• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 #include <linux/numa.h>
52 
53 #include "hfi.h"
54 #include "affinity.h"
55 #include "sdma.h"
56 #include "trace.h"
57 
58 struct hfi1_affinity_node_list node_affinity = {
59 	.list = LIST_HEAD_INIT(node_affinity.list),
60 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
61 };
62 
63 /* Name of IRQ types, indexed by enum irq_type */
64 static const char * const irq_type_names[] = {
65 	"SDMA",
66 	"RCVCTXT",
67 	"NETDEVCTXT",
68 	"GENERAL",
69 	"OTHER",
70 };
71 
72 /* Per NUMA node count of HFI devices */
73 static unsigned int *hfi1_per_node_cntr;
74 
init_cpu_mask_set(struct cpu_mask_set * set)75 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
76 {
77 	cpumask_clear(&set->mask);
78 	cpumask_clear(&set->used);
79 	set->gen = 0;
80 }
81 
82 /* Increment generation of CPU set if needed */
_cpu_mask_set_gen_inc(struct cpu_mask_set * set)83 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
84 {
85 	if (cpumask_equal(&set->mask, &set->used)) {
86 		/*
87 		 * We've used up all the CPUs, bump up the generation
88 		 * and reset the 'used' map
89 		 */
90 		set->gen++;
91 		cpumask_clear(&set->used);
92 	}
93 }
94 
_cpu_mask_set_gen_dec(struct cpu_mask_set * set)95 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
96 {
97 	if (cpumask_empty(&set->used) && set->gen) {
98 		set->gen--;
99 		cpumask_copy(&set->used, &set->mask);
100 	}
101 }
102 
103 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
cpu_mask_set_get_first(struct cpu_mask_set * set,cpumask_var_t diff)104 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
105 {
106 	int cpu;
107 
108 	if (!diff || !set)
109 		return -EINVAL;
110 
111 	_cpu_mask_set_gen_inc(set);
112 
113 	/* Find out CPUs left in CPU mask */
114 	cpumask_andnot(diff, &set->mask, &set->used);
115 
116 	cpu = cpumask_first(diff);
117 	if (cpu >= nr_cpu_ids) /* empty */
118 		cpu = -EINVAL;
119 	else
120 		cpumask_set_cpu(cpu, &set->used);
121 
122 	return cpu;
123 }
124 
cpu_mask_set_put(struct cpu_mask_set * set,int cpu)125 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
126 {
127 	if (!set)
128 		return;
129 
130 	cpumask_clear_cpu(cpu, &set->used);
131 	_cpu_mask_set_gen_dec(set);
132 }
133 
134 /* Initialize non-HT cpu cores mask */
init_real_cpu_mask(void)135 void init_real_cpu_mask(void)
136 {
137 	int possible, curr_cpu, i, ht;
138 
139 	cpumask_clear(&node_affinity.real_cpu_mask);
140 
141 	/* Start with cpu online mask as the real cpu mask */
142 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
143 
144 	/*
145 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
146 	 */
147 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
148 	ht = cpumask_weight(topology_sibling_cpumask(
149 				cpumask_first(&node_affinity.real_cpu_mask)));
150 	/*
151 	 * Step 1.  Skip over the first N HT siblings and use them as the
152 	 * "real" cores.  Assumes that HT cores are not enumerated in
153 	 * succession (except in the single core case).
154 	 */
155 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
156 	for (i = 0; i < possible / ht; i++)
157 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
158 	/*
159 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
160 	 * skip any gaps.
161 	 */
162 	for (; i < possible; i++) {
163 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
164 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
165 	}
166 }
167 
node_affinity_init(void)168 int node_affinity_init(void)
169 {
170 	int node;
171 	struct pci_dev *dev = NULL;
172 	const struct pci_device_id *ids = hfi1_pci_tbl;
173 
174 	cpumask_clear(&node_affinity.proc.used);
175 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
176 
177 	node_affinity.proc.gen = 0;
178 	node_affinity.num_core_siblings =
179 				cpumask_weight(topology_sibling_cpumask(
180 					cpumask_first(&node_affinity.proc.mask)
181 					));
182 	node_affinity.num_possible_nodes = num_possible_nodes();
183 	node_affinity.num_online_nodes = num_online_nodes();
184 	node_affinity.num_online_cpus = num_online_cpus();
185 
186 	/*
187 	 * The real cpu mask is part of the affinity struct but it has to be
188 	 * initialized early. It is needed to calculate the number of user
189 	 * contexts in set_up_context_variables().
190 	 */
191 	init_real_cpu_mask();
192 
193 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
194 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
195 	if (!hfi1_per_node_cntr)
196 		return -ENOMEM;
197 
198 	while (ids->vendor) {
199 		dev = NULL;
200 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
201 			node = pcibus_to_node(dev->bus);
202 			if (node < 0)
203 				goto out;
204 
205 			hfi1_per_node_cntr[node]++;
206 		}
207 		ids++;
208 	}
209 
210 	return 0;
211 
212 out:
213 	/*
214 	 * Invalid PCI NUMA node information found, note it, and populate
215 	 * our database 1:1.
