1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
52
53 if (!nm_i)
54 return true;
55
56 si_meminfo(&val);
57
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
60
61 /*
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 */
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
81
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == INMEM_PAGES) {
94 /* it allows 20% / total_ram for inmemory pages */
95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 res = mem_size < (val.totalram / 5);
97 } else if (type == DISCARD_CACHE) {
98 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
99 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
100 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
101 } else if (type == COMPRESS_PAGE) {
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 unsigned long free_ram = val.freeram;
104
105 /*
106 * free memory is lower than watermark or cached page count
107 * exceed threshold, deny caching compress page.
108 */
109 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
110 (COMPRESS_MAPPING(sbi)->nrpages <
111 free_ram * sbi->compress_percent / 100);
112 #else
113 res = false;
114 #endif
115 } else {
116 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
117 return true;
118 }
119 return res;
120 }
121
clear_node_page_dirty(struct page * page)122 static void clear_node_page_dirty(struct page *page)
123 {
124 if (PageDirty(page)) {
125 f2fs_clear_page_cache_dirty_tag(page);
126 clear_page_dirty_for_io(page);
127 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
128 }
129 ClearPageUptodate(page);
130 }
131
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)132 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
133 {
134 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
135 }
136
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)137 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
138 {
139 struct page *src_page;
140 struct page *dst_page;
141 pgoff_t dst_off;
142 void *src_addr;
143 void *dst_addr;
144 struct f2fs_nm_info *nm_i = NM_I(sbi);
145
146 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
147
148 /* get current nat block page with lock */
149 src_page = get_current_nat_page(sbi, nid);
150 if (IS_ERR(src_page))
151 return src_page;
152 dst_page = f2fs_grab_meta_page(sbi, dst_off);
153 f2fs_bug_on(sbi, PageDirty(src_page));
154
155 src_addr = page_address(src_page);
156 dst_addr = page_address(dst_page);
157 memcpy(dst_addr, src_addr, PAGE_SIZE);
158 set_page_dirty(dst_page);
159 f2fs_put_page(src_page, 1);
160
161 set_to_next_nat(nm_i, nid);
162
163 return dst_page;
164 }
165
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)166 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
167 nid_t nid, bool no_fail)
168 {
169 struct nat_entry *new;
170
171 new = f2fs_kmem_cache_alloc(nat_entry_slab,
172 GFP_F2FS_ZERO, no_fail, sbi);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178 }
179
__free_nat_entry(struct nat_entry * e)180 static void __free_nat_entry(struct nat_entry *e)
181 {
182 kmem_cache_free(nat_entry_slab, e);
183 }
184
185 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)186 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188 {
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204 }
205
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)206 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207 {
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221 }
222
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)223 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225 {
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227 }
228
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)229 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230 {
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235 }
236
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)237 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239 {
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
246 GFP_NOFS, true, NULL);
247
248 INIT_LIST_HEAD(&head->entry_list);
249 INIT_LIST_HEAD(&head->set_list);
250 head->set = set;
251 head->entry_cnt = 0;
252 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
253 }
254 return head;
255 }
256
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)257 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
258 struct nat_entry *ne)
259 {
260 struct nat_entry_set *head;
261 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
262
263 if (!new_ne)
264 head = __grab_nat_entry_set(nm_i, ne);
265
266 /*
267 * update entry_cnt in below condition:
268 * 1. update NEW_ADDR to valid block address;
269 * 2. update old block address to new one;
270 */
271 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
272 !get_nat_flag(ne, IS_DIRTY)))
273 head->entry_cnt++;
274
275 set_nat_flag(ne, IS_PREALLOC, new_ne);
276
277 if (get_nat_flag(ne, IS_DIRTY))
278 goto refresh_list;
279
280 nm_i->nat_cnt[DIRTY_NAT]++;
281 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
282 set_nat_flag(ne, IS_DIRTY, true);
283 refresh_list:
284 spin_lock(&nm_i->nat_list_lock);
285 if (new_ne)
286 list_del_init(&ne->list);
287 else
288 list_move_tail(&ne->list, &head->entry_list);
289 spin_unlock(&nm_i->nat_list_lock);
290 }
291
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)292 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
293 struct nat_entry_set *set, struct nat_entry *ne)
294 {
295 spin_lock(&nm_i->nat_list_lock);
296 list_move_tail(&ne->list, &nm_i->nat_entries);
297 spin_unlock(&nm_i->nat_list_lock);
298
299 set_nat_flag(ne, IS_DIRTY, false);
300 set->entry_cnt--;
301 nm_i->nat_cnt[DIRTY_NAT]--;
302 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
303 }
304
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)305 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
306 nid_t start, unsigned int nr, struct nat_entry_set **ep)
307 {
308 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
309 start, nr);
310 }
311
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)312 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
313 {
314 return NODE_MAPPING(sbi) == page->mapping &&
315 IS_DNODE(page) && is_cold_node(page);
316 }
317
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)318 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
319 {
320 spin_lock_init(&sbi->fsync_node_lock);
321 INIT_LIST_HEAD(&sbi->fsync_node_list);
322 sbi->fsync_seg_id = 0;
323 sbi->fsync_node_num = 0;
324 }
325
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)326 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
327 struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331 unsigned int seq_id;
332
333 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
334 GFP_NOFS, true, NULL);
335
336 get_page(page);
337 fn->page = page;
338 INIT_LIST_HEAD(&fn->list);
339
340 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
341 list_add_tail(&fn->list, &sbi->fsync_node_list);
342 fn->seq_id = sbi->fsync_seg_id++;
343 seq_id = fn->seq_id;
344 sbi->fsync_node_num++;
345 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
346
347 return seq_id;
348 }
349
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)350 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
351 {
352 struct fsync_node_entry *fn;
353 unsigned long flags;
354
355 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
356 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
357 if (fn->page == page) {
358 list_del(&fn->list);
359 sbi->fsync_node_num--;
360 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 kmem_cache_free(fsync_node_entry_slab, fn);
362 put_page(page);
363 return;
364 }
365 }
366 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
367 f2fs_bug_on(sbi, 1);
368 }
369
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)370 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
375 sbi->fsync_seg_id = 0;
376 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
377 }
378
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)379 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
380 {
381 struct f2fs_nm_info *nm_i = NM_I(sbi);
382 struct nat_entry *e;
383 bool need = false;
384
385 f2fs_down_read(&nm_i->nat_tree_lock);
386 e = __lookup_nat_cache(nm_i, nid);
387 if (e) {
388 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
389 !get_nat_flag(e, HAS_FSYNCED_INODE))
390 need = true;
391 }
392 f2fs_up_read(&nm_i->nat_tree_lock);
393 return need;
394 }
395
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)396 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
397 {
398 struct f2fs_nm_info *nm_i = NM_I(sbi);
399 struct nat_entry *e;
400 bool is_cp = true;
401
402 f2fs_down_read(&nm_i->nat_tree_lock);
403 e = __lookup_nat_cache(nm_i, nid);
404 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
405 is_cp = false;
406 f2fs_up_read(&nm_i->nat_tree_lock);
407 return is_cp;
408 }
409
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)410 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
411 {
412 struct f2fs_nm_info *nm_i = NM_I(sbi);
413 struct nat_entry *e;
414 bool need_update = true;
415
416 f2fs_down_read(&nm_i->nat_tree_lock);
417 e = __lookup_nat_cache(nm_i, ino);
418 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
419 (get_nat_flag(e, IS_CHECKPOINTED) ||
420 get_nat_flag(e, HAS_FSYNCED_INODE)))
421 need_update = false;
422 f2fs_up_read(&nm_i->nat_tree_lock);
423 return need_update;
424 }
425
426 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)427 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
428 struct f2fs_nat_entry *ne)
429 {
430 struct f2fs_nm_info *nm_i = NM_I(sbi);
431 struct nat_entry *new, *e;
432
433 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
434 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
435 return;
436
437 new = __alloc_nat_entry(sbi, nid, false);
438 if (!new)
439 return;
440
441 f2fs_down_write(&nm_i->nat_tree_lock);
442 e = __lookup_nat_cache(nm_i, nid);
443 if (!e)
444 e = __init_nat_entry(nm_i, new, ne, false);
445 else
446 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
447 nat_get_blkaddr(e) !=
448 le32_to_cpu(ne->block_addr) ||
449 nat_get_version(e) != ne->version);
450 f2fs_up_write(&nm_i->nat_tree_lock);
451 if (e != new)
452 __free_nat_entry(new);
453 }
454
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)455 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
456 block_t new_blkaddr, bool fsync_done)
457 {
458 struct f2fs_nm_info *nm_i = NM_I(sbi);
459 struct nat_entry *e;
460 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
461
462 f2fs_down_write(&nm_i->nat_tree_lock);
463 e = __lookup_nat_cache(nm_i, ni->nid);
464 if (!e) {
465 e = __init_nat_entry(nm_i, new, NULL, true);
466 copy_node_info(&e->ni, ni);
467 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
468 } else if (new_blkaddr == NEW_ADDR) {
469 /*
470 * when nid is reallocated,
471 * previous nat entry can be remained in nat cache.
472 * So, reinitialize it with new information.
473 */
474 copy_node_info(&e->ni, ni);
475 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
476 }
477 /* let's free early to reduce memory consumption */
478 if (e != new)
479 __free_nat_entry(new);
480
481 /* sanity check */
482 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
484 new_blkaddr == NULL_ADDR);
485 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
486 new_blkaddr == NEW_ADDR);
487 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
488 new_blkaddr == NEW_ADDR);
489
490 /* increment version no as node is removed */
491 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
492 unsigned char version = nat_get_version(e);
493
494 nat_set_version(e, inc_node_version(version));
495 }
496
497 /* change address */
498 nat_set_blkaddr(e, new_blkaddr);
499 if (!__is_valid_data_blkaddr(new_blkaddr))
500 set_nat_flag(e, IS_CHECKPOINTED, false);
501 __set_nat_cache_dirty(nm_i, e);
502
503 /* update fsync_mark if its inode nat entry is still alive */
504 if (ni->nid != ni->ino)
505 e = __lookup_nat_cache(nm_i, ni->ino);
506 if (e) {
507 if (fsync_done && ni->nid == ni->ino)
508 set_nat_flag(e, HAS_FSYNCED_INODE, true);
509 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
510 }
511 f2fs_up_write(&nm_i->nat_tree_lock);
512 }
513
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)514 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
515 {
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 int nr = nr_shrink;
518
519 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
520 return 0;
521
522 spin_lock(&nm_i->nat_list_lock);
523 while (nr_shrink) {
524 struct nat_entry *ne;
525
526 if (list_empty(&nm_i->nat_entries))
527 break;
528
529 ne = list_first_entry(&nm_i->nat_entries,
530 struct nat_entry, list);
531 list_del(&ne->list);
532 spin_unlock(&nm_i->nat_list_lock);
533
534 __del_from_nat_cache(nm_i, ne);
535 nr_shrink--;
536
537 spin_lock(&nm_i->nat_list_lock);
538 }
539 spin_unlock(&nm_i->nat_list_lock);
540
541 f2fs_up_write(&nm_i->nat_tree_lock);
542 return nr - nr_shrink;
543 }
544
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)545 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
546 struct node_info *ni, bool checkpoint_context)
547 {
548 struct f2fs_nm_info *nm_i = NM_I(sbi);
549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
550 struct f2fs_journal *journal = curseg->journal;
551 nid_t start_nid = START_NID(nid);
552 struct f2fs_nat_block *nat_blk;
553 struct page *page = NULL;
554 struct f2fs_nat_entry ne;
555 struct nat_entry *e;
556 pgoff_t index;
557 block_t blkaddr;
558 int i;
559
560 ni->nid = nid;
561 retry:
562 /* Check nat cache */
563 f2fs_down_read(&nm_i->nat_tree_lock);
564 e = __lookup_nat_cache(nm_i, nid);
565 if (e) {
566 ni->ino = nat_get_ino(e);
567 ni->blk_addr = nat_get_blkaddr(e);
568 ni->version = nat_get_version(e);
569 f2fs_up_read(&nm_i->nat_tree_lock);
570 return 0;
571 }
572
573 /*
574 * Check current segment summary by trying to grab journal_rwsem first.
