1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125
126 int status; /* P: epfile->mutex */
127 };
128
129 struct ffs_epfile {
130 /* Protects ep->ep and ep->req. */
131 struct mutex mutex;
132
133 struct ffs_data *ffs;
134 struct ffs_ep *ep; /* P: ffs->eps_lock */
135
136 struct dentry *dentry;
137
138 /*
139 * Buffer for holding data from partial reads which may happen since
140 * we’re rounding user read requests to a multiple of a max packet size.
141 *
142 * The pointer is initialised with NULL value and may be set by
143 * __ffs_epfile_read_data function to point to a temporary buffer.
144 *
145 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 * data from said buffer and eventually free it. Importantly, while the
147 * function is using the buffer, it sets the pointer to NULL. This is
148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 * can never run concurrently (they are synchronised by epfile->mutex)
150 * so the latter will not assign a new value to the pointer.
151 *
152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
154 * value is crux of the synchronisation between ffs_func_eps_disable and
155 * __ffs_epfile_read_data.
156 *
157 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 * pointer back to its old value (as described above), but seeing as the
159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 * the buffer.
161 *
162 * == State transitions ==
163 *
164 * • ptr == NULL: (initial state)
165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 * ◦ __ffs_epfile_read_buffered: nop
167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == DROP:
170 * ◦ __ffs_epfile_read_buffer_free: nop
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 * ◦ reading finishes: n/a, not in ‘and reading’ state
174 * • ptr == buf:
175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
178 * is always called first
179 * ◦ reading finishes: n/a, not in ‘and reading’ state
180 * • ptr == NULL and reading:
181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
183 * ◦ __ffs_epfile_read_data: n/a, mutex is held
184 * ◦ reading finishes and …
185 * … all data read: free buf, go to ptr == NULL
186 * … otherwise: go to ptr == buf and reading
187 * • ptr == DROP and reading:
188 * ◦ __ffs_epfile_read_buffer_free: nop
189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
190 * ◦ __ffs_epfile_read_data: n/a, mutex is held
191 * ◦ reading finishes: free buf, go to ptr == DROP
192 */
193 struct ffs_buffer *read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195
196 char name[5];
197
198 unsigned char in; /* P: ffs->eps_lock */
199 unsigned char isoc; /* P: ffs->eps_lock */
200
201 unsigned char _pad;
202 };
203
204 struct ffs_buffer {
205 size_t length;
206 char *data;
207 char storage[];
208 };
209
210 /* ffs_io_data structure ***************************************************/
211
212 struct ffs_io_data {
213 bool aio;
214 bool read;
215
216 struct kiocb *kiocb;
217 struct iov_iter data;
218 const void *to_free;
219 char *buf;
220
221 struct mm_struct *mm;
222 struct work_struct work;
223
224 struct usb_ep *ep;
225 struct usb_request *req;
226 struct sg_table sgt;
227 bool use_sg;
228
229 struct ffs_data *ffs;
230 };
231
232 struct ffs_desc_helper {
233 struct ffs_data *ffs;
234 unsigned interfaces_count;
235 unsigned eps_count;
236 };
237
238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 const struct file_operations *fops);
244
245 /* Devices management *******************************************************/
246
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257
258 /* Misc helper functions ****************************************************/
259
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 __attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 __attribute__((warn_unused_result, nonnull));
264
265
266 /* Control file aka ep0 *****************************************************/
267
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 struct ffs_data *ffs = req->context;
271
272 complete(&ffs->ep0req_completion);
273 }
274
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 __releases(&ffs->ev.waitq.lock)
277 {
278 struct usb_request *req = ffs->ep0req;
279 int ret;
280
281 if (!req) {
282 spin_unlock_irq(&ffs->ev.waitq.lock);
283 return -EINVAL;
284 }
285
286 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
287
288 spin_unlock_irq(&ffs->ev.waitq.lock);
289
290 req->buf = data;
291 req->length = len;
292
293 /*
294 * UDC layer requires to provide a buffer even for ZLP, but should
295 * not use it at all. Let's provide some poisoned pointer to catch
296 * possible bug in the driver.
297 */
298 if (req->buf == NULL)
299 req->buf = (void *)0xDEADBABE;
300
301 reinit_completion(&ffs->ep0req_completion);
302
303 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
304 if (unlikely(ret < 0))
305 return ret;
306
307 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
308 if (unlikely(ret)) {
309 usb_ep_dequeue(ffs->gadget->ep0, req);
310 return -EINTR;
311 }
312
313 ffs->setup_state = FFS_NO_SETUP;
314 return req->status ? req->status : req->actual;
315 }
316
__ffs_ep0_stall(struct ffs_data * ffs)317 static int __ffs_ep0_stall(struct ffs_data *ffs)
318 {
319 if (ffs->ev.can_stall) {
320 pr_vdebug("ep0 stall\n");
321 usb_ep_set_halt(ffs->gadget->ep0);
322 ffs->setup_state = FFS_NO_SETUP;
323 return -EL2HLT;
324 } else {
325 pr_debug("bogus ep0 stall!\n");
326 return -ESRCH;
327 }
328 }
329
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)330 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
331 size_t len, loff_t *ptr)
332 {
333 struct ffs_data *ffs = file->private_data;
334 ssize_t ret;
335 char *data;
336
337 ENTER();
338
339 /* Fast check if setup was canceled */
340 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
341 return -EIDRM;
342
343 /* Acquire mutex */
344 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
345 if (unlikely(ret < 0))
346 return ret;
347
348 /* Check state */
349 switch (ffs->state) {
350 case FFS_READ_DESCRIPTORS:
351 case FFS_READ_STRINGS:
352 /* Copy data */
353 if (unlikely(len < 16)) {
354 ret = -EINVAL;
355 break;
356 }
357
358 data = ffs_prepare_buffer(buf, len);
359 if (IS_ERR(data)) {
360 ret = PTR_ERR(data);
361 break;
362 }
363
364 /* Handle data */
365 if (ffs->state == FFS_READ_DESCRIPTORS) {
366 pr_info("read descriptors\n");
367 ret = __ffs_data_got_descs(ffs, data, len);
368 if (unlikely(ret < 0))
369 break;
370
371 ffs->state = FFS_READ_STRINGS;
372 ret = len;
373 } else {
374 pr_info("read strings\n");
375 ret = __ffs_data_got_strings(ffs, data, len);
376 if (unlikely(ret < 0))
377 break;
378
379 ret = ffs_epfiles_create(ffs);
380 if (unlikely(ret)) {
381 ffs->state = FFS_CLOSING;
382 break;
383 }
384
385 ffs->state = FFS_ACTIVE;
386 mutex_unlock(&ffs->mutex);
387
388 ret = ffs_ready(ffs);
389 if (unlikely(ret < 0)) {
390 ffs->state = FFS_CLOSING;
391 return ret;
392 }
393
394 return len;
395 }
396 break;
397
398 case FFS_ACTIVE:
399 data = NULL;
400 /*
401 * We're called from user space, we can use _irq
402 * rather then _irqsave
403 */
404 spin_lock_irq(&ffs->ev.waitq.lock);
405 switch (ffs_setup_state_clear_cancelled(ffs)) {
406 case FFS_SETUP_CANCELLED:
407 ret = -EIDRM;
408 goto done_spin;
409
410 case FFS_NO_SETUP:
411 ret = -ESRCH;
412 goto done_spin;
413
414 case FFS_SETUP_PENDING:
415 break;
416 }
417
418 /* FFS_SETUP_PENDING */
419 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
420 spin_unlock_irq(&ffs->ev.waitq.lock);
421 ret = __ffs_ep0_stall(ffs);
422 break;
423 }
424
425 /* FFS_SETUP_PENDING and not stall */
426 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
427
428 spin_unlock_irq(&ffs->ev.waitq.lock);
429
430 data = ffs_prepare_buffer(buf, len);
431 if (IS_ERR(data)) {
432 ret = PTR_ERR(data);
433 break;
434 }
435
436 spin_lock_irq(&ffs->ev.waitq.lock);
437
438 /*
439 * We are guaranteed to be still in FFS_ACTIVE state
440 * but the state of setup could have changed from
441 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
442 * to check for that. If that happened we copied data
443 * from user space in vain but it's unlikely.
444 *
445 * For sure we are not in FFS_NO_SETUP since this is
446 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
447 * transition can be performed and it's protected by
448 * mutex.
449 */
450 if (ffs_setup_state_clear_cancelled(ffs) ==
451 FFS_SETUP_CANCELLED) {
452 ret = -EIDRM;
453 done_spin:
454 spin_unlock_irq(&ffs->ev.waitq.lock);
455 } else {
456 /* unlocks spinlock */
457 ret = __ffs_ep0_queue_wait(ffs, data, len);
458 }
459 kfree(data);
460 break;
461
462 default:
463 ret = -EBADFD;
464 break;
465 }
466
467 mutex_unlock(&ffs->mutex);
468 return ret;
469 }
470
471 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)472 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
473 size_t n)
474 __releases(&ffs->ev.waitq.lock)
475 {
476 /*
477 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
478 * size of ffs->ev.types array (which is four) so that's how much space
479 * we reserve.
480 */
481 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
482 const size_t size = n * sizeof *events;
483 unsigned i = 0;
484
485 memset(events, 0, size);
486
487 do {
488 events[i].type = ffs->ev.types[i];
489 if (events[i].type == FUNCTIONFS_SETUP) {
490 events[i].u.setup = ffs->ev.setup;
491 ffs->setup_state = FFS_SETUP_PENDING;
492 }
493 } while (++i < n);
494
495 ffs->ev.count -= n;
496 if (ffs->ev.count)
497 memmove(ffs->ev.types, ffs->ev.types + n,
498 ffs->ev.count * sizeof *ffs->ev.types);
499
500 spin_unlock_irq(&ffs->ev.waitq.lock);
501 mutex_unlock(&ffs->mutex);
502
503 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
504 }
505
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)506 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
507 size_t len, loff_t *ptr)
508 {
509 struct ffs_data *ffs = file->private_data;
510 char *data = NULL;
511 size_t n;
512 int ret;
513
514 ENTER();
515
516 /* Fast check if setup was canceled */
517 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
518 return -EIDRM;
519
520 /* Acquire mutex */
521 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
522 if (unlikely(ret < 0))
523 return ret;
524
525 /* Check state */
526 if (ffs->state != FFS_ACTIVE) {
527 ret = -EBADFD;
528 goto done_mutex;
529 }
530
531 /*
532 * We're called from user space, we can use _irq rather then
533 * _irqsave
534 */
535 spin_lock_irq(&ffs->ev.waitq.lock);
536
537 switch (ffs_setup_state_clear_cancelled(ffs)) {
538 case FFS_SETUP_CANCELLED:
539 ret = -EIDRM;
540 break;
541
542 case FFS_NO_SETUP:
543 n = len / sizeof(struct usb_functionfs_event);
544 if (unlikely(!n)) {
545 ret = -EINVAL;
546 break;
547 }
548
549 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
550 ret = -EAGAIN;
551 break;
552 }
553
554 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
555 ffs->ev.count)) {
556 ret = -EINTR;
557 break;
558 }
559
560 /* unlocks spinlock */
561 return __ffs_ep0_read_events(ffs, buf,
562 min(n, (size_t)ffs->ev.count));
563
564 case FFS_SETUP_PENDING:
565 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
566 spin_unlock_irq(&ffs->ev.waitq.lock);
567 ret = __ffs_ep0_stall(ffs);
568 goto done_mutex;
569 }
570
571 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
572
573 spin_unlock_irq(&ffs->ev.waitq.lock);
574
575 if (likely(len)) {
576 data = kmalloc(len, GFP_KERNEL);
577 if (unlikely(!data)) {
578 ret = -ENOMEM;
579 goto done_mutex;
580 }
581 }
582
583 spin_lock_irq(&ffs->ev.waitq.lock);
584
585 /* See ffs_ep0_write() */
586 if (ffs_setup_state_clear_cancelled(ffs) ==
587 FFS_SETUP_CANCELLED) {
588 ret = -EIDRM;
589 break;
590 }
591
592 /* unlocks spinlock */
593 ret = __ffs_ep0_queue_wait(ffs, data, len);
594 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
595 ret = -EFAULT;
596 goto done_mutex;
597
598 default:
599 ret = -EBADFD;
600 break;
601 }
602
603 spin_unlock_irq(&ffs->ev.waitq.lock);
604 done_mutex:
605 mutex_unlock(&ffs->mutex);
606 kfree(data);
607 return ret;
608 }
609
ffs_ep0_open(struct inode * inode,struct file * file)610 static int ffs_ep0_open(struct inode *inode, struct file *file)
611 {
612 struct ffs_data *ffs = inode->i_private;
613
614 ENTER();
615
616 if (unlikely(ffs->state == FFS_CLOSING))
617 return -EBUSY;
618
619 file->private_data = ffs;
620 ffs_data_opened(ffs);
621
622 return stream_open(inode, file);
623 }
624
ffs_ep0_release(struct inode * inode,struct file * file)625 static int ffs_ep0_release(struct inode *inode, struct file *file)
626 {
627 struct ffs_data *ffs = file->private_data;
628
629 ENTER();
630
631 ffs_data_closed(ffs);
632
633 return 0;
634 }
635
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)636 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
637 {
638 struct ffs_data *ffs = file->private_data;
639 struct usb_gadget *gadget = ffs->gadget;
640 long ret;
641
642 ENTER();
643
644 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
645 struct ffs_function *func = ffs->func;
646 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
647 } else if (gadget && gadget->ops->ioctl) {
648 ret = gadget->ops->ioctl(gadget, code, value);
649 } else {
650 ret = -ENOTTY;
651 }
652
653 return ret;
654 }
655
ffs_ep0_poll(struct file * file,poll_table * wait)656 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
657 {
658 struct ffs_data *ffs = file->private_data;
659 __poll_t mask = EPOLLWRNORM;
660 int ret;
661
662 poll_wait(file, &ffs->ev.waitq, wait);
663
664 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
665 if (unlikely(ret < 0))
666 return mask;
667
668 switch (ffs->state) {
669 case FFS_READ_DESCRIPTORS:
670 case FFS_READ_STRINGS:
671 mask |= EPOLLOUT;
672 break;
673
674 case FFS_ACTIVE:
675 switch (ffs->setup_state) {
676 case FFS_NO_SETUP:
677 if (ffs->ev.count)
678 mask |= EPOLLIN;
679 break;
680
681 case FFS_SETUP_PENDING:
682 case FFS_SETUP_CANCELLED:
683 mask |= (EPOLLIN | EPOLLOUT);
684 break;
685 }
686 case FFS_CLOSING:
687 break;
688 case FFS_DEACTIVATED:
689 break;
690 }
691
692 mutex_unlock(&ffs->mutex);
693
694 return mask;
695 }
696
697 static const struct file_operations ffs_ep0_operations = {
698 .llseek = no_llseek,
699
700 .open = ffs_ep0_open,
701 .write = ffs_ep0_write,
702 .read = ffs_ep0_read,
703 .release = ffs_ep0_release,
704 .unlocked_ioctl = ffs_ep0_ioctl,
705 .poll = ffs_ep0_poll,
706 };
707
708
709 /* "Normal" endpoints operations ********************************************/
710
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)711 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
712 {
713 ENTER();
714 if (likely(req->context)) {
715 struct ffs_ep *ep = _ep->driver_data;
716 ep->status = req->status ? req->status : req->actual;
717 complete(req->context);
718 }
719 }
720
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)721 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
722 {
723 ssize_t ret = copy_to_iter(data, data_len, iter);
724 if (likely(ret == data_len))
725 return ret;
726
727 if (unlikely(iov_iter_count(iter)))
728 return -EFAULT;
729
730 /*
731 * Dear user space developer!