216 	 */
217 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
218 	pr_err("HFI: System BIOS may need to be upgraded\n");
219 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
220 		hfi1_per_node_cntr[node] = 1;
221 
222 	pci_dev_put(dev);
223 
224 	return 0;
225 }
226 
node_affinity_destroy(struct hfi1_affinity_node * entry)227 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
228 {
229 	free_percpu(entry->comp_vect_affinity);
230 	kfree(entry);
231 }
232 
node_affinity_destroy_all(void)233 void node_affinity_destroy_all(void)
234 {
235 	struct list_head *pos, *q;
236 	struct hfi1_affinity_node *entry;
237 
238 	mutex_lock(&node_affinity.lock);
239 	list_for_each_safe(pos, q, &node_affinity.list) {
240 		entry = list_entry(pos, struct hfi1_affinity_node,
241 				   list);
242 		list_del(pos);
243 		node_affinity_destroy(entry);
244 	}
245 	mutex_unlock(&node_affinity.lock);
246 	kfree(hfi1_per_node_cntr);
247 }
248 
node_affinity_allocate(int node)249 static struct hfi1_affinity_node *node_affinity_allocate(int node)
250 {
251 	struct hfi1_affinity_node *entry;
252 
253 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
254 	if (!entry)
255 		return NULL;
256 	entry->node = node;
257 	entry->comp_vect_affinity = alloc_percpu(u16);
258 	INIT_LIST_HEAD(&entry->list);
259 
260 	return entry;
261 }
262 
263 /*
264  * It appends an entry to the list.
265  * It *must* be called with node_affinity.lock held.
266  */
node_affinity_add_tail(struct hfi1_affinity_node * entry)267 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
268 {
269 	list_add_tail(&entry->list, &node_affinity.list);
270 }
271 
272 /* It must be called with node_affinity.lock held */
node_affinity_lookup(int node)273 static struct hfi1_affinity_node *node_affinity_lookup(int node)
274 {
275 	struct list_head *pos;
276 	struct hfi1_affinity_node *entry;
277 
278 	list_for_each(pos, &node_affinity.list) {
279 		entry = list_entry(pos, struct hfi1_affinity_node, list);
280 		if (entry->node == node)
281 			return entry;
282 	}
283 
284 	return NULL;
285 }
286 
per_cpu_affinity_get(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)287 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
288 				u16 __percpu *comp_vect_affinity)
289 {
290 	int curr_cpu;
291 	u16 cntr;
292 	u16 prev_cntr;
293 	int ret_cpu;
294 
295 	if (!possible_cpumask) {
296 		ret_cpu = -EINVAL;
297 		goto fail;
298 	}
299 
300 	if (!comp_vect_affinity) {
301 		ret_cpu = -EINVAL;
302 		goto fail;
303 	}
304 
305 	ret_cpu = cpumask_first(possible_cpumask);
306 	if (ret_cpu >= nr_cpu_ids) {
307 		ret_cpu = -EINVAL;
308 		goto fail;
309 	}
310 
311 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
312 	for_each_cpu(curr_cpu, possible_cpumask) {
313 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
314 
315 		if (cntr < prev_cntr) {
316 			ret_cpu = curr_cpu;
317 			prev_cntr = cntr;
318 		}
319 	}
320 
321 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
322 
323 fail:
324 	return ret_cpu;
325 }
326 
per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,u16 __percpu * comp_vect_affinity)327 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
328 				    u16 __percpu *comp_vect_affinity)
329 {
330 	int curr_cpu;
331 	int max_cpu;
332 	u16 cntr;
333 	u16 prev_cntr;
334 
335 	if (!possible_cpumask)
336 		return -EINVAL;
337 
338 	if (!comp_vect_affinity)
339 		return -EINVAL;
340 
341 	max_cpu = cpumask_first(possible_cpumask);
342 	if (max_cpu >= nr_cpu_ids)
343 		return -EINVAL;
344 
345 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
346 	for_each_cpu(curr_cpu, possible_cpumask) {
347 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
348 
349 		if (cntr > prev_cntr) {
350 			max_cpu = curr_cpu;
351 			prev_cntr = cntr;
352 		}
353 	}
354 
355 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
356 
357 	return max_cpu;
358 }
359 
360 /*
361  * Non-interrupt CPUs are used first, then interrupt CPUs.
362  * Two already allocated cpu masks must be passed.
