grpquota"},
1752 {Opt_noquota, "noquota"},
1753 {Opt_quota, "quota"},
1754 {Opt_usrquota, "usrquota"},
1755 {Opt_prjquota, "prjquota"},
1756 {Opt_barrier, "barrier=%u"},
1757 {Opt_barrier, "barrier"},
1758 {Opt_nobarrier, "nobarrier"},
1759 {Opt_i_version, "i_version"},
1760 {Opt_dax, "dax"},
1761 {Opt_dax_always, "dax=always"},
1762 {Opt_dax_inode, "dax=inode"},
1763 {Opt_dax_never, "dax=never"},
1764 {Opt_stripe, "stripe=%u"},
1765 {Opt_delalloc, "delalloc"},
1766 {Opt_warn_on_error, "warn_on_error"},
1767 {Opt_nowarn_on_error, "nowarn_on_error"},
1768 {Opt_lazytime, "lazytime"},
1769 {Opt_nolazytime, "nolazytime"},
1770 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1771 {Opt_nodelalloc, "nodelalloc"},
1772 {Opt_removed, "mblk_io_submit"},
1773 {Opt_removed, "nomblk_io_submit"},
1774 {Opt_block_validity, "block_validity"},
1775 {Opt_noblock_validity, "noblock_validity"},
1776 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1777 {Opt_journal_ioprio, "journal_ioprio=%u"},
1778 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1779 {Opt_auto_da_alloc, "auto_da_alloc"},
1780 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1781 {Opt_dioread_nolock, "dioread_nolock"},
1782 {Opt_dioread_lock, "nodioread_nolock"},
1783 {Opt_dioread_lock, "dioread_lock"},
1784 {Opt_discard, "discard"},
1785 {Opt_nodiscard, "nodiscard"},
1786 {Opt_init_itable, "init_itable=%u"},
1787 {Opt_init_itable, "init_itable"},
1788 {Opt_noinit_itable, "noinit_itable"},
1789 #ifdef CONFIG_EXT4_DEBUG
1790 {Opt_fc_debug_force, "fc_debug_force"},
1791 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1792 #endif
1793 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1794 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1795 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1796 {Opt_inlinecrypt, "inlinecrypt"},
1797 {Opt_nombcache, "nombcache"},
1798 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1799 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1800 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1801 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1802 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1803 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1804 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1805 {Opt_err, NULL},
1806 };
1807
get_sb_block(void ** data)1808 static ext4_fsblk_t get_sb_block(void **data)
1809 {
1810 ext4_fsblk_t sb_block;
1811 char *options = (char *) *data;
1812
1813 if (!options || strncmp(options, "sb=", 3) != 0)
1814 return 1; /* Default location */
1815
1816 options += 3;
1817 /* TODO: use simple_strtoll with >32bit ext4 */
1818 sb_block = simple_strtoul(options, &options, 0);
1819 if (*options && *options != ',') {
1820 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1821 (char *) *data);
1822 return 1;
1823 }
1824 if (*options == ',')
1825 options++;
1826 *data = (void *) options;
1827
1828 return sb_block;
1829 }
1830
1831 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1832 static const char deprecated_msg[] =
1833 "Mount option \"%s\" will be removed by %s\n"
1834 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1835
1836 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1837 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1838 {
1839 struct ext4_sb_info *sbi = EXT4_SB(sb);
1840 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1841 int ret = -1;
1842
1843 if (sb_any_quota_loaded(sb) && !old_qname) {
1844 ext4_msg(sb, KERN_ERR,
1845 "Cannot change journaled "
1846 "quota options when quota turned on");
1847 return -1;
1848 }
1849 if (ext4_has_feature_quota(sb)) {
1850 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1851 "ignored when QUOTA feature is enabled");
1852 return 1;
1853 }
1854 qname = match_strdup(args);
1855 if (!qname) {
1856 ext4_msg(sb, KERN_ERR,
1857 "Not enough memory for storing quotafile name");
1858 return -1;
1859 }
1860 if (old_qname) {
1861 if (strcmp(old_qname, qname) == 0)
1862 ret = 1;
1863 else
1864 ext4_msg(sb, KERN_ERR,
1865 "%s quota file already specified",
1866 QTYPE2NAME(qtype));
1867 goto errout;
1868 }
1869 if (strchr(qname, '/')) {
1870 ext4_msg(sb, KERN_ERR,
1871 "quotafile must be on filesystem root");
1872 goto errout;
1873 }
1874 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1875 set_opt(sb, QUOTA);
1876 return 1;
1877 errout:
1878 kfree(qname);
1879 return ret;
1880 }
1881
clear_qf_name(struct super_block * sb,int qtype)1882 static int clear_qf_name(struct super_block *sb, int qtype)
1883 {
1884
1885 struct ext4_sb_info *sbi = EXT4_SB(sb);
1886 char *old_qname = get_qf_name(sb, sbi, qtype);
1887
1888 if (sb_any_quota_loaded(sb) && old_qname) {
1889 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1890 " when quota turned on");
1891 return -1;
1892 }
1893 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1894 synchronize_rcu();
1895 kfree(old_qname);
1896 return 1;
1897 }
1898 #endif
1899
1900 #define MOPT_SET 0x0001
1901 #define MOPT_CLEAR 0x0002
1902 #define MOPT_NOSUPPORT 0x0004
1903 #define MOPT_EXPLICIT 0x0008
1904 #define MOPT_CLEAR_ERR 0x0010
1905 #define MOPT_GTE0 0x0020
1906 #ifdef CONFIG_QUOTA
1907 #define MOPT_Q 0
1908 #define MOPT_QFMT 0x0040
1909 #else
1910 #define MOPT_Q MOPT_NOSUPPORT
1911 #define MOPT_QFMT MOPT_NOSUPPORT
1912 #endif
1913 #define MOPT_DATAJ 0x0080
1914 #define MOPT_NO_EXT2 0x0100
1915 #define MOPT_NO_EXT3 0x0200
1916 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1917 #define MOPT_STRING 0x0400
1918 #define MOPT_SKIP 0x0800
1919 #define MOPT_2 0x1000
1920
1921 static const struct mount_opts {
1922 int token;
1923 int mount_opt;
1924 int flags;
1925 } ext4_mount_opts[] = {
1926 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1927 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1928 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1929 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1930 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1931 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1932 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1933 MOPT_EXT4_ONLY | MOPT_SET},
1934 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1935 MOPT_EXT4_ONLY | MOPT_CLEAR},
1936 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1937 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1938 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1939 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1941 MOPT_EXT4_ONLY | MOPT_CLEAR},
1942 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1943 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1944 {Opt_commit, 0, MOPT_NO_EXT2},
1945 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1946 MOPT_EXT4_ONLY | MOPT_CLEAR},
1947 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1948 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1949 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1950 EXT4_MOUNT_JOURNAL_CHECKSUM),
1951 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1952 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1953 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1954 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1955 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1956 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1957 MOPT_NO_EXT2},
1958 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1959 MOPT_NO_EXT2},
1960 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1961 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1962 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1963 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1964 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1965 {Opt_commit, 0, MOPT_GTE0},
1966 {Opt_max_batch_time, 0, MOPT_GTE0},
1967 {Opt_min_batch_time, 0, MOPT_GTE0},
1968 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1969 {Opt_init_itable, 0, MOPT_GTE0},
1970 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1971 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1972 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1973 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1974 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1975 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1976 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1977 {Opt_stripe, 0, MOPT_GTE0},
1978 {Opt_resuid, 0, MOPT_GTE0},
1979 {Opt_resgid, 0, MOPT_GTE0},
1980 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1981 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1982 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1983 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1984 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1985 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1986 MOPT_NO_EXT2 | MOPT_DATAJ},
1987 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1988 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1989 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1990 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1991 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1992 #else
1993 {Opt_acl, 0, MOPT_NOSUPPORT},
1994 {Opt_noacl, 0, MOPT_NOSUPPORT},
1995 #endif
1996 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1997 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1998 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1999 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
2000 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
2001 MOPT_SET | MOPT_Q},
2002 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
2003 MOPT_SET | MOPT_Q},
2004 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2005 MOPT_SET | MOPT_Q},
2006 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2007 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2008 MOPT_CLEAR | MOPT_Q},
2009 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2010 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2011 {Opt_offusrjquota, 0, MOPT_Q},
2012 {Opt_offgrpjquota, 0, MOPT_Q},
2013 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2014 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2015 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2016 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2017 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2018 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2019 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2020 MOPT_SET},
2021 #ifdef CONFIG_EXT4_DEBUG
2022 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2023 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2024 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2025 #endif
2026 {Opt_err, 0, 0}
2027 };
2028
2029 #ifdef CONFIG_UNICODE
2030 static const struct ext4_sb_encodings {
2031 __u16 magic;
2032 char *name;
2033 char *version;
2034 } ext4_sb_encoding_map[] = {
2035 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2036 };
2037
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2038 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2039 const struct ext4_sb_encodings **encoding,
2040 __u16 *flags)
2041 {
2042 __u16 magic = le16_to_cpu(es->s_encoding);
2043 int i;
2044
2045 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2046 if (magic == ext4_sb_encoding_map[i].magic)
2047 break;
2048
2049 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2050 return -EINVAL;
2051
2052 *encoding = &ext4_sb_encoding_map[i];
2053 *flags = le16_to_cpu(es->s_encoding_flags);
2054
2055 return 0;
2056 }
2057 #endif
2058
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2059 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2060 const char *opt,
2061 const substring_t *arg,
2062 bool is_remount)
2063 {
2064 #ifdef CONFIG_FS_ENCRYPTION
2065 struct ext4_sb_info *sbi = EXT4_SB(sb);
2066 int err;
2067
2068 if (!ext4_has_feature_encrypt(sb)) {
2069 ext4_msg(sb, KERN_WARNING,
2070 "test_dummy_encryption requires encrypt feature");
2071 return -1;
2072 }
2073
2074 /*
2075 * This mount option is just for testing, and it's not worthwhile to
2076 * implement the extra complexity (e.g. RCU protection) that would be
2077 * needed to allow it to be set or changed during remount. We do allow
2078 * it to be specified during remount, but only if there is no change.
2079 */
2080 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2081 ext4_msg(sb, KERN_WARNING,
2082 "Can't set test_dummy_encryption on remount");
2083 return -1;
2084 }
2085 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2086 &sbi->s_dummy_enc_policy);
2087 if (err) {
2088 if (err == -EEXIST)
2089 ext4_msg(sb, KERN_WARNING,
2090 "Can't change test_dummy_encryption on remount");
2091 else if (err == -EINVAL)
2092 ext4_msg(sb, KERN_WARNING,
2093 "Value of option \"%s\" is unrecognized", opt);
2094 else
2095 ext4_msg(sb, KERN_WARNING,
2096 "Error processing option \"%s\" [%d]",
2097 opt, err);
2098 return -1;
2099 }
2100 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2101 return 1;
2102 #else
2103 ext4_msg(sb, KERN_WARNING,
2104 "test_dummy_encryption option not supported");
2105 return -1;
2106
2107 #endif
2108 }
2109
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2110 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2111 substring_t *args, unsigned long *journal_devnum,
2112 unsigned int *journal_ioprio, int is_remount)
2113 {
2114 struct ext4_sb_info *sbi = EXT4_SB(sb);
2115 const struct mount_opts *m;
2116 kuid_t uid;
2117 kgid_t gid;
2118 int arg = 0;
2119
2120 #ifdef CONFIG_QUOTA
2121 if (token == Opt_usrjquota)
2122 return set_qf_name(sb, USRQUOTA, &args[0]);
2123 else if (token == Opt_grpjquota)
2124 return set_qf_name(sb, GRPQUOTA, &args[0]);
2125 else if (token == Opt_offusrjquota)
2126 return clear_qf_name(sb, USRQUOTA);
2127 else if (token == Opt_offgrpjquota)
2128 return clear_qf_name(sb, GRPQUOTA);
2129 #endif
2130 switch (token) {
2131 case Opt_noacl:
2132 case Opt_nouser_xattr:
2133 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2134 break;
2135 case Opt_sb:
2136 return 1; /* handled by get_sb_block() */
2137 case Opt_removed:
2138 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2139 return 1;
2140 case Opt_abort:
2141 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2142 return 1;
2143 case Opt_i_version:
2144 sb->s_flags |= SB_I_VERSION;
2145 return 1;
2146 case Opt_lazytime:
2147 sb->s_flags |= SB_LAZYTIME;
2148 return 1;
2149 case Opt_nolazytime:
2150 sb->s_flags &= ~SB_LAZYTIME;
2151 return 1;
2152 case Opt_inlinecrypt:
2153 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2154 sb->s_flags |= SB_INLINECRYPT;
2155 #else
2156 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2157 #endif
2158 return 1;
2159 }
2160
2161 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162 if (token == m->token)
2163 break;
2164
2165 if (m->token == Opt_err) {
2166 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2167 "or missing value", opt);
2168 return -1;
2169 }
2170
2171 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2172 ext4_msg(sb, KERN_ERR,
2173 "Mount option \"%s\" incompatible with ext2", opt);
2174 return -1;
2175 }
2176 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2177 ext4_msg(sb, KERN_ERR,
2178 "Mount option \"%s\" incompatible with ext3", opt);
2179 return -1;
2180 }
2181
2182 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2183 return -1;
2184 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2185 return -1;
2186 if (m->flags & MOPT_EXPLICIT) {
2187 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2188 set_opt2(sb, EXPLICIT_DELALLOC);
2189 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2190 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2191 } else
2192 return -1;
2193 }
2194 if (m->flags & MOPT_CLEAR_ERR)
2195 clear_opt(sb, ERRORS_MASK);
2196 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2197 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2198 "options when quota turned on");
2199 return -1;
2200 }
2201
2202 if (m->flags & MOPT_NOSUPPORT) {
2203 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2204 } else if (token == Opt_commit) {
2205 if (arg == 0)
2206 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2207 else if (arg > INT_MAX / HZ) {
2208 ext4_msg(sb, KERN_ERR,
2209 "Invalid commit interval %d, "
2210 "must be smaller than %d",
2211 arg, INT_MAX / HZ);
2212 return -1;
2213 }
2214 sbi->s_commit_interval = HZ * arg;
2215 } else if (token == Opt_debug_want_extra_isize) {
2216 if ((arg & 1) ||
2217 (arg < 4) ||
2218 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2219 ext4_msg(sb, KERN_ERR,
2220 "Invalid want_extra_isize %d", arg);
2221 return -1;
2222 }
2223 sbi->s_want_extra_isize = arg;
2224 } else if (token == Opt_max_batch_time) {
2225 sbi->s_max_batch_time = arg;
2226 } else if (token == Opt_min_batch_time) {
2227 sbi->s_min_batch_time = arg;
2228 } else if (token == Opt_inode_readahead_blks) {
2229 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2230 ext4_msg(sb, KERN_ERR,
2231 "EXT4-fs: inode_readahead_blks must be "
2232 "0 or a power of 2 smaller than 2^31");
2233 return -1;
2234 }
2235 sbi->s_inode_readahead_blks = arg;
2236 } else if (token == Opt_init_itable) {
2237 set_opt(sb, INIT_INODE_TABLE);
2238 if (!args->from)
2239 arg = EXT4_DEF_LI_WAIT_MULT;
2240 sbi->s_li_wait_mult = arg;
2241 } else if (token == Opt_max_dir_size_kb) {
2242 sbi->s_max_dir_size_kb = arg;
2243 #ifdef CONFIG_EXT4_DEBUG
2244 } else if (token == Opt_fc_debug_max_replay) {
2245 sbi->s_fc_debug_max_replay = arg;
2246 #endif
2247 } else if (token == Opt_stripe) {
2248 sbi->s_stripe = arg;
2249 } else if (token == Opt_resuid) {
2250 uid = make_kuid(current_user_ns(), arg);
2251 if (!uid_valid(uid)) {
2252 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2253 return -1;
2254 }
2255 sbi->s_resuid = uid;
2256 } else if (token == Opt_resgid) {
2257 gid = make_kgid(current_user_ns(), arg);
2258 if (!gid_valid(gid)) {
2259 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2260 return -1;
2261 }
2262 sbi->s_resgid = gid;
2263 } else if (token == Opt_journal_dev) {
2264 if (is_remount) {
2265 ext4_msg(sb, KERN_ERR,
2266 "Cannot specify journal on remount");
2267 return -1;
2268 }
2269 *journal_devnum = arg;
2270 } else if (token == Opt_journal_path) {
2271 char *journal_path;
2272 struct inode *journal_inode;
2273 struct path path;
2274 int error;
2275
2276 if (is_remount) {
2277 ext4_msg(sb, KERN_ERR,
2278 "Cannot specify journal on remount");
2279 return -1;
2280 }
2281 journal_path = match_strdup(&args[0]);
2282 if (!journal_path) {
2283 ext4_msg(sb, KERN_ERR, "error: could not dup "
2284 "journal device string");
2285 return -1;
2286 }
2287
2288 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2289 if (error) {
2290 ext4_msg(sb, KERN_ERR, "error: could not find "
2291 "journal device path: error %d", error);
2292 kfree(journal_path);
2293 return -1;
2294 }
2295
2296 journal_inode = d_inode(path.dentry);
2297 if (!S_ISBLK(journal_inode->i_mode)) {
2298 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2299 "is not a block device", journal_path);
2300 path_put(&path);
2301 kfree(journal_path);
2302 return -1;
2303 }
2304
2305 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2306 path_put(&path);
2307 kfree(journal_path);
2308 } else if (token == Opt_journal_ioprio) {
2309 if (arg > 7) {
2310 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2311 " (must be 0-7)");
2312 return -1;
2313 }
2314 *journal_ioprio =
2315 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2316 } else if (token == Opt_test_dummy_encryption) {
2317 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2318 is_remount);
2319 } else if (m->flags & MOPT_DATAJ) {
2320 if (is_remount) {
2321 if (!sbi->s_journal)
2322 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2323 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2324 ext4_msg(sb, KERN_ERR,
2325 "Cannot change data mode on remount");
2326 return -1;
2327 }
2328 } else {
2329 clear_opt(sb, DATA_FLAGS);
2330 sbi->s_mount_opt |= m->mount_opt;
2331 }
2332 #ifdef CONFIG_QUOTA
2333 } else if (m->flags & MOPT_QFMT) {
2334 if (sb_any_quota_loaded(sb) &&
2335 sbi->s_jquota_fmt != m->mount_opt) {
2336 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2337 "quota options when quota turned on");
2338 return -1;
2339 }
2340 if (ext4_has_feature_quota(sb)) {
2341 ext4_msg(sb, KERN_INFO,
2342 "Quota format mount options ignored "
2343 "when QUOTA feature is enabled");
2344 return 1;
2345 }
2346 sbi->s_jquota_fmt = m->mount_opt;
2347 #endif
2348 } else if (token == Opt_dax || token == Opt_dax_always ||
2349 token == Opt_dax_inode || token == Opt_dax_never) {
2350 #ifdef CONFIG_FS_DAX
2351 switch (token) {
2352 case Opt_dax:
2353 case Opt_dax_always:
2354 if (is_remount &&
2355 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2356 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2357 fail_dax_change_remount:
2358 ext4_msg(sb, KERN_ERR, "can't change "
2359 "dax mount option while remounting");
2360 return -1;
2361 }
2362 if (is_remount &&
2363 (test_opt(sb, DATA_FLAGS) ==
2364 EXT4_MOUNT_JOURNAL_DATA)) {
2365 ext4_msg(sb, KERN_ERR, "can't mount with "
2366 "both data=journal and dax");
2367 return -1;
2368 }
2369 ext4_msg(sb, KERN_WARNING,
2370 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2371 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2372 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2373 break;
2374 case Opt_dax_never:
2375 if (is_remount &&
2376 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2377 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2378 goto fail_dax_change_remount;
2379 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2380 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 break;
2382 case Opt_dax_inode:
2383 if (is_remount &&
2384 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2385 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2386 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2387 goto fail_dax_change_remount;
2388 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2389 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2390 /* Strictly for printing options */
2391 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2392 break;
2393 }
2394 #else
2395 ext4_msg(sb, KERN_INFO, "dax option not supported");
2396 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2397 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2398 return -1;
2399 #endif
2400 } else if (token == Opt_data_err_abort) {
2401 sbi->s_mount_opt |= m->mount_opt;
2402 } else if (token == Opt_data_err_ignore) {
2403 sbi->s_mount_opt &= ~m->mount_opt;
2404 } else {
2405 if (!args->from)
2406 arg = 1;
2407 if (m->flags & MOPT_CLEAR)
2408 arg = !arg;
2409 else if (unlikely(!(m->flags & MOPT_SET))) {
2410 ext4_msg(sb, KERN_WARNING,
2411 "buggy handling of option %s", opt);
2412 WARN_ON(1);
2413 return -1;
2414 }
2415 if (m->flags & MOPT_2) {
2416 if (arg != 0)
2417 sbi->s_mount_opt2 |= m->mount_opt;
2418 else
2419 sbi->s_mount_opt2 &= ~m->mount_opt;
2420 } else {
2421 if (arg != 0)
2422 sbi->s_mount_opt |= m->mount_opt;
2423 else
2424 sbi->s_mount_opt &= ~m->mount_opt;
2425 }
2426 }
2427 return 1;
2428 }
2429
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2430 static int parse_options(char *options, struct super_block *sb,
2431 unsigned long *journal_devnum,
2432 unsigned int *journal_ioprio,
2433 int is_remount)
2434 {
2435 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2436 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2437 substring_t args[MAX_OPT_ARGS];
2438 int token;
2439
2440 if (!options)
2441 return 1;
2442
2443 while ((p = strsep(&options, ",")) != NULL) {
2444 if (!*p)
2445 continue;
2446 /*
2447 * Initialize args struct so we know whether arg was
2448 * found; some options take optional arguments.