732 *
733 * TL;DR: To stop getting below error message in your kernel log, change
734 * user space code using functionfs to align read buffers to a max
735 * packet size.
736 *
737 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
738 * packet size. When unaligned buffer is passed to functionfs, it
739 * internally uses a larger, aligned buffer so that such UDCs are happy.
740 *
741 * Unfortunately, this means that host may send more data than was
742 * requested in read(2) system call. f_fs doesn’t know what to do with
743 * that excess data so it simply drops it.
744 *
745 * Was the buffer aligned in the first place, no such problem would
746 * happen.
747 *
748 * Data may be dropped only in AIO reads. Synchronous reads are handled
749 * by splitting a request into multiple parts. This splitting may still
750 * be a problem though so it’s likely best to align the buffer
751 * regardless of it being AIO or not..
752 *
753 * This only affects OUT endpoints, i.e. reading data with a read(2),
754 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
755 * affected.
756 */
757 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
758 "Align read buffer size to max packet size to avoid the problem.\n",
759 data_len, ret);
760
761 return ret;
762 }
763
764 /*
765 * allocate a virtually contiguous buffer and create a scatterlist describing it
766 * @sg_table - pointer to a place to be filled with sg_table contents
767 * @size - required buffer size
768 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)769 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
770 {
771 struct page **pages;
772 void *vaddr, *ptr;
773 unsigned int n_pages;
774 int i;
775
776 vaddr = vmalloc(sz);
777 if (!vaddr)
778 return NULL;
779
780 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
781 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
782 if (!pages) {
783 vfree(vaddr);
784
785 return NULL;
786 }
787 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
788 pages[i] = vmalloc_to_page(ptr);
789
790 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
791 kvfree(pages);
792 vfree(vaddr);
793
794 return NULL;
795 }
796 kvfree(pages);
797
798 return vaddr;
799 }
800
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)801 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
802 size_t data_len)
803 {
804 if (io_data->use_sg)
805 return ffs_build_sg_list(&io_data->sgt, data_len);
806
807 return kmalloc(data_len, GFP_KERNEL);
808 }
809
ffs_free_buffer(struct ffs_io_data * io_data)810 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
811 {
812 if (!io_data->buf)
813 return;
814
815 if (io_data->use_sg) {
816 sg_free_table(&io_data->sgt);
817 vfree(io_data->buf);
818 } else {
819 kfree(io_data->buf);
820 }
821 }
822
ffs_user_copy_worker(struct work_struct * work)823 static void ffs_user_copy_worker(struct work_struct *work)
824 {
825 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
826 work);
827 int ret = io_data->req->status ? io_data->req->status :
828 io_data->req->actual;
829 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
830
831 if (io_data->read && ret > 0) {
832 kthread_use_mm(io_data->mm);
833 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
834 kthread_unuse_mm(io_data->mm);
835 }
836
837 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
838
839 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
840 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
841
842 usb_ep_free_request(io_data->ep, io_data->req);
843
844 if (io_data->read)
845 kfree(io_data->to_free);
846 ffs_free_buffer(io_data);
847 kfree(io_data);
848 }
849
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)850 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
851 struct usb_request *req)
852 {
853 struct ffs_io_data *io_data = req->context;
854 struct ffs_data *ffs = io_data->ffs;
855
856 ENTER();
857
858 INIT_WORK(&io_data->work, ffs_user_copy_worker);
859 queue_work(ffs->io_completion_wq, &io_data->work);
860 }
861
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)862 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
863 {
864 /*
865 * See comment in struct ffs_epfile for full read_buffer pointer
866 * synchronisation story.
867 */
868 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
869 if (buf && buf != READ_BUFFER_DROP)
870 kfree(buf);
871 }
872
873 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)874 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
875 struct iov_iter *iter)
876 {
877 /*
878 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
879 * the buffer while we are using it. See comment in struct ffs_epfile
880 * for full read_buffer pointer synchronisation story.
881 */
882 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
883 ssize_t ret;
884 if (!buf || buf == READ_BUFFER_DROP)
885 return 0;
886
887 ret = copy_to_iter(buf->data, buf->length, iter);
888 if (buf->length == ret) {
889 kfree(buf);
890 return ret;
891 }
892
893 if (unlikely(iov_iter_count(iter))) {
894 ret = -EFAULT;
895 } else {
896 buf->length -= ret;
897 buf->data += ret;
898 }
899
900 if (cmpxchg(&epfile->read_buffer, NULL, buf))
901 kfree(buf);
902
903 return ret;
904 }
905
906 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)907 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
908 void *data, int data_len,
909 struct iov_iter *iter)
910 {
911 struct ffs_buffer *buf;
912
913 ssize_t ret = copy_to_iter(data, data_len, iter);
914 if (likely(data_len == ret))
915 return ret;
916
917 if (unlikely(iov_iter_count(iter)))
918 return -EFAULT;
919
920 /* See ffs_copy_to_iter for more context. */
921 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
922 data_len, ret);
923
924 data_len -= ret;
925 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
926 if (!buf)
927 return -ENOMEM;
928 buf->length = data_len;
929 buf->data = buf->storage;
930 memcpy(buf->storage, data + ret, data_len);
931
932 /*
933 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
934 * ffs_func_eps_disable has been called in the meanwhile). See comment
935 * in struct ffs_epfile for full read_buffer pointer synchronisation
936 * story.
937 */
938 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
939 kfree(buf);
940
941 return ret;
942 }
943
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)944 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
945 {
946 struct ffs_epfile *epfile = file->private_data;
947 struct usb_request *req;
948 struct ffs_ep *ep;
949 char *data = NULL;
950 ssize_t ret, data_len = -EINVAL;
951 int halt;
952
953 /* Are we still active? */
954 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
955 return -ENODEV;
956
957 /* Wait for endpoint to be enabled */
958 ep = epfile->ep;
959 if (!ep) {
960 if (file->f_flags & O_NONBLOCK)
961 return -EAGAIN;
962
963 ret = wait_event_interruptible(
964 epfile->ffs->wait, (ep = epfile->ep));
965 if (ret)
966 return -EINTR;
967 }
968
969 /* Do we halt? */
970 halt = (!io_data->read == !epfile->in);
971 if (halt && epfile->isoc)
972 return -EINVAL;
973
974 /* We will be using request and read_buffer */
975 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
976 if (unlikely(ret))
977 goto error;
978
979 /* Allocate & copy */
980 if (!halt) {
981 struct usb_gadget *gadget;
982
983 /*
984 * Do we have buffered data from previous partial read? Check
985 * that for synchronous case only because we do not have
986 * facility to ‘wake up’ a pending asynchronous read and push
987 * buffered data to it which we would need to make things behave
988 * consistently.
989 */
990 if (!io_data->aio && io_data->read) {
991 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
992 if (ret)
993 goto error_mutex;
994 }
995
996 /*
997 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
998 * before the waiting completes, so do not assign to 'gadget'
999 * earlier
1000 */
1001 gadget = epfile->ffs->gadget;
1002
1003 spin_lock_irq(&epfile->ffs->eps_lock);
1004 /* In the meantime, endpoint got disabled or changed. */
1005 if (epfile->ep != ep) {
1006 ret = -ESHUTDOWN;
1007 goto error_lock;
1008 }
1009 data_len = iov_iter_count(&io_data->data);
1010 /*
1011 * Controller may require buffer size to be aligned to
1012 * maxpacketsize of an out endpoint.
1013 */
1014 if (io_data->read)
1015 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1016
1017 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1018 spin_unlock_irq(&epfile->ffs->eps_lock);
1019
1020 data = ffs_alloc_buffer(io_data, data_len);
1021 if (unlikely(!data)) {
1022 ret = -ENOMEM;
1023 goto error_mutex;
1024 }
1025 if (!io_data->read &&
1026 !copy_from_iter_full(data, data_len, &io_data->data)) {
1027 ret = -EFAULT;
1028 goto error_mutex;
1029 }
1030 }
1031
1032 spin_lock_irq(&epfile->ffs->eps_lock);
1033
1034 if (epfile->ep != ep) {
1035 /* In the meantime, endpoint got disabled or changed. */
1036 ret = -ESHUTDOWN;
1037 } else if (halt) {
1038 ret = usb_ep_set_halt(ep->ep);
1039 if (!ret)
1040 ret = -EBADMSG;
1041 } else if (unlikely(data_len == -EINVAL)) {
1042 /*
1043 * Sanity Check: even though data_len can't be used
1044 * uninitialized at the time I write this comment, some
1045 * compilers complain about this situation.
1046 * In order to keep the code clean from warnings, data_len is
1047 * being initialized to -EINVAL during its declaration, which
1048 * means we can't rely on compiler anymore to warn no future
1049 * changes won't result in data_len being used uninitialized.
1050 * For such reason, we're adding this redundant sanity check
1051 * here.
1052 */
1053 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1054 ret = -EINVAL;
1055 } else if (!io_data->aio) {
1056 DECLARE_COMPLETION_ONSTACK(done);
1057 bool interrupted = false;
1058
1059 req = ep->req;
1060 if (io_data->use_sg) {
1061 req->buf = NULL;
1062 req->sg = io_data->sgt.sgl;
1063 req->num_sgs = io_data->sgt.nents;
1064 } else {
1065 req->buf = data;
1066 req->num_sgs = 0;
1067 }
1068 req->length = data_len;
1069
1070 io_data->buf = data;
1071
1072 req->context = &done;
1073 req->complete = ffs_epfile_io_complete;
1074
1075 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1076 if (unlikely(ret < 0))
1077 goto error_lock;
1078
1079 spin_unlock_irq(&epfile->ffs->eps_lock);
1080
1081 if (unlikely(wait_for_completion_interruptible(&done))) {
1082 /*
1083 * To avoid race condition with ffs_epfile_io_complete,
1084 * dequeue the request first then check
1085 * status. usb_ep_dequeue API should guarantee no race
1086 * condition with req->complete callback.
1087 */
1088 usb_ep_dequeue(ep->ep, req);
1089 wait_for_completion(&done);
1090 interrupted = ep->status < 0;
1091 }
1092
1093 if (interrupted)
1094 ret = -EINTR;
1095 else if (io_data->read && ep->status > 0)
1096 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1097 &io_data->data);
1098 else
1099 ret = ep->status;
1100 goto error_mutex;
1101 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1102 ret = -ENOMEM;
1103 } else {
1104 if (io_data->use_sg) {
1105 req->buf = NULL;
1106 req->sg = io_data->sgt.sgl;
1107 req->num_sgs = io_data->sgt.nents;
1108 } else {
1109 req->buf = data;
1110 req->num_sgs = 0;
1111 }
1112 req->length = data_len;
1113
1114 io_data->buf = data;
1115 io_data->ep = ep->ep;
1116 io_data->req = req;
1117 io_data->ffs = epfile->ffs;
1118
1119 req->context = io_data;
1120 req->complete = ffs_epfile_async_io_complete;
1121
1122 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1123 if (unlikely(ret)) {
1124 io_data->req = NULL;
1125 usb_ep_free_request(ep->ep, req);
1126 goto error_lock;
1127 }
1128
1129 ret = -EIOCBQUEUED;
1130 /*
1131 * Do not kfree the buffer in this function. It will be freed
1132 * by ffs_user_copy_worker.