363  */
_dev_comp_vect_cpu_get(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,cpumask_var_t non_intr_cpus,cpumask_var_t available_cpus)364 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
365 				  struct hfi1_affinity_node *entry,
366 				  cpumask_var_t non_intr_cpus,
367 				  cpumask_var_t available_cpus)
368 	__must_hold(&node_affinity.lock)
369 {
370 	int cpu;
371 	struct cpu_mask_set *set = dd->comp_vect;
372 
373 	lockdep_assert_held(&node_affinity.lock);
374 	if (!non_intr_cpus) {
375 		cpu = -1;
376 		goto fail;
377 	}
378 
379 	if (!available_cpus) {
380 		cpu = -1;
381 		goto fail;
382 	}
383 
384 	/* Available CPUs for pinning completion vectors */
385 	_cpu_mask_set_gen_inc(set);
386 	cpumask_andnot(available_cpus, &set->mask, &set->used);
387 
388 	/* Available CPUs without SDMA engine interrupts */
389 	cpumask_andnot(non_intr_cpus, available_cpus,
390 		       &entry->def_intr.used);
391 
392 	/* If there are non-interrupt CPUs available, use them first */
393 	if (!cpumask_empty(non_intr_cpus))
394 		cpu = cpumask_first(non_intr_cpus);
395 	else /* Otherwise, use interrupt CPUs */
396 		cpu = cpumask_first(available_cpus);
397 
398 	if (cpu >= nr_cpu_ids) { /* empty */
399 		cpu = -1;
400 		goto fail;
401 	}
402 	cpumask_set_cpu(cpu, &set->used);
403 
404 fail:
405 	return cpu;
406 }
407 
_dev_comp_vect_cpu_put(struct hfi1_devdata * dd,int cpu)408 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
409 {
410 	struct cpu_mask_set *set = dd->comp_vect;
411 
412 	if (cpu < 0)
413 		return;
414 
415 	cpu_mask_set_put(set, cpu);
416 }
417 
418 /* _dev_comp_vect_mappings_destroy() is reentrant */
_dev_comp_vect_mappings_destroy(struct hfi1_devdata * dd)419 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
420 {
421 	int i, cpu;
422 
423 	if (!dd->comp_vect_mappings)
424 		return;
425 
426 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
427 		cpu = dd->comp_vect_mappings[i];
428 		_dev_comp_vect_cpu_put(dd, cpu);
429 		dd->comp_vect_mappings[i] = -1;
430 		hfi1_cdbg(AFFINITY,
431 			  "[%s] Release CPU %d from completion vector %d",
432 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
433 	}
434 
435 	kfree(dd->comp_vect_mappings);
436 	dd->comp_vect_mappings = NULL;
437 }
438 
439 /*
440  * This function creates the table for looking up CPUs for completion vectors.
441  * num_comp_vectors needs to have been initilized before calling this function.
442  */
_dev_comp_vect_mappings_create(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)443 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
444 					  struct hfi1_affinity_node *entry)
445 	__must_hold(&node_affinity.lock)
446 {
447 	int i, cpu, ret;
448 	cpumask_var_t non_intr_cpus;
449 	cpumask_var_t available_cpus;
450 
451 	lockdep_assert_held(&node_affinity.lock);
452 
453 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
454 		return -ENOMEM;
455 
456 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
457 		free_cpumask_var(non_intr_cpus);
458 		return -ENOMEM;
459 	}
460 
461 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
462 					 sizeof(*dd->comp_vect_mappings),
463 					 GFP_KERNEL);
464 	if (!dd->comp_vect_mappings) {
465 		ret = -ENOMEM;
466 		goto fail;
467 	}
468 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
469 		dd->comp_vect_mappings[i] = -1;
470 
471 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
472 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
473 					     available_cpus);
474 		if (cpu < 0) {
475 			ret = -EINVAL;
476 			goto fail;
477 		}
478 
479 		dd->comp_vect_mappings[i] = cpu;
480 		hfi1_cdbg(AFFINITY,
481 			  "[%s] Completion Vector %d -> CPU %d",
482 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
483 	}
484 
485 	free_cpumask_var(available_cpus);
486 	free_cpumask_var(non_intr_cpus);
487 	return 0;
488 
489 fail:
490 	free_cpumask_var(available_cpus);
491 	free_cpumask_var(non_intr_cpus);
492 	_dev_comp_vect_mappings_destroy(dd);
493 
494 	return ret;
495 }
496 
hfi1_comp_vectors_set_up(struct hfi1_devdata * dd)497 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
498 {
499 	int ret;
500 	struct hfi1_affinity_node *entry;
501 
502 	mutex_lock(&node_affinity.lock);
503 	entry = node_affinity_lookup(dd->node);
504 	if (!entry) {
505 		ret = -EINVAL;
506 		goto unlock;
507 	}
508 	ret = _dev_comp_vect_mappings_create(dd, entry);
509 unlock:
510 	mutex_unlock(&node_affinity.lock);
511 
512 	return ret;
513 }
514 
hfi1_comp_vectors_clean_up(struct hfi1_devdata * dd)515 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
516 {
517 	_dev_comp_vect_mappings_destroy(dd);
518 }
519 
hfi1_comp_vect_mappings_lookup(struct rvt_dev_info * rdi,int comp_vect)520 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
521 {
522 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
523 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
524 
525 	if (!dd->comp_vect_mappings)
526 		return -EINVAL;
527 	if (comp_vect >= dd->comp_vect_possible_cpus)
528 		return -EINVAL;
529 
530 	return dd->comp_vect_mappings[comp_vect];
531 }
532 
533 /*
534  * It assumes dd->comp_vect_possible_cpus is available.
