• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28 
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  * 		Before		|		After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents	| BG A: deleted
42  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75 
76 #define RELOCATION_RESERVED_NODES	256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81 	struct {
82 		struct rb_node rb_node;
83 		u64 bytenr;
84 	}; /* Use rb_simle_node for search/insert */
85 	void *data;
86 };
87 
88 struct mapping_tree {
89 	struct rb_root rb_root;
90 	spinlock_t lock;
91 };
92 
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97 	struct {
98 		struct rb_node rb_node;
99 		u64 bytenr;
100 	}; /* Use rb_simple_node for search/insert */
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
mapping_tree_init(struct mapping_tree * tree)172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
update_backref_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node,u64 bytenr)226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
update_backref_cache(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache)240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
reloc_root_is_dead(struct btrfs_root * root)290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
have_reloc_root(struct btrfs_root * root)311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
btrfs_should_ignore_reloc_root(struct btrfs_root * root)320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
__add_reloc_root(struct btrfs_root * root)622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_panic(fs_info, -EEXIST,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 	}
645 
646 	list_add_tail(&root->root_list, &rc->reloc_roots);
647 	return 0;
648 }
649 
650 /*
651  * helper to delete the 'address of tree root -> reloc tree'
652  * mapping
653  */
__del_reloc_root(struct btrfs_root * root)654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct rb_node *rb_node;
658 	struct mapping_node *node = NULL;
659 	struct reloc_control *rc = fs_info->reloc_ctl;
660 	bool put_ref = false;
661 
662 	if (rc && root->node) {
663 		spin_lock(&rc->reloc_root_tree.lock);
664 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 					   root->commit_root->start);
666 		if (rb_node) {
667 			node = rb_entry(rb_node, struct mapping_node, rb_node);
668 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 			RB_CLEAR_NODE(&node->rb_node);
670 		}
671 		spin_unlock(&rc->reloc_root_tree.lock);
672 		ASSERT(!node || (struct btrfs_root *)node->data == root);
673 	}
674 
675 	/*
676 	 * We only put the reloc root here if it's on the list.  There's a lot
677 	 * of places where the pattern is to splice the rc->reloc_roots, process
678 	 * the reloc roots, and then add the reloc root back onto
679 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
680 	 * list we don't want the reference being dropped, because the guy
681 	 * messing with the list is in charge of the reference.
682 	 */
683 	spin_lock(&fs_info->trans_lock);
684 	if (!list_empty(&root->root_list)) {
685 		put_ref = true;
686 		list_del_init(&root->root_list);
687 	}
688 	spin_unlock(&fs_info->trans_lock);
689 	if (put_ref)
690 		btrfs_put_root(root);
691 	kfree(node);
692 }
693 
694 /*
695  * helper to update the 'address of tree root -> reloc tree'
696  * mapping
697  */
__update_reloc_root(struct btrfs_root * root)698 static int __update_reloc_root(struct btrfs_root *root)
699 {
700 	struct btrfs_fs_info *fs_info = root->fs_info;
701 	struct rb_node *rb_node;
702 	struct mapping_node *node = NULL;
703 	struct reloc_control *rc = fs_info->reloc_ctl;
704 
705 	spin_lock(&rc->reloc_root_tree.lock);
706 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
707 				   root->commit_root->start);
708 	if (rb_node) {
709 		node = rb_entry(rb_node, struct mapping_node, rb_node);
710 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
711 	}
712 	spin_unlock(&rc->reloc_root_tree.lock);
713 
714 	if (!node)
715 		return 0;
716 	BUG_ON((struct btrfs_root *)node->data != root);
717 
718 	spin_lock(&rc->reloc_root_tree.lock);
719 	node->bytenr = root->node->start;
720 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
721 				   node->bytenr, &node->rb_node);
722 	spin_unlock(&rc->reloc_root_tree.lock);
723 	if (rb_node)
724 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
725 	return 0;
726 }
727 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)728 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
729 					struct btrfs_root *root, u64 objectid)
730 {
731 	struct btrfs_fs_info *fs_info = root->fs_info;
732 	struct btrfs_root *reloc_root;
733 	struct extent_buffer *eb;
734 	struct btrfs_root_item *root_item;
735 	struct btrfs_key root_key;
736 	int ret = 0;
737 	bool must_abort = false;
738 
739 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
740 	if (!root_item)
741 		return ERR_PTR(-ENOMEM);
742 
743 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 	root_key.type = BTRFS_ROOT_ITEM_KEY;
745 	root_key.offset = objectid;
746 
747 	if (root->root_key.objectid == objectid) {
748 		u64 commit_root_gen;
749 
750 		/* called by btrfs_init_reloc_root */
751 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 				      BTRFS_TREE_RELOC_OBJECTID);
753 		if (ret)
754 			goto fail;
755 
756 		/*
757 		 * Set the last_snapshot field to the generation of the commit
758 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
759 		 * correctly (returns true) when the relocation root is created
760 		 * either inside the critical section of a transaction commit
761 		 * (through transaction.c:qgroup_account_snapshot()) and when
762 		 * it's created before the transaction commit is started.
763 		 */
764 		commit_root_gen = btrfs_header_generation(root->commit_root);
765 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
766 	} else {
767 		/*
768 		 * called by btrfs_reloc_post_snapshot_hook.
769 		 * the source tree is a reloc tree, all tree blocks
770 		 * modified after it was created have RELOC flag
771 		 * set in their headers. so it's OK to not update
772 		 * the 'last_snapshot'.
773 		 */
774 		ret = btrfs_copy_root(trans, root, root->node, &eb,
775 				      BTRFS_TREE_RELOC_OBJECTID);
776 		if (ret)
777 			goto fail;
778 	}
779 
780 	/*
781 	 * We have changed references at this point, we must abort the
782 	 * transaction if anything fails.
783 	 */
784 	must_abort = true;
785 
786 	memcpy(root_item, &root->root_item, sizeof(*root_item));
787 	btrfs_set_root_bytenr(root_item, eb->start);
788 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
789 	btrfs_set_root_generation(root_item, trans->transid);
790 
791 	if (root->root_key.objectid == objectid) {
792 		btrfs_set_root_refs(root_item, 0);
793 		memset(&root_item->drop_progress, 0,
794 		       sizeof(struct btrfs_disk_key));
795 		root_item->drop_level = 0;
796 	}
797 
798 	btrfs_tree_unlock(eb);
799 	free_extent_buffer(eb);
800 
801 	ret = btrfs_insert_root(trans, fs_info->tree_root,
802 				&root_key, root_item);
803 	if (ret)
804 		goto fail;
805 
806 	kfree(root_item);
807 
808 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
809 	if (IS_ERR(reloc_root)) {
810 		ret = PTR_ERR(reloc_root);
811 		goto abort;
812 	}
813 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
814 	reloc_root->last_trans = trans->transid;
815 	return reloc_root;
816 fail:
817 	kfree(root_item);
818 abort:
819 	if (must_abort)
820 		btrfs_abort_transaction(trans, ret);
821 	return ERR_PTR(ret);
822 }
823 
824 /*
825  * create reloc tree for a given fs tree. reloc tree is just a
826  * snapshot of the fs tree with special root objectid.
827  *
828  * The reloc_root comes out of here with two references, one for
829  * root->reloc_root, and another for being on the rc->reloc_roots list.
830  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)831 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
832 			  struct btrfs_root *root)
833 {
834 	struct btrfs_fs_info *fs_info = root->fs_info;
835 	struct btrfs_root *reloc_root;
836 	struct reloc_control *rc = fs_info->reloc_ctl;
837 	struct btrfs_block_rsv *rsv;
838 	int clear_rsv = 0;
839 	int ret;
840 
841 	if (!rc)
842 		return 0;
843 
844 	/*
845 	 * The subvolume has reloc tree but the swap is finished, no need to
846 	 * create/update the dead reloc tree
847 	 */
848 	if (reloc_root_is_dead(root))
849 		return 0;
850 
851 	/*
852 	 * This is subtle but important.  We do not do
853 	 * record_root_in_transaction for reloc roots, instead we record their
854 	 * corresponding fs root, and then here we update the last trans for the
855 	 * reloc root.  This means that we have to do this for the entire life
856 	 * of the reloc root, regardless of which stage of the relocation we are
857 	 * in.
858 	 */
859 	if (root->reloc_root) {
860 		reloc_root = root->reloc_root;
861 		reloc_root->last_trans = trans->transid;
862 		return 0;
863 	}
864 
865 	/*
866 	 * We are merging reloc roots, we do not need new reloc trees.  Also
867 	 * reloc trees never need their own reloc tree.
868 	 */
869 	if (!rc->create_reloc_tree ||
870 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
871 		return 0;
872 
873 	if (!trans->reloc_reserved) {
874 		rsv = trans->block_rsv;
875 		trans->block_rsv = rc->block_rsv;
876 		clear_rsv = 1;
877 	}
878 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
879 	if (clear_rsv)
880 		trans->block_rsv = rsv;
881 
882 	ret = __add_reloc_root(reloc_root);
883 	BUG_ON(ret < 0);
884 	root->reloc_root = btrfs_grab_root(reloc_root);
885 	return 0;
886 }
887 
888 /*
889  * update root item of reloc tree
890  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)891 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
892 			    struct btrfs_root *root)
893 {
894 	struct btrfs_fs_info *fs_info = root->fs_info;
895 	struct btrfs_root *reloc_root;
896 	struct btrfs_root_item *root_item;
897 	int ret;
898 
899 	if (!have_reloc_root(root))
900 		return 0;
901 
902 	reloc_root = root->reloc_root;
903 	root_item = &reloc_root->root_item;
904 
905 	/*
906 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
907 	 * the root.  We have the ref for root->reloc_root, but just in case
908 	 * hold it while we update the reloc root.
909 	 */
910 	btrfs_grab_root(reloc_root);
911 
912 	/* root->reloc_root will stay until current relocation finished */
913 	if (fs_info->reloc_ctl->merge_reloc_tree &&
914 	    btrfs_root_refs(root_item) == 0) {
915 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
916 		/*
917 		 * Mark the tree as dead before we change reloc_root so
918 		 * have_reloc_root will not touch it from now on.
919 		 */
920 		smp_wmb();
921 		__del_reloc_root(reloc_root);
922 	}
923 
924 	if (reloc_root->commit_root != reloc_root->node) {
925 		__update_reloc_root(reloc_root);
926 		btrfs_set_root_node(root_item, reloc_root->node);
927 		free_extent_buffer(reloc_root->commit_root);
928 		reloc_root->commit_root = btrfs_root_node(reloc_root);
929 	}
930 
931 	ret = btrfs_update_root(trans, fs_info->tree_root,
932 				&reloc_root->root_key, root_item);
933 	btrfs_put_root(reloc_root);
934 	return ret;
935 }
936 
937 /*
938  * helper to find first cached inode with inode number >= objectid
939  * in a subvolume
940  */
find_next_inode(struct btrfs_root * root,u64 objectid)941 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
942 {
943 	struct rb_node *node;
944 	struct rb_node *prev;
945 	struct btrfs_inode *entry;
946 	struct inode *inode;
947 
948 	spin_lock(&root->inode_lock);
949 again:
950 	node = root->inode_tree.rb_node;
951 	prev = NULL;
952 	while (node) {
953 		prev = node;
954 		entry = rb_entry(node, struct btrfs_inode, rb_node);
955 
956 		if (objectid < btrfs_ino(entry))
957 			node = node->rb_left;
958 		else if (objectid > btrfs_ino(entry))
959 			node = node->rb_right;
960 		else
961 			break;
962 	}
963 	if (!node) {
964 		while (prev) {
965 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
966 			if (objectid <= btrfs_ino(entry)) {
967 				node = prev;
968 				break;
969 			}
970 			prev = rb_next(prev);
971 		}
972 	}
973 	while (node) {
974 		entry = rb_entry(node, struct btrfs_inode, rb_node);
975 		inode = igrab(&entry->vfs_inode);
976 		if (inode) {
977 			spin_unlock(&root->inode_lock);
978 			return inode;
979 		}
980 
981 		objectid = btrfs_ino(entry) + 1;
982 		if (cond_resched_lock(&root->inode_lock))
983 			goto again;
984 
985 		node = rb_next(node);
986 	}
987 	spin_unlock(&root->inode_lock);
988 	return NULL;
989 }
990 
991 /*
992  * get new location of data
993  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)994 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
995 			    u64 bytenr, u64 num_bytes)
996 {
997 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
998 	struct btrfs_path *path;
999 	struct btrfs_file_extent_item *fi;
1000 	struct extent_buffer *leaf;
1001 	int ret;
1002 
1003 	path = btrfs_alloc_path();
1004 	if (!path)
1005 		return -ENOMEM;
1006 
1007 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1008 	ret = btrfs_lookup_file_extent(NULL, root, path,
1009 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1010 	if (ret < 0)
1011 		goto out;
1012 	if (ret > 0) {
1013 		ret = -ENOENT;
1014 		goto out;
1015 	}
1016 
1017 	leaf = path->nodes[0];
1018 	fi = btrfs_item_ptr(leaf, path->slots[0],
1019 			    struct btrfs_file_extent_item);
1020 
1021 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1022 	       btrfs_file_extent_compression(leaf, fi) ||
1023 	       btrfs_file_extent_encryption(leaf, fi) ||
1024 	       btrfs_file_extent_other_encoding(leaf, fi));
1025 
1026 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1027 		ret = -EINVAL;
1028 		goto out;
1029 	}
1030 
1031 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1032 	ret = 0;
1033 out:
1034 	btrfs_free_path(path);
1035 	return ret;
1036 }
1037 
1038 /*
1039  * update file extent items in the tree leaf to point to
1040  * the new locations.
