1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 #include <linux/iomap.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "iostat.h"
30 #include <trace/events/f2fs.h>
31 #include <trace/events/android_fs.h>
32
33 #define NUM_PREALLOC_POST_READ_CTXS 128
34
35 static struct kmem_cache *bio_post_read_ctx_cache;
36 static struct kmem_cache *bio_entry_slab;
37 static mempool_t *bio_post_read_ctx_pool;
38 static struct bio_set f2fs_bioset;
39
40 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
41
f2fs_init_bioset(void)42 int __init f2fs_init_bioset(void)
43 {
44 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
45 0, BIOSET_NEED_BVECS))
46 return -ENOMEM;
47 return 0;
48 }
49
f2fs_destroy_bioset(void)50 void f2fs_destroy_bioset(void)
51 {
52 bioset_exit(&f2fs_bioset);
53 }
54
__is_cp_guaranteed(struct page * page)55 static bool __is_cp_guaranteed(struct page *page)
56 {
57 struct address_space *mapping = page->mapping;
58 struct inode *inode;
59 struct f2fs_sb_info *sbi;
60
61 if (!mapping)
62 return false;
63
64 inode = mapping->host;
65 sbi = F2FS_I_SB(inode);
66
67 if (inode->i_ino == F2FS_META_INO(sbi) ||
68 inode->i_ino == F2FS_NODE_INO(sbi) ||
69 S_ISDIR(inode->i_mode))
70 return true;
71
72 if (f2fs_is_compressed_page(page))
73 return false;
74 if ((S_ISREG(inode->i_mode) &&
75 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
76 page_private_gcing(page))
77 return true;
78 return false;
79 }
80
__read_io_type(struct page * page)81 static enum count_type __read_io_type(struct page *page)
82 {
83 struct address_space *mapping = page_file_mapping(page);
84
85 if (mapping) {
86 struct inode *inode = mapping->host;
87 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
88
89 if (inode->i_ino == F2FS_META_INO(sbi))
90 return F2FS_RD_META;
91
92 if (inode->i_ino == F2FS_NODE_INO(sbi))
93 return F2FS_RD_NODE;
94 }
95 return F2FS_RD_DATA;
96 }
97
98 /* postprocessing steps for read bios */
99 enum bio_post_read_step {
100 #ifdef CONFIG_FS_ENCRYPTION
101 STEP_DECRYPT = 1 << 0,
102 #else
103 STEP_DECRYPT = 0, /* compile out the decryption-related code */
104 #endif
105 #ifdef CONFIG_F2FS_FS_COMPRESSION
106 STEP_DECOMPRESS = 1 << 1,
107 #else
108 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
109 #endif
110 #ifdef CONFIG_FS_VERITY
111 STEP_VERITY = 1 << 2,
112 #else
113 STEP_VERITY = 0, /* compile out the verity-related code */
114 #endif
115 };
116
117 struct bio_post_read_ctx {
118 struct bio *bio;
119 struct f2fs_sb_info *sbi;
120 struct work_struct work;
121 unsigned int enabled_steps;
122 block_t fs_blkaddr;
123 };
124
f2fs_finish_read_bio(struct bio * bio,bool in_task)125 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
126 {
127 struct bio_vec *bv;
128 struct bvec_iter_all iter_all;
129
130 /*
131 * Update and unlock the bio's pagecache pages, and put the
132 * decompression context for any compressed pages.
133 */
134 bio_for_each_segment_all(bv, bio, iter_all) {
135 struct page *page = bv->bv_page;
136
137 if (f2fs_is_compressed_page(page)) {
138 if (bio->bi_status)
139 f2fs_end_read_compressed_page(page, true, 0,
140 in_task);
141 f2fs_put_page_dic(page, in_task);
142 continue;
143 }
144
145 /* PG_error was set if decryption or verity failed. */
146 if (bio->bi_status || PageError(page)) {
147 ClearPageUptodate(page);
148 /* will re-read again later */
149 ClearPageError(page);
150 } else {
151 SetPageUptodate(page);
152 }
153 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
154 unlock_page(page);
155 }
156
157 if (bio->bi_private)
158 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
159 bio_put(bio);
160 }
161
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 struct bio_post_read_ctx *ctx =
165 container_of(work, struct bio_post_read_ctx, work);
166 struct bio *bio = ctx->bio;
167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168
169 /*
170 * fsverity_verify_bio() may call readpages() again, and while verity
171 * will be disabled for this, decryption and/or decompression may still
172 * be needed, resulting in another bio_post_read_ctx being allocated.
173 * So to prevent deadlocks we need to release the current ctx to the
174 * mempool first. This assumes that verity is the last post-read step.
175 */
176 mempool_free(ctx, bio_post_read_ctx_pool);
177 bio->bi_private = NULL;
178
179 /*
180 * Verify the bio's pages with fs-verity. Exclude compressed pages,
181 * as those were handled separately by f2fs_end_read_compressed_page().
182 */
183 if (may_have_compressed_pages) {
184 struct bio_vec *bv;
185 struct bvec_iter_all iter_all;
186
187 bio_for_each_segment_all(bv, bio, iter_all) {
188 struct page *page = bv->bv_page;
189
190 if (!f2fs_is_compressed_page(page) &&
191 !PageError(page) && !fsverity_verify_page(page))
192 SetPageError(page);
193 }
194 } else {
195 fsverity_verify_bio(bio);
196 }
197
198 f2fs_finish_read_bio(bio, true);
199 }
200
201 /*
202 * If the bio's data needs to be verified with fs-verity, then enqueue the
203 * verity work for the bio. Otherwise finish the bio now.
204 *
205 * Note that to avoid deadlocks, the verity work can't be done on the
206 * decryption/decompression workqueue. This is because verifying the data pages
207 * can involve reading verity metadata pages from the file, and these verity
208 * metadata pages may be encrypted and/or compressed.
209 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)210 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
211 {
212 struct bio_post_read_ctx *ctx = bio->bi_private;
213
214 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
215 INIT_WORK(&ctx->work, f2fs_verify_bio);
216 fsverity_enqueue_verify_work(&ctx->work);
217 } else {
218 f2fs_finish_read_bio(bio, in_task);
219 }
220 }
221
222 /*
223 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
224 * remaining page was read by @ctx->bio.
225 *
226 * Note that a bio may span clusters (even a mix of compressed and uncompressed
227 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
228 * that the bio includes at least one compressed page. The actual decompression
229 * is done on a per-cluster basis, not a per-bio basis.
230 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)231 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
232 bool in_task)
233 {
234 struct bio_vec *bv;
235 struct bvec_iter_all iter_all;
236 bool all_compressed = true;
237 block_t blkaddr = ctx->fs_blkaddr;
238
239 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
240 struct page *page = bv->bv_page;
241
242 /* PG_error was set if decryption failed. */
243 if (f2fs_is_compressed_page(page))
244 f2fs_end_read_compressed_page(page, PageError(page),
245 blkaddr, in_task);
246 else
247 all_compressed = false;
248
249 blkaddr++;
250 }
251
252 /*
253 * Optimization: if all the bio's pages are compressed, then scheduling
254 * the per-bio verity work is unnecessary, as verity will be fully
255 * handled at the compression cluster level.
256 */
257 if (all_compressed)
258 ctx->enabled_steps &= ~STEP_VERITY;
259 }
260
f2fs_post_read_work(struct work_struct * work)261 static void f2fs_post_read_work(struct work_struct *work)
262 {
263 struct bio_post_read_ctx *ctx =
264 container_of(work, struct bio_post_read_ctx, work);
265
266 if (ctx->enabled_steps & STEP_DECRYPT)
267 fscrypt_decrypt_bio(ctx->bio);
268
269 if (ctx->enabled_steps & STEP_DECOMPRESS)
270 f2fs_handle_step_decompress(ctx, true);
271
272 f2fs_verify_and_finish_bio(ctx->bio, true);
273 }
274
f2fs_read_end_io(struct bio * bio)275 static void f2fs_read_end_io(struct bio *bio)
276 {
277 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
278 struct bio_post_read_ctx *ctx;
279 bool intask = in_task();
280
281 iostat_update_and_unbind_ctx(bio, 0);
282 ctx = bio->bi_private;
283
284 if (time_to_inject(sbi, FAULT_READ_IO)) {
285 f2fs_show_injection_info(sbi, FAULT_READ_IO);
286 bio->bi_status = BLK_STS_IOERR;
287 }
288
289 if (bio->bi_status) {
290 f2fs_finish_read_bio(bio, intask);
291 return;
292 }
293
294 if (ctx) {
295 unsigned int enabled_steps = ctx->enabled_steps &
296 (STEP_DECRYPT | STEP_DECOMPRESS);
297
298 /*
299 * If we have only decompression step between decompression and
300 * decrypt, we don't need post processing for this.
301 */
302 if (enabled_steps == STEP_DECOMPRESS &&
303 !f2fs_low_mem_mode(sbi)) {
304 f2fs_handle_step_decompress(ctx, intask);
305 } else if (enabled_steps) {
306 INIT_WORK(&ctx->work, f2fs_post_read_work);
307 queue_work(ctx->sbi->post_read_wq, &ctx->work);
308 return;
309 }
310 }
311
312 f2fs_verify_and_finish_bio(bio, intask);
313 }
314
f2fs_write_end_io(struct bio * bio)315 static void f2fs_write_end_io(struct bio *bio)
316 {
317 struct f2fs_sb_info *sbi;
318 struct bio_vec *bvec;
319 struct bvec_iter_all iter_all;
320
321 iostat_update_and_unbind_ctx(bio, 1);
322 sbi = bio->bi_private;
323
324 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
325 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
326 bio->bi_status = BLK_STS_IOERR;
327 }
328
329 bio_for_each_segment_all(bvec, bio, iter_all) {
330 struct page *page = bvec->bv_page;
331 enum count_type type = WB_DATA_TYPE(page);
332
333 if (page_private_dummy(page)) {
334 clear_page_private_dummy(page);
335 unlock_page(page);
336 mempool_free(page, sbi->write_io_dummy);
337
338 if (unlikely(bio->bi_status))
339 f2fs_stop_checkpoint(sbi, true,
340 STOP_CP_REASON_WRITE_FAIL);
341 continue;
342 }
343
344 fscrypt_finalize_bounce_page(&page);
345
346 #ifdef CONFIG_F2FS_FS_COMPRESSION
347 if (f2fs_is_compressed_page(page)) {
348 f2fs_compress_write_end_io(bio, page);
349 continue;
350 }
351 #endif
352
353 if (unlikely(bio->bi_status)) {
354 mapping_set_error(page->mapping, -EIO);
355 if (type == F2FS_WB_CP_DATA)
356 f2fs_stop_checkpoint(sbi, true,
357 STOP_CP_REASON_WRITE_FAIL);
358 }
359
360 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
361 page->index != nid_of_node(page));
362
363 dec_page_count(sbi, type);
364 if (f2fs_in_warm_node_list(sbi, page))
365 f2fs_del_fsync_node_entry(sbi, page);
366 clear_page_private_gcing(page);
367 end_page_writeback(page);
368 }
369 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
370 wq_has_sleeper(&sbi->cp_wait))
371 wake_up(&sbi->cp_wait);
372
373 bio_put(bio);
374 }
375
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)376 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
377 block_t blk_addr, struct bio *bio)
378 {
379 struct block_device *bdev = sbi->sb->s_bdev;
380 int i;
381
382 if (f2fs_is_multi_device(sbi)) {
383 for (i = 0; i < sbi->s_ndevs; i++) {
384 if (FDEV(i).start_blk <= blk_addr &&
385 FDEV(i).end_blk >= blk_addr) {
386 blk_addr -= FDEV(i).start_blk;
387 bdev = FDEV(i).bdev;
388 break;
389 }
390 }
391 }
392 if (bio) {
393 bio_set_dev(bio, bdev);
394 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
395 }
396 return bdev;
397 }
398
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)399 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
400 {
401 int i;
402
403 if (!f2fs_is_multi_device(sbi))
404 return 0;
405
406 for (i = 0; i < sbi->s_ndevs; i++)
407 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
408 return i;
409 return 0;
410 }
411
412 /*
413 * Return true, if pre_bio's bdev is same as its target device.
414 */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)415 static bool __same_bdev(struct f2fs_sb_info *sbi,
416 block_t blk_addr, struct bio *bio)
417 {
418 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
419 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
420 }
421
__bio_alloc(struct f2fs_io_info * fio,int npages)422 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
423 {
424 struct f2fs_sb_info *sbi = fio->sbi;
425 struct bio *bio;
426
427 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
428
429 f2fs_target_device(sbi, fio->new_blkaddr, bio);
430 if (is_read_io(fio->op)) {
431 bio->bi_end_io = f2fs_read_end_io;
432 bio->bi_private = NULL;
433 } else {
434 bio->bi_end_io = f2fs_write_end_io;
435 bio->bi_private = sbi;
436 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
437 fio->type, fio->temp);
438 }
439 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
440
441 if (fio->io_wbc)
442 wbc_init_bio(fio->io_wbc, bio);
443
444 return bio;
445 }
446
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)447 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
448 pgoff_t first_idx,
449 const struct f2fs_io_info *fio,
450 gfp_t gfp_mask)
451 {
452 /*
453 * The f2fs garbage collector sets ->encrypted_page when it wants to
454 * read/write raw data without encryption.
455 */
456 if (!fio || !fio->encrypted_page)
457 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
458 else if (fscrypt_inode_should_skip_dm_default_key(inode))
459 bio_set_skip_dm_default_key(bio);
460 }
461
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)462 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
463 pgoff_t next_idx,
464 const struct f2fs_io_info *fio)
465 {
466 /*
467 * The f2fs garbage collector sets ->encrypted_page when it wants to
468 * read/write raw data without encryption.
469 */
470 if (fio && fio->encrypted_page)
471 return !bio_has_crypt_ctx(bio) &&
472 (bio_should_skip_dm_default_key(bio) ==
473 fscrypt_inode_should_skip_dm_default_key(inode));
474
475 return fscrypt_mergeable_bio(bio, inode, next_idx);
476 }
477
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)478 static inline void __submit_bio(struct f2fs_sb_info *sbi,
479 struct bio *bio, enum page_type type)
480 {
481 if (!is_read_io(bio_op(bio))) {
482 unsigned int start;
483
484 if (type != DATA && type != NODE)
485 goto submit_io;
486
487 if (f2fs_lfs_mode(sbi) && current->plug)
488 blk_finish_plug(current->plug);
489
490 if (!F2FS_IO_ALIGNED(sbi))
491 goto submit_io;
492
493 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
494 start %= F2FS_IO_SIZE(sbi);
495
496 if (start == 0)
497 goto submit_io;
498
499 /* fill dummy pages */
500 for (; start < F2FS_IO_SIZE(sbi); start++) {
501 struct page *page =
502 mempool_alloc(sbi->write_io_dummy,
503 GFP_NOIO | __GFP_NOFAIL);
504 f2fs_bug_on(sbi, !page);
505
506 lock_page(page);
507
508 zero_user_segment(page, 0, PAGE_SIZE);
509 set_page_private_dummy(page);
510
511 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
512 f2fs_bug_on(sbi, 1);
513 }
514 /*
515 * In the NODE case, we lose next block address chain. So, we
516 * need to do checkpoint in f2fs_sync_file.
