• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
no_open(struct inode * inode,struct file * file)119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
inode_init_always(struct super_block * sb,struct inode * inode)132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
183 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
184 	mapping->wb_err = 0;
185 	atomic_set(&mapping->i_mmap_writable, 0);
186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 	atomic_set(&mapping->nr_thps, 0);
188 #endif
189 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 	mapping->private_data = NULL;
191 	mapping->writeback_index = 0;
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
195 #ifdef CONFIG_FS_POSIX_ACL
196 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198 
199 #ifdef CONFIG_FSNOTIFY
200 	inode->i_fsnotify_mask = 0;
201 #endif
202 	inode->i_flctx = NULL;
203 
204 	if (unlikely(security_inode_alloc(inode)))
205 		return -ENOMEM;
206 	this_cpu_inc(nr_inodes);
207 
208 	return 0;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211 
free_inode_nonrcu(struct inode * inode)212 void free_inode_nonrcu(struct inode *inode)
213 {
214 	kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217 
i_callback(struct rcu_head * head)218 static void i_callback(struct rcu_head *head)
219 {
220 	struct inode *inode = container_of(head, struct inode, i_rcu);
221 	if (inode->free_inode)
222 		inode->free_inode(inode);
223 	else
224 		free_inode_nonrcu(inode);
225 }
226 
alloc_inode(struct super_block * sb)227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 	const struct super_operations *ops = sb->s_op;
230 	struct inode *inode;
231 
232 	if (ops->alloc_inode)
233 		inode = ops->alloc_inode(sb);
234 	else
235 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236 
237 	if (!inode)
238 		return NULL;
239 
240 	if (unlikely(inode_init_always(sb, inode))) {
241 		if (ops->destroy_inode) {
242 			ops->destroy_inode(inode);
243 			if (!ops->free_inode)
244 				return NULL;
245 		}
246 		inode->free_inode = ops->free_inode;
247 		i_callback(&inode->i_rcu);
248 		return NULL;
249 	}
250 
251 	return inode;
252 }
253 
__destroy_inode(struct inode * inode)254 void __destroy_inode(struct inode *inode)
255 {
256 	BUG_ON(inode_has_buffers(inode));
257 	inode_detach_wb(inode);
258 	security_inode_free(inode);
259 	fsnotify_inode_delete(inode);
260 	locks_free_lock_context(inode);
261 	if (!inode->i_nlink) {
262 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 		atomic_long_dec(&inode->i_sb->s_remove_count);
264 	}
265 
266 #ifdef CONFIG_FS_POSIX_ACL
267 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 		posix_acl_release(inode->i_acl);
269 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 		posix_acl_release(inode->i_default_acl);
271 #endif
272 	this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275 
destroy_inode(struct inode * inode)276 static void destroy_inode(struct inode *inode)
277 {
278 	const struct super_operations *ops = inode->i_sb->s_op;
279 
280 	BUG_ON(!list_empty(&inode->i_lru));
281 	__destroy_inode(inode);
282 	if (ops->destroy_inode) {
283 		ops->destroy_inode(inode);
284 		if (!ops->free_inode)
285 			return;
286 	}
287 	inode->free_inode = ops->free_inode;
288 	call_rcu(&inode->i_rcu, i_callback);
289 }
290 
291 /**
292  * drop_nlink - directly drop an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  In cases
297  * where we are attempting to track writes to the
298  * filesystem, a decrement to zero means an imminent
299  * write when the file is truncated and actually unlinked
300  * on the filesystem.
301  */
drop_nlink(struct inode * inode)302 void drop_nlink(struct inode *inode)
303 {
304 	WARN_ON(inode->i_nlink == 0);
305 	inode->__i_nlink--;
306 	if (!inode->i_nlink)
307 		atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL_NS(drop_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
310 
311 /**
312  * clear_nlink - directly zero an inode's link count
313  * @inode: inode
314  *
315  * This is a low-level filesystem helper to replace any
316  * direct filesystem manipulation of i_nlink.  See
317  * drop_nlink() for why we care about i_nlink hitting zero.
318  */
clear_nlink(struct inode * inode)319 void clear_nlink(struct inode *inode)
320 {
321 	if (inode->i_nlink) {
322 		inode->__i_nlink = 0;
323 		atomic_long_inc(&inode->i_sb->s_remove_count);
324 	}
325 }
326 EXPORT_SYMBOL(clear_nlink);
327 
328 /**
329  * set_nlink - directly set an inode's link count
330  * @inode: inode
331  * @nlink: new nlink (should be non-zero)
332  *
333  * This is a low-level filesystem helper to replace any
334  * direct filesystem manipulation of i_nlink.
335  */
set_nlink(struct inode * inode,unsigned int nlink)336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 	if (!nlink) {
339 		clear_nlink(inode);
340 	} else {
341 		/* Yes, some filesystems do change nlink from zero to one */
342 		if (inode->i_nlink == 0)
343 			atomic_long_dec(&inode->i_sb->s_remove_count);
344 
345 		inode->__i_nlink = nlink;
346 	}
347 }
348 EXPORT_SYMBOL_NS(set_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
349 
350 /**
351  * inc_nlink - directly increment an inode's link count
352  * @inode: inode
353  *
354  * This is a low-level filesystem helper to replace any
355  * direct filesystem manipulation of i_nlink.  Currently,
356  * it is only here for parity with dec_nlink().
357  */
inc_nlink(struct inode * inode)358 void inc_nlink(struct inode *inode)
359 {
360 	if (unlikely(inode->i_nlink == 0)) {
361 		WARN_ON(!(inode->i_state & I_LINKABLE));
362 		atomic_long_dec(&inode->i_sb->s_remove_count);
363 	}
364 
365 	inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368 
__address_space_init_once(struct address_space * mapping)369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 	init_rwsem(&mapping->i_mmap_rwsem);
373 	INIT_LIST_HEAD(&mapping->private_list);
374 	spin_lock_init(&mapping->private_lock);
375 	mapping->i_mmap = RB_ROOT_CACHED;
376 }
377 
address_space_init_once(struct address_space * mapping)378 void address_space_init_once(struct address_space *mapping)
379 {
380 	memset(mapping, 0, sizeof(*mapping));
381 	__address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384 
385 /*
386  * These are initializations that only need to be done
387  * once, because the fields are idempotent across use
388  * of the inode, so let the slab aware of that.
389  */
inode_init_once(struct inode * inode)390 void inode_init_once(struct inode *inode)
391 {
392 	memset(inode, 0, sizeof(*inode));
393 	INIT_HLIST_NODE(&inode->i_hash);
394 	INIT_LIST_HEAD(&inode->i_devices);
395 	INIT_LIST_HEAD(&inode->i_io_list);
396 	INIT_LIST_HEAD(&inode->i_wb_list);
397 	INIT_LIST_HEAD(&inode->i_lru);
398 	__address_space_init_once(&inode->i_data);
399 	i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL_NS(inode_init_once, ANDROID_GKI_VFS_EXPORT_ONLY);
402 
init_once(void * foo)403 static void init_once(void *foo)
404 {
405 	struct inode *inode = (struct inode *) foo;
406 
407 	inode_init_once(inode);
408 }
409 
410 /*
411  * inode->i_lock must be held
412  */
__iget(struct inode * inode)413 void __iget(struct inode *inode)
414 {
415 	atomic_inc(&inode->i_count);
416 }
417 
418 /*
419  * get additional reference to inode; caller must already hold one.
420  */
ihold(struct inode * inode)421 void ihold(struct inode *inode)
422 {
423 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL_NS(ihold, ANDROID_GKI_VFS_EXPORT_ONLY);
426 
inode_lru_list_add(struct inode * inode)427 static void inode_lru_list_add(struct inode *inode)
428 {
429 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 		this_cpu_inc(nr_unused);
431 	else
432 		inode->i_state |= I_REFERENCED;
433 }
434 
435 /*
436  * Add inode to LRU if needed (inode is unused and clean).
437  *
438  * Needs inode->i_lock held.
439  */
inode_add_lru(struct inode * inode)440 void inode_add_lru(struct inode *inode)
441 {
442 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 				I_FREEING | I_WILL_FREE)) &&
444 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 		inode_lru_list_add(inode);
446 }
447 
448 
inode_lru_list_del(struct inode * inode)449 static void inode_lru_list_del(struct inode *inode)
450 {
451 
452 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 		this_cpu_dec(nr_unused);
454 }
455 
456 /**
457  * inode_sb_list_add - add inode to the superblock list of inodes
458  * @inode: inode to add
459  */
inode_sb_list_add(struct inode * inode)460 void inode_sb_list_add(struct inode *inode)
461 {
462 	spin_lock(&inode->i_sb->s_inode_list_lock);
463 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 	spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467 
inode_sb_list_del(struct inode * inode)468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 	if (!list_empty(&inode->i_sb_list)) {
471 		spin_lock(&inode->i_sb->s_inode_list_lock);
472 		list_del_init(&inode->i_sb_list);
473 		spin_unlock(&inode->i_sb->s_inode_list_lock);
474 	}
475 }
476 
hash(struct super_block * sb,unsigned long hashval)477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 	unsigned long tmp;
480 
481 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 			L1_CACHE_BYTES;
483 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 	return tmp & i_hash_mask;
485 }
486 
487 /**
488  *	__insert_inode_hash - hash an inode
489  *	@inode: unhashed inode
490  *	@hashval: unsigned long value used to locate this object in the
491  *		inode_hashtable.