2449 */
2450 args[0].to = args[0].from = NULL;
2451 token = match_token(p, tokens, args);
2452 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2453 journal_ioprio, is_remount) < 0)
2454 return 0;
2455 }
2456 #ifdef CONFIG_QUOTA
2457 /*
2458 * We do the test below only for project quotas. 'usrquota' and
2459 * 'grpquota' mount options are allowed even without quota feature
2460 * to support legacy quotas in quota files.
2461 */
2462 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2463 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2464 "Cannot enable project quota enforcement.");
2465 return 0;
2466 }
2467 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2468 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2469 if (usr_qf_name || grp_qf_name) {
2470 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2471 clear_opt(sb, USRQUOTA);
2472
2473 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2474 clear_opt(sb, GRPQUOTA);
2475
2476 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2477 ext4_msg(sb, KERN_ERR, "old and new quota "
2478 "format mixing");
2479 return 0;
2480 }
2481
2482 if (!sbi->s_jquota_fmt) {
2483 ext4_msg(sb, KERN_ERR, "journaled quota format "
2484 "not specified");
2485 return 0;
2486 }
2487 }
2488 #endif
2489 if (test_opt(sb, DIOREAD_NOLOCK)) {
2490 int blocksize =
2491 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2492 if (blocksize < PAGE_SIZE)
2493 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2494 "experimental mount option 'dioread_nolock' "
2495 "for blocksize < PAGE_SIZE");
2496 }
2497 return 1;
2498 }
2499
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2500 static inline void ext4_show_quota_options(struct seq_file *seq,
2501 struct super_block *sb)
2502 {
2503 #if defined(CONFIG_QUOTA)
2504 struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 char *usr_qf_name, *grp_qf_name;
2506
2507 if (sbi->s_jquota_fmt) {
2508 char *fmtname = "";
2509
2510 switch (sbi->s_jquota_fmt) {
2511 case QFMT_VFS_OLD:
2512 fmtname = "vfsold";
2513 break;
2514 case QFMT_VFS_V0:
2515 fmtname = "vfsv0";
2516 break;
2517 case QFMT_VFS_V1:
2518 fmtname = "vfsv1";
2519 break;
2520 }
2521 seq_printf(seq, ",jqfmt=%s", fmtname);
2522 }
2523
2524 rcu_read_lock();
2525 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2526 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2527 if (usr_qf_name)
2528 seq_show_option(seq, "usrjquota", usr_qf_name);
2529 if (grp_qf_name)
2530 seq_show_option(seq, "grpjquota", grp_qf_name);
2531 rcu_read_unlock();
2532 #endif
2533 }
2534
token2str(int token)2535 static const char *token2str(int token)
2536 {
2537 const struct match_token *t;
2538
2539 for (t = tokens; t->token != Opt_err; t++)
2540 if (t->token == token && !strchr(t->pattern, '='))
2541 break;
2542 return t->pattern;
2543 }
2544
2545 /*
2546 * Show an option if
2547 * - it's set to a non-default value OR
2548 * - if the per-sb default is different from the global default
2549 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2550 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2551 int nodefs)
2552 {
2553 struct ext4_sb_info *sbi = EXT4_SB(sb);
2554 struct ext4_super_block *es = sbi->s_es;
2555 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2556 const struct mount_opts *m;
2557 char sep = nodefs ? '\n' : ',';
2558
2559 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2560 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2561
2562 if (sbi->s_sb_block != 1)
2563 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2564
2565 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2566 int want_set = m->flags & MOPT_SET;
2567 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2568 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2569 continue;
2570 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2571 continue; /* skip if same as the default */
2572 if ((want_set &&
2573 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2574 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2575 continue; /* select Opt_noFoo vs Opt_Foo */
2576 SEQ_OPTS_PRINT("%s", token2str(m->token));
2577 }
2578
2579 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2580 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2581 SEQ_OPTS_PRINT("resuid=%u",
2582 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2583 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2584 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2585 SEQ_OPTS_PRINT("resgid=%u",
2586 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2587 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2588 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2589 SEQ_OPTS_PUTS("errors=remount-ro");
2590 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2591 SEQ_OPTS_PUTS("errors=continue");
2592 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2593 SEQ_OPTS_PUTS("errors=panic");
2594 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2595 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2596 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2597 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2598 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2599 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2600 if (sb->s_flags & SB_I_VERSION)
2601 SEQ_OPTS_PUTS("i_version");
2602 if (nodefs || sbi->s_stripe)
2603 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2604 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2605 (sbi->s_mount_opt ^ def_mount_opt)) {
2606 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2607 SEQ_OPTS_PUTS("data=journal");
2608 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2609 SEQ_OPTS_PUTS("data=ordered");
2610 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2611 SEQ_OPTS_PUTS("data=writeback");
2612 }
2613 if (nodefs ||
2614 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2615 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2616 sbi->s_inode_readahead_blks);
2617
2618 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2619 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2620 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2621 if (nodefs || sbi->s_max_dir_size_kb)
2622 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2623 if (test_opt(sb, DATA_ERR_ABORT))
2624 SEQ_OPTS_PUTS("data_err=abort");
2625
2626 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2627
2628 if (sb->s_flags & SB_INLINECRYPT)
2629 SEQ_OPTS_PUTS("inlinecrypt");
2630
2631 if (test_opt(sb, DAX_ALWAYS)) {
2632 if (IS_EXT2_SB(sb))
2633 SEQ_OPTS_PUTS("dax");
2634 else
2635 SEQ_OPTS_PUTS("dax=always");
2636 } else if (test_opt2(sb, DAX_NEVER)) {
2637 SEQ_OPTS_PUTS("dax=never");
2638 } else if (test_opt2(sb, DAX_INODE)) {
2639 SEQ_OPTS_PUTS("dax=inode");
2640 }
2641 ext4_show_quota_options(seq, sb);
2642 return 0;
2643 }
2644
ext4_show_options(struct seq_file * seq,struct dentry * root)2645 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2646 {
2647 return _ext4_show_options(seq, root->d_sb, 0);
2648 }
2649
ext4_seq_options_show(struct seq_file * seq,void * offset)2650 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2651 {
2652 struct super_block *sb = seq->private;
2653 int rc;
2654
2655 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2656 rc = _ext4_show_options(seq, sb, 1);
2657 seq_puts(seq, "\n");
2658 return rc;
2659 }
2660
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2661 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2662 int read_only)
2663 {
2664 struct ext4_sb_info *sbi = EXT4_SB(sb);
2665 int err = 0;
2666
2667 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2668 ext4_msg(sb, KERN_ERR, "revision level too high, "
2669 "forcing read-only mode");
2670 err = -EROFS;
2671 goto done;
2672 }
2673 if (read_only)
2674 goto done;
2675 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2676 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2677 "running e2fsck is recommended");
2678 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2679 ext4_msg(sb, KERN_WARNING,
2680 "warning: mounting fs with errors, "
2681 "running e2fsck is recommended");
2682 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2683 le16_to_cpu(es->s_mnt_count) >=
2684 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2685 ext4_msg(sb, KERN_WARNING,
2686 "warning: maximal mount count reached, "
2687 "running e2fsck is recommended");
2688 else if (le32_to_cpu(es->s_checkinterval) &&
2689 (ext4_get_tstamp(es, s_lastcheck) +
2690 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2691 ext4_msg(sb, KERN_WARNING,
2692 "warning: checktime reached, "
2693 "running e2fsck is recommended");
2694 if (!sbi->s_journal)
2695 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2696 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2697 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2698 le16_add_cpu(&es->s_mnt_count, 1);
2699 ext4_update_tstamp(es, s_mtime);
2700 if (sbi->s_journal)
2701 ext4_set_feature_journal_needs_recovery(sb);
2702
2703 err = ext4_commit_super(sb, 1);
2704 done:
2705 if (test_opt(sb, DEBUG))
2706 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2707 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2708 sb->s_blocksize,
2709 sbi->s_groups_count,
2710 EXT4_BLOCKS_PER_GROUP(sb),
2711 EXT4_INODES_PER_GROUP(sb),
2712 sbi->s_mount_opt, sbi->s_mount_opt2);
2713
2714 cleancache_init_fs(sb);
2715 return err;
2716 }
2717
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2718 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2719 {
2720 struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 struct flex_groups **old_groups, **new_groups;
2722 int size, i, j;
2723
2724 if (!sbi->s_log_groups_per_flex)
2725 return 0;
2726
2727 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2728 if (size <= sbi->s_flex_groups_allocated)
2729 return 0;
2730
2731 new_groups = kvzalloc(roundup_pow_of_two(size *
2732 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2733 if (!new_groups) {
2734 ext4_msg(sb, KERN_ERR,
2735 "not enough memory for %d flex group pointers", size);
2736 return -ENOMEM;
2737 }
2738 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2739 new_groups[i] = kvzalloc(roundup_pow_of_two(
2740 sizeof(struct flex_groups)),
2741 GFP_KERNEL);
2742 if (!new_groups[i]) {
2743 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2744 kvfree(new_groups[j]);
2745 kvfree(new_groups);
2746 ext4_msg(sb, KERN_ERR,
2747 "not enough memory for %d flex groups", size);
2748 return -ENOMEM;
2749 }
2750 }
2751 rcu_read_lock();
2752 old_groups = rcu_dereference(sbi->s_flex_groups);
2753 if (old_groups)
2754 memcpy(new_groups, old_groups,
2755 (sbi->s_flex_groups_allocated *
2756 sizeof(struct flex_groups *)));
2757 rcu_read_unlock();
2758 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2759 sbi->s_flex_groups_allocated = size;
2760 if (old_groups)
2761 ext4_kvfree_array_rcu(old_groups);
2762 return 0;
2763 }
2764
ext4_fill_flex_info(struct super_block * sb)2765 static int ext4_fill_flex_info(struct super_block *sb)
2766 {
2767 struct ext4_sb_info *sbi = EXT4_SB(sb);
2768 struct ext4_group_desc *gdp = NULL;
2769 struct flex_groups *fg;
2770 ext4_group_t flex_group;
2771 int i, err;
2772
2773 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2774 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2775 sbi->s_log_groups_per_flex = 0;
2776 return 1;
2777 }
2778
2779 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2780 if (err)
2781 goto failed;
2782
2783 for (i = 0; i < sbi->s_groups_count; i++) {
2784 gdp = ext4_get_group_desc(sb, i, NULL);
2785
2786 flex_group = ext4_flex_group(sbi, i);
2787 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2788 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2789 atomic64_add(ext4_free_group_clusters(sb, gdp),
2790 &fg->free_clusters);
2791 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2792 }
2793
2794 return 1;
2795 failed:
2796 return 0;
2797 }
2798
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2799 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2800 struct ext4_group_desc *gdp)
2801 {
2802 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2803 __u16 crc = 0;
2804 __le32 le_group = cpu_to_le32(block_group);
2805 struct ext4_sb_info *sbi = EXT4_SB(sb);
2806
2807 if (ext4_has_metadata_csum(sbi->s_sb)) {
2808 /* Use new metadata_csum algorithm */
2809 __u32 csum32;
2810 __u16 dummy_csum = 0;
2811
2812 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2813 sizeof(le_group));
2814 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2815 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2816 sizeof(dummy_csum));
2817 offset += sizeof(dummy_csum);
2818 if (offset < sbi->s_desc_size)
2819 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2820 sbi->s_desc_size - offset);
2821
2822 crc = csum32 & 0xFFFF;
2823 goto out;
2824 }
2825
2826 /* old crc16 code */
2827 if (!ext4_has_feature_gdt_csum(sb))
2828 return 0;
2829
2830 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2831 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2832 crc = crc16(crc, (__u8 *)gdp, offset);
2833 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2834 /* for checksum of struct ext4_group_desc do the rest...*/
2835 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2836 crc = crc16(crc, (__u8 *)gdp + offset,
2837 sbi->s_desc_size - offset);
2838
2839 out:
2840 return cpu_to_le16(crc);
2841 }
2842
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2843 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2844 struct ext4_group_desc *gdp)
2845 {
2846 if (ext4_has_group_desc_csum(sb) &&
2847 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2848 return 0;
2849
2850 return 1;
2851 }
2852
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2853 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2854 struct ext4_group_desc *gdp)
2855 {
2856 if (!ext4_has_group_desc_csum(sb))
2857 return;
2858 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2859 }
2860
2861 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2862 static int ext4_check_descriptors(struct super_block *sb,
2863 ext4_fsblk_t sb_block,
2864 ext4_group_t *first_not_zeroed)
2865 {
2866 struct ext4_sb_info *sbi = EXT4_SB(sb);
2867 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2868 ext4_fsblk_t last_block;
2869 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2870 ext4_fsblk_t block_bitmap;
2871 ext4_fsblk_t inode_bitmap;
2872 ext4_fsblk_t inode_table;
2873 int flexbg_flag = 0;
2874 ext4_group_t i, grp = sbi->s_groups_count;
2875
2876 if (ext4_has_feature_flex_bg(sb))
2877 flexbg_flag = 1;
2878
2879 ext4_debug("Checking group descriptors");
2880
2881 for (i = 0; i < sbi->s_groups_count; i++) {
2882 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2883
2884 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2885 last_block = ext4_blocks_count(sbi->s_es) - 1;
2886 else
2887 last_block = first_block +
2888 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2889
2890 if ((grp == sbi->s_groups_count) &&
2891 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2892 grp = i;
2893
2894 block_bitmap = ext4_block_bitmap(sb, gdp);
2895 if (block_bitmap == sb_block) {
2896 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 "Block bitmap for group %u overlaps "
2898 "superblock", i);
2899 if (!sb_rdonly(sb))
2900 return 0;
2901 }
2902 if (block_bitmap >= sb_block + 1 &&
2903 block_bitmap <= last_bg_block) {
2904 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2905 "Block bitmap for group %u overlaps "
2906 "block group descriptors", i);
2907 if (!sb_rdonly(sb))
2908 return 0;
2909 }
2910 if (block_bitmap < first_block || block_bitmap > last_block) {
2911 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2912 "Block bitmap for group %u not in group "
2913 "(block %llu)!", i, block_bitmap);
2914 return 0;
2915 }
2916 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2917 if (inode_bitmap == sb_block) {
2918 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 "Inode bitmap for group %u overlaps "
2920 "superblock", i);
2921 if (!sb_rdonly(sb))
2922 return 0;
2923 }
2924 if (inode_bitmap >= sb_block + 1 &&
2925 inode_bitmap <= last_bg_block) {
2926 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2927 "Inode bitmap for group %u overlaps "
2928 "block group descriptors", i);
2929 if (!sb_rdonly(sb))
2930 return 0;
2931 }
2932 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2933 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2934 "Inode bitmap for group %u not in group "
2935 "(block %llu)!", i, inode_bitmap);
2936 return 0;
2937 }
2938 inode_table = ext4_inode_table(sb, gdp);
2939 if (inode_table == sb_block) {
2940 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 "Inode table for group %u overlaps "
2942 "superblock", i);
2943 if (!sb_rdonly(sb))
2944 return 0;
2945 }
2946 if (inode_table >= sb_block + 1 &&
2947 inode_table <= last_bg_block) {
2948 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 "Inode table for group %u overlaps "
2950 "block group descriptors", i);
2951 if (!sb_rdonly(sb))
2952 return 0;
2953 }
2954 if (inode_table < first_block ||
2955 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2956 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2957 "Inode table for group %u not in group "
2958 "(block %llu)!", i, inode_table);
2959 return 0;
2960 }
2961 ext4_lock_group(sb, i);
2962 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2963 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2964 "Checksum for group %u failed (%u!=%u)",
2965 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2966 gdp)), le16_to_cpu(gdp->bg_checksum));
2967 if (!sb_rdonly(sb)) {
2968 ext4_unlock_group(sb, i);
2969 return 0;
2970 }
2971 }
2972 ext4_unlock_group(sb, i);
2973 if (!flexbg_flag)
2974 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2975 }
2976 if (NULL != first_not_zeroed)
2977 *first_not_zeroed = grp;
2978 return 1;
2979 }
2980
2981 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2982 * the superblock) which were deleted from all directories, but held open by
2983 * a process at the time of a crash. We walk the list and try to delete these
2984 * inodes at recovery time (only with a read-write filesystem).
2985 *
2986 * In order to keep the orphan inode chain consistent during traversal (in
2987 * case of crash during recovery), we link each inode into the superblock
2988 * orphan list_head and handle it the same way as an inode deletion during
2989 * normal operation (which journals the operations for us).
2990 *
2991 * We only do an iget() and an iput() on each inode, which is very safe if we
2992 * accidentally point at an in-use or already deleted inode. The worst that
2993 * can happen in this case is that we get a "bit already cleared" message from
2994 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2995 * e2fsck was run on this filesystem, and it must have already done the orphan
2996 * inode cleanup for us, so we can safely abort without any further action.