535  */
_dev_comp_vect_cpu_mask_init(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry,bool first_dev_init)536 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
537 					struct hfi1_affinity_node *entry,
538 					bool first_dev_init)
539 	__must_hold(&node_affinity.lock)
540 {
541 	int i, j, curr_cpu;
542 	int possible_cpus_comp_vect = 0;
543 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
544 
545 	lockdep_assert_held(&node_affinity.lock);
546 	/*
547 	 * If there's only one CPU available for completion vectors, then
548 	 * there will only be one completion vector available. Othewise,
549 	 * the number of completion vector available will be the number of
550 	 * available CPUs divide it by the number of devices in the
551 	 * local NUMA node.
552 	 */
553 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
554 		possible_cpus_comp_vect = 1;
555 		dd_dev_warn(dd,
556 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
557 	} else {
558 		possible_cpus_comp_vect +=
559 			cpumask_weight(&entry->comp_vect_mask) /
560 				       hfi1_per_node_cntr[dd->node];
561 
562 		/*
563 		 * If the completion vector CPUs available doesn't divide
564 		 * evenly among devices, then the first device device to be
565 		 * initialized gets an extra CPU.
566 		 */
567 		if (first_dev_init &&
568 		    cpumask_weight(&entry->comp_vect_mask) %
569 		    hfi1_per_node_cntr[dd->node] != 0)
570 			possible_cpus_comp_vect++;
571 	}
572 
573 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
574 
575 	/* Reserving CPUs for device completion vector */
576 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
577 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
578 						entry->comp_vect_affinity);
579 		if (curr_cpu < 0)
580 			goto fail;
581 
582 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
583 	}
584 
585 	hfi1_cdbg(AFFINITY,
586 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
587 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
588 		  cpumask_pr_args(dev_comp_vect_mask));
589 
590 	return 0;
591 
592 fail:
593 	for (j = 0; j < i; j++)
594 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
595 					 entry->comp_vect_affinity);
596 
597 	return curr_cpu;
598 }
599 
600 /*
601  * It assumes dd->comp_vect_possible_cpus is available.
602  */
_dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata * dd,struct hfi1_affinity_node * entry)603 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
604 					     struct hfi1_affinity_node *entry)
605 	__must_hold(&node_affinity.lock)
606 {
607 	int i, cpu;
608 
609 	lockdep_assert_held(&node_affinity.lock);
610 	if (!dd->comp_vect_possible_cpus)
611 		return;
612 
613 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
614 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
615 					       entry->comp_vect_affinity);
616 		/* Clearing CPU in device completion vector cpu mask */
617 		if (cpu >= 0)
618 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
619 	}
620 
621 	dd->comp_vect_possible_cpus = 0;
622 }
623 
624 /*
625  * Interrupt affinity.
626  *
627  * non-rcv avail gets a default mask that
628  * starts as possible cpus with threads reset
629  * and each rcv avail reset.
630  *
631  * rcv avail gets node relative 1 wrapping back
632  * to the node relative 1 as necessary.
633  *
634  */
hfi1_dev_affinity_init(struct hfi1_devdata * dd)635 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
636 {
637 	struct hfi1_affinity_node *entry;
638 	const struct cpumask *local_mask;
639 	int curr_cpu, possible, i, ret;
640 	bool new_entry = false;
641 
642 	local_mask = cpumask_of_node(dd->node);
643 	if (cpumask_first(local_mask) >= nr_cpu_ids)
644 		local_mask = topology_core_cpumask(0);
645 
646 	mutex_lock(&node_affinity.lock);
647 	entry = node_affinity_lookup(dd->node);
648 
649 	/*
650 	 * If this is the first time this NUMA node's affinity is used,
651 	 * create an entry in the global affinity structure and initialize it.
652 	 */
653 	if (!entry) {
654 		entry = node_affinity_allocate(dd->node);
655 		if (!entry) {
656 			dd_dev_err(dd,
657 				   "Unable to allocate global affinity node\n");
658 			ret = -ENOMEM;
659 			goto fail;
660 		}
661 		new_entry = true;
662 
663 		init_cpu_mask_set(&entry->def_intr);
664 		init_cpu_mask_set(&entry->rcv_intr);
665 		cpumask_clear(&entry->comp_vect_mask);
666 		cpumask_clear(&entry->general_intr_mask);
667 		/* Use the "real" cpu mask of this node as the default */
668 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
669 			    local_mask);
670 
671 		/* fill in the receive list */
672 		possible = cpumask_weight(&entry->def_intr.mask);
673 		curr_cpu = cpumask_first(&entry->def_intr.mask);
674 
675 		if (possible == 1) {
676 			/* only one CPU, everyone will use it */
677 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
678 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
679 		} else {
680 			/*
681 			 * The general/control context will be the first CPU in
682 			 * the default list, so it is removed from the default
683 			 * list and added to the general interrupt list.