575 * This sem is on the critical path on the checkpoint requiring the above
576 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
577 * while not bothering checkpoint.
578 */
579 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
580 down_read(&curseg->journal_rwsem);
581 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
582 !down_read_trylock(&curseg->journal_rwsem)) {
583 f2fs_up_read(&nm_i->nat_tree_lock);
584 goto retry;
585 }
586
587 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
588 if (i >= 0) {
589 ne = nat_in_journal(journal, i);
590 node_info_from_raw_nat(ni, &ne);
591 }
592 up_read(&curseg->journal_rwsem);
593 if (i >= 0) {
594 f2fs_up_read(&nm_i->nat_tree_lock);
595 goto cache;
596 }
597
598 /* Fill node_info from nat page */
599 index = current_nat_addr(sbi, nid);
600 f2fs_up_read(&nm_i->nat_tree_lock);
601
602 page = f2fs_get_meta_page(sbi, index);
603 if (IS_ERR(page))
604 return PTR_ERR(page);
605
606 nat_blk = (struct f2fs_nat_block *)page_address(page);
607 ne = nat_blk->entries[nid - start_nid];
608 node_info_from_raw_nat(ni, &ne);
609 f2fs_put_page(page, 1);
610 cache:
611 blkaddr = le32_to_cpu(ne.block_addr);
612 if (__is_valid_data_blkaddr(blkaddr) &&
613 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
614 return -EFAULT;
615
616 /* cache nat entry */
617 cache_nat_entry(sbi, nid, &ne);
618 return 0;
619 }
620
621 /*
622 * readahead MAX_RA_NODE number of node pages.
623 */
f2fs_ra_node_pages(struct page * parent,int start,int n)624 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
625 {
626 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
627 struct blk_plug plug;
628 int i, end;
629 nid_t nid;
630
631 blk_start_plug(&plug);
632
633 /* Then, try readahead for siblings of the desired node */
634 end = start + n;
635 end = min(end, NIDS_PER_BLOCK);
636 for (i = start; i < end; i++) {
637 nid = get_nid(parent, i, false);
638 f2fs_ra_node_page(sbi, nid);
639 }
640
641 blk_finish_plug(&plug);
642 }
643
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)644 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
645 {
646 const long direct_index = ADDRS_PER_INODE(dn->inode);
647 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
648 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
649 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
650 int cur_level = dn->cur_level;
651 int max_level = dn->max_level;
652 pgoff_t base = 0;
653
654 if (!dn->max_level)
655 return pgofs + 1;
656
657 while (max_level-- > cur_level)
658 skipped_unit *= NIDS_PER_BLOCK;
659
660 switch (dn->max_level) {
661 case 3:
662 base += 2 * indirect_blks;
663 fallthrough;
664 case 2:
665 base += 2 * direct_blks;
666 fallthrough;
667 case 1:
668 base += direct_index;
669 break;
670 default:
671 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
672 }
673
674 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
675 }
676
677 /*
678 * The maximum depth is four.
679 * Offset[0] will have raw inode offset.
680 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])681 static int get_node_path(struct inode *inode, long block,
682 int offset[4], unsigned int noffset[4])
683 {
684 const long direct_index = ADDRS_PER_INODE(inode);
685 const long direct_blks = ADDRS_PER_BLOCK(inode);
686 const long dptrs_per_blk = NIDS_PER_BLOCK;
687 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
688 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
689 int n = 0;
690 int level = 0;
691
692 noffset[0] = 0;
693
694 if (block < direct_index) {
695 offset[n] = block;
696 goto got;
697 }
698 block -= direct_index;
699 if (block < direct_blks) {
700 offset[n++] = NODE_DIR1_BLOCK;
701 noffset[n] = 1;
702 offset[n] = block;
703 level = 1;
704 goto got;
705 }
706 block -= direct_blks;
707 if (block < direct_blks) {
708 offset[n++] = NODE_DIR2_BLOCK;
709 noffset[n] = 2;
710 offset[n] = block;
711 level = 1;
712 goto got;
713 }
714 block -= direct_blks;
715 if (block < indirect_blks) {
716 offset[n++] = NODE_IND1_BLOCK;
717 noffset[n] = 3;
718 offset[n++] = block / direct_blks;
719 noffset[n] = 4 + offset[n - 1];
720 offset[n] = block % direct_blks;
721 level = 2;
722 goto got;
723 }
724 block -= indirect_blks;
725 if (block < indirect_blks) {
726 offset[n++] = NODE_IND2_BLOCK;
727 noffset[n] = 4 + dptrs_per_blk;
728 offset[n++] = block / direct_blks;
729 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
730 offset[n] = block % direct_blks;
731 level = 2;
732 goto got;
733 }
734 block -= indirect_blks;
735 if (block < dindirect_blks) {
736 offset[n++] = NODE_DIND_BLOCK;
737 noffset[n] = 5 + (dptrs_per_blk * 2);
738 offset[n++] = block / indirect_blks;
739 noffset[n] = 6 + (dptrs_per_blk * 2) +
740 offset[n - 1] * (dptrs_per_blk + 1);
741 offset[n++] = (block / direct_blks) % dptrs_per_blk;
742 noffset[n] = 7 + (dptrs_per_blk * 2) +
743 offset[n - 2] * (dptrs_per_blk + 1) +
744 offset[n - 1];
745 offset[n] = block % direct_blks;
746 level = 3;
747 goto got;
748 } else {
749 return -E2BIG;
750 }
751 got:
752 return level;
753 }
754
755 /*
756 * Caller should call f2fs_put_dnode(dn).
757 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
758 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
759 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)760 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
761 {
762 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
763 struct page *npage[4];
764 struct page *parent = NULL;
765 int offset[4];
766 unsigned int noffset[4];
767 nid_t nids[4];
768 int level, i = 0;
769 int err = 0;
770
771 level = get_node_path(dn->inode, index, offset, noffset);
772 if (level < 0)
773 return level;
774
775 nids[0] = dn->inode->i_ino;
776 npage[0] = dn->inode_page;
777
778 if (!npage[0]) {
779 npage[0] = f2fs_get_node_page(sbi, nids[0]);
780 if (IS_ERR(npage[0]))
781 return PTR_ERR(npage[0]);
782 }
783
784 /* if inline_data is set, should not report any block indices */
785 if (f2fs_has_inline_data(dn->inode) && index) {
786 err = -ENOENT;
787 f2fs_put_page(npage[0], 1);
788 goto release_out;
789 }
790
791 parent = npage[0];
792 if (level != 0)
793 nids[1] = get_nid(parent, offset[0], true);
794 dn->inode_page = npage[0];
795 dn->inode_page_locked = true;
796
797 /* get indirect or direct nodes */
798 for (i = 1; i <= level; i++) {
799 bool done = false;
800
801 if (!nids[i] && mode == ALLOC_NODE) {
802 /* alloc new node */
803 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
804 err = -ENOSPC;
805 goto release_pages;
806 }
807
808 dn->nid = nids[i];
809 npage[i] = f2fs_new_node_page(dn, noffset[i]);
810 if (IS_ERR(npage[i])) {
811 f2fs_alloc_nid_failed(sbi, nids[i]);
812 err = PTR_ERR(npage[i]);
813 goto release_pages;
814 }
815
816 set_nid(parent, offset[i - 1], nids[i], i == 1);
817 f2fs_alloc_nid_done(sbi, nids[i]);
818 done = true;
819 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
820 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
821 if (IS_ERR(npage[i])) {
822 err = PTR_ERR(npage[i]);
823 goto release_pages;
824 }
825 done = true;
826 }
827 if (i == 1) {
828 dn->inode_page_locked = false;
829 unlock_page(parent);
830 } else {
831 f2fs_put_page(parent, 1);
832 }
833
834 if (!done) {
835 npage[i] = f2fs_get_node_page(sbi, nids[i]);
836 if (IS_ERR(npage[i])) {
837 err = PTR_ERR(npage[i]);
838 f2fs_put_page(npage[0], 0);
839 goto release_out;
840 }
841 }
842 if (i < level) {
843 parent = npage[i];
844 nids[i + 1] = get_nid(parent, offset[i], false);
845 }
846 }
847 dn->nid = nids[level];
848 dn->ofs_in_node = offset[level];
849 dn->node_page = npage[level];
850 dn->data_blkaddr = f2fs_data_blkaddr(dn);
851
852 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
853 f2fs_sb_has_readonly(sbi)) {
854 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
855 block_t blkaddr;
856
857 if (!c_len)
858 goto out;
859
860 blkaddr = f2fs_data_blkaddr(dn);
861 if (blkaddr == COMPRESS_ADDR)
862 blkaddr = data_blkaddr(dn->inode, dn->node_page,
863 dn->ofs_in_node + 1);
864
865 f2fs_update_extent_tree_range_compressed(dn->inode,
866 index, blkaddr,
867 F2FS_I(dn->inode)->i_cluster_size,
868 c_len);
869 }
870 out:
871 return 0;
872
873 release_pages:
874 f2fs_put_page(parent, 1);
875 if (i > 1)
876 f2fs_put_page(npage[0], 0);
877 release_out:
878 dn->inode_page = NULL;
879 dn->node_page = NULL;
880 if (err == -ENOENT) {
881 dn->cur_level = i;
882 dn->max_level = level;
883 dn->ofs_in_node = offset[level];
884 }
885 return err;
886 }
887
truncate_node(struct dnode_of_data * dn)888 static int truncate_node(struct dnode_of_data *dn)
889 {
890 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
891 struct node_info ni;
892 int err;
893 pgoff_t index;
894
895 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
896 if (err)
897 return err;
898
899 /* Deallocate node address */
900 f2fs_invalidate_blocks(sbi, ni.blk_addr);
901 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
902 set_node_addr(sbi, &ni, NULL_ADDR, false);
903
904 if (dn->nid == dn->inode->i_ino) {
905 f2fs_remove_orphan_inode(sbi, dn->nid);
906 dec_valid_inode_count(sbi);
907 f2fs_inode_synced(dn->inode);
908 }
909
910 clear_node_page_dirty(dn->node_page);
911 set_sbi_flag(sbi, SBI_IS_DIRTY);
912
913 index = dn->node_page->index;
914 f2fs_put_page(dn->node_page, 1);
915
916 invalidate_mapping_pages(NODE_MAPPING(sbi),
917 index, index);
918
919 dn->node_page = NULL;
920 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
921
922 return 0;
923 }
924
truncate_dnode(struct dnode_of_data * dn)925 static int truncate_dnode(struct dnode_of_data *dn)
926 {
927 struct page *page;
928 int err;
929
930 if (dn->nid == 0)
931 return 1;
932
933 /* get direct node */
934 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
935 if (PTR_ERR(page) == -ENOENT)
936 return 1;
937 else if (IS_ERR(page))
938 return PTR_ERR(page);
939
940 /* Make dnode_of_data for parameter */
941 dn->node_page = page;
942 dn->ofs_in_node = 0;
943 f2fs_truncate_data_blocks(dn);
944 err = truncate_node(dn);
945 if (err) {
946 f2fs_put_page(page, 1);
947 return err;
948 }
949
950 return 1;
951 }
952
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)953 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
954 int ofs, int depth)
955 {
956 struct dnode_of_data rdn = *dn;
957 struct page *page;
958 struct f2fs_node *rn;
959 nid_t child_nid;
960 unsigned int child_nofs;
961 int freed = 0;
962 int i, ret;
963
964 if (dn->nid == 0)
965 return NIDS_PER_BLOCK + 1;
966
967 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
968
969 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
970 if (IS_ERR(page)) {
971 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
972 return PTR_ERR(page);
973 }
974
975 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
976
977 rn = F2FS_NODE(page);
978 if (depth < 3) {
979 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
980 child_nid = le32_to_cpu(rn->in.nid[i]);
981 if (child_nid == 0)
982 continue;
983 rdn.nid = child_nid;
984 ret = truncate_dnode(&rdn);
985 if (ret < 0)
986 goto out_err;
987 if (set_nid(page, i, 0, false))
988 dn->node_changed = true;
989 }
990 } else {
991 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
992 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
993 child_nid = le32_to_cpu(rn->in.nid[i]);
994 if (child_nid == 0) {
995 child_nofs += NIDS_PER_BLOCK + 1;
996 continue;
997 }
998 rdn.nid = child_nid;
999 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1000 if (ret == (NIDS_PER_BLOCK + 1)) {
1001 if (set_nid(page, i, 0, false))
1002 dn->node_changed = true;
1003 child_nofs += ret;
1004 } else if (ret < 0 && ret != -ENOENT) {
1005 goto out_err;
1006 }
1007 }
1008 freed = child_nofs;
1009 }
1010
1011 if (!ofs) {
1012 /* remove current indirect node */
1013 dn->node_page = page;
1014 ret = truncate_node(dn);
1015 if (ret)
1016 goto out_err;
1017 freed++;
1018 } else {
1019 f2fs_put_page(page, 1);
1020 }
1021 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1022 return freed;
1023
1024 out_err:
1025 f2fs_put_page(page, 1);
1026 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1027 return ret;
1028 }
1029
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1030 static int truncate_partial_nodes(struct dnode_of_data *dn,
1031 struct f2fs_inode *ri, int *offset, int depth)
1032 {
1033 struct page *pages[2];
1034 nid_t nid[3];
1035 nid_t child_nid;
1036 int err = 0;
1037 int i;
1038 int idx = depth - 2;
1039
1040 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1041 if (!nid[0])
1042 return 0;
1043
1044 /* get indirect nodes in the path */
1045 for (i = 0; i < idx + 1; i++) {
1046 /* reference count'll be increased */
1047 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1048 if (IS_ERR(pages[i])) {
1049 err = PTR_ERR(pages[i]);
1050 idx = i - 1;
1051 goto fail;
1052 }
1053 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1054 }
1055
1056 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1057
1058 /* free direct nodes linked to a partial indirect node */
1059 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1060 child_nid = get_nid(pages[idx], i, false);
1061 if (!child_nid)
1062 continue;
1063 dn->nid = child_nid;
1064 err = truncate_dnode(dn);
1065 if (err < 0)
1066 goto fail;
1067 if (set_nid(pages[idx], i, 0, false))
1068 dn->node_changed = true;
1069 }
1070
1071 if (offset[idx + 1] == 0) {
1072 dn->node_page = pages[idx];
1073 dn->nid = nid[idx];
1074 err = truncate_node(dn);
1075 if (err)
1076 goto fail;
1077 } else {
1078 f2fs_put_page(pages[idx], 1);
1079 }
1080 offset[idx]++;
1081 offset[idx + 1] = 0;
1082 idx--;
1083 fail:
1084 for (i = idx; i >= 0; i--)
1085 f2fs_put_page(pages[i], 1);
1086
1087 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1088
1089 return err;
1090 }
1091
1092 /*
1093 * All the block addresses of data and nodes should be nullified.