517 */
518 if (type == NODE)
519 set_sbi_flag(sbi, SBI_NEED_CP);
520 }
521 submit_io:
522 if (is_read_io(bio_op(bio)))
523 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
524 else
525 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
526
527 iostat_update_submit_ctx(bio, type);
528 submit_bio(bio);
529 }
530
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)531 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
532 struct bio *bio, enum page_type type)
533 {
534 __submit_bio(sbi, bio, type);
535 }
536
__attach_io_flag(struct f2fs_io_info * fio)537 static void __attach_io_flag(struct f2fs_io_info *fio)
538 {
539 struct f2fs_sb_info *sbi = fio->sbi;
540 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
541 unsigned int io_flag, fua_flag, meta_flag;
542
543 if (fio->type == DATA)
544 io_flag = sbi->data_io_flag;
545 else if (fio->type == NODE)
546 io_flag = sbi->node_io_flag;
547 else
548 return;
549
550 fua_flag = io_flag & temp_mask;
551 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
552
553 /*
554 * data/node io flag bits per temp:
555 * REQ_META | REQ_FUA |
556 * 5 | 4 | 3 | 2 | 1 | 0 |
557 * Cold | Warm | Hot | Cold | Warm | Hot |
558 */
559 if ((1 << fio->temp) & meta_flag)
560 fio->op_flags |= REQ_META;
561 if ((1 << fio->temp) & fua_flag)
562 fio->op_flags |= REQ_FUA;
563 }
564
__submit_merged_bio(struct f2fs_bio_info * io)565 static void __submit_merged_bio(struct f2fs_bio_info *io)
566 {
567 struct f2fs_io_info *fio = &io->fio;
568
569 if (!io->bio)
570 return;
571
572 __attach_io_flag(fio);
573 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
574
575 if (is_read_io(fio->op))
576 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
577 else
578 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
579
580 __submit_bio(io->sbi, io->bio, fio->type);
581 io->bio = NULL;
582 }
583
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)584 static bool __has_merged_page(struct bio *bio, struct inode *inode,
585 struct page *page, nid_t ino)
586 {
587 struct bio_vec *bvec;
588 struct bvec_iter_all iter_all;
589
590 if (!bio)
591 return false;
592
593 if (!inode && !page && !ino)
594 return true;
595
596 bio_for_each_segment_all(bvec, bio, iter_all) {
597 struct page *target = bvec->bv_page;
598
599 if (fscrypt_is_bounce_page(target)) {
600 target = fscrypt_pagecache_page(target);
601 if (IS_ERR(target))
602 continue;
603 }
604 if (f2fs_is_compressed_page(target)) {
605 target = f2fs_compress_control_page(target);
606 if (IS_ERR(target))
607 continue;
608 }
609
610 if (inode && inode == target->mapping->host)
611 return true;
612 if (page && page == target)
613 return true;
614 if (ino && ino == ino_of_node(target))
615 return true;
616 }
617
618 return false;
619 }
620
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)621 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
622 enum page_type type, enum temp_type temp)
623 {
624 enum page_type btype = PAGE_TYPE_OF_BIO(type);
625 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
626
627 f2fs_down_write(&io->io_rwsem);
628
629 /* change META to META_FLUSH in the checkpoint procedure */
630 if (type >= META_FLUSH) {
631 io->fio.type = META_FLUSH;
632 io->fio.op = REQ_OP_WRITE;
633 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
634 if (!test_opt(sbi, NOBARRIER))
635 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
636 }
637 __submit_merged_bio(io);
638 f2fs_up_write(&io->io_rwsem);
639 }
640
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)641 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
642 struct inode *inode, struct page *page,
643 nid_t ino, enum page_type type, bool force)
644 {
645 enum temp_type temp;
646 bool ret = true;
647
648 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
649 if (!force) {
650 enum page_type btype = PAGE_TYPE_OF_BIO(type);
651 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
652
653 f2fs_down_read(&io->io_rwsem);
654 ret = __has_merged_page(io->bio, inode, page, ino);
655 f2fs_up_read(&io->io_rwsem);
656 }
657 if (ret)
658 __f2fs_submit_merged_write(sbi, type, temp);
659
660 /* TODO: use HOT temp only for meta pages now. */
661 if (type >= META)
662 break;
663 }
664 }
665
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)666 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
667 {
668 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
669 }
670
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)671 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 struct inode *inode, struct page *page,
673 nid_t ino, enum page_type type)
674 {
675 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
676 }
677
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)678 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
679 {
680 f2fs_submit_merged_write(sbi, DATA);
681 f2fs_submit_merged_write(sbi, NODE);
682 f2fs_submit_merged_write(sbi, META);
683 }
684
685 /*
686 * Fill the locked page with data located in the block address.
687 * A caller needs to unlock the page on failure.
688 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)689 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
690 {
691 struct bio *bio;
692 struct page *page = fio->encrypted_page ?
693 fio->encrypted_page : fio->page;
694
695 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696 fio->is_por ? META_POR : (__is_meta_io(fio) ?
697 META_GENERIC : DATA_GENERIC_ENHANCE)))
698 return -EFSCORRUPTED;
699
700 trace_f2fs_submit_page_bio(page, fio);
701
702 /* Allocate a new bio */
703 bio = __bio_alloc(fio, 1);
704
705 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
706 fio->page->index, fio, GFP_NOIO);
707
708 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
709 bio_put(bio);
710 return -EFAULT;
711 }
712
713 if (fio->io_wbc && !is_read_io(fio->op))
714 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
715
716 __attach_io_flag(fio);
717 bio_set_op_attrs(bio, fio->op, fio->op_flags);
718
719 inc_page_count(fio->sbi, is_read_io(fio->op) ?
720 __read_io_type(page): WB_DATA_TYPE(fio->page));
721
722 __submit_bio(fio->sbi, bio, fio->type);
723 return 0;
724 }
725
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)726 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
727 block_t last_blkaddr, block_t cur_blkaddr)
728 {
729 if (unlikely(sbi->max_io_bytes &&
730 bio->bi_iter.bi_size >= sbi->max_io_bytes))
731 return false;
732 if (last_blkaddr + 1 != cur_blkaddr)
733 return false;
734 return __same_bdev(sbi, cur_blkaddr, bio);
735 }
736
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)737 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
738 struct f2fs_io_info *fio)
739 {
740 if (io->fio.op != fio->op)
741 return false;
742 return io->fio.op_flags == fio->op_flags;
743 }
744
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)745 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746 struct f2fs_bio_info *io,
747 struct f2fs_io_info *fio,
748 block_t last_blkaddr,
749 block_t cur_blkaddr)
750 {
751 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
752 unsigned int filled_blocks =
753 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
754 unsigned int io_size = F2FS_IO_SIZE(sbi);
755 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
756
757 /* IOs in bio is aligned and left space of vectors is not enough */
758 if (!(filled_blocks % io_size) && left_vecs < io_size)
759 return false;
760 }
761 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
762 return false;
763 return io_type_is_mergeable(io, fio);
764 }
765
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)766 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
767 struct page *page, enum temp_type temp)
768 {
769 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
770 struct bio_entry *be;
771
772 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
773 be->bio = bio;
774 bio_get(bio);
775
776 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
777 f2fs_bug_on(sbi, 1);
778
779 f2fs_down_write(&io->bio_list_lock);
780 list_add_tail(&be->list, &io->bio_list);
781 f2fs_up_write(&io->bio_list_lock);
782 }
783
del_bio_entry(struct bio_entry * be)784 static void del_bio_entry(struct bio_entry *be)
785 {
786 list_del(&be->list);
787 kmem_cache_free(bio_entry_slab, be);
788 }
789
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)790 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
791 struct page *page)
792 {
793 struct f2fs_sb_info *sbi = fio->sbi;
794 enum temp_type temp;
795 bool found = false;
796 int ret = -EAGAIN;
797
798 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
799 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
800 struct list_head *head = &io->bio_list;
801 struct bio_entry *be;
802
803 f2fs_down_write(&io->bio_list_lock);
804 list_for_each_entry(be, head, list) {
805 if (be->bio != *bio)
806 continue;
807
808 found = true;
809
810 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
811 *fio->last_block,
812 fio->new_blkaddr));
813 if (f2fs_crypt_mergeable_bio(*bio,
814 fio->page->mapping->host,
815 fio->page->index, fio) &&
816 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
817 PAGE_SIZE) {
818 ret = 0;
819 break;
820 }
821
822 /* page can't be merged into bio; submit the bio */
823 del_bio_entry(be);
824 __submit_bio(sbi, *bio, DATA);
825 break;
826 }
827 f2fs_up_write(&io->bio_list_lock);
828 }
829
830 if (ret) {
831 bio_put(*bio);
832 *bio = NULL;
833 }
834
835 return ret;
836 }
837
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)838 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
839 struct bio **bio, struct page *page)
840 {
841 enum temp_type temp;
842 bool found = false;
843 struct bio *target = bio ? *bio : NULL;
844
845 f2fs_bug_on(sbi, !target && !page);
846
847 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
848 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
849 struct list_head *head = &io->bio_list;
850 struct bio_entry *be;
851
852 if (list_empty(head))
853 continue;
854
855 f2fs_down_read(&io->bio_list_lock);
856 list_for_each_entry(be, head, list) {
857 if (target)
858 found = (target == be->bio);
859 else
860 found = __has_merged_page(be->bio, NULL,
861 page, 0);
862 if (found)
863 break;
864 }
865 f2fs_up_read(&io->bio_list_lock);
866
867 if (!found)
868 continue;
869
870 found = false;
871
872 f2fs_down_write(&io->bio_list_lock);
873 list_for_each_entry(be, head, list) {
874 if (target)
875 found = (target == be->bio);
876 else
877 found = __has_merged_page(be->bio, NULL,
878 page, 0);
879 if (found) {
880 target = be->bio;
881 del_bio_entry(be);
882 break;
883 }
884 }
885 f2fs_up_write(&io->bio_list_lock);
886 }
887
888 if (found)
889 __submit_bio(sbi, target, DATA);
890 if (bio && *bio) {
891 bio_put(*bio);
892 *bio = NULL;
893 }
894 }
895
f2fs_merge_page_bio(struct f2fs_io_info * fio)896 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
897 {
898 struct bio *bio = *fio->bio;
899 struct page *page = fio->encrypted_page ?
900 fio->encrypted_page : fio->page;
901
902 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
903 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
904 return -EFSCORRUPTED;
905
906 trace_f2fs_submit_page_bio(page, fio);
907
908 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
909 fio->new_blkaddr))
910 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
911 alloc_new:
912 if (!bio) {
913 bio = __bio_alloc(fio, BIO_MAX_PAGES);
914 __attach_io_flag(fio);
915 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
916 fio->page->index, fio, GFP_NOIO);
917 bio_set_op_attrs(bio, fio->op, fio->op_flags);
918
919 add_bio_entry(fio->sbi, bio, page, fio->temp);
920 } else {
921 if (add_ipu_page(fio, &bio, page))
922 goto alloc_new;
923 }
924
925 if (fio->io_wbc)
926 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
927
928 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
929
930 *fio->last_block = fio->new_blkaddr;
931 *fio->bio = bio;
932
933 return 0;
934 }
935
f2fs_submit_page_write(struct f2fs_io_info * fio)936 void f2fs_submit_page_write(struct f2fs_io_info *fio)
937 {
938 struct f2fs_sb_info *sbi = fio->sbi;
939 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
940 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
941 struct page *bio_page;
942
943 f2fs_bug_on(sbi, is_read_io(fio->op));
944
945 f2fs_down_write(&io->io_rwsem);
946 next:
947 if (fio->in_list) {
948 spin_lock(&io->io_lock);
949 if (list_empty(&io->io_list)) {
950 spin_unlock(&io->io_lock);
951 goto out;
952 }
953 fio = list_first_entry(&io->io_list,
954 struct f2fs_io_info, list);
955 list_del(&fio->list);
956 spin_unlock(&io->io_lock);
957 }
958
959 verify_fio_blkaddr(fio);
960
961 if (fio->encrypted_page)
962 bio_page = fio->encrypted_page;
963 else if (fio->compressed_page)
964 bio_page = fio->compressed_page;
965 else
966 bio_page = fio->page;
967
968 /* set submitted = true as a return value */
969 fio->submitted = true;
970
971 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
972
973 if (io->bio &&
974 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
975 fio->new_blkaddr) ||
976 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
977 bio_page->index, fio)))
978 __submit_merged_bio(io);
979 alloc_new:
980 if (io->bio == NULL) {
981 if (F2FS_IO_ALIGNED(sbi) &&
982 (fio->type == DATA || fio->type == NODE) &&
983 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
984 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
985 fio->retry = true;
986 goto skip;
987 }
988 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
989 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
990 bio_page->index, fio, GFP_NOIO);
991 io->fio = *fio;
992 }
993
994 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
995 __submit_merged_bio(io);
996 goto alloc_new;
997 }
998
999 if (fio->io_wbc)
1000 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1001
1002 io->last_block_in_bio = fio->new_blkaddr;
1003
1004 trace_f2fs_submit_page_write(fio->page, fio);
1005 skip:
1006 if (fio->in_list)
1007 goto next;
1008 out:
1009 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1010 !f2fs_is_checkpoint_ready(sbi))
1011 __submit_merged_bio(io);
1012 f2fs_up_write(&io->io_rwsem);
1013 }
1014
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1015 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1016 unsigned nr_pages, unsigned op_flag,
1017 pgoff_t first_idx, bool for_write)
1018 {
1019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1020 struct bio *bio;
1021 struct bio_post_read_ctx *ctx = NULL;
1022 unsigned int post_read_steps = 0;
1023
1024 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1025 bio_max_segs(nr_pages), &f2fs_bioset);
1026 if (!bio)
1027 return ERR_PTR(-ENOMEM);
1028
1029 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1030
1031 f2fs_target_device(sbi, blkaddr, bio);
1032 bio->bi_end_io = f2fs_read_end_io;
1033 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1034
1035 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1036 post_read_steps |= STEP_DECRYPT;
1037
1038 if (f2fs_need_verity(inode, first_idx))
1039 post_read_steps |= STEP_VERITY;
1040
1041 /*
1042 * STEP_DECOMPRESS is handled specially, since a compressed file might
1043 * contain both compressed and uncompressed clusters. We'll allocate a
1044 * bio_post_read_ctx if the file is compressed, but the caller is
1045 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1046 */
1047
1048 if (post_read_steps || f2fs_compressed_file(inode)) {
1049 /* Due to the mempool, this never fails. */
1050 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1051 ctx->bio = bio;
1052 ctx->sbi = sbi;
1053 ctx->enabled_steps = post_read_steps;
1054 ctx->fs_blkaddr = blkaddr;
1055 bio->bi_private = ctx;
1056 }
1057 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1058
1059 return bio;
1060 }
1061
1062 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1063 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1064 block_t blkaddr, int op_flags, bool for_write)
1065 {
1066 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1067 struct bio *bio;
1068
1069 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1070 page->index, for_write);
1071 if (IS_ERR(bio))
1072 return PTR_ERR(bio);
1073
1074 /* wait for GCed page writeback via META_MAPPING */
1075 f2fs_wait_on_block_writeback(inode, blkaddr);
1076
1077 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1078 bio_put(bio);
1079 return -EFAULT;
1080 }
1081 ClearPageError(page);
1082 inc_page_count(sbi, F2FS_RD_DATA);
1083 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1084 __submit_bio(sbi, bio, DATA);
1085 return 0;
1086 }
1087
__set_data_blkaddr(struct dnode_of_data * dn)1088 static void __set_data_blkaddr(struct dnode_of_data *dn)
1089 {
1090 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1091 __le32 *addr_array;
1092 int base = 0;
1093
1094 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1095 base = get_extra_isize(dn->inode);
1096
1097 /* Get physical address of data block */
1098 addr_array = blkaddr_in_node(rn);
1099 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1100 }
1101
1102 /*
1103 * Lock ordering for the change of data block address:
1104 * ->data_page
1105 * ->node_page
1106 * update block addresses in the node page
1107 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1108 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1109 {
1110 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1111 __set_data_blkaddr(dn);
1112 if (set_page_dirty(dn->node_page))
1113 dn->node_changed = true;
1114 }
1115
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1116 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1117 {
1118 dn->data_blkaddr = blkaddr;
1119 f2fs_set_data_blkaddr(dn);
1120 f2fs_update_extent_cache(dn);
1121 }
1122
1123 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1124 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1125 {
1126 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1127 int err;
1128
1129 if (!count)
1130 return 0;
1131
1132 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1133 return -EPERM;
1134 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1135 return err;
1136
1137 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1138 dn->ofs_in_node, count);
1139
1140 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1141
1142 for (; count > 0; dn->ofs_in_node++) {
1143 block_t blkaddr = f2fs_data_blkaddr(dn);
1144
1145 if (blkaddr == NULL_ADDR) {
1146 dn->data_blkaddr = NEW_ADDR;
1147 __set_data_blkaddr(dn);
1148 count--;
1149 }
1150 }
1151
1152 if (set_page_dirty(dn->node_page))
1153 dn->node_changed = true;
1154 return 0;
1155 }
1156
1157 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1158 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1159 {
1160 unsigned int ofs_in_node = dn->ofs_in_node;
1161 int ret;
1162
1163 ret = f2fs_reserve_new_blocks(dn, 1);
1164 dn->ofs_in_node = ofs_in_node;
1165 return ret;
1166 }
1167
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1168 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1169 {
1170 bool need_put = dn->inode_page ? false : true;
1171 int err;
1172
1173 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1174 if (err)
1175 return err;
1176
1177 if (dn->data_blkaddr == NULL_ADDR)
1178 err = f2fs_reserve_new_block(dn);
1179 if (err || need_put)
1180 f2fs_put_dnode(dn);
1181 return err;
1182 }
1183
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1184 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1185 {
1186 struct extent_info ei = {0, };
1187 struct inode *inode = dn->inode;
1188
1189 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1190 dn->data_blkaddr = ei.blk + index - ei.fofs;
1191 return 0;
1192 }
1193
1194 return f2fs_reserve_block(dn, index);
1195 }
1196
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1197 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1198 int op_flags, bool for_write)
1199 {
1200 struct address_space *mapping = inode->i_mapping;
1201 struct dnode_of_data dn;
1202 struct page *page;
1203 struct extent_info ei = {0, };
1204 int err;
1205
1206 page = f2fs_grab_cache_page(mapping, index, for_write);
1207 if (!page)
1208 return ERR_PTR(-ENOMEM);
1209
1210 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1211 dn.data_blkaddr = ei.blk + index - ei.fofs;
1212 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1213 DATA_GENERIC_ENHANCE_READ)) {
1214 err = -EFSCORRUPTED;
1215 goto put_err;
1216 }
1217 goto got_it;
1218 }
1219
1220 set_new_dnode(&dn, inode, NULL, NULL, 0);
1221 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1222 if (err)
1223 goto put_err;
1224 f2fs_put_dnode(&dn);
1225
1226 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1227 err = -ENOENT;
1228 goto put_err;
1229 }
1230 if (dn.data_blkaddr != NEW_ADDR &&
1231 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1232 dn.data_blkaddr,
1233 DATA_GENERIC_ENHANCE)) {
1234 err = -EFSCORRUPTED;
1235 goto put_err;
1236 }
1237 got_it:
1238 if (PageUptodate(page)) {
1239 unlock_page(page);
1240 return page;
1241 }
1242
1243 /*
1244 * A new dentry page is allocated but not able to be written, since its
1245 * new inode page couldn't be allocated due to -ENOSPC.