1041  */
1042 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1043 int replace_file_extents(struct btrfs_trans_handle *trans,
1044 			 struct reloc_control *rc,
1045 			 struct btrfs_root *root,
1046 			 struct extent_buffer *leaf)
1047 {
1048 	struct btrfs_fs_info *fs_info = root->fs_info;
1049 	struct btrfs_key key;
1050 	struct btrfs_file_extent_item *fi;
1051 	struct inode *inode = NULL;
1052 	u64 parent;
1053 	u64 bytenr;
1054 	u64 new_bytenr = 0;
1055 	u64 num_bytes;
1056 	u64 end;
1057 	u32 nritems;
1058 	u32 i;
1059 	int ret = 0;
1060 	int first = 1;
1061 	int dirty = 0;
1062 
1063 	if (rc->stage != UPDATE_DATA_PTRS)
1064 		return 0;
1065 
1066 	/* reloc trees always use full backref */
1067 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1068 		parent = leaf->start;
1069 	else
1070 		parent = 0;
1071 
1072 	nritems = btrfs_header_nritems(leaf);
1073 	for (i = 0; i < nritems; i++) {
1074 		struct btrfs_ref ref = { 0 };
1075 
1076 		cond_resched();
1077 		btrfs_item_key_to_cpu(leaf, &key, i);
1078 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1079 			continue;
1080 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1081 		if (btrfs_file_extent_type(leaf, fi) ==
1082 		    BTRFS_FILE_EXTENT_INLINE)
1083 			continue;
1084 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1085 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1086 		if (bytenr == 0)
1087 			continue;
1088 		if (!in_range(bytenr, rc->block_group->start,
1089 			      rc->block_group->length))
1090 			continue;
1091 
1092 		/*
1093 		 * if we are modifying block in fs tree, wait for readpage
1094 		 * to complete and drop the extent cache
1095 		 */
1096 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1097 			if (first) {
1098 				inode = find_next_inode(root, key.objectid);
1099 				first = 0;
1100 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1101 				btrfs_add_delayed_iput(inode);
1102 				inode = find_next_inode(root, key.objectid);
1103 			}
1104 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1105 				end = key.offset +
1106 				      btrfs_file_extent_num_bytes(leaf, fi);
1107 				WARN_ON(!IS_ALIGNED(key.offset,
1108 						    fs_info->sectorsize));
1109 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1110 				end--;
1111 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1112 						      key.offset, end);
1113 				if (!ret)
1114 					continue;
1115 
1116 				btrfs_drop_extent_cache(BTRFS_I(inode),
1117 						key.offset,	end, 1);
1118 				unlock_extent(&BTRFS_I(inode)->io_tree,
1119 					      key.offset, end);
1120 			}
1121 		}
1122 
1123 		ret = get_new_location(rc->data_inode, &new_bytenr,
1124 				       bytenr, num_bytes);
1125 		if (ret) {
1126 			/*
1127 			 * Don't have to abort since we've not changed anything
1128 			 * in the file extent yet.
1129 			 */
1130 			break;
1131 		}
1132 
1133 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1134 		dirty = 1;
1135 
1136 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1137 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1138 				       num_bytes, parent);
1139 		ref.real_root = root->root_key.objectid;
1140 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1141 				    key.objectid, key.offset);
1142 		ret = btrfs_inc_extent_ref(trans, &ref);
1143 		if (ret) {
1144 			btrfs_abort_transaction(trans, ret);
1145 			break;
1146 		}
1147 
1148 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1149 				       num_bytes, parent);
1150 		ref.real_root = root->root_key.objectid;
1151 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1152 				    key.objectid, key.offset);
1153 		ret = btrfs_free_extent(trans, &ref);
1154 		if (ret) {
1155 			btrfs_abort_transaction(trans, ret);
1156 			break;
1157 		}
1158 	}
1159 	if (dirty)
1160 		btrfs_mark_buffer_dirty(leaf);
1161 	if (inode)
1162 		btrfs_add_delayed_iput(inode);
1163 	return ret;
1164 }
1165 
1166 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1167 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1168 		     struct btrfs_path *path, int level)
1169 {
1170 	struct btrfs_disk_key key1;
1171 	struct btrfs_disk_key key2;
1172 	btrfs_node_key(eb, &key1, slot);
1173 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1174 	return memcmp(&key1, &key2, sizeof(key1));
1175 }
1176 
1177 /*
1178  * try to replace tree blocks in fs tree with the new blocks
1179  * in reloc tree. tree blocks haven't been modified since the
1180  * reloc tree was create can be replaced.
1181  *
1182  * if a block was replaced, level of the block + 1 is returned.
1183  * if no block got replaced, 0 is returned. if there are other
1184  * errors, a negative error number is returned.
1185  */
1186 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1187 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1188 		 struct btrfs_root *dest, struct btrfs_root *src,
1189 		 struct btrfs_path *path, struct btrfs_key *next_key,
1190 		 int lowest_level, int max_level)
1191 {
1192 	struct btrfs_fs_info *fs_info = dest->fs_info;
1193 	struct extent_buffer *eb;
1194 	struct extent_buffer *parent;
1195 	struct btrfs_ref ref = { 0 };
1196 	struct btrfs_key key;
1197 	u64 old_bytenr;
1198 	u64 new_bytenr;
1199 	u64 old_ptr_gen;
1200 	u64 new_ptr_gen;
1201 	u64 last_snapshot;
1202 	u32 blocksize;
1203 	int cow = 0;
1204 	int level;
1205 	int ret;
1206 	int slot;
1207 
1208 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1209 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1210 
1211 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1212 again:
1213 	slot = path->slots[lowest_level];
1214 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1215 
1216 	eb = btrfs_lock_root_node(dest);
1217 	btrfs_set_lock_blocking_write(eb);
1218 	level = btrfs_header_level(eb);
1219 
1220 	if (level < lowest_level) {
1221 		btrfs_tree_unlock(eb);
1222 		free_extent_buffer(eb);
1223 		return 0;
1224 	}
1225 
1226 	if (cow) {
1227 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1228 				      BTRFS_NESTING_COW);
1229 		BUG_ON(ret);
1230 	}
1231 	btrfs_set_lock_blocking_write(eb);
1232 
1233 	if (next_key) {
1234 		next_key->objectid = (u64)-1;
1235 		next_key->type = (u8)-1;
1236 		next_key->offset = (u64)-1;
1237 	}
1238 
1239 	parent = eb;
1240 	while (1) {
1241 		struct btrfs_key first_key;
1242 
1243 		level = btrfs_header_level(parent);
1244 		ASSERT(level >= lowest_level);
1245 
1246 		ret = btrfs_bin_search(parent, &key, &slot);
1247 		if (ret < 0)
1248 			break;
1249 		if (ret && slot > 0)
1250 			slot--;
1251 
1252 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1253 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1254 
1255 		old_bytenr = btrfs_node_blockptr(parent, slot);
1256 		blocksize = fs_info->nodesize;
1257 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1258 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1259 
1260 		if (level <= max_level) {
1261 			eb = path->nodes[level];
1262 			new_bytenr = btrfs_node_blockptr(eb,
1263 							path->slots[level]);
1264 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1265 							path->slots[level]);
1266 		} else {
1267 			new_bytenr = 0;
1268 			new_ptr_gen = 0;
1269 		}
1270 
1271 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1272 			ret = level;
1273 			break;
1274 		}
1275 
1276 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1277 		    memcmp_node_keys(parent, slot, path, level)) {
1278 			if (level <= lowest_level) {
1279 				ret = 0;
1280 				break;
1281 			}
1282 
1283 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1284 					     level - 1, &first_key);
1285 			if (IS_ERR(eb)) {
1286 				ret = PTR_ERR(eb);
1287 				break;
1288 			} else if (!extent_buffer_uptodate(eb)) {
1289 				ret = -EIO;
1290 				free_extent_buffer(eb);
1291 				break;
1292 			}
1293 			btrfs_tree_lock(eb);
1294 			if (cow) {
1295 				ret = btrfs_cow_block(trans, dest, eb, parent,
1296 						      slot, &eb,
1297 						      BTRFS_NESTING_COW);
1298 				BUG_ON(ret);
1299 			}
1300 			btrfs_set_lock_blocking_write(eb);
1301 
1302 			btrfs_tree_unlock(parent);
1303 			free_extent_buffer(parent);
1304 
1305 			parent = eb;
1306 			continue;
1307 		}
1308 
1309 		if (!cow) {
1310 			btrfs_tree_unlock(parent);
1311 			free_extent_buffer(parent);
1312 			cow = 1;
1313 			goto again;
1314 		}
1315 
1316 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1317 				      path->slots[level]);
1318 		btrfs_release_path(path);
1319 
1320 		path->lowest_level = level;
1321 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1322 		path->lowest_level = 0;
1323 		BUG_ON(ret);
1324 
1325 		/*
1326 		 * Info qgroup to trace both subtrees.
1327 		 *
1328 		 * We must trace both trees.
1329 		 * 1) Tree reloc subtree
1330 		 *    If not traced, we will leak data numbers
1331 		 * 2) Fs subtree
1332 		 *    If not traced, we will double count old data
1333 		 *
1334 		 * We don't scan the subtree right now, but only record
1335 		 * the swapped tree blocks.
1336 		 * The real subtree rescan is delayed until we have new
1337 		 * CoW on the subtree root node before transaction commit.
1338 		 */
1339 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1340 				rc->block_group, parent, slot,
1341 				path->nodes[level], path->slots[level],
1342 				last_snapshot);
1343 		if (ret < 0)
1344 			break;
1345 		/*
1346 		 * swap blocks in fs tree and reloc tree.