492  *
493  *	Add an inode to the inode hash for this superblock.
494  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498 
499 	spin_lock(&inode_hash_lock);
500 	spin_lock(&inode->i_lock);
501 	hlist_add_head_rcu(&inode->i_hash, b);
502 	spin_unlock(&inode->i_lock);
503 	spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL_NS(__insert_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
506 
507 /**
508  *	__remove_inode_hash - remove an inode from the hash
509  *	@inode: inode to unhash
510  *
511  *	Remove an inode from the superblock.
512  */
__remove_inode_hash(struct inode * inode)513 void __remove_inode_hash(struct inode *inode)
514 {
515 	spin_lock(&inode_hash_lock);
516 	spin_lock(&inode->i_lock);
517 	hlist_del_init_rcu(&inode->i_hash);
518 	spin_unlock(&inode->i_lock);
519 	spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL_NS(__remove_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
522 
clear_inode(struct inode * inode)523 void clear_inode(struct inode *inode)
524 {
525 	/*
526 	 * We have to cycle the i_pages lock here because reclaim can be in the
527 	 * process of removing the last page (in __delete_from_page_cache())
528 	 * and we must not free the mapping under it.
529 	 */
530 	xa_lock_irq(&inode->i_data.i_pages);
531 	BUG_ON(inode->i_data.nrpages);
532 	BUG_ON(inode->i_data.nrexceptional);
533 	xa_unlock_irq(&inode->i_data.i_pages);
534 	BUG_ON(!list_empty(&inode->i_data.private_list));
535 	BUG_ON(!(inode->i_state & I_FREEING));
536 	BUG_ON(inode->i_state & I_CLEAR);
537 	BUG_ON(!list_empty(&inode->i_wb_list));
538 	/* don't need i_lock here, no concurrent mods to i_state */
539 	inode->i_state = I_FREEING | I_CLEAR;
540 }
541 EXPORT_SYMBOL_NS(clear_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
542 
543 /*
544  * Free the inode passed in, removing it from the lists it is still connected
545  * to. We remove any pages still attached to the inode and wait for any IO that
546  * is still in progress before finally destroying the inode.
547  *
548  * An inode must already be marked I_FREEING so that we avoid the inode being
549  * moved back onto lists if we race with other code that manipulates the lists
550  * (e.g. writeback_single_inode). The caller is responsible for setting this.
551  *
552  * An inode must already be removed from the LRU list before being evicted from
553  * the cache. This should occur atomically with setting the I_FREEING state
554  * flag, so no inodes here should ever be on the LRU when being evicted.
555  */
evict(struct inode * inode)556 static void evict(struct inode *inode)
557 {
558 	const struct super_operations *op = inode->i_sb->s_op;
559 
560 	BUG_ON(!(inode->i_state & I_FREEING));
561 	BUG_ON(!list_empty(&inode->i_lru));
562 
563 	if (!list_empty(&inode->i_io_list))
564 		inode_io_list_del(inode);
565 
566 	inode_sb_list_del(inode);
567 
568 	/*
569 	 * Wait for flusher thread to be done with the inode so that filesystem
570 	 * does not start destroying it while writeback is still running. Since
571 	 * the inode has I_FREEING set, flusher thread won't start new work on
572 	 * the inode.  We just have to wait for running writeback to finish.
573 	 */
574 	inode_wait_for_writeback(inode);
575 
576 	if (op->evict_inode) {
577 		op->evict_inode(inode);
578 	} else {
579 		truncate_inode_pages_final(&inode->i_data);
580 		clear_inode(inode);
581 	}
582 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
583 		bd_forget(inode);
584 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
585 		cd_forget(inode);
586 
587 	remove_inode_hash(inode);
588 
589 	spin_lock(&inode->i_lock);
590 	wake_up_bit(&inode->i_state, __I_NEW);
591 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
592 	spin_unlock(&inode->i_lock);
593 
594 	destroy_inode(inode);
595 }
596 
597 /*
598  * dispose_list - dispose of the contents of a local list
599  * @head: the head of the list to free
600  *
601  * Dispose-list gets a local list with local inodes in it, so it doesn't
602  * need to worry about list corruption and SMP locks.
603  */
dispose_list(struct list_head * head)604 static void dispose_list(struct list_head *head)
605 {
606 	while (!list_empty(head)) {
607 		struct inode *inode;
608 
609 		inode = list_first_entry(head, struct inode, i_lru);
610 		list_del_init(&inode->i_lru);
611 
612 		evict(inode);
613 		cond_resched();
614 	}
615 }
616 
617 /**
618  * evict_inodes	- evict all evictable inodes for a superblock
619  * @sb:		superblock to operate on
620  *
621  * Make sure that no inodes with zero refcount are retained.  This is
622  * called by superblock shutdown after having SB_ACTIVE flag removed,
623  * so any inode reaching zero refcount during or after that call will
624  * be immediately evicted.
625  */
evict_inodes(struct super_block * sb)626 void evict_inodes(struct super_block *sb)
627 {
628 	struct inode *inode, *next;
629 	LIST_HEAD(dispose);
630 
631 again:
632 	spin_lock(&sb->s_inode_list_lock);
633 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
634 		if (atomic_read(&inode->i_count))
635 			continue;
636 
637 		spin_lock(&inode->i_lock);
638 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
639 			spin_unlock(&inode->i_lock);
640 			continue;
641 		}
642 
643 		inode->i_state |= I_FREEING;
644 		inode_lru_list_del(inode);
645 		spin_unlock(&inode->i_lock);
646 		list_add(&inode->i_lru, &dispose);
647 
648 		/*
649 		 * We can have a ton of inodes to evict at unmount time given
650 		 * enough memory, check to see if we need to go to sleep for a
651 		 * bit so we don't livelock.
652 		 */
653 		if (need_resched()) {
654 			spin_unlock(&sb->s_inode_list_lock);
655 			cond_resched();
656 			dispose_list(&dispose);
657 			goto again;
658 		}
659 	}
660 	spin_unlock(&sb->s_inode_list_lock);
661 
662 	dispose_list(&dispose);
663 }
664 EXPORT_SYMBOL_GPL(evict_inodes);
665 
666 /**
667  * invalidate_inodes	- attempt to free all inodes on a superblock
668  * @sb:		superblock to operate on
669  * @kill_dirty: flag to guide handling of dirty inodes
670  *
671  * Attempts to free all inodes for a given superblock.  If there were any
672  * busy inodes return a non-zero value, else zero.
673  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
674  * them as busy.
675  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)676 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
677 {
678 	int busy = 0;
679 	struct inode *inode, *next;
680 	LIST_HEAD(dispose);
681 
682 again:
683 	spin_lock(&sb->s_inode_list_lock);
684 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
685 		spin_lock(&inode->i_lock);
686 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
687 			spin_unlock(&inode->i_lock);
688 			continue;
689 		}
690 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
691 			spin_unlock(&inode->i_lock);
692 			busy = 1;
693 			continue;
694 		}
695 		if (atomic_read(&inode->i_count)) {
696 			spin_unlock(&inode->i_lock);
697 			busy = 1;
698 			continue;
699 		}
700 
701 		inode->i_state |= I_FREEING;
702 		inode_lru_list_del(inode);
703 		spin_unlock(&inode->i_lock);
704 		list_add(&inode->i_lru, &dispose);
705 		if (need_resched()) {
706 			spin_unlock(&sb->s_inode_list_lock);
707 			cond_resched();
708 			dispose_list(&dispose);
709 			goto again;
710 		}
711 	}
712 	spin_unlock(&sb->s_inode_list_lock);
713 
714 	dispose_list(&dispose);
715 
716 	return busy;
717 }
718 
719 /*
720  * Isolate the inode from the LRU in preparation for freeing it.
721  *
722  * Any inodes which are pinned purely because of attached pagecache have their
723  * pagecache removed.  If the inode has metadata buffers attached to
724  * mapping->private_list then try to remove them.
725  *
726  * If the inode has the I_REFERENCED flag set, then it means that it has been
727  * used recently - the flag is set in iput_final(). When we encounter such an
728  * inode, clear the flag and move it to the back of the LRU so it gets another
729  * pass through the LRU before it gets reclaimed. This is necessary because of
730  * the fact we are doing lazy LRU updates to minimise lock contention so the
731  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
732  * with this flag set because they are the inodes that are out of order.
733  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)734 static enum lru_status inode_lru_isolate(struct list_head *item,
735 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
736 {
737 	struct list_head *freeable = arg;
738 	struct inode	*inode = container_of(item, struct inode, i_lru);
739 
740 	/*
741 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
742 	 * If we fail to get the lock, just skip it.
743 	 */
744 	if (!spin_trylock(&inode->i_lock))
745 		return LRU_SKIP;
746 
747 	/*
748 	 * Referenced or dirty inodes are still in use. Give them another pass
749 	 * through the LRU as we canot reclaim them now.