2997 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2998 static void ext4_orphan_cleanup(struct super_block *sb,
2999 struct ext4_super_block *es)
3000 {
3001 unsigned int s_flags = sb->s_flags;
3002 int ret, nr_orphans = 0, nr_truncates = 0;
3003 #ifdef CONFIG_QUOTA
3004 int quota_update = 0;
3005 int i;
3006 #endif
3007 if (!es->s_last_orphan) {
3008 jbd_debug(4, "no orphan inodes to clean up\n");
3009 return;
3010 }
3011
3012 if (bdev_read_only(sb->s_bdev)) {
3013 ext4_msg(sb, KERN_ERR, "write access "
3014 "unavailable, skipping orphan cleanup");
3015 return;
3016 }
3017
3018 /* Check if feature set would not allow a r/w mount */
3019 if (!ext4_feature_set_ok(sb, 0)) {
3020 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3021 "unknown ROCOMPAT features");
3022 return;
3023 }
3024
3025 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3026 /* don't clear list on RO mount w/ errors */
3027 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3028 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3029 "clearing orphan list.\n");
3030 es->s_last_orphan = 0;
3031 }
3032 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3033 return;
3034 }
3035
3036 if (s_flags & SB_RDONLY) {
3037 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3038 sb->s_flags &= ~SB_RDONLY;
3039 }
3040 #ifdef CONFIG_QUOTA
3041 /*
3042 * Turn on quotas which were not enabled for read-only mounts if
3043 * filesystem has quota feature, so that they are updated correctly.
3044 */
3045 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3046 int ret = ext4_enable_quotas(sb);
3047
3048 if (!ret)
3049 quota_update = 1;
3050 else
3051 ext4_msg(sb, KERN_ERR,
3052 "Cannot turn on quotas: error %d", ret);
3053 }
3054
3055 /* Turn on journaled quotas used for old sytle */
3056 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3057 if (EXT4_SB(sb)->s_qf_names[i]) {
3058 int ret = ext4_quota_on_mount(sb, i);
3059
3060 if (!ret)
3061 quota_update = 1;
3062 else
3063 ext4_msg(sb, KERN_ERR,
3064 "Cannot turn on journaled "
3065 "quota: type %d: error %d", i, ret);
3066 }
3067 }
3068 #endif
3069
3070 while (es->s_last_orphan) {
3071 struct inode *inode;
3072
3073 /*
3074 * We may have encountered an error during cleanup; if
3075 * so, skip the rest.
3076 */
3077 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3078 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3079 es->s_last_orphan = 0;
3080 break;
3081 }
3082
3083 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3084 if (IS_ERR(inode)) {
3085 es->s_last_orphan = 0;
3086 break;
3087 }
3088
3089 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3090 dquot_initialize(inode);
3091 if (inode->i_nlink) {
3092 if (test_opt(sb, DEBUG))
3093 ext4_msg(sb, KERN_DEBUG,
3094 "%s: truncating inode %lu to %lld bytes",
3095 __func__, inode->i_ino, inode->i_size);
3096 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3097 inode->i_ino, inode->i_size);
3098 inode_lock(inode);
3099 truncate_inode_pages(inode->i_mapping, inode->i_size);
3100 ret = ext4_truncate(inode);
3101 if (ret) {
3102 /*
3103 * We need to clean up the in-core orphan list
3104 * manually if ext4_truncate() failed to get a
3105 * transaction handle.
3106 */
3107 ext4_orphan_del(NULL, inode);
3108 ext4_std_error(inode->i_sb, ret);
3109 }
3110 inode_unlock(inode);
3111 nr_truncates++;
3112 } else {
3113 if (test_opt(sb, DEBUG))
3114 ext4_msg(sb, KERN_DEBUG,
3115 "%s: deleting unreferenced inode %lu",
3116 __func__, inode->i_ino);
3117 jbd_debug(2, "deleting unreferenced inode %lu\n",
3118 inode->i_ino);
3119 nr_orphans++;
3120 }
3121 iput(inode); /* The delete magic happens here! */
3122 }
3123
3124 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3125
3126 if (nr_orphans)
3127 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3128 PLURAL(nr_orphans));
3129 if (nr_truncates)
3130 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3131 PLURAL(nr_truncates));
3132 #ifdef CONFIG_QUOTA
3133 /* Turn off quotas if they were enabled for orphan cleanup */
3134 if (quota_update) {
3135 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3136 if (sb_dqopt(sb)->files[i])
3137 dquot_quota_off(sb, i);
3138 }
3139 }
3140 #endif
3141 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3142 }
3143
3144 /*
3145 * Maximal extent format file size.
3146 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3147 * extent format containers, within a sector_t, and within i_blocks
3148 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3149 * so that won't be a limiting factor.
3150 *
3151 * However there is other limiting factor. We do store extents in the form
3152 * of starting block and length, hence the resulting length of the extent
3153 * covering maximum file size must fit into on-disk format containers as
3154 * well. Given that length is always by 1 unit bigger than max unit (because
3155 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3156 *
3157 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3158 */
ext4_max_size(int blkbits,int has_huge_files)3159 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3160 {
3161 loff_t res;
3162 loff_t upper_limit = MAX_LFS_FILESIZE;
3163
3164 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3165
3166 if (!has_huge_files) {
3167 upper_limit = (1LL << 32) - 1;
3168
3169 /* total blocks in file system block size */
3170 upper_limit >>= (blkbits - 9);
3171 upper_limit <<= blkbits;
3172 }
3173
3174 /*
3175 * 32-bit extent-start container, ee_block. We lower the maxbytes
3176 * by one fs block, so ee_len can cover the extent of maximum file
3177 * size
3178 */
3179 res = (1LL << 32) - 1;
3180 res <<= blkbits;
3181
3182 /* Sanity check against vm- & vfs- imposed limits */
3183 if (res > upper_limit)
3184 res = upper_limit;
3185
3186 return res;
3187 }
3188
3189 /*
3190 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3191 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3192 * We need to be 1 filesystem block less than the 2^48 sector limit.
3193 */
ext4_max_bitmap_size(int bits,int has_huge_files)3194 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3195 {
3196 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3197 int meta_blocks;
3198
3199 /*
3200 * This is calculated to be the largest file size for a dense, block
3201 * mapped file such that the file's total number of 512-byte sectors,
3202 * including data and all indirect blocks, does not exceed (2^48 - 1).
3203 *
3204 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3205 * number of 512-byte sectors of the file.
3206 */
3207 if (!has_huge_files) {
3208 /*
3209 * !has_huge_files or implies that the inode i_block field
3210 * represents total file blocks in 2^32 512-byte sectors ==
3211 * size of vfs inode i_blocks * 8
3212 */
3213 upper_limit = (1LL << 32) - 1;
3214
3215 /* total blocks in file system block size */
3216 upper_limit >>= (bits - 9);
3217
3218 } else {
3219 /*
3220 * We use 48 bit ext4_inode i_blocks
3221 * With EXT4_HUGE_FILE_FL set the i_blocks
3222 * represent total number of blocks in
3223 * file system block size
3224 */
3225 upper_limit = (1LL << 48) - 1;
3226
3227 }
3228
3229 /* indirect blocks */
3230 meta_blocks = 1;
3231 /* double indirect blocks */
3232 meta_blocks += 1 + (1LL << (bits-2));
3233 /* tripple indirect blocks */
3234 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3235
3236 upper_limit -= meta_blocks;
3237 upper_limit <<= bits;
3238
3239 res += 1LL << (bits-2);
3240 res += 1LL << (2*(bits-2));
3241 res += 1LL << (3*(bits-2));
3242 res <<= bits;
3243 if (res > upper_limit)
3244 res = upper_limit;
3245
3246 if (res > MAX_LFS_FILESIZE)
3247 res = MAX_LFS_FILESIZE;
3248
3249 return (loff_t)res;
3250 }
3251
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3252 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3253 ext4_fsblk_t logical_sb_block, int nr)
3254 {
3255 struct ext4_sb_info *sbi = EXT4_SB(sb);
3256 ext4_group_t bg, first_meta_bg;
3257 int has_super = 0;
3258
3259 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3260
3261 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3262 return logical_sb_block + nr + 1;
3263 bg = sbi->s_desc_per_block * nr;
3264 if (ext4_bg_has_super(sb, bg))
3265 has_super = 1;
3266
3267 /*
3268 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3269 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3270 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3271 * compensate.
3272 */
3273 if (sb->s_blocksize == 1024 && nr == 0 &&
3274 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3275 has_super++;
3276
3277 return (has_super + ext4_group_first_block_no(sb, bg));
3278 }
3279
3280 /**
3281 * ext4_get_stripe_size: Get the stripe size.
3282 * @sbi: In memory super block info
3283 *
3284 * If we have specified it via mount option, then
3285 * use the mount option value. If the value specified at mount time is
3286 * greater than the blocks per group use the super block value.
3287 * If the super block value is greater than blocks per group return 0.
3288 * Allocator needs it be less than blocks per group.
3289 *
3290 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3291 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3292 {
3293 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3294 unsigned long stripe_width =
3295 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3296 int ret;
3297
3298 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3299 ret = sbi->s_stripe;
3300 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3301 ret = stripe_width;
3302 else if (stride && stride <= sbi->s_blocks_per_group)
3303 ret = stride;
3304 else
3305 ret = 0;
3306
3307 /*
3308 * If the stripe width is 1, this makes no sense and
3309 * we set it to 0 to turn off stripe handling code.
3310 */
3311 if (ret <= 1)
3312 ret = 0;
3313
3314 return ret;
3315 }
3316
3317 /*
3318 * Check whether this filesystem can be mounted based on
3319 * the features present and the RDONLY/RDWR mount requested.
3320 * Returns 1 if this filesystem can be mounted as requested,
3321 * 0 if it cannot be.
3322 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3323 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3324 {
3325 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3326 ext4_msg(sb, KERN_ERR,
3327 "Couldn't mount because of "
3328 "unsupported optional features (%x)",
3329 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3330 ~EXT4_FEATURE_INCOMPAT_SUPP));
3331 return 0;
3332 }
3333
3334 #ifndef CONFIG_UNICODE
3335 if (ext4_has_feature_casefold(sb)) {
3336 ext4_msg(sb, KERN_ERR,
3337 "Filesystem with casefold feature cannot be "
3338 "mounted without CONFIG_UNICODE");
3339 return 0;
3340 }
3341 #endif
3342
3343 if (readonly)
3344 return 1;
3345
3346 if (ext4_has_feature_readonly(sb)) {
3347 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3348 sb->s_flags |= SB_RDONLY;
3349 return 1;
3350 }
3351
3352 /* Check that feature set is OK for a read-write mount */
3353 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3354 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3355 "unsupported optional features (%x)",
3356 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3357 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3358 return 0;
3359 }
3360 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3361 ext4_msg(sb, KERN_ERR,
3362 "Can't support bigalloc feature without "
3363 "extents feature\n");
3364 return 0;
3365 }
3366
3367 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3368 if (!readonly && (ext4_has_feature_quota(sb) ||
3369 ext4_has_feature_project(sb))) {
3370 ext4_msg(sb, KERN_ERR,
3371 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3372 return 0;
3373 }
3374 #endif /* CONFIG_QUOTA */
3375 return 1;
3376 }
3377
3378 /*
3379 * This function is called once a day if we have errors logged
3380 * on the file system
3381 */
print_daily_error_info(struct timer_list * t)3382 static void print_daily_error_info(struct timer_list *t)
3383 {
3384 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3385 struct super_block *sb = sbi->s_sb;
3386 struct ext4_super_block *es = sbi->s_es;
3387
3388 if (es->s_error_count)
3389 /* fsck newer than v1.41.13 is needed to clean this condition. */
3390 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3391 le32_to_cpu(es->s_error_count));
3392 if (es->s_first_error_time) {
3393 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3394 sb->s_id,
3395 ext4_get_tstamp(es, s_first_error_time),
3396 (int) sizeof(es->s_first_error_func),
3397 es->s_first_error_func,
3398 le32_to_cpu(es->s_first_error_line));
3399 if (es->s_first_error_ino)
3400 printk(KERN_CONT ": inode %u",
3401 le32_to_cpu(es->s_first_error_ino));
3402 if (es->s_first_error_block)
3403 printk(KERN_CONT ": block %llu", (unsigned long long)
3404 le64_to_cpu(es->s_first_error_block));
3405 printk(KERN_CONT "\n");
3406 }
3407 if (es->s_last_error_time) {
3408 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3409 sb->s_id,
3410 ext4_get_tstamp(es, s_last_error_time),
3411 (int) sizeof(es->s_last_error_func),
3412 es->s_last_error_func,
3413 le32_to_cpu(es->s_last_error_line));
3414 if (es->s_last_error_ino)
3415 printk(KERN_CONT ": inode %u",
3416 le32_to_cpu(es->s_last_error_ino));
3417 if (es->s_last_error_block)
3418 printk(KERN_CONT ": block %llu", (unsigned long long)
3419 le64_to_cpu(es->s_last_error_block));
3420 printk(KERN_CONT "\n");
3421 }
3422 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3423 }
3424
3425 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3426 static int ext4_run_li_request(struct ext4_li_request *elr)
3427 {
3428 struct ext4_group_desc *gdp = NULL;
3429 struct super_block *sb = elr->lr_super;
3430 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3431 ext4_group_t group = elr->lr_next_group;
3432 unsigned int prefetch_ios = 0;
3433 int ret = 0;
3434 u64 start_time;
3435
3436 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3437 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3438 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3439 if (prefetch_ios)
3440 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3441 prefetch_ios);
3442 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3443 prefetch_ios);
3444 if (group >= elr->lr_next_group) {
3445 ret = 1;
3446 if (elr->lr_first_not_zeroed != ngroups &&
3447 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3448 elr->lr_next_group = elr->lr_first_not_zeroed;
3449 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3450 ret = 0;
3451 }
3452 }
3453 return ret;
3454 }
3455
3456 for (; group < ngroups; group++) {
3457 gdp = ext4_get_group_desc(sb, group, NULL);
3458 if (!gdp) {
3459 ret = 1;
3460 break;
3461 }
3462
3463 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3464 break;
3465 }
3466
3467 if (group >= ngroups)
3468 ret = 1;
3469
3470 if (!ret) {
3471 start_time = ktime_get_real_ns();
3472 ret = ext4_init_inode_table(sb, group,
3473 elr->lr_timeout ? 0 : 1);
3474 trace_ext4_lazy_itable_init(sb, group);
3475 if (elr->lr_timeout == 0) {
3476 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3477 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3478 }
3479 elr->lr_next_sched = jiffies + elr->lr_timeout;
3480 elr->lr_next_group = group + 1;
3481 }
3482 return ret;
3483 }
3484
3485 /*
3486 * Remove lr_request from the list_request and free the
3487 * request structure. Should be called with li_list_mtx held
3488 */
ext4_remove_li_request(struct ext4_li_request * elr)3489 static void ext4_remove_li_request(struct ext4_li_request *elr)
3490 {
3491 if (!elr)
3492 return;
3493
3494 list_del(&elr->lr_request);
3495 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3496 kfree(elr);
3497 }
3498
ext4_unregister_li_request(struct super_block * sb)3499 static void ext4_unregister_li_request(struct super_block *sb)
3500 {
3501 mutex_lock(&ext4_li_mtx);
3502 if (!ext4_li_info) {
3503 mutex_unlock(&ext4_li_mtx);
3504 return;
3505 }
3506
3507 mutex_lock(&ext4_li_info->li_list_mtx);
3508 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3509 mutex_unlock(&ext4_li_info->li_list_mtx);
3510 mutex_unlock(&ext4_li_mtx);
3511 }
3512
3513 static struct task_struct *ext4_lazyinit_task;
3514
3515 /*
3516 * This is the function where ext4lazyinit thread lives. It walks
3517 * through the request list searching for next scheduled filesystem.
3518 * When such a fs is found, run the lazy initialization request
3519 * (ext4_rn_li_request) and keep track of the time spend in this
3520 * function. Based on that time we compute next schedule time of
3521 * the request. When walking through the list is complete, compute
3522 * next waking time and put itself into sleep.
3523 */
ext4_lazyinit_thread(void * arg)3524 static int ext4_lazyinit_thread(void *arg)
3525 {
3526 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3527 struct list_head *pos, *n;
3528 struct ext4_li_request *elr;
3529 unsigned long next_wakeup, cur;
3530
3531 BUG_ON(NULL == eli);
3532 set_freezable();
3533
3534 cont_thread:
3535 while (true) {
3536 next_wakeup = MAX_JIFFY_OFFSET;
3537
3538 mutex_lock(&eli->li_list_mtx);
3539 if (list_empty(&eli->li_request_list)) {
3540 mutex_unlock(&eli->li_list_mtx);
3541 goto exit_thread;
3542 }
3543 list_for_each_safe(pos, n, &eli->li_request_list) {
3544 int err = 0;
3545 int progress = 0;
3546 elr = list_entry(pos, struct ext4_li_request,
3547 lr_request);
3548
3549 if (time_before(jiffies, elr->lr_next_sched)) {
3550 if (time_before(elr->lr_next_sched, next_wakeup))
3551 next_wakeup = elr->lr_next_sched;
3552 continue;
3553 }
3554 if (down_read_trylock(&elr->lr_super->s_umount)) {
3555 if (sb_start_write_trylock(elr->lr_super)) {
3556 progress = 1;
3557 /*
3558 * We hold sb->s_umount, sb can not
3559 * be removed from the list, it is
3560 * now safe to drop li_list_mtx
3561 */
3562 mutex_unlock(&eli->li_list_mtx);
3563 err = ext4_run_li_request(elr);
3564 sb_end_write(elr->lr_super);
3565 mutex_lock(&eli->li_list_mtx);
3566 n = pos->next;
3567 }
3568 up_read((&elr->lr_super->s_umount));
3569 }
3570 /* error, remove the lazy_init job */
3571 if (err) {
3572 ext4_remove_li_request(elr);
3573 continue;
3574 }
3575 if (!progress) {
3576 elr->lr_next_sched = jiffies +
3577 (prandom_u32()
3578 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3579 }
3580 if (time_before(elr->lr_next_sched, next_wakeup))
3581 next_wakeup = elr->lr_next_sched;
3582 }
3583 mutex_unlock(&eli->li_list_mtx);
3584
3585 try_to_freeze();
3586
3587 cur = jiffies;
3588 if ((time_after_eq(cur, next_wakeup)) ||
3589 (MAX_JIFFY_OFFSET == next_wakeup)) {
3590 cond_resched();
3591 continue;
3592 }
3593
3594 schedule_timeout_interruptible(next_wakeup - cur);
3595
3596 if (kthread_should_stop()) {
3597 ext4_clear_request_list();
3598 goto exit_thread;
3599 }
3600 }
3601
3602 exit_thread:
3603 /*
3604 * It looks like the request list is empty, but we need
3605 * to check it under the li_list_mtx lock, to prevent any
3606 * additions into it, and of course we should lock ext4_li_mtx
3607 * to atomically free the list and ext4_li_info, because at
3608 * this point another ext4 filesystem could be registering
3609 * new one.