1246 * In such the case, its blkaddr can be remained as NEW_ADDR.
1247 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1248 * f2fs_init_inode_metadata.
1249 */
1250 if (dn.data_blkaddr == NEW_ADDR) {
1251 zero_user_segment(page, 0, PAGE_SIZE);
1252 if (!PageUptodate(page))
1253 SetPageUptodate(page);
1254 unlock_page(page);
1255 return page;
1256 }
1257
1258 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1259 op_flags, for_write);
1260 if (err)
1261 goto put_err;
1262 return page;
1263
1264 put_err:
1265 f2fs_put_page(page, 1);
1266 return ERR_PTR(err);
1267 }
1268
f2fs_find_data_page(struct inode * inode,pgoff_t index)1269 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1270 {
1271 struct address_space *mapping = inode->i_mapping;
1272 struct page *page;
1273
1274 page = find_get_page(mapping, index);
1275 if (page && PageUptodate(page))
1276 return page;
1277 f2fs_put_page(page, 0);
1278
1279 page = f2fs_get_read_data_page(inode, index, 0, false);
1280 if (IS_ERR(page))
1281 return page;
1282
1283 if (PageUptodate(page))
1284 return page;
1285
1286 wait_on_page_locked(page);
1287 if (unlikely(!PageUptodate(page))) {
1288 f2fs_put_page(page, 0);
1289 return ERR_PTR(-EIO);
1290 }
1291 return page;
1292 }
1293
1294 /*
1295 * If it tries to access a hole, return an error.
1296 * Because, the callers, functions in dir.c and GC, should be able to know
1297 * whether this page exists or not.
1298 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1299 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1300 bool for_write)
1301 {
1302 struct address_space *mapping = inode->i_mapping;
1303 struct page *page;
1304 repeat:
1305 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1306 if (IS_ERR(page))
1307 return page;
1308
1309 /* wait for read completion */
1310 lock_page(page);
1311 if (unlikely(page->mapping != mapping)) {
1312 f2fs_put_page(page, 1);
1313 goto repeat;
1314 }
1315 if (unlikely(!PageUptodate(page))) {
1316 f2fs_put_page(page, 1);
1317 return ERR_PTR(-EIO);
1318 }
1319 return page;
1320 }
1321
1322 /*
1323 * Caller ensures that this data page is never allocated.
1324 * A new zero-filled data page is allocated in the page cache.
1325 *
1326 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1327 * f2fs_unlock_op().
1328 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1329 * ipage should be released by this function.
1330 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1331 struct page *f2fs_get_new_data_page(struct inode *inode,
1332 struct page *ipage, pgoff_t index, bool new_i_size)
1333 {
1334 struct address_space *mapping = inode->i_mapping;
1335 struct page *page;
1336 struct dnode_of_data dn;
1337 int err;
1338
1339 page = f2fs_grab_cache_page(mapping, index, true);
1340 if (!page) {
1341 /*
1342 * before exiting, we should make sure ipage will be released
1343 * if any error occur.
1344 */
1345 f2fs_put_page(ipage, 1);
1346 return ERR_PTR(-ENOMEM);
1347 }
1348
1349 set_new_dnode(&dn, inode, ipage, NULL, 0);
1350 err = f2fs_reserve_block(&dn, index);
1351 if (err) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 }
1355 if (!ipage)
1356 f2fs_put_dnode(&dn);
1357
1358 if (PageUptodate(page))
1359 goto got_it;
1360
1361 if (dn.data_blkaddr == NEW_ADDR) {
1362 zero_user_segment(page, 0, PAGE_SIZE);
1363 if (!PageUptodate(page))
1364 SetPageUptodate(page);
1365 } else {
1366 f2fs_put_page(page, 1);
1367
1368 /* if ipage exists, blkaddr should be NEW_ADDR */
1369 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1370 page = f2fs_get_lock_data_page(inode, index, true);
1371 if (IS_ERR(page))
1372 return page;
1373 }
1374 got_it:
1375 if (new_i_size && i_size_read(inode) <
1376 ((loff_t)(index + 1) << PAGE_SHIFT))
1377 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1378 return page;
1379 }
1380
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1381 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1382 {
1383 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1384 struct f2fs_summary sum;
1385 struct node_info ni;
1386 block_t old_blkaddr;
1387 blkcnt_t count = 1;
1388 int err;
1389
1390 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1391 return -EPERM;
1392
1393 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1394 if (err)
1395 return err;
1396
1397 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1398 if (dn->data_blkaddr != NULL_ADDR)
1399 goto alloc;
1400
1401 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1402 return err;
1403
1404 alloc:
1405 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1406 old_blkaddr = dn->data_blkaddr;
1407 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1408 &sum, seg_type, NULL);
1409 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1410 invalidate_mapping_pages(META_MAPPING(sbi),
1411 old_blkaddr, old_blkaddr);
1412 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1413 }
1414 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1415 return 0;
1416 }
1417
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1418 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1419 {
1420 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1421 if (lock)
1422 f2fs_down_read(&sbi->node_change);
1423 else
1424 f2fs_up_read(&sbi->node_change);
1425 } else {
1426 if (lock)
1427 f2fs_lock_op(sbi);
1428 else
1429 f2fs_unlock_op(sbi);
1430 }
1431 }
1432
1433 /*
1434 * f2fs_map_blocks() tries to find or build mapping relationship which
1435 * maps continuous logical blocks to physical blocks, and return such
1436 * info via f2fs_map_blocks structure.
1437 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1438 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1439 int create, int flag)
1440 {
1441 unsigned int maxblocks = map->m_len;
1442 struct dnode_of_data dn;
1443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1444 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1445 pgoff_t pgofs, end_offset, end;
1446 int err = 0, ofs = 1;
1447 unsigned int ofs_in_node, last_ofs_in_node;
1448 blkcnt_t prealloc;
1449 struct extent_info ei = {0, };
1450 block_t blkaddr;
1451 unsigned int start_pgofs;
1452 int bidx = 0;
1453
1454 if (!maxblocks)
1455 return 0;
1456
1457 map->m_bdev = inode->i_sb->s_bdev;
1458 map->m_multidev_dio =
1459 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1460
1461 map->m_len = 0;
1462 map->m_flags = 0;
1463
1464 /* it only supports block size == page size */
1465 pgofs = (pgoff_t)map->m_lblk;
1466 end = pgofs + maxblocks;
1467
1468 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1469 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1470 map->m_may_create)
1471 goto next_dnode;
1472
1473 map->m_pblk = ei.blk + pgofs - ei.fofs;
1474 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1475 map->m_flags = F2FS_MAP_MAPPED;
1476 if (map->m_next_extent)
1477 *map->m_next_extent = pgofs + map->m_len;
1478
1479 /* for hardware encryption, but to avoid potential issue in future */
1480 if (flag == F2FS_GET_BLOCK_DIO)
1481 f2fs_wait_on_block_writeback_range(inode,
1482 map->m_pblk, map->m_len);
1483
1484 if (map->m_multidev_dio) {
1485 block_t blk_addr = map->m_pblk;
1486
1487 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1488
1489 map->m_bdev = FDEV(bidx).bdev;
1490 map->m_pblk -= FDEV(bidx).start_blk;
1491 map->m_len = min(map->m_len,
1492 FDEV(bidx).end_blk + 1 - map->m_pblk);
1493
1494 if (map->m_may_create)
1495 f2fs_update_device_state(sbi, inode->i_ino,
1496 blk_addr, map->m_len);
1497 }
1498 goto out;
1499 }
1500
1501 next_dnode:
1502 if (map->m_may_create)
1503 f2fs_do_map_lock(sbi, flag, true);
1504
1505 /* When reading holes, we need its node page */
1506 set_new_dnode(&dn, inode, NULL, NULL, 0);
1507 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1508 if (err) {
1509 if (flag == F2FS_GET_BLOCK_BMAP)
1510 map->m_pblk = 0;
1511
1512 if (err == -ENOENT) {
1513 /*
1514 * There is one exceptional case that read_node_page()
1515 * may return -ENOENT due to filesystem has been
1516 * shutdown or cp_error, so force to convert error
1517 * number to EIO for such case.