1094 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1095 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1096 {
1097 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1098 int err = 0, cont = 1;
1099 int level, offset[4], noffset[4];
1100 unsigned int nofs = 0;
1101 struct f2fs_inode *ri;
1102 struct dnode_of_data dn;
1103 struct page *page;
1104
1105 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1106
1107 level = get_node_path(inode, from, offset, noffset);
1108 if (level < 0) {
1109 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1110 return level;
1111 }
1112
1113 page = f2fs_get_node_page(sbi, inode->i_ino);
1114 if (IS_ERR(page)) {
1115 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1116 return PTR_ERR(page);
1117 }
1118
1119 set_new_dnode(&dn, inode, page, NULL, 0);
1120 unlock_page(page);
1121
1122 ri = F2FS_INODE(page);
1123 switch (level) {
1124 case 0:
1125 case 1:
1126 nofs = noffset[1];
1127 break;
1128 case 2:
1129 nofs = noffset[1];
1130 if (!offset[level - 1])
1131 goto skip_partial;
1132 err = truncate_partial_nodes(&dn, ri, offset, level);
1133 if (err < 0 && err != -ENOENT)
1134 goto fail;
1135 nofs += 1 + NIDS_PER_BLOCK;
1136 break;
1137 case 3:
1138 nofs = 5 + 2 * NIDS_PER_BLOCK;
1139 if (!offset[level - 1])
1140 goto skip_partial;
1141 err = truncate_partial_nodes(&dn, ri, offset, level);
1142 if (err < 0 && err != -ENOENT)
1143 goto fail;
1144 break;
1145 default:
1146 BUG();
1147 }
1148
1149 skip_partial:
1150 while (cont) {
1151 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1152 switch (offset[0]) {
1153 case NODE_DIR1_BLOCK:
1154 case NODE_DIR2_BLOCK:
1155 err = truncate_dnode(&dn);
1156 break;
1157
1158 case NODE_IND1_BLOCK:
1159 case NODE_IND2_BLOCK:
1160 err = truncate_nodes(&dn, nofs, offset[1], 2);
1161 break;
1162
1163 case NODE_DIND_BLOCK:
1164 err = truncate_nodes(&dn, nofs, offset[1], 3);
1165 cont = 0;
1166 break;
1167
1168 default:
1169 BUG();
1170 }
1171 if (err < 0 && err != -ENOENT)
1172 goto fail;
1173 if (offset[1] == 0 &&
1174 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1175 lock_page(page);
1176 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1177 f2fs_wait_on_page_writeback(page, NODE, true, true);
1178 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1179 set_page_dirty(page);
1180 unlock_page(page);
1181 }
1182 offset[1] = 0;
1183 offset[0]++;
1184 nofs += err;
1185 }
1186 fail:
1187 f2fs_put_page(page, 0);
1188 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1189 return err > 0 ? 0 : err;
1190 }
1191
1192 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1193 int f2fs_truncate_xattr_node(struct inode *inode)
1194 {
1195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1196 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1197 struct dnode_of_data dn;
1198 struct page *npage;
1199 int err;
1200
1201 if (!nid)
1202 return 0;
1203
1204 npage = f2fs_get_node_page(sbi, nid);
1205 if (IS_ERR(npage))
1206 return PTR_ERR(npage);
1207
1208 set_new_dnode(&dn, inode, NULL, npage, nid);
1209 err = truncate_node(&dn);
1210 if (err) {
1211 f2fs_put_page(npage, 1);
1212 return err;
1213 }
1214
1215 f2fs_i_xnid_write(inode, 0);
1216
1217 return 0;
1218 }
1219
1220 /*
1221 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1222 * f2fs_unlock_op().
1223 */
f2fs_remove_inode_page(struct inode * inode)1224 int f2fs_remove_inode_page(struct inode *inode)
1225 {
1226 struct dnode_of_data dn;
1227 int err;
1228
1229 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1230 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1231 if (err)
1232 return err;
1233
1234 err = f2fs_truncate_xattr_node(inode);
1235 if (err) {
1236 f2fs_put_dnode(&dn);
1237 return err;
1238 }
1239
1240 /* remove potential inline_data blocks */
1241 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1242 S_ISLNK(inode->i_mode))
1243 f2fs_truncate_data_blocks_range(&dn, 1);
1244
1245 /* 0 is possible, after f2fs_new_inode() has failed */
1246 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1247 f2fs_put_dnode(&dn);
1248 return -EIO;
1249 }
1250
1251 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1252 f2fs_warn(F2FS_I_SB(inode),
1253 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1254 inode->i_ino, (unsigned long long)inode->i_blocks);
1255 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1256 }
1257
1258 /* will put inode & node pages */
1259 err = truncate_node(&dn);
1260 if (err) {
1261 f2fs_put_dnode(&dn);
1262 return err;
1263 }
1264 return 0;
1265 }
1266
f2fs_new_inode_page(struct inode * inode)1267 struct page *f2fs_new_inode_page(struct inode *inode)
1268 {
1269 struct dnode_of_data dn;
1270
1271 /* allocate inode page for new inode */
1272 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1273
1274 /* caller should f2fs_put_page(page, 1); */
1275 return f2fs_new_node_page(&dn, 0);
1276 }
1277
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1278 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1279 {
1280 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1281 struct node_info new_ni;
1282 struct page *page;
1283 int err;
1284
1285 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1286 return ERR_PTR(-EPERM);
1287
1288 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1289 if (!page)
1290 return ERR_PTR(-ENOMEM);
1291
1292 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1293 goto fail;
1294
1295 #ifdef CONFIG_F2FS_CHECK_FS
1296 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1297 if (err) {
1298 dec_valid_node_count(sbi, dn->inode, !ofs);
1299 goto fail;
1300 }
1301 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1302 err = -EFSCORRUPTED;
1303 set_sbi_flag(sbi, SBI_NEED_FSCK);
1304 goto fail;
1305 }
1306 #endif
1307 new_ni.nid = dn->nid;
1308 new_ni.ino = dn->inode->i_ino;
1309 new_ni.blk_addr = NULL_ADDR;
1310 new_ni.flag = 0;
1311 new_ni.version = 0;
1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314 f2fs_wait_on_page_writeback(page, NODE, true, true);
1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317 if (!PageUptodate(page))
1318 SetPageUptodate(page);
1319 if (set_page_dirty(page))
1320 dn->node_changed = true;
1321
1322 if (f2fs_has_xattr_block(ofs))
1323 f2fs_i_xnid_write(dn->inode, dn->nid);
1324
1325 if (ofs == 0)
1326 inc_valid_inode_count(sbi);
1327 return page;
1328
1329 fail:
1330 clear_node_page_dirty(page);
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(err);
1333 }
1334
1335 /*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339 */
read_node_page(struct page * page,int op_flags)1340 static int read_node_page(struct page *page, int op_flags)
1341 {
1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 struct node_info ni;
1344 struct f2fs_io_info fio = {
1345 .sbi = sbi,
1346 .type = NODE,
1347 .op = REQ_OP_READ,
1348 .op_flags = op_flags,
1349 .page = page,
1350 .encrypted_page = NULL,
1351 };
1352 int err;
1353
1354 if (PageUptodate(page)) {
1355 if (!f2fs_inode_chksum_verify(sbi, page)) {
1356 ClearPageUptodate(page);
1357 return -EFSBADCRC;
1358 }
1359 return LOCKED_PAGE;
1360 }
1361
1362 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363 if (err)
1364 return err;
1365
1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368 ClearPageUptodate(page);
1369 return -ENOENT;
1370 }
1371
1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374 err = f2fs_submit_page_bio(&fio);
1375
1376 if (!err)
1377 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379 return err;
1380 }
1381
1382 /*
1383 * Readahead a node page
1384 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1385 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386 {
1387 struct page *apage;
1388 int err;
1389
1390 if (!nid)
1391 return;
1392 if (f2fs_check_nid_range(sbi, nid))
1393 return;
1394
1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396 if (apage)
1397 return;
1398
1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400 if (!apage)
1401 return;
1402
1403 err = read_node_page(apage, REQ_RAHEAD);
1404 f2fs_put_page(apage, err ? 1 : 0);
1405 }
1406
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1407 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408 struct page *parent, int start)
1409 {
1410 struct page *page;
1411 int err;
1412
1413 if (!nid)
1414 return ERR_PTR(-ENOENT);
1415 if (f2fs_check_nid_range(sbi, nid))
1416 return ERR_PTR(-EINVAL);
1417 repeat:
1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419 if (!page)
1420 return ERR_PTR(-ENOMEM);
1421
1422 err = read_node_page(page, 0);
1423 if (err < 0) {
1424 goto out_put_err;
1425 } else if (err == LOCKED_PAGE) {
1426 err = 0;
1427 goto page_hit;
1428 }
1429
1430 if (parent)
1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433 lock_page(page);
1434
1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436 f2fs_put_page(page, 1);
1437 goto repeat;
1438 }
1439
1440 if (unlikely(!PageUptodate(page))) {
1441 err = -EIO;
1442 goto out_err;
1443 }
1444
1445 if (!f2fs_inode_chksum_verify(sbi, page)) {
1446 err = -EFSBADCRC;
1447 goto out_err;
1448 }
1449 page_hit:
1450 if (likely(nid == nid_of_node(page)))
1451 return page;
1452
1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454 nid, nid_of_node(page), ino_of_node(page),
1455 ofs_of_node(page), cpver_of_node(page),
1456 next_blkaddr_of_node(page));
1457 set_sbi_flag(sbi, SBI_NEED_FSCK);
1458 err = -EINVAL;
1459 out_err:
1460 ClearPageUptodate(page);
1461 out_put_err:
1462 /* ENOENT comes from read_node_page which is not an error. */
1463 if (err != -ENOENT)
1464 f2fs_handle_page_eio(sbi, page->index, NODE);
1465 f2fs_put_page(page, 1);
1466 return ERR_PTR(err);
1467 }
1468
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1469 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470 {
1471 return __get_node_page(sbi, nid, NULL, 0);
1472 }
1473
f2fs_get_node_page_ra(struct page * parent,int start)1474 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475 {
1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477 nid_t nid = get_nid(parent, start, false);
1478