3610 */
3611 mutex_lock(&ext4_li_mtx);
3612 mutex_lock(&eli->li_list_mtx);
3613 if (!list_empty(&eli->li_request_list)) {
3614 mutex_unlock(&eli->li_list_mtx);
3615 mutex_unlock(&ext4_li_mtx);
3616 goto cont_thread;
3617 }
3618 mutex_unlock(&eli->li_list_mtx);
3619 kfree(ext4_li_info);
3620 ext4_li_info = NULL;
3621 mutex_unlock(&ext4_li_mtx);
3622
3623 return 0;
3624 }
3625
ext4_clear_request_list(void)3626 static void ext4_clear_request_list(void)
3627 {
3628 struct list_head *pos, *n;
3629 struct ext4_li_request *elr;
3630
3631 mutex_lock(&ext4_li_info->li_list_mtx);
3632 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3633 elr = list_entry(pos, struct ext4_li_request,
3634 lr_request);
3635 ext4_remove_li_request(elr);
3636 }
3637 mutex_unlock(&ext4_li_info->li_list_mtx);
3638 }
3639
ext4_run_lazyinit_thread(void)3640 static int ext4_run_lazyinit_thread(void)
3641 {
3642 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3643 ext4_li_info, "ext4lazyinit");
3644 if (IS_ERR(ext4_lazyinit_task)) {
3645 int err = PTR_ERR(ext4_lazyinit_task);
3646 ext4_clear_request_list();
3647 kfree(ext4_li_info);
3648 ext4_li_info = NULL;
3649 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3650 "initialization thread\n",
3651 err);
3652 return err;
3653 }
3654 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3655 return 0;
3656 }
3657
3658 /*
3659 * Check whether it make sense to run itable init. thread or not.
3660 * If there is at least one uninitialized inode table, return
3661 * corresponding group number, else the loop goes through all
3662 * groups and return total number of groups.
3663 */
ext4_has_uninit_itable(struct super_block * sb)3664 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3665 {
3666 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3667 struct ext4_group_desc *gdp = NULL;
3668
3669 if (!ext4_has_group_desc_csum(sb))
3670 return ngroups;
3671
3672 for (group = 0; group < ngroups; group++) {
3673 gdp = ext4_get_group_desc(sb, group, NULL);
3674 if (!gdp)
3675 continue;
3676
3677 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3678 break;
3679 }
3680
3681 return group;
3682 }
3683
ext4_li_info_new(void)3684 static int ext4_li_info_new(void)
3685 {
3686 struct ext4_lazy_init *eli = NULL;
3687
3688 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3689 if (!eli)
3690 return -ENOMEM;
3691
3692 INIT_LIST_HEAD(&eli->li_request_list);
3693 mutex_init(&eli->li_list_mtx);
3694
3695 eli->li_state |= EXT4_LAZYINIT_QUIT;
3696
3697 ext4_li_info = eli;
3698
3699 return 0;
3700 }
3701
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3702 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3703 ext4_group_t start)
3704 {
3705 struct ext4_li_request *elr;
3706
3707 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3708 if (!elr)
3709 return NULL;
3710
3711 elr->lr_super = sb;
3712 elr->lr_first_not_zeroed = start;
3713 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3714 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3715 else {
3716 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3717 elr->lr_next_group = start;
3718 }
3719
3720 /*
3721 * Randomize first schedule time of the request to
3722 * spread the inode table initialization requests
3723 * better.
3724 */
3725 elr->lr_next_sched = jiffies + (prandom_u32() %
3726 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3727 return elr;
3728 }
3729
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3730 int ext4_register_li_request(struct super_block *sb,
3731 ext4_group_t first_not_zeroed)
3732 {
3733 struct ext4_sb_info *sbi = EXT4_SB(sb);
3734 struct ext4_li_request *elr = NULL;
3735 ext4_group_t ngroups = sbi->s_groups_count;
3736 int ret = 0;
3737
3738 mutex_lock(&ext4_li_mtx);
3739 if (sbi->s_li_request != NULL) {
3740 /*
3741 * Reset timeout so it can be computed again, because
3742 * s_li_wait_mult might have changed.
3743 */
3744 sbi->s_li_request->lr_timeout = 0;
3745 goto out;
3746 }
3747
3748 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3749 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3750 !test_opt(sb, INIT_INODE_TABLE)))
3751 goto out;
3752
3753 elr = ext4_li_request_new(sb, first_not_zeroed);
3754 if (!elr) {
3755 ret = -ENOMEM;
3756 goto out;
3757 }
3758
3759 if (NULL == ext4_li_info) {
3760 ret = ext4_li_info_new();
3761 if (ret)
3762 goto out;
3763 }
3764
3765 mutex_lock(&ext4_li_info->li_list_mtx);
3766 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3767 mutex_unlock(&ext4_li_info->li_list_mtx);
3768
3769 sbi->s_li_request = elr;
3770 /*
3771 * set elr to NULL here since it has been inserted to
3772 * the request_list and the removal and free of it is
3773 * handled by ext4_clear_request_list from now on.
3774 */
3775 elr = NULL;
3776
3777 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3778 ret = ext4_run_lazyinit_thread();
3779 if (ret)
3780 goto out;
3781 }
3782 out:
3783 mutex_unlock(&ext4_li_mtx);
3784 if (ret)
3785 kfree(elr);
3786 return ret;
3787 }
3788
3789 /*
3790 * We do not need to lock anything since this is called on
3791 * module unload.
3792 */
ext4_destroy_lazyinit_thread(void)3793 static void ext4_destroy_lazyinit_thread(void)
3794 {
3795 /*
3796 * If thread exited earlier
3797 * there's nothing to be done.
3798 */
3799 if (!ext4_li_info || !ext4_lazyinit_task)
3800 return;
3801
3802 kthread_stop(ext4_lazyinit_task);
3803 }
3804
set_journal_csum_feature_set(struct super_block * sb)3805 static int set_journal_csum_feature_set(struct super_block *sb)
3806 {
3807 int ret = 1;
3808 int compat, incompat;
3809 struct ext4_sb_info *sbi = EXT4_SB(sb);
3810
3811 if (ext4_has_metadata_csum(sb)) {
3812 /* journal checksum v3 */
3813 compat = 0;
3814 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3815 } else {
3816 /* journal checksum v1 */
3817 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3818 incompat = 0;
3819 }
3820
3821 jbd2_journal_clear_features(sbi->s_journal,
3822 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3823 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3824 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3825 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3826 ret = jbd2_journal_set_features(sbi->s_journal,
3827 compat, 0,
3828 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3829 incompat);
3830 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3831 ret = jbd2_journal_set_features(sbi->s_journal,
3832 compat, 0,
3833 incompat);
3834 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3835 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3836 } else {
3837 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3838 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3839 }
3840
3841 return ret;
3842 }
3843
3844 /*
3845 * Note: calculating the overhead so we can be compatible with
3846 * historical BSD practice is quite difficult in the face of
3847 * clusters/bigalloc. This is because multiple metadata blocks from
3848 * different block group can end up in the same allocation cluster.
3849 * Calculating the exact overhead in the face of clustered allocation
3850 * requires either O(all block bitmaps) in memory or O(number of block
3851 * groups**2) in time. We will still calculate the superblock for
3852 * older file systems --- and if we come across with a bigalloc file
3853 * system with zero in s_overhead_clusters the estimate will be close to
3854 * correct especially for very large cluster sizes --- but for newer
3855 * file systems, it's better to calculate this figure once at mkfs
3856 * time, and store it in the superblock. If the superblock value is
3857 * present (even for non-bigalloc file systems), we will use it.
3858 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3859 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3860 char *buf)
3861 {
3862 struct ext4_sb_info *sbi = EXT4_SB(sb);
3863 struct ext4_group_desc *gdp;
3864 ext4_fsblk_t first_block, last_block, b;
3865 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3866 int s, j, count = 0;
3867 int has_super = ext4_bg_has_super(sb, grp);
3868
3869 if (!ext4_has_feature_bigalloc(sb))
3870 return (has_super + ext4_bg_num_gdb(sb, grp) +
3871 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3872 sbi->s_itb_per_group + 2);
3873
3874 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3875 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3876 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3877 for (i = 0; i < ngroups; i++) {
3878 gdp = ext4_get_group_desc(sb, i, NULL);
3879 b = ext4_block_bitmap(sb, gdp);
3880 if (b >= first_block && b <= last_block) {
3881 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3882 count++;
3883 }
3884 b = ext4_inode_bitmap(sb, gdp);
3885 if (b >= first_block && b <= last_block) {
3886 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3887 count++;
3888 }
3889 b = ext4_inode_table(sb, gdp);
3890 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3891 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3892 int c = EXT4_B2C(sbi, b - first_block);
3893 ext4_set_bit(c, buf);
3894 count++;
3895 }
3896 if (i != grp)
3897 continue;
3898 s = 0;
3899 if (ext4_bg_has_super(sb, grp)) {
3900 ext4_set_bit(s++, buf);
3901 count++;
3902 }
3903 j = ext4_bg_num_gdb(sb, grp);
3904 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3905 ext4_error(sb, "Invalid number of block group "
3906 "descriptor blocks: %d", j);
3907 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3908 }
3909 count += j;
3910 for (; j > 0; j--)
3911 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3912 }
3913 if (!count)
3914 return 0;
3915 return EXT4_CLUSTERS_PER_GROUP(sb) -
3916 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3917 }
3918
3919 /*
3920 * Compute the overhead and stash it in sbi->s_overhead
3921 */
ext4_calculate_overhead(struct super_block * sb)3922 int ext4_calculate_overhead(struct super_block *sb)
3923 {
3924 struct ext4_sb_info *sbi = EXT4_SB(sb);
3925 struct ext4_super_block *es = sbi->s_es;
3926 struct inode *j_inode;
3927 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3928 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3929 ext4_fsblk_t overhead = 0;
3930 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3931
3932 if (!buf)
3933 return -ENOMEM;
3934
3935 /*
3936 * Compute the overhead (FS structures). This is constant
3937 * for a given filesystem unless the number of block groups
3938 * changes so we cache the previous value until it does.
3939 */
3940
3941 /*
3942 * All of the blocks before first_data_block are overhead
3943 */
3944 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3945
3946 /*
3947 * Add the overhead found in each block group
3948 */
3949 for (i = 0; i < ngroups; i++) {
3950 int blks;
3951
3952 blks = count_overhead(sb, i, buf);
3953 overhead += blks;
3954 if (blks)
3955 memset(buf, 0, PAGE_SIZE);
3956 cond_resched();
3957 }
3958
3959 /*
3960 * Add the internal journal blocks whether the journal has been
3961 * loaded or not
3962 */
3963 if (sbi->s_journal && !sbi->s_journal_bdev)
3964 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3965 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3966 /* j_inum for internal journal is non-zero */
3967 j_inode = ext4_get_journal_inode(sb, j_inum);
3968 if (j_inode) {
3969 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3970 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3971 iput(j_inode);
3972 } else {
3973 ext4_msg(sb, KERN_ERR, "can't get journal size");
3974 }
3975 }
3976 sbi->s_overhead = overhead;
3977 smp_wmb();
3978 free_page((unsigned long) buf);
3979 return 0;
3980 }
3981
ext4_set_resv_clusters(struct super_block * sb)3982 static void ext4_set_resv_clusters(struct super_block *sb)
3983 {
3984 ext4_fsblk_t resv_clusters;
3985 struct ext4_sb_info *sbi = EXT4_SB(sb);
3986
3987 /*
3988 * There's no need to reserve anything when we aren't using extents.
3989 * The space estimates are exact, there are no unwritten extents,
3990 * hole punching doesn't need new metadata... This is needed especially
3991 * to keep ext2/3 backward compatibility.
3992 */
3993 if (!ext4_has_feature_extents(sb))
3994 return;
3995 /*
3996 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3997 * This should cover the situations where we can not afford to run
3998 * out of space like for example punch hole, or converting
3999 * unwritten extents in delalloc path. In most cases such
4000 * allocation would require 1, or 2 blocks, higher numbers are
4001 * very rare.
4002 */
4003 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4004 sbi->s_cluster_bits);
4005
4006 do_div(resv_clusters, 50);
4007 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4008
4009 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4010 }
4011
ext4_fill_super(struct super_block * sb,void * data,int silent)4012 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4013 {
4014 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4015 char *orig_data = kstrdup(data, GFP_KERNEL);
4016 struct buffer_head *bh, **group_desc;
4017 struct ext4_super_block *es = NULL;
4018 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4019 struct flex_groups **flex_groups;
4020 ext4_fsblk_t block;
4021 ext4_fsblk_t sb_block = get_sb_block(&data);
4022 ext4_fsblk_t logical_sb_block;
4023 unsigned long offset = 0;
4024 unsigned long journal_devnum = 0;
4025 unsigned long def_mount_opts;
4026 struct inode *root;
4027 const char *descr;
4028 int ret = -ENOMEM;
4029 int blocksize, clustersize;
4030 unsigned int db_count;
4031 unsigned int i;
4032 int needs_recovery, has_huge_files;
4033 __u64 blocks_count;
4034 int err = 0;
4035 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4036 ext4_group_t first_not_zeroed;
4037
4038 if ((data && !orig_data) || !sbi)
4039 goto out_free_base;
4040
4041 sbi->s_daxdev = dax_dev;
4042 sbi->s_blockgroup_lock =
4043 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4044 if (!sbi->s_blockgroup_lock)
4045 goto out_free_base;
4046
4047 sb->s_fs_info = sbi;
4048 sbi->s_sb = sb;
4049 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4050 sbi->s_sb_block = sb_block;
4051 if (sb->s_bdev->bd_part)
4052 sbi->s_sectors_written_start =
4053 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4054
4055 /* Cleanup superblock name */
4056 strreplace(sb->s_id, '/', '!');
4057
4058 /* -EINVAL is default */
4059 ret = -EINVAL;
4060 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4061 if (!blocksize) {
4062 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4063 goto out_fail;
4064 }
4065
4066 /*
4067 * The ext4 superblock will not be buffer aligned for other than 1kB
4068 * block sizes. We need to calculate the offset from buffer start.
4069 */
4070 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4071 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4072 offset = do_div(logical_sb_block, blocksize);
4073 } else {
4074 logical_sb_block = sb_block;
4075 }
4076
4077 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4078 if (IS_ERR(bh)) {
4079 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4080 ret = PTR_ERR(bh);
4081 bh = NULL;
4082 goto out_fail;
4083 }
4084 /*
4085 * Note: s_es must be initialized as soon as possible because
4086 * some ext4 macro-instructions depend on its value
4087 */
4088 es = (struct ext4_super_block *) (bh->b_data + offset);
4089 sbi->s_es = es;
4090 sb->s_magic = le16_to_cpu(es->s_magic);
4091 if (sb->s_magic != EXT4_SUPER_MAGIC)
4092 goto cantfind_ext4;
4093 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4094
4095 /* Warn if metadata_csum and gdt_csum are both set. */
4096 if (ext4_has_feature_metadata_csum(sb) &&
4097 ext4_has_feature_gdt_csum(sb))
4098 ext4_warning(sb, "metadata_csum and uninit_bg are "
4099 "redundant flags; please run fsck.");
4100
4101 /* Check for a known checksum algorithm */
4102 if (!ext4_verify_csum_type(sb, es)) {
4103 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4104 "unknown checksum algorithm.");
4105 silent = 1;
4106 goto cantfind_ext4;
4107 }
4108
4109 /* Load the checksum driver */
4110 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4111 if (IS_ERR(sbi->s_chksum_driver)) {
4112 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4113 ret = PTR_ERR(sbi->s_chksum_driver);
4114 sbi->s_chksum_driver = NULL;
4115 goto failed_mount;
4116 }
4117
4118 /* Check superblock checksum */
4119 if (!ext4_superblock_csum_verify(sb, es)) {
4120 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4121 "invalid superblock checksum. Run e2fsck?");
4122 silent = 1;
4123 ret = -EFSBADCRC;
4124 goto cantfind_ext4;
4125 }
4126
4127 /* Precompute checksum seed for all metadata */
4128 if (ext4_has_feature_csum_seed(sb))
4129 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4130 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4131 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4132 sizeof(es->s_uuid));
4133
4134 /* Set defaults before we parse the mount options */
4135 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4136 set_opt(sb, INIT_INODE_TABLE);
4137 if (def_mount_opts & EXT4_DEFM_DEBUG)
4138 set_opt(sb, DEBUG);
4139 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4140 set_opt(sb, GRPID);
4141 if (def_mount_opts & EXT4_DEFM_UID16)
4142 set_opt(sb, NO_UID32);
4143 /* xattr user namespace & acls are now defaulted on */
4144 set_opt(sb, XATTR_USER);
4145 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4146 set_opt(sb, POSIX_ACL);
4147 #endif
4148 if (ext4_has_feature_fast_commit(sb))
4149 set_opt2(sb, JOURNAL_FAST_COMMIT);
4150 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4151 if (ext4_has_metadata_csum(sb))
4152 set_opt(sb, JOURNAL_CHECKSUM);
4153
4154 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4155 set_opt(sb, JOURNAL_DATA);
4156 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4157 set_opt(sb, ORDERED_DATA);
4158 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4159 set_opt(sb, WRITEBACK_DATA);
4160
4161 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4162 set_opt(sb, ERRORS_PANIC);
4163 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4164 set_opt(sb, ERRORS_CONT);
4165 else
4166 set_opt(sb, ERRORS_RO);
4167 /* block_validity enabled by default; disable with noblock_validity */
4168 set_opt(sb, BLOCK_VALIDITY);
4169 if (def_mount_opts & EXT4_DEFM_DISCARD)
4170 set_opt(sb, DISCARD);
4171
4172 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4173 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4174 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4175 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4176 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4177
4178 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4179 set_opt(sb, BARRIER);
4180
4181 /*
4182 * enable delayed allocation by default
4183 * Use -o nodelalloc to turn it off
4184 */
4185 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4186 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4187 set_opt(sb, DELALLOC);
4188
4189 /*
4190 * set default s_li_wait_mult for lazyinit, for the case there is
4191 * no mount option specified.
4192 */
4193 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4194
4195 if (le32_to_cpu(es->s_log_block_size) >
4196 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4197 ext4_msg(sb, KERN_ERR,
4198 "Invalid log block size: %u",
4199 le32_to_cpu(es->s_log_block_size));
4200 goto failed_mount;
4201 }
4202 if (le32_to_cpu(es->s_log_cluster_size) >
4203 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4204 ext4_msg(sb, KERN_ERR,
4205 "Invalid log cluster size: %u",
4206 le32_to_cpu(es->s_log_cluster_size));
4207 goto failed_mount;
4208 }
4209
4210 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4211
4212 if (blocksize == PAGE_SIZE)
4213 set_opt(sb, DIOREAD_NOLOCK);
4214
4215 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4216 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4217 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4218 } else {
4219 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4220 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4221 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4222 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4223 sbi->s_first_ino);
4224 goto failed_mount;
4225 }
4226 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4227 (!is_power_of_2(sbi->s_inode_size)) ||
4228 (sbi->s_inode_size > blocksize)) {
4229 ext4_msg(sb, KERN_ERR,
4230 "unsupported inode size: %d",
4231 sbi->s_inode_size);
4232 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4233 goto failed_mount;
4234 }
4235 /*
4236 * i_atime_extra is the last extra field available for
4237 * [acm]times in struct ext4_inode. Checking for that
4238 * field should suffice to ensure we have extra space
4239 * for all three.