750 	 */
751 	if (atomic_read(&inode->i_count) ||
752 	    (inode->i_state & ~I_REFERENCED)) {
753 		list_lru_isolate(lru, &inode->i_lru);
754 		spin_unlock(&inode->i_lock);
755 		this_cpu_dec(nr_unused);
756 		return LRU_REMOVED;
757 	}
758 
759 	/* recently referenced inodes get one more pass */
760 	if (inode->i_state & I_REFERENCED) {
761 		inode->i_state &= ~I_REFERENCED;
762 		spin_unlock(&inode->i_lock);
763 		return LRU_ROTATE;
764 	}
765 
766 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
767 		__iget(inode);
768 		spin_unlock(&inode->i_lock);
769 		spin_unlock(lru_lock);
770 		if (remove_inode_buffers(inode)) {
771 			unsigned long reap;
772 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
773 			if (current_is_kswapd())
774 				__count_vm_events(KSWAPD_INODESTEAL, reap);
775 			else
776 				__count_vm_events(PGINODESTEAL, reap);
777 			if (current->reclaim_state)
778 				current->reclaim_state->reclaimed_slab += reap;
779 		}
780 		iput(inode);
781 		spin_lock(lru_lock);
782 		return LRU_RETRY;
783 	}
784 
785 	WARN_ON(inode->i_state & I_NEW);
786 	inode->i_state |= I_FREEING;
787 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
788 	spin_unlock(&inode->i_lock);
789 
790 	this_cpu_dec(nr_unused);
791 	return LRU_REMOVED;
792 }
793 
794 /*
795  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
796  * This is called from the superblock shrinker function with a number of inodes
797  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
798  * then are freed outside inode_lock by dispose_list().
799  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)800 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
801 {
802 	LIST_HEAD(freeable);
803 	long freed;
804 
805 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
806 				     inode_lru_isolate, &freeable);
807 	dispose_list(&freeable);
808 	return freed;
809 }
810 
811 static void __wait_on_freeing_inode(struct inode *inode);
812 /*
813  * Called with the inode lock held.
814  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)815 static struct inode *find_inode(struct super_block *sb,
816 				struct hlist_head *head,
817 				int (*test)(struct inode *, void *),
818 				void *data)
819 {
820 	struct inode *inode = NULL;
821 
822 repeat:
823 	hlist_for_each_entry(inode, head, i_hash) {
824 		if (inode->i_sb != sb)
825 			continue;
826 		if (!test(inode, data))
827 			continue;
828 		spin_lock(&inode->i_lock);
829 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 			__wait_on_freeing_inode(inode);
831 			goto repeat;
832 		}
833 		if (unlikely(inode->i_state & I_CREATING)) {
834 			spin_unlock(&inode->i_lock);
835 			return ERR_PTR(-ESTALE);
836 		}
837 		__iget(inode);
838 		spin_unlock(&inode->i_lock);
839 		return inode;
840 	}
841 	return NULL;
842 }
843 
844 /*
845  * find_inode_fast is the fast path version of find_inode, see the comment at
846  * iget_locked for details.
847  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)848 static struct inode *find_inode_fast(struct super_block *sb,
849 				struct hlist_head *head, unsigned long ino)
850 {
851 	struct inode *inode = NULL;
852 
853 repeat:
854 	hlist_for_each_entry(inode, head, i_hash) {
855 		if (inode->i_ino != ino)
856 			continue;
857 		if (inode->i_sb != sb)
858 			continue;
859 		spin_lock(&inode->i_lock);
860 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
861 			__wait_on_freeing_inode(inode);
862 			goto repeat;
863 		}
864 		if (unlikely(inode->i_state & I_CREATING)) {
865 			spin_unlock(&inode->i_lock);
866 			return ERR_PTR(-ESTALE);
867 		}
868 		__iget(inode);
869 		spin_unlock(&inode->i_lock);
870 		return inode;
871 	}
872 	return NULL;
873 }
874 
875 /*
876  * Each cpu owns a range of LAST_INO_BATCH numbers.
877  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
878  * to renew the exhausted range.
879  *
880  * This does not significantly increase overflow rate because every CPU can
881  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
882  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
883  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
884  * overflow rate by 2x, which does not seem too significant.
885  *
886  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
887  * error if st_ino won't fit in target struct field. Use 32bit counter
888  * here to attempt to avoid that.
889  */
890 #define LAST_INO_BATCH 1024
891 static DEFINE_PER_CPU(unsigned int, last_ino);
892 
get_next_ino(void)893 unsigned int get_next_ino(void)
894 {
895 	unsigned int *p = &get_cpu_var(last_ino);
896 	unsigned int res = *p;
897 
898 #ifdef CONFIG_SMP
899 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
900 		static atomic_t shared_last_ino;
901 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
902 
903 		res = next - LAST_INO_BATCH;
904 	}
905 #endif
906 
907 	res++;
908 	/* get_next_ino should not provide a 0 inode number */
909 	if (unlikely(!res))
910 		res++;
911 	*p = res;
912 	put_cpu_var(last_ino);
913 	return res;
914 }
915 EXPORT_SYMBOL(get_next_ino);
916 
917 /**
918  *	new_inode_pseudo 	- obtain an inode
919  *	@sb: superblock
920  *
921  *	Allocates a new inode for given superblock.
922  *	Inode wont be chained in superblock s_inodes list
923  *	This means :
924  *	- fs can't be unmount
925  *	- quotas, fsnotify, writeback can't work
926  */
new_inode_pseudo(struct super_block * sb)927 struct inode *new_inode_pseudo(struct super_block *sb)
928 {
929 	struct inode *inode = alloc_inode(sb);
930 
931 	if (inode) {
932 		spin_lock(&inode->i_lock);
933 		inode->i_state = 0;
934 		spin_unlock(&inode->i_lock);
935 		INIT_LIST_HEAD(&inode->i_sb_list);
936 	}
937 	return inode;
938 }
939 
940 /**
941  *	new_inode 	- obtain an inode
942  *	@sb: superblock
943  *
944  *	Allocates a new inode for given superblock. The default gfp_mask
945  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
946  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
947  *	for the page cache are not reclaimable or migratable,
948  *	mapping_set_gfp_mask() must be called with suitable flags on the
949  *	newly created inode's mapping
950  *
951  */
new_inode(struct super_block * sb)952 struct inode *new_inode(struct super_block *sb)
953 {
954 	struct inode *inode;
955 
956 	spin_lock_prefetch(&sb->s_inode_list_lock);
957 
958 	inode = new_inode_pseudo(sb);
959 	if (inode)
960 		inode_sb_list_add(inode);
961 	return inode;
962 }
963 EXPORT_SYMBOL(new_inode);
964 
965 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)966 void lockdep_annotate_inode_mutex_key(struct inode *inode)
967 {
968 	if (S_ISDIR(inode->i_mode)) {
969 		struct file_system_type *type = inode->i_sb->s_type;
970 
971 		/* Set new key only if filesystem hasn't already changed it */
972 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
973 			/*
974 			 * ensure nobody is actually holding i_mutex
975 			 */
976 			// mutex_destroy(&inode->i_mutex);
977 			init_rwsem(&inode->i_rwsem);
978 			lockdep_set_class(&inode->i_rwsem,
979 					  &type->i_mutex_dir_key);
980 		}
981 	}
982 }
983 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
984 #endif
985 
986 /**
987  * unlock_new_inode - clear the I_NEW state and wake up any waiters
988  * @inode:	new inode to unlock
989  *
990  * Called when the inode is fully initialised to clear the new state of the
991  * inode and wake up anyone waiting for the inode to finish initialisation.
992  */
unlock_new_inode(struct inode * inode)993 void unlock_new_inode(struct inode *inode)
994 {
995 	lockdep_annotate_inode_mutex_key(inode);
996 	spin_lock(&inode->i_lock);
997 	WARN_ON(!(inode->i_state & I_NEW));
998 	inode->i_state &= ~I_NEW & ~I_CREATING;
999 	smp_mb();
1000 	wake_up_bit(&inode->i_state, __I_NEW);
1001 	spin_unlock(&inode->i_lock);
1002 }
1003 EXPORT_SYMBOL_NS(unlock_new_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
1004 
discard_new_inode(struct inode * inode)1005 void discard_new_inode(struct inode *inode)
1006 {
1007 	lockdep_annotate_inode_mutex_key(inode);
1008 	spin_lock(&inode->i_lock);
1009 	WARN_ON(!(inode->i_state & I_NEW));
1010 	inode->i_state &= ~I_NEW;
1011 	smp_mb();
1012 	wake_up_bit(&inode->i_state, __I_NEW);
1013 	spin_unlock(&inode->i_lock);
1014 	iput(inode);
1015 }
1016 EXPORT_SYMBOL(discard_new_inode);
1017 
1018 /**
1019  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1020  *
1021  * Lock any non-NULL argument. The caller must make sure that if he is passing
1022  * in two directories, one is not ancestor of the other.  Zero, one or two
1023  * objects may be locked by this function.
1024  *
1025  * @inode1: first inode to lock
1026  * @inode2: second inode to lock
1027  * @subclass1: inode lock subclass for the first lock obtained
1028  * @subclass2: inode lock subclass for the second lock obtained
1029  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1030 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1031 		     unsigned subclass1, unsigned subclass2)
1032 {
1033 	if (!inode1 || !inode2) {
1034 		/*
1035 		 * Make sure @subclass1 will be used for the acquired lock.
1036 		 * This is not strictly necessary (no current caller cares) but
1037 		 * let's keep things consistent.
1038 		 */
1039 		if (!inode1)
1040 			swap(inode1, inode2);
1041 		goto lock;
1042 	}
1043 
1044 	/*
1045 	 * If one object is directory and the other is not, we must make sure
1046 	 * to lock directory first as the other object may be its child.
1047 	 */
1048 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1049 		if (inode1 > inode2)
1050 			swap(inode1, inode2);
1051 	} else if (!S_ISDIR(inode1->i_mode))
1052 		swap(inode1, inode2);
1053 lock:
1054 	if (inode1)
1055 		inode_lock_nested(inode1, subclass1);
1056 	if (inode2 && inode2 != inode1)
1057 		inode_lock_nested(inode2, subclass2);
1058 }
1059 
1060 /**
1061  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1062  *
1063  * Lock any non-NULL argument that is not a directory.