1518 */
1519 if (map->m_may_create &&
1520 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1521 f2fs_cp_error(sbi))) {
1522 err = -EIO;
1523 goto unlock_out;
1524 }
1525
1526 err = 0;
1527 if (map->m_next_pgofs)
1528 *map->m_next_pgofs =
1529 f2fs_get_next_page_offset(&dn, pgofs);
1530 if (map->m_next_extent)
1531 *map->m_next_extent =
1532 f2fs_get_next_page_offset(&dn, pgofs);
1533 }
1534 goto unlock_out;
1535 }
1536
1537 start_pgofs = pgofs;
1538 prealloc = 0;
1539 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1540 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1541
1542 next_block:
1543 blkaddr = f2fs_data_blkaddr(&dn);
1544
1545 if (__is_valid_data_blkaddr(blkaddr) &&
1546 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1547 err = -EFSCORRUPTED;
1548 goto sync_out;
1549 }
1550
1551 if (__is_valid_data_blkaddr(blkaddr)) {
1552 /* use out-place-update for driect IO under LFS mode */
1553 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1554 map->m_may_create) {
1555 err = __allocate_data_block(&dn, map->m_seg_type);
1556 if (err)
1557 goto sync_out;
1558 blkaddr = dn.data_blkaddr;
1559 set_inode_flag(inode, FI_APPEND_WRITE);
1560 }
1561 } else {
1562 if (create) {
1563 if (unlikely(f2fs_cp_error(sbi))) {
1564 err = -EIO;
1565 goto sync_out;
1566 }
1567 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1568 if (blkaddr == NULL_ADDR) {
1569 prealloc++;
1570 last_ofs_in_node = dn.ofs_in_node;
1571 }
1572 } else {
1573 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1574 flag != F2FS_GET_BLOCK_DIO);
1575 err = __allocate_data_block(&dn,
1576 map->m_seg_type);
1577 if (!err) {
1578 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1579 file_need_truncate(inode);
1580 set_inode_flag(inode, FI_APPEND_WRITE);
1581 }
1582 }
1583 if (err)
1584 goto sync_out;
1585 map->m_flags |= F2FS_MAP_NEW;
1586 blkaddr = dn.data_blkaddr;
1587 } else {
1588 if (f2fs_compressed_file(inode) &&
1589 f2fs_sanity_check_cluster(&dn) &&
1590 (flag != F2FS_GET_BLOCK_FIEMAP ||
1591 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1592 err = -EFSCORRUPTED;
1593 goto sync_out;
1594 }
1595 if (flag == F2FS_GET_BLOCK_BMAP) {
1596 map->m_pblk = 0;
1597 goto sync_out;
1598 }
1599 if (flag == F2FS_GET_BLOCK_PRECACHE)
1600 goto sync_out;
1601 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1602 blkaddr == NULL_ADDR) {
1603 if (map->m_next_pgofs)
1604 *map->m_next_pgofs = pgofs + 1;
1605 goto sync_out;
1606 }
1607 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1608 /* for defragment case */
1609 if (map->m_next_pgofs)
1610 *map->m_next_pgofs = pgofs + 1;
1611 goto sync_out;
1612 }
1613 }
1614 }
1615
1616 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1617 goto skip;
1618
1619 if (map->m_multidev_dio)
1620 bidx = f2fs_target_device_index(sbi, blkaddr);
1621
1622 if (map->m_len == 0) {
1623 /* preallocated unwritten block should be mapped for fiemap. */
1624 if (blkaddr == NEW_ADDR)
1625 map->m_flags |= F2FS_MAP_UNWRITTEN;
1626 map->m_flags |= F2FS_MAP_MAPPED;
1627
1628 map->m_pblk = blkaddr;
1629 map->m_len = 1;
1630
1631 if (map->m_multidev_dio)
1632 map->m_bdev = FDEV(bidx).bdev;
1633 } else if ((map->m_pblk != NEW_ADDR &&
1634 blkaddr == (map->m_pblk + ofs)) ||
1635 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1636 flag == F2FS_GET_BLOCK_PRE_DIO) {
1637 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1638 goto sync_out;
1639 ofs++;
1640 map->m_len++;
1641 } else {
1642 goto sync_out;
1643 }
1644
1645 skip:
1646 dn.ofs_in_node++;
1647 pgofs++;
1648
1649 /* preallocate blocks in batch for one dnode page */
1650 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1651 (pgofs == end || dn.ofs_in_node == end_offset)) {
1652
1653 dn.ofs_in_node = ofs_in_node;
1654 err = f2fs_reserve_new_blocks(&dn, prealloc);
1655 if (err)
1656 goto sync_out;
1657
1658 map->m_len += dn.ofs_in_node - ofs_in_node;
1659 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1660 err = -ENOSPC;
1661 goto sync_out;
1662 }
1663 dn.ofs_in_node = end_offset;
1664 }
1665
1666 if (pgofs >= end)
1667 goto sync_out;
1668 else if (dn.ofs_in_node < end_offset)
1669 goto next_block;
1670
1671 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1672 if (map->m_flags & F2FS_MAP_MAPPED) {
1673 unsigned int ofs = start_pgofs - map->m_lblk;
1674
1675 f2fs_update_extent_cache_range(&dn,
1676 start_pgofs, map->m_pblk + ofs,
1677 map->m_len - ofs);
1678 }
1679 }
1680
1681 f2fs_put_dnode(&dn);
1682
1683 if (map->m_may_create) {
1684 f2fs_do_map_lock(sbi, flag, false);
1685 f2fs_balance_fs(sbi, dn.node_changed);
1686 }
1687 goto next_dnode;
1688
1689 sync_out:
1690
1691 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1692 /*
1693 * for hardware encryption, but to avoid potential issue
1694 * in future
1695 */
1696 f2fs_wait_on_block_writeback_range(inode,
1697 map->m_pblk, map->m_len);
1698 invalidate_mapping_pages(META_MAPPING(sbi),
1699 map->m_pblk, map->m_pblk);
1700
1701 if (map->m_multidev_dio) {
1702 block_t blk_addr = map->m_pblk;
1703
1704 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1705
1706 map->m_bdev = FDEV(bidx).bdev;
1707 map->m_pblk -= FDEV(bidx).start_blk;
1708
1709 if (map->m_may_create)
1710 f2fs_update_device_state(sbi, inode->i_ino,
1711 blk_addr, map->m_len);
1712
1713 f2fs_bug_on(sbi, blk_addr + map->m_len >
1714 FDEV(bidx).end_blk + 1);
1715 }
1716 }
1717
1718 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1719 if (map->m_flags & F2FS_MAP_MAPPED) {
1720 unsigned int ofs = start_pgofs - map->m_lblk;
1721
1722 f2fs_update_extent_cache_range(&dn,
1723 start_pgofs, map->m_pblk + ofs,
1724 map->m_len - ofs);
1725 }
1726 if (map->m_next_extent)
1727 *map->m_next_extent = pgofs + 1;
1728 }
1729 f2fs_put_dnode(&dn);
1730 unlock_out:
1731 if (map->m_may_create) {
1732 f2fs_do_map_lock(sbi, flag, false);
1733 f2fs_balance_fs(sbi, dn.node_changed);
1734 }
1735 out:
1736 trace_f2fs_map_blocks(inode, map, create, flag, err);
1737 return err;
1738 }
1739
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1740 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1741 {
1742 struct f2fs_map_blocks map;
1743 block_t last_lblk;
1744 int err;
1745
1746 if (pos + len > i_size_read(inode))
1747 return false;
1748
1749 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1750 map.m_next_pgofs = NULL;
1751 map.m_next_extent = NULL;
1752 map.m_seg_type = NO_CHECK_TYPE;
1753 map.m_may_create = false;
1754 last_lblk = F2FS_BLK_ALIGN(pos + len);
1755
1756 while (map.m_lblk < last_lblk) {
1757 map.m_len = last_lblk - map.m_lblk;
1758 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1759 if (err || map.m_len == 0)
1760 return false;
1761 map.m_lblk += map.m_len;
1762 }
1763 return true;
1764 }
1765
bytes_to_blks(struct inode * inode,u64 bytes)1766 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1767 {
1768 return (bytes >> inode->i_blkbits);
1769 }
1770
blks_to_bytes(struct inode * inode,u64 blks)1771 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1772 {
1773 return (blks << inode->i_blkbits);
1774 }
1775
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1776 static int f2fs_xattr_fiemap(struct inode *inode,
1777 struct fiemap_extent_info *fieinfo)
1778 {
1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1780 struct page *page;
1781 struct node_info ni;
1782 __u64 phys = 0, len;
1783 __u32 flags;
1784 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1785 int err = 0;
1786
1787 if (f2fs_has_inline_xattr(inode)) {
1788 int offset;
1789
1790 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1791 inode->i_ino, false);
1792 if (!page)
1793 return -ENOMEM;
1794
1795 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1796 if (err) {
1797 f2fs_put_page(page, 1);
1798 return err;
1799 }
1800
1801 phys = blks_to_bytes(inode, ni.blk_addr);
1802 offset = offsetof(struct f2fs_inode, i_addr) +
1803 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1804 get_inline_xattr_addrs(inode));
1805
1806 phys += offset;
1807 len = inline_xattr_size(inode);
1808
1809 f2fs_put_page(page, 1);
1810
1811 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1812
1813 if (!xnid)
1814 flags |= FIEMAP_EXTENT_LAST;
1815
1816 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1817 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1818 if (err || err == 1)
1819 return err;
1820 }
1821
1822 if (xnid) {
1823 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1824 if (!page)
1825 return -ENOMEM;
1826
1827 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1828 if (err) {
1829 f2fs_put_page(page, 1);
1830 return err;
1831 }
1832
1833 phys = blks_to_bytes(inode, ni.blk_addr);
1834 len = inode->i_sb->s_blocksize;
1835
1836 f2fs_put_page(page, 1);
1837
1838 flags = FIEMAP_EXTENT_LAST;
1839 }
1840
1841 if (phys) {
1842 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1843 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1844 }
1845
1846 return (err < 0 ? err : 0);
1847 }
1848
max_inode_blocks(struct inode * inode)1849 static loff_t max_inode_blocks(struct inode *inode)
1850 {
1851 loff_t result = ADDRS_PER_INODE(inode);
1852 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1853
1854 /* two direct node blocks */
1855 result += (leaf_count * 2);
1856
1857 /* two indirect node blocks */
1858 leaf_count *= NIDS_PER_BLOCK;
1859 result += (leaf_count * 2);
1860
1861 /* one double indirect node block */
1862 leaf_count *= NIDS_PER_BLOCK;
1863 result += leaf_count;
1864
1865 return result;
1866 }
1867
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1868 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1869 u64 start, u64 len)
1870 {
1871 struct f2fs_map_blocks map;
1872 sector_t start_blk, last_blk;
1873 pgoff_t next_pgofs;
1874 u64 logical = 0, phys = 0, size = 0;
1875 u32 flags = 0;
1876 int ret = 0;
1877 bool compr_cluster = false, compr_appended;
1878 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1879 unsigned int count_in_cluster = 0;
1880 loff_t maxbytes;
1881
1882 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1883 ret = f2fs_precache_extents(inode);
1884 if (ret)
1885 return ret;
1886 }
1887
1888 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1889 if (ret)
1890 return ret;
1891
1892 inode_lock(inode);
1893
1894 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1895 if (start > maxbytes) {
1896 ret = -EFBIG;
1897 goto out;
1898 }
1899
1900 if (len > maxbytes || (maxbytes - len) < start)
1901 len = maxbytes - start;
1902
1903 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1904 ret = f2fs_xattr_fiemap(inode, fieinfo);
1905 goto out;
1906 }
1907
1908 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1909 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1910 if (ret != -EAGAIN)
1911 goto out;
1912 }
1913
1914 if (bytes_to_blks(inode, len) == 0)
1915 len = blks_to_bytes(inode, 1);
1916
1917 start_blk = bytes_to_blks(inode, start);
1918 last_blk = bytes_to_blks(inode, start + len - 1);
1919
1920 next:
1921 memset(&map, 0, sizeof(map));
1922 map.m_lblk = start_blk;
1923 map.m_len = bytes_to_blks(inode, len);
1924 map.m_next_pgofs = &next_pgofs;
1925 map.m_seg_type = NO_CHECK_TYPE;
1926
1927 if (compr_cluster) {
1928 map.m_lblk += 1;
1929 map.m_len = cluster_size - count_in_cluster;
1930 }
1931
1932 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1933 if (ret)
1934 goto out;
1935
1936 /* HOLE */
1937 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1938 start_blk = next_pgofs;
1939
1940 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1941 max_inode_blocks(inode)))
1942 goto prep_next;
1943
1944 flags |= FIEMAP_EXTENT_LAST;
1945 }
1946
1947 compr_appended = false;
1948 /* In a case of compressed cluster, append this to the last extent */
1949 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1950 !(map.m_flags & F2FS_MAP_FLAGS))) {
1951 compr_appended = true;
1952 goto skip_fill;
1953 }
1954
1955 if (size) {
1956 flags |= FIEMAP_EXTENT_MERGED;
1957 if (IS_ENCRYPTED(inode))
1958 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1959
1960 ret = fiemap_fill_next_extent(fieinfo, logical,
1961 phys, size, flags);
1962 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1963 if (ret)
1964 goto out;
1965 size = 0;
1966 }
1967
1968 if (start_blk > last_blk)
1969 goto out;
1970
1971 skip_fill:
1972 if (map.m_pblk == COMPRESS_ADDR) {
1973 compr_cluster = true;
1974 count_in_cluster = 1;
1975 } else if (compr_appended) {
1976 unsigned int appended_blks = cluster_size -
1977 count_in_cluster + 1;
1978 size += blks_to_bytes(inode, appended_blks);
1979 start_blk += appended_blks;
1980 compr_cluster = false;
1981 } else {
1982 logical = blks_to_bytes(inode, start_blk);
1983 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1984 blks_to_bytes(inode, map.m_pblk) : 0;
1985 size = blks_to_bytes(inode, map.m_len);
1986 flags = 0;
1987
1988 if (compr_cluster) {
1989 flags = FIEMAP_EXTENT_ENCODED;
1990 count_in_cluster += map.m_len;
1991 if (count_in_cluster == cluster_size) {
1992 compr_cluster = false;
1993 size += blks_to_bytes(inode, 1);
1994 }
1995 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
1996 flags = FIEMAP_EXTENT_UNWRITTEN;
1997 }
1998
1999 start_blk += bytes_to_blks(inode, size);
2000 }
2001
2002 prep_next:
2003 cond_resched();
2004 if (fatal_signal_pending(current))
2005 ret = -EINTR;
2006 else
2007 goto next;
2008 out:
2009 if (ret == 1)
2010 ret = 0;
2011
2012 inode_unlock(inode);
2013 return ret;
2014 }
2015
f2fs_readpage_limit(struct inode * inode)2016 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2017 {
2018 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2019 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2020 return inode->i_sb->s_maxbytes;
2021
2022 return i_size_read(inode);
2023 }
2024
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2025 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2026 unsigned nr_pages,
2027 struct f2fs_map_blocks *map,
2028 struct bio **bio_ret,
2029 sector_t *last_block_in_bio,
2030 bool is_readahead)
2031 {
2032 struct bio *bio = *bio_ret;
2033 const unsigned blocksize = blks_to_bytes(inode, 1);
2034 sector_t block_in_file;
2035 sector_t last_block;
2036 sector_t last_block_in_file;
2037 sector_t block_nr;
2038 int ret = 0;
2039
2040 block_in_file = (sector_t)page_index(page);
2041 last_block = block_in_file + nr_pages;
2042 last_block_in_file = bytes_to_blks(inode,
2043 f2fs_readpage_limit(inode) + blocksize - 1);
2044 if (last_block > last_block_in_file)
2045 last_block = last_block_in_file;
2046
2047 /* just zeroing out page which is beyond EOF */
2048 if (block_in_file >= last_block)
2049 goto zero_out;
2050 /*
2051 * Map blocks using the previous result first.
2052 */
2053 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2054 block_in_file > map->m_lblk &&
2055 block_in_file < (map->m_lblk + map->m_len))
2056 goto got_it;
2057
2058 /*
2059 * Then do more f2fs_map_blocks() calls until we are
2060 * done with this page.
2061 */
2062 map->m_lblk = block_in_file;
2063 map->m_len = last_block - block_in_file;
2064
2065 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2066 if (ret)
2067 goto out;
2068 got_it:
2069 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2070 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2071 SetPageMappedToDisk(page);
2072
2073 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2074 !cleancache_get_page(page))) {
2075 SetPageUptodate(page);
2076 goto confused;
2077 }
2078
2079 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2080 DATA_GENERIC_ENHANCE_READ)) {
2081 ret = -EFSCORRUPTED;
2082 goto out;
2083 }
2084 } else {
2085 zero_out:
2086 zero_user_segment(page, 0, PAGE_SIZE);
2087 if (f2fs_need_verity(inode, page->index) &&
2088 !fsverity_verify_page(page)) {
2089 ret = -EIO;
2090 goto out;
2091 }
2092 if (!PageUptodate(page))
2093 SetPageUptodate(page);
2094 unlock_page(page);
2095 goto out;
2096 }
2097
2098 /*
2099 * This page will go to BIO. Do we need to send this
2100 * BIO off first?
2101 */
2102 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2103 *last_block_in_bio, block_nr) ||
2104 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2105 submit_and_realloc:
2106 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2107 bio = NULL;
2108 }
2109 if (bio == NULL) {
2110 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2111 is_readahead ? REQ_RAHEAD : 0, page->index,
2112 false);
2113 if (IS_ERR(bio)) {
2114 ret = PTR_ERR(bio);
2115 bio = NULL;
2116 goto out;
2117 }
2118 }
2119
2120 /*
2121 * If the page is under writeback, we need to wait for
2122 * its completion to see the correct decrypted data.