4240 */
4241 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4242 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4243 sb->s_time_gran = 1;
4244 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4245 } else {
4246 sb->s_time_gran = NSEC_PER_SEC;
4247 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4248 }
4249 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4250 }
4251 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4252 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4253 EXT4_GOOD_OLD_INODE_SIZE;
4254 if (ext4_has_feature_extra_isize(sb)) {
4255 unsigned v, max = (sbi->s_inode_size -
4256 EXT4_GOOD_OLD_INODE_SIZE);
4257
4258 v = le16_to_cpu(es->s_want_extra_isize);
4259 if (v > max) {
4260 ext4_msg(sb, KERN_ERR,
4261 "bad s_want_extra_isize: %d", v);
4262 goto failed_mount;
4263 }
4264 if (sbi->s_want_extra_isize < v)
4265 sbi->s_want_extra_isize = v;
4266
4267 v = le16_to_cpu(es->s_min_extra_isize);
4268 if (v > max) {
4269 ext4_msg(sb, KERN_ERR,
4270 "bad s_min_extra_isize: %d", v);
4271 goto failed_mount;
4272 }
4273 if (sbi->s_want_extra_isize < v)
4274 sbi->s_want_extra_isize = v;
4275 }
4276 }
4277
4278 if (sbi->s_es->s_mount_opts[0]) {
4279 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4280 sizeof(sbi->s_es->s_mount_opts),
4281 GFP_KERNEL);
4282 if (!s_mount_opts)
4283 goto failed_mount;
4284 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4285 &journal_ioprio, 0)) {
4286 ext4_msg(sb, KERN_WARNING,
4287 "failed to parse options in superblock: %s",
4288 s_mount_opts);
4289 }
4290 kfree(s_mount_opts);
4291 }
4292 sbi->s_def_mount_opt = sbi->s_mount_opt;
4293 if (!parse_options((char *) data, sb, &journal_devnum,
4294 &journal_ioprio, 0))
4295 goto failed_mount;
4296
4297 #ifdef CONFIG_UNICODE
4298 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4299 const struct ext4_sb_encodings *encoding_info;
4300 struct unicode_map *encoding;
4301 __u16 encoding_flags;
4302
4303 if (ext4_sb_read_encoding(es, &encoding_info,
4304 &encoding_flags)) {
4305 ext4_msg(sb, KERN_ERR,
4306 "Encoding requested by superblock is unknown");
4307 goto failed_mount;
4308 }
4309
4310 encoding = utf8_load(encoding_info->version);
4311 if (IS_ERR(encoding)) {
4312 ext4_msg(sb, KERN_ERR,
4313 "can't mount with superblock charset: %s-%s "
4314 "not supported by the kernel. flags: 0x%x.",
4315 encoding_info->name, encoding_info->version,
4316 encoding_flags);
4317 goto failed_mount;
4318 }
4319 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4320 "%s-%s with flags 0x%hx", encoding_info->name,
4321 encoding_info->version?:"\b", encoding_flags);
4322
4323 sb->s_encoding = encoding;
4324 sb->s_encoding_flags = encoding_flags;
4325 }
4326 #endif
4327
4328 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4329 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4330 /* can't mount with both data=journal and dioread_nolock. */
4331 clear_opt(sb, DIOREAD_NOLOCK);
4332 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4333 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4334 ext4_msg(sb, KERN_ERR, "can't mount with "
4335 "both data=journal and delalloc");
4336 goto failed_mount;
4337 }
4338 if (test_opt(sb, DAX_ALWAYS)) {
4339 ext4_msg(sb, KERN_ERR, "can't mount with "
4340 "both data=journal and dax");
4341 goto failed_mount;
4342 }
4343 if (ext4_has_feature_encrypt(sb)) {
4344 ext4_msg(sb, KERN_WARNING,
4345 "encrypted files will use data=ordered "
4346 "instead of data journaling mode");
4347 }
4348 if (test_opt(sb, DELALLOC))
4349 clear_opt(sb, DELALLOC);
4350 } else {
4351 sb->s_iflags |= SB_I_CGROUPWB;
4352 }
4353
4354 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4355 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4356
4357 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4358 (ext4_has_compat_features(sb) ||
4359 ext4_has_ro_compat_features(sb) ||
4360 ext4_has_incompat_features(sb)))
4361 ext4_msg(sb, KERN_WARNING,
4362 "feature flags set on rev 0 fs, "
4363 "running e2fsck is recommended");
4364
4365 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4366 set_opt2(sb, HURD_COMPAT);
4367 if (ext4_has_feature_64bit(sb)) {
4368 ext4_msg(sb, KERN_ERR,
4369 "The Hurd can't support 64-bit file systems");
4370 goto failed_mount;
4371 }
4372
4373 /*
4374 * ea_inode feature uses l_i_version field which is not
4375 * available in HURD_COMPAT mode.
4376 */
4377 if (ext4_has_feature_ea_inode(sb)) {
4378 ext4_msg(sb, KERN_ERR,
4379 "ea_inode feature is not supported for Hurd");
4380 goto failed_mount;
4381 }
4382 }
4383
4384 if (IS_EXT2_SB(sb)) {
4385 if (ext2_feature_set_ok(sb))
4386 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4387 "using the ext4 subsystem");
4388 else {
4389 /*
4390 * If we're probing be silent, if this looks like
4391 * it's actually an ext[34] filesystem.
4392 */
4393 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4394 goto failed_mount;
4395 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4396 "to feature incompatibilities");
4397 goto failed_mount;
4398 }
4399 }
4400
4401 if (IS_EXT3_SB(sb)) {
4402 if (ext3_feature_set_ok(sb))
4403 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4404 "using the ext4 subsystem");
4405 else {
4406 /*
4407 * If we're probing be silent, if this looks like
4408 * it's actually an ext4 filesystem.
4409 */
4410 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4411 goto failed_mount;
4412 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4413 "to feature incompatibilities");
4414 goto failed_mount;
4415 }
4416 }
4417
4418 /*
4419 * Check feature flags regardless of the revision level, since we
4420 * previously didn't change the revision level when setting the flags,
4421 * so there is a chance incompat flags are set on a rev 0 filesystem.
4422 */
4423 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4424 goto failed_mount;
4425
4426 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4427 ext4_msg(sb, KERN_ERR,
4428 "Number of reserved GDT blocks insanely large: %d",
4429 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4430 goto failed_mount;
4431 }
4432
4433 if (bdev_dax_supported(sb->s_bdev, blocksize))
4434 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4435
4436 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4437 if (ext4_has_feature_inline_data(sb)) {
4438 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4439 " that may contain inline data");
4440 goto failed_mount;
4441 }
4442 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4443 ext4_msg(sb, KERN_ERR,
4444 "DAX unsupported by block device.");
4445 goto failed_mount;
4446 }
4447 }
4448
4449 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4450 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4451 es->s_encryption_level);
4452 goto failed_mount;
4453 }
4454
4455 if (sb->s_blocksize != blocksize) {
4456 /*
4457 * bh must be released before kill_bdev(), otherwise
4458 * it won't be freed and its page also. kill_bdev()
4459 * is called by sb_set_blocksize().
4460 */
4461 brelse(bh);
4462 /* Validate the filesystem blocksize */
4463 if (!sb_set_blocksize(sb, blocksize)) {
4464 ext4_msg(sb, KERN_ERR, "bad block size %d",
4465 blocksize);
4466 bh = NULL;
4467 goto failed_mount;
4468 }
4469
4470 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4471 offset = do_div(logical_sb_block, blocksize);
4472 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4473 if (IS_ERR(bh)) {
4474 ext4_msg(sb, KERN_ERR,
4475 "Can't read superblock on 2nd try");
4476 ret = PTR_ERR(bh);
4477 bh = NULL;
4478 goto failed_mount;
4479 }
4480 es = (struct ext4_super_block *)(bh->b_data + offset);
4481 sbi->s_es = es;
4482 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4483 ext4_msg(sb, KERN_ERR,
4484 "Magic mismatch, very weird!");
4485 goto failed_mount;
4486 }
4487 }
4488
4489 has_huge_files = ext4_has_feature_huge_file(sb);
4490 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4491 has_huge_files);
4492 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4493
4494 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4495 if (ext4_has_feature_64bit(sb)) {
4496 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4497 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4498 !is_power_of_2(sbi->s_desc_size)) {
4499 ext4_msg(sb, KERN_ERR,
4500 "unsupported descriptor size %lu",
4501 sbi->s_desc_size);
4502 goto failed_mount;
4503 }
4504 } else
4505 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4506
4507 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4508 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4509
4510 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4511 if (sbi->s_inodes_per_block == 0)
4512 goto cantfind_ext4;
4513 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4514 sbi->s_inodes_per_group > blocksize * 8) {
4515 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4516 sbi->s_inodes_per_group);
4517 goto failed_mount;
4518 }
4519 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4520 sbi->s_inodes_per_block;
4521 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4522 sbi->s_sbh = bh;
4523 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4524 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4525 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4526
4527 for (i = 0; i < 4; i++)
4528 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4529 sbi->s_def_hash_version = es->s_def_hash_version;
4530 if (ext4_has_feature_dir_index(sb)) {
4531 i = le32_to_cpu(es->s_flags);
4532 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4533 sbi->s_hash_unsigned = 3;
4534 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4535 #ifdef __CHAR_UNSIGNED__
4536 if (!sb_rdonly(sb))
4537 es->s_flags |=
4538 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4539 sbi->s_hash_unsigned = 3;
4540 #else
4541 if (!sb_rdonly(sb))
4542 es->s_flags |=
4543 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4544 #endif
4545 }
4546 }
4547
4548 /* Handle clustersize */
4549 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4550 if (ext4_has_feature_bigalloc(sb)) {
4551 if (clustersize < blocksize) {
4552 ext4_msg(sb, KERN_ERR,
4553 "cluster size (%d) smaller than "
4554 "block size (%d)", clustersize, blocksize);
4555 goto failed_mount;
4556 }
4557 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4558 le32_to_cpu(es->s_log_block_size);
4559 sbi->s_clusters_per_group =
4560 le32_to_cpu(es->s_clusters_per_group);
4561 if (sbi->s_clusters_per_group > blocksize * 8) {
4562 ext4_msg(sb, KERN_ERR,
4563 "#clusters per group too big: %lu",
4564 sbi->s_clusters_per_group);
4565 goto failed_mount;
4566 }
4567 if (sbi->s_blocks_per_group !=
4568 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4569 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4570 "clusters per group (%lu) inconsistent",
4571 sbi->s_blocks_per_group,
4572 sbi->s_clusters_per_group);
4573 goto failed_mount;
4574 }
4575 } else {
4576 if (clustersize != blocksize) {
4577 ext4_msg(sb, KERN_ERR,
4578 "fragment/cluster size (%d) != "
4579 "block size (%d)", clustersize, blocksize);
4580 goto failed_mount;
4581 }
4582 if (sbi->s_blocks_per_group > blocksize * 8) {
4583 ext4_msg(sb, KERN_ERR,
4584 "#blocks per group too big: %lu",
4585 sbi->s_blocks_per_group);
4586 goto failed_mount;
4587 }
4588 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4589 sbi->s_cluster_bits = 0;
4590 }
4591 sbi->s_cluster_ratio = clustersize / blocksize;
4592
4593 /* Do we have standard group size of clustersize * 8 blocks ? */
4594 if (sbi->s_blocks_per_group == clustersize << 3)
4595 set_opt2(sb, STD_GROUP_SIZE);
4596
4597 /*
4598 * Test whether we have more sectors than will fit in sector_t,
4599 * and whether the max offset is addressable by the page cache.
4600 */
4601 err = generic_check_addressable(sb->s_blocksize_bits,
4602 ext4_blocks_count(es));
4603 if (err) {
4604 ext4_msg(sb, KERN_ERR, "filesystem"
4605 " too large to mount safely on this system");
4606 goto failed_mount;
4607 }
4608
4609 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4610 goto cantfind_ext4;
4611
4612 /* check blocks count against device size */
4613 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4614 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4615 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4616 "exceeds size of device (%llu blocks)",
4617 ext4_blocks_count(es), blocks_count);
4618 goto failed_mount;
4619 }
4620
4621 /*
4622 * It makes no sense for the first data block to be beyond the end
4623 * of the filesystem.
4624 */
4625 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4626 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4627 "block %u is beyond end of filesystem (%llu)",
4628 le32_to_cpu(es->s_first_data_block),
4629 ext4_blocks_count(es));
4630 goto failed_mount;
4631 }
4632 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4633 (sbi->s_cluster_ratio == 1)) {
4634 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4635 "block is 0 with a 1k block and cluster size");
4636 goto failed_mount;
4637 }
4638
4639 blocks_count = (ext4_blocks_count(es) -
4640 le32_to_cpu(es->s_first_data_block) +
4641 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4642 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4643 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4644 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4645 "(block count %llu, first data block %u, "
4646 "blocks per group %lu)", blocks_count,
4647 ext4_blocks_count(es),
4648 le32_to_cpu(es->s_first_data_block),
4649 EXT4_BLOCKS_PER_GROUP(sb));
4650 goto failed_mount;
4651 }
4652 sbi->s_groups_count = blocks_count;
4653 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4654 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4655 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4656 le32_to_cpu(es->s_inodes_count)) {
4657 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4658 le32_to_cpu(es->s_inodes_count),
4659 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4660 ret = -EINVAL;
4661 goto failed_mount;
4662 }
4663 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4664 EXT4_DESC_PER_BLOCK(sb);
4665 if (ext4_has_feature_meta_bg(sb)) {
4666 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4667 ext4_msg(sb, KERN_WARNING,
4668 "first meta block group too large: %u "
4669 "(group descriptor block count %u)",
4670 le32_to_cpu(es->s_first_meta_bg), db_count);
4671 goto failed_mount;
4672 }
4673 }
4674 rcu_assign_pointer(sbi->s_group_desc,
4675 kvmalloc_array(db_count,
4676 sizeof(struct buffer_head *),
4677 GFP_KERNEL));
4678 if (sbi->s_group_desc == NULL) {
4679 ext4_msg(sb, KERN_ERR, "not enough memory");
4680 ret = -ENOMEM;
4681 goto failed_mount;
4682 }
4683
4684 bgl_lock_init(sbi->s_blockgroup_lock);
4685
4686 /* Pre-read the descriptors into the buffer cache */
4687 for (i = 0; i < db_count; i++) {
4688 block = descriptor_loc(sb, logical_sb_block, i);
4689 ext4_sb_breadahead_unmovable(sb, block);
4690 }
4691
4692 for (i = 0; i < db_count; i++) {
4693 struct buffer_head *bh;
4694
4695 block = descriptor_loc(sb, logical_sb_block, i);
4696 bh = ext4_sb_bread_unmovable(sb, block);
4697 if (IS_ERR(bh)) {
4698 ext4_msg(sb, KERN_ERR,
4699 "can't read group descriptor %d", i);
4700 db_count = i;
4701 ret = PTR_ERR(bh);
4702 bh = NULL;
4703 goto failed_mount2;
4704 }
4705 rcu_read_lock();
4706 rcu_dereference(sbi->s_group_desc)[i] = bh;
4707 rcu_read_unlock();
4708 }
4709 sbi->s_gdb_count = db_count;
4710 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4711 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4712 ret = -EFSCORRUPTED;
4713 goto failed_mount2;
4714 }
4715
4716 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4717
4718 /* Register extent status tree shrinker */
4719 if (ext4_es_register_shrinker(sbi))
4720 goto failed_mount3;
4721
4722 sbi->s_stripe = ext4_get_stripe_size(sbi);
4723 sbi->s_extent_max_zeroout_kb = 32;
4724
4725 /*
4726 * set up enough so that it can read an inode
4727 */
4728 sb->s_op = &ext4_sops;
4729 sb->s_export_op = &ext4_export_ops;
4730 sb->s_xattr = ext4_xattr_handlers;
4731 #ifdef CONFIG_FS_ENCRYPTION
4732 sb->s_cop = &ext4_cryptops;
4733 #endif
4734 #ifdef CONFIG_FS_VERITY
4735 sb->s_vop = &ext4_verityops;
4736 #endif
4737 #ifdef CONFIG_QUOTA
4738 sb->dq_op = &ext4_quota_operations;
4739 if (ext4_has_feature_quota(sb))
4740 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4741 else
4742 sb->s_qcop = &ext4_qctl_operations;
4743 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4744 #endif
4745 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4746
4747 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4748 mutex_init(&sbi->s_orphan_lock);
4749
4750 /* Initialize fast commit stuff */
4751 atomic_set(&sbi->s_fc_subtid, 0);
4752 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4753 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4754 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4755 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4756 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4757 sbi->s_fc_bytes = 0;
4758 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4759 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4760 spin_lock_init(&sbi->s_fc_lock);
4761 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4762 sbi->s_fc_replay_state.fc_regions = NULL;
4763 sbi->s_fc_replay_state.fc_regions_size = 0;
4764 sbi->s_fc_replay_state.fc_regions_used = 0;
4765 sbi->s_fc_replay_state.fc_regions_valid = 0;
4766 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4767 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4768 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4769
4770 sb->s_root = NULL;
4771
4772 needs_recovery = (es->s_last_orphan != 0 ||
4773 ext4_has_feature_journal_needs_recovery(sb));
4774
4775 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4776 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4777 if (err)
4778 goto failed_mount3a;
4779 }
4780
4781 /*
4782 * The first inode we look at is the journal inode. Don't try
4783 * root first: it may be modified in the journal!
4784 */
4785 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4786 err = ext4_load_journal(sb, es, journal_devnum);
4787 if (err)
4788 goto failed_mount3a;
4789 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4790 ext4_has_feature_journal_needs_recovery(sb)) {
4791 ext4_msg(sb, KERN_ERR, "required journal recovery "
4792 "suppressed and not mounted read-only");
4793 goto failed_mount3a;
4794 } else {
4795 /* Nojournal mode, all journal mount options are illegal */
4796 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4797 ext4_msg(sb, KERN_ERR, "can't mount with "
4798 "journal_async_commit, fs mounted w/o journal");
4799 goto failed_mount3a;
4800 }
4801
4802 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4803 ext4_msg(sb, KERN_ERR, "can't mount with "
4804 "journal_checksum, fs mounted w/o journal");
4805 goto failed_mount3a;
4806 }
4807 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4808 ext4_msg(sb, KERN_ERR, "can't mount with "
4809 "commit=%lu, fs mounted w/o journal",
4810 sbi->s_commit_interval / HZ);
4811 goto failed_mount3a;
4812 }
4813 if (EXT4_MOUNT_DATA_FLAGS &
4814 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4815 ext4_msg(sb, KERN_ERR, "can't mount with "
4816 "data=, fs mounted w/o journal");
4817 goto failed_mount3a;
4818 }
4819 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4820 clear_opt(sb, JOURNAL_CHECKSUM);
4821 clear_opt(sb, DATA_FLAGS);
4822 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4823 sbi->s_journal = NULL;
4824 needs_recovery = 0;
4825 goto no_journal;
4826 }
4827
4828 if (ext4_has_feature_64bit(sb) &&
4829 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4830 JBD2_FEATURE_INCOMPAT_64BIT)) {
4831 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4832 goto failed_mount_wq;
4833 }
4834
4835 if (!set_journal_csum_feature_set(sb)) {
4836 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4837 "feature set");
4838 goto failed_mount_wq;
4839 }
4840
4841 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4842 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4843 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4844 ext4_msg(sb, KERN_ERR,
4845 "Failed to set fast commit journal feature");
4846 goto failed_mount_wq;
4847 }
4848
4849 /* We have now updated the journal if required, so we can
4850 * validate the data journaling mode. */
4851 switch (test_opt(sb, DATA_FLAGS)) {
4852 case 0:
4853 /* No mode set, assume a default based on the journal
4854 * capabilities: ORDERED_DATA if the journal can
4855 * cope, else JOURNAL_DATA
4856 */
4857 if (jbd2_journal_check_available_features
4858 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4859 set_opt(sb, ORDERED_DATA);
4860 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4861 } else {
4862 set_opt(sb, JOURNAL_DATA);
4863 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4864 }
4865 break;
4866
4867 case EXT4_MOUNT_ORDERED_DATA:
4868 case EXT4_MOUNT_WRITEBACK_DATA:
4869 if (!jbd2_journal_check_available_features
4870 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4871 ext4_msg(sb, KERN_ERR, "Journal does not support "
4872 "requested data journaling mode");
4873 goto failed_mount_wq;
4874 }
4875 default:
4876 break;
4877 }
4878
4879 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4880 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4881 ext4_msg(sb, KERN_ERR, "can't mount with "
4882 "journal_async_commit in data=ordered mode");
4883 goto failed_mount_wq;
4884 }
4885
4886 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4887
4888 sbi->s_journal->j_submit_inode_data_buffers =
4889 ext4_journal_submit_inode_data_buffers;
4890 sbi->s_journal->j_finish_inode_data_buffers =
4891 ext4_journal_finish_inode_data_buffers;
4892
4893 no_journal:
4894 if (!test_opt(sb, NO_MBCACHE)) {
4895 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4896 if (!sbi->s_ea_block_cache) {
4897 ext4_msg(sb, KERN_ERR,
4898 "Failed to create ea_block_cache");
4899 goto failed_mount_wq;
4900 }
4901
4902 if (ext4_has_feature_ea_inode(sb)) {
4903 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4904 if (!sbi->s_ea_inode_cache) {
4905 ext4_msg(sb, KERN_ERR,
4906 "Failed to create ea_inode_cache");
4907 goto failed_mount_wq;
4908 }
4909 }
4910 }
4911
4912 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4913 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4914 goto failed_mount_wq;
4915 }
4916
4917 /*
4918 * Get the # of file system overhead blocks from the
4919 * superblock if present.