1064  * Zero, one or two objects may be locked by this function.
1065  *
1066  * @inode1: first inode to lock
1067  * @inode2: second inode to lock
1068  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1069 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1070 {
1071 	if (inode1 > inode2)
1072 		swap(inode1, inode2);
1073 
1074 	if (inode1 && !S_ISDIR(inode1->i_mode))
1075 		inode_lock(inode1);
1076 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1077 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1078 }
1079 EXPORT_SYMBOL(lock_two_nondirectories);
1080 
1081 /**
1082  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1083  * @inode1: first inode to unlock
1084  * @inode2: second inode to unlock
1085  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1086 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1087 {
1088 	if (inode1 && !S_ISDIR(inode1->i_mode))
1089 		inode_unlock(inode1);
1090 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1091 		inode_unlock(inode2);
1092 }
1093 EXPORT_SYMBOL(unlock_two_nondirectories);
1094 
1095 /**
1096  * inode_insert5 - obtain an inode from a mounted file system
1097  * @inode:	pre-allocated inode to use for insert to cache
1098  * @hashval:	hash value (usually inode number) to get
1099  * @test:	callback used for comparisons between inodes
1100  * @set:	callback used to initialize a new struct inode
1101  * @data:	opaque data pointer to pass to @test and @set
1102  *
1103  * Search for the inode specified by @hashval and @data in the inode cache,
1104  * and if present it is return it with an increased reference count. This is
1105  * a variant of iget5_locked() for callers that don't want to fail on memory
1106  * allocation of inode.
1107  *
1108  * If the inode is not in cache, insert the pre-allocated inode to cache and
1109  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1110  * to fill it in before unlocking it via unlock_new_inode().
1111  *
1112  * Note both @test and @set are called with the inode_hash_lock held, so can't
1113  * sleep.
1114  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1115 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1116 			    int (*test)(struct inode *, void *),
1117 			    int (*set)(struct inode *, void *), void *data)
1118 {
1119 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1120 	struct inode *old;
1121 	bool creating = inode->i_state & I_CREATING;
1122 
1123 again:
1124 	spin_lock(&inode_hash_lock);
1125 	old = find_inode(inode->i_sb, head, test, data);
1126 	if (unlikely(old)) {
1127 		/*
1128 		 * Uhhuh, somebody else created the same inode under us.
1129 		 * Use the old inode instead of the preallocated one.
1130 		 */
1131 		spin_unlock(&inode_hash_lock);
1132 		if (IS_ERR(old))
1133 			return NULL;
1134 		wait_on_inode(old);
1135 		if (unlikely(inode_unhashed(old))) {
1136 			iput(old);
1137 			goto again;
1138 		}
1139 		return old;
1140 	}
1141 
1142 	if (set && unlikely(set(inode, data))) {
1143 		inode = NULL;
1144 		goto unlock;
1145 	}
1146 
1147 	/*
1148 	 * Return the locked inode with I_NEW set, the
1149 	 * caller is responsible for filling in the contents
1150 	 */
1151 	spin_lock(&inode->i_lock);
1152 	inode->i_state |= I_NEW;
1153 	hlist_add_head_rcu(&inode->i_hash, head);
1154 	spin_unlock(&inode->i_lock);
1155 	if (!creating)
1156 		inode_sb_list_add(inode);
1157 unlock:
1158 	spin_unlock(&inode_hash_lock);
1159 
1160 	return inode;
1161 }
1162 EXPORT_SYMBOL(inode_insert5);
1163 
1164 /**
1165  * iget5_locked - obtain an inode from a mounted file system
1166  * @sb:		super block of file system
1167  * @hashval:	hash value (usually inode number) to get
1168  * @test:	callback used for comparisons between inodes
1169  * @set:	callback used to initialize a new struct inode
1170  * @data:	opaque data pointer to pass to @test and @set
1171  *
1172  * Search for the inode specified by @hashval and @data in the inode cache,
1173  * and if present it is return it with an increased reference count. This is
1174  * a generalized version of iget_locked() for file systems where the inode
1175  * number is not sufficient for unique identification of an inode.
1176  *
1177  * If the inode is not in cache, allocate a new inode and return it locked,
1178  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1179  * before unlocking it via unlock_new_inode().
1180  *
1181  * Note both @test and @set are called with the inode_hash_lock held, so can't
1182  * sleep.
1183  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1184 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1185 		int (*test)(struct inode *, void *),
1186 		int (*set)(struct inode *, void *), void *data)
1187 {
1188 	struct inode *inode = ilookup5(sb, hashval, test, data);
1189 
1190 	if (!inode) {
1191 		struct inode *new = alloc_inode(sb);
1192 
1193 		if (new) {
1194 			new->i_state = 0;
1195 			inode = inode_insert5(new, hashval, test, set, data);
1196 			if (unlikely(inode != new))
1197 				destroy_inode(new);
1198 		}
1199 	}
1200 	return inode;
1201 }
1202 EXPORT_SYMBOL_NS(iget5_locked, ANDROID_GKI_VFS_EXPORT_ONLY);
1203 
1204 /**
1205  * iget_locked - obtain an inode from a mounted file system
1206  * @sb:		super block of file system
1207  * @ino:	inode number to get
1208  *
1209  * Search for the inode specified by @ino in the inode cache and if present
1210  * return it with an increased reference count. This is for file systems
1211  * where the inode number is sufficient for unique identification of an inode.
1212  *
1213  * If the inode is not in cache, allocate a new inode and return it locked,
1214  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1215  * before unlocking it via unlock_new_inode().
1216  */
iget_locked(struct super_block * sb,unsigned long ino)1217 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1218 {
1219 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1220 	struct inode *inode;
1221 again:
1222 	spin_lock(&inode_hash_lock);
1223 	inode = find_inode_fast(sb, head, ino);
1224 	spin_unlock(&inode_hash_lock);
1225 	if (inode) {
1226 		if (IS_ERR(inode))
1227 			return NULL;
1228 		wait_on_inode(inode);
1229 		if (unlikely(inode_unhashed(inode))) {
1230 			iput(inode);
1231 			goto again;
1232 		}
1233 		return inode;
1234 	}
1235 
1236 	inode = alloc_inode(sb);
1237 	if (inode) {
1238 		struct inode *old;
1239 
1240 		spin_lock(&inode_hash_lock);
1241 		/* We released the lock, so.. */
1242 		old = find_inode_fast(sb, head, ino);
1243 		if (!old) {
1244 			inode->i_ino = ino;
1245 			spin_lock(&inode->i_lock);
1246 			inode->i_state = I_NEW;
1247 			hlist_add_head_rcu(&inode->i_hash, head);
1248 			spin_unlock(&inode->i_lock);
1249 			inode_sb_list_add(inode);
1250 			spin_unlock(&inode_hash_lock);
1251 
1252 			/* Return the locked inode with I_NEW set, the
1253 			 * caller is responsible for filling in the contents
1254 			 */
1255 			return inode;
1256 		}
1257 
1258 		/*
1259 		 * Uhhuh, somebody else created the same inode under
1260 		 * us. Use the old inode instead of the one we just
1261 		 * allocated.
1262 		 */
1263 		spin_unlock(&inode_hash_lock);
1264 		destroy_inode(inode);
1265 		if (IS_ERR(old))
1266 			return NULL;
1267 		inode = old;
1268 		wait_on_inode(inode);
1269 		if (unlikely(inode_unhashed(inode))) {
1270 			iput(inode);
1271 			goto again;
1272 		}
1273 	}
1274 	return inode;
1275 }
1276 EXPORT_SYMBOL(iget_locked);
1277 
1278 /*
1279  * search the inode cache for a matching inode number.
1280  * If we find one, then the inode number we are trying to
1281  * allocate is not unique and so we should not use it.
1282  *
1283  * Returns 1 if the inode number is unique, 0 if it is not.
1284  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1285 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1286 {
1287 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1288 	struct inode *inode;
1289 
1290 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1291 		if (inode->i_ino == ino && inode->i_sb == sb)
1292 			return 0;
1293 	}
1294 	return 1;
1295 }
1296 
1297 /**
1298  *	iunique - get a unique inode number
1299  *	@sb: superblock
1300  *	@max_reserved: highest reserved inode number
1301  *
1302  *	Obtain an inode number that is unique on the system for a given
1303  *	superblock. This is used by file systems that have no natural
1304  *	permanent inode numbering system. An inode number is returned that
1305  *	is higher than the reserved limit but unique.
1306  *
1307  *	BUGS:
1308  *	With a large number of inodes live on the file system this function
1309  *	currently becomes quite slow.
1310  */
iunique(struct super_block * sb,ino_t max_reserved)1311 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1312 {
1313 	/*
1314 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1315 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1316 	 * here to attempt to avoid that.