1347 		 */
1348 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1349 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1350 		btrfs_mark_buffer_dirty(parent);
1351 
1352 		btrfs_set_node_blockptr(path->nodes[level],
1353 					path->slots[level], old_bytenr);
1354 		btrfs_set_node_ptr_generation(path->nodes[level],
1355 					      path->slots[level], old_ptr_gen);
1356 		btrfs_mark_buffer_dirty(path->nodes[level]);
1357 
1358 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1359 				       blocksize, path->nodes[level]->start);
1360 		ref.skip_qgroup = true;
1361 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1362 		ret = btrfs_inc_extent_ref(trans, &ref);
1363 		BUG_ON(ret);
1364 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1365 				       blocksize, 0);
1366 		ref.skip_qgroup = true;
1367 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1368 		ret = btrfs_inc_extent_ref(trans, &ref);
1369 		BUG_ON(ret);
1370 
1371 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1372 				       blocksize, path->nodes[level]->start);
1373 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1374 		ref.skip_qgroup = true;
1375 		ret = btrfs_free_extent(trans, &ref);
1376 		BUG_ON(ret);
1377 
1378 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1379 				       blocksize, 0);
1380 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1381 		ref.skip_qgroup = true;
1382 		ret = btrfs_free_extent(trans, &ref);
1383 		BUG_ON(ret);
1384 
1385 		btrfs_unlock_up_safe(path, 0);
1386 
1387 		ret = level;
1388 		break;
1389 	}
1390 	btrfs_tree_unlock(parent);
1391 	free_extent_buffer(parent);
1392 	return ret;
1393 }
1394 
1395 /*
1396  * helper to find next relocated block in reloc tree
1397  */
1398 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1399 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1400 		       int *level)
1401 {
1402 	struct extent_buffer *eb;
1403 	int i;
1404 	u64 last_snapshot;
1405 	u32 nritems;
1406 
1407 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1408 
1409 	for (i = 0; i < *level; i++) {
1410 		free_extent_buffer(path->nodes[i]);
1411 		path->nodes[i] = NULL;
1412 	}
1413 
1414 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1415 		eb = path->nodes[i];
1416 		nritems = btrfs_header_nritems(eb);
1417 		while (path->slots[i] + 1 < nritems) {
1418 			path->slots[i]++;
1419 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1420 			    last_snapshot)
1421 				continue;
1422 
1423 			*level = i;
1424 			return 0;
1425 		}
1426 		free_extent_buffer(path->nodes[i]);
1427 		path->nodes[i] = NULL;
1428 	}
1429 	return 1;
1430 }
1431 
1432 /*
1433  * walk down reloc tree to find relocated block of lowest level
1434  */
1435 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1436 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1437 			 int *level)
1438 {
1439 	struct btrfs_fs_info *fs_info = root->fs_info;
1440 	struct extent_buffer *eb = NULL;
1441 	int i;
1442 	u64 bytenr;
1443 	u64 ptr_gen = 0;
1444 	u64 last_snapshot;
1445 	u32 nritems;
1446 
1447 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1448 
1449 	for (i = *level; i > 0; i--) {
1450 		struct btrfs_key first_key;
1451 
1452 		eb = path->nodes[i];
1453 		nritems = btrfs_header_nritems(eb);
1454 		while (path->slots[i] < nritems) {
1455 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1456 			if (ptr_gen > last_snapshot)
1457 				break;
1458 			path->slots[i]++;
1459 		}
1460 		if (path->slots[i] >= nritems) {
1461 			if (i == *level)
1462 				break;
1463 			*level = i + 1;
1464 			return 0;
1465 		}
1466 		if (i == 1) {
1467 			*level = i;
1468 			return 0;
1469 		}
1470 
1471 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1472 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1473 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1474 				     &first_key);
1475 		if (IS_ERR(eb)) {
1476 			return PTR_ERR(eb);
1477 		} else if (!extent_buffer_uptodate(eb)) {
1478 			free_extent_buffer(eb);
1479 			return -EIO;
1480 		}
1481 		BUG_ON(btrfs_header_level(eb) != i - 1);
1482 		path->nodes[i - 1] = eb;
1483 		path->slots[i - 1] = 0;
1484 	}
1485 	return 1;
1486 }
1487 
1488 /*
1489  * invalidate extent cache for file extents whose key in range of
1490  * [min_key, max_key)
1491  */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)1492 static int invalidate_extent_cache(struct btrfs_root *root,
1493 				   struct btrfs_key *min_key,
1494 				   struct btrfs_key *max_key)
1495 {
1496 	struct btrfs_fs_info *fs_info = root->fs_info;
1497 	struct inode *inode = NULL;
1498 	u64 objectid;
1499 	u64 start, end;
1500 	u64 ino;
1501 
1502 	objectid = min_key->objectid;
1503 	while (1) {
1504 		cond_resched();
1505 		iput(inode);
1506 
1507 		if (objectid > max_key->objectid)
1508 			break;
1509 
1510 		inode = find_next_inode(root, objectid);
1511 		if (!inode)
1512 			break;
1513 		ino = btrfs_ino(BTRFS_I(inode));
1514 
1515 		if (ino > max_key->objectid) {
1516 			iput(inode);
1517 			break;
1518 		}
1519 
1520 		objectid = ino + 1;
1521 		if (!S_ISREG(inode->i_mode))
1522 			continue;
1523 
1524 		if (unlikely(min_key->objectid == ino)) {
1525 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1526 				continue;
1527 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1528 				start = 0;
1529 			else {
1530 				start = min_key->offset;
1531 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1532 			}
1533 		} else {
1534 			start = 0;
1535 		}
1536 
1537 		if (unlikely(max_key->objectid == ino)) {
1538 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1539 				continue;
1540 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1541 				end = (u64)-1;
1542 			} else {
1543 				if (max_key->offset == 0)
1544 					continue;
1545 				end = max_key->offset;
1546 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1547 				end--;
1548 			}
1549 		} else {
1550 			end = (u64)-1;
1551 		}
1552 
1553 		/* the lock_extent waits for readpage to complete */
1554 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1555 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1556 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1557 	}
1558 	return 0;
1559 }
1560 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1561 static int find_next_key(struct btrfs_path *path, int level,
1562 			 struct btrfs_key *key)
1563 
1564 {
1565 	while (level < BTRFS_MAX_LEVEL) {
1566 		if (!path->nodes[level])
1567 			break;
1568 		if (path->slots[level] + 1 <
1569 		    btrfs_header_nritems(path->nodes[level])) {
1570 			btrfs_node_key_to_cpu(path->nodes[level], key,
1571 					      path->slots[level] + 1);
1572 			return 0;
1573 		}
1574 		level++;
1575 	}
1576 	return 1;
1577 }
1578 
1579 /*
1580  * Insert current subvolume into reloc_control::dirty_subvol_roots
1581  */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1582 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1583 				struct reloc_control *rc,
1584 				struct btrfs_root *root)
1585 {
1586 	struct btrfs_root *reloc_root = root->reloc_root;
1587 	struct btrfs_root_item *reloc_root_item;
1588 
1589 	/* @root must be a subvolume tree root with a valid reloc tree */
1590 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1591 	ASSERT(reloc_root);
1592 
1593 	reloc_root_item = &reloc_root->root_item;
1594 	memset(&reloc_root_item->drop_progress, 0,
1595 		sizeof(reloc_root_item->drop_progress));
1596 	reloc_root_item->drop_level = 0;
1597 	btrfs_set_root_refs(reloc_root_item, 0);
1598 	btrfs_update_reloc_root(trans, root);
1599 
1600 	if (list_empty(&root->reloc_dirty_list)) {
1601 		btrfs_grab_root(root);
1602 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1603 	}
1604 }
1605 
clean_dirty_subvols(struct reloc_control * rc)1606 static int clean_dirty_subvols(struct reloc_control *rc)
1607 {
1608 	struct btrfs_root *root;
1609 	struct btrfs_root *next;
1610 	int ret = 0;
1611 	int ret2;
1612 
1613 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1614 				 reloc_dirty_list) {
1615 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1616 			/* Merged subvolume, cleanup its reloc root */
1617 			struct btrfs_root *reloc_root = root->reloc_root;
1618 
1619 			list_del_init(&root->reloc_dirty_list);
1620 			root->reloc_root = NULL;
1621 			/*
1622 			 * Need barrier to ensure clear_bit() only happens after
1623 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1624 			 */
1625 			smp_wmb();
1626 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1627 			if (reloc_root) {
1628 				/*
1629 				 * btrfs_drop_snapshot drops our ref we hold for
1630 				 * ->reloc_root.  If it fails however we must
1631 				 * drop the ref ourselves.
1632 				 */
1633 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1634 				if (ret2 < 0) {
1635 					btrfs_put_root(reloc_root);
1636 					if (!ret)
1637 						ret = ret2;
1638 				}
1639 			}
1640 			btrfs_put_root(root);
1641 		} else {
1642 			/* Orphan reloc tree, just clean it up */
1643 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1644 			if (ret2 < 0) {
1645 				btrfs_put_root(root);
1646 				if (!ret)
1647 					ret = ret2;
1648 			}
1649 		}
1650 	}
1651 	return ret;
1652 }
1653 
1654 /*
1655  * merge the relocated tree blocks in reloc tree with corresponding
1656  * fs tree.
1657  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1658 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1659 					       struct btrfs_root *root)
1660 {
1661 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1662 	struct btrfs_key key;
1663 	struct btrfs_key next_key;
1664 	struct btrfs_trans_handle *trans = NULL;
1665 	struct btrfs_root *reloc_root;
1666 	struct btrfs_root_item *root_item;
1667 	struct btrfs_path *path;
1668 	struct extent_buffer *leaf;
1669 	int reserve_level;
1670 	int level;
1671 	int max_level;
1672 	int replaced = 0;
1673 	int ret;
1674 	int err = 0;
1675 	u32 min_reserved;
1676 
1677 	path = btrfs_alloc_path();
1678 	if (!path)
1679 		return -ENOMEM;
1680 	path->reada = READA_FORWARD;
1681 
1682 	reloc_root = root->reloc_root;
1683 	root_item = &reloc_root->root_item;
1684 
1685 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1686 		level = btrfs_root_level(root_item);
1687 		atomic_inc(&reloc_root->node->refs);
1688 		path->nodes[level] = reloc_root->node;
1689 		path->slots[level] = 0;
1690 	} else {
1691 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1692 
1693 		level = root_item->drop_level;
1694 		BUG_ON(level == 0);
1695 		path->lowest_level = level;
1696 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1697 		path->lowest_level = 0;
1698 		if (ret < 0) {
1699 			btrfs_free_path(path);
1700 			return ret;
1701 		}
1702 
1703 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1704 				      path->slots[level]);
1705 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1706 
1707 		btrfs_unlock_up_safe(path, 0);
1708 	}
1709 
1710 	/*
1711 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1712 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1713 	 * block COW, we COW at most from level 1 to root level for each tree.
1714 	 *
1715 	 * Thus the needed metadata size is at most root_level * nodesize,
1716 	 * and * 2 since we have two trees to COW.
1717 	 */
1718 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1719 	min_reserved = fs_info->nodesize * reserve_level * 2;
1720 	memset(&next_key, 0, sizeof(next_key));
1721 
1722 	while (1) {
1723 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1724 					     BTRFS_RESERVE_FLUSH_LIMIT);
1725 		if (ret) {
1726 			err = ret;
1727 			goto out;
1728 		}
1729 		trans = btrfs_start_transaction(root, 0);
1730 		if (IS_ERR(trans)) {
1731 			err = PTR_ERR(trans);
1732 			trans = NULL;
1733 			goto out;
1734 		}
1735 
1736 		/*
1737 		 * At this point we no longer have a reloc_control, so we can't
1738 		 * depend on btrfs_init_reloc_root to update our last_trans.
1739 		 *
1740 		 * But that's ok, we started the trans handle on our
1741 		 * corresponding fs_root, which means it's been added to the
1742 		 * dirty list.  At commit time we'll still call
1743 		 * btrfs_update_reloc_root() and update our root item
1744 		 * appropriately.
1745 		 */
1746 		reloc_root->last_trans = trans->transid;
1747 		trans->block_rsv = rc->block_rsv;
1748 
1749 		replaced = 0;
1750 		max_level = level;
1751 
1752 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1753 		if (ret < 0) {
1754 			err = ret;
1755 			goto out;
1756 		}
1757 		if (ret > 0)
1758 			break;
1759 
1760 		if (!find_next_key(path, level, &key) &&
1761 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1762 			ret = 0;
1763 		} else {
1764 			ret = replace_path(trans, rc, root, reloc_root, path,
1765 					   &next_key, level, max_level);
1766 		}
1767 		if (ret < 0) {
1768 			err = ret;
1769 			goto out;
1770 		}
1771 
1772 		if (ret > 0) {
1773 			level = ret;
1774 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1775 					      path->slots[level]);
1776 			replaced = 1;
1777 		}
1778 
1779 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1780 		if (ret > 0)
1781 			break;
1782 
1783 		BUG_ON(level == 0);
1784 		/*
1785 		 * save the merging progress in the drop_progress.
1786 		 * this is OK since root refs == 1 in this case.
1787 		 */
1788 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1789 			       path->slots[level]);
1790 		root_item->drop_level = level;
1791 
1792 		btrfs_end_transaction_throttle(trans);
1793 		trans = NULL;
1794 
1795 		btrfs_btree_balance_dirty(fs_info);
1796 
1797 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1798 			invalidate_extent_cache(root, &key, &next_key);
1799 	}
1800 
1801 	/*
1802 	 * handle the case only one block in the fs tree need to be
1803 	 * relocated and the block is tree root.
1804 	 */
1805 	leaf = btrfs_lock_root_node(root);
1806 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1807 			      BTRFS_NESTING_COW);
1808 	btrfs_tree_unlock(leaf);
1809 	free_extent_buffer(leaf);
1810 	if (ret < 0)
1811 		err = ret;
1812 out:
1813 	btrfs_free_path(path);
1814 
1815 	if (err == 0)
1816 		insert_dirty_subvol(trans, rc, root);
1817 
1818 	if (trans)
1819 		btrfs_end_transaction_throttle(trans);
1820 
1821 	btrfs_btree_balance_dirty(fs_info);
1822 
1823 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1824 		invalidate_extent_cache(root, &key, &next_key);
1825 
1826 	return err;
1827 }
1828 
1829 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1830 int prepare_to_merge(struct reloc_control *rc, int err)
1831 {
1832 	struct btrfs_root *root = rc->extent_root;
1833 	struct btrfs_fs_info *fs_info = root->fs_info;
1834 	struct btrfs_root *reloc_root;
1835 	struct btrfs_trans_handle *trans;
1836 	LIST_HEAD(reloc_roots);
1837 	u64 num_bytes = 0;
1838 	int ret;
1839 
1840 	mutex_lock(&fs_info->reloc_mutex);
1841 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1842 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1843 	mutex_unlock(&fs_info->reloc_mutex);
1844 
1845 again:
1846 	if (!err) {
1847 		num_bytes = rc->merging_rsv_size;
1848 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1849 					  BTRFS_RESERVE_FLUSH_ALL);
1850 		if (ret)
1851 			err = ret;
1852 	}
1853 
1854 	trans = btrfs_join_transaction(rc->extent_root);
1855 	if (IS_ERR(trans)) {
1856 		if (!err)
1857 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1858 						num_bytes, NULL);
1859 		return PTR_ERR(trans);
1860 	}
1861 
1862 	if (!err) {
1863 		if (num_bytes != rc->merging_rsv_size) {
1864 			btrfs_end_transaction(trans);
1865 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1866 						num_bytes, NULL);
1867 			goto again;
1868 		}
1869 	}
1870 
1871 	rc->merge_reloc_tree = 1;
1872 
1873 	while (!list_empty(&rc->reloc_roots)) {
1874 		reloc_root = list_entry(rc->reloc_roots.next,
1875 					struct btrfs_root, root_list);
1876 		list_del_init(&reloc_root->root_list);
1877 
1878 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1879 				false);
1880 		BUG_ON(IS_ERR(root));
1881 		BUG_ON(root->reloc_root != reloc_root);
1882 
1883 		/*
1884 		 * set reference count to 1, so btrfs_recover_relocation
1885 		 * knows it should resumes merging
1886 		 */
1887 		if (!err)
1888 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1889 		btrfs_update_reloc_root(trans, root);
1890 
1891 		list_add(&reloc_root->root_list, &reloc_roots);
1892 		btrfs_put_root(root);
1893 	}
1894 
1895 	list_splice(&reloc_roots, &rc->reloc_roots);
1896 
1897 	if (!err)
1898 		err = btrfs_commit_transaction(trans);
1899 	else
1900 		btrfs_end_transaction(trans);
1901 	return err;
1902 }
1903 
1904 static noinline_for_stack
free_reloc_roots(struct list_head * list)1905 void free_reloc_roots(struct list_head *list)
1906 {
1907 	struct btrfs_root *reloc_root, *tmp;
1908 
1909 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1910 		__del_reloc_root(reloc_root);
1911 }
1912 
1913 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1914 void merge_reloc_roots(struct reloc_control *rc)
1915 {
1916 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1917 	struct btrfs_root *root;
1918 	struct btrfs_root *reloc_root;
1919 	LIST_HEAD(reloc_roots);
1920 	int found = 0;
1921 	int ret = 0;
1922 again:
1923 	root = rc->extent_root;
1924 
1925 	/*
1926 	 * this serializes us with btrfs_record_root_in_transaction,
1927 	 * we have to make sure nobody is in the middle of
1928 	 * adding their roots to the list while we are
1929 	 * doing this splice
1930 	 */
1931 	mutex_lock(&fs_info->reloc_mutex);
1932 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1933 	mutex_unlock(&fs_info->reloc_mutex);
1934 
1935 	while (!list_empty(&reloc_roots)) {
1936 		found = 1;
1937 		reloc_root = list_entry(reloc_roots.next,
1938 					struct btrfs_root, root_list);
1939 
1940 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1941 					 false);
1942 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1943 			BUG_ON(IS_ERR(root));
1944 			BUG_ON(root->reloc_root != reloc_root);
1945 			ret = merge_reloc_root(rc, root);
1946 			btrfs_put_root(root);
1947 			if (ret) {
1948 				if (list_empty(&reloc_root->root_list))
1949 					list_add_tail(&reloc_root->root_list,
1950 						      &reloc_roots);
1951 				goto out;
1952 			}
1953 		} else {
1954 			if (!IS_ERR(root)) {
1955 				if (root->reloc_root == reloc_root) {
1956 					root->reloc_root = NULL;
1957 					btrfs_put_root(reloc_root);
1958 				}
1959 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1960 					  &root->state);
1961 				btrfs_put_root(root);
1962 			}
1963 
1964 			list_del_init(&reloc_root->root_list);
1965 			/* Don't forget to queue this reloc root for cleanup */
1966 			list_add_tail(&reloc_root->reloc_dirty_list,
1967 				      &rc->dirty_subvol_roots);
1968 		}
1969 	}
1970 
1971 	if (found) {
1972 		found = 0;
1973 		goto again;
1974 	}
1975 out:
1976 	if (ret) {
1977 		btrfs_handle_fs_error(fs_info, ret, NULL);
1978 		free_reloc_roots(&reloc_roots);
1979 
1980 		/* new reloc root may be added */
1981 		mutex_lock(&fs_info->reloc_mutex);
1982 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1983 		mutex_unlock(&fs_info->reloc_mutex);
1984 		free_reloc_roots(&reloc_roots);
1985 	}
1986 
1987 	/*
1988 	 * We used to have
1989 	 *
1990 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1991 	 *
1992 	 * here, but it's wrong.  If we fail to start the transaction in
1993 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1994 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1995 	 * fine because we're bailing here, and we hold a reference on the root
1996 	 * for the list that holds it, so these roots will be cleaned up when we
1997 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1998 	 * will be cleaned up on unmount.