684 			 */
685 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
686 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
687 			curr_cpu = cpumask_next(curr_cpu,
688 						&entry->def_intr.mask);
689 
690 			/*
691 			 * Remove the remaining kernel receive queues from
692 			 * the default list and add them to the receive list.
693 			 */
694 			for (i = 0;
695 			     i < (dd->n_krcv_queues - 1) *
696 				  hfi1_per_node_cntr[dd->node];
697 			     i++) {
698 				cpumask_clear_cpu(curr_cpu,
699 						  &entry->def_intr.mask);
700 				cpumask_set_cpu(curr_cpu,
701 						&entry->rcv_intr.mask);
702 				curr_cpu = cpumask_next(curr_cpu,
703 							&entry->def_intr.mask);
704 				if (curr_cpu >= nr_cpu_ids)
705 					break;
706 			}
707 
708 			/*
709 			 * If there ends up being 0 CPU cores leftover for SDMA
710 			 * engines, use the same CPU cores as general/control
711 			 * context.
712 			 */
713 			if (cpumask_weight(&entry->def_intr.mask) == 0)
714 				cpumask_copy(&entry->def_intr.mask,
715 					     &entry->general_intr_mask);
716 		}
717 
718 		/* Determine completion vector CPUs for the entire node */
719 		cpumask_and(&entry->comp_vect_mask,
720 			    &node_affinity.real_cpu_mask, local_mask);
721 		cpumask_andnot(&entry->comp_vect_mask,
722 			       &entry->comp_vect_mask,
723 			       &entry->rcv_intr.mask);
724 		cpumask_andnot(&entry->comp_vect_mask,
725 			       &entry->comp_vect_mask,
726 			       &entry->general_intr_mask);
727 
728 		/*
729 		 * If there ends up being 0 CPU cores leftover for completion
730 		 * vectors, use the same CPU core as the general/control
731 		 * context.
732 		 */
733 		if (cpumask_weight(&entry->comp_vect_mask) == 0)
734 			cpumask_copy(&entry->comp_vect_mask,
735 				     &entry->general_intr_mask);
736 	}
737 
738 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
739 	if (ret < 0)
740 		goto fail;
741 
742 	if (new_entry)
743 		node_affinity_add_tail(entry);
744 
745 	dd->affinity_entry = entry;
746 	mutex_unlock(&node_affinity.lock);
747 
748 	return 0;
749 
750 fail:
751 	if (new_entry)
752 		node_affinity_destroy(entry);
753 	mutex_unlock(&node_affinity.lock);
754 	return ret;
755 }
756 
hfi1_dev_affinity_clean_up(struct hfi1_devdata * dd)757 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
758 {
759 	struct hfi1_affinity_node *entry;
760 
761 	mutex_lock(&node_affinity.lock);
762 	if (!dd->affinity_entry)
763 		goto unlock;
764 	entry = node_affinity_lookup(dd->node);
765 	if (!entry)
766 		goto unlock;
767 
768 	/*
769 	 * Free device completion vector CPUs to be used by future
770 	 * completion vectors
771 	 */
772 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
773 unlock:
774 	dd->affinity_entry = NULL;
775 	mutex_unlock(&node_affinity.lock);
776 }
777 
778 /*
779  * Function updates the irq affinity hint for msix after it has been changed
780  * by the user using the /proc/irq interface. This function only accepts
781  * one cpu in the mask.