1317 	 */
1318 	static DEFINE_SPINLOCK(iunique_lock);
1319 	static unsigned int counter;
1320 	ino_t res;
1321 
1322 	rcu_read_lock();
1323 	spin_lock(&iunique_lock);
1324 	do {
1325 		if (counter <= max_reserved)
1326 			counter = max_reserved + 1;
1327 		res = counter++;
1328 	} while (!test_inode_iunique(sb, res));
1329 	spin_unlock(&iunique_lock);
1330 	rcu_read_unlock();
1331 
1332 	return res;
1333 }
1334 EXPORT_SYMBOL_NS(iunique, ANDROID_GKI_VFS_EXPORT_ONLY);
1335 
igrab(struct inode * inode)1336 struct inode *igrab(struct inode *inode)
1337 {
1338 	spin_lock(&inode->i_lock);
1339 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1340 		__iget(inode);
1341 		spin_unlock(&inode->i_lock);
1342 	} else {
1343 		spin_unlock(&inode->i_lock);
1344 		/*
1345 		 * Handle the case where s_op->clear_inode is not been
1346 		 * called yet, and somebody is calling igrab
1347 		 * while the inode is getting freed.
1348 		 */
1349 		inode = NULL;
1350 	}
1351 	return inode;
1352 }
1353 EXPORT_SYMBOL(igrab);
1354 
1355 /**
1356  * ilookup5_nowait - search for an inode in the inode cache
1357  * @sb:		super block of file system to search
1358  * @hashval:	hash value (usually inode number) to search for
1359  * @test:	callback used for comparisons between inodes
1360  * @data:	opaque data pointer to pass to @test
1361  *
1362  * Search for the inode specified by @hashval and @data in the inode cache.
1363  * If the inode is in the cache, the inode is returned with an incremented
1364  * reference count.
1365  *
1366  * Note: I_NEW is not waited upon so you have to be very careful what you do
1367  * with the returned inode.  You probably should be using ilookup5() instead.
1368  *
1369  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1370  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1371 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1372 		int (*test)(struct inode *, void *), void *data)
1373 {
1374 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1375 	struct inode *inode;
1376 
1377 	spin_lock(&inode_hash_lock);
1378 	inode = find_inode(sb, head, test, data);
1379 	spin_unlock(&inode_hash_lock);
1380 
1381 	return IS_ERR(inode) ? NULL : inode;
1382 }
1383 EXPORT_SYMBOL(ilookup5_nowait);
1384 
1385 /**
1386  * ilookup5 - search for an inode in the inode cache
1387  * @sb:		super block of file system to search
1388  * @hashval:	hash value (usually inode number) to search for
1389  * @test:	callback used for comparisons between inodes
1390  * @data:	opaque data pointer to pass to @test
1391  *
1392  * Search for the inode specified by @hashval and @data in the inode cache,
1393  * and if the inode is in the cache, return the inode with an incremented
1394  * reference count.  Waits on I_NEW before returning the inode.
1395  * returned with an incremented reference count.
1396  *
1397  * This is a generalized version of ilookup() for file systems where the
1398  * inode number is not sufficient for unique identification of an inode.
1399  *
1400  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1401  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1402 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1403 		int (*test)(struct inode *, void *), void *data)
1404 {
1405 	struct inode *inode;
1406 again:
1407 	inode = ilookup5_nowait(sb, hashval, test, data);
1408 	if (inode) {
1409 		wait_on_inode(inode);
1410 		if (unlikely(inode_unhashed(inode))) {
1411 			iput(inode);
1412 			goto again;
1413 		}
1414 	}
1415 	return inode;
1416 }
1417 EXPORT_SYMBOL_NS(ilookup5, ANDROID_GKI_VFS_EXPORT_ONLY);
1418 
1419 /**
1420  * ilookup - search for an inode in the inode cache
1421  * @sb:		super block of file system to search
1422  * @ino:	inode number to search for
1423  *
1424  * Search for the inode @ino in the inode cache, and if the inode is in the
1425  * cache, the inode is returned with an incremented reference count.
1426  */
ilookup(struct super_block * sb,unsigned long ino)1427 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1428 {
1429 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1430 	struct inode *inode;
1431 again:
1432 	spin_lock(&inode_hash_lock);
1433 	inode = find_inode_fast(sb, head, ino);
1434 	spin_unlock(&inode_hash_lock);
1435 
1436 	if (inode) {
1437 		if (IS_ERR(inode))
1438 			return NULL;
1439 		wait_on_inode(inode);
1440 		if (unlikely(inode_unhashed(inode))) {
1441 			iput(inode);
1442 			goto again;
1443 		}
1444 	}
1445 	return inode;
1446 }
1447 EXPORT_SYMBOL(ilookup);
1448 
1449 /**
1450  * find_inode_nowait - find an inode in the inode cache
1451  * @sb:		super block of file system to search
1452  * @hashval:	hash value (usually inode number) to search for
1453  * @match:	callback used for comparisons between inodes
1454  * @data:	opaque data pointer to pass to @match
1455  *
1456  * Search for the inode specified by @hashval and @data in the inode
1457  * cache, where the helper function @match will return 0 if the inode
1458  * does not match, 1 if the inode does match, and -1 if the search
1459  * should be stopped.  The @match function must be responsible for
1460  * taking the i_lock spin_lock and checking i_state for an inode being
1461  * freed or being initialized, and incrementing the reference count
1462  * before returning 1.  It also must not sleep, since it is called with
1463  * the inode_hash_lock spinlock held.
1464  *
1465  * This is a even more generalized version of ilookup5() when the
1466  * function must never block --- find_inode() can block in
1467  * __wait_on_freeing_inode() --- or when the caller can not increment
1468  * the reference count because the resulting iput() might cause an
1469  * inode eviction.  The tradeoff is that the @match funtion must be
1470  * very carefully implemented.
1471  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1472 struct inode *find_inode_nowait(struct super_block *sb,
1473 				unsigned long hashval,
1474 				int (*match)(struct inode *, unsigned long,
1475 					     void *),
1476 				void *data)
1477 {
1478 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1479 	struct inode *inode, *ret_inode = NULL;
1480 	int mval;
1481 
1482 	spin_lock(&inode_hash_lock);
1483 	hlist_for_each_entry(inode, head, i_hash) {
1484 		if (inode->i_sb != sb)
1485 			continue;
1486 		mval = match(inode, hashval, data);
1487 		if (mval == 0)
1488 			continue;
1489 		if (mval == 1)
1490 			ret_inode = inode;
1491 		goto out;
1492 	}
1493 out:
1494 	spin_unlock(&inode_hash_lock);
1495 	return ret_inode;
1496 }
1497 EXPORT_SYMBOL(find_inode_nowait);
1498 
1499 /**
1500  * find_inode_rcu - find an inode in the inode cache
1501  * @sb:		Super block of file system to search
1502  * @hashval:	Key to hash
1503  * @test:	Function to test match on an inode
1504  * @data:	Data for test function
1505  *
1506  * Search for the inode specified by @hashval and @data in the inode cache,
1507  * where the helper function @test will return 0 if the inode does not match
1508  * and 1 if it does.  The @test function must be responsible for taking the
1509  * i_lock spin_lock and checking i_state for an inode being freed or being
1510  * initialized.
1511  *
1512  * If successful, this will return the inode for which the @test function
1513  * returned 1 and NULL otherwise.
1514  *
1515  * The @test function is not permitted to take a ref on any inode presented.
1516  * It is also not permitted to sleep.
1517  *
1518  * The caller must hold the RCU read lock.
1519  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1520 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1521 			     int (*test)(struct inode *, void *), void *data)
1522 {
1523 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1524 	struct inode *inode;
1525 
1526 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1527 			 "suspicious find_inode_rcu() usage");
1528 
1529 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1530 		if (inode->i_sb == sb &&
1531 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1532 		    test(inode, data))
1533 			return inode;
1534 	}
1535 	return NULL;
1536 }
1537 EXPORT_SYMBOL(find_inode_rcu);
1538 
1539 /**
1540  * find_inode_by_rcu - Find an inode in the inode cache
1541  * @sb:		Super block of file system to search
1542  * @ino:	The inode number to match
1543  *
1544  * Search for the inode specified by @hashval and @data in the inode cache,
1545  * where the helper function @test will return 0 if the inode does not match
1546  * and 1 if it does.  The @test function must be responsible for taking the
1547  * i_lock spin_lock and checking i_state for an inode being freed or being
1548  * initialized.
1549  *
1550  * If successful, this will return the inode for which the @test function
1551  * returned 1 and NULL otherwise.
1552  *
1553  * The @test function is not permitted to take a ref on any inode presented.
1554  * It is also not permitted to sleep.
1555  *
1556  * The caller must hold the RCU read lock.