1999 	 *
2000 	 * The remaining nodes will be cleaned up by free_reloc_control.
2001 	 */
2002 }
2003 
free_block_list(struct rb_root * blocks)2004 static void free_block_list(struct rb_root *blocks)
2005 {
2006 	struct tree_block *block;
2007 	struct rb_node *rb_node;
2008 	while ((rb_node = rb_first(blocks))) {
2009 		block = rb_entry(rb_node, struct tree_block, rb_node);
2010 		rb_erase(rb_node, blocks);
2011 		kfree(block);
2012 	}
2013 }
2014 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2015 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2016 				      struct btrfs_root *reloc_root)
2017 {
2018 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2019 	struct btrfs_root *root;
2020 	int ret;
2021 
2022 	if (reloc_root->last_trans == trans->transid)
2023 		return 0;
2024 
2025 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2026 	BUG_ON(IS_ERR(root));
2027 	BUG_ON(root->reloc_root != reloc_root);
2028 	ret = btrfs_record_root_in_trans(trans, root);
2029 	btrfs_put_root(root);
2030 
2031 	return ret;
2032 }
2033 
2034 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2035 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2036 				     struct reloc_control *rc,
2037 				     struct btrfs_backref_node *node,
2038 				     struct btrfs_backref_edge *edges[])
2039 {
2040 	struct btrfs_backref_node *next;
2041 	struct btrfs_root *root;
2042 	int index = 0;
2043 
2044 	next = node;
2045 	while (1) {
2046 		cond_resched();
2047 		next = walk_up_backref(next, edges, &index);
2048 		root = next->root;
2049 		BUG_ON(!root);
2050 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2051 
2052 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2053 			record_reloc_root_in_trans(trans, root);
2054 			break;
2055 		}
2056 
2057 		btrfs_record_root_in_trans(trans, root);
2058 		root = root->reloc_root;
2059 
2060 		if (next->new_bytenr != root->node->start) {
2061 			BUG_ON(next->new_bytenr);
2062 			BUG_ON(!list_empty(&next->list));
2063 			next->new_bytenr = root->node->start;
2064 			btrfs_put_root(next->root);
2065 			next->root = btrfs_grab_root(root);
2066 			ASSERT(next->root);
2067 			list_add_tail(&next->list,
2068 				      &rc->backref_cache.changed);
2069 			mark_block_processed(rc, next);
2070 			break;
2071 		}
2072 
2073 		WARN_ON(1);
2074 		root = NULL;
2075 		next = walk_down_backref(edges, &index);
2076 		if (!next || next->level <= node->level)
2077 			break;
2078 	}
2079 	if (!root)
2080 		return NULL;
2081 
2082 	next = node;
2083 	/* setup backref node path for btrfs_reloc_cow_block */
2084 	while (1) {
2085 		rc->backref_cache.path[next->level] = next;
2086 		if (--index < 0)
2087 			break;
2088 		next = edges[index]->node[UPPER];
2089 	}
2090 	return root;
2091 }
2092 
2093 /*
2094  * Select a tree root for relocation.
2095  *
2096  * Return NULL if the block is not shareable. We should use do_relocation() in
2097  * this case.
2098  *
2099  * Return a tree root pointer if the block is shareable.
2100  * Return -ENOENT if the block is root of reloc tree.
2101  */
2102 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2103 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2104 {
2105 	struct btrfs_backref_node *next;
2106 	struct btrfs_root *root;
2107 	struct btrfs_root *fs_root = NULL;
2108 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2109 	int index = 0;
2110 
2111 	next = node;
2112 	while (1) {
2113 		cond_resched();
2114 		next = walk_up_backref(next, edges, &index);
2115 		root = next->root;
2116 		BUG_ON(!root);
2117 
2118 		/* No other choice for non-shareable tree */
2119 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2120 			return root;
2121 
2122 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2123 			fs_root = root;
2124 
2125 		if (next != node)
2126 			return NULL;
2127 
2128 		next = walk_down_backref(edges, &index);
2129 		if (!next || next->level <= node->level)
2130 			break;
2131 	}
2132 
2133 	if (!fs_root)
2134 		return ERR_PTR(-ENOENT);
2135 	return fs_root;
2136 }
2137 
2138 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node,int reserve)2139 u64 calcu_metadata_size(struct reloc_control *rc,
2140 			struct btrfs_backref_node *node, int reserve)
2141 {
2142 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2143 	struct btrfs_backref_node *next = node;
2144 	struct btrfs_backref_edge *edge;
2145 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2146 	u64 num_bytes = 0;
2147 	int index = 0;
2148 
2149 	BUG_ON(reserve && node->processed);
2150 
2151 	while (next) {
2152 		cond_resched();
2153 		while (1) {
2154 			if (next->processed && (reserve || next != node))
2155 				break;
2156 
2157 			num_bytes += fs_info->nodesize;
2158 
2159 			if (list_empty(&next->upper))
2160 				break;
2161 
2162 			edge = list_entry(next->upper.next,
2163 					struct btrfs_backref_edge, list[LOWER]);
2164 			edges[index++] = edge;
2165 			next = edge->node[UPPER];
2166 		}
2167 		next = walk_down_backref(edges, &index);
2168 	}
2169 	return num_bytes;
2170 }
2171 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2172 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2173 				  struct reloc_control *rc,
2174 				  struct btrfs_backref_node *node)
2175 {
2176 	struct btrfs_root *root = rc->extent_root;
2177 	struct btrfs_fs_info *fs_info = root->fs_info;
2178 	u64 num_bytes;
2179 	int ret;
2180 	u64 tmp;
2181 
2182 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2183 
2184 	trans->block_rsv = rc->block_rsv;
2185 	rc->reserved_bytes += num_bytes;
2186 
2187 	/*
2188 	 * We are under a transaction here so we can only do limited flushing.
2189 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2190 	 * transaction and try to refill when we can flush all the things.
2191 	 */
2192 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2193 				BTRFS_RESERVE_FLUSH_LIMIT);
2194 	if (ret) {
2195 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2196 		while (tmp <= rc->reserved_bytes)
2197 			tmp <<= 1;
2198 		/*
2199 		 * only one thread can access block_rsv at this point,
2200 		 * so we don't need hold lock to protect block_rsv.
2201 		 * we expand more reservation size here to allow enough
2202 		 * space for relocation and we will return earlier in
2203 		 * enospc case.
2204 		 */
2205 		rc->block_rsv->size = tmp + fs_info->nodesize *
2206 				      RELOCATION_RESERVED_NODES;
2207 		return -EAGAIN;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 /*
2214  * relocate a block tree, and then update pointers in upper level
2215  * blocks that reference the block to point to the new location.
2216  *
2217  * if called by link_to_upper, the block has already been relocated.
2218  * in that case this function just updates pointers.
2219  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2220 static int do_relocation(struct btrfs_trans_handle *trans,
2221 			 struct reloc_control *rc,
2222 			 struct btrfs_backref_node *node,
2223 			 struct btrfs_key *key,
2224 			 struct btrfs_path *path, int lowest)
2225 {
2226 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2227 	struct btrfs_backref_node *upper;
2228 	struct btrfs_backref_edge *edge;
2229 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2230 	struct btrfs_root *root;
2231 	struct extent_buffer *eb;
2232 	u32 blocksize;
2233 	u64 bytenr;
2234 	u64 generation;
2235 	int slot;
2236 	int ret;
2237 	int err = 0;
2238 
2239 	BUG_ON(lowest && node->eb);
2240 
2241 	path->lowest_level = node->level + 1;
2242 	rc->backref_cache.path[node->level] = node;
2243 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2244 		struct btrfs_key first_key;
2245 		struct btrfs_ref ref = { 0 };
2246 
2247 		cond_resched();
2248 
2249 		upper = edge->node[UPPER];
2250 		root = select_reloc_root(trans, rc, upper, edges);
2251 		BUG_ON(!root);
2252 
2253 		if (upper->eb && !upper->locked) {
2254 			if (!lowest) {
2255 				ret = btrfs_bin_search(upper->eb, key, &slot);
2256 				if (ret < 0) {
2257 					err = ret;
2258 					goto next;
2259 				}
2260 				BUG_ON(ret);
2261 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2262 				if (node->eb->start == bytenr)
2263 					goto next;
2264 			}
2265 			btrfs_backref_drop_node_buffer(upper);
2266 		}
2267 
2268 		if (!upper->eb) {
2269 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2270 			if (ret) {
2271 				if (ret < 0)
2272 					err = ret;
2273 				else
2274 					err = -ENOENT;
2275 
2276 				btrfs_release_path(path);
2277 				break;
2278 			}
2279 
2280 			if (!upper->eb) {
2281 				upper->eb = path->nodes[upper->level];
2282 				path->nodes[upper->level] = NULL;
2283 			} else {
2284 				BUG_ON(upper->eb != path->nodes[upper->level]);
2285 			}
2286 
2287 			upper->locked = 1;
2288 			path->locks[upper->level] = 0;
2289 
2290 			slot = path->slots[upper->level];
2291 			btrfs_release_path(path);
2292 		} else {
2293 			ret = btrfs_bin_search(upper->eb, key, &slot);
2294 			if (ret < 0) {
2295 				err = ret;
2296 				goto next;
2297 			}
2298 			BUG_ON(ret);
2299 		}
2300 
2301 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2302 		if (lowest) {
2303 			if (bytenr != node->bytenr) {
2304 				btrfs_err(root->fs_info,
2305 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2306 					  bytenr, node->bytenr, slot,
2307 					  upper->eb->start);
2308 				err = -EIO;
2309 				goto next;
2310 			}
2311 		} else {
2312 			if (node->eb->start == bytenr)
2313 				goto next;
2314 		}
2315 
2316 		blocksize = root->fs_info->nodesize;
2317 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2318 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2319 		eb = read_tree_block(fs_info, bytenr, generation,
2320 				     upper->level - 1, &first_key);
2321 		if (IS_ERR(eb)) {
2322 			err = PTR_ERR(eb);
2323 			goto next;
2324 		} else if (!extent_buffer_uptodate(eb)) {
2325 			free_extent_buffer(eb);
2326 			err = -EIO;
2327 			goto next;
2328 		}
2329 		btrfs_tree_lock(eb);
2330 		btrfs_set_lock_blocking_write(eb);
2331 
2332 		if (!node->eb) {
2333 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2334 					      slot, &eb, BTRFS_NESTING_COW);
2335 			btrfs_tree_unlock(eb);
2336 			free_extent_buffer(eb);
2337 			if (ret < 0) {
2338 				err = ret;
2339 				goto next;
2340 			}
2341 			BUG_ON(node->eb != eb);
2342 		} else {
2343 			btrfs_set_node_blockptr(upper->eb, slot,
2344 						node->eb->start);
2345 			btrfs_set_node_ptr_generation(upper->eb, slot,
2346 						      trans->transid);
2347 			btrfs_mark_buffer_dirty(upper->eb);
2348 
2349 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2350 					       node->eb->start, blocksize,
2351 					       upper->eb->start);
2352 			ref.real_root = root->root_key.objectid;
2353 			btrfs_init_tree_ref(&ref, node->level,
2354 					    btrfs_header_owner(upper->eb));
2355 			ret = btrfs_inc_extent_ref(trans, &ref);
2356 			BUG_ON(ret);
2357 
2358 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2359 			BUG_ON(ret);
2360 		}
2361 next:
2362 		if (!upper->pending)
2363 			btrfs_backref_drop_node_buffer(upper);
2364 		else
2365 			btrfs_backref_unlock_node_buffer(upper);
2366 		if (err)
2367 			break;
2368 	}
2369 
2370 	if (!err && node->pending) {
2371 		btrfs_backref_drop_node_buffer(node);
2372 		list_move_tail(&node->list, &rc->backref_cache.changed);
2373 		node->pending = 0;
2374 	}
2375 
2376 	path->lowest_level = 0;
2377 	BUG_ON(err == -ENOSPC);
2378 	return err;
2379 }
2380 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2381 static int link_to_upper(struct btrfs_trans_handle *trans,
2382 			 struct reloc_control *rc,
2383 			 struct btrfs_backref_node *node,
2384 			 struct btrfs_path *path)
2385 {
2386 	struct btrfs_key key;
2387 
2388 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2389 	return do_relocation(trans, rc, node, &key, path, 0);
2390 }
2391 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2392 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2393 				struct reloc_control *rc,
2394 				struct btrfs_path *path, int err)
2395 {
2396 	LIST_HEAD(list);
2397 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2398 	struct btrfs_backref_node *node;
2399 	int level;
2400 	int ret;
2401 
2402 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2403 		while (!list_empty(&cache->pending[level])) {
2404 			node = list_entry(cache->pending[level].next,
2405 					  struct btrfs_backref_node, list);
2406 			list_move_tail(&node->list, &list);
2407 			BUG_ON(!node->pending);
2408 
2409 			if (!err) {
2410 				ret = link_to_upper(trans, rc, node, path);
2411 				if (ret < 0)
2412 					err = ret;
2413 			}
2414 		}
2415 		list_splice_init(&list, &cache->pending[level]);
2416 	}
2417 	return err;
2418 }
2419 
2420 /*
2421  * mark a block and all blocks directly/indirectly reference the block
2422  * as processed.