2123 */
2124 f2fs_wait_on_block_writeback(inode, block_nr);
2125
2126 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2127 goto submit_and_realloc;
2128
2129 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2130 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2131 ClearPageError(page);
2132 *last_block_in_bio = block_nr;
2133 goto out;
2134 confused:
2135 if (bio) {
2136 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2137 bio = NULL;
2138 }
2139 unlock_page(page);
2140 out:
2141 *bio_ret = bio;
2142 return ret;
2143 }
2144
2145 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2146 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2147 unsigned nr_pages, sector_t *last_block_in_bio,
2148 bool is_readahead, bool for_write)
2149 {
2150 struct dnode_of_data dn;
2151 struct inode *inode = cc->inode;
2152 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2153 struct bio *bio = *bio_ret;
2154 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2155 sector_t last_block_in_file;
2156 const unsigned blocksize = blks_to_bytes(inode, 1);
2157 struct decompress_io_ctx *dic = NULL;
2158 struct extent_info ei = {0, };
2159 bool from_dnode = true;
2160 int i;
2161 int ret = 0;
2162
2163 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2164
2165 last_block_in_file = bytes_to_blks(inode,
2166 f2fs_readpage_limit(inode) + blocksize - 1);
2167
2168 /* get rid of pages beyond EOF */
2169 for (i = 0; i < cc->cluster_size; i++) {
2170 struct page *page = cc->rpages[i];
2171
2172 if (!page)
2173 continue;
2174 if ((sector_t)page->index >= last_block_in_file) {
2175 zero_user_segment(page, 0, PAGE_SIZE);
2176 if (!PageUptodate(page))
2177 SetPageUptodate(page);
2178 } else if (!PageUptodate(page)) {
2179 continue;
2180 }
2181 unlock_page(page);
2182 if (for_write)
2183 put_page(page);
2184 cc->rpages[i] = NULL;
2185 cc->nr_rpages--;
2186 }
2187
2188 /* we are done since all pages are beyond EOF */
2189 if (f2fs_cluster_is_empty(cc))
2190 goto out;
2191
2192 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2193 from_dnode = false;
2194
2195 if (!from_dnode)
2196 goto skip_reading_dnode;
2197
2198 set_new_dnode(&dn, inode, NULL, NULL, 0);
2199 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2200 if (ret)
2201 goto out;
2202
2203 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2204
2205 skip_reading_dnode:
2206 for (i = 1; i < cc->cluster_size; i++) {
2207 block_t blkaddr;
2208
2209 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2210 dn.ofs_in_node + i) :
2211 ei.blk + i - 1;
2212
2213 if (!__is_valid_data_blkaddr(blkaddr))
2214 break;
2215
2216 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2217 ret = -EFAULT;
2218 goto out_put_dnode;
2219 }
2220 cc->nr_cpages++;
2221
2222 if (!from_dnode && i >= ei.c_len)
2223 break;
2224 }
2225
2226 /* nothing to decompress */
2227 if (cc->nr_cpages == 0) {
2228 ret = 0;
2229 goto out_put_dnode;
2230 }
2231
2232 dic = f2fs_alloc_dic(cc);
2233 if (IS_ERR(dic)) {
2234 ret = PTR_ERR(dic);
2235 goto out_put_dnode;
2236 }
2237
2238 for (i = 0; i < cc->nr_cpages; i++) {
2239 struct page *page = dic->cpages[i];
2240 block_t blkaddr;
2241 struct bio_post_read_ctx *ctx;
2242
2243 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2244 dn.ofs_in_node + i + 1) :
2245 ei.blk + i;
2246
2247 f2fs_wait_on_block_writeback(inode, blkaddr);
2248
2249 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2250 if (atomic_dec_and_test(&dic->remaining_pages))
2251 f2fs_decompress_cluster(dic, true);
2252 continue;
2253 }
2254
2255 if (bio && (!page_is_mergeable(sbi, bio,
2256 *last_block_in_bio, blkaddr) ||
2257 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2258 submit_and_realloc:
2259 __submit_bio(sbi, bio, DATA);
2260 bio = NULL;
2261 }
2262
2263 if (!bio) {
2264 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2265 is_readahead ? REQ_RAHEAD : 0,
2266 page->index, for_write);
2267 if (IS_ERR(bio)) {
2268 ret = PTR_ERR(bio);
2269 f2fs_decompress_end_io(dic, ret, true);
2270 f2fs_put_dnode(&dn);
2271 *bio_ret = NULL;
2272 return ret;
2273 }
2274 }
2275
2276 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2277 goto submit_and_realloc;
2278
2279 ctx = get_post_read_ctx(bio);
2280 ctx->enabled_steps |= STEP_DECOMPRESS;
2281 refcount_inc(&dic->refcnt);
2282
2283 inc_page_count(sbi, F2FS_RD_DATA);
2284 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2285 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2286 ClearPageError(page);
2287 *last_block_in_bio = blkaddr;
2288 }
2289
2290 if (from_dnode)
2291 f2fs_put_dnode(&dn);
2292
2293 *bio_ret = bio;
2294 return 0;
2295
2296 out_put_dnode:
2297 if (from_dnode)
2298 f2fs_put_dnode(&dn);
2299 out:
2300 for (i = 0; i < cc->cluster_size; i++) {
2301 if (cc->rpages[i]) {
2302 ClearPageUptodate(cc->rpages[i]);
2303 ClearPageError(cc->rpages[i]);
2304 unlock_page(cc->rpages[i]);
2305 }
2306 }
2307 *bio_ret = bio;
2308 return ret;
2309 }
2310 #endif
2311
2312 /*
2313 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2314 * Major change was from block_size == page_size in f2fs by default.
2315 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2316 static int f2fs_mpage_readpages(struct inode *inode,
2317 struct readahead_control *rac, struct page *page)
2318 {
2319 struct bio *bio = NULL;
2320 sector_t last_block_in_bio = 0;
2321 struct f2fs_map_blocks map;
2322 #ifdef CONFIG_F2FS_FS_COMPRESSION
2323 struct compress_ctx cc = {
2324 .inode = inode,
2325 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2326 .cluster_size = F2FS_I(inode)->i_cluster_size,
2327 .cluster_idx = NULL_CLUSTER,
2328 .rpages = NULL,
2329 .cpages = NULL,
2330 .nr_rpages = 0,
2331 .nr_cpages = 0,
2332 };
2333 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2334 #endif
2335 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2336 unsigned max_nr_pages = nr_pages;
2337 int ret = 0;
2338
2339 map.m_pblk = 0;
2340 map.m_lblk = 0;
2341 map.m_len = 0;
2342 map.m_flags = 0;
2343 map.m_next_pgofs = NULL;
2344 map.m_next_extent = NULL;
2345 map.m_seg_type = NO_CHECK_TYPE;
2346 map.m_may_create = false;
2347
2348 for (; nr_pages; nr_pages--) {
2349 if (rac) {
2350 page = readahead_page(rac);
2351 prefetchw(&page->flags);
2352 }
2353
2354 #ifdef CONFIG_F2FS_FS_COMPRESSION
2355 if (f2fs_compressed_file(inode)) {
2356 /* there are remained comressed pages, submit them */
2357 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2358 ret = f2fs_read_multi_pages(&cc, &bio,
2359 max_nr_pages,
2360 &last_block_in_bio,
2361 rac != NULL, false);
2362 f2fs_destroy_compress_ctx(&cc, false);
2363 if (ret)
2364 goto set_error_page;
2365 }
2366 if (cc.cluster_idx == NULL_CLUSTER) {
2367 if (nc_cluster_idx ==
2368 page->index >> cc.log_cluster_size) {
2369 goto read_single_page;
2370 }
2371
2372 ret = f2fs_is_compressed_cluster(inode, page->index);
2373 if (ret < 0)
2374 goto set_error_page;
2375 else if (!ret) {
2376 nc_cluster_idx =
2377 page->index >> cc.log_cluster_size;
2378 goto read_single_page;
2379 }
2380
2381 nc_cluster_idx = NULL_CLUSTER;
2382 }
2383 ret = f2fs_init_compress_ctx(&cc);
2384 if (ret)
2385 goto set_error_page;
2386
2387 f2fs_compress_ctx_add_page(&cc, page);
2388
2389 goto next_page;
2390 }
2391 read_single_page:
2392 #endif
2393
2394 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2395 &bio, &last_block_in_bio, rac);
2396 if (ret) {
2397 #ifdef CONFIG_F2FS_FS_COMPRESSION
2398 set_error_page:
2399 #endif
2400 SetPageError(page);
2401 zero_user_segment(page, 0, PAGE_SIZE);
2402 unlock_page(page);
2403 }
2404 #ifdef CONFIG_F2FS_FS_COMPRESSION
2405 next_page:
2406 #endif
2407 if (rac)
2408 put_page(page);
2409
2410 #ifdef CONFIG_F2FS_FS_COMPRESSION
2411 if (f2fs_compressed_file(inode)) {
2412 /* last page */
2413 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2414 ret = f2fs_read_multi_pages(&cc, &bio,
2415 max_nr_pages,
2416 &last_block_in_bio,
2417 rac != NULL, false);
2418 f2fs_destroy_compress_ctx(&cc, false);
2419 }
2420 }
2421 #endif
2422 }
2423 if (bio)
2424 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2425 return ret;
2426 }
2427
f2fs_read_data_page(struct file * file,struct page * page)2428 static int f2fs_read_data_page(struct file *file, struct page *page)
2429 {
2430 struct inode *inode = page_file_mapping(page)->host;
2431 int ret = -EAGAIN;
2432
2433 trace_f2fs_readpage(page, DATA);
2434
2435 if (!f2fs_is_compress_backend_ready(inode)) {
2436 unlock_page(page);
2437 return -EOPNOTSUPP;
2438 }
2439
2440 /* If the file has inline data, try to read it directly */
2441 if (f2fs_has_inline_data(inode))
2442 ret = f2fs_read_inline_data(inode, page);
2443 if (ret == -EAGAIN)
2444 ret = f2fs_mpage_readpages(inode, NULL, page);
2445 return ret;
2446 }
2447
f2fs_readahead(struct readahead_control * rac)2448 static void f2fs_readahead(struct readahead_control *rac)
2449 {
2450 struct inode *inode = rac->mapping->host;
2451
2452 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2453
2454 if (!f2fs_is_compress_backend_ready(inode))
2455 return;
2456
2457 /* If the file has inline data, skip readpages */
2458 if (f2fs_has_inline_data(inode))
2459 return;
2460
2461 f2fs_mpage_readpages(inode, rac, NULL);
2462 }
2463
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2464 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2465 {
2466 struct inode *inode = fio->page->mapping->host;
2467 struct page *mpage, *page;
2468 gfp_t gfp_flags = GFP_NOFS;
2469
2470 if (!f2fs_encrypted_file(inode))
2471 return 0;
2472
2473 page = fio->compressed_page ? fio->compressed_page : fio->page;
2474
2475 /* wait for GCed page writeback via META_MAPPING */
2476 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2477
2478 if (fscrypt_inode_uses_inline_crypto(inode))
2479 return 0;
2480
2481 retry_encrypt:
2482 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2483 PAGE_SIZE, 0, gfp_flags);
2484 if (IS_ERR(fio->encrypted_page)) {
2485 /* flush pending IOs and wait for a while in the ENOMEM case */
2486 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2487 f2fs_flush_merged_writes(fio->sbi);
2488 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2489 gfp_flags |= __GFP_NOFAIL;
2490 goto retry_encrypt;
2491 }
2492 return PTR_ERR(fio->encrypted_page);
2493 }
2494
2495 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2496 if (mpage) {
2497 if (PageUptodate(mpage))
2498 memcpy(page_address(mpage),
2499 page_address(fio->encrypted_page), PAGE_SIZE);
2500 f2fs_put_page(mpage, 1);
2501 }
2502 return 0;
2503 }
2504
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2505 static inline bool check_inplace_update_policy(struct inode *inode,
2506 struct f2fs_io_info *fio)
2507 {
2508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2509 unsigned int policy = SM_I(sbi)->ipu_policy;
2510
2511 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2512 is_inode_flag_set(inode, FI_OPU_WRITE))
2513 return false;
2514 if (policy & (0x1 << F2FS_IPU_FORCE))
2515 return true;
2516 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2517 return true;
2518 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2519 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2520 return true;
2521 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2522 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2523 return true;
2524
2525 /*
2526 * IPU for rewrite async pages
2527 */
2528 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2529 fio && fio->op == REQ_OP_WRITE &&
2530 !(fio->op_flags & REQ_SYNC) &&
2531 !IS_ENCRYPTED(inode))
2532 return true;
2533
2534 /* this is only set during fdatasync */
2535 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2536 is_inode_flag_set(inode, FI_NEED_IPU))
2537 return true;
2538
2539 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2540 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2541 return true;
2542
2543 return false;
2544 }
2545
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2546 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2547 {
2548 /* swap file is migrating in aligned write mode */
2549 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2550 return false;
2551
2552 if (f2fs_is_pinned_file(inode))
2553 return true;
2554
2555 /* if this is cold file, we should overwrite to avoid fragmentation */
2556 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2557 return true;
2558
2559 return check_inplace_update_policy(inode, fio);
2560 }
2561
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2562 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2563 {
2564 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2565
2566 /* The below cases were checked when setting it. */
2567 if (f2fs_is_pinned_file(inode))
2568 return false;
2569 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2570 return true;
2571 if (f2fs_lfs_mode(sbi))
2572 return true;
2573 if (S_ISDIR(inode->i_mode))
2574 return true;
2575 if (IS_NOQUOTA(inode))
2576 return true;
2577 if (f2fs_is_atomic_file(inode))
2578 return true;
2579
2580 /* swap file is migrating in aligned write mode */
2581 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2582 return true;
2583
2584 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2585 return true;
2586
2587 if (fio) {
2588 if (page_private_gcing(fio->page))
2589 return true;
2590 if (page_private_dummy(fio->page))
2591 return true;
2592 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2593 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2594 return true;
2595 }
2596 return false;
2597 }
2598
need_inplace_update(struct f2fs_io_info * fio)2599 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2600 {
2601 struct inode *inode = fio->page->mapping->host;
2602
2603 if (f2fs_should_update_outplace(inode, fio))
2604 return false;
2605
2606 return f2fs_should_update_inplace(inode, fio);
2607 }
2608
f2fs_do_write_data_page(struct f2fs_io_info * fio)2609 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2610 {
2611 struct page *page = fio->page;
2612 struct inode *inode = page->mapping->host;
2613 struct dnode_of_data dn;
2614 struct extent_info ei = {0, };
2615 struct node_info ni;
2616 bool ipu_force = false;
2617 int err = 0;
2618
2619 set_new_dnode(&dn, inode, NULL, NULL, 0);
2620 if (need_inplace_update(fio) &&
2621 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2622 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2623
2624 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2625 DATA_GENERIC_ENHANCE))
2626 return -EFSCORRUPTED;
2627
2628 ipu_force = true;
2629 fio->need_lock = LOCK_DONE;
2630 goto got_it;
2631 }
2632
2633 /* Deadlock due to between page->lock and f2fs_lock_op */
2634 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2635 return -EAGAIN;
2636
2637 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2638 if (err)
2639 goto out;
2640
2641 fio->old_blkaddr = dn.data_blkaddr;
2642
2643 /* This page is already truncated */
2644 if (fio->old_blkaddr == NULL_ADDR) {
2645 ClearPageUptodate(page);
2646 clear_page_private_gcing(page);
2647 goto out_writepage;
2648 }
2649 got_it:
2650 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2651 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2652 DATA_GENERIC_ENHANCE)) {
2653 err = -EFSCORRUPTED;
2654 goto out_writepage;
2655 }
2656 /*
2657 * If current allocation needs SSR,
2658 * it had better in-place writes for updated data.