1479 return __get_node_page(sbi, nid, parent, start);
1480 }
1481
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1482 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483 {
1484 struct inode *inode;
1485 struct page *page;
1486 int ret;
1487
1488 /* should flush inline_data before evict_inode */
1489 inode = ilookup(sbi->sb, ino);
1490 if (!inode)
1491 return;
1492
1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494 FGP_LOCK|FGP_NOWAIT, 0);
1495 if (!page)
1496 goto iput_out;
1497
1498 if (!PageUptodate(page))
1499 goto page_out;
1500
1501 if (!PageDirty(page))
1502 goto page_out;
1503
1504 if (!clear_page_dirty_for_io(page))
1505 goto page_out;
1506
1507 ret = f2fs_write_inline_data(inode, page);
1508 inode_dec_dirty_pages(inode);
1509 f2fs_remove_dirty_inode(inode);
1510 if (ret)
1511 set_page_dirty(page);
1512 page_out:
1513 f2fs_put_page(page, 1);
1514 iput_out:
1515 iput(inode);
1516 }
1517
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1518 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519 {
1520 pgoff_t index;
1521 struct pagevec pvec;
1522 struct page *last_page = NULL;
1523 int nr_pages;
1524
1525 pagevec_init(&pvec);
1526 index = 0;
1527
1528 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529 PAGECACHE_TAG_DIRTY))) {
1530 int i;
1531
1532 for (i = 0; i < nr_pages; i++) {
1533 struct page *page = pvec.pages[i];
1534
1535 if (unlikely(f2fs_cp_error(sbi))) {
1536 f2fs_put_page(last_page, 0);
1537 pagevec_release(&pvec);
1538 return ERR_PTR(-EIO);
1539 }
1540
1541 if (!IS_DNODE(page) || !is_cold_node(page))
1542 continue;
1543 if (ino_of_node(page) != ino)
1544 continue;
1545
1546 lock_page(page);
1547
1548 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549 continue_unlock:
1550 unlock_page(page);
1551 continue;
1552 }
1553 if (ino_of_node(page) != ino)
1554 goto continue_unlock;
1555
1556 if (!PageDirty(page)) {
1557 /* someone wrote it for us */
1558 goto continue_unlock;
1559 }
1560
1561 if (last_page)
1562 f2fs_put_page(last_page, 0);
1563
1564 get_page(page);
1565 last_page = page;
1566 unlock_page(page);
1567 }
1568 pagevec_release(&pvec);
1569 cond_resched();
1570 }
1571 return last_page;
1572 }
1573
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1574 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575 struct writeback_control *wbc, bool do_balance,
1576 enum iostat_type io_type, unsigned int *seq_id)
1577 {
1578 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579 nid_t nid;
1580 struct node_info ni;
1581 struct f2fs_io_info fio = {
1582 .sbi = sbi,
1583 .ino = ino_of_node(page),
1584 .type = NODE,
1585 .op = REQ_OP_WRITE,
1586 .op_flags = wbc_to_write_flags(wbc),
1587 .page = page,
1588 .encrypted_page = NULL,
1589 .submitted = false,
1590 .io_type = io_type,
1591 .io_wbc = wbc,
1592 };
1593 unsigned int seq;
1594
1595 trace_f2fs_writepage(page, NODE);
1596
1597 if (unlikely(f2fs_cp_error(sbi))) {
1598 ClearPageUptodate(page);
1599 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600 unlock_page(page);
1601 return 0;
1602 }
1603
1604 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605 goto redirty_out;
1606
1607 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608 wbc->sync_mode == WB_SYNC_NONE &&
1609 IS_DNODE(page) && is_cold_node(page))
1610 goto redirty_out;
1611
1612 /* get old block addr of this node page */
1613 nid = nid_of_node(page);
1614 f2fs_bug_on(sbi, page->index != nid);
1615
1616 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617 goto redirty_out;
1618
1619 if (wbc->for_reclaim) {
1620 if (!f2fs_down_read_trylock(&sbi->node_write))
1621 goto redirty_out;
1622 } else {
1623 f2fs_down_read(&sbi->node_write);
1624 }
1625
1626 /* This page is already truncated */
1627 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628 ClearPageUptodate(page);
1629 dec_page_count(sbi, F2FS_DIRTY_NODES);
1630 f2fs_up_read(&sbi->node_write);
1631 unlock_page(page);
1632 return 0;
1633 }
1634
1635 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637 DATA_GENERIC_ENHANCE)) {
1638 f2fs_up_read(&sbi->node_write);
1639 goto redirty_out;
1640 }
1641
1642 if (atomic && !test_opt(sbi, NOBARRIER))
1643 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645 /* should add to global list before clearing PAGECACHE status */
1646 if (f2fs_in_warm_node_list(sbi, page)) {
1647 seq = f2fs_add_fsync_node_entry(sbi, page);
1648 if (seq_id)
1649 *seq_id = seq;
1650 }
1651
1652 set_page_writeback(page);
1653 ClearPageError(page);
1654
1655 fio.old_blkaddr = ni.blk_addr;
1656 f2fs_do_write_node_page(nid, &fio);
1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658 dec_page_count(sbi, F2FS_DIRTY_NODES);
1659 f2fs_up_read(&sbi->node_write);
1660
1661 if (wbc->for_reclaim) {
1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 submitted = NULL;
1664 }
1665
1666 unlock_page(page);
1667
1668 if (unlikely(f2fs_cp_error(sbi))) {
1669 f2fs_submit_merged_write(sbi, NODE);
1670 submitted = NULL;
1671 }
1672 if (submitted)
1673 *submitted = fio.submitted;
1674
1675 if (do_balance)
1676 f2fs_balance_fs(sbi, false);
1677 return 0;
1678
1679 redirty_out:
1680 redirty_page_for_writepage(wbc, page);
1681 return AOP_WRITEPAGE_ACTIVATE;
1682 }
1683
f2fs_move_node_page(struct page * node_page,int gc_type)1684 int f2fs_move_node_page(struct page *node_page, int gc_type)
1685 {
1686 int err = 0;
1687
1688 if (gc_type == FG_GC) {
1689 struct writeback_control wbc = {
1690 .sync_mode = WB_SYNC_ALL,
1691 .nr_to_write = 1,
1692 .for_reclaim = 0,
1693 };
1694
1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697 set_page_dirty(node_page);
1698
1699 if (!clear_page_dirty_for_io(node_page)) {
1700 err = -EAGAIN;
1701 goto out_page;
1702 }
1703
1704 if (__write_node_page(node_page, false, NULL,
1705 &wbc, false, FS_GC_NODE_IO, NULL)) {
1706 err = -EAGAIN;
1707 unlock_page(node_page);
1708 }
1709 goto release_page;
1710 } else {
1711 /* set page dirty and write it */
1712 if (!PageWriteback(node_page))
1713 set_page_dirty(node_page);
1714 }
1715 out_page:
1716 unlock_page(node_page);
1717 release_page:
1718 f2fs_put_page(node_page, 0);
1719 return err;
1720 }
1721
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1722 static int f2fs_write_node_page(struct page *page,
1723 struct writeback_control *wbc)
1724 {
1725 return __write_node_page(page, false, NULL, wbc, false,
1726 FS_NODE_IO, NULL);
1727 }
1728
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1729 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730 struct writeback_control *wbc, bool atomic,
1731 unsigned int *seq_id)
1732 {
1733 pgoff_t index;
1734 struct pagevec pvec;
1735 int ret = 0;
1736 struct page *last_page = NULL;
1737 bool marked = false;
1738 nid_t ino = inode->i_ino;
1739 int nr_pages;
1740 int nwritten = 0;
1741
1742 if (atomic) {
1743 last_page = last_fsync_dnode(sbi, ino);
1744 if (IS_ERR_OR_NULL(last_page))
1745 return PTR_ERR_OR_ZERO(last_page);
1746 }
1747 retry:
1748 pagevec_init(&pvec);
1749 index = 0;
1750
1751 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752 PAGECACHE_TAG_DIRTY))) {
1753 int i;
1754
1755 for (i = 0; i < nr_pages; i++) {
1756 struct page *page = pvec.pages[i];
1757 bool submitted = false;
1758
1759 if (unlikely(f2fs_cp_error(sbi))) {
1760 f2fs_put_page(last_page, 0);
1761 pagevec_release(&pvec);
1762 ret = -EIO;
1763 goto out;
1764 }
1765
1766 if (!IS_DNODE(page) || !is_cold_node(page))
1767 continue;
1768 if (ino_of_node(page) != ino)
1769 continue;
1770
1771 lock_page(page);
1772
1773 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774 continue_unlock:
1775 unlock_page(page);
1776 continue;
1777 }
1778 if (ino_of_node(page) != ino)
1779 goto continue_unlock;
1780
1781 if (!PageDirty(page) && page != last_page) {
1782 /* someone wrote it for us */
1783 goto continue_unlock;
1784 }
1785
1786 f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788 set_fsync_mark(page, 0);
1789 set_dentry_mark(page, 0);
1790
1791 if (!atomic || page == last_page) {
1792 set_fsync_mark(page, 1);
1793 percpu_counter_inc(&sbi->rf_node_block_count);
1794 if (IS_INODE(page)) {
1795 if (is_inode_flag_set(inode,
1796 FI_DIRTY_INODE))
1797 f2fs_update_inode(inode, page);
1798 set_dentry_mark(page,
1799 f2fs_need_dentry_mark(sbi, ino));
1800 }
1801 /* may be written by other thread */
1802 if (!PageDirty(page))
1803 set_page_dirty(page);
1804 }
1805
1806 if (!clear_page_dirty_for_io(page))
1807 goto continue_unlock;
1808
1809 ret = __write_node_page(page, atomic &&
1810 page == last_page,
1811 &submitted, wbc, true,
1812 FS_NODE_IO, seq_id);
1813 if (ret) {
1814 unlock_page(page);
1815 f2fs_put_page(last_page, 0);
1816 break;
1817 } else if (submitted) {
1818 nwritten++;
1819 }
1820
1821 if (page == last_page) {
1822 f2fs_put_page(page, 0);
1823 marked = true;
1824 break;
1825 }
1826 }
1827 pagevec_release(&pvec);
1828 cond_resched();
1829
1830 if (ret || marked)
1831 break;
1832 }
1833 if (!ret && atomic && !marked) {
1834 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835 ino, last_page->index);
1836 lock_page(last_page);
1837 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838 set_page_dirty(last_page);
1839 unlock_page(last_page);
1840 goto retry;
1841 }
1842 out:
1843 if (nwritten)
1844 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845 return ret ? -EIO : 0;
1846 }
1847
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1848 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849 {
1850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851 bool clean;
1852
1853 if (inode->i_ino != ino)
1854 return 0;
1855
1856 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857 return 0;
1858
1859 spin_lock(&sbi->inode_lock[DIRTY_META]);
1860 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863 if (clean)
1864 return 0;
1865
1866 inode = igrab(inode);
1867 if (!inode)
1868 return 0;
1869 return 1;
1870 }
1871
flush_dirty_inode(struct page * page)1872 static bool flush_dirty_inode(struct page *page)
1873 {
1874 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875 struct inode *inode;