2423  */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2424 static void update_processed_blocks(struct reloc_control *rc,
2425 				    struct btrfs_backref_node *node)
2426 {
2427 	struct btrfs_backref_node *next = node;
2428 	struct btrfs_backref_edge *edge;
2429 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2430 	int index = 0;
2431 
2432 	while (next) {
2433 		cond_resched();
2434 		while (1) {
2435 			if (next->processed)
2436 				break;
2437 
2438 			mark_block_processed(rc, next);
2439 
2440 			if (list_empty(&next->upper))
2441 				break;
2442 
2443 			edge = list_entry(next->upper.next,
2444 					struct btrfs_backref_edge, list[LOWER]);
2445 			edges[index++] = edge;
2446 			next = edge->node[UPPER];
2447 		}
2448 		next = walk_down_backref(edges, &index);
2449 	}
2450 }
2451 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2452 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2453 {
2454 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2455 
2456 	if (test_range_bit(&rc->processed_blocks, bytenr,
2457 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2458 		return 1;
2459 	return 0;
2460 }
2461 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2462 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2463 			      struct tree_block *block)
2464 {
2465 	struct extent_buffer *eb;
2466 
2467 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2468 			     block->level, NULL);
2469 	if (IS_ERR(eb)) {
2470 		return PTR_ERR(eb);
2471 	} else if (!extent_buffer_uptodate(eb)) {
2472 		free_extent_buffer(eb);
2473 		return -EIO;
2474 	}
2475 	if (block->level == 0)
2476 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2477 	else
2478 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2479 	free_extent_buffer(eb);
2480 	block->key_ready = 1;
2481 	return 0;
2482 }
2483 
2484 /*
2485  * helper function to relocate a tree block
2486  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2487 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2488 				struct reloc_control *rc,
2489 				struct btrfs_backref_node *node,
2490 				struct btrfs_key *key,
2491 				struct btrfs_path *path)
2492 {
2493 	struct btrfs_root *root;
2494 	int ret = 0;
2495 
2496 	if (!node)
2497 		return 0;
2498 
2499 	/*
2500 	 * If we fail here we want to drop our backref_node because we are going
2501 	 * to start over and regenerate the tree for it.
2502 	 */
2503 	ret = reserve_metadata_space(trans, rc, node);
2504 	if (ret)
2505 		goto out;
2506 
2507 	BUG_ON(node->processed);
2508 	root = select_one_root(node);
2509 	if (root == ERR_PTR(-ENOENT)) {
2510 		update_processed_blocks(rc, node);
2511 		goto out;
2512 	}
2513 
2514 	if (root) {
2515 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2516 			BUG_ON(node->new_bytenr);
2517 			BUG_ON(!list_empty(&node->list));
2518 			btrfs_record_root_in_trans(trans, root);
2519 			root = root->reloc_root;
2520 			node->new_bytenr = root->node->start;
2521 			btrfs_put_root(node->root);
2522 			node->root = btrfs_grab_root(root);
2523 			ASSERT(node->root);
2524 			list_add_tail(&node->list, &rc->backref_cache.changed);
2525 		} else {
2526 			path->lowest_level = node->level;
2527 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2528 			btrfs_release_path(path);
2529 			if (ret > 0)
2530 				ret = 0;
2531 		}
2532 		if (!ret)
2533 			update_processed_blocks(rc, node);
2534 	} else {
2535 		ret = do_relocation(trans, rc, node, key, path, 1);
2536 	}
2537 out:
2538 	if (ret || node->level == 0 || node->cowonly)
2539 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2540 	return ret;
2541 }
2542 
2543 /*
2544  * relocate a list of blocks
2545  */
2546 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2547 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2548 			 struct reloc_control *rc, struct rb_root *blocks)
2549 {
2550 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2551 	struct btrfs_backref_node *node;
2552 	struct btrfs_path *path;
2553 	struct tree_block *block;
2554 	struct tree_block *next;
2555 	int ret;
2556 	int err = 0;
2557 
2558 	path = btrfs_alloc_path();
2559 	if (!path) {
2560 		err = -ENOMEM;
2561 		goto out_free_blocks;
2562 	}
2563 
2564 	/* Kick in readahead for tree blocks with missing keys */
2565 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2566 		if (!block->key_ready)
2567 			readahead_tree_block(fs_info, block->bytenr);
2568 	}
2569 
2570 	/* Get first keys */
2571 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2572 		if (!block->key_ready) {
2573 			err = get_tree_block_key(fs_info, block);
2574 			if (err)
2575 				goto out_free_path;
2576 		}
2577 	}
2578 
2579 	/* Do tree relocation */
2580 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2581 		node = build_backref_tree(rc, &block->key,
2582 					  block->level, block->bytenr);
2583 		if (IS_ERR(node)) {
2584 			err = PTR_ERR(node);
2585 			goto out;
2586 		}
2587 
2588 		ret = relocate_tree_block(trans, rc, node, &block->key,
2589 					  path);
2590 		if (ret < 0) {
2591 			err = ret;
2592 			break;
2593 		}
2594 	}
2595 out:
2596 	err = finish_pending_nodes(trans, rc, path, err);
2597 
2598 out_free_path:
2599 	btrfs_free_path(path);
2600 out_free_blocks:
2601 	free_block_list(blocks);
2602 	return err;
2603 }
2604 
prealloc_file_extent_cluster(struct btrfs_inode * inode,struct file_extent_cluster * cluster)2605 static noinline_for_stack int prealloc_file_extent_cluster(
2606 				struct btrfs_inode *inode,
2607 				struct file_extent_cluster *cluster)
2608 {
2609 	u64 alloc_hint = 0;
2610 	u64 start;
2611 	u64 end;
2612 	u64 offset = inode->index_cnt;
2613 	u64 num_bytes;
2614 	int nr;
2615 	int ret = 0;
2616 	u64 prealloc_start = cluster->start - offset;
2617 	u64 prealloc_end = cluster->end - offset;
2618 	u64 cur_offset = prealloc_start;
2619 
2620 	BUG_ON(cluster->start != cluster->boundary[0]);
2621 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2622 					      prealloc_end + 1 - prealloc_start);
2623 	if (ret)
2624 		return ret;
2625 
2626 	inode_lock(&inode->vfs_inode);
2627 	for (nr = 0; nr < cluster->nr; nr++) {
2628 		start = cluster->boundary[nr] - offset;
2629 		if (nr + 1 < cluster->nr)
2630 			end = cluster->boundary[nr + 1] - 1 - offset;
2631 		else
2632 			end = cluster->end - offset;
2633 
2634 		lock_extent(&inode->io_tree, start, end);
2635 		num_bytes = end + 1 - start;
2636 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2637 						num_bytes, num_bytes,
2638 						end + 1, &alloc_hint);
2639 		cur_offset = end + 1;
2640 		unlock_extent(&inode->io_tree, start, end);
2641 		if (ret)
2642 			break;
2643 	}
2644 	inode_unlock(&inode->vfs_inode);
2645 
2646 	if (cur_offset < prealloc_end)
2647 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2648 					       prealloc_end + 1 - cur_offset);
2649 	return ret;
2650 }
2651 
2652 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)2653 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2654 			 u64 block_start)
2655 {
2656 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2657 	struct extent_map *em;
2658 	int ret = 0;
2659 
2660 	em = alloc_extent_map();
2661 	if (!em)
2662 		return -ENOMEM;
2663 
2664 	em->start = start;
2665 	em->len = end + 1 - start;
2666 	em->block_len = em->len;
2667 	em->block_start = block_start;
2668 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2669 
2670 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2671 	while (1) {
2672 		write_lock(&em_tree->lock);
2673 		ret = add_extent_mapping(em_tree, em, 0);
2674 		write_unlock(&em_tree->lock);
2675 		if (ret != -EEXIST) {
2676 			free_extent_map(em);
2677 			break;
2678 		}
2679 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2680 	}
2681 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Allow error injection to test balance cancellation
2687  */
btrfs_should_cancel_balance(struct btrfs_fs_info * fs_info)2688 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2689 {
2690 	return atomic_read(&fs_info->balance_cancel_req) ||
2691 		fatal_signal_pending(current);
2692 }
2693 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2694 
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)2695 static int relocate_file_extent_cluster(struct inode *inode,
2696 					struct file_extent_cluster *cluster)
2697 {
2698 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2699 	u64 page_start;
2700 	u64 page_end;
2701 	u64 offset = BTRFS_I(inode)->index_cnt;
2702 	unsigned long index;
2703 	unsigned long last_index;
2704 	struct page *page;
2705 	struct file_ra_state *ra;
2706 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2707 	int nr = 0;
2708 	int ret = 0;
2709 
2710 	if (!cluster->nr)
2711 		return 0;
2712 
2713 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2714 	if (!ra)
2715 		return -ENOMEM;
2716 
2717 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2718 	if (ret)
2719 		goto out;
2720 
2721 	file_ra_state_init(ra, inode->i_mapping);
2722 
2723 	ret = setup_extent_mapping(inode, cluster->start - offset,
2724 				   cluster->end - offset, cluster->start);
2725 	if (ret)
2726 		goto out;
2727 
2728 	index = (cluster->start - offset) >> PAGE_SHIFT;
2729 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2730 	while (index <= last_index) {
2731 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2732 				PAGE_SIZE);
2733 		if (ret)
2734 			goto out;
2735 
2736 		page = find_lock_page(inode->i_mapping, index);
2737 		if (!page) {
2738 			page_cache_sync_readahead(inode->i_mapping,
2739 						  ra, NULL, index,
2740 						  last_index + 1 - index);
2741 			page = find_or_create_page(inode->i_mapping, index,
2742 						   mask);
2743 			if (!page) {
2744 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2745 							PAGE_SIZE, true);
2746 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2747 							PAGE_SIZE);
2748 				ret = -ENOMEM;
2749 				goto out;
2750 			}
2751 		}
2752 
2753 		if (PageReadahead(page)) {
2754 			page_cache_async_readahead(inode->i_mapping,
2755 						   ra, NULL, page, index,
2756 						   last_index + 1 - index);
2757 		}
2758 
2759 		if (!PageUptodate(page)) {
2760 			btrfs_readpage(NULL, page);
2761 			lock_page(page);
2762 			if (!PageUptodate(page)) {
2763 				unlock_page(page);
2764 				put_page(page);
2765 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2766 							PAGE_SIZE, true);
2767 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2768 							       PAGE_SIZE);
2769 				ret = -EIO;
2770 				goto out;
2771 			}
2772 		}
2773 
2774 		page_start = page_offset(page);
2775 		page_end = page_start + PAGE_SIZE - 1;
2776 
2777 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2778 
2779 		set_page_extent_mapped(page);
2780 
2781 		if (nr < cluster->nr &&
2782 		    page_start + offset == cluster->boundary[nr]) {
2783 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2784 					page_start, page_end,
2785 					EXTENT_BOUNDARY);
2786 			nr++;
2787 		}
2788 
2789 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2790 						page_end, 0, NULL);
2791 		if (ret) {
2792 			unlock_page(page);
2793 			put_page(page);
2794 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2795 							 PAGE_SIZE, true);
2796 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2797 			                               PAGE_SIZE);
2798 
2799 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2800 					  page_start, page_end,
2801 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2802 			goto out;
2803 
2804 		}
2805 		set_page_dirty(page);
2806 
2807 		unlock_extent(&BTRFS_I(inode)->io_tree,
2808 			      page_start, page_end);
2809 		unlock_page(page);
2810 		put_page(page);
2811 
2812 		index++;
2813 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2814 		balance_dirty_pages_ratelimited(inode->i_mapping);
2815 		btrfs_throttle(fs_info);
2816 		if (btrfs_should_cancel_balance(fs_info)) {
2817 			ret = -ECANCELED;
2818 			goto out;
2819 		}
2820 	}
2821 	WARN_ON(nr != cluster->nr);
2822 out:
2823 	kfree(ra);
2824 	return ret;
2825 }
2826 
2827 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)2828 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2829 			 struct file_extent_cluster *cluster)
2830 {
2831 	int ret;
2832 
2833 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2834 		ret = relocate_file_extent_cluster(inode, cluster);
2835 		if (ret)
2836 			return ret;
2837 		cluster->nr = 0;
2838 	}
2839 
2840 	if (!cluster->nr)
2841 		cluster->start = extent_key->objectid;
2842 	else
2843 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2844 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2845 	cluster->boundary[cluster->nr] = extent_key->objectid;
2846 	cluster->nr++;
2847 
2848 	if (cluster->nr >= MAX_EXTENTS) {
2849 		ret = relocate_file_extent_cluster(inode, cluster);
2850 		if (ret)
2851 			return ret;
2852 		cluster->nr = 0;
2853 	}
2854 	return 0;
2855 }
2856 
2857 /*
2858  * helper to add a tree block to the list.