1133 */
1134 data = NULL;
1135 }
1136
1137 error_lock:
1138 spin_unlock_irq(&epfile->ffs->eps_lock);
1139 error_mutex:
1140 mutex_unlock(&epfile->mutex);
1141 error:
1142 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1143 ffs_free_buffer(io_data);
1144 return ret;
1145 }
1146
1147 static int
ffs_epfile_open(struct inode * inode,struct file * file)1148 ffs_epfile_open(struct inode *inode, struct file *file)
1149 {
1150 struct ffs_epfile *epfile = inode->i_private;
1151
1152 ENTER();
1153
1154 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1155 return -ENODEV;
1156
1157 file->private_data = epfile;
1158 ffs_data_opened(epfile->ffs);
1159
1160 return stream_open(inode, file);
1161 }
1162
ffs_aio_cancel(struct kiocb * kiocb)1163 static int ffs_aio_cancel(struct kiocb *kiocb)
1164 {
1165 struct ffs_io_data *io_data = kiocb->private;
1166 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1167 unsigned long flags;
1168 int value;
1169
1170 ENTER();
1171
1172 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1173
1174 if (likely(io_data && io_data->ep && io_data->req))
1175 value = usb_ep_dequeue(io_data->ep, io_data->req);
1176 else
1177 value = -EINVAL;
1178
1179 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1180
1181 return value;
1182 }
1183
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1184 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1185 {
1186 struct ffs_io_data io_data, *p = &io_data;
1187 ssize_t res;
1188
1189 ENTER();
1190
1191 if (!is_sync_kiocb(kiocb)) {
1192 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1193 if (unlikely(!p))
1194 return -ENOMEM;
1195 p->aio = true;
1196 } else {
1197 memset(p, 0, sizeof(*p));
1198 p->aio = false;
1199 }
1200
1201 p->read = false;
1202 p->kiocb = kiocb;
1203 p->data = *from;
1204 p->mm = current->mm;
1205
1206 kiocb->private = p;
1207
1208 if (p->aio)
1209 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1210
1211 res = ffs_epfile_io(kiocb->ki_filp, p);
1212 if (res == -EIOCBQUEUED)
1213 return res;
1214 if (p->aio)
1215 kfree(p);
1216 else
1217 *from = p->data;
1218 return res;
1219 }
1220
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1221 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1222 {
1223 struct ffs_io_data io_data, *p = &io_data;
1224 ssize_t res;
1225
1226 ENTER();
1227
1228 if (!is_sync_kiocb(kiocb)) {
1229 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1230 if (unlikely(!p))
1231 return -ENOMEM;
1232 p->aio = true;
1233 } else {
1234 memset(p, 0, sizeof(*p));
1235 p->aio = false;
1236 }
1237
1238 p->read = true;
1239 p->kiocb = kiocb;
1240 if (p->aio) {
1241 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1242 if (!p->to_free) {
1243 kfree(p);
1244 return -ENOMEM;
1245 }
1246 } else {
1247 p->data = *to;
1248 p->to_free = NULL;
1249 }
1250 p->mm = current->mm;
1251
1252 kiocb->private = p;
1253
1254 if (p->aio)
1255 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1256
1257 res = ffs_epfile_io(kiocb->ki_filp, p);
1258 if (res == -EIOCBQUEUED)
1259 return res;
1260
1261 if (p->aio) {
1262 kfree(p->to_free);
1263 kfree(p);
1264 } else {
1265 *to = p->data;
1266 }
1267 return res;
1268 }
1269
1270 static int
ffs_epfile_release(struct inode * inode,struct file * file)1271 ffs_epfile_release(struct inode *inode, struct file *file)
1272 {
1273 struct ffs_epfile *epfile = inode->i_private;
1274
1275 ENTER();
1276
1277 __ffs_epfile_read_buffer_free(epfile);
1278 ffs_data_closed(epfile->ffs);
1279
1280 return 0;
1281 }
1282
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1283 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1284 unsigned long value)
1285 {
1286 struct ffs_epfile *epfile = file->private_data;
1287 struct ffs_ep *ep;
1288 int ret;
1289
1290 ENTER();
1291
1292 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1293 return -ENODEV;
1294
1295 /* Wait for endpoint to be enabled */
1296 ep = epfile->ep;
1297 if (!ep) {
1298 if (file->f_flags & O_NONBLOCK)
1299 return -EAGAIN;
1300
1301 ret = wait_event_interruptible(
1302 epfile->ffs->wait, (ep = epfile->ep));
1303 if (ret)
1304 return -EINTR;
1305 }
1306
1307 spin_lock_irq(&epfile->ffs->eps_lock);
1308
1309 /* In the meantime, endpoint got disabled or changed. */
1310 if (epfile->ep != ep) {
1311 spin_unlock_irq(&epfile->ffs->eps_lock);
1312 return -ESHUTDOWN;
1313 }
1314
1315 switch (code) {
1316 case FUNCTIONFS_FIFO_STATUS:
1317 ret = usb_ep_fifo_status(epfile->ep->ep);
1318 break;
1319 case FUNCTIONFS_FIFO_FLUSH:
1320 usb_ep_fifo_flush(epfile->ep->ep);
1321 ret = 0;
1322 break;
1323 case FUNCTIONFS_CLEAR_HALT:
1324 ret = usb_ep_clear_halt(epfile->ep->ep);
1325 break;
1326 case FUNCTIONFS_ENDPOINT_REVMAP:
1327 ret = epfile->ep->num;
1328 break;
1329 case FUNCTIONFS_ENDPOINT_DESC:
1330 {
1331 int desc_idx;
1332 struct usb_endpoint_descriptor desc1, *desc;
1333
1334 switch (epfile->ffs->gadget->speed) {
1335 case USB_SPEED_SUPER:
1336 case USB_SPEED_SUPER_PLUS:
1337 desc_idx = 2;
1338 break;
1339 case USB_SPEED_HIGH:
1340 desc_idx = 1;
1341 break;
1342 default:
1343 desc_idx = 0;
1344 }
1345
1346 desc = epfile->ep->descs[desc_idx];
1347 memcpy(&desc1, desc, desc->bLength);
1348
1349 spin_unlock_irq(&epfile->ffs->eps_lock);
1350 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1351 if (ret)
1352 ret = -EFAULT;
1353 return ret;
1354 }
1355 default:
1356 ret = -ENOTTY;
1357 }
1358 spin_unlock_irq(&epfile->ffs->eps_lock);
1359
1360 return ret;
1361 }
1362
1363 static const struct file_operations ffs_epfile_operations = {
1364 .llseek = no_llseek,
1365
1366 .open = ffs_epfile_open,
1367 .write_iter = ffs_epfile_write_iter,
1368 .read_iter = ffs_epfile_read_iter,
1369 .release = ffs_epfile_release,
1370 .unlocked_ioctl = ffs_epfile_ioctl,
1371 .compat_ioctl = compat_ptr_ioctl,
1372 };
1373
1374
1375 /* File system and super block operations ***********************************/
1376
1377 /*
1378 * Mounting the file system creates a controller file, used first for
1379 * function configuration then later for event monitoring.
1380 */
1381
1382 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1383 ffs_sb_make_inode(struct super_block *sb, void *data,
1384 const struct file_operations *fops,
1385 const struct inode_operations *iops,
1386 struct ffs_file_perms *perms)
1387 {
1388 struct inode *inode;
1389
1390 ENTER();
1391
1392 inode = new_inode(sb);
1393
1394 if (likely(inode)) {
1395 struct timespec64 ts = current_time(inode);
1396
1397 inode->i_ino = get_next_ino();
1398 inode->i_mode = perms->mode;
1399 inode->i_uid = perms->uid;
1400 inode->i_gid = perms->gid;
1401 inode->i_atime = ts;
1402 inode->i_mtime = ts;
1403 inode->i_ctime = ts;
1404 inode->i_private = data;
1405 if (fops)
1406 inode->i_fop = fops;
1407 if (iops)
1408 inode->i_op = iops;
1409 }
1410
1411 return inode;
1412 }
1413
1414 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1415 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1416 const char *name, void *data,
1417 const struct file_operations *fops)
1418 {
1419 struct ffs_data *ffs = sb->s_fs_info;
1420 struct dentry *dentry;
1421 struct inode *inode;
1422
1423 ENTER();
1424
1425 dentry = d_alloc_name(sb->s_root, name);
1426 if (unlikely(!dentry))
1427 return NULL;
1428
1429 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1430 if (unlikely(!inode)) {
1431 dput(dentry);
1432 return NULL;
1433 }
1434
1435 d_add(dentry, inode);
1436 return dentry;
1437 }
1438
1439 /* Super block */
1440 static const struct super_operations ffs_sb_operations = {
1441 .statfs = simple_statfs,
1442 .drop_inode = generic_delete_inode,
1443 };
1444
1445 struct ffs_sb_fill_data {
1446 struct ffs_file_perms perms;
1447 umode_t root_mode;
1448 const char *dev_name;
1449 bool no_disconnect;
1450 struct ffs_data *ffs_data;
1451 };
1452
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1453 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1454 {
1455 struct ffs_sb_fill_data *data = fc->fs_private;
1456 struct inode *inode;
1457 struct ffs_data *ffs = data->ffs_data;
1458
1459 ENTER();
1460
1461 ffs->sb = sb;
1462 data->ffs_data = NULL;
1463 sb->s_fs_info = ffs;
1464 sb->s_blocksize = PAGE_SIZE;
1465 sb->s_blocksize_bits = PAGE_SHIFT;
1466 sb->s_magic = FUNCTIONFS_MAGIC;
1467 sb->s_op = &ffs_sb_operations;
1468 sb->s_time_gran = 1;
1469
1470 /* Root inode */
1471 data->perms.mode = data->root_mode;
1472 inode = ffs_sb_make_inode(sb, NULL,
1473 &simple_dir_operations,
1474 &simple_dir_inode_operations,
1475 &data->perms);
1476 sb->s_root = d_make_root(inode);
1477 if (unlikely(!sb->s_root))
1478 return -ENOMEM;
1479
1480 /* EP0 file */
1481 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1482 &ffs_ep0_operations)))
1483 return -ENOMEM;
1484
1485 return 0;
1486 }
1487
1488 enum {
1489 Opt_no_disconnect,
1490 Opt_rmode,
1491 Opt_fmode,
1492 Opt_mode,
1493 Opt_uid,
1494 Opt_gid,
1495 };
1496
1497 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1498 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1499 fsparam_u32 ("rmode", Opt_rmode),
1500 fsparam_u32 ("fmode", Opt_fmode),
1501 fsparam_u32 ("mode", Opt_mode),
1502 fsparam_u32 ("uid", Opt_uid),
1503 fsparam_u32 ("gid", Opt_gid),
1504 {}
1505 };
1506
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1507 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1508 {
1509 struct ffs_sb_fill_data *data = fc->fs_private;
1510 struct fs_parse_result result;
1511 int opt;
1512
1513 ENTER();
1514
1515 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1516 if (opt < 0)
1517 return opt;
1518
1519 switch (opt) {
1520 case Opt_no_disconnect:
1521 data->no_disconnect = result.boolean;
1522 break;
1523 case Opt_rmode:
1524 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1525 break;
1526 case Opt_fmode:
1527 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528 break;
1529 case Opt_mode:
1530 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1531 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1532 break;
1533
1534 case Opt_uid:
1535 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1536 if (!uid_valid(data->perms.uid))
1537 goto unmapped_value;
1538 break;
1539 case Opt_gid:
1540 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1541 if (!gid_valid(data->perms.gid))
1542 goto unmapped_value;
1543 break;
1544
1545 default:
1546 return -ENOPARAM;
1547 }
1548
1549 return 0;
1550
1551 unmapped_value:
1552 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1553 }
1554
1555 /*
1556 * Set up the superblock for a mount.