2659 */
2660 if (ipu_force ||
2661 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2662 need_inplace_update(fio))) {
2663 err = f2fs_encrypt_one_page(fio);
2664 if (err)
2665 goto out_writepage;
2666
2667 set_page_writeback(page);
2668 ClearPageError(page);
2669 f2fs_put_dnode(&dn);
2670 if (fio->need_lock == LOCK_REQ)
2671 f2fs_unlock_op(fio->sbi);
2672 err = f2fs_inplace_write_data(fio);
2673 if (err) {
2674 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2675 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2676 if (PageWriteback(page))
2677 end_page_writeback(page);
2678 } else {
2679 set_inode_flag(inode, FI_UPDATE_WRITE);
2680 }
2681 trace_f2fs_do_write_data_page(fio->page, IPU);
2682 return err;
2683 }
2684
2685 if (fio->need_lock == LOCK_RETRY) {
2686 if (!f2fs_trylock_op(fio->sbi)) {
2687 err = -EAGAIN;
2688 goto out_writepage;
2689 }
2690 fio->need_lock = LOCK_REQ;
2691 }
2692
2693 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2694 if (err)
2695 goto out_writepage;
2696
2697 fio->version = ni.version;
2698
2699 err = f2fs_encrypt_one_page(fio);
2700 if (err)
2701 goto out_writepage;
2702
2703 set_page_writeback(page);
2704 ClearPageError(page);
2705
2706 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2707 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2708
2709 /* LFS mode write path */
2710 f2fs_outplace_write_data(&dn, fio);
2711 trace_f2fs_do_write_data_page(page, OPU);
2712 set_inode_flag(inode, FI_APPEND_WRITE);
2713 if (page->index == 0)
2714 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2715 out_writepage:
2716 f2fs_put_dnode(&dn);
2717 out:
2718 if (fio->need_lock == LOCK_REQ)
2719 f2fs_unlock_op(fio->sbi);
2720 return err;
2721 }
2722
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2723 int f2fs_write_single_data_page(struct page *page, int *submitted,
2724 struct bio **bio,
2725 sector_t *last_block,
2726 struct writeback_control *wbc,
2727 enum iostat_type io_type,
2728 int compr_blocks,
2729 bool allow_balance)
2730 {
2731 struct inode *inode = page->mapping->host;
2732 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2733 loff_t i_size = i_size_read(inode);
2734 const pgoff_t end_index = ((unsigned long long)i_size)
2735 >> PAGE_SHIFT;
2736 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2737 unsigned offset = 0;
2738 bool need_balance_fs = false;
2739 int err = 0;
2740 struct f2fs_io_info fio = {
2741 .sbi = sbi,
2742 .ino = inode->i_ino,
2743 .type = DATA,
2744 .op = REQ_OP_WRITE,
2745 .op_flags = wbc_to_write_flags(wbc),
2746 .old_blkaddr = NULL_ADDR,
2747 .page = page,
2748 .encrypted_page = NULL,
2749 .submitted = false,
2750 .compr_blocks = compr_blocks,
2751 .need_lock = LOCK_RETRY,
2752 .io_type = io_type,
2753 .io_wbc = wbc,
2754 .bio = bio,
2755 .last_block = last_block,
2756 };
2757
2758 trace_f2fs_writepage(page, DATA);
2759
2760 /* we should bypass data pages to proceed the kworkder jobs */
2761 if (unlikely(f2fs_cp_error(sbi))) {
2762 mapping_set_error(page->mapping, -EIO);
2763 /*
2764 * don't drop any dirty dentry pages for keeping lastest
2765 * directory structure.
2766 */
2767 if (S_ISDIR(inode->i_mode) &&
2768 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2769 goto redirty_out;
2770 goto out;
2771 }
2772
2773 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2774 goto redirty_out;
2775
2776 if (page->index < end_index ||
2777 f2fs_verity_in_progress(inode) ||
2778 compr_blocks)
2779 goto write;
2780
2781 /*
2782 * If the offset is out-of-range of file size,
2783 * this page does not have to be written to disk.
2784 */
2785 offset = i_size & (PAGE_SIZE - 1);
2786 if ((page->index >= end_index + 1) || !offset)
2787 goto out;
2788
2789 zero_user_segment(page, offset, PAGE_SIZE);
2790 write:
2791 if (f2fs_is_drop_cache(inode))
2792 goto out;
2793 /* we should not write 0'th page having journal header */
2794 if (f2fs_is_volatile_file(inode) && (!page->index ||
2795 (!wbc->for_reclaim &&
2796 f2fs_available_free_memory(sbi, BASE_CHECK))))
2797 goto redirty_out;
2798
2799 /* Dentry/quota blocks are controlled by checkpoint */
2800 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2801 /*
2802 * We need to wait for node_write to avoid block allocation during
2803 * checkpoint. This can only happen to quota writes which can cause
2804 * the below discard race condition.
2805 */
2806 if (IS_NOQUOTA(inode))
2807 f2fs_down_read(&sbi->node_write);
2808
2809 fio.need_lock = LOCK_DONE;
2810 err = f2fs_do_write_data_page(&fio);
2811
2812 if (IS_NOQUOTA(inode))
2813 f2fs_up_read(&sbi->node_write);
2814
2815 goto done;
2816 }
2817
2818 if (!wbc->for_reclaim)
2819 need_balance_fs = true;
2820 else if (has_not_enough_free_secs(sbi, 0, 0))
2821 goto redirty_out;
2822 else
2823 set_inode_flag(inode, FI_HOT_DATA);
2824
2825 err = -EAGAIN;
2826 if (f2fs_has_inline_data(inode)) {
2827 err = f2fs_write_inline_data(inode, page);
2828 if (!err)
2829 goto out;
2830 }
2831
2832 if (err == -EAGAIN) {
2833 err = f2fs_do_write_data_page(&fio);
2834 if (err == -EAGAIN) {
2835 fio.need_lock = LOCK_REQ;
2836 err = f2fs_do_write_data_page(&fio);
2837 }
2838 }
2839
2840 if (err) {
2841 file_set_keep_isize(inode);
2842 } else {
2843 spin_lock(&F2FS_I(inode)->i_size_lock);
2844 if (F2FS_I(inode)->last_disk_size < psize)
2845 F2FS_I(inode)->last_disk_size = psize;
2846 spin_unlock(&F2FS_I(inode)->i_size_lock);
2847 }
2848
2849 done:
2850 if (err && err != -ENOENT)
2851 goto redirty_out;
2852
2853 out:
2854 inode_dec_dirty_pages(inode);
2855 if (err) {
2856 ClearPageUptodate(page);
2857 clear_page_private_gcing(page);
2858 }
2859
2860 if (wbc->for_reclaim) {
2861 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2862 clear_inode_flag(inode, FI_HOT_DATA);
2863 f2fs_remove_dirty_inode(inode);
2864 submitted = NULL;
2865 }
2866 unlock_page(page);
2867 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2868 !F2FS_I(inode)->wb_task && allow_balance)
2869 f2fs_balance_fs(sbi, need_balance_fs);
2870
2871 if (unlikely(f2fs_cp_error(sbi))) {
2872 f2fs_submit_merged_write(sbi, DATA);
2873 if (bio && *bio)
2874 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2875 submitted = NULL;
2876 }
2877
2878 if (submitted)
2879 *submitted = fio.submitted ? 1 : 0;
2880
2881 return 0;
2882
2883 redirty_out:
2884 redirty_page_for_writepage(wbc, page);
2885 /*
2886 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2887 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2888 * file_write_and_wait_range() will see EIO error, which is critical
2889 * to return value of fsync() followed by atomic_write failure to user.
2890 */
2891 if (!err || wbc->for_reclaim)
2892 return AOP_WRITEPAGE_ACTIVATE;
2893 unlock_page(page);
2894 return err;
2895 }
2896
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2897 static int f2fs_write_data_page(struct page *page,
2898 struct writeback_control *wbc)
2899 {
2900 #ifdef CONFIG_F2FS_FS_COMPRESSION
2901 struct inode *inode = page->mapping->host;
2902
2903 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2904 goto out;
2905
2906 if (f2fs_compressed_file(inode)) {
2907 if (f2fs_is_compressed_cluster(inode, page->index)) {
2908 redirty_page_for_writepage(wbc, page);
2909 return AOP_WRITEPAGE_ACTIVATE;
2910 }
2911 }
2912 out:
2913 #endif
2914
2915 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2916 wbc, FS_DATA_IO, 0, true);
2917 }
2918
2919 /*
2920 * This function was copied from write_cche_pages from mm/page-writeback.c.
2921 * The major change is making write step of cold data page separately from
2922 * warm/hot data page.
2923 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2924 static int f2fs_write_cache_pages(struct address_space *mapping,
2925 struct writeback_control *wbc,
2926 enum iostat_type io_type)
2927 {
2928 int ret = 0;
2929 int done = 0, retry = 0;
2930 struct pagevec pvec;
2931 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2932 struct bio *bio = NULL;
2933 sector_t last_block;
2934 #ifdef CONFIG_F2FS_FS_COMPRESSION
2935 struct inode *inode = mapping->host;
2936 struct compress_ctx cc = {
2937 .inode = inode,
2938 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2939 .cluster_size = F2FS_I(inode)->i_cluster_size,
2940 .cluster_idx = NULL_CLUSTER,
2941 .rpages = NULL,
2942 .nr_rpages = 0,
2943 .cpages = NULL,
2944 .valid_nr_cpages = 0,
2945 .rbuf = NULL,
2946 .cbuf = NULL,
2947 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2948 .private = NULL,
2949 };
2950 #endif
2951 int nr_pages;
2952 pgoff_t index;
2953 pgoff_t end; /* Inclusive */
2954 pgoff_t done_index;
2955 int range_whole = 0;
2956 xa_mark_t tag;
2957 int nwritten = 0;
2958 int submitted = 0;
2959 int i;
2960
2961 pagevec_init(&pvec);
2962
2963 if (get_dirty_pages(mapping->host) <=
2964 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2965 set_inode_flag(mapping->host, FI_HOT_DATA);
2966 else
2967 clear_inode_flag(mapping->host, FI_HOT_DATA);
2968
2969 if (wbc->range_cyclic) {
2970 index = mapping->writeback_index; /* prev offset */
2971 end = -1;
2972 } else {
2973 index = wbc->range_start >> PAGE_SHIFT;
2974 end = wbc->range_end >> PAGE_SHIFT;
2975 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2976 range_whole = 1;
2977 }
2978 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2979 tag = PAGECACHE_TAG_TOWRITE;
2980 else
2981 tag = PAGECACHE_TAG_DIRTY;
2982 retry:
2983 retry = 0;
2984 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2985 tag_pages_for_writeback(mapping, index, end);
2986 done_index = index;
2987 while (!done && !retry && (index <= end)) {
2988 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2989 tag);
2990 if (nr_pages == 0)
2991 break;
2992
2993 for (i = 0; i < nr_pages; i++) {
2994 struct page *page = pvec.pages[i];
2995 bool need_readd;
2996 readd:
2997 need_readd = false;
2998 #ifdef CONFIG_F2FS_FS_COMPRESSION
2999 if (f2fs_compressed_file(inode)) {
3000 void *fsdata = NULL;
3001 struct page *pagep;
3002 int ret2;
3003
3004 ret = f2fs_init_compress_ctx(&cc);
3005 if (ret) {
3006 done = 1;
3007 break;
3008 }
3009
3010 if (!f2fs_cluster_can_merge_page(&cc,
3011 page->index)) {
3012 ret = f2fs_write_multi_pages(&cc,
3013 &submitted, wbc, io_type);
3014 if (!ret)
3015 need_readd = true;
3016 goto result;
3017 }
3018
3019 if (unlikely(f2fs_cp_error(sbi)))
3020 goto lock_page;
3021
3022 if (!f2fs_cluster_is_empty(&cc))
3023 goto lock_page;
3024
3025 ret2 = f2fs_prepare_compress_overwrite(
3026 inode, &pagep,
3027 page->index, &fsdata);
3028 if (ret2 < 0) {
3029 ret = ret2;
3030 done = 1;
3031 break;
3032 } else if (ret2 &&
3033 (!f2fs_compress_write_end(inode,
3034 fsdata, page->index, 1) ||
3035 !f2fs_all_cluster_page_loaded(&cc,
3036 &pvec, i, nr_pages))) {
3037 retry = 1;
3038 break;
3039 }
3040 }
3041 #endif
3042 /* give a priority to WB_SYNC threads */
3043 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3044 wbc->sync_mode == WB_SYNC_NONE) {
3045 done = 1;
3046 break;
3047 }
3048 #ifdef CONFIG_F2FS_FS_COMPRESSION
3049 lock_page:
3050 #endif
3051 done_index = page->index;
3052 retry_write:
3053 lock_page(page);
3054
3055 if (unlikely(page->mapping != mapping)) {
3056 continue_unlock:
3057 unlock_page(page);
3058 continue;
3059 }
3060
3061 if (!PageDirty(page)) {
3062 /* someone wrote it for us */
3063 goto continue_unlock;
3064 }
3065
3066 if (PageWriteback(page)) {
3067 if (wbc->sync_mode != WB_SYNC_NONE)
3068 f2fs_wait_on_page_writeback(page,
3069 DATA, true, true);
3070 else
3071 goto continue_unlock;
3072 }
3073
3074 if (!clear_page_dirty_for_io(page))
3075 goto continue_unlock;
3076
3077 #ifdef CONFIG_F2FS_FS_COMPRESSION
3078 if (f2fs_compressed_file(inode)) {
3079 get_page(page);
3080 f2fs_compress_ctx_add_page(&cc, page);
3081 continue;
3082 }
3083 #endif
3084 ret = f2fs_write_single_data_page(page, &submitted,
3085 &bio, &last_block, wbc, io_type,
3086 0, true);
3087 if (ret == AOP_WRITEPAGE_ACTIVATE)
3088 unlock_page(page);
3089 #ifdef CONFIG_F2FS_FS_COMPRESSION
3090 result:
3091 #endif
3092 nwritten += submitted;
3093 wbc->nr_to_write -= submitted;
3094
3095 if (unlikely(ret)) {
3096 /*
3097 * keep nr_to_write, since vfs uses this to
3098 * get # of written pages.