2859  * the major work is getting the generation and level of the block
2860  */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)2861 static int add_tree_block(struct reloc_control *rc,
2862 			  struct btrfs_key *extent_key,
2863 			  struct btrfs_path *path,
2864 			  struct rb_root *blocks)
2865 {
2866 	struct extent_buffer *eb;
2867 	struct btrfs_extent_item *ei;
2868 	struct btrfs_tree_block_info *bi;
2869 	struct tree_block *block;
2870 	struct rb_node *rb_node;
2871 	u32 item_size;
2872 	int level = -1;
2873 	u64 generation;
2874 
2875 	eb =  path->nodes[0];
2876 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2877 
2878 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2879 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2880 		ei = btrfs_item_ptr(eb, path->slots[0],
2881 				struct btrfs_extent_item);
2882 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2883 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2884 			level = btrfs_tree_block_level(eb, bi);
2885 		} else {
2886 			level = (int)extent_key->offset;
2887 		}
2888 		generation = btrfs_extent_generation(eb, ei);
2889 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2890 		btrfs_print_v0_err(eb->fs_info);
2891 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2892 		return -EINVAL;
2893 	} else {
2894 		BUG();
2895 	}
2896 
2897 	btrfs_release_path(path);
2898 
2899 	BUG_ON(level == -1);
2900 
2901 	block = kmalloc(sizeof(*block), GFP_NOFS);
2902 	if (!block)
2903 		return -ENOMEM;
2904 
2905 	block->bytenr = extent_key->objectid;
2906 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2907 	block->key.offset = generation;
2908 	block->level = level;
2909 	block->key_ready = 0;
2910 
2911 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2912 	if (rb_node)
2913 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2914 				    -EEXIST);
2915 
2916 	return 0;
2917 }
2918 
2919 /*
2920  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2921  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)2922 static int __add_tree_block(struct reloc_control *rc,
2923 			    u64 bytenr, u32 blocksize,
2924 			    struct rb_root *blocks)
2925 {
2926 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2927 	struct btrfs_path *path;
2928 	struct btrfs_key key;
2929 	int ret;
2930 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2931 
2932 	if (tree_block_processed(bytenr, rc))
2933 		return 0;
2934 
2935 	if (rb_simple_search(blocks, bytenr))
2936 		return 0;
2937 
2938 	path = btrfs_alloc_path();
2939 	if (!path)
2940 		return -ENOMEM;
2941 again:
2942 	key.objectid = bytenr;
2943 	if (skinny) {
2944 		key.type = BTRFS_METADATA_ITEM_KEY;
2945 		key.offset = (u64)-1;
2946 	} else {
2947 		key.type = BTRFS_EXTENT_ITEM_KEY;
2948 		key.offset = blocksize;
2949 	}
2950 
2951 	path->search_commit_root = 1;
2952 	path->skip_locking = 1;
2953 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2954 	if (ret < 0)
2955 		goto out;
2956 
2957 	if (ret > 0 && skinny) {
2958 		if (path->slots[0]) {
2959 			path->slots[0]--;
2960 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2961 					      path->slots[0]);
2962 			if (key.objectid == bytenr &&
2963 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2964 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2965 			      key.offset == blocksize)))
2966 				ret = 0;
2967 		}
2968 
2969 		if (ret) {
2970 			skinny = false;
2971 			btrfs_release_path(path);
2972 			goto again;
2973 		}
2974 	}
2975 	if (ret) {
2976 		ASSERT(ret == 1);
2977 		btrfs_print_leaf(path->nodes[0]);
2978 		btrfs_err(fs_info,
2979 	     "tree block extent item (%llu) is not found in extent tree",
2980 		     bytenr);
2981 		WARN_ON(1);
2982 		ret = -EINVAL;
2983 		goto out;
2984 	}
2985 
2986 	ret = add_tree_block(rc, &key, path, blocks);
2987 out:
2988 	btrfs_free_path(path);
2989 	return ret;
2990 }
2991 
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)2992 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2993 				    struct btrfs_block_group *block_group,
2994 				    struct inode *inode,
2995 				    u64 ino)
2996 {
2997 	struct btrfs_root *root = fs_info->tree_root;
2998 	struct btrfs_trans_handle *trans;
2999 	int ret = 0;
3000 
3001 	if (inode)
3002 		goto truncate;
3003 
3004 	inode = btrfs_iget(fs_info->sb, ino, root);
3005 	if (IS_ERR(inode))
3006 		return -ENOENT;
3007 
3008 truncate:
3009 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3010 						 &fs_info->global_block_rsv);
3011 	if (ret)
3012 		goto out;
3013 
3014 	trans = btrfs_join_transaction(root);
3015 	if (IS_ERR(trans)) {
3016 		ret = PTR_ERR(trans);
3017 		goto out;
3018 	}
3019 
3020 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3021 
3022 	btrfs_end_transaction(trans);
3023 	btrfs_btree_balance_dirty(fs_info);
3024 out:
3025 	iput(inode);
3026 	return ret;
3027 }
3028 
3029 /*
3030  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3031  * cache inode, to avoid free space cache data extent blocking data relocation.
3032  */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3033 static int delete_v1_space_cache(struct extent_buffer *leaf,
3034 				 struct btrfs_block_group *block_group,
3035 				 u64 data_bytenr)
3036 {
3037 	u64 space_cache_ino;
3038 	struct btrfs_file_extent_item *ei;
3039 	struct btrfs_key key;
3040 	bool found = false;
3041 	int i;
3042 	int ret;
3043 
3044 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3045 		return 0;
3046 
3047 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3048 		u8 type;
3049 
3050 		btrfs_item_key_to_cpu(leaf, &key, i);
3051 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3052 			continue;
3053 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3054 		type = btrfs_file_extent_type(leaf, ei);
3055 
3056 		if ((type == BTRFS_FILE_EXTENT_REG ||
3057 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3058 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3059 			found = true;
3060 			space_cache_ino = key.objectid;
3061 			break;
3062 		}
3063 	}
3064 	if (!found)
3065 		return -ENOENT;
3066 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3067 					space_cache_ino);
3068 	return ret;
3069 }
3070 
3071 /*
3072  * helper to find all tree blocks that reference a given data extent
3073  */
3074 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3075 int add_data_references(struct reloc_control *rc,
3076 			struct btrfs_key *extent_key,
3077 			struct btrfs_path *path,
3078 			struct rb_root *blocks)
3079 {
3080 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3081 	struct ulist *leaves = NULL;
3082 	struct ulist_iterator leaf_uiter;
3083 	struct ulist_node *ref_node = NULL;
3084 	const u32 blocksize = fs_info->nodesize;
3085 	int ret = 0;
3086 
3087 	btrfs_release_path(path);
3088 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3089 				   0, &leaves, NULL, true);
3090 	if (ret < 0)
3091 		return ret;
3092 
3093 	ULIST_ITER_INIT(&leaf_uiter);
3094 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3095 		struct extent_buffer *eb;
3096 
3097 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3098 		if (IS_ERR(eb)) {
3099 			ret = PTR_ERR(eb);
3100 			break;
3101 		}
3102 		ret = delete_v1_space_cache(eb, rc->block_group,
3103 					    extent_key->objectid);
3104 		free_extent_buffer(eb);
3105 		if (ret < 0)
3106 			break;
3107 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3108 		if (ret < 0)
3109 			break;
3110 	}
3111 	if (ret < 0)
3112 		free_block_list(blocks);
3113 	ulist_free(leaves);
3114 	return ret;
3115 }
3116 
3117 /*
3118  * helper to find next unprocessed extent
3119  */
3120 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3121 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3122 		     struct btrfs_key *extent_key)
3123 {
3124 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3125 	struct btrfs_key key;
3126 	struct extent_buffer *leaf;
3127 	u64 start, end, last;
3128 	int ret;
3129 
3130 	last = rc->block_group->start + rc->block_group->length;
3131 	while (1) {
3132 		cond_resched();
3133 		if (rc->search_start >= last) {
3134 			ret = 1;
3135 			break;
3136 		}
3137 
3138 		key.objectid = rc->search_start;
3139 		key.type = BTRFS_EXTENT_ITEM_KEY;
3140 		key.offset = 0;
3141 
3142 		path->search_commit_root = 1;
3143 		path->skip_locking = 1;
3144 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3145 					0, 0);
3146 		if (ret < 0)
3147 			break;
3148 next:
3149 		leaf = path->nodes[0];
3150 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3151 			ret = btrfs_next_leaf(rc->extent_root, path);
3152 			if (ret != 0)
3153 				break;
3154 			leaf = path->nodes[0];
3155 		}
3156 
3157 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3158 		if (key.objectid >= last) {
3159 			ret = 1;
3160 			break;
3161 		}
3162 
3163 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3164 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3165 			path->slots[0]++;
3166 			goto next;
3167 		}
3168 
3169 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3170 		    key.objectid + key.offset <= rc->search_start) {
3171 			path->slots[0]++;
3172 			goto next;
3173 		}
3174 
3175 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3176 		    key.objectid + fs_info->nodesize <=
3177 		    rc->search_start) {
3178 			path->slots[0]++;
3179 			goto next;
3180 		}
3181 
3182 		ret = find_first_extent_bit(&rc->processed_blocks,
3183 					    key.objectid, &start, &end,
3184 					    EXTENT_DIRTY, NULL);
3185 
3186 		if (ret == 0 && start <= key.objectid) {
3187 			btrfs_release_path(path);
3188 			rc->search_start = end + 1;
3189 		} else {
3190 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3191 				rc->search_start = key.objectid + key.offset;
3192 			else
3193 				rc->search_start = key.objectid +
3194 					fs_info->nodesize;
3195 			memcpy(extent_key, &key, sizeof(key));
3196 			return 0;
3197 		}
3198 	}
3199 	btrfs_release_path(path);
3200 	return ret;
3201 }
3202 
set_reloc_control(struct reloc_control * rc)3203 static void set_reloc_control(struct reloc_control *rc)
3204 {
3205 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3206 
3207 	mutex_lock(&fs_info->reloc_mutex);
3208 	fs_info->reloc_ctl = rc;
3209 	mutex_unlock(&fs_info->reloc_mutex);
3210 }
3211 
unset_reloc_control(struct reloc_control * rc)3212 static void unset_reloc_control(struct reloc_control *rc)
3213 {
3214 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3215 
3216 	mutex_lock(&fs_info->reloc_mutex);
3217 	fs_info->reloc_ctl = NULL;
3218 	mutex_unlock(&fs_info->reloc_mutex);
3219 }
3220 
check_extent_flags(u64 flags)3221 static int check_extent_flags(u64 flags)
3222 {
3223 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3224 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3225 		return 1;
3226 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3227 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3228 		return 1;
3229 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3230 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3231 		return 1;
3232 	return 0;
3233 }
3234 
3235 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3236 int prepare_to_relocate(struct reloc_control *rc)
3237 {
3238 	struct btrfs_trans_handle *trans;
3239 	int ret;
3240 
3241 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3242 					      BTRFS_BLOCK_RSV_TEMP);
3243 	if (!rc->block_rsv)
3244 		return -ENOMEM;
3245 
3246 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3247 	rc->search_start = rc->block_group->start;
3248 	rc->extents_found = 0;
3249 	rc->nodes_relocated = 0;
3250 	rc->merging_rsv_size = 0;
3251 	rc->reserved_bytes = 0;
3252 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3253 			      RELOCATION_RESERVED_NODES;
3254 	ret = btrfs_block_rsv_refill(rc->extent_root,
3255 				     rc->block_rsv, rc->block_rsv->size,
3256 				     BTRFS_RESERVE_FLUSH_ALL);
3257 	if (ret)
3258 		return ret;
3259 
3260 	rc->create_reloc_tree = 1;
3261 	set_reloc_control(rc);
3262 
3263 	trans = btrfs_join_transaction(rc->extent_root);
3264 	if (IS_ERR(trans)) {
3265 		unset_reloc_control(rc);
3266 		/*
3267 		 * extent tree is not a ref_cow tree and has no reloc_root to
3268 		 * cleanup.  And callers are responsible to free the above
3269 		 * block rsv.