782  */
hfi1_update_sdma_affinity(struct hfi1_msix_entry * msix,int cpu)783 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
784 {
785 	struct sdma_engine *sde = msix->arg;
786 	struct hfi1_devdata *dd = sde->dd;
787 	struct hfi1_affinity_node *entry;
788 	struct cpu_mask_set *set;
789 	int i, old_cpu;
790 
791 	if (cpu > num_online_cpus() || cpu == sde->cpu)
792 		return;
793 
794 	mutex_lock(&node_affinity.lock);
795 	entry = node_affinity_lookup(dd->node);
796 	if (!entry)
797 		goto unlock;
798 
799 	old_cpu = sde->cpu;
800 	sde->cpu = cpu;
801 	cpumask_clear(&msix->mask);
802 	cpumask_set_cpu(cpu, &msix->mask);
803 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
804 		   msix->irq, irq_type_names[msix->type],
805 		   sde->this_idx, cpu);
806 	irq_set_affinity_hint(msix->irq, &msix->mask);
807 
808 	/*
809 	 * Set the new cpu in the hfi1_affinity_node and clean
810 	 * the old cpu if it is not used by any other IRQ
811 	 */
812 	set = &entry->def_intr;
813 	cpumask_set_cpu(cpu, &set->mask);
814 	cpumask_set_cpu(cpu, &set->used);
815 	for (i = 0; i < dd->msix_info.max_requested; i++) {
816 		struct hfi1_msix_entry *other_msix;
817 
818 		other_msix = &dd->msix_info.msix_entries[i];
819 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
820 			continue;
821 
822 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
823 			goto unlock;
824 	}
825 	cpumask_clear_cpu(old_cpu, &set->mask);
826 	cpumask_clear_cpu(old_cpu, &set->used);
827 unlock:
828 	mutex_unlock(&node_affinity.lock);
829 }
830 
hfi1_irq_notifier_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)831 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
832 				     const cpumask_t *mask)
833 {
834 	int cpu = cpumask_first(mask);
835 	struct hfi1_msix_entry *msix = container_of(notify,
836 						    struct hfi1_msix_entry,
837 						    notify);
838 
839 	/* Only one CPU configuration supported currently */
840 	hfi1_update_sdma_affinity(msix, cpu);
841 }
842 
hfi1_irq_notifier_release(struct kref * ref)843 static void hfi1_irq_notifier_release(struct kref *ref)
844 {
845 	/*
846 	 * This is required by affinity notifier. We don't have anything to
847 	 * free here.
848 	 */
849 }
850 
hfi1_setup_sdma_notifier(struct hfi1_msix_entry * msix)851 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
852 {
853 	struct irq_affinity_notify *notify = &msix->notify;
854 
855 	notify->irq = msix->irq;
856 	notify->notify = hfi1_irq_notifier_notify;
857 	notify->release = hfi1_irq_notifier_release;
858 
859 	if (irq_set_affinity_notifier(notify->irq, notify))
860 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
861 		       notify->irq);
862 }
863 
hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry * msix)864 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
865 {
866 	struct irq_affinity_notify *notify = &msix->notify;
867 
868 	if (irq_set_affinity_notifier(notify->irq, NULL))
869 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
870 		       notify->irq);
871 }
872 
873 /*
874  * Function sets the irq affinity for msix.
875  * It *must* be called with node_affinity.lock held.
876  */
get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)877 static int get_irq_affinity(struct hfi1_devdata *dd,
878 			    struct hfi1_msix_entry *msix)
879 {
880 	cpumask_var_t diff;
881 	struct hfi1_affinity_node *entry;
882 	struct cpu_mask_set *set = NULL;
883 	struct sdma_engine *sde = NULL;
884 	struct hfi1_ctxtdata *rcd = NULL;
885 	char extra[64];
886 	int cpu = -1;
887 
888 	extra[0] = '\0';
889 	cpumask_clear(&msix->mask);
890 
891 	entry = node_affinity_lookup(dd->node);
892 
893 	switch (msix->type) {
894 	case IRQ_SDMA:
895 		sde = (struct sdma_engine *)msix->arg;
896 		scnprintf(extra, 64, "engine %u", sde->this_idx);
897 		set = &entry->def_intr;
898 		break;
899 	case IRQ_GENERAL:
900 		cpu = cpumask_first(&entry->general_intr_mask);
901 		break;
902 	case IRQ_RCVCTXT:
903 		rcd = (struct hfi1_ctxtdata *)msix->arg;
904 		if (rcd->ctxt == HFI1_CTRL_CTXT)
905 			cpu = cpumask_first(&entry->general_intr_mask);
906 		else
907 			set = &entry->rcv_intr;
908 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
909 		break;
910 	case IRQ_NETDEVCTXT:
911 		rcd = (struct hfi1_ctxtdata *)msix->arg;
912 		set = &entry->def_intr;
913 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
914 		break;
915 	default:
916 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
917 		return -EINVAL;
918 	}
919 
920 	/*
921 	 * The general and control contexts are placed on a particular
922 	 * CPU, which is set above. Skip accounting for it. Everything else
923 	 * finds its CPU here.