1557  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1558 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1559 				    unsigned long ino)
1560 {
1561 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1562 	struct inode *inode;
1563 
1564 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1565 			 "suspicious find_inode_by_ino_rcu() usage");
1566 
1567 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1568 		if (inode->i_ino == ino &&
1569 		    inode->i_sb == sb &&
1570 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1571 		    return inode;
1572 	}
1573 	return NULL;
1574 }
1575 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1576 
insert_inode_locked(struct inode * inode)1577 int insert_inode_locked(struct inode *inode)
1578 {
1579 	struct super_block *sb = inode->i_sb;
1580 	ino_t ino = inode->i_ino;
1581 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1582 
1583 	while (1) {
1584 		struct inode *old = NULL;
1585 		spin_lock(&inode_hash_lock);
1586 		hlist_for_each_entry(old, head, i_hash) {
1587 			if (old->i_ino != ino)
1588 				continue;
1589 			if (old->i_sb != sb)
1590 				continue;
1591 			spin_lock(&old->i_lock);
1592 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1593 				spin_unlock(&old->i_lock);
1594 				continue;
1595 			}
1596 			break;
1597 		}
1598 		if (likely(!old)) {
1599 			spin_lock(&inode->i_lock);
1600 			inode->i_state |= I_NEW | I_CREATING;
1601 			hlist_add_head_rcu(&inode->i_hash, head);
1602 			spin_unlock(&inode->i_lock);
1603 			spin_unlock(&inode_hash_lock);
1604 			return 0;
1605 		}
1606 		if (unlikely(old->i_state & I_CREATING)) {
1607 			spin_unlock(&old->i_lock);
1608 			spin_unlock(&inode_hash_lock);
1609 			return -EBUSY;
1610 		}
1611 		__iget(old);
1612 		spin_unlock(&old->i_lock);
1613 		spin_unlock(&inode_hash_lock);
1614 		wait_on_inode(old);
1615 		if (unlikely(!inode_unhashed(old))) {
1616 			iput(old);
1617 			return -EBUSY;
1618 		}
1619 		iput(old);
1620 	}
1621 }
1622 EXPORT_SYMBOL(insert_inode_locked);
1623 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1624 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1625 		int (*test)(struct inode *, void *), void *data)
1626 {
1627 	struct inode *old;
1628 
1629 	inode->i_state |= I_CREATING;
1630 	old = inode_insert5(inode, hashval, test, NULL, data);
1631 
1632 	if (old != inode) {
1633 		iput(old);
1634 		return -EBUSY;
1635 	}
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(insert_inode_locked4);
1639 
1640 
generic_delete_inode(struct inode * inode)1641 int generic_delete_inode(struct inode *inode)
1642 {
1643 	return 1;
1644 }
1645 EXPORT_SYMBOL(generic_delete_inode);
1646 
1647 /*
1648  * Called when we're dropping the last reference
1649  * to an inode.
1650  *
1651  * Call the FS "drop_inode()" function, defaulting to
1652  * the legacy UNIX filesystem behaviour.  If it tells
1653  * us to evict inode, do so.  Otherwise, retain inode
1654  * in cache if fs is alive, sync and evict if fs is
1655  * shutting down.
1656  */
iput_final(struct inode * inode)1657 static void iput_final(struct inode *inode)
1658 {
1659 	struct super_block *sb = inode->i_sb;
1660 	const struct super_operations *op = inode->i_sb->s_op;
1661 	unsigned long state;
1662 	int drop;
1663 
1664 	WARN_ON(inode->i_state & I_NEW);
1665 
1666 	if (op->drop_inode)
1667 		drop = op->drop_inode(inode);
1668 	else
1669 		drop = generic_drop_inode(inode);
1670 
1671 	if (!drop &&
1672 	    !(inode->i_state & I_DONTCACHE) &&
1673 	    (sb->s_flags & SB_ACTIVE)) {
1674 		inode_add_lru(inode);
1675 		spin_unlock(&inode->i_lock);
1676 		return;
1677 	}
1678 
1679 	state = inode->i_state;
1680 	if (!drop) {
1681 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1682 		spin_unlock(&inode->i_lock);
1683 
1684 		write_inode_now(inode, 1);
1685 
1686 		spin_lock(&inode->i_lock);
1687 		state = inode->i_state;
1688 		WARN_ON(state & I_NEW);
1689 		state &= ~I_WILL_FREE;
1690 	}
1691 
1692 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1693 	if (!list_empty(&inode->i_lru))
1694 		inode_lru_list_del(inode);
1695 	spin_unlock(&inode->i_lock);
1696 
1697 	evict(inode);
1698 }
1699 
1700 /**
1701  *	iput	- put an inode
1702  *	@inode: inode to put
1703  *
1704  *	Puts an inode, dropping its usage count. If the inode use count hits
1705  *	zero, the inode is then freed and may also be destroyed.
1706  *
1707  *	Consequently, iput() can sleep.
1708  */
iput(struct inode * inode)1709 void iput(struct inode *inode)
1710 {
1711 	if (!inode)
1712 		return;
1713 	BUG_ON(inode->i_state & I_CLEAR);
1714 retry:
1715 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1716 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1717 			atomic_inc(&inode->i_count);
1718 			spin_unlock(&inode->i_lock);
1719 			trace_writeback_lazytime_iput(inode);
1720 			mark_inode_dirty_sync(inode);
1721 			goto retry;
1722 		}
1723 		iput_final(inode);
1724 	}
1725 }
1726 EXPORT_SYMBOL(iput);
1727 
1728 #ifdef CONFIG_BLOCK
1729 /**
1730  *	bmap	- find a block number in a file
1731  *	@inode:  inode owning the block number being requested
1732  *	@block: pointer containing the block to find
1733  *
1734  *	Replaces the value in ``*block`` with the block number on the device holding
1735  *	corresponding to the requested block number in the file.
1736  *	That is, asked for block 4 of inode 1 the function will replace the
1737  *	4 in ``*block``, with disk block relative to the disk start that holds that
1738  *	block of the file.
1739  *
1740  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1741  *	hole, returns 0 and ``*block`` is also set to 0.
1742  */
bmap(struct inode * inode,sector_t * block)1743 int bmap(struct inode *inode, sector_t *block)
1744 {
1745 	if (!inode->i_mapping->a_ops->bmap)
1746 		return -EINVAL;
1747 
1748 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL(bmap);
1752 #endif
1753 
1754 /*
1755  * With relative atime, only update atime if the previous atime is
1756  * earlier than either the ctime or mtime or if at least a day has
1757  * passed since the last atime update.
1758  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1759 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1760 			     struct timespec64 now)
1761 {
1762 
1763 	if (!(mnt->mnt_flags & MNT_RELATIME))
1764 		return 1;
1765 	/*
1766 	 * Is mtime younger than atime? If yes, update atime:
1767 	 */
1768 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1769 		return 1;
1770 	/*
1771 	 * Is ctime younger than atime? If yes, update atime:
1772 	 */
1773 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1774 		return 1;
1775 
1776 	/*
1777 	 * Is the previous atime value older than a day? If yes,
1778 	 * update atime:
1779 	 */
1780 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1781 		return 1;
1782 	/*
1783 	 * Good, we can skip the atime update:
1784 	 */
1785 	return 0;
1786 }
1787 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1788 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1789 {
1790 	int iflags = I_DIRTY_TIME;
1791 	bool dirty = false;
1792 
1793 	if (flags & S_ATIME)
1794 		inode->i_atime = *time;
1795 	if (flags & S_VERSION)
1796 		dirty = inode_maybe_inc_iversion(inode, false);
1797 	if (flags & S_CTIME)
1798 		inode->i_ctime = *time;
1799 	if (flags & S_MTIME)
1800 		inode->i_mtime = *time;
1801 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1802 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1803 		dirty = true;
1804 
1805 	if (dirty)
1806 		iflags |= I_DIRTY_SYNC;
1807 	__mark_inode_dirty(inode, iflags);
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL(generic_update_time);
1811 
1812 /*
1813  * This does the actual work of updating an inodes time or version.  Must have
1814  * had called mnt_want_write() before calling this.
1815  */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1816 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1817 {
1818 	if (inode->i_op->update_time)
1819 		return inode->i_op->update_time(inode, time, flags);
1820 	return generic_update_time(inode, time, flags);
1821 }
1822 EXPORT_SYMBOL(inode_update_time);
1823 
1824 /**
1825  *	touch_atime	-	update the access time
1826  *	@path: the &struct path to update
1827  *	@inode: inode to update
1828  *
1829  *	Update the accessed time on an inode and mark it for writeback.
1830  *	This function automatically handles read only file systems and media,
1831  *	as well as the "noatime" flag and inode specific "noatime" markers.
1832  */
atime_needs_update(const struct path * path,struct inode * inode)1833 bool atime_needs_update(const struct path *path, struct inode *inode)
1834 {
1835 	struct vfsmount *mnt = path->mnt;
1836 	struct timespec64 now;
1837 
1838 	if (inode->i_flags & S_NOATIME)
1839 		return false;
1840 
1841 	/* Atime updates will likely cause i_uid and i_gid to be written
1842 	 * back improprely if their true value is unknown to the vfs.
1843 	 */
1844 	if (HAS_UNMAPPED_ID(inode))
1845 		return false;
1846 
1847 	if (IS_NOATIME(inode))
1848 		return false;
1849 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1850 		return false;
1851 
1852 	if (mnt->mnt_flags & MNT_NOATIME)
1853 		return false;
1854 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1855 		return false;
1856 
1857 	now = current_time(inode);
1858 
1859 	if (!relatime_need_update(mnt, inode, now))
1860 		return false;
1861 
1862 	if (timespec64_equal(&inode->i_atime, &now))
1863 		return false;
1864 
1865 	return true;
1866 }
1867 
touch_atime(const struct path * path)1868 void touch_atime(const struct path *path)
1869 {
1870 	struct vfsmount *mnt = path->mnt;
1871 	struct inode *inode = d_inode(path->dentry);
1872 	struct timespec64 now;
1873 
1874 	if (!atime_needs_update(path, inode))
1875 		return;
1876 
1877 	if (!sb_start_write_trylock(inode->i_sb))
1878 		return;
1879 
1880 	if (__mnt_want_write(mnt) != 0)
1881 		goto skip_update;
1882 	/*
1883 	 * File systems can error out when updating inodes if they need to
1884 	 * allocate new space to modify an inode (such is the case for
1885 	 * Btrfs), but since we touch atime while walking down the path we
1886 	 * really don't care if we failed to update the atime of the file,
1887 	 * so just ignore the return value.