3099 */
3100 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3101 ret = 0;
3102 goto next;
3103 } else if (ret == -EAGAIN) {
3104 ret = 0;
3105 if (wbc->sync_mode == WB_SYNC_ALL) {
3106 f2fs_io_schedule_timeout(
3107 DEFAULT_IO_TIMEOUT);
3108 goto retry_write;
3109 }
3110 goto next;
3111 }
3112 done_index = page->index + 1;
3113 done = 1;
3114 break;
3115 }
3116
3117 if (wbc->nr_to_write <= 0 &&
3118 wbc->sync_mode == WB_SYNC_NONE) {
3119 done = 1;
3120 break;
3121 }
3122 next:
3123 if (need_readd)
3124 goto readd;
3125 }
3126 pagevec_release(&pvec);
3127 cond_resched();
3128 }
3129 #ifdef CONFIG_F2FS_FS_COMPRESSION
3130 /* flush remained pages in compress cluster */
3131 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3132 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3133 nwritten += submitted;
3134 wbc->nr_to_write -= submitted;
3135 if (ret) {
3136 done = 1;
3137 retry = 0;
3138 }
3139 }
3140 if (f2fs_compressed_file(inode))
3141 f2fs_destroy_compress_ctx(&cc, false);
3142 #endif
3143 if (retry) {
3144 index = 0;
3145 end = -1;
3146 goto retry;
3147 }
3148 if (wbc->range_cyclic && !done)
3149 done_index = 0;
3150 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3151 mapping->writeback_index = done_index;
3152
3153 if (nwritten)
3154 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3155 NULL, 0, DATA);
3156 /* submit cached bio of IPU write */
3157 if (bio)
3158 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3159
3160 return ret;
3161 }
3162
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3163 static inline bool __should_serialize_io(struct inode *inode,
3164 struct writeback_control *wbc)
3165 {
3166 /* to avoid deadlock in path of data flush */
3167 if (F2FS_I(inode)->wb_task)
3168 return false;
3169
3170 if (!S_ISREG(inode->i_mode))
3171 return false;
3172 if (IS_NOQUOTA(inode))
3173 return false;
3174
3175 if (f2fs_need_compress_data(inode))
3176 return true;
3177 if (wbc->sync_mode != WB_SYNC_ALL)
3178 return true;
3179 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3180 return true;
3181 return false;
3182 }
3183
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3184 static int __f2fs_write_data_pages(struct address_space *mapping,
3185 struct writeback_control *wbc,
3186 enum iostat_type io_type)
3187 {
3188 struct inode *inode = mapping->host;
3189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3190 struct blk_plug plug;
3191 int ret;
3192 bool locked = false;
3193
3194 /* deal with chardevs and other special file */
3195 if (!mapping->a_ops->writepage)
3196 return 0;
3197
3198 /* skip writing if there is no dirty page in this inode */
3199 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3200 return 0;
3201
3202 /* during POR, we don't need to trigger writepage at all. */
3203 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3204 goto skip_write;
3205
3206 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3207 wbc->sync_mode == WB_SYNC_NONE &&
3208 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3209 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3210 goto skip_write;
3211
3212 /* skip writing in file defragment preparing stage */
3213 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3214 goto skip_write;
3215
3216 trace_f2fs_writepages(mapping->host, wbc, DATA);
3217
3218 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3219 if (wbc->sync_mode == WB_SYNC_ALL)
3220 atomic_inc(&sbi->wb_sync_req[DATA]);
3221 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3222 /* to avoid potential deadlock */
3223 if (current->plug)
3224 blk_finish_plug(current->plug);
3225 goto skip_write;
3226 }
3227
3228 if (__should_serialize_io(inode, wbc)) {
3229 mutex_lock(&sbi->writepages);
3230 locked = true;
3231 }
3232
3233 blk_start_plug(&plug);
3234 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3235 blk_finish_plug(&plug);
3236
3237 if (locked)
3238 mutex_unlock(&sbi->writepages);
3239
3240 if (wbc->sync_mode == WB_SYNC_ALL)
3241 atomic_dec(&sbi->wb_sync_req[DATA]);
3242 /*
3243 * if some pages were truncated, we cannot guarantee its mapping->host
3244 * to detect pending bios.
3245 */
3246
3247 f2fs_remove_dirty_inode(inode);
3248 return ret;
3249
3250 skip_write:
3251 wbc->pages_skipped += get_dirty_pages(inode);
3252 trace_f2fs_writepages(mapping->host, wbc, DATA);
3253 return 0;
3254 }
3255
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3256 static int f2fs_write_data_pages(struct address_space *mapping,
3257 struct writeback_control *wbc)
3258 {
3259 struct inode *inode = mapping->host;
3260
3261 return __f2fs_write_data_pages(mapping, wbc,
3262 F2FS_I(inode)->cp_task == current ?
3263 FS_CP_DATA_IO : FS_DATA_IO);
3264 }
3265
f2fs_write_failed(struct inode * inode,loff_t to)3266 void f2fs_write_failed(struct inode *inode, loff_t to)
3267 {
3268 loff_t i_size = i_size_read(inode);
3269
3270 if (IS_NOQUOTA(inode))
3271 return;
3272
3273 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3274 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3275 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3276 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3277
3278 truncate_pagecache(inode, i_size);
3279 f2fs_truncate_blocks(inode, i_size, true);
3280
3281 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3282 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3283 }
3284 }
3285
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3286 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3287 struct page *page, loff_t pos, unsigned len,
3288 block_t *blk_addr, bool *node_changed)
3289 {
3290 struct inode *inode = page->mapping->host;
3291 pgoff_t index = page->index;
3292 struct dnode_of_data dn;
3293 struct page *ipage;
3294 bool locked = false;
3295 struct extent_info ei = {0, };
3296 int err = 0;
3297 int flag;
3298
3299 /*
3300 * If a whole page is being written and we already preallocated all the
3301 * blocks, then there is no need to get a block address now.
3302 */
3303 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3304 return 0;
3305
3306 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3307 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3308 flag = F2FS_GET_BLOCK_DEFAULT;
3309 else
3310 flag = F2FS_GET_BLOCK_PRE_AIO;
3311
3312 if (f2fs_has_inline_data(inode) ||
3313 (pos & PAGE_MASK) >= i_size_read(inode)) {
3314 f2fs_do_map_lock(sbi, flag, true);
3315 locked = true;
3316 }
3317
3318 restart:
3319 /* check inline_data */
3320 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3321 if (IS_ERR(ipage)) {
3322 err = PTR_ERR(ipage);
3323 goto unlock_out;
3324 }
3325
3326 set_new_dnode(&dn, inode, ipage, ipage, 0);
3327
3328 if (f2fs_has_inline_data(inode)) {
3329 if (pos + len <= MAX_INLINE_DATA(inode)) {
3330 f2fs_do_read_inline_data(page, ipage);
3331 set_inode_flag(inode, FI_DATA_EXIST);
3332 if (inode->i_nlink)
3333 set_page_private_inline(ipage);
3334 } else {
3335 err = f2fs_convert_inline_page(&dn, page);
3336 if (err)
3337 goto out;
3338 if (dn.data_blkaddr == NULL_ADDR)
3339 err = f2fs_get_block(&dn, index);
3340 }
3341 } else if (locked) {
3342 err = f2fs_get_block(&dn, index);
3343 } else {
3344 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3345 dn.data_blkaddr = ei.blk + index - ei.fofs;
3346 } else {
3347 /* hole case */
3348 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3349 if (err || dn.data_blkaddr == NULL_ADDR) {
3350 f2fs_put_dnode(&dn);
3351 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3352 true);
3353 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3354 locked = true;
3355 goto restart;
3356 }
3357 }
3358 }
3359
3360 /* convert_inline_page can make node_changed */
3361 *blk_addr = dn.data_blkaddr;
3362 *node_changed = dn.node_changed;
3363 out:
3364 f2fs_put_dnode(&dn);
3365 unlock_out:
3366 if (locked)
3367 f2fs_do_map_lock(sbi, flag, false);
3368 return err;
3369 }
3370
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3371 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3372 loff_t pos, unsigned len, unsigned flags,
3373 struct page **pagep, void **fsdata)
3374 {
3375 struct inode *inode = mapping->host;
3376 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3377 struct page *page = NULL;
3378 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3379 bool need_balance = false, drop_atomic = false;
3380 block_t blkaddr = NULL_ADDR;
3381 int err = 0;
3382
3383 /*
3384 * Should avoid quota operations which can make deadlock:
3385 * kswapd -> f2fs_evict_inode -> dquot_drop ->
3386 * f2fs_dquot_commit -> f2fs_write_begin ->
3387 * d_obtain_alias -> __d_alloc -> kmem_cache_alloc(GFP_KERNEL)
3388 */
3389 if (trace_android_fs_datawrite_start_enabled() && !IS_NOQUOTA(inode)) {
3390 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3391
3392 path = android_fstrace_get_pathname(pathbuf,
3393 MAX_TRACE_PATHBUF_LEN,
3394 inode);
3395 trace_android_fs_datawrite_start(inode, pos, len,
3396 current->pid, path,
3397 current->comm);
3398 }
3399 trace_f2fs_write_begin(inode, pos, len, flags);
3400
3401 if (!f2fs_is_checkpoint_ready(sbi)) {
3402 err = -ENOSPC;
3403 goto fail;
3404 }
3405
3406 if ((f2fs_is_atomic_file(inode) &&
3407 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3408 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3409 err = -ENOMEM;
3410 drop_atomic = true;
3411 goto fail;
3412 }
3413
3414 /*
3415 * We should check this at this moment to avoid deadlock on inode page
3416 * and #0 page. The locking rule for inline_data conversion should be:
3417 * lock_page(page #0) -> lock_page(inode_page)
3418 */
3419 if (index != 0) {
3420 err = f2fs_convert_inline_inode(inode);
3421 if (err)
3422 goto fail;
3423 }
3424
3425 #ifdef CONFIG_F2FS_FS_COMPRESSION
3426 if (f2fs_compressed_file(inode)) {
3427 int ret;
3428
3429 *fsdata = NULL;
3430
3431 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3432 goto repeat;
3433
3434 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3435 index, fsdata);
3436 if (ret < 0) {
3437 err = ret;
3438 goto fail;
3439 } else if (ret) {
3440 return 0;
3441 }
3442 }
3443 #endif
3444
3445 repeat:
3446 /*
3447 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3448 * wait_for_stable_page. Will wait that below with our IO control.
3449 */
3450 page = f2fs_pagecache_get_page(mapping, index,
3451 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3452 if (!page) {
3453 err = -ENOMEM;
3454 goto fail;
3455 }
3456
3457 /* TODO: cluster can be compressed due to race with .writepage */
3458
3459 *pagep = page;
3460
3461 err = prepare_write_begin(sbi, page, pos, len,
3462 &blkaddr, &need_balance);
3463 if (err)
3464 goto fail;
3465
3466 if (need_balance && !IS_NOQUOTA(inode) &&
3467 has_not_enough_free_secs(sbi, 0, 0)) {
3468 unlock_page(page);
3469 f2fs_balance_fs(sbi, true);
3470 lock_page(page);
3471 if (page->mapping != mapping) {
3472 /* The page got truncated from under us */
3473 f2fs_put_page(page, 1);
3474 goto repeat;
3475 }
3476 }
3477
3478 f2fs_wait_on_page_writeback(page, DATA, false, true);
3479
3480 if (len == PAGE_SIZE || PageUptodate(page))
3481 return 0;
3482
3483 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3484 !f2fs_verity_in_progress(inode)) {
3485 zero_user_segment(page, len, PAGE_SIZE);
3486 return 0;
3487 }
3488
3489 if (blkaddr == NEW_ADDR) {
3490 zero_user_segment(page, 0, PAGE_SIZE);
3491 SetPageUptodate(page);
3492 } else {
3493 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3494 DATA_GENERIC_ENHANCE_READ)) {
3495 err = -EFSCORRUPTED;
3496 goto fail;
3497 }
3498 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3499 if (err)
3500 goto fail;
3501
3502 lock_page(page);
3503 if (unlikely(page->mapping != mapping)) {
3504 f2fs_put_page(page, 1);
3505 goto repeat;
3506 }
3507 if (unlikely(!PageUptodate(page))) {
3508 err = -EIO;
3509 goto fail;
3510 }
3511 }
3512 return 0;
3513
3514 fail:
3515 f2fs_put_page(page, 1);
3516 f2fs_write_failed(inode, pos + len);
3517 if (drop_atomic)
3518 f2fs_drop_inmem_pages_all(sbi, false);
3519 return err;
3520 }
3521
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3522 static int f2fs_write_end(struct file *file,
3523 struct address_space *mapping,
3524 loff_t pos, unsigned len, unsigned copied,
3525 struct page *page, void *fsdata)
3526 {
3527 struct inode *inode = page->mapping->host;
3528
3529 trace_android_fs_datawrite_end(inode, pos, len);
3530 trace_f2fs_write_end(inode, pos, len, copied);
3531
3532 /*
3533 * This should be come from len == PAGE_SIZE, and we expect copied
3534 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3535 * let generic_perform_write() try to copy data again through copied=0.
3536 */
3537 if (!PageUptodate(page)) {
3538 if (unlikely(copied != len))
3539 copied = 0;
3540 else
3541 SetPageUptodate(page);
3542 }
3543
3544 #ifdef CONFIG_F2FS_FS_COMPRESSION
3545 /* overwrite compressed file */
3546 if (f2fs_compressed_file(inode) && fsdata) {
3547 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3548 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3549
3550 if (pos + copied > i_size_read(inode) &&
3551 !f2fs_verity_in_progress(inode))
3552 f2fs_i_size_write(inode, pos + copied);
3553 return copied;
3554 }
3555 #endif
3556
3557 if (!copied)
3558 goto unlock_out;
3559
3560 set_page_dirty(page);
3561
3562 if (pos + copied > i_size_read(inode) &&
3563 !f2fs_verity_in_progress(inode))
3564 f2fs_i_size_write(inode, pos + copied);
3565 unlock_out:
3566 f2fs_put_page(page, 1);
3567 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3568 return copied;
3569 }
3570
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3571 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3572 unsigned int length)
3573 {
3574 struct inode *inode = page->mapping->host;
3575 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3576
3577 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3578 (offset % PAGE_SIZE || length != PAGE_SIZE))
3579 return;
3580
3581 if (PageDirty(page)) {
3582 if (inode->i_ino == F2FS_META_INO(sbi)) {
3583 dec_page_count(sbi, F2FS_DIRTY_META);
3584 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3585 dec_page_count(sbi, F2FS_DIRTY_NODES);
3586 } else {
3587 inode_dec_dirty_pages(inode);
3588 f2fs_remove_dirty_inode(inode);
3589 }
3590 }
3591
3592 clear_page_private_gcing(page);
3593
3594 if (test_opt(sbi, COMPRESS_CACHE) &&
3595 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3596 clear_page_private_data(page);
3597
3598 if (page_private_atomic(page))
3599 return f2fs_drop_inmem_page(inode, page);
3600
3601 detach_page_private(page);
3602 set_page_private(page, 0);
3603 }
3604
f2fs_release_page(struct page * page,gfp_t wait)3605 int f2fs_release_page(struct page *page, gfp_t wait)
3606 {
3607 /* If this is dirty page, keep PagePrivate */
3608 if (PageDirty(page))
3609 return 0;
3610
3611 /* This is atomic written page, keep Private */
3612 if (page_private_atomic(page))
3613 return 0;
3614
3615 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3616 struct inode *inode = page->mapping->host;
3617
3618 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode)))
3619 clear_page_private_data(page);
3620 }
3621
3622 clear_page_private_gcing(page);
3623
3624 detach_page_private(page);
3625 set_page_private(page, 0);
3626 return 1;
3627 }
3628
f2fs_set_data_page_dirty(struct page * page)3629 static int f2fs_set_data_page_dirty(struct page *page)
3630 {
3631 struct inode *inode = page_file_mapping(page)->host;
3632
3633 trace_f2fs_set_page_dirty(page, DATA);
3634
3635 if (!PageUptodate(page))
3636 SetPageUptodate(page);
3637 if (PageSwapCache(page))
3638 return __set_page_dirty_nobuffers(page);
3639
3640 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3641 if (!page_private_atomic(page)) {
3642 f2fs_register_inmem_page(inode, page);
3643 return 1;
3644 }
3645 /*
3646 * Previously, this page has been registered, we just
3647 * return here.