1876 nid_t ino = ino_of_node(page);
1877
1878 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879 if (!inode)
1880 return false;
1881
1882 f2fs_update_inode(inode, page);
1883 unlock_page(page);
1884
1885 iput(inode);
1886 return true;
1887 }
1888
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1889 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1890 {
1891 pgoff_t index = 0;
1892 struct pagevec pvec;
1893 int nr_pages;
1894
1895 pagevec_init(&pvec);
1896
1897 while ((nr_pages = pagevec_lookup_tag(&pvec,
1898 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899 int i;
1900
1901 for (i = 0; i < nr_pages; i++) {
1902 struct page *page = pvec.pages[i];
1903
1904 if (!IS_DNODE(page))
1905 continue;
1906
1907 lock_page(page);
1908
1909 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910 continue_unlock:
1911 unlock_page(page);
1912 continue;
1913 }
1914
1915 if (!PageDirty(page)) {
1916 /* someone wrote it for us */
1917 goto continue_unlock;
1918 }
1919
1920 /* flush inline_data, if it's async context. */
1921 if (page_private_inline(page)) {
1922 clear_page_private_inline(page);
1923 unlock_page(page);
1924 flush_inline_data(sbi, ino_of_node(page));
1925 continue;
1926 }
1927 unlock_page(page);
1928 }
1929 pagevec_release(&pvec);
1930 cond_resched();
1931 }
1932 }
1933
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1934 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935 struct writeback_control *wbc,
1936 bool do_balance, enum iostat_type io_type)
1937 {
1938 pgoff_t index;
1939 struct pagevec pvec;
1940 int step = 0;
1941 int nwritten = 0;
1942 int ret = 0;
1943 int nr_pages, done = 0;
1944
1945 pagevec_init(&pvec);
1946
1947 next_step:
1948 index = 0;
1949
1950 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952 int i;
1953
1954 for (i = 0; i < nr_pages; i++) {
1955 struct page *page = pvec.pages[i];
1956 bool submitted = false;
1957 bool may_dirty = true;
1958
1959 /* give a priority to WB_SYNC threads */
1960 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1961 wbc->sync_mode == WB_SYNC_NONE) {
1962 done = 1;
1963 break;
1964 }
1965
1966 /*
1967 * flushing sequence with step:
1968 * 0. indirect nodes
1969 * 1. dentry dnodes
1970 * 2. file dnodes
1971 */
1972 if (step == 0 && IS_DNODE(page))
1973 continue;
1974 if (step == 1 && (!IS_DNODE(page) ||
1975 is_cold_node(page)))
1976 continue;
1977 if (step == 2 && (!IS_DNODE(page) ||
1978 !is_cold_node(page)))
1979 continue;
1980 lock_node:
1981 if (wbc->sync_mode == WB_SYNC_ALL)
1982 lock_page(page);
1983 else if (!trylock_page(page))
1984 continue;
1985
1986 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1987 continue_unlock:
1988 unlock_page(page);
1989 continue;
1990 }
1991
1992 if (!PageDirty(page)) {
1993 /* someone wrote it for us */
1994 goto continue_unlock;
1995 }
1996
1997 /* flush inline_data/inode, if it's async context. */
1998 if (!do_balance)
1999 goto write_node;
2000
2001 /* flush inline_data */
2002 if (page_private_inline(page)) {
2003 clear_page_private_inline(page);
2004 unlock_page(page);
2005 flush_inline_data(sbi, ino_of_node(page));
2006 goto lock_node;
2007 }
2008
2009 /* flush dirty inode */
2010 if (IS_INODE(page) && may_dirty) {
2011 may_dirty = false;
2012 if (flush_dirty_inode(page))
2013 goto lock_node;
2014 }
2015 write_node:
2016 f2fs_wait_on_page_writeback(page, NODE, true, true);
2017
2018 if (!clear_page_dirty_for_io(page))
2019 goto continue_unlock;
2020
2021 set_fsync_mark(page, 0);
2022 set_dentry_mark(page, 0);
2023
2024 ret = __write_node_page(page, false, &submitted,
2025 wbc, do_balance, io_type, NULL);
2026 if (ret)
2027 unlock_page(page);
2028 else if (submitted)
2029 nwritten++;
2030
2031 if (--wbc->nr_to_write == 0)
2032 break;
2033 }
2034 pagevec_release(&pvec);
2035 cond_resched();
2036
2037 if (wbc->nr_to_write == 0) {
2038 step = 2;
2039 break;
2040 }
2041 }
2042
2043 if (step < 2) {
2044 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2045 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2046 goto out;
2047 step++;
2048 goto next_step;
2049 }
2050 out:
2051 if (nwritten)
2052 f2fs_submit_merged_write(sbi, NODE);
2053
2054 if (unlikely(f2fs_cp_error(sbi)))
2055 return -EIO;
2056 return ret;
2057 }
2058
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2059 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2060 unsigned int seq_id)
2061 {
2062 struct fsync_node_entry *fn;
2063 struct page *page;
2064 struct list_head *head = &sbi->fsync_node_list;
2065 unsigned long flags;
2066 unsigned int cur_seq_id = 0;
2067 int ret2, ret = 0;
2068
2069 while (seq_id && cur_seq_id < seq_id) {
2070 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2071 if (list_empty(head)) {
2072 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2073 break;
2074 }
2075 fn = list_first_entry(head, struct fsync_node_entry, list);
2076 if (fn->seq_id > seq_id) {
2077 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2078 break;
2079 }
2080 cur_seq_id = fn->seq_id;
2081 page = fn->page;
2082 get_page(page);
2083 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2084
2085 f2fs_wait_on_page_writeback(page, NODE, true, false);
2086 if (TestClearPageError(page))
2087 ret = -EIO;
2088
2089 put_page(page);
2090
2091 if (ret)
2092 break;
2093 }
2094
2095 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2096 if (!ret)
2097 ret = ret2;
2098
2099 return ret;
2100 }
2101
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2102 static int f2fs_write_node_pages(struct address_space *mapping,
2103 struct writeback_control *wbc)
2104 {
2105 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2106 struct blk_plug plug;
2107 long diff;
2108
2109 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2110 goto skip_write;
2111
2112 /* balancing f2fs's metadata in background */
2113 f2fs_balance_fs_bg(sbi, true);
2114
2115 /* collect a number of dirty node pages and write together */
2116 if (wbc->sync_mode != WB_SYNC_ALL &&
2117 get_pages(sbi, F2FS_DIRTY_NODES) <
2118 nr_pages_to_skip(sbi, NODE))
2119 goto skip_write;
2120
2121 if (wbc->sync_mode == WB_SYNC_ALL)
2122 atomic_inc(&sbi->wb_sync_req[NODE]);
2123 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2124 /* to avoid potential deadlock */
2125 if (current->plug)
2126 blk_finish_plug(current->plug);
2127 goto skip_write;
2128 }
2129
2130 trace_f2fs_writepages(mapping->host, wbc, NODE);
2131
2132 diff = nr_pages_to_write(sbi, NODE, wbc);
2133 blk_start_plug(&plug);
2134 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2135 blk_finish_plug(&plug);
2136 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2137
2138 if (wbc->sync_mode == WB_SYNC_ALL)
2139 atomic_dec(&sbi->wb_sync_req[NODE]);
2140 return 0;
2141
2142 skip_write:
2143 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2144 trace_f2fs_writepages(mapping->host, wbc, NODE);
2145 return 0;
2146 }
2147
f2fs_set_node_page_dirty(struct page * page)2148 static int f2fs_set_node_page_dirty(struct page *page)
2149 {
2150 trace_f2fs_set_page_dirty(page, NODE);
2151
2152 if (!PageUptodate(page))
2153 SetPageUptodate(page);
2154 #ifdef CONFIG_F2FS_CHECK_FS
2155 if (IS_INODE(page))
2156 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2157 #endif
2158 if (!PageDirty(page)) {
2159 __set_page_dirty_nobuffers(page);
2160 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2161 set_page_private_reference(page);
2162 return 1;
2163 }
2164 return 0;
2165 }
2166
2167 /*
2168 * Structure of the f2fs node operations
2169 */
2170 const struct address_space_operations f2fs_node_aops = {
2171 .writepage = f2fs_write_node_page,
2172 .writepages = f2fs_write_node_pages,
2173 .set_page_dirty = f2fs_set_node_page_dirty,
2174 .invalidatepage = f2fs_invalidate_page,
2175 .releasepage = f2fs_release_page,
2176 #ifdef CONFIG_MIGRATION
2177 .migratepage = f2fs_migrate_page,
2178 #endif
2179 };
2180
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2181 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2182 nid_t n)
2183 {
2184 return radix_tree_lookup(&nm_i->free_nid_root, n);
2185 }
2186
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2187 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2188 struct free_nid *i)
2189 {
2190 struct f2fs_nm_info *nm_i = NM_I(sbi);
2191 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2192
2193 if (err)
2194 return err;
2195
2196 nm_i->nid_cnt[FREE_NID]++;
2197 list_add_tail(&i->list, &nm_i->free_nid_list);
2198 return 0;
2199 }
2200
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2201 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2202 struct free_nid *i, enum nid_state state)
2203 {
2204 struct f2fs_nm_info *nm_i = NM_I(sbi);
2205
2206 f2fs_bug_on(sbi, state != i->state);
2207 nm_i->nid_cnt[state]--;
2208 if (state == FREE_NID)
2209 list_del(&i->list);
2210 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2211 }
2212
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2213 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2214 enum nid_state org_state, enum nid_state dst_state)
2215 {
2216 struct f2fs_nm_info *nm_i = NM_I(sbi);
2217
2218 f2fs_bug_on(sbi, org_state != i->state);
2219 i->state = dst_state;
2220 nm_i->nid_cnt[org_state]--;
2221 nm_i->nid_cnt[dst_state]++;
2222
2223 switch (dst_state) {
2224 case PREALLOC_NID:
2225 list_del(&i->list);
2226 break;
2227 case FREE_NID:
2228 list_add_tail(&i->list, &nm_i->free_nid_list);
2229 break;
2230 default:
2231 BUG_ON(1);
2232 }
2233 }
2234
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2235 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2236 {
2237 struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 unsigned int i;
2239 bool ret = true;
2240
2241 f2fs_down_read(&nm_i->nat_tree_lock);
2242 for (i = 0; i < nm_i->nat_blocks; i++) {
2243 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2244 ret = false;
2245 break;
2246 }
2247 }
2248 f2fs_up_read(&nm_i->nat_tree_lock);
2249
2250 return ret;
2251 }
2252
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2253 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2254 bool set, bool build)