1557 */
ffs_fs_get_tree(struct fs_context * fc)1558 static int ffs_fs_get_tree(struct fs_context *fc)
1559 {
1560 struct ffs_sb_fill_data *ctx = fc->fs_private;
1561 struct ffs_data *ffs;
1562 int ret;
1563
1564 ENTER();
1565
1566 if (!fc->source)
1567 return invalf(fc, "No source specified");
1568
1569 ffs = ffs_data_new(fc->source);
1570 if (unlikely(!ffs))
1571 return -ENOMEM;
1572 ffs->file_perms = ctx->perms;
1573 ffs->no_disconnect = ctx->no_disconnect;
1574
1575 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1576 if (unlikely(!ffs->dev_name)) {
1577 ffs_data_put(ffs);
1578 return -ENOMEM;
1579 }
1580
1581 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1582 if (ret) {
1583 ffs_data_put(ffs);
1584 return ret;
1585 }
1586
1587 ctx->ffs_data = ffs;
1588 return get_tree_nodev(fc, ffs_sb_fill);
1589 }
1590
ffs_fs_free_fc(struct fs_context * fc)1591 static void ffs_fs_free_fc(struct fs_context *fc)
1592 {
1593 struct ffs_sb_fill_data *ctx = fc->fs_private;
1594
1595 if (ctx) {
1596 if (ctx->ffs_data) {
1597 ffs_data_put(ctx->ffs_data);
1598 }
1599
1600 kfree(ctx);
1601 }
1602 }
1603
1604 static const struct fs_context_operations ffs_fs_context_ops = {
1605 .free = ffs_fs_free_fc,
1606 .parse_param = ffs_fs_parse_param,
1607 .get_tree = ffs_fs_get_tree,
1608 };
1609
ffs_fs_init_fs_context(struct fs_context * fc)1610 static int ffs_fs_init_fs_context(struct fs_context *fc)
1611 {
1612 struct ffs_sb_fill_data *ctx;
1613
1614 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1615 if (!ctx)
1616 return -ENOMEM;
1617
1618 ctx->perms.mode = S_IFREG | 0600;
1619 ctx->perms.uid = GLOBAL_ROOT_UID;
1620 ctx->perms.gid = GLOBAL_ROOT_GID;
1621 ctx->root_mode = S_IFDIR | 0500;
1622 ctx->no_disconnect = false;
1623
1624 fc->fs_private = ctx;
1625 fc->ops = &ffs_fs_context_ops;
1626 return 0;
1627 }
1628
1629 static void
ffs_fs_kill_sb(struct super_block * sb)1630 ffs_fs_kill_sb(struct super_block *sb)
1631 {
1632 ENTER();
1633
1634 kill_litter_super(sb);
1635 if (sb->s_fs_info)
1636 ffs_data_closed(sb->s_fs_info);
1637 }
1638
1639 static struct file_system_type ffs_fs_type = {
1640 .owner = THIS_MODULE,
1641 .name = "functionfs",
1642 .init_fs_context = ffs_fs_init_fs_context,
1643 .parameters = ffs_fs_fs_parameters,
1644 .kill_sb = ffs_fs_kill_sb,
1645 };
1646 MODULE_ALIAS_FS("functionfs");
1647
1648
1649 /* Driver's main init/cleanup functions *************************************/
1650
functionfs_init(void)1651 static int functionfs_init(void)
1652 {
1653 int ret;
1654
1655 ENTER();
1656
1657 ret = register_filesystem(&ffs_fs_type);
1658 if (likely(!ret))
1659 pr_info("file system registered\n");
1660 else
1661 pr_err("failed registering file system (%d)\n", ret);
1662
1663 return ret;
1664 }
1665
functionfs_cleanup(void)1666 static void functionfs_cleanup(void)
1667 {
1668 ENTER();
1669
1670 pr_info("unloading\n");
1671 unregister_filesystem(&ffs_fs_type);
1672 }
1673
1674
1675 /* ffs_data and ffs_function construction and destruction code **************/
1676
1677 static void ffs_data_clear(struct ffs_data *ffs);
1678 static void ffs_data_reset(struct ffs_data *ffs);
1679
ffs_data_get(struct ffs_data * ffs)1680 static void ffs_data_get(struct ffs_data *ffs)
1681 {
1682 ENTER();
1683
1684 refcount_inc(&ffs->ref);
1685 }
1686
ffs_data_opened(struct ffs_data * ffs)1687 static void ffs_data_opened(struct ffs_data *ffs)
1688 {
1689 ENTER();
1690
1691 refcount_inc(&ffs->ref);
1692 if (atomic_add_return(1, &ffs->opened) == 1 &&
1693 ffs->state == FFS_DEACTIVATED) {
1694 ffs->state = FFS_CLOSING;
1695 ffs_data_reset(ffs);
1696 }
1697 }
1698
ffs_data_put(struct ffs_data * ffs)1699 static void ffs_data_put(struct ffs_data *ffs)
1700 {
1701 ENTER();
1702
1703 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1704 pr_info("%s(): freeing\n", __func__);
1705 ffs_data_clear(ffs);
1706 ffs_release_dev(ffs->private_data);
1707 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1708 swait_active(&ffs->ep0req_completion.wait) ||
1709 waitqueue_active(&ffs->wait));
1710 destroy_workqueue(ffs->io_completion_wq);
1711 kfree(ffs->dev_name);
1712 kfree(ffs);
1713 }
1714 }
1715
ffs_data_closed(struct ffs_data * ffs)1716 static void ffs_data_closed(struct ffs_data *ffs)
1717 {
1718 struct ffs_epfile *epfiles;
1719 unsigned long flags;
1720
1721 ENTER();
1722
1723 if (atomic_dec_and_test(&ffs->opened)) {
1724 if (ffs->no_disconnect) {
1725 ffs->state = FFS_DEACTIVATED;
1726 spin_lock_irqsave(&ffs->eps_lock, flags);
1727 epfiles = ffs->epfiles;
1728 ffs->epfiles = NULL;
1729 spin_unlock_irqrestore(&ffs->eps_lock,
1730 flags);
1731
1732 if (epfiles)
1733 ffs_epfiles_destroy(epfiles,
1734 ffs->eps_count);
1735
1736 if (ffs->setup_state == FFS_SETUP_PENDING)
1737 __ffs_ep0_stall(ffs);
1738 } else {
1739 ffs->state = FFS_CLOSING;
1740 ffs_data_reset(ffs);
1741 }
1742 }
1743 if (atomic_read(&ffs->opened) < 0) {
1744 ffs->state = FFS_CLOSING;
1745 ffs_data_reset(ffs);
1746 }
1747
1748 ffs_data_put(ffs);
1749 }
1750
ffs_data_new(const char * dev_name)1751 static struct ffs_data *ffs_data_new(const char *dev_name)
1752 {
1753 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1754 if (unlikely(!ffs))
1755 return NULL;
1756
1757 ENTER();
1758
1759 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1760 if (!ffs->io_completion_wq) {
1761 kfree(ffs);
1762 return NULL;
1763 }
1764
1765 refcount_set(&ffs->ref, 1);
1766 atomic_set(&ffs->opened, 0);
1767 ffs->state = FFS_READ_DESCRIPTORS;
1768 mutex_init(&ffs->mutex);
1769 spin_lock_init(&ffs->eps_lock);
1770 init_waitqueue_head(&ffs->ev.waitq);
1771 init_waitqueue_head(&ffs->wait);
1772 init_completion(&ffs->ep0req_completion);
1773
1774 /* XXX REVISIT need to update it in some places, or do we? */
1775 ffs->ev.can_stall = 1;
1776
1777 return ffs;
1778 }
1779
ffs_data_clear(struct ffs_data * ffs)1780 static void ffs_data_clear(struct ffs_data *ffs)
1781 {
1782 struct ffs_epfile *epfiles;
1783 unsigned long flags;
1784
1785 ENTER();
1786
1787 ffs_closed(ffs);
1788
1789 BUG_ON(ffs->gadget);
1790
1791 spin_lock_irqsave(&ffs->eps_lock, flags);
1792 epfiles = ffs->epfiles;
1793 ffs->epfiles = NULL;
1794 spin_unlock_irqrestore(&ffs->eps_lock, flags);
1795
1796 /*
1797 * potential race possible between ffs_func_eps_disable
1798 * & ffs_epfile_release therefore maintaining a local
1799 * copy of epfile will save us from use-after-free.
1800 */
1801 if (epfiles) {
1802 ffs_epfiles_destroy(epfiles, ffs->eps_count);
1803 ffs->epfiles = NULL;
1804 }
1805
1806 if (ffs->ffs_eventfd) {
1807 eventfd_ctx_put(ffs->ffs_eventfd);
1808 ffs->ffs_eventfd = NULL;
1809 }
1810
1811 kfree(ffs->raw_descs_data);
1812 kfree(ffs->raw_strings);
1813 kfree(ffs->stringtabs);
1814 }
1815
ffs_data_reset(struct ffs_data * ffs)1816 static void ffs_data_reset(struct ffs_data *ffs)
1817 {
1818 ENTER();
1819
1820 ffs_data_clear(ffs);
1821
1822 ffs->raw_descs_data = NULL;
1823 ffs->raw_descs = NULL;
1824 ffs->raw_strings = NULL;
1825 ffs->stringtabs = NULL;
1826
1827 ffs->raw_descs_length = 0;
1828 ffs->fs_descs_count = 0;
1829 ffs->hs_descs_count = 0;
1830 ffs->ss_descs_count = 0;
1831
1832 ffs->strings_count = 0;
1833 ffs->interfaces_count = 0;
1834 ffs->eps_count = 0;
1835
1836 ffs->ev.count = 0;
1837
1838 ffs->state = FFS_READ_DESCRIPTORS;
1839 ffs->setup_state = FFS_NO_SETUP;
1840 ffs->flags = 0;
1841
1842 ffs->ms_os_descs_ext_prop_count = 0;
1843 ffs->ms_os_descs_ext_prop_name_len = 0;
1844 ffs->ms_os_descs_ext_prop_data_len = 0;
1845 }
1846
1847
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1848 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1849 {
1850 struct usb_gadget_strings **lang;
1851 int first_id;
1852
1853 ENTER();
1854
1855 if (WARN_ON(ffs->state != FFS_ACTIVE
1856 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1857 return -EBADFD;
1858
1859 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1860 if (unlikely(first_id < 0))
1861 return first_id;
1862
1863 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1864 if (unlikely(!ffs->ep0req))
1865 return -ENOMEM;
1866 ffs->ep0req->complete = ffs_ep0_complete;
1867 ffs->ep0req->context = ffs;
1868
1869 lang = ffs->stringtabs;
1870 if (lang) {
1871 for (; *lang; ++lang) {
1872 struct usb_string *str = (*lang)->strings;
1873 int id = first_id;
1874 for (; str->s; ++id, ++str)
1875 str->id = id;
1876 }
1877 }
1878
1879 ffs->gadget = cdev->gadget;
1880 ffs_data_get(ffs);
1881 return 0;
1882 }
1883
functionfs_unbind(struct ffs_data * ffs)1884 static void functionfs_unbind(struct ffs_data *ffs)
1885 {
1886 ENTER();
1887
1888 if (!WARN_ON(!ffs->gadget)) {
1889 /* dequeue before freeing ep0req */
1890 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1891 mutex_lock(&ffs->mutex);
1892 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1893 ffs->ep0req = NULL;
1894 ffs->gadget = NULL;
1895 clear_bit(FFS_FL_BOUND, &ffs->flags);
1896 mutex_unlock(&ffs->mutex);
1897 ffs_data_put(ffs);
1898 }
1899 }
1900
ffs_epfiles_create(struct ffs_data * ffs)1901 static int ffs_epfiles_create(struct ffs_data *ffs)
1902 {
1903 struct ffs_epfile *epfile, *epfiles;
1904 unsigned i, count;
1905
1906 ENTER();
1907
1908 count = ffs->eps_count;
1909 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1910 if (!epfiles)
1911 return -ENOMEM;
1912
1913 epfile = epfiles;
1914 for (i = 1; i <= count; ++i, ++epfile) {
1915 epfile->ffs = ffs;
1916 mutex_init(&epfile->mutex);
1917 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1918 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1919 else
1920 sprintf(epfile->name, "ep%u", i);
1921 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1922 epfile,
1923 &ffs_epfile_operations);
1924 if (unlikely(!epfile->dentry)) {
1925 ffs_epfiles_destroy(epfiles, i - 1);
1926 return -ENOMEM;
1927 }
1928 }
1929
1930 ffs->epfiles = epfiles;
1931 return 0;
1932 }
1933
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1934 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1935 {
1936 struct ffs_epfile *epfile = epfiles;
1937
1938 ENTER();
1939
1940 for (; count; --count, ++epfile) {
1941 BUG_ON(mutex_is_locked(&epfile->mutex));
1942 if (epfile->dentry) {
1943 d_delete(epfile->dentry);
1944 dput(epfile->dentry);
1945 epfile->dentry = NULL;
1946 }
1947 }
1948
1949 kfree(epfiles);
1950 }
1951
ffs_func_eps_disable(struct ffs_function * func)1952 static void ffs_func_eps_disable(struct ffs_function *func)
1953 {
1954 struct ffs_ep *ep;
1955 struct ffs_epfile *epfile;
1956 unsigned short count;
1957 unsigned long flags;
1958
1959 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1960 count = func->ffs->eps_count;
1961 epfile = func->ffs->epfiles;
1962 ep = func->eps;
1963 while (count--) {
1964 /* pending requests get nuked */
1965 if (likely(ep->ep))
1966 usb_ep_disable(ep->ep);
1967 ++ep;
1968
1969 if (epfile) {
1970 epfile->ep = NULL;
1971 __ffs_epfile_read_buffer_free(epfile);
1972 ++epfile;
1973 }
1974 }
1975 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1976 }
1977
ffs_func_eps_enable(struct ffs_function * func)1978 static int ffs_func_eps_enable(struct ffs_function *func)
1979 {
1980 struct ffs_data *ffs;
1981 struct ffs_ep *ep;
1982 struct ffs_epfile *epfile;
1983 unsigned short count;
1984 unsigned long flags;
1985 int ret = 0;
1986
1987 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1988 ffs = func->ffs;
1989 ep = func->eps;
1990 epfile = ffs->epfiles;
1991 count = ffs->eps_count;
1992 while(count--) {
1993 ep->ep->driver_data = ep;
1994
1995 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1996 if (ret) {
1997 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1998 __func__, ep->ep->name, ret);
1999 break;
2000 }
2001
2002 ret = usb_ep_enable(ep->ep);
2003 if (likely(!ret)) {
2004 epfile->ep = ep;
2005 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2006 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2007 } else {
2008 break;
2009 }
2010
2011 ++ep;
2012 ++epfile;
2013 }
2014
2015 wake_up_interruptible(&ffs->wait);
2016 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2017
2018 return ret;
2019 }
2020
2021
2022 /* Parsing and building descriptors and strings *****************************/
2023
2024 /*
2025 * This validates if data pointed by data is a valid USB descriptor as
2026 * well as record how many interfaces, endpoints and strings are
2027 * required by given configuration. Returns address after the
2028 * descriptor or NULL if data is invalid.