3270 		 */
3271 		return PTR_ERR(trans);
3272 	}
3273 
3274 	ret = btrfs_commit_transaction(trans);
3275 	if (ret)
3276 		unset_reloc_control(rc);
3277 
3278 	return ret;
3279 }
3280 
relocate_block_group(struct reloc_control * rc)3281 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3282 {
3283 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3284 	struct rb_root blocks = RB_ROOT;
3285 	struct btrfs_key key;
3286 	struct btrfs_trans_handle *trans = NULL;
3287 	struct btrfs_path *path;
3288 	struct btrfs_extent_item *ei;
3289 	u64 flags;
3290 	u32 item_size;
3291 	int ret;
3292 	int err = 0;
3293 	int progress = 0;
3294 
3295 	path = btrfs_alloc_path();
3296 	if (!path)
3297 		return -ENOMEM;
3298 	path->reada = READA_FORWARD;
3299 
3300 	ret = prepare_to_relocate(rc);
3301 	if (ret) {
3302 		err = ret;
3303 		goto out_free;
3304 	}
3305 
3306 	while (1) {
3307 		rc->reserved_bytes = 0;
3308 		ret = btrfs_block_rsv_refill(rc->extent_root,
3309 					rc->block_rsv, rc->block_rsv->size,
3310 					BTRFS_RESERVE_FLUSH_ALL);
3311 		if (ret) {
3312 			err = ret;
3313 			break;
3314 		}
3315 		progress++;
3316 		trans = btrfs_start_transaction(rc->extent_root, 0);
3317 		if (IS_ERR(trans)) {
3318 			err = PTR_ERR(trans);
3319 			trans = NULL;
3320 			break;
3321 		}
3322 restart:
3323 		if (update_backref_cache(trans, &rc->backref_cache)) {
3324 			btrfs_end_transaction(trans);
3325 			trans = NULL;
3326 			continue;
3327 		}
3328 
3329 		ret = find_next_extent(rc, path, &key);
3330 		if (ret < 0)
3331 			err = ret;
3332 		if (ret != 0)
3333 			break;
3334 
3335 		rc->extents_found++;
3336 
3337 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3338 				    struct btrfs_extent_item);
3339 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3340 		if (item_size >= sizeof(*ei)) {
3341 			flags = btrfs_extent_flags(path->nodes[0], ei);
3342 			ret = check_extent_flags(flags);
3343 			BUG_ON(ret);
3344 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3345 			err = -EINVAL;
3346 			btrfs_print_v0_err(trans->fs_info);
3347 			btrfs_abort_transaction(trans, err);
3348 			break;
3349 		} else {
3350 			BUG();
3351 		}
3352 
3353 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3354 			ret = add_tree_block(rc, &key, path, &blocks);
3355 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3356 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3357 			ret = add_data_references(rc, &key, path, &blocks);
3358 		} else {
3359 			btrfs_release_path(path);
3360 			ret = 0;
3361 		}
3362 		if (ret < 0) {
3363 			err = ret;
3364 			break;
3365 		}
3366 
3367 		if (!RB_EMPTY_ROOT(&blocks)) {
3368 			ret = relocate_tree_blocks(trans, rc, &blocks);
3369 			if (ret < 0) {
3370 				if (ret != -EAGAIN) {
3371 					err = ret;
3372 					break;
3373 				}
3374 				rc->extents_found--;
3375 				rc->search_start = key.objectid;
3376 			}
3377 		}
3378 
3379 		btrfs_end_transaction_throttle(trans);
3380 		btrfs_btree_balance_dirty(fs_info);
3381 		trans = NULL;
3382 
3383 		if (rc->stage == MOVE_DATA_EXTENTS &&
3384 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3385 			rc->found_file_extent = 1;
3386 			ret = relocate_data_extent(rc->data_inode,
3387 						   &key, &rc->cluster);
3388 			if (ret < 0) {
3389 				err = ret;
3390 				break;
3391 			}
3392 		}
3393 		if (btrfs_should_cancel_balance(fs_info)) {
3394 			err = -ECANCELED;
3395 			break;
3396 		}
3397 	}
3398 	if (trans && progress && err == -ENOSPC) {
3399 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3400 		if (ret == 1) {
3401 			err = 0;
3402 			progress = 0;
3403 			goto restart;
3404 		}
3405 	}
3406 
3407 	btrfs_release_path(path);
3408 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3409 
3410 	if (trans) {
3411 		btrfs_end_transaction_throttle(trans);
3412 		btrfs_btree_balance_dirty(fs_info);
3413 	}
3414 
3415 	if (!err) {
3416 		ret = relocate_file_extent_cluster(rc->data_inode,
3417 						   &rc->cluster);
3418 		if (ret < 0)
3419 			err = ret;
3420 	}
3421 
3422 	rc->create_reloc_tree = 0;
3423 	set_reloc_control(rc);
3424 
3425 	btrfs_backref_release_cache(&rc->backref_cache);
3426 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3427 
3428 	/*
3429 	 * Even in the case when the relocation is cancelled, we should all go
3430 	 * through prepare_to_merge() and merge_reloc_roots().
3431 	 *
3432 	 * For error (including cancelled balance), prepare_to_merge() will
3433 	 * mark all reloc trees orphan, then queue them for cleanup in
3434 	 * merge_reloc_roots()
3435 	 */
3436 	err = prepare_to_merge(rc, err);
3437 
3438 	merge_reloc_roots(rc);
3439 
3440 	rc->merge_reloc_tree = 0;
3441 	unset_reloc_control(rc);
3442 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3443 
3444 	/* get rid of pinned extents */
3445 	trans = btrfs_join_transaction(rc->extent_root);
3446 	if (IS_ERR(trans)) {
3447 		err = PTR_ERR(trans);
3448 		goto out_free;
3449 	}
3450 	ret = btrfs_commit_transaction(trans);
3451 	if (ret && !err)
3452 		err = ret;
3453 out_free:
3454 	ret = clean_dirty_subvols(rc);
3455 	if (ret < 0 && !err)
3456 		err = ret;
3457 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3458 	btrfs_free_path(path);
3459 	return err;
3460 }
3461 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3462 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3463 				 struct btrfs_root *root, u64 objectid)
3464 {
3465 	struct btrfs_path *path;
3466 	struct btrfs_inode_item *item;
3467 	struct extent_buffer *leaf;
3468 	int ret;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path)
3472 		return -ENOMEM;
3473 
3474 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3475 	if (ret)
3476 		goto out;
3477 
3478 	leaf = path->nodes[0];
3479 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3480 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3481 	btrfs_set_inode_generation(leaf, item, 1);
3482 	btrfs_set_inode_size(leaf, item, 0);
3483 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3484 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3485 					  BTRFS_INODE_PREALLOC);
3486 	btrfs_mark_buffer_dirty(leaf);
3487 out:
3488 	btrfs_free_path(path);
3489 	return ret;
3490 }
3491 
3492 /*
3493  * helper to create inode for data relocation.
3494  * the inode is in data relocation tree and its link count is 0
3495  */
3496 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group * group)3497 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3498 				 struct btrfs_block_group *group)
3499 {
3500 	struct inode *inode = NULL;
3501 	struct btrfs_trans_handle *trans;
3502 	struct btrfs_root *root;
3503 	u64 objectid;
3504 	int err = 0;
3505 
3506 	root = btrfs_grab_root(fs_info->data_reloc_root);
3507 	trans = btrfs_start_transaction(root, 6);
3508 	if (IS_ERR(trans)) {
3509 		btrfs_put_root(root);
3510 		return ERR_CAST(trans);
3511 	}
3512 
3513 	err = btrfs_find_free_objectid(root, &objectid);
3514 	if (err)
3515 		goto out;
3516 
3517 	err = __insert_orphan_inode(trans, root, objectid);
3518 	BUG_ON(err);
3519 
3520 	inode = btrfs_iget(fs_info->sb, objectid, root);
3521 	BUG_ON(IS_ERR(inode));
3522 	BTRFS_I(inode)->index_cnt = group->start;
3523 
3524 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3525 out:
3526 	btrfs_put_root(root);
3527 	btrfs_end_transaction(trans);
3528 	btrfs_btree_balance_dirty(fs_info);
3529 	if (err) {
3530 		if (inode)
3531 			iput(inode);
3532 		inode = ERR_PTR(err);
3533 	}
3534 	return inode;
3535 }
3536 
alloc_reloc_control(struct btrfs_fs_info * fs_info)3537 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3538 {
3539 	struct reloc_control *rc;
3540 
3541 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3542 	if (!rc)
3543 		return NULL;
3544 
3545 	INIT_LIST_HEAD(&rc->reloc_roots);
3546 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3547 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3548 	mapping_tree_init(&rc->reloc_root_tree);
3549 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3550 			    IO_TREE_RELOC_BLOCKS, NULL);
3551 	return rc;
3552 }
3553 
free_reloc_control(struct reloc_control * rc)3554 static void free_reloc_control(struct reloc_control *rc)
3555 {
3556 	struct mapping_node *node, *tmp;
3557 
3558 	free_reloc_roots(&rc->reloc_roots);
3559 	rbtree_postorder_for_each_entry_safe(node, tmp,
3560 			&rc->reloc_root_tree.rb_root, rb_node)
3561 		kfree(node);
3562 
3563 	kfree(rc);
3564 }
3565 
3566 /*
3567  * Print the block group being relocated
3568  */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group)3569 static void describe_relocation(struct btrfs_fs_info *fs_info,
3570 				struct btrfs_block_group *block_group)
3571 {
3572 	char buf[128] = {'\0'};
3573 
3574 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3575 
3576 	btrfs_info(fs_info,
3577 		   "relocating block group %llu flags %s",
3578 		   block_group->start, buf);
3579 }
3580 
stage_to_string(int stage)3581 static const char *stage_to_string(int stage)
3582 {
3583 	if (stage == MOVE_DATA_EXTENTS)
3584 		return "move data extents";
3585 	if (stage == UPDATE_DATA_PTRS)
3586 		return "update data pointers";
3587 	return "unknown";
3588 }
3589 
3590 /*
3591  * function to relocate all extents in a block group.
3592  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3593 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3594 {
3595 	struct btrfs_block_group *bg;
3596 	struct btrfs_root *extent_root = fs_info->extent_root;
3597 	struct reloc_control *rc;
3598 	struct inode *inode;
3599 	struct btrfs_path *path;
3600 	int ret;
3601 	int rw = 0;
3602 	int err = 0;
3603 
3604 	bg = btrfs_lookup_block_group(fs_info, group_start);
3605 	if (!bg)
3606 		return -ENOENT;
3607 
3608 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3609 		btrfs_put_block_group(bg);
3610 		return -ETXTBSY;
3611 	}
3612 
3613 	rc = alloc_reloc_control(fs_info);
3614 	if (!rc) {
3615 		btrfs_put_block_group(bg);
3616 		return -ENOMEM;
3617 	}
3618 
3619 	rc->extent_root = extent_root;
3620 	rc->block_group = bg;
3621 
3622 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3623 	if (ret) {
3624 		err = ret;
3625 		goto out;
3626 	}
3627 	rw = 1;
3628 
3629 	path = btrfs_alloc_path();
3630 	if (!path) {
3631 		err = -ENOMEM;
3632 		goto out;
3633 	}
3634 
3635 	inode = lookup_free_space_inode(rc->block_group, path);
3636 	btrfs_free_path(path);
3637 
3638 	if (!IS_ERR(inode))
3639 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3640 	else
3641 		ret = PTR_ERR(inode);
3642 
3643 	if (ret && ret != -ENOENT) {
3644 		err = ret;
3645 		goto out;
3646 	}
3647 
3648 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3649 	if (IS_ERR(rc->data_inode)) {
3650 		err = PTR_ERR(rc->data_inode);
3651 		rc->data_inode = NULL;
3652 		goto out;
3653 	}
3654 
3655 	describe_relocation(fs_info, rc->block_group);
3656 
3657 	btrfs_wait_block_group_reservations(rc->block_group);
3658 	btrfs_wait_nocow_writers(rc->block_group);
3659 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3660 				 rc->block_group->start,
3661 				 rc->block_group->length);
3662 
3663 	while (1) {
3664 		int finishes_stage;
3665 
3666 		mutex_lock(&fs_info->cleaner_mutex);
3667 		ret = relocate_block_group(rc);
3668 		mutex_unlock(&fs_info->cleaner_mutex);
3669 		if (ret < 0)
3670 			err = ret;
3671 
3672 		finishes_stage = rc->stage;
3673 		/*
3674 		 * We may have gotten ENOSPC after we already dirtied some
3675 		 * extents.  If writeout happens while we're relocating a
3676 		 * different block group we could end up hitting the
3677 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3678 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3679 		 * properly so we don't trip over this problem, and then break
3680 		 * out of the loop if we hit an error.