2255 {
2256 struct f2fs_nm_info *nm_i = NM_I(sbi);
2257 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2258 unsigned int nid_ofs = nid - START_NID(nid);
2259
2260 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2261 return;
2262
2263 if (set) {
2264 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2265 return;
2266 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2267 nm_i->free_nid_count[nat_ofs]++;
2268 } else {
2269 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2270 return;
2271 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2272 if (!build)
2273 nm_i->free_nid_count[nat_ofs]--;
2274 }
2275 }
2276
2277 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2278 static bool add_free_nid(struct f2fs_sb_info *sbi,
2279 nid_t nid, bool build, bool update)
2280 {
2281 struct f2fs_nm_info *nm_i = NM_I(sbi);
2282 struct free_nid *i, *e;
2283 struct nat_entry *ne;
2284 int err = -EINVAL;
2285 bool ret = false;
2286
2287 /* 0 nid should not be used */
2288 if (unlikely(nid == 0))
2289 return false;
2290
2291 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2292 return false;
2293
2294 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2295 i->nid = nid;
2296 i->state = FREE_NID;
2297
2298 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2299
2300 spin_lock(&nm_i->nid_list_lock);
2301
2302 if (build) {
2303 /*
2304 * Thread A Thread B
2305 * - f2fs_create
2306 * - f2fs_new_inode
2307 * - f2fs_alloc_nid
2308 * - __insert_nid_to_list(PREALLOC_NID)
2309 * - f2fs_balance_fs_bg
2310 * - f2fs_build_free_nids
2311 * - __f2fs_build_free_nids
2312 * - scan_nat_page
2313 * - add_free_nid
2314 * - __lookup_nat_cache
2315 * - f2fs_add_link
2316 * - f2fs_init_inode_metadata
2317 * - f2fs_new_inode_page
2318 * - f2fs_new_node_page
2319 * - set_node_addr
2320 * - f2fs_alloc_nid_done
2321 * - __remove_nid_from_list(PREALLOC_NID)
2322 * - __insert_nid_to_list(FREE_NID)
2323 */
2324 ne = __lookup_nat_cache(nm_i, nid);
2325 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2326 nat_get_blkaddr(ne) != NULL_ADDR))
2327 goto err_out;
2328
2329 e = __lookup_free_nid_list(nm_i, nid);
2330 if (e) {
2331 if (e->state == FREE_NID)
2332 ret = true;
2333 goto err_out;
2334 }
2335 }
2336 ret = true;
2337 err = __insert_free_nid(sbi, i);
2338 err_out:
2339 if (update) {
2340 update_free_nid_bitmap(sbi, nid, ret, build);
2341 if (!build)
2342 nm_i->available_nids++;
2343 }
2344 spin_unlock(&nm_i->nid_list_lock);
2345 radix_tree_preload_end();
2346
2347 if (err)
2348 kmem_cache_free(free_nid_slab, i);
2349 return ret;
2350 }
2351
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2352 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2353 {
2354 struct f2fs_nm_info *nm_i = NM_I(sbi);
2355 struct free_nid *i;
2356 bool need_free = false;
2357
2358 spin_lock(&nm_i->nid_list_lock);
2359 i = __lookup_free_nid_list(nm_i, nid);
2360 if (i && i->state == FREE_NID) {
2361 __remove_free_nid(sbi, i, FREE_NID);
2362 need_free = true;
2363 }
2364 spin_unlock(&nm_i->nid_list_lock);
2365
2366 if (need_free)
2367 kmem_cache_free(free_nid_slab, i);
2368 }
2369
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2370 static int scan_nat_page(struct f2fs_sb_info *sbi,
2371 struct page *nat_page, nid_t start_nid)
2372 {
2373 struct f2fs_nm_info *nm_i = NM_I(sbi);
2374 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2375 block_t blk_addr;
2376 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2377 int i;
2378
2379 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2380
2381 i = start_nid % NAT_ENTRY_PER_BLOCK;
2382
2383 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2384 if (unlikely(start_nid >= nm_i->max_nid))
2385 break;
2386
2387 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2388
2389 if (blk_addr == NEW_ADDR)
2390 return -EINVAL;
2391
2392 if (blk_addr == NULL_ADDR) {
2393 add_free_nid(sbi, start_nid, true, true);
2394 } else {
2395 spin_lock(&NM_I(sbi)->nid_list_lock);
2396 update_free_nid_bitmap(sbi, start_nid, false, true);
2397 spin_unlock(&NM_I(sbi)->nid_list_lock);
2398 }
2399 }
2400
2401 return 0;
2402 }
2403
scan_curseg_cache(struct f2fs_sb_info * sbi)2404 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2405 {
2406 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2407 struct f2fs_journal *journal = curseg->journal;
2408 int i;
2409
2410 down_read(&curseg->journal_rwsem);
2411 for (i = 0; i < nats_in_cursum(journal); i++) {
2412 block_t addr;
2413 nid_t nid;
2414
2415 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2416 nid = le32_to_cpu(nid_in_journal(journal, i));
2417 if (addr == NULL_ADDR)
2418 add_free_nid(sbi, nid, true, false);
2419 else
2420 remove_free_nid(sbi, nid);
2421 }
2422 up_read(&curseg->journal_rwsem);
2423 }
2424
scan_free_nid_bits(struct f2fs_sb_info * sbi)2425 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2426 {
2427 struct f2fs_nm_info *nm_i = NM_I(sbi);
2428 unsigned int i, idx;
2429 nid_t nid;
2430
2431 f2fs_down_read(&nm_i->nat_tree_lock);
2432
2433 for (i = 0; i < nm_i->nat_blocks; i++) {
2434 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2435 continue;
2436 if (!nm_i->free_nid_count[i])
2437 continue;
2438 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2439 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2440 NAT_ENTRY_PER_BLOCK, idx);
2441 if (idx >= NAT_ENTRY_PER_BLOCK)
2442 break;
2443
2444 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2445 add_free_nid(sbi, nid, true, false);
2446
2447 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2448 goto out;
2449 }
2450 }
2451 out:
2452 scan_curseg_cache(sbi);
2453
2454 f2fs_up_read(&nm_i->nat_tree_lock);
2455 }
2456
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2457 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2458 bool sync, bool mount)
2459 {
2460 struct f2fs_nm_info *nm_i = NM_I(sbi);
2461 int i = 0, ret;
2462 nid_t nid = nm_i->next_scan_nid;
2463
2464 if (unlikely(nid >= nm_i->max_nid))
2465 nid = 0;
2466
2467 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2468 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2469
2470 /* Enough entries */
2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2472 return 0;
2473
2474 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2475 return 0;
2476
2477 if (!mount) {
2478 /* try to find free nids in free_nid_bitmap */
2479 scan_free_nid_bits(sbi);
2480
2481 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2482 return 0;
2483 }
2484
2485 /* readahead nat pages to be scanned */
2486 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2487 META_NAT, true);
2488
2489 f2fs_down_read(&nm_i->nat_tree_lock);
2490
2491 while (1) {
2492 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2493 nm_i->nat_block_bitmap)) {
2494 struct page *page = get_current_nat_page(sbi, nid);
2495
2496 if (IS_ERR(page)) {
2497 ret = PTR_ERR(page);
2498 } else {
2499 ret = scan_nat_page(sbi, page, nid);
2500 f2fs_put_page(page, 1);
2501 }
2502
2503 if (ret) {
2504 f2fs_up_read(&nm_i->nat_tree_lock);
2505 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2506 return ret;
2507 }
2508 }
2509
2510 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2511 if (unlikely(nid >= nm_i->max_nid))
2512 nid = 0;
2513
2514 if (++i >= FREE_NID_PAGES)
2515 break;
2516 }
2517
2518 /* go to the next free nat pages to find free nids abundantly */
2519 nm_i->next_scan_nid = nid;
2520
2521 /* find free nids from current sum_pages */
2522 scan_curseg_cache(sbi);
2523
2524 f2fs_up_read(&nm_i->nat_tree_lock);
2525
2526 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2527 nm_i->ra_nid_pages, META_NAT, false);
2528
2529 return 0;
2530 }
2531
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2532 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2533 {
2534 int ret;
2535
2536 mutex_lock(&NM_I(sbi)->build_lock);
2537 ret = __f2fs_build_free_nids(sbi, sync, mount);
2538 mutex_unlock(&NM_I(sbi)->build_lock);
2539
2540 return ret;
2541 }
2542
2543 /*
2544 * If this function returns success, caller can obtain a new nid
2545 * from second parameter of this function.
2546 * The returned nid could be used ino as well as nid when inode is created.
2547 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2548 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2549 {
2550 struct f2fs_nm_info *nm_i = NM_I(sbi);
2551 struct free_nid *i = NULL;
2552 retry:
2553 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2554 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2555 return false;
2556 }
2557
2558 spin_lock(&nm_i->nid_list_lock);
2559
2560 if (unlikely(nm_i->available_nids == 0)) {
2561 spin_unlock(&nm_i->nid_list_lock);
2562 return false;
2563 }
2564
2565 /* We should not use stale free nids created by f2fs_build_free_nids */
2566 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2567 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2568 i = list_first_entry(&nm_i->free_nid_list,
2569 struct free_nid, list);
2570 *nid = i->nid;
2571
2572 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2573 nm_i->available_nids--;
2574
2575 update_free_nid_bitmap(sbi, *nid, false, false);
2576
2577 spin_unlock(&nm_i->nid_list_lock);
2578 return true;
2579 }
2580 spin_unlock(&nm_i->nid_list_lock);
2581
2582 /* Let's scan nat pages and its caches to get free nids */
2583 if (!f2fs_build_free_nids(sbi, true, false))
2584 goto retry;
2585 return false;
2586 }
2587
2588 /*
2589 * f2fs_alloc_nid() should be called prior to this function.
2590 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2591 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2592 {
2593 struct f2fs_nm_info *nm_i = NM_I(sbi);
2594 struct free_nid *i;
2595
2596 spin_lock(&nm_i->nid_list_lock);
2597 i = __lookup_free_nid_list(nm_i, nid);
2598 f2fs_bug_on(sbi, !i);
2599 __remove_free_nid(sbi, i, PREALLOC_NID);
2600 spin_unlock(&nm_i->nid_list_lock);
2601
2602 kmem_cache_free(free_nid_slab, i);
2603 }
2604
2605 /*
2606 * f2fs_alloc_nid() should be called prior to this function.