2029 */
2030
2031 enum ffs_entity_type {
2032 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2033 };
2034
2035 enum ffs_os_desc_type {
2036 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2037 };
2038
2039 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2040 u8 *valuep,
2041 struct usb_descriptor_header *desc,
2042 void *priv);
2043
2044 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2045 struct usb_os_desc_header *h, void *data,
2046 unsigned len, void *priv);
2047
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2048 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2049 ffs_entity_callback entity,
2050 void *priv, int *current_class)
2051 {
2052 struct usb_descriptor_header *_ds = (void *)data;
2053 u8 length;
2054 int ret;
2055
2056 ENTER();
2057
2058 /* At least two bytes are required: length and type */
2059 if (len < 2) {
2060 pr_vdebug("descriptor too short\n");
2061 return -EINVAL;
2062 }
2063
2064 /* If we have at least as many bytes as the descriptor takes? */
2065 length = _ds->bLength;
2066 if (len < length) {
2067 pr_vdebug("descriptor longer then available data\n");
2068 return -EINVAL;
2069 }
2070
2071 #define __entity_check_INTERFACE(val) 1
2072 #define __entity_check_STRING(val) (val)
2073 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2074 #define __entity(type, val) do { \
2075 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2076 if (unlikely(!__entity_check_ ##type(val))) { \
2077 pr_vdebug("invalid entity's value\n"); \
2078 return -EINVAL; \
2079 } \
2080 ret = entity(FFS_ ##type, &val, _ds, priv); \
2081 if (unlikely(ret < 0)) { \
2082 pr_debug("entity " #type "(%02x); ret = %d\n", \
2083 (val), ret); \
2084 return ret; \
2085 } \
2086 } while (0)
2087
2088 /* Parse descriptor depending on type. */
2089 switch (_ds->bDescriptorType) {
2090 case USB_DT_DEVICE:
2091 case USB_DT_CONFIG:
2092 case USB_DT_STRING:
2093 case USB_DT_DEVICE_QUALIFIER:
2094 /* function can't have any of those */
2095 pr_vdebug("descriptor reserved for gadget: %d\n",
2096 _ds->bDescriptorType);
2097 return -EINVAL;
2098
2099 case USB_DT_INTERFACE: {
2100 struct usb_interface_descriptor *ds = (void *)_ds;
2101 pr_vdebug("interface descriptor\n");
2102 if (length != sizeof *ds)
2103 goto inv_length;
2104
2105 __entity(INTERFACE, ds->bInterfaceNumber);
2106 if (ds->iInterface)
2107 __entity(STRING, ds->iInterface);
2108 *current_class = ds->bInterfaceClass;
2109 }
2110 break;
2111
2112 case USB_DT_ENDPOINT: {
2113 struct usb_endpoint_descriptor *ds = (void *)_ds;
2114 pr_vdebug("endpoint descriptor\n");
2115 if (length != USB_DT_ENDPOINT_SIZE &&
2116 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2117 goto inv_length;
2118 __entity(ENDPOINT, ds->bEndpointAddress);
2119 }
2120 break;
2121
2122 case USB_TYPE_CLASS | 0x01:
2123 if (*current_class == USB_INTERFACE_CLASS_HID) {
2124 pr_vdebug("hid descriptor\n");
2125 if (length != sizeof(struct hid_descriptor))
2126 goto inv_length;
2127 break;
2128 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2129 pr_vdebug("ccid descriptor\n");
2130 if (length != sizeof(struct ccid_descriptor))
2131 goto inv_length;
2132 break;
2133 } else {
2134 pr_vdebug("unknown descriptor: %d for class %d\n",
2135 _ds->bDescriptorType, *current_class);
2136 return -EINVAL;
2137 }
2138
2139 case USB_DT_OTG:
2140 if (length != sizeof(struct usb_otg_descriptor))
2141 goto inv_length;
2142 break;
2143
2144 case USB_DT_INTERFACE_ASSOCIATION: {
2145 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2146 pr_vdebug("interface association descriptor\n");
2147 if (length != sizeof *ds)
2148 goto inv_length;
2149 if (ds->iFunction)
2150 __entity(STRING, ds->iFunction);
2151 }
2152 break;
2153
2154 case USB_DT_SS_ENDPOINT_COMP:
2155 pr_vdebug("EP SS companion descriptor\n");
2156 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2157 goto inv_length;
2158 break;
2159
2160 case USB_DT_OTHER_SPEED_CONFIG:
2161 case USB_DT_INTERFACE_POWER:
2162 case USB_DT_DEBUG:
2163 case USB_DT_SECURITY:
2164 case USB_DT_CS_RADIO_CONTROL:
2165 /* TODO */
2166 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2167 return -EINVAL;
2168
2169 default:
2170 /* We should never be here */
2171 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2172 return -EINVAL;
2173
2174 inv_length:
2175 pr_vdebug("invalid length: %d (descriptor %d)\n",
2176 _ds->bLength, _ds->bDescriptorType);
2177 return -EINVAL;
2178 }
2179
2180 #undef __entity
2181 #undef __entity_check_DESCRIPTOR
2182 #undef __entity_check_INTERFACE
2183 #undef __entity_check_STRING
2184 #undef __entity_check_ENDPOINT
2185
2186 return length;
2187 }
2188
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2189 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2190 ffs_entity_callback entity, void *priv)
2191 {
2192 const unsigned _len = len;
2193 unsigned long num = 0;
2194 int current_class = -1;
2195
2196 ENTER();
2197
2198 for (;;) {
2199 int ret;
2200
2201 if (num == count)
2202 data = NULL;
2203
2204 /* Record "descriptor" entity */
2205 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2206 if (unlikely(ret < 0)) {
2207 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2208 num, ret);
2209 return ret;
2210 }
2211
2212 if (!data)
2213 return _len - len;
2214
2215 ret = ffs_do_single_desc(data, len, entity, priv,
2216 ¤t_class);
2217 if (unlikely(ret < 0)) {
2218 pr_debug("%s returns %d\n", __func__, ret);
2219 return ret;
2220 }
2221
2222 len -= ret;
2223 data += ret;
2224 ++num;
2225 }
2226 }
2227
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2228 static int __ffs_data_do_entity(enum ffs_entity_type type,
2229 u8 *valuep, struct usb_descriptor_header *desc,
2230 void *priv)
2231 {
2232 struct ffs_desc_helper *helper = priv;
2233 struct usb_endpoint_descriptor *d;
2234
2235 ENTER();
2236
2237 switch (type) {
2238 case FFS_DESCRIPTOR:
2239 break;
2240
2241 case FFS_INTERFACE:
2242 /*
2243 * Interfaces are indexed from zero so if we
2244 * encountered interface "n" then there are at least
2245 * "n+1" interfaces.
2246 */
2247 if (*valuep >= helper->interfaces_count)
2248 helper->interfaces_count = *valuep + 1;
2249 break;
2250
2251 case FFS_STRING:
2252 /*
2253 * Strings are indexed from 1 (0 is reserved
2254 * for languages list)
2255 */
2256 if (*valuep > helper->ffs->strings_count)
2257 helper->ffs->strings_count = *valuep;
2258 break;
2259
2260 case FFS_ENDPOINT:
2261 d = (void *)desc;
2262 helper->eps_count++;
2263 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2264 return -EINVAL;
2265 /* Check if descriptors for any speed were already parsed */
2266 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2267 helper->ffs->eps_addrmap[helper->eps_count] =
2268 d->bEndpointAddress;
2269 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2270 d->bEndpointAddress)
2271 return -EINVAL;
2272 break;
2273 }
2274
2275 return 0;
2276 }
2277
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2278 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2279 struct usb_os_desc_header *desc)
2280 {
2281 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2282 u16 w_index = le16_to_cpu(desc->wIndex);
2283
2284 if (bcd_version != 1) {
2285 pr_vdebug("unsupported os descriptors version: %d",
2286 bcd_version);
2287 return -EINVAL;
2288 }
2289 switch (w_index) {
2290 case 0x4:
2291 *next_type = FFS_OS_DESC_EXT_COMPAT;
2292 break;
2293 case 0x5:
2294 *next_type = FFS_OS_DESC_EXT_PROP;
2295 break;
2296 default:
2297 pr_vdebug("unsupported os descriptor type: %d", w_index);
2298 return -EINVAL;
2299 }
2300
2301 return sizeof(*desc);
2302 }
2303
2304 /*
2305 * Process all extended compatibility/extended property descriptors
2306 * of a feature descriptor
2307 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2308 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2309 enum ffs_os_desc_type type,
2310 u16 feature_count,
2311 ffs_os_desc_callback entity,
2312 void *priv,
2313 struct usb_os_desc_header *h)
2314 {
2315 int ret;
2316 const unsigned _len = len;
2317
2318 ENTER();
2319
2320 /* loop over all ext compat/ext prop descriptors */
2321 while (feature_count--) {
2322 ret = entity(type, h, data, len, priv);
2323 if (unlikely(ret < 0)) {
2324 pr_debug("bad OS descriptor, type: %d\n", type);
2325 return ret;
2326 }
2327 data += ret;
2328 len -= ret;
2329 }
2330 return _len - len;
2331 }
2332
2333 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2334 static int __must_check ffs_do_os_descs(unsigned count,
2335 char *data, unsigned len,
2336 ffs_os_desc_callback entity, void *priv)
2337 {
2338 const unsigned _len = len;
2339 unsigned long num = 0;
2340
2341 ENTER();
2342
2343 for (num = 0; num < count; ++num) {
2344 int ret;
2345 enum ffs_os_desc_type type;
2346 u16 feature_count;
2347 struct usb_os_desc_header *desc = (void *)data;
2348
2349 if (len < sizeof(*desc))
2350 return -EINVAL;
2351
2352 /*
2353 * Record "descriptor" entity.
2354 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2355 * Move the data pointer to the beginning of extended
2356 * compatibilities proper or extended properties proper
2357 * portions of the data
2358 */
2359 if (le32_to_cpu(desc->dwLength) > len)
2360 return -EINVAL;
2361
2362 ret = __ffs_do_os_desc_header(&type, desc);
2363 if (unlikely(ret < 0)) {
2364 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2365 num, ret);
2366 return ret;
2367 }
2368 /*
2369 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2370 */
2371 feature_count = le16_to_cpu(desc->wCount);
2372 if (type == FFS_OS_DESC_EXT_COMPAT &&
2373 (feature_count > 255 || desc->Reserved))
2374 return -EINVAL;
2375 len -= ret;
2376 data += ret;
2377
2378 /*
2379 * Process all function/property descriptors
2380 * of this Feature Descriptor
2381 */
2382 ret = ffs_do_single_os_desc(data, len, type,
2383 feature_count, entity, priv, desc);
2384 if (unlikely(ret < 0)) {
2385 pr_debug("%s returns %d\n", __func__, ret);
2386 return ret;
2387 }
2388
2389 len -= ret;
2390 data += ret;
2391 }
2392 return _len - len;
2393 }
2394
2395 /*
2396 * Validate contents of the buffer from userspace related to OS descriptors.
2397 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2398 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2399 struct usb_os_desc_header *h, void *data,
2400 unsigned len, void *priv)
2401 {
2402 struct ffs_data *ffs = priv;
2403 u8 length;
2404
2405 ENTER();
2406
2407 switch (type) {
2408 case FFS_OS_DESC_EXT_COMPAT: {
2409 struct usb_ext_compat_desc *d = data;
2410 int i;
2411
2412 if (len < sizeof(*d) ||
2413 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2414 return -EINVAL;
2415 if (d->Reserved1 != 1) {
2416 /*
2417 * According to the spec, Reserved1 must be set to 1
2418 * but older kernels incorrectly rejected non-zero
2419 * values. We fix it here to avoid returning EINVAL
2420 * in response to values we used to accept.