4920 */
4921 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4922 /* ignore the precalculated value if it is ridiculous */
4923 if (sbi->s_overhead > ext4_blocks_count(es))
4924 sbi->s_overhead = 0;
4925 /*
4926 * If the bigalloc feature is not enabled recalculating the
4927 * overhead doesn't take long, so we might as well just redo
4928 * it to make sure we are using the correct value.
4929 */
4930 if (!ext4_has_feature_bigalloc(sb))
4931 sbi->s_overhead = 0;
4932 if (sbi->s_overhead == 0) {
4933 err = ext4_calculate_overhead(sb);
4934 if (err)
4935 goto failed_mount_wq;
4936 }
4937
4938 /*
4939 * The maximum number of concurrent works can be high and
4940 * concurrency isn't really necessary. Limit it to 1.
4941 */
4942 EXT4_SB(sb)->rsv_conversion_wq =
4943 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4944 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4945 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4946 ret = -ENOMEM;
4947 goto failed_mount4;
4948 }
4949
4950 /*
4951 * The jbd2_journal_load will have done any necessary log recovery,
4952 * so we can safely mount the rest of the filesystem now.
4953 */
4954
4955 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4956 if (IS_ERR(root)) {
4957 ext4_msg(sb, KERN_ERR, "get root inode failed");
4958 ret = PTR_ERR(root);
4959 root = NULL;
4960 goto failed_mount4;
4961 }
4962 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4963 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4964 iput(root);
4965 goto failed_mount4;
4966 }
4967
4968 sb->s_root = d_make_root(root);
4969 if (!sb->s_root) {
4970 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4971 ret = -ENOMEM;
4972 goto failed_mount4;
4973 }
4974
4975 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4976 if (ret == -EROFS) {
4977 sb->s_flags |= SB_RDONLY;
4978 ret = 0;
4979 } else if (ret)
4980 goto failed_mount4a;
4981
4982 ext4_set_resv_clusters(sb);
4983
4984 if (test_opt(sb, BLOCK_VALIDITY)) {
4985 err = ext4_setup_system_zone(sb);
4986 if (err) {
4987 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4988 "zone (%d)", err);
4989 goto failed_mount4a;
4990 }
4991 }
4992 ext4_fc_replay_cleanup(sb);
4993
4994 ext4_ext_init(sb);
4995 err = ext4_mb_init(sb);
4996 if (err) {
4997 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4998 err);
4999 goto failed_mount5;
5000 }
5001
5002 /*
5003 * We can only set up the journal commit callback once
5004 * mballoc is initialized
5005 */
5006 if (sbi->s_journal)
5007 sbi->s_journal->j_commit_callback =
5008 ext4_journal_commit_callback;
5009
5010 block = ext4_count_free_clusters(sb);
5011 ext4_free_blocks_count_set(sbi->s_es,
5012 EXT4_C2B(sbi, block));
5013 ext4_superblock_csum_set(sb);
5014 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5015 GFP_KERNEL);
5016 if (!err) {
5017 unsigned long freei = ext4_count_free_inodes(sb);
5018 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5019 ext4_superblock_csum_set(sb);
5020 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5021 GFP_KERNEL);
5022 }
5023 if (!err)
5024 err = percpu_counter_init(&sbi->s_dirs_counter,
5025 ext4_count_dirs(sb), GFP_KERNEL);
5026 if (!err)
5027 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5028 GFP_KERNEL);
5029 if (!err)
5030 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5031 GFP_KERNEL);
5032 if (!err)
5033 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5034
5035 if (err) {
5036 ext4_msg(sb, KERN_ERR, "insufficient memory");
5037 goto failed_mount6;
5038 }
5039
5040 if (ext4_has_feature_flex_bg(sb))
5041 if (!ext4_fill_flex_info(sb)) {
5042 ext4_msg(sb, KERN_ERR,
5043 "unable to initialize "
5044 "flex_bg meta info!");
5045 ret = -ENOMEM;
5046 goto failed_mount6;
5047 }
5048
5049 err = ext4_register_li_request(sb, first_not_zeroed);
5050 if (err)
5051 goto failed_mount6;
5052
5053 err = ext4_register_sysfs(sb);
5054 if (err)
5055 goto failed_mount7;
5056
5057 #ifdef CONFIG_QUOTA
5058 /* Enable quota usage during mount. */
5059 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5060 err = ext4_enable_quotas(sb);
5061 if (err)
5062 goto failed_mount8;
5063 }
5064 #endif /* CONFIG_QUOTA */
5065
5066 /*
5067 * Save the original bdev mapping's wb_err value which could be
5068 * used to detect the metadata async write error.
5069 */
5070 spin_lock_init(&sbi->s_bdev_wb_lock);
5071 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5072 &sbi->s_bdev_wb_err);
5073 sb->s_bdev->bd_super = sb;
5074 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5075 ext4_orphan_cleanup(sb, es);
5076 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5077 if (needs_recovery) {
5078 ext4_msg(sb, KERN_INFO, "recovery complete");
5079 err = ext4_mark_recovery_complete(sb, es);
5080 if (err)
5081 goto failed_mount8;
5082 }
5083 if (EXT4_SB(sb)->s_journal) {
5084 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5085 descr = " journalled data mode";
5086 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5087 descr = " ordered data mode";
5088 else
5089 descr = " writeback data mode";
5090 } else
5091 descr = "out journal";
5092
5093 if (test_opt(sb, DISCARD)) {
5094 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5095 if (!blk_queue_discard(q))
5096 ext4_msg(sb, KERN_WARNING,
5097 "mounting with \"discard\" option, but "
5098 "the device does not support discard");
5099 }
5100
5101 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5102 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5103 "Opts: %.*s%s%s", descr,
5104 (int) sizeof(sbi->s_es->s_mount_opts),
5105 sbi->s_es->s_mount_opts,
5106 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5107
5108 if (es->s_error_count)
5109 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5110
5111 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5112 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5113 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5114 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5115 atomic_set(&sbi->s_warning_count, 0);
5116 atomic_set(&sbi->s_msg_count, 0);
5117
5118 kfree(orig_data);
5119 return 0;
5120
5121 cantfind_ext4:
5122 if (!silent)
5123 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5124 goto failed_mount;
5125
5126 failed_mount8:
5127 ext4_unregister_sysfs(sb);
5128 kobject_put(&sbi->s_kobj);
5129 failed_mount7:
5130 ext4_unregister_li_request(sb);
5131 failed_mount6:
5132 ext4_mb_release(sb);
5133 rcu_read_lock();
5134 flex_groups = rcu_dereference(sbi->s_flex_groups);
5135 if (flex_groups) {
5136 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5137 kvfree(flex_groups[i]);
5138 kvfree(flex_groups);
5139 }
5140 rcu_read_unlock();
5141 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5142 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5143 percpu_counter_destroy(&sbi->s_dirs_counter);
5144 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5145 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5146 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5147 failed_mount5:
5148 ext4_ext_release(sb);
5149 ext4_release_system_zone(sb);
5150 failed_mount4a:
5151 dput(sb->s_root);
5152 sb->s_root = NULL;
5153 failed_mount4:
5154 ext4_msg(sb, KERN_ERR, "mount failed");
5155 if (EXT4_SB(sb)->rsv_conversion_wq)
5156 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5157 failed_mount_wq:
5158 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5159 sbi->s_ea_inode_cache = NULL;
5160
5161 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5162 sbi->s_ea_block_cache = NULL;
5163
5164 if (sbi->s_journal) {
5165 jbd2_journal_destroy(sbi->s_journal);
5166 sbi->s_journal = NULL;
5167 }
5168 failed_mount3a:
5169 ext4_es_unregister_shrinker(sbi);
5170 failed_mount3:
5171 del_timer_sync(&sbi->s_err_report);
5172 ext4_stop_mmpd(sbi);
5173 failed_mount2:
5174 rcu_read_lock();
5175 group_desc = rcu_dereference(sbi->s_group_desc);
5176 for (i = 0; i < db_count; i++)
5177 brelse(group_desc[i]);
5178 kvfree(group_desc);
5179 rcu_read_unlock();
5180 failed_mount:
5181 if (sbi->s_chksum_driver)
5182 crypto_free_shash(sbi->s_chksum_driver);
5183
5184 #ifdef CONFIG_UNICODE
5185 utf8_unload(sb->s_encoding);
5186 #endif
5187
5188 #ifdef CONFIG_QUOTA
5189 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5190 kfree(get_qf_name(sb, sbi, i));
5191 #endif
5192 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5193 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5194 brelse(bh);
5195 ext4_blkdev_remove(sbi);
5196 out_fail:
5197 invalidate_bdev(sb->s_bdev);
5198 sb->s_fs_info = NULL;
5199 kfree(sbi->s_blockgroup_lock);
5200 out_free_base:
5201 kfree(sbi);
5202 kfree(orig_data);
5203 fs_put_dax(dax_dev);
5204 return err ? err : ret;
5205 }
5206
5207 /*
5208 * Setup any per-fs journal parameters now. We'll do this both on
5209 * initial mount, once the journal has been initialised but before we've
5210 * done any recovery; and again on any subsequent remount.
5211 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5212 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5213 {
5214 struct ext4_sb_info *sbi = EXT4_SB(sb);
5215
5216 journal->j_commit_interval = sbi->s_commit_interval;
5217 journal->j_min_batch_time = sbi->s_min_batch_time;
5218 journal->j_max_batch_time = sbi->s_max_batch_time;
5219 ext4_fc_init(sb, journal);
5220
5221 write_lock(&journal->j_state_lock);
5222 if (test_opt(sb, BARRIER))
5223 journal->j_flags |= JBD2_BARRIER;
5224 else
5225 journal->j_flags &= ~JBD2_BARRIER;
5226 if (test_opt(sb, DATA_ERR_ABORT))
5227 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5228 else
5229 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5230 write_unlock(&journal->j_state_lock);
5231 }
5232
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5233 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5234 unsigned int journal_inum)
5235 {
5236 struct inode *journal_inode;
5237
5238 /*
5239 * Test for the existence of a valid inode on disk. Bad things
5240 * happen if we iget() an unused inode, as the subsequent iput()
5241 * will try to delete it.
5242 */
5243 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5244 if (IS_ERR(journal_inode)) {
5245 ext4_msg(sb, KERN_ERR, "no journal found");
5246 return NULL;
5247 }
5248 if (!journal_inode->i_nlink) {
5249 make_bad_inode(journal_inode);
5250 iput(journal_inode);
5251 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5252 return NULL;
5253 }
5254
5255 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5256 journal_inode, journal_inode->i_size);
5257 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5258 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5259 iput(journal_inode);
5260 return NULL;
5261 }
5262 return journal_inode;
5263 }
5264
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5265 static journal_t *ext4_get_journal(struct super_block *sb,
5266 unsigned int journal_inum)
5267 {
5268 struct inode *journal_inode;
5269 journal_t *journal;
5270
5271 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5272 return NULL;
5273
5274 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5275 if (!journal_inode)
5276 return NULL;
5277
5278 journal = jbd2_journal_init_inode(journal_inode);
5279 if (!journal) {
5280 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5281 iput(journal_inode);
5282 return NULL;
5283 }
5284 journal->j_private = sb;
5285 ext4_init_journal_params(sb, journal);
5286 return journal;
5287 }
5288
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5289 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5290 dev_t j_dev)
5291 {
5292 struct buffer_head *bh;
5293 journal_t *journal;
5294 ext4_fsblk_t start;
5295 ext4_fsblk_t len;
5296 int hblock, blocksize;
5297 ext4_fsblk_t sb_block;
5298 unsigned long offset;
5299 struct ext4_super_block *es;
5300 struct block_device *bdev;
5301
5302 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5303 return NULL;
5304
5305 bdev = ext4_blkdev_get(j_dev, sb);
5306 if (bdev == NULL)
5307 return NULL;
5308
5309 blocksize = sb->s_blocksize;
5310 hblock = bdev_logical_block_size(bdev);
5311 if (blocksize < hblock) {
5312 ext4_msg(sb, KERN_ERR,
5313 "blocksize too small for journal device");
5314 goto out_bdev;
5315 }
5316
5317 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5318 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5319 set_blocksize(bdev, blocksize);
5320 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5321 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5322 "external journal");
5323 goto out_bdev;
5324 }
5325
5326 es = (struct ext4_super_block *) (bh->b_data + offset);
5327 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5328 !(le32_to_cpu(es->s_feature_incompat) &
5329 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5330 ext4_msg(sb, KERN_ERR, "external journal has "
5331 "bad superblock");
5332 brelse(bh);
5333 goto out_bdev;
5334 }
5335
5336 if ((le32_to_cpu(es->s_feature_ro_compat) &
5337 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5338 es->s_checksum != ext4_superblock_csum(sb, es)) {
5339 ext4_msg(sb, KERN_ERR, "external journal has "
5340 "corrupt superblock");
5341 brelse(bh);
5342 goto out_bdev;
5343 }
5344
5345 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5346 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5347 brelse(bh);
5348 goto out_bdev;
5349 }
5350
5351 len = ext4_blocks_count(es);
5352 start = sb_block + 1;
5353 brelse(bh); /* we're done with the superblock */
5354
5355 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5356 start, len, blocksize);
5357 if (!journal) {
5358 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5359 goto out_bdev;
5360 }
5361 journal->j_private = sb;
5362 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5363 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5364 goto out_journal;
5365 }
5366 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5367 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5368 "user (unsupported) - %d",
5369 be32_to_cpu(journal->j_superblock->s_nr_users));
5370 goto out_journal;
5371 }
5372 EXT4_SB(sb)->s_journal_bdev = bdev;
5373 ext4_init_journal_params(sb, journal);
5374 return journal;
5375
5376 out_journal:
5377 jbd2_journal_destroy(journal);
5378 out_bdev:
5379 ext4_blkdev_put(bdev);
5380 return NULL;
5381 }
5382
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5383 static int ext4_load_journal(struct super_block *sb,
5384 struct ext4_super_block *es,
5385 unsigned long journal_devnum)
5386 {
5387 journal_t *journal;
5388 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5389 dev_t journal_dev;
5390 int err = 0;
5391 int really_read_only;
5392 int journal_dev_ro;
5393
5394 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5395 return -EFSCORRUPTED;
5396
5397 if (journal_devnum &&
5398 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5399 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5400 "numbers have changed");
5401 journal_dev = new_decode_dev(journal_devnum);
5402 } else
5403 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5404
5405 if (journal_inum && journal_dev) {
5406 ext4_msg(sb, KERN_ERR,
5407 "filesystem has both journal inode and journal device!");
5408 return -EINVAL;
5409 }
5410
5411 if (journal_inum) {
5412 journal = ext4_get_journal(sb, journal_inum);
5413 if (!journal)
5414 return -EINVAL;
5415 } else {
5416 journal = ext4_get_dev_journal(sb, journal_dev);
5417 if (!journal)
5418 return -EINVAL;
5419 }
5420
5421 journal_dev_ro = bdev_read_only(journal->j_dev);
5422 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5423
5424 if (journal_dev_ro && !sb_rdonly(sb)) {
5425 ext4_msg(sb, KERN_ERR,
5426 "journal device read-only, try mounting with '-o ro'");
5427 err = -EROFS;
5428 goto err_out;
5429 }
5430
5431 /*
5432 * Are we loading a blank journal or performing recovery after a
5433 * crash? For recovery, we need to check in advance whether we
5434 * can get read-write access to the device.
5435 */
5436 if (ext4_has_feature_journal_needs_recovery(sb)) {
5437 if (sb_rdonly(sb)) {
5438 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5439 "required on readonly filesystem");
5440 if (really_read_only) {
5441 ext4_msg(sb, KERN_ERR, "write access "
5442 "unavailable, cannot proceed "
5443 "(try mounting with noload)");
5444 err = -EROFS;
5445 goto err_out;
5446 }
5447 ext4_msg(sb, KERN_INFO, "write access will "
5448 "be enabled during recovery");
5449 }
5450 }
5451
5452 if (!(journal->j_flags & JBD2_BARRIER))
5453 ext4_msg(sb, KERN_INFO, "barriers disabled");
5454
5455 if (!ext4_has_feature_journal_needs_recovery(sb))
5456 err = jbd2_journal_wipe(journal, !really_read_only);
5457 if (!err) {
5458 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5459 if (save)
5460 memcpy(save, ((char *) es) +
5461 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5462 err = jbd2_journal_load(journal);
5463 if (save)
5464 memcpy(((char *) es) + EXT4_S_ERR_START,
5465 save, EXT4_S_ERR_LEN);
5466 kfree(save);
5467 }
5468
5469 if (err) {
5470 ext4_msg(sb, KERN_ERR, "error loading journal");
5471 goto err_out;
5472 }
5473
5474 EXT4_SB(sb)->s_journal = journal;
5475 err = ext4_clear_journal_err(sb, es);
5476 if (err) {
5477 EXT4_SB(sb)->s_journal = NULL;
5478 jbd2_journal_destroy(journal);
5479 return err;
5480 }
5481
5482 if (!really_read_only && journal_devnum &&
5483 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5484 es->s_journal_dev = cpu_to_le32(journal_devnum);
5485
5486 /* Make sure we flush the recovery flag to disk. */
5487 ext4_commit_super(sb, 1);
5488 }
5489
5490 return 0;
5491
5492 err_out:
5493 jbd2_journal_destroy(journal);
5494 return err;
5495 }
5496
ext4_commit_super(struct super_block * sb,int sync)5497 static int ext4_commit_super(struct super_block *sb, int sync)
5498 {
5499 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5500 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5501 int error = 0;
5502
5503 if (!sbh)
5504 return -EINVAL;
5505 if (block_device_ejected(sb))
5506 return -ENODEV;
5507
5508 /*
5509 * If the file system is mounted read-only, don't update the
5510 * superblock write time. This avoids updating the superblock
5511 * write time when we are mounting the root file system
5512 * read/only but we need to replay the journal; at that point,
5513 * for people who are east of GMT and who make their clock
5514 * tick in localtime for Windows bug-for-bug compatibility,
5515 * the clock is set in the future, and this will cause e2fsck
5516 * to complain and force a full file system check.