924 	 */
925 	if (cpu == -1 && set) {
926 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
927 			return -ENOMEM;
928 
929 		cpu = cpu_mask_set_get_first(set, diff);
930 		if (cpu < 0) {
931 			free_cpumask_var(diff);
932 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
933 			return cpu;
934 		}
935 
936 		free_cpumask_var(diff);
937 	}
938 
939 	cpumask_set_cpu(cpu, &msix->mask);
940 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
941 		    msix->irq, irq_type_names[msix->type],
942 		    extra, cpu);
943 	irq_set_affinity_hint(msix->irq, &msix->mask);
944 
945 	if (msix->type == IRQ_SDMA) {
946 		sde->cpu = cpu;
947 		hfi1_setup_sdma_notifier(msix);
948 	}
949 
950 	return 0;
951 }
952 
hfi1_get_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)953 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
954 {
955 	int ret;
956 
957 	mutex_lock(&node_affinity.lock);
958 	ret = get_irq_affinity(dd, msix);
959 	mutex_unlock(&node_affinity.lock);
960 	return ret;
961 }
962 
hfi1_put_irq_affinity(struct hfi1_devdata * dd,struct hfi1_msix_entry * msix)963 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
964 			   struct hfi1_msix_entry *msix)
965 {
966 	struct cpu_mask_set *set = NULL;
967 	struct hfi1_ctxtdata *rcd;
968 	struct hfi1_affinity_node *entry;
969 
970 	mutex_lock(&node_affinity.lock);
971 	entry = node_affinity_lookup(dd->node);
972 
973 	switch (msix->type) {
974 	case IRQ_SDMA:
975 		set = &entry->def_intr;
976 		hfi1_cleanup_sdma_notifier(msix);
977 		break;
978 	case IRQ_GENERAL:
979 		/* Don't do accounting for general contexts */
980 		break;
981 	case IRQ_RCVCTXT:
982 		rcd = (struct hfi1_ctxtdata *)msix->arg;
983 		/* Don't do accounting for control contexts */
984 		if (rcd->ctxt != HFI1_CTRL_CTXT)
985 			set = &entry->rcv_intr;
986 		break;
987 	case IRQ_NETDEVCTXT:
988 		rcd = (struct hfi1_ctxtdata *)msix->arg;
989 		set = &entry->def_intr;
990 		break;
991 	default:
992 		mutex_unlock(&node_affinity.lock);
993 		return;
994 	}
995 
996 	if (set) {
997 		cpumask_andnot(&set->used, &set->used, &msix->mask);
998 		_cpu_mask_set_gen_dec(set);
999 	}
1000 
1001 	irq_set_affinity_hint(msix->irq, NULL);
1002 	cpumask_clear(&msix->mask);
1003 	mutex_unlock(&node_affinity.lock);
1004 }
1005 
1006 /* This should be called with node_affinity.lock held */
find_hw_thread_mask(uint hw_thread_no,cpumask_var_t hw_thread_mask,struct hfi1_affinity_node_list * affinity)1007 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1008 				struct hfi1_affinity_node_list *affinity)
1009 {
1010 	int possible, curr_cpu, i;
1011 	uint num_cores_per_socket = node_affinity.num_online_cpus /
1012 					affinity->num_core_siblings /
1013 						node_affinity.num_online_nodes;
1014 
1015 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1016 	if (affinity->num_core_siblings > 0) {
1017 		/* Removing other siblings not needed for now */
1018 		possible = cpumask_weight(hw_thread_mask);
1019 		curr_cpu = cpumask_first(hw_thread_mask);
1020 		for (i = 0;
1021 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
1022 		     i++)
1023 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1024 
1025 		for (; i < possible; i++) {
1026 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1027 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1028 		}
1029 
1030 		/* Identifying correct HW threads within physical cores */
1031 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1032 				   num_cores_per_socket *
1033 				   node_affinity.num_online_nodes *
1034 				   hw_thread_no);
1035 	}
1036 }
1037 
hfi1_get_proc_affinity(int node)1038 int hfi1_get_proc_affinity(int node)
1039 {
1040 	int cpu = -1, ret, i;
1041 	struct hfi1_affinity_node *entry;
1042 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1043 	const struct cpumask *node_mask,
1044 		*proc_mask = current->cpus_ptr;
1045 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1046 	struct cpu_mask_set *set = &affinity->proc;
1047 
1048 	/*
1049 	 * check whether process/context affinity has already
1050 	 * been set
1051 	 */
1052 	if (current->nr_cpus_allowed == 1) {
1053 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1054 			  current->pid, current->comm,
1055 			  cpumask_pr_args(proc_mask));
1056 		/*
1057 		 * Mark the pre-set CPU as used. This is atomic so we don't
1058 		 * need the lock
1059 		 */
1060 		cpu = cpumask_first(proc_mask);
1061 		cpumask_set_cpu(cpu, &set->used);
1062 		goto done;
1063 	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1064 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1065 			  current->pid, current->comm,
1066 			  cpumask_pr_args(proc_mask));
1067 		goto done;
1068 	}
1069 
1070 	/*
1071 	 * The process does not have a preset CPU affinity so find one to
1072 	 * recommend using the following algorithm:
1073 	 *
1074 	 * For each user process that is opening a context on HFI Y:
1075 	 *  a) If all cores are filled, reinitialize the bitmask
1076 	 *  b) Fill real cores first, then HT cores (First set of HT
1077 	 *     cores on all physical cores, then second set of HT core,
1078 	 *     and, so on) in the following order:
1079 	 *
1080 	 *     1. Same NUMA node as HFI Y and not running an IRQ
1081 	 *        handler
1082 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
1083 	 *     3. Different NUMA node to HFI Y and not running an IRQ
1084 	 *        handler
1085 	 *     4. Different NUMA node to HFI Y and running an IRQ
1086 	 *        handler
1087 	 *  c) Mark core as filled in the bitmask. As user processes are
1088 	 *     done, clear cores from the bitmask.