3648 */
3649 return 0;
3650 }
3651
3652 if (!PageDirty(page)) {
3653 __set_page_dirty_nobuffers(page);
3654 f2fs_update_dirty_page(inode, page);
3655 return 1;
3656 }
3657 return 0;
3658 }
3659
3660
f2fs_bmap_compress(struct inode * inode,sector_t block)3661 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3662 {
3663 #ifdef CONFIG_F2FS_FS_COMPRESSION
3664 struct dnode_of_data dn;
3665 sector_t start_idx, blknr = 0;
3666 int ret;
3667
3668 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3669
3670 set_new_dnode(&dn, inode, NULL, NULL, 0);
3671 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3672 if (ret)
3673 return 0;
3674
3675 if (dn.data_blkaddr != COMPRESS_ADDR) {
3676 dn.ofs_in_node += block - start_idx;
3677 blknr = f2fs_data_blkaddr(&dn);
3678 if (!__is_valid_data_blkaddr(blknr))
3679 blknr = 0;
3680 }
3681
3682 f2fs_put_dnode(&dn);
3683 return blknr;
3684 #else
3685 return 0;
3686 #endif
3687 }
3688
3689
f2fs_bmap(struct address_space * mapping,sector_t block)3690 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3691 {
3692 struct inode *inode = mapping->host;
3693 sector_t blknr = 0;
3694
3695 if (f2fs_has_inline_data(inode))
3696 goto out;
3697
3698 /* make sure allocating whole blocks */
3699 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3700 filemap_write_and_wait(mapping);
3701
3702 /* Block number less than F2FS MAX BLOCKS */
3703 if (unlikely(block >= max_file_blocks(inode)))
3704 goto out;
3705
3706 if (f2fs_compressed_file(inode)) {
3707 blknr = f2fs_bmap_compress(inode, block);
3708 } else {
3709 struct f2fs_map_blocks map;
3710
3711 memset(&map, 0, sizeof(map));
3712 map.m_lblk = block;
3713 map.m_len = 1;
3714 map.m_next_pgofs = NULL;
3715 map.m_seg_type = NO_CHECK_TYPE;
3716
3717 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3718 blknr = map.m_pblk;
3719 }
3720 out:
3721 trace_f2fs_bmap(inode, block, blknr);
3722 return blknr;
3723 }
3724
3725 #ifdef CONFIG_MIGRATION
3726 #include <linux/migrate.h>
3727
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3728 int f2fs_migrate_page(struct address_space *mapping,
3729 struct page *newpage, struct page *page, enum migrate_mode mode)
3730 {
3731 int rc, extra_count;
3732 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3733 bool atomic_written = page_private_atomic(page);
3734
3735 BUG_ON(PageWriteback(page));
3736
3737 /* migrating an atomic written page is safe with the inmem_lock hold */
3738 if (atomic_written) {
3739 if (mode != MIGRATE_SYNC)
3740 return -EBUSY;
3741 if (!mutex_trylock(&fi->inmem_lock))
3742 return -EAGAIN;
3743 }
3744
3745 /* one extra reference was held for atomic_write page */
3746 extra_count = atomic_written ? 1 : 0;
3747 rc = migrate_page_move_mapping(mapping, newpage,
3748 page, extra_count);
3749 if (rc != MIGRATEPAGE_SUCCESS) {
3750 if (atomic_written)
3751 mutex_unlock(&fi->inmem_lock);
3752 return rc;
3753 }
3754
3755 if (atomic_written) {
3756 struct inmem_pages *cur;
3757
3758 list_for_each_entry(cur, &fi->inmem_pages, list)
3759 if (cur->page == page) {
3760 cur->page = newpage;
3761 break;
3762 }
3763 mutex_unlock(&fi->inmem_lock);
3764 put_page(page);
3765 get_page(newpage);
3766 }
3767
3768 /* guarantee to start from no stale private field */
3769 set_page_private(newpage, 0);
3770 if (PagePrivate(page)) {
3771 set_page_private(newpage, page_private(page));
3772 SetPagePrivate(newpage);
3773 get_page(newpage);
3774
3775 set_page_private(page, 0);
3776 ClearPagePrivate(page);
3777 put_page(page);
3778 }
3779
3780 if (mode != MIGRATE_SYNC_NO_COPY)
3781 migrate_page_copy(newpage, page);
3782 else
3783 migrate_page_states(newpage, page);
3784
3785 return MIGRATEPAGE_SUCCESS;
3786 }
3787 #endif
3788
3789 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3790 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3791 unsigned int blkcnt)
3792 {
3793 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3794 unsigned int blkofs;
3795 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3796 unsigned int secidx = start_blk / blk_per_sec;
3797 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3798 int ret = 0;
3799
3800 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3801 f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3802
3803 set_inode_flag(inode, FI_ALIGNED_WRITE);
3804 set_inode_flag(inode, FI_OPU_WRITE);
3805
3806 for (; secidx < end_sec; secidx++) {
3807 f2fs_down_write(&sbi->pin_sem);
3808
3809 f2fs_lock_op(sbi);
3810 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3811 f2fs_unlock_op(sbi);
3812
3813 set_inode_flag(inode, FI_SKIP_WRITES);
3814
3815 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3816 struct page *page;
3817 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3818
3819 page = f2fs_get_lock_data_page(inode, blkidx, true);
3820 if (IS_ERR(page)) {
3821 f2fs_up_write(&sbi->pin_sem);
3822 ret = PTR_ERR(page);
3823 goto done;
3824 }
3825
3826 set_page_dirty(page);
3827 f2fs_put_page(page, 1);
3828 }
3829
3830 clear_inode_flag(inode, FI_SKIP_WRITES);
3831
3832 ret = filemap_fdatawrite(inode->i_mapping);
3833
3834 f2fs_up_write(&sbi->pin_sem);
3835
3836 if (ret)
3837 break;
3838 }
3839
3840 done:
3841 clear_inode_flag(inode, FI_SKIP_WRITES);
3842 clear_inode_flag(inode, FI_OPU_WRITE);
3843 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3844
3845 f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3846 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3847
3848 return ret;
3849 }
3850
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3851 static int check_swap_activate(struct swap_info_struct *sis,
3852 struct file *swap_file, sector_t *span)
3853 {
3854 struct address_space *mapping = swap_file->f_mapping;
3855 struct inode *inode = mapping->host;
3856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3857 sector_t cur_lblock;
3858 sector_t last_lblock;
3859 sector_t pblock;
3860 sector_t lowest_pblock = -1;
3861 sector_t highest_pblock = 0;
3862 int nr_extents = 0;
3863 unsigned long nr_pblocks;
3864 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3865 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3866 unsigned int not_aligned = 0;
3867 int ret = 0;
3868
3869 /*
3870 * Map all the blocks into the extent list. This code doesn't try
3871 * to be very smart.
3872 */
3873 cur_lblock = 0;
3874 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3875
3876 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3877 struct f2fs_map_blocks map;
3878 retry:
3879 cond_resched();
3880
3881 memset(&map, 0, sizeof(map));
3882 map.m_lblk = cur_lblock;
3883 map.m_len = last_lblock - cur_lblock;
3884 map.m_next_pgofs = NULL;
3885 map.m_next_extent = NULL;
3886 map.m_seg_type = NO_CHECK_TYPE;
3887 map.m_may_create = false;
3888
3889 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3890 if (ret)
3891 goto out;
3892
3893 /* hole */
3894 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3895 f2fs_err(sbi, "Swapfile has holes");
3896 ret = -EINVAL;
3897 goto out;
3898 }
3899
3900 pblock = map.m_pblk;
3901 nr_pblocks = map.m_len;
3902
3903 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3904 nr_pblocks & sec_blks_mask) {
3905 not_aligned++;
3906
3907 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3908 if (cur_lblock + nr_pblocks > sis->max)
3909 nr_pblocks -= blks_per_sec;
3910
3911 if (!nr_pblocks) {
3912 /* this extent is last one */
3913 nr_pblocks = map.m_len;
3914 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3915 goto next;
3916 }
3917
3918 ret = f2fs_migrate_blocks(inode, cur_lblock,
3919 nr_pblocks);
3920 if (ret)
3921 goto out;
3922 goto retry;
3923 }
3924 next:
3925 if (cur_lblock + nr_pblocks >= sis->max)
3926 nr_pblocks = sis->max - cur_lblock;
3927
3928 if (cur_lblock) { /* exclude the header page */
3929 if (pblock < lowest_pblock)
3930 lowest_pblock = pblock;
3931 if (pblock + nr_pblocks - 1 > highest_pblock)
3932 highest_pblock = pblock + nr_pblocks - 1;
3933 }
3934
3935 /*
3936 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3937 */
3938 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3939 if (ret < 0)
3940 goto out;
3941 nr_extents += ret;
3942 cur_lblock += nr_pblocks;
3943 }
3944 ret = nr_extents;
3945 *span = 1 + highest_pblock - lowest_pblock;
3946 if (cur_lblock == 0)
3947 cur_lblock = 1; /* force Empty message */
3948 sis->max = cur_lblock;
3949 sis->pages = cur_lblock - 1;
3950 sis->highest_bit = cur_lblock - 1;
3951 out:
3952 if (not_aligned)
3953 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3954 not_aligned, blks_per_sec * F2FS_BLKSIZE);
3955 return ret;
3956 }
3957
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3958 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3959 sector_t *span)
3960 {
3961 struct inode *inode = file_inode(file);
3962 int ret;
3963
3964 if (!S_ISREG(inode->i_mode))
3965 return -EINVAL;
3966
3967 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3968 return -EROFS;
3969
3970 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
3971 f2fs_err(F2FS_I_SB(inode),
3972 "Swapfile not supported in LFS mode");
3973 return -EINVAL;
3974 }
3975
3976 ret = f2fs_convert_inline_inode(inode);
3977 if (ret)
3978 return ret;
3979
3980 if (!f2fs_disable_compressed_file(inode))
3981 return -EINVAL;
3982
3983 f2fs_precache_extents(inode);
3984
3985 ret = check_swap_activate(sis, file, span);
3986 if (ret < 0)
3987 return ret;
3988
3989 set_inode_flag(inode, FI_PIN_FILE);
3990 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3991 return ret;
3992 }
3993
f2fs_swap_deactivate(struct file * file)3994 static void f2fs_swap_deactivate(struct file *file)
3995 {
3996 struct inode *inode = file_inode(file);
3997
3998 clear_inode_flag(inode, FI_PIN_FILE);
3999 }
4000 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4001 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4002 sector_t *span)
4003 {
4004 return -EOPNOTSUPP;
4005 }
4006
f2fs_swap_deactivate(struct file * file)4007 static void f2fs_swap_deactivate(struct file *file)
4008 {
4009 }
4010 #endif
4011
4012 const struct address_space_operations f2fs_dblock_aops = {
4013 .readpage = f2fs_read_data_page,
4014 .readahead = f2fs_readahead,
4015 .writepage = f2fs_write_data_page,
4016 .writepages = f2fs_write_data_pages,
4017 .write_begin = f2fs_write_begin,
4018 .write_end = f2fs_write_end,
4019 .set_page_dirty = f2fs_set_data_page_dirty,
4020 .invalidatepage = f2fs_invalidate_page,
4021 .releasepage = f2fs_release_page,
4022 .direct_IO = noop_direct_IO,
4023 .bmap = f2fs_bmap,
4024 .swap_activate = f2fs_swap_activate,
4025 .swap_deactivate = f2fs_swap_deactivate,
4026 #ifdef CONFIG_MIGRATION
4027 .migratepage = f2fs_migrate_page,
4028 #endif
4029 };
4030
f2fs_clear_page_cache_dirty_tag(struct page * page)4031 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4032 {
4033 struct address_space *mapping = page_mapping(page);
4034 unsigned long flags;
4035
4036 xa_lock_irqsave(&mapping->i_pages, flags);
4037 __xa_clear_mark(&mapping->i_pages, page_index(page),
4038 PAGECACHE_TAG_DIRTY);
4039 xa_unlock_irqrestore(&mapping->i_pages, flags);
4040 }
4041
f2fs_init_post_read_processing(void)4042 int __init f2fs_init_post_read_processing(void)
4043 {
4044 bio_post_read_ctx_cache =
4045 kmem_cache_create("f2fs_bio_post_read_ctx",
4046 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4047 if (!bio_post_read_ctx_cache)
4048 goto fail;
4049 bio_post_read_ctx_pool =
4050 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4051 bio_post_read_ctx_cache);
4052 if (!bio_post_read_ctx_pool)
4053 goto fail_free_cache;
4054 return 0;
4055
4056 fail_free_cache:
4057 kmem_cache_destroy(bio_post_read_ctx_cache);
4058 fail:
4059 return -ENOMEM;
4060 }
4061
f2fs_destroy_post_read_processing(void)4062 void f2fs_destroy_post_read_processing(void)
4063 {
4064 mempool_destroy(bio_post_read_ctx_pool);
4065 kmem_cache_destroy(bio_post_read_ctx_cache);
4066 }
4067
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4068 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4069 {
4070 if (!f2fs_sb_has_encrypt(sbi) &&
4071 !f2fs_sb_has_verity(sbi) &&
4072 !f2fs_sb_has_compression(sbi))
4073 return 0;
4074
4075 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4076 WQ_UNBOUND | WQ_HIGHPRI,
4077 num_online_cpus());
4078 if (!sbi->post_read_wq)
4079 return -ENOMEM;
4080 return 0;
4081 }
4082
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4083 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4084 {
4085 if (sbi->post_read_wq)
4086 destroy_workqueue(sbi->post_read_wq);
4087 }
4088
f2fs_init_bio_entry_cache(void)4089 int __init f2fs_init_bio_entry_cache(void)
4090 {
4091 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4092 sizeof(struct bio_entry));
4093 if (!bio_entry_slab)
4094 return -ENOMEM;
4095 return 0;
4096 }
4097
f2fs_destroy_bio_entry_cache(void)4098 void f2fs_destroy_bio_entry_cache(void)
4099 {
4100 kmem_cache_destroy(bio_entry_slab);
4101 }
4102
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4103 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4104 unsigned int flags, struct iomap *iomap,
4105 struct iomap *srcmap)
4106 {
4107 struct f2fs_map_blocks map = {};
4108 pgoff_t next_pgofs = 0;
4109 int err;
4110
4111 map.m_lblk = bytes_to_blks(inode, offset);
4112 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4113 map.m_next_pgofs = &next_pgofs;
4114 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4115 if (flags & IOMAP_WRITE)
4116 map.m_may_create = true;
4117
4118 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE,
4119 F2FS_GET_BLOCK_DIO);
4120 if (err)
4121 return err;
4122
4123 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4124
4125 /*
4126 * When inline encryption is enabled, sometimes I/O to an encrypted file
4127 * has to be broken up to guarantee DUN contiguity. Handle this by
4128 * limiting the length of the mapping returned.
4129 */
4130 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4131
4132 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) {
4133 iomap->length = blks_to_bytes(inode, map.m_len);
4134 if (map.m_flags & F2FS_MAP_MAPPED) {
4135 iomap->type = IOMAP_MAPPED;
4136 iomap->flags |= IOMAP_F_MERGED;
4137 } else {
4138 iomap->type = IOMAP_UNWRITTEN;
4139 }
4140 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk)))
4141 return -EINVAL;
4142
4143 iomap->bdev = map.m_bdev;
4144 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4145 } else {
4146 iomap->length = blks_to_bytes(inode, next_pgofs) -
4147 iomap->offset;
4148 iomap->type = IOMAP_HOLE;
4149 iomap->addr = IOMAP_NULL_ADDR;
4150 }
4151
4152 if (map.m_flags & F2FS_MAP_NEW)
4153 iomap->flags |= IOMAP_F_NEW;
4154 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4155 offset + length > i_size_read(inode))
4156 iomap->flags |= IOMAP_F_DIRTY;
4157
4158 return 0;
4159 }
4160
4161 const struct iomap_ops f2fs_iomap_ops = {
4162 .iomap_begin = f2fs_iomap_begin,
4163 };
4164