2607 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2608 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2609 {
2610 struct f2fs_nm_info *nm_i = NM_I(sbi);
2611 struct free_nid *i;
2612 bool need_free = false;
2613
2614 if (!nid)
2615 return;
2616
2617 spin_lock(&nm_i->nid_list_lock);
2618 i = __lookup_free_nid_list(nm_i, nid);
2619 f2fs_bug_on(sbi, !i);
2620
2621 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2622 __remove_free_nid(sbi, i, PREALLOC_NID);
2623 need_free = true;
2624 } else {
2625 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2626 }
2627
2628 nm_i->available_nids++;
2629
2630 update_free_nid_bitmap(sbi, nid, true, false);
2631
2632 spin_unlock(&nm_i->nid_list_lock);
2633
2634 if (need_free)
2635 kmem_cache_free(free_nid_slab, i);
2636 }
2637
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2638 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2639 {
2640 struct f2fs_nm_info *nm_i = NM_I(sbi);
2641 int nr = nr_shrink;
2642
2643 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2644 return 0;
2645
2646 if (!mutex_trylock(&nm_i->build_lock))
2647 return 0;
2648
2649 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2650 struct free_nid *i, *next;
2651 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2652
2653 spin_lock(&nm_i->nid_list_lock);
2654 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2655 if (!nr_shrink || !batch ||
2656 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2657 break;
2658 __remove_free_nid(sbi, i, FREE_NID);
2659 kmem_cache_free(free_nid_slab, i);
2660 nr_shrink--;
2661 batch--;
2662 }
2663 spin_unlock(&nm_i->nid_list_lock);
2664 }
2665
2666 mutex_unlock(&nm_i->build_lock);
2667
2668 return nr - nr_shrink;
2669 }
2670
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2671 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2672 {
2673 void *src_addr, *dst_addr;
2674 size_t inline_size;
2675 struct page *ipage;
2676 struct f2fs_inode *ri;
2677
2678 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2679 if (IS_ERR(ipage))
2680 return PTR_ERR(ipage);
2681
2682 ri = F2FS_INODE(page);
2683 if (ri->i_inline & F2FS_INLINE_XATTR) {
2684 if (!f2fs_has_inline_xattr(inode)) {
2685 set_inode_flag(inode, FI_INLINE_XATTR);
2686 stat_inc_inline_xattr(inode);
2687 }
2688 } else {
2689 if (f2fs_has_inline_xattr(inode)) {
2690 stat_dec_inline_xattr(inode);
2691 clear_inode_flag(inode, FI_INLINE_XATTR);
2692 }
2693 goto update_inode;
2694 }
2695
2696 dst_addr = inline_xattr_addr(inode, ipage);
2697 src_addr = inline_xattr_addr(inode, page);
2698 inline_size = inline_xattr_size(inode);
2699
2700 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2701 memcpy(dst_addr, src_addr, inline_size);
2702 update_inode:
2703 f2fs_update_inode(inode, ipage);
2704 f2fs_put_page(ipage, 1);
2705 return 0;
2706 }
2707
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2708 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2709 {
2710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2711 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2712 nid_t new_xnid;
2713 struct dnode_of_data dn;
2714 struct node_info ni;
2715 struct page *xpage;
2716 int err;
2717
2718 if (!prev_xnid)
2719 goto recover_xnid;
2720
2721 /* 1: invalidate the previous xattr nid */
2722 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2723 if (err)
2724 return err;
2725
2726 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2727 dec_valid_node_count(sbi, inode, false);
2728 set_node_addr(sbi, &ni, NULL_ADDR, false);
2729
2730 recover_xnid:
2731 /* 2: update xattr nid in inode */
2732 if (!f2fs_alloc_nid(sbi, &new_xnid))
2733 return -ENOSPC;
2734
2735 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2736 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2737 if (IS_ERR(xpage)) {
2738 f2fs_alloc_nid_failed(sbi, new_xnid);
2739 return PTR_ERR(xpage);
2740 }
2741
2742 f2fs_alloc_nid_done(sbi, new_xnid);
2743 f2fs_update_inode_page(inode);
2744
2745 /* 3: update and set xattr node page dirty */
2746 if (page)
2747 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2748 VALID_XATTR_BLOCK_SIZE);
2749
2750 set_page_dirty(xpage);
2751 f2fs_put_page(xpage, 1);
2752
2753 return 0;
2754 }
2755
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2756 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2757 {
2758 struct f2fs_inode *src, *dst;
2759 nid_t ino = ino_of_node(page);
2760 struct node_info old_ni, new_ni;
2761 struct page *ipage;
2762 int err;
2763
2764 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2765 if (err)
2766 return err;
2767
2768 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2769 return -EINVAL;
2770 retry:
2771 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2772 if (!ipage) {
2773 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2774 goto retry;
2775 }
2776
2777 /* Should not use this inode from free nid list */
2778 remove_free_nid(sbi, ino);
2779
2780 if (!PageUptodate(ipage))
2781 SetPageUptodate(ipage);
2782 fill_node_footer(ipage, ino, ino, 0, true);
2783 set_cold_node(ipage, false);
2784
2785 src = F2FS_INODE(page);
2786 dst = F2FS_INODE(ipage);
2787
2788 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2789 dst->i_size = 0;
2790 dst->i_blocks = cpu_to_le64(1);
2791 dst->i_links = cpu_to_le32(1);
2792 dst->i_xattr_nid = 0;
2793 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2794 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2795 dst->i_extra_isize = src->i_extra_isize;
2796
2797 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2798 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2799 i_inline_xattr_size))
2800 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2801
2802 if (f2fs_sb_has_project_quota(sbi) &&
2803 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2804 i_projid))
2805 dst->i_projid = src->i_projid;
2806
2807 if (f2fs_sb_has_inode_crtime(sbi) &&
2808 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2809 i_crtime_nsec)) {
2810 dst->i_crtime = src->i_crtime;
2811 dst->i_crtime_nsec = src->i_crtime_nsec;
2812 }
2813 }
2814
2815 new_ni = old_ni;
2816 new_ni.ino = ino;
2817
2818 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2819 WARN_ON(1);
2820 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2821 inc_valid_inode_count(sbi);
2822 set_page_dirty(ipage);
2823 f2fs_put_page(ipage, 1);
2824 return 0;
2825 }
2826
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2827 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2828 unsigned int segno, struct f2fs_summary_block *sum)
2829 {
2830 struct f2fs_node *rn;
2831 struct f2fs_summary *sum_entry;
2832 block_t addr;
2833 int i, idx, last_offset, nrpages;
2834
2835 /* scan the node segment */
2836 last_offset = sbi->blocks_per_seg;
2837 addr = START_BLOCK(sbi, segno);
2838 sum_entry = &sum->entries[0];
2839
2840 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2841 nrpages = bio_max_segs(last_offset - i);
2842
2843 /* readahead node pages */
2844 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2845
2846 for (idx = addr; idx < addr + nrpages; idx++) {
2847 struct page *page = f2fs_get_tmp_page(sbi, idx);
2848
2849 if (IS_ERR(page))
2850 return PTR_ERR(page);
2851
2852 rn = F2FS_NODE(page);
2853 sum_entry->nid = rn->footer.nid;
2854 sum_entry->version = 0;
2855 sum_entry->ofs_in_node = 0;
2856 sum_entry++;
2857 f2fs_put_page(page, 1);
2858 }
2859
2860 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2861 addr + nrpages);
2862 }
2863 return 0;
2864 }
2865
remove_nats_in_journal(struct f2fs_sb_info * sbi)2866 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2867 {
2868 struct f2fs_nm_info *nm_i = NM_I(sbi);
2869 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2870 struct f2fs_journal *journal = curseg->journal;
2871 int i;
2872
2873 down_write(&curseg->journal_rwsem);
2874 for (i = 0; i < nats_in_cursum(journal); i++) {
2875 struct nat_entry *ne;
2876 struct f2fs_nat_entry raw_ne;
2877 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2878
2879 if (f2fs_check_nid_range(sbi, nid))
2880 continue;
2881
2882 raw_ne = nat_in_journal(journal, i);
2883
2884 ne = __lookup_nat_cache(nm_i, nid);
2885 if (!ne) {
2886 ne = __alloc_nat_entry(sbi, nid, true);
2887 __init_nat_entry(nm_i, ne, &raw_ne, true);
2888 }
2889
2890 /*
2891 * if a free nat in journal has not been used after last
2892 * checkpoint, we should remove it from available nids,
2893 * since later we will add it again.
2894 */
2895 if (!get_nat_flag(ne, IS_DIRTY) &&
2896 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2897 spin_lock(&nm_i->nid_list_lock);
2898 nm_i->available_nids--;
2899 spin_unlock(&nm_i->nid_list_lock);
2900 }
2901
2902 __set_nat_cache_dirty(nm_i, ne);
2903 }
2904 update_nats_in_cursum(journal, -i);
2905 up_write(&curseg->journal_rwsem);
2906 }
2907
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2908 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2909 struct list_head *head, int max)
2910 {
2911 struct nat_entry_set *cur;
2912
2913 if (nes->entry_cnt >= max)
2914 goto add_out;
2915
2916 list_for_each_entry(cur, head, set_list) {
2917 if (cur->entry_cnt >= nes->entry_cnt) {
2918 list_add(&nes->set_list, cur->set_list.prev);
2919 return;
2920 }
2921 }
2922 add_out:
2923 list_add_tail(&nes->set_list, head);
2924 }
2925
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2926 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2927 unsigned int valid)
2928 {
2929 if (valid == 0) {
2930 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2931 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932 return;
2933 }
2934
2935 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2936 if (valid == NAT_ENTRY_PER_BLOCK)
2937 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2938 else
2939 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2940 }
2941
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2942 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2943 struct page *page)
2944 {
2945 struct f2fs_nm_info *nm_i = NM_I(sbi);
2946 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2947 struct f2fs_nat_block *nat_blk = page_address(page);
2948 int valid = 0;
2949 int i = 0;
2950
2951 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2952 return;
2953
2954 if (nat_index == 0) {
2955 valid = 1;
2956 i = 1;
2957 }
2958 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2959 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2960 valid++;
2961 }
2962
2963 __update_nat_bits(nm_i, nat_index, valid);
2964 }
2965
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2966 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2967 {
2968 struct f2fs_nm_info *nm_i = NM_I(sbi);
2969 unsigned int nat_ofs;
2970
2971 f2fs_down_read(&nm_i->nat_tree_lock);
2972
2973 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2974 unsigned int valid = 0, nid_ofs = 0;
2975
2976 /* handle nid zero due to it should never be used */
2977 if (unlikely(nat_ofs == 0)) {
2978 valid = 1;
2979 nid_ofs = 1;
2980 }
2981
2982 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2983 if (!test_bit_le(nid_ofs,
2984 nm_i->free_nid_bitmap[nat_ofs]))
2985 valid++;
2986 }
2987
2988 __update_nat_bits(nm_i, nat_ofs, valid);
2989 }
2990
2991 f2fs_up_read(&nm_i->nat_tree_lock);
2992 }
2993
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2994 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2995 struct nat_entry_set *set, struct cp_control *cpc)
2996 {
2997 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2998 struct f2fs_journal *journal = curseg->journal;
2999 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3000 bool to_journal = true;
3001 struct f2fs_nat_block *nat_blk;
3002 struct nat_entry *ne, *cur;
3003 struct page *page = NULL;
3004
3005 /*
3006 * there are two steps to flush nat entries:
3007 * #1, flush nat entries to journal in current hot data summary block.
3008 * #2, flush nat entries to nat page.
3009 */
3010 if ((cpc->reason & CP_UMOUNT) ||
3011 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3012 to_journal = false;
3013
3014 if (to_journal) {
3015 down_write(&curseg->journal_rwsem);
3016 } else {
3017 page = get_next_nat_page(sbi, start_nid);
3018 if (IS_ERR(page))
3019 return PTR_ERR(page);
3020
3021 nat_blk = page_address(page);
3022 f2fs_bug_on(sbi, !nat_blk);
3023 }
3024
3025 /* flush dirty nats in nat entry set */
3026 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3027 struct f2fs_nat_entry *raw_ne;
3028 nid_t nid = nat_get_nid(ne);
3029 int offset;
3030
3031 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3032
3033 if (to_journal) {
3034 offset = f2fs_lookup_journal_in_cursum(journal,
3035 NAT_JOURNAL, nid, 1);
3036 f2fs_bug_on(sbi, offset < 0);
3037 raw_ne = &nat_in_journal(journal, offset);
3038 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3039 } else {
3040 raw_ne = &nat_blk->entries[nid - start_nid];
3041 }
3042 raw_nat_from_node_info(raw_ne, &ne->ni);
3043 nat_reset_flag(ne);
3044 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3045 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3046 add_free_nid(sbi, nid, false, true);
3047 } else {
3048 spin_lock(&NM_I(sbi)->nid_list_lock);
3049 update_free_nid_bitmap(sbi, nid, false, false);
3050 spin_unlock(&NM_I(sbi)->nid_list_lock);
3051 }
3052 }
3053
3054 if (to_journal) {
3055 up_write(&curseg->journal_rwsem);
3056 } else {
3057 update_nat_bits(sbi, start_nid, page);
3058 f2fs_put_page(page, 1);
3059 }
3060
3061 /* Allow dirty nats by node block allocation in write_begin */
3062 if (!set->entry_cnt) {
3063 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3064 kmem_cache_free(nat_entry_set_slab, set);
3065 }
3066 return 0;
3067 }
3068
3069 /*
3070 * This function is called during the checkpointing process.