3681 		 */
3682 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3683 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3684 						       (u64)-1);
3685 			if (ret)
3686 				err = ret;
3687 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3688 						 0, -1);
3689 			rc->stage = UPDATE_DATA_PTRS;
3690 		}
3691 
3692 		if (err < 0)
3693 			goto out;
3694 
3695 		if (rc->extents_found == 0)
3696 			break;
3697 
3698 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3699 			   rc->extents_found, stage_to_string(finishes_stage));
3700 	}
3701 
3702 	WARN_ON(rc->block_group->pinned > 0);
3703 	WARN_ON(rc->block_group->reserved > 0);
3704 	WARN_ON(rc->block_group->used > 0);
3705 out:
3706 	if (err && rw)
3707 		btrfs_dec_block_group_ro(rc->block_group);
3708 	iput(rc->data_inode);
3709 	btrfs_put_block_group(rc->block_group);
3710 	free_reloc_control(rc);
3711 	return err;
3712 }
3713 
mark_garbage_root(struct btrfs_root * root)3714 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3715 {
3716 	struct btrfs_fs_info *fs_info = root->fs_info;
3717 	struct btrfs_trans_handle *trans;
3718 	int ret, err;
3719 
3720 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3721 	if (IS_ERR(trans))
3722 		return PTR_ERR(trans);
3723 
3724 	memset(&root->root_item.drop_progress, 0,
3725 		sizeof(root->root_item.drop_progress));
3726 	root->root_item.drop_level = 0;
3727 	btrfs_set_root_refs(&root->root_item, 0);
3728 	ret = btrfs_update_root(trans, fs_info->tree_root,
3729 				&root->root_key, &root->root_item);
3730 
3731 	err = btrfs_end_transaction(trans);
3732 	if (err)
3733 		return err;
3734 	return ret;
3735 }
3736 
3737 /*
3738  * recover relocation interrupted by system crash.
3739  *
3740  * this function resumes merging reloc trees with corresponding fs trees.
3741  * this is important for keeping the sharing of tree blocks
3742  */
btrfs_recover_relocation(struct btrfs_root * root)3743 int btrfs_recover_relocation(struct btrfs_root *root)
3744 {
3745 	struct btrfs_fs_info *fs_info = root->fs_info;
3746 	LIST_HEAD(reloc_roots);
3747 	struct btrfs_key key;
3748 	struct btrfs_root *fs_root;
3749 	struct btrfs_root *reloc_root;
3750 	struct btrfs_path *path;
3751 	struct extent_buffer *leaf;
3752 	struct reloc_control *rc = NULL;
3753 	struct btrfs_trans_handle *trans;
3754 	int ret;
3755 	int err = 0;
3756 
3757 	path = btrfs_alloc_path();
3758 	if (!path)
3759 		return -ENOMEM;
3760 	path->reada = READA_BACK;
3761 
3762 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3763 	key.type = BTRFS_ROOT_ITEM_KEY;
3764 	key.offset = (u64)-1;
3765 
3766 	while (1) {
3767 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3768 					path, 0, 0);
3769 		if (ret < 0) {
3770 			err = ret;
3771 			goto out;
3772 		}
3773 		if (ret > 0) {
3774 			if (path->slots[0] == 0)
3775 				break;
3776 			path->slots[0]--;
3777 		}
3778 		leaf = path->nodes[0];
3779 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3780 		btrfs_release_path(path);
3781 
3782 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3783 		    key.type != BTRFS_ROOT_ITEM_KEY)
3784 			break;
3785 
3786 		reloc_root = btrfs_read_tree_root(root, &key);
3787 		if (IS_ERR(reloc_root)) {
3788 			err = PTR_ERR(reloc_root);
3789 			goto out;
3790 		}
3791 
3792 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3793 		list_add(&reloc_root->root_list, &reloc_roots);
3794 
3795 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3796 			fs_root = btrfs_get_fs_root(fs_info,
3797 					reloc_root->root_key.offset, false);
3798 			if (IS_ERR(fs_root)) {
3799 				ret = PTR_ERR(fs_root);
3800 				if (ret != -ENOENT) {
3801 					err = ret;
3802 					goto out;
3803 				}
3804 				ret = mark_garbage_root(reloc_root);
3805 				if (ret < 0) {
3806 					err = ret;
3807 					goto out;
3808 				}
3809 			} else {
3810 				btrfs_put_root(fs_root);
3811 			}
3812 		}
3813 
3814 		if (key.offset == 0)
3815 			break;
3816 
3817 		key.offset--;
3818 	}
3819 	btrfs_release_path(path);
3820 
3821 	if (list_empty(&reloc_roots))
3822 		goto out;
3823 
3824 	rc = alloc_reloc_control(fs_info);
3825 	if (!rc) {
3826 		err = -ENOMEM;
3827 		goto out;
3828 	}
3829 
3830 	rc->extent_root = fs_info->extent_root;
3831 
3832 	set_reloc_control(rc);
3833 
3834 	trans = btrfs_join_transaction(rc->extent_root);
3835 	if (IS_ERR(trans)) {
3836 		err = PTR_ERR(trans);
3837 		goto out_unset;
3838 	}
3839 
3840 	rc->merge_reloc_tree = 1;
3841 
3842 	while (!list_empty(&reloc_roots)) {
3843 		reloc_root = list_entry(reloc_roots.next,
3844 					struct btrfs_root, root_list);
3845 		list_del(&reloc_root->root_list);
3846 
3847 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3848 			list_add_tail(&reloc_root->root_list,
3849 				      &rc->reloc_roots);
3850 			continue;
3851 		}
3852 
3853 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3854 					    false);
3855 		if (IS_ERR(fs_root)) {
3856 			err = PTR_ERR(fs_root);
3857 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3858 			btrfs_end_transaction(trans);
3859 			goto out_unset;
3860 		}
3861 
3862 		err = __add_reloc_root(reloc_root);
3863 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3864 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3865 		btrfs_put_root(fs_root);
3866 	}
3867 
3868 	err = btrfs_commit_transaction(trans);
3869 	if (err)
3870 		goto out_unset;
3871 
3872 	merge_reloc_roots(rc);
3873 
3874 	unset_reloc_control(rc);
3875 
3876 	trans = btrfs_join_transaction(rc->extent_root);
3877 	if (IS_ERR(trans)) {
3878 		err = PTR_ERR(trans);
3879 		goto out_clean;
3880 	}
3881 	err = btrfs_commit_transaction(trans);
3882 out_clean:
3883 	ret = clean_dirty_subvols(rc);
3884 	if (ret < 0 && !err)
3885 		err = ret;
3886 out_unset:
3887 	unset_reloc_control(rc);
3888 	free_reloc_control(rc);
3889 out:
3890 	free_reloc_roots(&reloc_roots);
3891 
3892 	btrfs_free_path(path);
3893 
3894 	if (err == 0) {
3895 		/* cleanup orphan inode in data relocation tree */
3896 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3897 		ASSERT(fs_root);
3898 		err = btrfs_orphan_cleanup(fs_root);
3899 		btrfs_put_root(fs_root);
3900 	}
3901 	return err;
3902 }
3903 
3904 /*
3905  * helper to add ordered checksum for data relocation.
3906  *
3907  * cloning checksum properly handles the nodatasum extents.
3908  * it also saves CPU time to re-calculate the checksum.
3909  */
btrfs_reloc_clone_csums(struct btrfs_inode * inode,u64 file_pos,u64 len)3910 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3911 {
3912 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3913 	struct btrfs_ordered_sum *sums;
3914 	struct btrfs_ordered_extent *ordered;
3915 	int ret;
3916 	u64 disk_bytenr;
3917 	u64 new_bytenr;
3918 	LIST_HEAD(list);
3919 
3920 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3921 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3922 
3923 	disk_bytenr = file_pos + inode->index_cnt;
3924 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3925 				       disk_bytenr + len - 1, &list, 0);
3926 	if (ret)
3927 		goto out;
3928 
3929 	while (!list_empty(&list)) {
3930 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3931 		list_del_init(&sums->list);
3932 
3933 		/*
3934 		 * We need to offset the new_bytenr based on where the csum is.
3935 		 * We need to do this because we will read in entire prealloc
3936 		 * extents but we may have written to say the middle of the
3937 		 * prealloc extent, so we need to make sure the csum goes with
3938 		 * the right disk offset.
3939 		 *
3940 		 * We can do this because the data reloc inode refers strictly
3941 		 * to the on disk bytes, so we don't have to worry about
3942 		 * disk_len vs real len like with real inodes since it's all
3943 		 * disk length.
3944 		 */
3945 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3946 		sums->bytenr = new_bytenr;
3947 
3948 		btrfs_add_ordered_sum(ordered, sums);
3949 	}
3950 out:
3951 	btrfs_put_ordered_extent(ordered);
3952 	return ret;
3953 }
3954 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)3955 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3956 			  struct btrfs_root *root, struct extent_buffer *buf,
3957 			  struct extent_buffer *cow)
3958 {
3959 	struct btrfs_fs_info *fs_info = root->fs_info;
3960 	struct reloc_control *rc;
3961 	struct btrfs_backref_node *node;
3962 	int first_cow = 0;
3963 	int level;
3964 	int ret = 0;
3965 
3966 	rc = fs_info->reloc_ctl;
3967 	if (!rc)
3968 		return 0;
3969 
3970 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3971 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3972 
3973 	level = btrfs_header_level(buf);
3974 	if (btrfs_header_generation(buf) <=
3975 	    btrfs_root_last_snapshot(&root->root_item))
3976 		first_cow = 1;
3977 
3978 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3979 	    rc->create_reloc_tree) {
3980 		WARN_ON(!first_cow && level == 0);
3981 
3982 		node = rc->backref_cache.path[level];
3983 		BUG_ON(node->bytenr != buf->start &&
3984 		       node->new_bytenr != buf->start);
3985 
3986 		btrfs_backref_drop_node_buffer(node);
3987 		atomic_inc(&cow->refs);
3988 		node->eb = cow;
3989 		node->new_bytenr = cow->start;
3990 
3991 		if (!node->pending) {
3992 			list_move_tail(&node->list,
3993 				       &rc->backref_cache.pending[level]);
3994 			node->pending = 1;
3995 		}
3996 
3997 		if (first_cow)
3998 			mark_block_processed(rc, node);
3999 
4000 		if (first_cow && level > 0)
4001 			rc->nodes_relocated += buf->len;
4002 	}
4003 
4004 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4005 		ret = replace_file_extents(trans, rc, root, cow);
4006 	return ret;
4007 }
4008 
4009 /*
4010  * called before creating snapshot. it calculates metadata reservation
4011  * required for relocating tree blocks in the snapshot
4012  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4013 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4014 			      u64 *bytes_to_reserve)
4015 {
4016 	struct btrfs_root *root = pending->root;
4017 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4018 
4019 	if (!rc || !have_reloc_root(root))
4020 		return;
4021 
4022 	if (!rc->merge_reloc_tree)
4023 		return;
4024 
4025 	root = root->reloc_root;
4026 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4027 	/*
4028 	 * relocation is in the stage of merging trees. the space
4029 	 * used by merging a reloc tree is twice the size of
4030 	 * relocated tree nodes in the worst case. half for cowing
4031 	 * the reloc tree, half for cowing the fs tree. the space
4032 	 * used by cowing the reloc tree will be freed after the
4033 	 * tree is dropped. if we create snapshot, cowing the fs
4034 	 * tree may use more space than it frees. so we need
4035 	 * reserve extra space.
4036 	 */
4037 	*bytes_to_reserve += rc->nodes_relocated;
4038 }
4039 
4040 /*
4041  * called after snapshot is created. migrate block reservation
4042  * and create reloc root for the newly created snapshot
4043  *
4044  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4045  * references held on the reloc_root, one for root->reloc_root and one for
4046  * rc->reloc_roots.
4047  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4048 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4049 			       struct btrfs_pending_snapshot *pending)
4050 {
4051 	struct btrfs_root *root = pending->root;
4052 	struct btrfs_root *reloc_root;
4053 	struct btrfs_root *new_root;
4054 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4055 	int ret;
4056 
4057 	if (!rc || !have_reloc_root(root))
4058 		return 0;
4059 
4060 	rc = root->fs_info->reloc_ctl;
4061 	rc->merging_rsv_size += rc->nodes_relocated;
4062 
4063 	if (rc->merge_reloc_tree) {
4064 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4065 					      rc->block_rsv,
4066 					      rc->nodes_relocated, true);
4067 		if (ret)
4068 			return ret;
4069 	}
4070 
4071 	new_root = pending->snap;
4072 	reloc_root = create_reloc_root(trans, root->reloc_root,
4073 				       new_root->root_key.objectid);
4074 	if (IS_ERR(reloc_root))
4075 		return PTR_ERR(reloc_root);
4076 
4077 	ret = __add_reloc_root(reloc_root);
4078 	BUG_ON(ret < 0);
4079 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4080 
4081 	if (rc->create_reloc_tree)
4082 		ret = clone_backref_node(trans, rc, root, reloc_root);
4083 	return ret;
4084 }
4085