2421 */
2422 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2423 d->Reserved1 = 1;
2424 }
2425 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2426 if (d->Reserved2[i])
2427 return -EINVAL;
2428
2429 length = sizeof(struct usb_ext_compat_desc);
2430 }
2431 break;
2432 case FFS_OS_DESC_EXT_PROP: {
2433 struct usb_ext_prop_desc *d = data;
2434 u32 type, pdl;
2435 u16 pnl;
2436
2437 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2438 return -EINVAL;
2439 length = le32_to_cpu(d->dwSize);
2440 if (len < length)
2441 return -EINVAL;
2442 type = le32_to_cpu(d->dwPropertyDataType);
2443 if (type < USB_EXT_PROP_UNICODE ||
2444 type > USB_EXT_PROP_UNICODE_MULTI) {
2445 pr_vdebug("unsupported os descriptor property type: %d",
2446 type);
2447 return -EINVAL;
2448 }
2449 pnl = le16_to_cpu(d->wPropertyNameLength);
2450 if (length < 14 + pnl) {
2451 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2452 length, pnl, type);
2453 return -EINVAL;
2454 }
2455 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2456 if (length != 14 + pnl + pdl) {
2457 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2458 length, pnl, pdl, type);
2459 return -EINVAL;
2460 }
2461 ++ffs->ms_os_descs_ext_prop_count;
2462 /* property name reported to the host as "WCHAR"s */
2463 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2464 ffs->ms_os_descs_ext_prop_data_len += pdl;
2465 }
2466 break;
2467 default:
2468 pr_vdebug("unknown descriptor: %d\n", type);
2469 return -EINVAL;
2470 }
2471 return length;
2472 }
2473
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2474 static int __ffs_data_got_descs(struct ffs_data *ffs,
2475 char *const _data, size_t len)
2476 {
2477 char *data = _data, *raw_descs;
2478 unsigned os_descs_count = 0, counts[3], flags;
2479 int ret = -EINVAL, i;
2480 struct ffs_desc_helper helper;
2481
2482 ENTER();
2483
2484 if (get_unaligned_le32(data + 4) != len)
2485 goto error;
2486
2487 switch (get_unaligned_le32(data)) {
2488 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2489 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2490 data += 8;
2491 len -= 8;
2492 break;
2493 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2494 flags = get_unaligned_le32(data + 8);
2495 ffs->user_flags = flags;
2496 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2497 FUNCTIONFS_HAS_HS_DESC |
2498 FUNCTIONFS_HAS_SS_DESC |
2499 FUNCTIONFS_HAS_MS_OS_DESC |
2500 FUNCTIONFS_VIRTUAL_ADDR |
2501 FUNCTIONFS_EVENTFD |
2502 FUNCTIONFS_ALL_CTRL_RECIP |
2503 FUNCTIONFS_CONFIG0_SETUP)) {
2504 ret = -ENOSYS;
2505 goto error;
2506 }
2507 data += 12;
2508 len -= 12;
2509 break;
2510 default:
2511 goto error;
2512 }
2513
2514 if (flags & FUNCTIONFS_EVENTFD) {
2515 if (len < 4)
2516 goto error;
2517 ffs->ffs_eventfd =
2518 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2519 if (IS_ERR(ffs->ffs_eventfd)) {
2520 ret = PTR_ERR(ffs->ffs_eventfd);
2521 ffs->ffs_eventfd = NULL;
2522 goto error;
2523 }
2524 data += 4;
2525 len -= 4;
2526 }
2527
2528 /* Read fs_count, hs_count and ss_count (if present) */
2529 for (i = 0; i < 3; ++i) {
2530 if (!(flags & (1 << i))) {
2531 counts[i] = 0;
2532 } else if (len < 4) {
2533 goto error;
2534 } else {
2535 counts[i] = get_unaligned_le32(data);
2536 data += 4;
2537 len -= 4;
2538 }
2539 }
2540 if (flags & (1 << i)) {
2541 if (len < 4) {
2542 goto error;
2543 }
2544 os_descs_count = get_unaligned_le32(data);
2545 data += 4;
2546 len -= 4;
2547 }
2548
2549 /* Read descriptors */
2550 raw_descs = data;
2551 helper.ffs = ffs;
2552 for (i = 0; i < 3; ++i) {
2553 if (!counts[i])
2554 continue;
2555 helper.interfaces_count = 0;
2556 helper.eps_count = 0;
2557 ret = ffs_do_descs(counts[i], data, len,
2558 __ffs_data_do_entity, &helper);
2559 if (ret < 0)
2560 goto error;
2561 if (!ffs->eps_count && !ffs->interfaces_count) {
2562 ffs->eps_count = helper.eps_count;
2563 ffs->interfaces_count = helper.interfaces_count;
2564 } else {
2565 if (ffs->eps_count != helper.eps_count) {
2566 ret = -EINVAL;
2567 goto error;
2568 }
2569 if (ffs->interfaces_count != helper.interfaces_count) {
2570 ret = -EINVAL;
2571 goto error;
2572 }
2573 }
2574 data += ret;
2575 len -= ret;
2576 }
2577 if (os_descs_count) {
2578 ret = ffs_do_os_descs(os_descs_count, data, len,
2579 __ffs_data_do_os_desc, ffs);
2580 if (ret < 0)
2581 goto error;
2582 data += ret;
2583 len -= ret;
2584 }
2585
2586 if (raw_descs == data || len) {
2587 ret = -EINVAL;
2588 goto error;
2589 }
2590
2591 ffs->raw_descs_data = _data;
2592 ffs->raw_descs = raw_descs;
2593 ffs->raw_descs_length = data - raw_descs;
2594 ffs->fs_descs_count = counts[0];
2595 ffs->hs_descs_count = counts[1];
2596 ffs->ss_descs_count = counts[2];
2597 ffs->ms_os_descs_count = os_descs_count;
2598
2599 return 0;
2600
2601 error:
2602 kfree(_data);
2603 return ret;
2604 }
2605
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2606 static int __ffs_data_got_strings(struct ffs_data *ffs,
2607 char *const _data, size_t len)
2608 {
2609 u32 str_count, needed_count, lang_count;
2610 struct usb_gadget_strings **stringtabs, *t;
2611 const char *data = _data;
2612 struct usb_string *s;
2613
2614 ENTER();
2615
2616 if (unlikely(len < 16 ||
2617 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2618 get_unaligned_le32(data + 4) != len))
2619 goto error;
2620 str_count = get_unaligned_le32(data + 8);
2621 lang_count = get_unaligned_le32(data + 12);
2622
2623 /* if one is zero the other must be zero */
2624 if (unlikely(!str_count != !lang_count))
2625 goto error;
2626
2627 /* Do we have at least as many strings as descriptors need? */
2628 needed_count = ffs->strings_count;
2629 if (unlikely(str_count < needed_count))
2630 goto error;
2631
2632 /*
2633 * If we don't need any strings just return and free all
2634 * memory.
2635 */
2636 if (!needed_count) {
2637 kfree(_data);
2638 return 0;
2639 }
2640
2641 /* Allocate everything in one chunk so there's less maintenance. */
2642 {
2643 unsigned i = 0;
2644 vla_group(d);
2645 vla_item(d, struct usb_gadget_strings *, stringtabs,
2646 lang_count + 1);
2647 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2648 vla_item(d, struct usb_string, strings,
2649 lang_count*(needed_count+1));
2650
2651 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2652
2653 if (unlikely(!vlabuf)) {
2654 kfree(_data);
2655 return -ENOMEM;
2656 }
2657
2658 /* Initialize the VLA pointers */
2659 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2660 t = vla_ptr(vlabuf, d, stringtab);
2661 i = lang_count;
2662 do {
2663 *stringtabs++ = t++;
2664 } while (--i);
2665 *stringtabs = NULL;
2666
2667 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2668 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2669 t = vla_ptr(vlabuf, d, stringtab);
2670 s = vla_ptr(vlabuf, d, strings);
2671 }
2672
2673 /* For each language */
2674 data += 16;
2675 len -= 16;
2676
2677 do { /* lang_count > 0 so we can use do-while */
2678 unsigned needed = needed_count;
2679 u32 str_per_lang = str_count;
2680
2681 if (unlikely(len < 3))
2682 goto error_free;
2683 t->language = get_unaligned_le16(data);
2684 t->strings = s;
2685 ++t;
2686
2687 data += 2;
2688 len -= 2;
2689
2690 /* For each string */
2691 do { /* str_count > 0 so we can use do-while */
2692 size_t length = strnlen(data, len);
2693
2694 if (unlikely(length == len))
2695 goto error_free;
2696
2697 /*
2698 * User may provide more strings then we need,
2699 * if that's the case we simply ignore the
2700 * rest
2701 */
2702 if (likely(needed)) {
2703 /*
2704 * s->id will be set while adding
2705 * function to configuration so for
2706 * now just leave garbage here.
2707 */
2708 s->s = data;
2709 --needed;
2710 ++s;
2711 }
2712
2713 data += length + 1;
2714 len -= length + 1;
2715 } while (--str_per_lang);
2716
2717 s->id = 0; /* terminator */
2718 s->s = NULL;
2719 ++s;
2720
2721 } while (--lang_count);
2722
2723 /* Some garbage left? */
2724 if (unlikely(len))
2725 goto error_free;
2726
2727 /* Done! */
2728 ffs->stringtabs = stringtabs;
2729 ffs->raw_strings = _data;
2730
2731 return 0;
2732
2733 error_free:
2734 kfree(stringtabs);
2735 error:
2736 kfree(_data);
2737 return -EINVAL;
2738 }
2739
2740
2741 /* Events handling and management *******************************************/
2742
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2743 static void __ffs_event_add(struct ffs_data *ffs,
2744 enum usb_functionfs_event_type type)
2745 {
2746 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2747 int neg = 0;
2748
2749 /*
2750 * Abort any unhandled setup
2751 *
2752 * We do not need to worry about some cmpxchg() changing value
2753 * of ffs->setup_state without holding the lock because when
2754 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2755 * the source does nothing.
2756 */
2757 if (ffs->setup_state == FFS_SETUP_PENDING)
2758 ffs->setup_state = FFS_SETUP_CANCELLED;
2759
2760 /*
2761 * Logic of this function guarantees that there are at most four pending
2762 * evens on ffs->ev.types queue. This is important because the queue
2763 * has space for four elements only and __ffs_ep0_read_events function
2764 * depends on that limit as well. If more event types are added, those
2765 * limits have to be revisited or guaranteed to still hold.
2766 */
2767 switch (type) {
2768 case FUNCTIONFS_RESUME:
2769 rem_type2 = FUNCTIONFS_SUSPEND;
2770 fallthrough;
2771 case FUNCTIONFS_SUSPEND:
2772 case FUNCTIONFS_SETUP:
2773 rem_type1 = type;
2774 /* Discard all similar events */
2775 break;
2776
2777 case FUNCTIONFS_BIND:
2778 case FUNCTIONFS_UNBIND:
2779 case FUNCTIONFS_DISABLE:
2780 case FUNCTIONFS_ENABLE:
2781 /* Discard everything other then power management. */
2782 rem_type1 = FUNCTIONFS_SUSPEND;
2783 rem_type2 = FUNCTIONFS_RESUME;
2784 neg = 1;
2785 break;
2786
2787 default:
2788 WARN(1, "%d: unknown event, this should not happen\n", type);
2789 return;
2790 }
2791
2792 {
2793 u8 *ev = ffs->ev.types, *out = ev;
2794 unsigned n = ffs->ev.count;
2795 for (; n; --n, ++ev)
2796 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2797 *out++ = *ev;
2798 else
2799 pr_vdebug("purging event %d\n", *ev);
2800 ffs->ev.count = out - ffs->ev.types;
2801 }
2802
2803 pr_vdebug("adding event %d\n", type);
2804 ffs->ev.types[ffs->ev.count++] = type;
2805 wake_up_locked(&ffs->ev.waitq);
2806 if (ffs->ffs_eventfd)
2807 eventfd_signal(ffs->ffs_eventfd, 1);
2808 }
2809
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2810 static void ffs_event_add(struct ffs_data *ffs,
2811 enum usb_functionfs_event_type type)
2812 {
2813 unsigned long flags;
2814 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2815 __ffs_event_add(ffs, type);
2816 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2817 }
2818
2819 /* Bind/unbind USB function hooks *******************************************/
2820
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2821 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2822 {
2823 int i;
2824
2825 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2826 if (ffs->eps_addrmap[i] == endpoint_address)
2827 return i;
2828 return -ENOENT;
2829 }
2830
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2831 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2832 struct usb_descriptor_header *desc,
2833 void *priv)
2834 {
2835 struct usb_endpoint_descriptor *ds = (void *)desc;
2836 struct ffs_function *func = priv;
2837 struct ffs_ep *ffs_ep;
2838 unsigned ep_desc_id;
2839 int idx;
2840 static const char *speed_names[] = { "full", "high", "super" };
2841
2842 if (type != FFS_DESCRIPTOR)
2843 return 0;
2844
2845 /*
2846 * If ss_descriptors is not NULL, we are reading super speed
2847 * descriptors; if hs_descriptors is not NULL, we are reading high
2848 * speed descriptors; otherwise, we are reading full speed
2849 * descriptors.
2850 */
2851 if (func->function.ss_descriptors) {
2852 ep_desc_id = 2;
2853 func->function.ss_descriptors[(long)valuep] = desc;
2854 } else if (func->function.hs_descriptors) {
2855 ep_desc_id = 1;
2856 func->function.hs_descriptors[(long)valuep] = desc;
2857 } else {
2858 ep_desc_id = 0;
2859 func->function.fs_descriptors[(long)valuep] = desc;
2860 }
2861
2862 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2863 return 0;
2864
2865 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2866 if (idx < 0)
2867 return idx;
2868
2869 ffs_ep = func->eps + idx;
2870
2871 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2872 pr_err("two %sspeed descriptors for EP %d\n",
2873 speed_names[ep_desc_id],
2874 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2875 return -EINVAL;
2876 }
2877 ffs_ep->descs[ep_desc_id] = ds;
2878
2879 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2880 if (ffs_ep->ep) {
2881 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2882 if (!ds->wMaxPacketSize)
2883 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2884 } else {
2885 struct usb_request *req;
2886 struct usb_ep *ep;
2887 u8 bEndpointAddress;
2888 u16 wMaxPacketSize;
2889
2890 /*
2891 * We back up bEndpointAddress because autoconfig overwrites
2892 * it with physical endpoint address.
2893 */
2894 bEndpointAddress = ds->bEndpointAddress;
2895 /*
2896 * We back up wMaxPacketSize because autoconfig treats
2897 * endpoint descriptors as if they were full speed.
2898 */
2899 wMaxPacketSize = ds->wMaxPacketSize;
2900 pr_vdebug("autoconfig\n");
2901 ep = usb_ep_autoconfig(func->gadget, ds);
2902 if (unlikely(!ep))
2903 return -ENOTSUPP;
2904 ep->driver_data = func->eps + idx;
2905
2906 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2907 if (unlikely(!req))
2908 return -ENOMEM;
2909
2910 ffs_ep->ep = ep;
2911 ffs_ep->req = req;
2912 func->eps_revmap[ds->bEndpointAddress &
2913 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2914 /*
2915 * If we use virtual address mapping, we restore
2916 * original bEndpointAddress value.
2917 */
2918 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2919 ds->bEndpointAddress = bEndpointAddress;
2920 /*
2921 * Restore wMaxPacketSize which was potentially
2922 * overwritten by autoconfig.
2923 */
2924 ds->wMaxPacketSize = wMaxPacketSize;
2925 }
2926 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2927
2928 return 0;
2929 }
2930
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2931 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2932 struct usb_descriptor_header *desc,
2933 void *priv)
2934 {
2935 struct ffs_function *func = priv;
2936 unsigned idx;
2937 u8 newValue;
2938
2939 switch (type) {
2940 default:
2941 case FFS_DESCRIPTOR:
2942 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2943 return 0;
2944
2945 case FFS_INTERFACE:
2946 idx = *valuep;
2947 if (func->interfaces_nums[idx] < 0) {
2948 int id = usb_interface_id(func->conf, &func->function);
2949 if (unlikely(id < 0))
2950 return id;
2951 func->interfaces_nums[idx] = id;
2952 }
2953 newValue = func->interfaces_nums[idx];
2954 break;
2955
2956 case FFS_STRING:
2957 /* String' IDs are allocated when fsf_data is bound to cdev */
2958 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2959 break;
2960
2961 case FFS_ENDPOINT:
2962 /*
2963 * USB_DT_ENDPOINT are handled in
2964 * __ffs_func_bind_do_descs().