5517 */
5518 if (!(sb->s_flags & SB_RDONLY))
5519 ext4_update_tstamp(es, s_wtime);
5520 if (sb->s_bdev->bd_part)
5521 es->s_kbytes_written =
5522 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5523 ((part_stat_read(sb->s_bdev->bd_part,
5524 sectors[STAT_WRITE]) -
5525 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5526 else
5527 es->s_kbytes_written =
5528 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5529 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5530 ext4_free_blocks_count_set(es,
5531 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5532 &EXT4_SB(sb)->s_freeclusters_counter)));
5533 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5534 es->s_free_inodes_count =
5535 cpu_to_le32(percpu_counter_sum_positive(
5536 &EXT4_SB(sb)->s_freeinodes_counter));
5537 BUFFER_TRACE(sbh, "marking dirty");
5538 ext4_superblock_csum_set(sb);
5539 if (sync)
5540 lock_buffer(sbh);
5541 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5542 /*
5543 * Oh, dear. A previous attempt to write the
5544 * superblock failed. This could happen because the
5545 * USB device was yanked out. Or it could happen to
5546 * be a transient write error and maybe the block will
5547 * be remapped. Nothing we can do but to retry the
5548 * write and hope for the best.
5549 */
5550 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5551 "superblock detected");
5552 clear_buffer_write_io_error(sbh);
5553 set_buffer_uptodate(sbh);
5554 }
5555 mark_buffer_dirty(sbh);
5556 if (sync) {
5557 unlock_buffer(sbh);
5558 error = __sync_dirty_buffer(sbh,
5559 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5560 if (buffer_write_io_error(sbh)) {
5561 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5562 "superblock");
5563 clear_buffer_write_io_error(sbh);
5564 set_buffer_uptodate(sbh);
5565 }
5566 }
5567 return error;
5568 }
5569
5570 /*
5571 * Have we just finished recovery? If so, and if we are mounting (or
5572 * remounting) the filesystem readonly, then we will end up with a
5573 * consistent fs on disk. Record that fact.
5574 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5575 static int ext4_mark_recovery_complete(struct super_block *sb,
5576 struct ext4_super_block *es)
5577 {
5578 int err;
5579 journal_t *journal = EXT4_SB(sb)->s_journal;
5580
5581 if (!ext4_has_feature_journal(sb)) {
5582 if (journal != NULL) {
5583 ext4_error(sb, "Journal got removed while the fs was "
5584 "mounted!");
5585 return -EFSCORRUPTED;
5586 }
5587 return 0;
5588 }
5589 jbd2_journal_lock_updates(journal);
5590 err = jbd2_journal_flush(journal);
5591 if (err < 0)
5592 goto out;
5593
5594 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5595 ext4_clear_feature_journal_needs_recovery(sb);
5596 ext4_commit_super(sb, 1);
5597 }
5598 out:
5599 jbd2_journal_unlock_updates(journal);
5600 return err;
5601 }
5602
5603 /*
5604 * If we are mounting (or read-write remounting) a filesystem whose journal
5605 * has recorded an error from a previous lifetime, move that error to the
5606 * main filesystem now.
5607 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5608 static int ext4_clear_journal_err(struct super_block *sb,
5609 struct ext4_super_block *es)
5610 {
5611 journal_t *journal;
5612 int j_errno;
5613 const char *errstr;
5614
5615 if (!ext4_has_feature_journal(sb)) {
5616 ext4_error(sb, "Journal got removed while the fs was mounted!");
5617 return -EFSCORRUPTED;
5618 }
5619
5620 journal = EXT4_SB(sb)->s_journal;
5621
5622 /*
5623 * Now check for any error status which may have been recorded in the
5624 * journal by a prior ext4_error() or ext4_abort()
5625 */
5626
5627 j_errno = jbd2_journal_errno(journal);
5628 if (j_errno) {
5629 char nbuf[16];
5630
5631 errstr = ext4_decode_error(sb, j_errno, nbuf);
5632 ext4_warning(sb, "Filesystem error recorded "
5633 "from previous mount: %s", errstr);
5634 ext4_warning(sb, "Marking fs in need of filesystem check.");
5635
5636 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5637 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5638 ext4_commit_super(sb, 1);
5639
5640 jbd2_journal_clear_err(journal);
5641 jbd2_journal_update_sb_errno(journal);
5642 }
5643 return 0;
5644 }
5645
5646 /*
5647 * Force the running and committing transactions to commit,
5648 * and wait on the commit.
5649 */
ext4_force_commit(struct super_block * sb)5650 int ext4_force_commit(struct super_block *sb)
5651 {
5652 journal_t *journal;
5653
5654 if (sb_rdonly(sb))
5655 return 0;
5656
5657 journal = EXT4_SB(sb)->s_journal;
5658 return ext4_journal_force_commit(journal);
5659 }
5660
ext4_sync_fs(struct super_block * sb,int wait)5661 static int ext4_sync_fs(struct super_block *sb, int wait)
5662 {
5663 int ret = 0;
5664 tid_t target;
5665 bool needs_barrier = false;
5666 struct ext4_sb_info *sbi = EXT4_SB(sb);
5667
5668 if (unlikely(ext4_forced_shutdown(sbi)))
5669 return 0;
5670
5671 trace_ext4_sync_fs(sb, wait);
5672 flush_workqueue(sbi->rsv_conversion_wq);
5673 /*
5674 * Writeback quota in non-journalled quota case - journalled quota has
5675 * no dirty dquots
5676 */
5677 dquot_writeback_dquots(sb, -1);
5678 /*
5679 * Data writeback is possible w/o journal transaction, so barrier must
5680 * being sent at the end of the function. But we can skip it if
5681 * transaction_commit will do it for us.
5682 */
5683 if (sbi->s_journal) {
5684 target = jbd2_get_latest_transaction(sbi->s_journal);
5685 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5686 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5687 needs_barrier = true;
5688
5689 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5690 if (wait)
5691 ret = jbd2_log_wait_commit(sbi->s_journal,
5692 target);
5693 }
5694 } else if (wait && test_opt(sb, BARRIER))
5695 needs_barrier = true;
5696 if (needs_barrier) {
5697 int err;
5698 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5699 if (!ret)
5700 ret = err;
5701 }
5702
5703 return ret;
5704 }
5705
5706 /*
5707 * LVM calls this function before a (read-only) snapshot is created. This
5708 * gives us a chance to flush the journal completely and mark the fs clean.
5709 *
5710 * Note that only this function cannot bring a filesystem to be in a clean
5711 * state independently. It relies on upper layer to stop all data & metadata
5712 * modifications.
5713 */
ext4_freeze(struct super_block * sb)5714 static int ext4_freeze(struct super_block *sb)
5715 {
5716 int error = 0;
5717 journal_t *journal;
5718
5719 if (sb_rdonly(sb))
5720 return 0;
5721
5722 journal = EXT4_SB(sb)->s_journal;
5723
5724 if (journal) {
5725 /* Now we set up the journal barrier. */
5726 jbd2_journal_lock_updates(journal);
5727
5728 /*
5729 * Don't clear the needs_recovery flag if we failed to
5730 * flush the journal.
5731 */
5732 error = jbd2_journal_flush(journal);
5733 if (error < 0)
5734 goto out;
5735
5736 /* Journal blocked and flushed, clear needs_recovery flag. */
5737 ext4_clear_feature_journal_needs_recovery(sb);
5738 }
5739
5740 error = ext4_commit_super(sb, 1);
5741 out:
5742 if (journal)
5743 /* we rely on upper layer to stop further updates */
5744 jbd2_journal_unlock_updates(journal);
5745 return error;
5746 }
5747
5748 /*
5749 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5750 * flag here, even though the filesystem is not technically dirty yet.
5751 */
ext4_unfreeze(struct super_block * sb)5752 static int ext4_unfreeze(struct super_block *sb)
5753 {
5754 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5755 return 0;
5756
5757 if (EXT4_SB(sb)->s_journal) {
5758 /* Reset the needs_recovery flag before the fs is unlocked. */
5759 ext4_set_feature_journal_needs_recovery(sb);
5760 }
5761
5762 ext4_commit_super(sb, 1);
5763 return 0;
5764 }
5765
5766 /*
5767 * Structure to save mount options for ext4_remount's benefit
5768 */
5769 struct ext4_mount_options {
5770 unsigned long s_mount_opt;
5771 unsigned long s_mount_opt2;
5772 kuid_t s_resuid;
5773 kgid_t s_resgid;
5774 unsigned long s_commit_interval;
5775 u32 s_min_batch_time, s_max_batch_time;
5776 #ifdef CONFIG_QUOTA
5777 int s_jquota_fmt;
5778 char *s_qf_names[EXT4_MAXQUOTAS];
5779 #endif
5780 };
5781
ext4_remount(struct super_block * sb,int * flags,char * data)5782 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5783 {
5784 struct ext4_super_block *es;
5785 struct ext4_sb_info *sbi = EXT4_SB(sb);
5786 unsigned long old_sb_flags, vfs_flags;
5787 struct ext4_mount_options old_opts;
5788 ext4_group_t g;
5789 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5790 int err = 0;
5791 #ifdef CONFIG_QUOTA
5792 int enable_quota = 0;
5793 int i, j;
5794 char *to_free[EXT4_MAXQUOTAS];
5795 #endif
5796 char *orig_data = kstrdup(data, GFP_KERNEL);
5797
5798 if (data && !orig_data)
5799 return -ENOMEM;
5800
5801 /* Store the original options */
5802 old_sb_flags = sb->s_flags;
5803 old_opts.s_mount_opt = sbi->s_mount_opt;
5804 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5805 old_opts.s_resuid = sbi->s_resuid;
5806 old_opts.s_resgid = sbi->s_resgid;
5807 old_opts.s_commit_interval = sbi->s_commit_interval;
5808 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5809 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5810 #ifdef CONFIG_QUOTA
5811 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5812 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5813 if (sbi->s_qf_names[i]) {
5814 char *qf_name = get_qf_name(sb, sbi, i);
5815
5816 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5817 if (!old_opts.s_qf_names[i]) {
5818 for (j = 0; j < i; j++)
5819 kfree(old_opts.s_qf_names[j]);
5820 kfree(orig_data);
5821 return -ENOMEM;
5822 }
5823 } else
5824 old_opts.s_qf_names[i] = NULL;
5825 #endif
5826 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5827 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5828
5829 /*
5830 * Some options can be enabled by ext4 and/or by VFS mount flag
5831 * either way we need to make sure it matches in both *flags and
5832 * s_flags. Copy those selected flags from *flags to s_flags
5833 */
5834 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5835 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5836
5837 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5838 err = -EINVAL;
5839 goto restore_opts;
5840 }
5841
5842 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5843 test_opt(sb, JOURNAL_CHECKSUM)) {
5844 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5845 "during remount not supported; ignoring");
5846 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5847 }
5848
5849 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5850 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5851 ext4_msg(sb, KERN_ERR, "can't mount with "
5852 "both data=journal and delalloc");
5853 err = -EINVAL;
5854 goto restore_opts;
5855 }
5856 if (test_opt(sb, DIOREAD_NOLOCK)) {
5857 ext4_msg(sb, KERN_ERR, "can't mount with "
5858 "both data=journal and dioread_nolock");
5859 err = -EINVAL;
5860 goto restore_opts;
5861 }
5862 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5863 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5864 ext4_msg(sb, KERN_ERR, "can't mount with "
5865 "journal_async_commit in data=ordered mode");
5866 err = -EINVAL;
5867 goto restore_opts;
5868 }
5869 }
5870
5871 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5872 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5873 err = -EINVAL;
5874 goto restore_opts;
5875 }
5876
5877 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5878 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5879
5880 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5881 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5882
5883 es = sbi->s_es;
5884
5885 if (sbi->s_journal) {
5886 ext4_init_journal_params(sb, sbi->s_journal);
5887 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5888 }
5889
5890 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5891 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5892 err = -EROFS;
5893 goto restore_opts;
5894 }
5895
5896 if (*flags & SB_RDONLY) {
5897 err = sync_filesystem(sb);
5898 if (err < 0)
5899 goto restore_opts;
5900 err = dquot_suspend(sb, -1);
5901 if (err < 0)
5902 goto restore_opts;
5903
5904 /*
5905 * First of all, the unconditional stuff we have to do
5906 * to disable replay of the journal when we next remount
5907 */
5908 sb->s_flags |= SB_RDONLY;
5909
5910 /*
5911 * OK, test if we are remounting a valid rw partition
5912 * readonly, and if so set the rdonly flag and then
5913 * mark the partition as valid again.
5914 */
5915 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5916 (sbi->s_mount_state & EXT4_VALID_FS))
5917 es->s_state = cpu_to_le16(sbi->s_mount_state);
5918
5919 if (sbi->s_journal) {
5920 /*
5921 * We let remount-ro finish even if marking fs
5922 * as clean failed...
5923 */
5924 ext4_mark_recovery_complete(sb, es);
5925 }
5926 } else {
5927 /* Make sure we can mount this feature set readwrite */
5928 if (ext4_has_feature_readonly(sb) ||
5929 !ext4_feature_set_ok(sb, 0)) {
5930 err = -EROFS;
5931 goto restore_opts;
5932 }
5933 /*
5934 * Make sure the group descriptor checksums
5935 * are sane. If they aren't, refuse to remount r/w.
5936 */
5937 for (g = 0; g < sbi->s_groups_count; g++) {
5938 struct ext4_group_desc *gdp =
5939 ext4_get_group_desc(sb, g, NULL);
5940
5941 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5942 ext4_msg(sb, KERN_ERR,
5943 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5944 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5945 le16_to_cpu(gdp->bg_checksum));
5946 err = -EFSBADCRC;
5947 goto restore_opts;
5948 }
5949 }
5950
5951 /*
5952 * If we have an unprocessed orphan list hanging
5953 * around from a previously readonly bdev mount,
5954 * require a full umount/remount for now.
5955 */
5956 if (es->s_last_orphan) {
5957 ext4_msg(sb, KERN_WARNING, "Couldn't "
5958 "remount RDWR because of unprocessed "
5959 "orphan inode list. Please "
5960 "umount/remount instead");
5961 err = -EINVAL;
5962 goto restore_opts;
5963 }
5964
5965 /*
5966 * Mounting a RDONLY partition read-write, so reread
5967 * and store the current valid flag. (It may have
5968 * been changed by e2fsck since we originally mounted
5969 * the partition.)
5970 */
5971 if (sbi->s_journal) {
5972 err = ext4_clear_journal_err(sb, es);
5973 if (err)
5974 goto restore_opts;
5975 }
5976 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
5977 ~EXT4_FC_REPLAY);
5978
5979 err = ext4_setup_super(sb, es, 0);
5980 if (err)
5981 goto restore_opts;
5982
5983 sb->s_flags &= ~SB_RDONLY;
5984 if (ext4_has_feature_mmp(sb)) {
5985 err = ext4_multi_mount_protect(sb,
5986 le64_to_cpu(es->s_mmp_block));
5987 if (err)
5988 goto restore_opts;
5989 }
5990 #ifdef CONFIG_QUOTA
5991 enable_quota = 1;
5992 #endif
5993 }
5994 }
5995
5996 /*
5997 * Handle creation of system zone data early because it can fail.
5998 * Releasing of existing data is done when we are sure remount will
5999 * succeed.
6000 */
6001 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6002 err = ext4_setup_system_zone(sb);
6003 if (err)
6004 goto restore_opts;
6005 }
6006
6007 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6008 err = ext4_commit_super(sb, 1);
6009 if (err)
6010 goto restore_opts;
6011 }
6012
6013 #ifdef CONFIG_QUOTA
6014 if (enable_quota) {
6015 if (sb_any_quota_suspended(sb))
6016 dquot_resume(sb, -1);
6017 else if (ext4_has_feature_quota(sb)) {
6018 err = ext4_enable_quotas(sb);
6019 if (err)
6020 goto restore_opts;
6021 }
6022 }
6023 /* Release old quota file names */
6024 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6025 kfree(old_opts.s_qf_names[i]);
6026 #endif
6027 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6028 ext4_release_system_zone(sb);
6029
6030 /*
6031 * Reinitialize lazy itable initialization thread based on
6032 * current settings
6033 */
6034 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6035 ext4_unregister_li_request(sb);
6036 else {
6037 ext4_group_t first_not_zeroed;
6038 first_not_zeroed = ext4_has_uninit_itable(sb);
6039 ext4_register_li_request(sb, first_not_zeroed);
6040 }
6041
6042 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6043 ext4_stop_mmpd(sbi);
6044
6045 /*
6046 * Some options can be enabled by ext4 and/or by VFS mount flag
6047 * either way we need to make sure it matches in both *flags and
6048 * s_flags. Copy those selected flags from s_flags to *flags
6049 */
6050 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6051
6052 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6053 kfree(orig_data);
6054 return 0;
6055
6056 restore_opts:
6057 /*
6058 * If there was a failing r/w to ro transition, we may need to
6059 * re-enable quota
6060 */
6061 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6062 sb_any_quota_suspended(sb))
6063 dquot_resume(sb, -1);
6064 sb->s_flags = old_sb_flags;
6065 sbi->s_mount_opt = old_opts.s_mount_opt;
6066 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6067 sbi->s_resuid = old_opts.s_resuid;
6068 sbi->s_resgid = old_opts.s_resgid;
6069 sbi->s_commit_interval = old_opts.s_commit_interval;
6070 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6071 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6072 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6073 ext4_release_system_zone(sb);
6074 #ifdef CONFIG_QUOTA
6075 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6076 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6077 to_free[i] = get_qf_name(sb, sbi, i);
6078 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6079 }
6080 synchronize_rcu();
6081 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6082 kfree(to_free[i]);
6083 #endif
6084 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6085 ext4_stop_mmpd(sbi);
6086 kfree(orig_data);
6087 return err;
6088 }
6089
6090 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6091 static int ext4_statfs_project(struct super_block *sb,
6092 kprojid_t projid, struct kstatfs *buf)
6093 {
6094 struct kqid qid;
6095 struct dquot *dquot;
6096 u64 limit;
6097 u64 curblock;
6098
6099 qid = make_kqid_projid(projid);
6100 dquot = dqget(sb, qid);
6101 if (IS_ERR(dquot))
6102 return PTR_ERR(dquot);
6103 spin_lock(&dquot->dq_dqb_lock);
6104
6105 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6106 dquot->dq_dqb.dqb_bhardlimit);
6107 limit >>= sb->s_blocksize_bits;
6108
6109 if (limit && buf->f_blocks > limit) {
6110 curblock = (dquot->dq_dqb.dqb_curspace +
6111 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6112 buf->f_blocks = limit;
6113 buf->f_bfree = buf->f_bavail =
6114 (buf->f_blocks > curblock) ?