1888 	 * We may also fail on filesystems that have the ability to make parts
1889 	 * of the fs read only, e.g. subvolumes in Btrfs.
1890 	 */
1891 	now = current_time(inode);
1892 	inode_update_time(inode, &now, S_ATIME);
1893 	__mnt_drop_write(mnt);
1894 skip_update:
1895 	sb_end_write(inode->i_sb);
1896 }
1897 EXPORT_SYMBOL_NS(touch_atime, ANDROID_GKI_VFS_EXPORT_ONLY);
1898 
1899 /*
1900  * Return mask of changes for notify_change() that need to be done as a
1901  * response to write or truncate. Return 0 if nothing has to be changed.
1902  * Negative value on error (change should be denied).
1903  */
dentry_needs_remove_privs(struct dentry * dentry)1904 int dentry_needs_remove_privs(struct dentry *dentry)
1905 {
1906 	struct inode *inode = d_inode(dentry);
1907 	int mask = 0;
1908 	int ret;
1909 
1910 	if (IS_NOSEC(inode))
1911 		return 0;
1912 
1913 	mask = setattr_should_drop_suidgid(inode);
1914 	ret = security_inode_need_killpriv(dentry);
1915 	if (ret < 0)
1916 		return ret;
1917 	if (ret)
1918 		mask |= ATTR_KILL_PRIV;
1919 	return mask;
1920 }
1921 
__remove_privs(struct dentry * dentry,int kill)1922 static int __remove_privs(struct dentry *dentry, int kill)
1923 {
1924 	struct iattr newattrs;
1925 
1926 	newattrs.ia_valid = ATTR_FORCE | kill;
1927 	/*
1928 	 * Note we call this on write, so notify_change will not
1929 	 * encounter any conflicting delegations:
1930 	 */
1931 	return notify_change(dentry, &newattrs, NULL);
1932 }
1933 
1934 /*
1935  * Remove special file priviledges (suid, capabilities) when file is written
1936  * to or truncated.
1937  */
file_remove_privs(struct file * file)1938 int file_remove_privs(struct file *file)
1939 {
1940 	struct dentry *dentry = file_dentry(file);
1941 	struct inode *inode = file_inode(file);
1942 	int kill;
1943 	int error = 0;
1944 
1945 	/*
1946 	 * Fast path for nothing security related.
1947 	 * As well for non-regular files, e.g. blkdev inodes.
1948 	 * For example, blkdev_write_iter() might get here
1949 	 * trying to remove privs which it is not allowed to.
1950 	 */
1951 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1952 		return 0;
1953 
1954 	kill = dentry_needs_remove_privs(dentry);
1955 	if (kill < 0)
1956 		return kill;
1957 	if (kill)
1958 		error = __remove_privs(dentry, kill);
1959 	if (!error)
1960 		inode_has_no_xattr(inode);
1961 
1962 	return error;
1963 }
1964 EXPORT_SYMBOL_NS(file_remove_privs, ANDROID_GKI_VFS_EXPORT_ONLY);
1965 
1966 /**
1967  *	file_update_time	-	update mtime and ctime time
1968  *	@file: file accessed
1969  *
1970  *	Update the mtime and ctime members of an inode and mark the inode
1971  *	for writeback.  Note that this function is meant exclusively for
1972  *	usage in the file write path of filesystems, and filesystems may
1973  *	choose to explicitly ignore update via this function with the
1974  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1975  *	timestamps are handled by the server.  This can return an error for
1976  *	file systems who need to allocate space in order to update an inode.
1977  */
1978 
file_update_time(struct file * file)1979 int file_update_time(struct file *file)
1980 {
1981 	struct inode *inode = file_inode(file);
1982 	struct timespec64 now;
1983 	int sync_it = 0;
1984 	int ret;
1985 
1986 	/* First try to exhaust all avenues to not sync */
1987 	if (IS_NOCMTIME(inode))
1988 		return 0;
1989 
1990 	now = current_time(inode);
1991 	if (!timespec64_equal(&inode->i_mtime, &now))
1992 		sync_it = S_MTIME;
1993 
1994 	if (!timespec64_equal(&inode->i_ctime, &now))
1995 		sync_it |= S_CTIME;
1996 
1997 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1998 		sync_it |= S_VERSION;
1999 
2000 	if (!sync_it)
2001 		return 0;
2002 
2003 	/* Finally allowed to write? Takes lock. */
2004 	if (__mnt_want_write_file(file))
2005 		return 0;
2006 
2007 	ret = inode_update_time(inode, &now, sync_it);
2008 	__mnt_drop_write_file(file);
2009 
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL(file_update_time);
2013 
2014 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2015 int file_modified(struct file *file)
2016 {
2017 	int err;
2018 
2019 	/*
2020 	 * Clear the security bits if the process is not being run by root.
2021 	 * This keeps people from modifying setuid and setgid binaries.
2022 	 */
2023 	err = file_remove_privs(file);
2024 	if (err)
2025 		return err;
2026 
2027 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2028 		return 0;
2029 
2030 	return file_update_time(file);
2031 }
2032 EXPORT_SYMBOL(file_modified);
2033 
inode_needs_sync(struct inode * inode)2034 int inode_needs_sync(struct inode *inode)
2035 {
2036 	if (IS_SYNC(inode))
2037 		return 1;
2038 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2039 		return 1;
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL(inode_needs_sync);
2043 
2044 /*
2045  * If we try to find an inode in the inode hash while it is being
2046  * deleted, we have to wait until the filesystem completes its
2047  * deletion before reporting that it isn't found.  This function waits
2048  * until the deletion _might_ have completed.  Callers are responsible
2049  * to recheck inode state.
2050  *
2051  * It doesn't matter if I_NEW is not set initially, a call to
2052  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2053  * will DTRT.
2054  */
__wait_on_freeing_inode(struct inode * inode)2055 static void __wait_on_freeing_inode(struct inode *inode)
2056 {
2057 	wait_queue_head_t *wq;
2058 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2059 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2060 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2061 	spin_unlock(&inode->i_lock);
2062 	spin_unlock(&inode_hash_lock);
2063 	schedule();
2064 	finish_wait(wq, &wait.wq_entry);
2065 	spin_lock(&inode_hash_lock);
2066 }
2067 
2068 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2069 static int __init set_ihash_entries(char *str)
2070 {
2071 	if (!str)
2072 		return 0;
2073 	ihash_entries = simple_strtoul(str, &str, 0);
2074 	return 1;
2075 }
2076 __setup("ihash_entries=", set_ihash_entries);
2077 
2078 /*
2079  * Initialize the waitqueues and inode hash table.
2080  */
inode_init_early(void)2081 void __init inode_init_early(void)
2082 {
2083 	/* If hashes are distributed across NUMA nodes, defer
2084 	 * hash allocation until vmalloc space is available.
2085 	 */
2086 	if (hashdist)
2087 		return;
2088 
2089 	inode_hashtable =
2090 		alloc_large_system_hash("Inode-cache",
2091 					sizeof(struct hlist_head),
2092 					ihash_entries,
2093 					14,
2094 					HASH_EARLY | HASH_ZERO,
2095 					&i_hash_shift,
2096 					&i_hash_mask,
2097 					0,
2098 					0);
2099 }
2100 
inode_init(void)2101 void __init inode_init(void)
2102 {
2103 	/* inode slab cache */
2104 	inode_cachep = kmem_cache_create("inode_cache",
2105 					 sizeof(struct inode),
2106 					 0,
2107 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2108 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2109 					 init_once);
2110 
2111 	/* Hash may have been set up in inode_init_early */
2112 	if (!hashdist)
2113 		return;
2114 
2115 	inode_hashtable =
2116 		alloc_large_system_hash("Inode-cache",
2117 					sizeof(struct hlist_head),
2118 					ihash_entries,
2119 					14,
2120 					HASH_ZERO,
2121 					&i_hash_shift,
2122 					&i_hash_mask,
2123 					0,
2124 					0);
2125 }
2126 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2127 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2128 {
2129 	inode->i_mode = mode;
2130 	if (S_ISCHR(mode)) {
2131 		inode->i_fop = &def_chr_fops;
2132 		inode->i_rdev = rdev;
2133 	} else if (S_ISBLK(mode)) {
2134 		inode->i_fop = &def_blk_fops;
2135 		inode->i_rdev = rdev;
2136 	} else if (S_ISFIFO(mode))
2137 		inode->i_fop = &pipefifo_fops;
2138 	else if (S_ISSOCK(mode))
2139 		;	/* leave it no_open_fops */
2140 	else
2141 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2142 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2143 				  inode->i_ino);
2144 }
2145 EXPORT_SYMBOL_NS(init_special_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
2146 
2147 /**
2148  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2149  * @inode: New inode
2150  * @dir: Directory inode
2151  * @mode: mode of the new inode
2152  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2153 void inode_init_owner(struct inode *inode, const struct inode *dir,
2154 			umode_t mode)
2155 {
2156 	inode->i_uid = current_fsuid();
2157 	if (dir && dir->i_mode & S_ISGID) {
2158 		inode->i_gid = dir->i_gid;
2159 
2160 		/* Directories are special, and always inherit S_ISGID */
2161 		if (S_ISDIR(mode))
2162 			mode |= S_ISGID;
2163 	} else
2164 		inode->i_gid = current_fsgid();
2165 	inode->i_mode = mode;
2166 }
2167 EXPORT_SYMBOL_NS(inode_init_owner, ANDROID_GKI_VFS_EXPORT_ONLY);
2168 
2169 /**
2170  * inode_owner_or_capable - check current task permissions to inode
2171  * @inode: inode being checked
2172  *
2173  * Return true if current either has CAP_FOWNER in a namespace with the
2174  * inode owner uid mapped, or owns the file.