2965 */
2966 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2967 return 0;
2968
2969 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2970 if (unlikely(!func->eps[idx].ep))
2971 return -EINVAL;
2972
2973 {
2974 struct usb_endpoint_descriptor **descs;
2975 descs = func->eps[idx].descs;
2976 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2977 }
2978 break;
2979 }
2980
2981 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2982 *valuep = newValue;
2983 return 0;
2984 }
2985
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2986 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2987 struct usb_os_desc_header *h, void *data,
2988 unsigned len, void *priv)
2989 {
2990 struct ffs_function *func = priv;
2991 u8 length = 0;
2992
2993 switch (type) {
2994 case FFS_OS_DESC_EXT_COMPAT: {
2995 struct usb_ext_compat_desc *desc = data;
2996 struct usb_os_desc_table *t;
2997
2998 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2999 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3000 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3001 ARRAY_SIZE(desc->CompatibleID) +
3002 ARRAY_SIZE(desc->SubCompatibleID));
3003 length = sizeof(*desc);
3004 }
3005 break;
3006 case FFS_OS_DESC_EXT_PROP: {
3007 struct usb_ext_prop_desc *desc = data;
3008 struct usb_os_desc_table *t;
3009 struct usb_os_desc_ext_prop *ext_prop;
3010 char *ext_prop_name;
3011 char *ext_prop_data;
3012
3013 t = &func->function.os_desc_table[h->interface];
3014 t->if_id = func->interfaces_nums[h->interface];
3015
3016 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3017 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3018
3019 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3020 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3021 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3022 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3023 length = ext_prop->name_len + ext_prop->data_len + 14;
3024
3025 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3026 func->ffs->ms_os_descs_ext_prop_name_avail +=
3027 ext_prop->name_len;
3028
3029 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3030 func->ffs->ms_os_descs_ext_prop_data_avail +=
3031 ext_prop->data_len;
3032 memcpy(ext_prop_data,
3033 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3034 ext_prop->data_len);
3035 /* unicode data reported to the host as "WCHAR"s */
3036 switch (ext_prop->type) {
3037 case USB_EXT_PROP_UNICODE:
3038 case USB_EXT_PROP_UNICODE_ENV:
3039 case USB_EXT_PROP_UNICODE_LINK:
3040 case USB_EXT_PROP_UNICODE_MULTI:
3041 ext_prop->data_len *= 2;
3042 break;
3043 }
3044 ext_prop->data = ext_prop_data;
3045
3046 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3047 ext_prop->name_len);
3048 /* property name reported to the host as "WCHAR"s */
3049 ext_prop->name_len *= 2;
3050 ext_prop->name = ext_prop_name;
3051
3052 t->os_desc->ext_prop_len +=
3053 ext_prop->name_len + ext_prop->data_len + 14;
3054 ++t->os_desc->ext_prop_count;
3055 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3056 }
3057 break;
3058 default:
3059 pr_vdebug("unknown descriptor: %d\n", type);
3060 }
3061
3062 return length;
3063 }
3064
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3065 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3066 struct usb_configuration *c)
3067 {
3068 struct ffs_function *func = ffs_func_from_usb(f);
3069 struct f_fs_opts *ffs_opts =
3070 container_of(f->fi, struct f_fs_opts, func_inst);
3071 struct ffs_data *ffs_data;
3072 int ret;
3073
3074 ENTER();
3075
3076 /*
3077 * Legacy gadget triggers binding in functionfs_ready_callback,
3078 * which already uses locking; taking the same lock here would
3079 * cause a deadlock.
3080 *
3081 * Configfs-enabled gadgets however do need ffs_dev_lock.
3082 */
3083 if (!ffs_opts->no_configfs)
3084 ffs_dev_lock();
3085 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3086 ffs_data = ffs_opts->dev->ffs_data;
3087 if (!ffs_opts->no_configfs)
3088 ffs_dev_unlock();
3089 if (ret)
3090 return ERR_PTR(ret);
3091
3092 func->ffs = ffs_data;
3093 func->conf = c;
3094 func->gadget = c->cdev->gadget;
3095
3096 /*
3097 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3098 * configurations are bound in sequence with list_for_each_entry,
3099 * in each configuration its functions are bound in sequence
3100 * with list_for_each_entry, so we assume no race condition
3101 * with regard to ffs_opts->bound access
3102 */
3103 if (!ffs_opts->refcnt) {
3104 ret = functionfs_bind(func->ffs, c->cdev);
3105 if (ret)
3106 return ERR_PTR(ret);
3107 }
3108 ffs_opts->refcnt++;
3109 func->function.strings = func->ffs->stringtabs;
3110
3111 return ffs_opts;
3112 }
3113
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3114 static int _ffs_func_bind(struct usb_configuration *c,
3115 struct usb_function *f)
3116 {
3117 struct ffs_function *func = ffs_func_from_usb(f);
3118 struct ffs_data *ffs = func->ffs;
3119
3120 const int full = !!func->ffs->fs_descs_count;
3121 const int high = !!func->ffs->hs_descs_count;
3122 const int super = !!func->ffs->ss_descs_count;
3123
3124 int fs_len, hs_len, ss_len, ret, i;
3125 struct ffs_ep *eps_ptr;
3126
3127 /* Make it a single chunk, less management later on */
3128 vla_group(d);
3129 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3130 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3131 full ? ffs->fs_descs_count + 1 : 0);
3132 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3133 high ? ffs->hs_descs_count + 1 : 0);
3134 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3135 super ? ffs->ss_descs_count + 1 : 0);
3136 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3137 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3138 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3139 vla_item_with_sz(d, char[16], ext_compat,
3140 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3141 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3142 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3143 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3144 ffs->ms_os_descs_ext_prop_count);
3145 vla_item_with_sz(d, char, ext_prop_name,
3146 ffs->ms_os_descs_ext_prop_name_len);
3147 vla_item_with_sz(d, char, ext_prop_data,
3148 ffs->ms_os_descs_ext_prop_data_len);
3149 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3150 char *vlabuf;
3151
3152 ENTER();
3153
3154 /* Has descriptors only for speeds gadget does not support */
3155 if (unlikely(!(full | high | super)))
3156 return -ENOTSUPP;
3157
3158 /* Allocate a single chunk, less management later on */
3159 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3160 if (unlikely(!vlabuf))
3161 return -ENOMEM;
3162
3163 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3164 ffs->ms_os_descs_ext_prop_name_avail =
3165 vla_ptr(vlabuf, d, ext_prop_name);
3166 ffs->ms_os_descs_ext_prop_data_avail =
3167 vla_ptr(vlabuf, d, ext_prop_data);
3168
3169 /* Copy descriptors */
3170 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3171 ffs->raw_descs_length);
3172
3173 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3174 eps_ptr = vla_ptr(vlabuf, d, eps);
3175 for (i = 0; i < ffs->eps_count; i++)
3176 eps_ptr[i].num = -1;
3177
3178 /* Save pointers
3179 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3180 */
3181 func->eps = vla_ptr(vlabuf, d, eps);
3182 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3183
3184 /*
3185 * Go through all the endpoint descriptors and allocate
3186 * endpoints first, so that later we can rewrite the endpoint
3187 * numbers without worrying that it may be described later on.
3188 */
3189 if (likely(full)) {
3190 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3191 fs_len = ffs_do_descs(ffs->fs_descs_count,
3192 vla_ptr(vlabuf, d, raw_descs),
3193 d_raw_descs__sz,
3194 __ffs_func_bind_do_descs, func);
3195 if (unlikely(fs_len < 0)) {
3196 ret = fs_len;
3197 goto error;
3198 }
3199 } else {
3200 fs_len = 0;
3201 }
3202
3203 if (likely(high)) {
3204 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3205 hs_len = ffs_do_descs(ffs->hs_descs_count,
3206 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3207 d_raw_descs__sz - fs_len,
3208 __ffs_func_bind_do_descs, func);
3209 if (unlikely(hs_len < 0)) {
3210 ret = hs_len;
3211 goto error;
3212 }
3213 } else {
3214 hs_len = 0;
3215 }
3216
3217 if (likely(super)) {
3218 func->function.ss_descriptors = func->function.ssp_descriptors =
3219 vla_ptr(vlabuf, d, ss_descs);
3220 ss_len = ffs_do_descs(ffs->ss_descs_count,
3221 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3222 d_raw_descs__sz - fs_len - hs_len,
3223 __ffs_func_bind_do_descs, func);
3224 if (unlikely(ss_len < 0)) {
3225 ret = ss_len;
3226 goto error;
3227 }
3228 } else {
3229 ss_len = 0;
3230 }
3231
3232 /*
3233 * Now handle interface numbers allocation and interface and
3234 * endpoint numbers rewriting. We can do that in one go
3235 * now.
3236 */
3237 ret = ffs_do_descs(ffs->fs_descs_count +
3238 (high ? ffs->hs_descs_count : 0) +
3239 (super ? ffs->ss_descs_count : 0),
3240 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3241 __ffs_func_bind_do_nums, func);
3242 if (unlikely(ret < 0))
3243 goto error;
3244
3245 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3246 if (c->cdev->use_os_string) {
3247 for (i = 0; i < ffs->interfaces_count; ++i) {
3248 struct usb_os_desc *desc;
3249
3250 desc = func->function.os_desc_table[i].os_desc =
3251 vla_ptr(vlabuf, d, os_desc) +
3252 i * sizeof(struct usb_os_desc);
3253 desc->ext_compat_id =
3254 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3255 INIT_LIST_HEAD(&desc->ext_prop);
3256 }
3257 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3258 vla_ptr(vlabuf, d, raw_descs) +
3259 fs_len + hs_len + ss_len,
3260 d_raw_descs__sz - fs_len - hs_len -
3261 ss_len,
3262 __ffs_func_bind_do_os_desc, func);
3263 if (unlikely(ret < 0))
3264 goto error;
3265 }
3266 func->function.os_desc_n =
3267 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3268
3269 /* And we're done */
3270 ffs_event_add(ffs, FUNCTIONFS_BIND);
3271 return 0;
3272
3273 error:
3274 /* XXX Do we need to release all claimed endpoints here? */
3275 return ret;
3276 }
3277
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3278 static int ffs_func_bind(struct usb_configuration *c,
3279 struct usb_function *f)
3280 {
3281 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3282 struct ffs_function *func = ffs_func_from_usb(f);
3283 int ret;
3284
3285 if (IS_ERR(ffs_opts))
3286 return PTR_ERR(ffs_opts);
3287
3288 ret = _ffs_func_bind(c, f);
3289 if (ret && !--ffs_opts->refcnt)
3290 functionfs_unbind(func->ffs);
3291
3292 return ret;
3293 }
3294
3295
3296 /* Other USB function hooks *************************************************/
3297
ffs_reset_work(struct work_struct * work)3298 static void ffs_reset_work(struct work_struct *work)
3299 {
3300 struct ffs_data *ffs = container_of(work,
3301 struct ffs_data, reset_work);
3302 ffs_data_reset(ffs);
3303 }
3304
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3305 static int ffs_func_set_alt(struct usb_function *f,
3306 unsigned interface, unsigned alt)
3307 {
3308 struct ffs_function *func = ffs_func_from_usb(f);
3309 struct ffs_data *ffs = func->ffs;
3310 int ret = 0, intf;
3311
3312 if (alt != (unsigned)-1) {
3313 intf = ffs_func_revmap_intf(func, interface);
3314 if (unlikely(intf < 0))
3315 return intf;
3316 }
3317
3318 if (ffs->func)
3319 ffs_func_eps_disable(ffs->func);
3320
3321 if (ffs->state == FFS_DEACTIVATED) {
3322 ffs->state = FFS_CLOSING;
3323 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3324 schedule_work(&ffs->reset_work);
3325 return -ENODEV;
3326 }
3327
3328 if (ffs->state != FFS_ACTIVE)
3329 return -ENODEV;
3330
3331 if (alt == (unsigned)-1) {
3332 ffs->func = NULL;
3333 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3334 return 0;
3335 }
3336
3337 ffs->func = func;
3338 ret = ffs_func_eps_enable(func);
3339 if (likely(ret >= 0))
3340 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3341 return ret;
3342 }
3343
ffs_func_disable(struct usb_function * f)3344 static void ffs_func_disable(struct usb_function *f)
3345 {
3346 ffs_func_set_alt(f, 0, (unsigned)-1);
3347 }
3348
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3349 static int ffs_func_setup(struct usb_function *f,
3350 const struct usb_ctrlrequest *creq)
3351 {
3352 struct ffs_function *func = ffs_func_from_usb(f);
3353 struct ffs_data *ffs = func->ffs;
3354 unsigned long flags;
3355 int ret;
3356
3357 ENTER();
3358
3359 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3360 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3361 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3362 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3363 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3364
3365 /*
3366 * Most requests directed to interface go through here
3367 * (notable exceptions are set/get interface) so we need to
3368 * handle them. All other either handled by composite or
3369 * passed to usb_configuration->setup() (if one is set). No
3370 * matter, we will handle requests directed to endpoint here
3371 * as well (as it's straightforward). Other request recipient
3372 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3373 * is being used.