6115 (buf->f_blocks - curblock) : 0;
6116 }
6117
6118 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6119 dquot->dq_dqb.dqb_ihardlimit);
6120 if (limit && buf->f_files > limit) {
6121 buf->f_files = limit;
6122 buf->f_ffree =
6123 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6124 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6125 }
6126
6127 spin_unlock(&dquot->dq_dqb_lock);
6128 dqput(dquot);
6129 return 0;
6130 }
6131 #endif
6132
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6133 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6134 {
6135 struct super_block *sb = dentry->d_sb;
6136 struct ext4_sb_info *sbi = EXT4_SB(sb);
6137 struct ext4_super_block *es = sbi->s_es;
6138 ext4_fsblk_t overhead = 0, resv_blocks;
6139 u64 fsid;
6140 s64 bfree;
6141 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6142
6143 if (!test_opt(sb, MINIX_DF))
6144 overhead = sbi->s_overhead;
6145
6146 buf->f_type = EXT4_SUPER_MAGIC;
6147 buf->f_bsize = sb->s_blocksize;
6148 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6149 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6150 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6151 /* prevent underflow in case that few free space is available */
6152 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6153 buf->f_bavail = buf->f_bfree -
6154 (ext4_r_blocks_count(es) + resv_blocks);
6155 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6156 buf->f_bavail = 0;
6157 buf->f_files = le32_to_cpu(es->s_inodes_count);
6158 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6159 buf->f_namelen = EXT4_NAME_LEN;
6160 fsid = le64_to_cpup((void *)es->s_uuid) ^
6161 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6162 buf->f_fsid = u64_to_fsid(fsid);
6163
6164 #ifdef CONFIG_QUOTA
6165 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6166 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6167 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6168 #endif
6169 return 0;
6170 }
6171
6172
6173 #ifdef CONFIG_QUOTA
6174
6175 /*
6176 * Helper functions so that transaction is started before we acquire dqio_sem
6177 * to keep correct lock ordering of transaction > dqio_sem
6178 */
dquot_to_inode(struct dquot * dquot)6179 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6180 {
6181 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6182 }
6183
ext4_write_dquot(struct dquot * dquot)6184 static int ext4_write_dquot(struct dquot *dquot)
6185 {
6186 int ret, err;
6187 handle_t *handle;
6188 struct inode *inode;
6189
6190 inode = dquot_to_inode(dquot);
6191 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6192 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6193 if (IS_ERR(handle))
6194 return PTR_ERR(handle);
6195 ret = dquot_commit(dquot);
6196 err = ext4_journal_stop(handle);
6197 if (!ret)
6198 ret = err;
6199 return ret;
6200 }
6201
ext4_acquire_dquot(struct dquot * dquot)6202 static int ext4_acquire_dquot(struct dquot *dquot)
6203 {
6204 int ret, err;
6205 handle_t *handle;
6206
6207 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6208 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6209 if (IS_ERR(handle))
6210 return PTR_ERR(handle);
6211 ret = dquot_acquire(dquot);
6212 err = ext4_journal_stop(handle);
6213 if (!ret)
6214 ret = err;
6215 return ret;
6216 }
6217
ext4_release_dquot(struct dquot * dquot)6218 static int ext4_release_dquot(struct dquot *dquot)
6219 {
6220 int ret, err;
6221 handle_t *handle;
6222
6223 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6224 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6225 if (IS_ERR(handle)) {
6226 /* Release dquot anyway to avoid endless cycle in dqput() */
6227 dquot_release(dquot);
6228 return PTR_ERR(handle);
6229 }
6230 ret = dquot_release(dquot);
6231 err = ext4_journal_stop(handle);
6232 if (!ret)
6233 ret = err;
6234 return ret;
6235 }
6236
ext4_mark_dquot_dirty(struct dquot * dquot)6237 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6238 {
6239 struct super_block *sb = dquot->dq_sb;
6240 struct ext4_sb_info *sbi = EXT4_SB(sb);
6241
6242 /* Are we journaling quotas? */
6243 if (ext4_has_feature_quota(sb) ||
6244 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6245 dquot_mark_dquot_dirty(dquot);
6246 return ext4_write_dquot(dquot);
6247 } else {
6248 return dquot_mark_dquot_dirty(dquot);
6249 }
6250 }
6251
ext4_write_info(struct super_block * sb,int type)6252 static int ext4_write_info(struct super_block *sb, int type)
6253 {
6254 int ret, err;
6255 handle_t *handle;
6256
6257 /* Data block + inode block */
6258 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6259 if (IS_ERR(handle))
6260 return PTR_ERR(handle);
6261 ret = dquot_commit_info(sb, type);
6262 err = ext4_journal_stop(handle);
6263 if (!ret)
6264 ret = err;
6265 return ret;
6266 }
6267
6268 /*
6269 * Turn on quotas during mount time - we need to find
6270 * the quota file and such...
6271 */
ext4_quota_on_mount(struct super_block * sb,int type)6272 static int ext4_quota_on_mount(struct super_block *sb, int type)
6273 {
6274 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6275 EXT4_SB(sb)->s_jquota_fmt, type);
6276 }
6277
lockdep_set_quota_inode(struct inode * inode,int subclass)6278 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6279 {
6280 struct ext4_inode_info *ei = EXT4_I(inode);
6281
6282 /* The first argument of lockdep_set_subclass has to be
6283 * *exactly* the same as the argument to init_rwsem() --- in
6284 * this case, in init_once() --- or lockdep gets unhappy
6285 * because the name of the lock is set using the
6286 * stringification of the argument to init_rwsem().
6287 */
6288 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6289 lockdep_set_subclass(&ei->i_data_sem, subclass);
6290 }
6291
6292 /*
6293 * Standard function to be called on quota_on
6294 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6295 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6296 const struct path *path)
6297 {
6298 int err;
6299
6300 if (!test_opt(sb, QUOTA))
6301 return -EINVAL;
6302
6303 /* Quotafile not on the same filesystem? */
6304 if (path->dentry->d_sb != sb)
6305 return -EXDEV;
6306
6307 /* Quota already enabled for this file? */
6308 if (IS_NOQUOTA(d_inode(path->dentry)))
6309 return -EBUSY;
6310
6311 /* Journaling quota? */
6312 if (EXT4_SB(sb)->s_qf_names[type]) {
6313 /* Quotafile not in fs root? */
6314 if (path->dentry->d_parent != sb->s_root)
6315 ext4_msg(sb, KERN_WARNING,
6316 "Quota file not on filesystem root. "
6317 "Journaled quota will not work");
6318 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6319 } else {
6320 /*
6321 * Clear the flag just in case mount options changed since
6322 * last time.
6323 */
6324 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6325 }
6326
6327 /*
6328 * When we journal data on quota file, we have to flush journal to see
6329 * all updates to the file when we bypass pagecache...
6330 */
6331 if (EXT4_SB(sb)->s_journal &&
6332 ext4_should_journal_data(d_inode(path->dentry))) {
6333 /*
6334 * We don't need to lock updates but journal_flush() could
6335 * otherwise be livelocked...
6336 */
6337 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6338 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6339 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6340 if (err)
6341 return err;
6342 }
6343
6344 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6345 err = dquot_quota_on(sb, type, format_id, path);
6346 if (!err) {
6347 struct inode *inode = d_inode(path->dentry);
6348 handle_t *handle;
6349
6350 /*
6351 * Set inode flags to prevent userspace from messing with quota
6352 * files. If this fails, we return success anyway since quotas
6353 * are already enabled and this is not a hard failure.
6354 */
6355 inode_lock(inode);
6356 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6357 if (IS_ERR(handle))
6358 goto unlock_inode;
6359 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6360 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6361 S_NOATIME | S_IMMUTABLE);
6362 err = ext4_mark_inode_dirty(handle, inode);
6363 ext4_journal_stop(handle);
6364 unlock_inode:
6365 inode_unlock(inode);
6366 if (err)
6367 dquot_quota_off(sb, type);
6368 }
6369 if (err)
6370 lockdep_set_quota_inode(path->dentry->d_inode,
6371 I_DATA_SEM_NORMAL);
6372 return err;
6373 }
6374
ext4_check_quota_inum(int type,unsigned long qf_inum)6375 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6376 {
6377 switch (type) {
6378 case USRQUOTA:
6379 return qf_inum == EXT4_USR_QUOTA_INO;
6380 case GRPQUOTA:
6381 return qf_inum == EXT4_GRP_QUOTA_INO;
6382 case PRJQUOTA:
6383 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6384 default:
6385 BUG();
6386 }
6387 }
6388
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6389 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6390 unsigned int flags)
6391 {
6392 int err;
6393 struct inode *qf_inode;
6394 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6395 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6396 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6397 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6398 };
6399
6400 BUG_ON(!ext4_has_feature_quota(sb));
6401
6402 if (!qf_inums[type])
6403 return -EPERM;
6404
6405 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6406 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6407 qf_inums[type], type);
6408 return -EUCLEAN;
6409 }
6410
6411 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6412 if (IS_ERR(qf_inode)) {
6413 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6414 qf_inums[type], type);
6415 return PTR_ERR(qf_inode);
6416 }
6417
6418 /* Don't account quota for quota files to avoid recursion */
6419 qf_inode->i_flags |= S_NOQUOTA;
6420 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6421 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6422 if (err)
6423 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6424 iput(qf_inode);
6425
6426 return err;
6427 }
6428
6429 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6430 static int ext4_enable_quotas(struct super_block *sb)
6431 {
6432 int type, err = 0;
6433 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6434 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6435 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6436 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6437 };
6438 bool quota_mopt[EXT4_MAXQUOTAS] = {
6439 test_opt(sb, USRQUOTA),
6440 test_opt(sb, GRPQUOTA),
6441 test_opt(sb, PRJQUOTA),
6442 };
6443
6444 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6445 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6446 if (qf_inums[type]) {
6447 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6448 DQUOT_USAGE_ENABLED |
6449 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6450 if (err) {
6451 ext4_warning(sb,
6452 "Failed to enable quota tracking "
6453 "(type=%d, err=%d, ino=%lu). "
6454 "Please run e2fsck to fix.", type,
6455 err, qf_inums[type]);
6456 for (type--; type >= 0; type--) {
6457 struct inode *inode;
6458
6459 inode = sb_dqopt(sb)->files[type];
6460 if (inode)
6461 inode = igrab(inode);
6462 dquot_quota_off(sb, type);
6463 if (inode) {
6464 lockdep_set_quota_inode(inode,
6465 I_DATA_SEM_NORMAL);
6466 iput(inode);
6467 }
6468 }
6469
6470 return err;
6471 }
6472 }
6473 }
6474 return 0;
6475 }
6476
ext4_quota_off(struct super_block * sb,int type)6477 static int ext4_quota_off(struct super_block *sb, int type)
6478 {
6479 struct inode *inode = sb_dqopt(sb)->files[type];
6480 handle_t *handle;
6481 int err;
6482
6483 /* Force all delayed allocation blocks to be allocated.
6484 * Caller already holds s_umount sem */
6485 if (test_opt(sb, DELALLOC))
6486 sync_filesystem(sb);
6487
6488 if (!inode || !igrab(inode))
6489 goto out;
6490
6491 err = dquot_quota_off(sb, type);
6492 if (err || ext4_has_feature_quota(sb))
6493 goto out_put;
6494
6495 inode_lock(inode);
6496 /*
6497 * Update modification times of quota files when userspace can
6498 * start looking at them. If we fail, we return success anyway since
6499 * this is not a hard failure and quotas are already disabled.
6500 */
6501 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6502 if (IS_ERR(handle)) {
6503 err = PTR_ERR(handle);
6504 goto out_unlock;
6505 }
6506 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6507 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6508 inode->i_mtime = inode->i_ctime = current_time(inode);
6509 err = ext4_mark_inode_dirty(handle, inode);
6510 ext4_journal_stop(handle);
6511 out_unlock:
6512 inode_unlock(inode);
6513 out_put:
6514 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6515 iput(inode);
6516 return err;
6517 out:
6518 return dquot_quota_off(sb, type);
6519 }
6520
6521 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6522 * acquiring the locks... As quota files are never truncated and quota code
6523 * itself serializes the operations (and no one else should touch the files)
6524 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6525 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6526 size_t len, loff_t off)
6527 {
6528 struct inode *inode = sb_dqopt(sb)->files[type];
6529 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6530 int offset = off & (sb->s_blocksize - 1);
6531 int tocopy;
6532 size_t toread;
6533 struct buffer_head *bh;
6534 loff_t i_size = i_size_read(inode);
6535
6536 if (off > i_size)
6537 return 0;
6538 if (off+len > i_size)
6539 len = i_size-off;
6540 toread = len;
6541 while (toread > 0) {
6542 tocopy = sb->s_blocksize - offset < toread ?
6543 sb->s_blocksize - offset : toread;
6544 bh = ext4_bread(NULL, inode, blk, 0);
6545 if (IS_ERR(bh))
6546 return PTR_ERR(bh);
6547 if (!bh) /* A hole? */
6548 memset(data, 0, tocopy);
6549 else
6550 memcpy(data, bh->b_data+offset, tocopy);
6551 brelse(bh);
6552 offset = 0;
6553 toread -= tocopy;
6554 data += tocopy;
6555 blk++;
6556 }
6557 return len;
6558 }
6559
6560 /* Write to quotafile (we know the transaction is already started and has
6561 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6562 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6563 const char *data, size_t len, loff_t off)
6564 {
6565 struct inode *inode = sb_dqopt(sb)->files[type];
6566 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6567 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6568 int retries = 0;
6569 struct buffer_head *bh;
6570 handle_t *handle = journal_current_handle();
6571
6572 if (!handle) {
6573 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6574 " cancelled because transaction is not started",
6575 (unsigned long long)off, (unsigned long long)len);
6576 return -EIO;
6577 }
6578 /*
6579 * Since we account only one data block in transaction credits,
6580 * then it is impossible to cross a block boundary.
6581 */
6582 if (sb->s_blocksize - offset < len) {
6583 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6584 " cancelled because not block aligned",
6585 (unsigned long long)off, (unsigned long long)len);
6586 return -EIO;
6587 }
6588
6589 do {
6590 bh = ext4_bread(handle, inode, blk,
6591 EXT4_GET_BLOCKS_CREATE |
6592 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6593 } while (PTR_ERR(bh) == -ENOSPC &&
6594 ext4_should_retry_alloc(inode->i_sb, &retries));
6595 if (IS_ERR(bh))
6596 return PTR_ERR(bh);
6597 if (!bh)
6598 goto out;
6599 BUFFER_TRACE(bh, "get write access");
6600 err = ext4_journal_get_write_access(handle, bh);
6601 if (err) {
6602 brelse(bh);
6603 return err;
6604 }
6605 lock_buffer(bh);
6606 memcpy(bh->b_data+offset, data, len);
6607 flush_dcache_page(bh->b_page);
6608 unlock_buffer(bh);
6609 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6610 brelse(bh);
6611 out:
6612 if (inode->i_size < off + len) {
6613 i_size_write(inode, off + len);
6614 EXT4_I(inode)->i_disksize = inode->i_size;
6615 err2 = ext4_mark_inode_dirty(handle, inode);
6616 if (unlikely(err2 && !err))
6617 err = err2;
6618 }
6619 return err ? err : len;
6620 }
6621 #endif
6622
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6623 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6624 const char *dev_name, void *data)
6625 {
6626 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6627 }
6628
6629 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6630 static inline void register_as_ext2(void)
6631 {
6632 int err = register_filesystem(&ext2_fs_type);
6633 if (err)
6634 printk(KERN_WARNING
6635 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6636 }
6637
unregister_as_ext2(void)6638 static inline void unregister_as_ext2(void)
6639 {
6640 unregister_filesystem(&ext2_fs_type);
6641 }
6642
ext2_feature_set_ok(struct super_block * sb)6643 static inline int ext2_feature_set_ok(struct super_block *sb)
6644 {
6645 if (ext4_has_unknown_ext2_incompat_features(sb))
6646 return 0;
6647 if (sb_rdonly(sb))
6648 return 1;
6649 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6650 return 0;
6651 return 1;
6652 }
6653 #else
register_as_ext2(void)6654 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6655 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6656 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6657 #endif
6658
register_as_ext3(void)6659 static inline void register_as_ext3(void)
6660 {
6661 int err = register_filesystem(&ext3_fs_type);
6662 if (err)
6663 printk(KERN_WARNING
6664 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6665 }
6666
unregister_as_ext3(void)6667 static inline void unregister_as_ext3(void)
6668 {
6669 unregister_filesystem(&ext3_fs_type);
6670 }
6671
ext3_feature_set_ok(struct super_block * sb)6672 static inline int ext3_feature_set_ok(struct super_block *sb)
6673 {
6674 if (ext4_has_unknown_ext3_incompat_features(sb))
6675 return 0;
6676 if (!ext4_has_feature_journal(sb))
6677 return 0;
6678 if (sb_rdonly(sb))
6679 return 1;
6680 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6681 return 0;
6682 return 1;
6683 }
6684
6685 static struct file_system_type ext4_fs_type = {
6686 .owner = THIS_MODULE,
6687 .name = "ext4",
6688 .mount = ext4_mount,
6689 .kill_sb = kill_block_super,
6690 .fs_flags = FS_REQUIRES_DEV,
6691 };
6692 MODULE_ALIAS_FS("ext4");
6693
6694 /* Shared across all ext4 file systems */
6695 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6696
ext4_init_fs(void)6697 static int __init ext4_init_fs(void)
6698 {
6699 int i, err;
6700
6701 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6702 ext4_li_info = NULL;
6703 mutex_init(&ext4_li_mtx);
6704
6705 /* Build-time check for flags consistency */
6706 ext4_check_flag_values();
6707
6708 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6709 init_waitqueue_head(&ext4__ioend_wq[i]);
6710
6711 err = ext4_init_es();
6712 if (err)
6713 return err;
6714
6715 err = ext4_init_pending();
6716 if (err)
6717 goto out7;
6718
6719 err = ext4_init_post_read_processing();
6720 if (err)
6721 goto out6;
6722
6723 err = ext4_init_pageio();
6724 if (err)
6725 goto out5;
6726
6727 err = ext4_init_system_zone();
6728 if (err)
6729 goto out4;
6730
6731 err = ext4_init_sysfs();
6732 if (err)
6733 goto out3;
6734
6735 err = ext4_init_mballoc();
6736 if (err)
6737 goto out2;
6738 err = init_inodecache();
6739 if (err)
6740 goto out1;
6741
6742 err = ext4_fc_init_dentry_cache();
6743 if (err)
6744 goto out05;
6745
6746 register_as_ext3();
6747 register_as_ext2();
6748 err = register_filesystem(&ext4_fs_type);
6749 if (err)
6750 goto out;
6751
6752 return 0;
6753 out:
6754 unregister_as_ext2();
6755 unregister_as_ext3();
6756 ext4_fc_destroy_dentry_cache();
6757 out05:
6758 destroy_inodecache();
6759 out1:
6760 ext4_exit_mballoc();
6761 out2:
6762 ext4_exit_sysfs();
6763 out3:
6764 ext4_exit_system_zone();
6765 out4:
6766 ext4_exit_pageio();
6767 out5:
6768 ext4_exit_post_read_processing();
6769 out6:
6770 ext4_exit_pending();
6771 out7:
6772 ext4_exit_es();
6773
6774 return err;
6775 }
6776
ext4_exit_fs(void)6777 static void __exit ext4_exit_fs(void)
6778 {
6779 ext4_destroy_lazyinit_thread();
6780 unregister_as_ext2();
6781 unregister_as_ext3();
6782 unregister_filesystem(&ext4_fs_type);
6783 ext4_fc_destroy_dentry_cache();
6784 destroy_inodecache();
6785 ext4_exit_mballoc();
6786 ext4_exit_sysfs();
6787 ext4_exit_system_zone();
6788 ext4_exit_pageio();
6789 ext4_exit_post_read_processing();
6790 ext4_exit_es();
6791 ext4_exit_pending();
6792 }
6793
6794 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6795 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6796 MODULE_LICENSE("GPL");
6797 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
6798 MODULE_SOFTDEP("pre: crc32c");
6799 module_init(ext4_init_fs)
6800 module_exit(ext4_exit_fs)
6801