2175  */
inode_owner_or_capable(const struct inode * inode)2176 bool inode_owner_or_capable(const struct inode *inode)
2177 {
2178 	struct user_namespace *ns;
2179 
2180 	if (uid_eq(current_fsuid(), inode->i_uid))
2181 		return true;
2182 
2183 	ns = current_user_ns();
2184 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2185 		return true;
2186 	return false;
2187 }
2188 EXPORT_SYMBOL(inode_owner_or_capable);
2189 
2190 /*
2191  * Direct i/o helper functions
2192  */
__inode_dio_wait(struct inode * inode)2193 static void __inode_dio_wait(struct inode *inode)
2194 {
2195 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2196 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2197 
2198 	do {
2199 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2200 		if (atomic_read(&inode->i_dio_count))
2201 			schedule();
2202 	} while (atomic_read(&inode->i_dio_count));
2203 	finish_wait(wq, &q.wq_entry);
2204 }
2205 
2206 /**
2207  * inode_dio_wait - wait for outstanding DIO requests to finish
2208  * @inode: inode to wait for
2209  *
2210  * Waits for all pending direct I/O requests to finish so that we can
2211  * proceed with a truncate or equivalent operation.
2212  *
2213  * Must be called under a lock that serializes taking new references
2214  * to i_dio_count, usually by inode->i_mutex.
2215  */
inode_dio_wait(struct inode * inode)2216 void inode_dio_wait(struct inode *inode)
2217 {
2218 	if (atomic_read(&inode->i_dio_count))
2219 		__inode_dio_wait(inode);
2220 }
2221 EXPORT_SYMBOL_NS(inode_dio_wait, ANDROID_GKI_VFS_EXPORT_ONLY);
2222 
2223 /*
2224  * inode_set_flags - atomically set some inode flags
2225  *
2226  * Note: the caller should be holding i_mutex, or else be sure that
2227  * they have exclusive access to the inode structure (i.e., while the
2228  * inode is being instantiated).  The reason for the cmpxchg() loop
2229  * --- which wouldn't be necessary if all code paths which modify
2230  * i_flags actually followed this rule, is that there is at least one
2231  * code path which doesn't today so we use cmpxchg() out of an abundance
2232  * of caution.
2233  *
2234  * In the long run, i_mutex is overkill, and we should probably look
2235  * at using the i_lock spinlock to protect i_flags, and then make sure
2236  * it is so documented in include/linux/fs.h and that all code follows
2237  * the locking convention!!
2238  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2239 void inode_set_flags(struct inode *inode, unsigned int flags,
2240 		     unsigned int mask)
2241 {
2242 	WARN_ON_ONCE(flags & ~mask);
2243 	set_mask_bits(&inode->i_flags, mask, flags);
2244 }
2245 EXPORT_SYMBOL_NS(inode_set_flags, ANDROID_GKI_VFS_EXPORT_ONLY);
2246 
inode_nohighmem(struct inode * inode)2247 void inode_nohighmem(struct inode *inode)
2248 {
2249 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2250 }
2251 EXPORT_SYMBOL(inode_nohighmem);
2252 
2253 /**
2254  * timestamp_truncate - Truncate timespec to a granularity
2255  * @t: Timespec
2256  * @inode: inode being updated
2257  *
2258  * Truncate a timespec to the granularity supported by the fs
2259  * containing the inode. Always rounds down. gran must
2260  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2261  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2262 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2263 {
2264 	struct super_block *sb = inode->i_sb;
2265 	unsigned int gran = sb->s_time_gran;
2266 
2267 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2268 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2269 		t.tv_nsec = 0;
2270 
2271 	/* Avoid division in the common cases 1 ns and 1 s. */
2272 	if (gran == 1)
2273 		; /* nothing */
2274 	else if (gran == NSEC_PER_SEC)
2275 		t.tv_nsec = 0;
2276 	else if (gran > 1 && gran < NSEC_PER_SEC)
2277 		t.tv_nsec -= t.tv_nsec % gran;
2278 	else
2279 		WARN(1, "invalid file time granularity: %u", gran);
2280 	return t;
2281 }
2282 EXPORT_SYMBOL_NS(timestamp_truncate, ANDROID_GKI_VFS_EXPORT_ONLY);
2283 
2284 /**
2285  * current_time - Return FS time
2286  * @inode: inode.
2287  *
2288  * Return the current time truncated to the time granularity supported by
2289  * the fs.
2290  *
2291  * Note that inode and inode->sb cannot be NULL.
2292  * Otherwise, the function warns and returns time without truncation.
2293  */
current_time(struct inode * inode)2294 struct timespec64 current_time(struct inode *inode)
2295 {
2296 	struct timespec64 now;
2297 
2298 	ktime_get_coarse_real_ts64(&now);
2299 
2300 	if (unlikely(!inode->i_sb)) {
2301 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2302 		return now;
2303 	}
2304 
2305 	return timestamp_truncate(now, inode);
2306 }
2307 EXPORT_SYMBOL(current_time);
2308 
2309 /*
2310  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2311  * configurations.
2312  *
2313  * Note: the caller should be holding i_mutex, or else be sure that they have
2314  * exclusive access to the inode structure.
2315  */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2316 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2317 			     unsigned int flags)
2318 {
2319 	/*
2320 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2321 	 * the relevant capability.
2322 	 *
2323 	 * This test looks nicer. Thanks to Pauline Middelink
2324 	 */
2325 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2326 	    !capable(CAP_LINUX_IMMUTABLE))
2327 		return -EPERM;
2328 
2329 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2330 }
2331 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2332 
2333 /*
2334  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2335  * configurations.
2336  *
2337  * Note: the caller should be holding i_mutex, or else be sure that they have
2338  * exclusive access to the inode structure.
2339  */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2340 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2341 			     struct fsxattr *fa)
2342 {
2343 	/*
2344 	 * Can't modify an immutable/append-only file unless we have
2345 	 * appropriate permission.
2346 	 */
2347 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2349 	    !capable(CAP_LINUX_IMMUTABLE))
2350 		return -EPERM;
2351 
2352 	/*
2353 	 * Project Quota ID state is only allowed to change from within the init
2354 	 * namespace. Enforce that restriction only if we are trying to change
2355 	 * the quota ID state. Everything else is allowed in user namespaces.
2356 	 */
2357 	if (current_user_ns() != &init_user_ns) {
2358 		if (old_fa->fsx_projid != fa->fsx_projid)
2359 			return -EINVAL;
2360 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2361 				FS_XFLAG_PROJINHERIT)
2362 			return -EINVAL;
2363 	}
2364 
2365 	/* Check extent size hints. */
2366 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2367 		return -EINVAL;
2368 
2369 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2370 			!S_ISDIR(inode->i_mode))
2371 		return -EINVAL;
2372 
2373 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2374 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2375 		return -EINVAL;
2376 
2377 	/*
2378 	 * It is only valid to set the DAX flag on regular files and
2379 	 * directories on filesystems.
2380 	 */
2381 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2382 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2383 		return -EINVAL;
2384 
2385 	/* Extent size hints of zero turn off the flags. */
2386 	if (fa->fsx_extsize == 0)
2387 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2388 	if (fa->fsx_cowextsize == 0)
2389 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2390 
2391 	return 0;
2392 }
2393 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2394 
2395 /**
2396  * inode_set_ctime_current - set the ctime to current_time
2397  * @inode: inode
2398  *
2399  * Set the inode->i_ctime to the current value for the inode. Returns
2400  * the current value that was assigned to i_ctime.
2401  */
inode_set_ctime_current(struct inode * inode)2402 struct timespec64 inode_set_ctime_current(struct inode *inode)
2403 {
2404 	struct timespec64 now = current_time(inode);
2405 
2406 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2407 	return now;
2408 }
2409 EXPORT_SYMBOL(inode_set_ctime_current);
2410 
2411 /**
2412  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2413  * @inode:	inode to check
2414  * @gid:	the new/current gid of @inode
2415  *
2416  * Check wether @gid is in the caller's group list or if the caller is
2417  * privileged with CAP_FSETID over @inode. This can be used to determine
2418  * whether the setgid bit can be kept or must be dropped.
2419  *
2420  * Return: true if the caller is sufficiently privileged, false if not.
2421  */
in_group_or_capable(const struct inode * inode,kgid_t gid)2422 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2423 {
2424 	if (in_group_p(gid))
2425 		return true;
2426 	if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2427 		return true;
2428 	return false;
2429 }
2430 
2431 /**
2432  * mode_strip_sgid - handle the sgid bit for non-directories
2433  * @dir: parent directory inode
2434  * @mode: mode of the file to be created in @dir
2435  *
2436  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2437  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2438  * either in the group of the parent directory or they have CAP_FSETID
2439  * in their user namespace and are privileged over the parent directory.
2440  * In all other cases, strip the S_ISGID bit from @mode.
2441  *
2442  * Return: the new mode to use for the file
2443  */
mode_strip_sgid(const struct inode * dir,umode_t mode)2444 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2445 {
2446 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2447 		return mode;
2448 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2449 		return mode;
2450 	if (in_group_or_capable(dir, dir->i_gid))
2451 		return mode;
2452 	return mode & ~S_ISGID;
2453 }
2454 EXPORT_SYMBOL(mode_strip_sgid);
2455