3374 */
3375 if (ffs->state != FFS_ACTIVE)
3376 return -ENODEV;
3377
3378 switch (creq->bRequestType & USB_RECIP_MASK) {
3379 case USB_RECIP_INTERFACE:
3380 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3381 if (unlikely(ret < 0))
3382 return ret;
3383 break;
3384
3385 case USB_RECIP_ENDPOINT:
3386 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3387 if (unlikely(ret < 0))
3388 return ret;
3389 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3390 ret = func->ffs->eps_addrmap[ret];
3391 break;
3392
3393 default:
3394 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3395 ret = le16_to_cpu(creq->wIndex);
3396 else
3397 return -EOPNOTSUPP;
3398 }
3399
3400 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3401 ffs->ev.setup = *creq;
3402 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3403 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3404 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3405
3406 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3407 }
3408
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3409 static bool ffs_func_req_match(struct usb_function *f,
3410 const struct usb_ctrlrequest *creq,
3411 bool config0)
3412 {
3413 struct ffs_function *func = ffs_func_from_usb(f);
3414
3415 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3416 return false;
3417
3418 switch (creq->bRequestType & USB_RECIP_MASK) {
3419 case USB_RECIP_INTERFACE:
3420 return (ffs_func_revmap_intf(func,
3421 le16_to_cpu(creq->wIndex)) >= 0);
3422 case USB_RECIP_ENDPOINT:
3423 return (ffs_func_revmap_ep(func,
3424 le16_to_cpu(creq->wIndex)) >= 0);
3425 default:
3426 return (bool) (func->ffs->user_flags &
3427 FUNCTIONFS_ALL_CTRL_RECIP);
3428 }
3429 }
3430
ffs_func_suspend(struct usb_function * f)3431 static void ffs_func_suspend(struct usb_function *f)
3432 {
3433 ENTER();
3434 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3435 }
3436
ffs_func_resume(struct usb_function * f)3437 static void ffs_func_resume(struct usb_function *f)
3438 {
3439 ENTER();
3440 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3441 }
3442
3443
3444 /* Endpoint and interface numbers reverse mapping ***************************/
3445
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3446 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3447 {
3448 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3449 return num ? num : -EDOM;
3450 }
3451
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3452 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3453 {
3454 short *nums = func->interfaces_nums;
3455 unsigned count = func->ffs->interfaces_count;
3456
3457 for (; count; --count, ++nums) {
3458 if (*nums >= 0 && *nums == intf)
3459 return nums - func->interfaces_nums;
3460 }
3461
3462 return -EDOM;
3463 }
3464
3465
3466 /* Devices management *******************************************************/
3467
3468 static LIST_HEAD(ffs_devices);
3469
_ffs_do_find_dev(const char * name)3470 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3471 {
3472 struct ffs_dev *dev;
3473
3474 if (!name)
3475 return NULL;
3476
3477 list_for_each_entry(dev, &ffs_devices, entry) {
3478 if (strcmp(dev->name, name) == 0)
3479 return dev;
3480 }
3481
3482 return NULL;
3483 }
3484
3485 /*
3486 * ffs_lock must be taken by the caller of this function
3487 */
_ffs_get_single_dev(void)3488 static struct ffs_dev *_ffs_get_single_dev(void)
3489 {
3490 struct ffs_dev *dev;
3491
3492 if (list_is_singular(&ffs_devices)) {
3493 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3494 if (dev->single)
3495 return dev;
3496 }
3497
3498 return NULL;
3499 }
3500
3501 /*
3502 * ffs_lock must be taken by the caller of this function
3503 */
_ffs_find_dev(const char * name)3504 static struct ffs_dev *_ffs_find_dev(const char *name)
3505 {
3506 struct ffs_dev *dev;
3507
3508 dev = _ffs_get_single_dev();
3509 if (dev)
3510 return dev;
3511
3512 return _ffs_do_find_dev(name);
3513 }
3514
3515 /* Configfs support *********************************************************/
3516
to_ffs_opts(struct config_item * item)3517 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3518 {
3519 return container_of(to_config_group(item), struct f_fs_opts,
3520 func_inst.group);
3521 }
3522
ffs_attr_release(struct config_item * item)3523 static void ffs_attr_release(struct config_item *item)
3524 {
3525 struct f_fs_opts *opts = to_ffs_opts(item);
3526
3527 usb_put_function_instance(&opts->func_inst);
3528 }
3529
3530 static struct configfs_item_operations ffs_item_ops = {
3531 .release = ffs_attr_release,
3532 };
3533
3534 static const struct config_item_type ffs_func_type = {
3535 .ct_item_ops = &ffs_item_ops,
3536 .ct_owner = THIS_MODULE,
3537 };
3538
3539
3540 /* Function registration interface ******************************************/
3541
ffs_free_inst(struct usb_function_instance * f)3542 static void ffs_free_inst(struct usb_function_instance *f)
3543 {
3544 struct f_fs_opts *opts;
3545
3546 opts = to_f_fs_opts(f);
3547 ffs_release_dev(opts->dev);
3548 ffs_dev_lock();
3549 _ffs_free_dev(opts->dev);
3550 ffs_dev_unlock();
3551 kfree(opts);
3552 }
3553
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3554 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3555 {
3556 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3557 return -ENAMETOOLONG;
3558 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3559 }
3560
ffs_alloc_inst(void)3561 static struct usb_function_instance *ffs_alloc_inst(void)
3562 {
3563 struct f_fs_opts *opts;
3564 struct ffs_dev *dev;
3565
3566 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3567 if (!opts)
3568 return ERR_PTR(-ENOMEM);
3569
3570 opts->func_inst.set_inst_name = ffs_set_inst_name;
3571 opts->func_inst.free_func_inst = ffs_free_inst;
3572 ffs_dev_lock();
3573 dev = _ffs_alloc_dev();
3574 ffs_dev_unlock();
3575 if (IS_ERR(dev)) {
3576 kfree(opts);
3577 return ERR_CAST(dev);
3578 }
3579 opts->dev = dev;
3580 dev->opts = opts;
3581
3582 config_group_init_type_name(&opts->func_inst.group, "",
3583 &ffs_func_type);
3584 return &opts->func_inst;
3585 }
3586
ffs_free(struct usb_function * f)3587 static void ffs_free(struct usb_function *f)
3588 {
3589 kfree(ffs_func_from_usb(f));
3590 }
3591
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3592 static void ffs_func_unbind(struct usb_configuration *c,
3593 struct usb_function *f)
3594 {
3595 struct ffs_function *func = ffs_func_from_usb(f);
3596 struct ffs_data *ffs = func->ffs;
3597 struct f_fs_opts *opts =
3598 container_of(f->fi, struct f_fs_opts, func_inst);
3599 struct ffs_ep *ep = func->eps;
3600 unsigned count = ffs->eps_count;
3601 unsigned long flags;
3602
3603 ENTER();
3604 if (ffs->func == func) {
3605 ffs_func_eps_disable(func);
3606 ffs->func = NULL;
3607 }
3608
3609 /* Drain any pending AIO completions */
3610 drain_workqueue(ffs->io_completion_wq);
3611
3612 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3613 if (!--opts->refcnt)
3614 functionfs_unbind(ffs);
3615
3616 /* cleanup after autoconfig */
3617 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3618 while (count--) {
3619 if (ep->ep && ep->req)
3620 usb_ep_free_request(ep->ep, ep->req);
3621 ep->req = NULL;
3622 ++ep;
3623 }
3624 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3625 kfree(func->eps);
3626 func->eps = NULL;
3627 /*
3628 * eps, descriptors and interfaces_nums are allocated in the
3629 * same chunk so only one free is required.
3630 */
3631 func->function.fs_descriptors = NULL;
3632 func->function.hs_descriptors = NULL;
3633 func->function.ss_descriptors = NULL;
3634 func->function.ssp_descriptors = NULL;
3635 func->interfaces_nums = NULL;
3636
3637 }
3638
ffs_alloc(struct usb_function_instance * fi)3639 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3640 {
3641 struct ffs_function *func;
3642
3643 ENTER();
3644
3645 func = kzalloc(sizeof(*func), GFP_KERNEL);
3646 if (unlikely(!func))
3647 return ERR_PTR(-ENOMEM);
3648
3649 func->function.name = "Function FS Gadget";
3650
3651 func->function.bind = ffs_func_bind;
3652 func->function.unbind = ffs_func_unbind;
3653 func->function.set_alt = ffs_func_set_alt;
3654 func->function.disable = ffs_func_disable;
3655 func->function.setup = ffs_func_setup;
3656 func->function.req_match = ffs_func_req_match;
3657 func->function.suspend = ffs_func_suspend;
3658 func->function.resume = ffs_func_resume;
3659 func->function.free_func = ffs_free;
3660
3661 return &func->function;
3662 }
3663
3664 /*
3665 * ffs_lock must be taken by the caller of this function
3666 */
_ffs_alloc_dev(void)3667 static struct ffs_dev *_ffs_alloc_dev(void)
3668 {
3669 struct ffs_dev *dev;
3670 int ret;
3671
3672 if (_ffs_get_single_dev())
3673 return ERR_PTR(-EBUSY);
3674
3675 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3676 if (!dev)
3677 return ERR_PTR(-ENOMEM);
3678
3679 if (list_empty(&ffs_devices)) {
3680 ret = functionfs_init();
3681 if (ret) {
3682 kfree(dev);
3683 return ERR_PTR(ret);
3684 }
3685 }
3686
3687 list_add(&dev->entry, &ffs_devices);
3688
3689 return dev;
3690 }
3691
ffs_name_dev(struct ffs_dev * dev,const char * name)3692 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3693 {
3694 struct ffs_dev *existing;
3695 int ret = 0;
3696
3697 ffs_dev_lock();
3698
3699 existing = _ffs_do_find_dev(name);
3700 if (!existing)
3701 strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3702 else if (existing != dev)
3703 ret = -EBUSY;
3704
3705 ffs_dev_unlock();
3706
3707 return ret;
3708 }
3709 EXPORT_SYMBOL_GPL(ffs_name_dev);
3710
ffs_single_dev(struct ffs_dev * dev)3711 int ffs_single_dev(struct ffs_dev *dev)
3712 {
3713 int ret;
3714
3715 ret = 0;
3716 ffs_dev_lock();
3717
3718 if (!list_is_singular(&ffs_devices))
3719 ret = -EBUSY;
3720 else
3721 dev->single = true;
3722
3723 ffs_dev_unlock();
3724 return ret;
3725 }
3726 EXPORT_SYMBOL_GPL(ffs_single_dev);
3727
3728 /*
3729 * ffs_lock must be taken by the caller of this function
3730 */
_ffs_free_dev(struct ffs_dev * dev)3731 static void _ffs_free_dev(struct ffs_dev *dev)
3732 {
3733 list_del(&dev->entry);
3734
3735 kfree(dev);
3736 if (list_empty(&ffs_devices))
3737 functionfs_cleanup();
3738 }
3739
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3740 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3741 {
3742 int ret = 0;
3743 struct ffs_dev *ffs_dev;
3744
3745 ENTER();
3746 ffs_dev_lock();
3747
3748 ffs_dev = _ffs_find_dev(dev_name);
3749 if (!ffs_dev) {
3750 ret = -ENOENT;
3751 } else if (ffs_dev->mounted) {
3752 ret = -EBUSY;
3753 } else if (ffs_dev->ffs_acquire_dev_callback &&
3754 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3755 ret = -ENOENT;
3756 } else {
3757 ffs_dev->mounted = true;
3758 ffs_dev->ffs_data = ffs_data;
3759 ffs_data->private_data = ffs_dev;
3760 }
3761
3762 ffs_dev_unlock();
3763 return ret;
3764 }
3765
ffs_release_dev(struct ffs_dev * ffs_dev)3766 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3767 {
3768 ENTER();
3769 ffs_dev_lock();
3770
3771 if (ffs_dev && ffs_dev->mounted) {
3772 ffs_dev->mounted = false;
3773 if (ffs_dev->ffs_data) {
3774 ffs_dev->ffs_data->private_data = NULL;
3775 ffs_dev->ffs_data = NULL;
3776 }
3777
3778 if (ffs_dev->ffs_release_dev_callback)
3779 ffs_dev->ffs_release_dev_callback(ffs_dev);
3780 }
3781
3782 ffs_dev_unlock();
3783 }
3784
ffs_ready(struct ffs_data * ffs)3785 static int ffs_ready(struct ffs_data *ffs)
3786 {
3787 struct ffs_dev *ffs_obj;
3788 int ret = 0;
3789
3790 ENTER();
3791 ffs_dev_lock();
3792
3793 ffs_obj = ffs->private_data;
3794 if (!ffs_obj) {
3795 ret = -EINVAL;
3796 goto done;
3797 }
3798 if (WARN_ON(ffs_obj->desc_ready)) {
3799 ret = -EBUSY;
3800 goto done;
3801 }
3802
3803 ffs_obj->desc_ready = true;
3804
3805 if (ffs_obj->ffs_ready_callback) {
3806 ret = ffs_obj->ffs_ready_callback(ffs);
3807 if (ret)
3808 goto done;
3809 }
3810
3811 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3812 done:
3813 ffs_dev_unlock();
3814 return ret;
3815 }
3816
ffs_closed(struct ffs_data * ffs)3817 static void ffs_closed(struct ffs_data *ffs)
3818 {
3819 struct ffs_dev *ffs_obj;
3820 struct f_fs_opts *opts;
3821 struct config_item *ci;
3822
3823 ENTER();
3824 ffs_dev_lock();
3825
3826 ffs_obj = ffs->private_data;
3827 if (!ffs_obj)
3828 goto done;
3829
3830 ffs_obj->desc_ready = false;
3831
3832 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3833 ffs_obj->ffs_closed_callback)
3834 ffs_obj->ffs_closed_callback(ffs);
3835
3836 if (ffs_obj->opts)
3837 opts = ffs_obj->opts;
3838 else
3839 goto done;
3840
3841 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3842 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3843 goto done;
3844
3845 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3846 ffs_dev_unlock();
3847
3848 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3849 unregister_gadget_item(ci);
3850 return;
3851 done:
3852 ffs_dev_unlock();
3853 }
3854
3855 /* Misc helper functions ****************************************************/
3856
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3857 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3858 {
3859 return nonblock
3860 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3861 : mutex_lock_interruptible(mutex);
3862 }
3863
ffs_prepare_buffer(const char __user * buf,size_t len)3864 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3865 {
3866 char *data;
3867
3868 if (unlikely(!len))
3869 return NULL;
3870
3871 data = kmalloc(len, GFP_KERNEL);
3872 if (unlikely(!data))
3873 return ERR_PTR(-ENOMEM);
3874
3875 if (unlikely(copy_from_user(data, buf, len))) {
3876 kfree(data);
3877 return ERR_PTR(-EFAULT);
3878 }
3879
3880 pr_vdebug("Buffer from user space:\n");
3881 ffs_dump_mem("", data, len);
3882
3883 return data;
3884 }
3885
3886 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3887 MODULE_LICENSE("GPL");
3888 MODULE_AUTHOR("Michal Nazarewicz");
3889