3071 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3072 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3073 {
3074 struct f2fs_nm_info *nm_i = NM_I(sbi);
3075 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3076 struct f2fs_journal *journal = curseg->journal;
3077 struct nat_entry_set *setvec[SETVEC_SIZE];
3078 struct nat_entry_set *set, *tmp;
3079 unsigned int found;
3080 nid_t set_idx = 0;
3081 LIST_HEAD(sets);
3082 int err = 0;
3083
3084 /*
3085 * during unmount, let's flush nat_bits before checking
3086 * nat_cnt[DIRTY_NAT].
3087 */
3088 if (cpc->reason & CP_UMOUNT) {
3089 f2fs_down_write(&nm_i->nat_tree_lock);
3090 remove_nats_in_journal(sbi);
3091 f2fs_up_write(&nm_i->nat_tree_lock);
3092 }
3093
3094 if (!nm_i->nat_cnt[DIRTY_NAT])
3095 return 0;
3096
3097 f2fs_down_write(&nm_i->nat_tree_lock);
3098
3099 /*
3100 * if there are no enough space in journal to store dirty nat
3101 * entries, remove all entries from journal and merge them
3102 * into nat entry set.
3103 */
3104 if (cpc->reason & CP_UMOUNT ||
3105 !__has_cursum_space(journal,
3106 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3107 remove_nats_in_journal(sbi);
3108
3109 while ((found = __gang_lookup_nat_set(nm_i,
3110 set_idx, SETVEC_SIZE, setvec))) {
3111 unsigned idx;
3112
3113 set_idx = setvec[found - 1]->set + 1;
3114 for (idx = 0; idx < found; idx++)
3115 __adjust_nat_entry_set(setvec[idx], &sets,
3116 MAX_NAT_JENTRIES(journal));
3117 }
3118
3119 /* flush dirty nats in nat entry set */
3120 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3121 err = __flush_nat_entry_set(sbi, set, cpc);
3122 if (err)
3123 break;
3124 }
3125
3126 f2fs_up_write(&nm_i->nat_tree_lock);
3127 /* Allow dirty nats by node block allocation in write_begin */
3128
3129 return err;
3130 }
3131
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3132 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3133 {
3134 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3135 struct f2fs_nm_info *nm_i = NM_I(sbi);
3136 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3137 unsigned int i;
3138 __u64 cp_ver = cur_cp_version(ckpt);
3139 block_t nat_bits_addr;
3140
3141 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3142 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3143 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3144 if (!nm_i->nat_bits)
3145 return -ENOMEM;
3146
3147 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3148 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3149
3150 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3151 return 0;
3152
3153 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3154 nm_i->nat_bits_blocks;
3155 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3156 struct page *page;
3157
3158 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3159 if (IS_ERR(page))
3160 return PTR_ERR(page);
3161
3162 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3163 page_address(page), F2FS_BLKSIZE);
3164 f2fs_put_page(page, 1);
3165 }
3166
3167 cp_ver |= (cur_cp_crc(ckpt) << 32);
3168 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3169 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3170 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3171 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3172 return 0;
3173 }
3174
3175 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3176 return 0;
3177 }
3178
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3179 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3180 {
3181 struct f2fs_nm_info *nm_i = NM_I(sbi);
3182 unsigned int i = 0;
3183 nid_t nid, last_nid;
3184
3185 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3186 return;
3187
3188 for (i = 0; i < nm_i->nat_blocks; i++) {
3189 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3190 if (i >= nm_i->nat_blocks)
3191 break;
3192
3193 __set_bit_le(i, nm_i->nat_block_bitmap);
3194
3195 nid = i * NAT_ENTRY_PER_BLOCK;
3196 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3197
3198 spin_lock(&NM_I(sbi)->nid_list_lock);
3199 for (; nid < last_nid; nid++)
3200 update_free_nid_bitmap(sbi, nid, true, true);
3201 spin_unlock(&NM_I(sbi)->nid_list_lock);
3202 }
3203
3204 for (i = 0; i < nm_i->nat_blocks; i++) {
3205 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3206 if (i >= nm_i->nat_blocks)
3207 break;
3208
3209 __set_bit_le(i, nm_i->nat_block_bitmap);
3210 }
3211 }
3212
init_node_manager(struct f2fs_sb_info * sbi)3213 static int init_node_manager(struct f2fs_sb_info *sbi)
3214 {
3215 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3216 struct f2fs_nm_info *nm_i = NM_I(sbi);
3217 unsigned char *version_bitmap;
3218 unsigned int nat_segs;
3219 int err;
3220
3221 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3222
3223 /* segment_count_nat includes pair segment so divide to 2. */
3224 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3225 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3226 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3227
3228 /* not used nids: 0, node, meta, (and root counted as valid node) */
3229 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3230 F2FS_RESERVED_NODE_NUM;
3231 nm_i->nid_cnt[FREE_NID] = 0;
3232 nm_i->nid_cnt[PREALLOC_NID] = 0;
3233 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3234 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3235 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3236 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3237
3238 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3239 INIT_LIST_HEAD(&nm_i->free_nid_list);
3240 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3241 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3242 INIT_LIST_HEAD(&nm_i->nat_entries);
3243 spin_lock_init(&nm_i->nat_list_lock);
3244
3245 mutex_init(&nm_i->build_lock);
3246 spin_lock_init(&nm_i->nid_list_lock);
3247 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3248
3249 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3250 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3251 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3252 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3253 GFP_KERNEL);
3254 if (!nm_i->nat_bitmap)
3255 return -ENOMEM;
3256
3257 err = __get_nat_bitmaps(sbi);
3258 if (err)
3259 return err;
3260
3261 #ifdef CONFIG_F2FS_CHECK_FS
3262 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3263 GFP_KERNEL);
3264 if (!nm_i->nat_bitmap_mir)
3265 return -ENOMEM;
3266 #endif
3267
3268 return 0;
3269 }
3270
init_free_nid_cache(struct f2fs_sb_info * sbi)3271 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3272 {
3273 struct f2fs_nm_info *nm_i = NM_I(sbi);
3274 int i;
3275
3276 nm_i->free_nid_bitmap =
3277 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3278 nm_i->nat_blocks),
3279 GFP_KERNEL);
3280 if (!nm_i->free_nid_bitmap)
3281 return -ENOMEM;
3282
3283 for (i = 0; i < nm_i->nat_blocks; i++) {
3284 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3285 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3286 if (!nm_i->free_nid_bitmap[i])
3287 return -ENOMEM;
3288 }
3289
3290 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3291 GFP_KERNEL);
3292 if (!nm_i->nat_block_bitmap)
3293 return -ENOMEM;
3294
3295 nm_i->free_nid_count =
3296 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3297 nm_i->nat_blocks),
3298 GFP_KERNEL);
3299 if (!nm_i->free_nid_count)
3300 return -ENOMEM;
3301 return 0;
3302 }
3303
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3304 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3305 {
3306 int err;
3307
3308 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3309 GFP_KERNEL);
3310 if (!sbi->nm_info)
3311 return -ENOMEM;
3312
3313 err = init_node_manager(sbi);
3314 if (err)
3315 return err;
3316
3317 err = init_free_nid_cache(sbi);
3318 if (err)
3319 return err;
3320
3321 /* load free nid status from nat_bits table */
3322 load_free_nid_bitmap(sbi);
3323
3324 return f2fs_build_free_nids(sbi, true, true);
3325 }
3326
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3327 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3328 {
3329 struct f2fs_nm_info *nm_i = NM_I(sbi);
3330 struct free_nid *i, *next_i;
3331 struct nat_entry *natvec[NATVEC_SIZE];
3332 struct nat_entry_set *setvec[SETVEC_SIZE];
3333 nid_t nid = 0;
3334 unsigned int found;
3335
3336 if (!nm_i)
3337 return;
3338
3339 /* destroy free nid list */
3340 spin_lock(&nm_i->nid_list_lock);
3341 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3342 __remove_free_nid(sbi, i, FREE_NID);
3343 spin_unlock(&nm_i->nid_list_lock);
3344 kmem_cache_free(free_nid_slab, i);
3345 spin_lock(&nm_i->nid_list_lock);
3346 }
3347 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3348 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3349 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3350 spin_unlock(&nm_i->nid_list_lock);
3351
3352 /* destroy nat cache */
3353 f2fs_down_write(&nm_i->nat_tree_lock);
3354 while ((found = __gang_lookup_nat_cache(nm_i,
3355 nid, NATVEC_SIZE, natvec))) {
3356 unsigned idx;
3357
3358 nid = nat_get_nid(natvec[found - 1]) + 1;
3359 for (idx = 0; idx < found; idx++) {
3360 spin_lock(&nm_i->nat_list_lock);
3361 list_del(&natvec[idx]->list);
3362 spin_unlock(&nm_i->nat_list_lock);
3363
3364 __del_from_nat_cache(nm_i, natvec[idx]);
3365 }
3366 }
3367 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3368
3369 /* destroy nat set cache */
3370 nid = 0;
3371 while ((found = __gang_lookup_nat_set(nm_i,
3372 nid, SETVEC_SIZE, setvec))) {
3373 unsigned idx;
3374
3375 nid = setvec[found - 1]->set + 1;
3376 for (idx = 0; idx < found; idx++) {
3377 /* entry_cnt is not zero, when cp_error was occurred */
3378 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3379 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3380 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3381 }
3382 }
3383 f2fs_up_write(&nm_i->nat_tree_lock);
3384
3385 kvfree(nm_i->nat_block_bitmap);
3386 if (nm_i->free_nid_bitmap) {
3387 int i;
3388
3389 for (i = 0; i < nm_i->nat_blocks; i++)
3390 kvfree(nm_i->free_nid_bitmap[i]);
3391 kvfree(nm_i->free_nid_bitmap);
3392 }
3393 kvfree(nm_i->free_nid_count);
3394
3395 kvfree(nm_i->nat_bitmap);
3396 kvfree(nm_i->nat_bits);
3397 #ifdef CONFIG_F2FS_CHECK_FS
3398 kvfree(nm_i->nat_bitmap_mir);
3399 #endif
3400 sbi->nm_info = NULL;
3401 kfree(nm_i);
3402 }
3403
f2fs_create_node_manager_caches(void)3404 int __init f2fs_create_node_manager_caches(void)
3405 {
3406 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3407 sizeof(struct nat_entry));
3408 if (!nat_entry_slab)
3409 goto fail;
3410
3411 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3412 sizeof(struct free_nid));
3413 if (!free_nid_slab)
3414 goto destroy_nat_entry;
3415
3416 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3417 sizeof(struct nat_entry_set));
3418 if (!nat_entry_set_slab)
3419 goto destroy_free_nid;
3420
3421 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3422 sizeof(struct fsync_node_entry));
3423 if (!fsync_node_entry_slab)
3424 goto destroy_nat_entry_set;
3425 return 0;
3426
3427 destroy_nat_entry_set:
3428 kmem_cache_destroy(nat_entry_set_slab);
3429 destroy_free_nid:
3430 kmem_cache_destroy(free_nid_slab);
3431 destroy_nat_entry:
3432 kmem_cache_destroy(nat_entry_slab);
3433 fail:
3434 return -ENOMEM;
3435 }
3436
f2fs_destroy_node_manager_caches(void)3437 void f2fs_destroy_node_manager_caches(void)
3438 {
3439 kmem_cache_destroy(fsync_node_entry_slab);
3440 kmem_cache_destroy(nat_entry_set_slab);
3441 kmem_cache_destroy(free_nid_slab);
3442 kmem_cache_destroy(nat_entry_slab);
3443 }
3444