1089 	 */
1090 
1091 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1092 	if (!ret)
1093 		goto done;
1094 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1095 	if (!ret)
1096 		goto free_diff;
1097 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1098 	if (!ret)
1099 		goto free_hw_thread_mask;
1100 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1101 	if (!ret)
1102 		goto free_available_mask;
1103 
1104 	mutex_lock(&affinity->lock);
1105 	/*
1106 	 * If we've used all available HW threads, clear the mask and start
1107 	 * overloading.
1108 	 */
1109 	_cpu_mask_set_gen_inc(set);
1110 
1111 	/*
1112 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
1113 	 * interrupt handler mask.
1114 	 */
1115 	entry = node_affinity_lookup(node);
1116 	if (entry) {
1117 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1118 					  &entry->def_intr.mask :
1119 					  &entry->def_intr.used));
1120 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1121 						    &entry->rcv_intr.mask :
1122 						    &entry->rcv_intr.used));
1123 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1124 	}
1125 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1126 		  cpumask_pr_args(intrs_mask));
1127 
1128 	cpumask_copy(hw_thread_mask, &set->mask);
1129 
1130 	/*
1131 	 * If HT cores are enabled, identify which HW threads within the
1132 	 * physical cores should be used.
1133 	 */
1134 	if (affinity->num_core_siblings > 0) {
1135 		for (i = 0; i < affinity->num_core_siblings; i++) {
1136 			find_hw_thread_mask(i, hw_thread_mask, affinity);
1137 
1138 			/*
1139 			 * If there's at least one available core for this HW
1140 			 * thread number, stop looking for a core.
1141 			 *
1142 			 * diff will always be not empty at least once in this
1143 			 * loop as the used mask gets reset when
1144 			 * (set->mask == set->used) before this loop.
1145 			 */
1146 			cpumask_andnot(diff, hw_thread_mask, &set->used);
1147 			if (!cpumask_empty(diff))
1148 				break;
1149 		}
1150 	}
1151 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1152 		  cpumask_pr_args(hw_thread_mask));
1153 
1154 	node_mask = cpumask_of_node(node);
1155 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1156 		  cpumask_pr_args(node_mask));
1157 
1158 	/* Get cpumask of available CPUs on preferred NUMA */
1159 	cpumask_and(available_mask, hw_thread_mask, node_mask);
1160 	cpumask_andnot(available_mask, available_mask, &set->used);
1161 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1162 		  cpumask_pr_args(available_mask));
1163 
1164 	/*
1165 	 * At first, we don't want to place processes on the same
1166 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
1167 	 * handlers are used.
1168 	 *
1169 	 * 1) If diff is not empty, then there are CPUs not running
1170 	 *    non-interrupt handlers available, so diff gets copied
1171 	 *    over to available_mask.
1172 	 * 2) If diff is empty, then all CPUs not running interrupt
1173 	 *    handlers are taken, so available_mask contains all
1174 	 *    available CPUs running interrupt handlers.
1175 	 * 3) If available_mask is empty, then all CPUs on the
1176 	 *    preferred NUMA node are taken, so other NUMA nodes are
1177 	 *    used for process assignments using the same method as
1178 	 *    the preferred NUMA node.
1179 	 */
1180 	cpumask_andnot(diff, available_mask, intrs_mask);
1181 	if (!cpumask_empty(diff))
1182 		cpumask_copy(available_mask, diff);
1183 
1184 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
1185 	if (cpumask_empty(available_mask)) {
1186 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1187 		/* Excluding preferred NUMA cores */
1188 		cpumask_andnot(available_mask, available_mask, node_mask);
1189 		hfi1_cdbg(PROC,
1190 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1191 			  cpumask_pr_args(available_mask));
1192 
1193 		/*
1194 		 * At first, we don't want to place processes on the same
1195 		 * CPUs as interrupt handlers.
1196 		 */
1197 		cpumask_andnot(diff, available_mask, intrs_mask);
1198 		if (!cpumask_empty(diff))
1199 			cpumask_copy(available_mask, diff);
1200 	}
1201 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1202 		  cpumask_pr_args(available_mask));
1203 
1204 	cpu = cpumask_first(available_mask);
1205 	if (cpu >= nr_cpu_ids) /* empty */
1206 		cpu = -1;
1207 	else
1208 		cpumask_set_cpu(cpu, &set->used);
1209 
1210 	mutex_unlock(&affinity->lock);
1211 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1212 
1213 	free_cpumask_var(intrs_mask);
1214 free_available_mask:
1215 	free_cpumask_var(available_mask);
1216 free_hw_thread_mask:
1217 	free_cpumask_var(hw_thread_mask);
1218 free_diff:
1219 	free_cpumask_var(diff);
1220 done:
1221 	return cpu;
1222 }
1223 
hfi1_put_proc_affinity(int cpu)1224 void hfi1_put_proc_affinity(int cpu)
1225 {
1226 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1227 	struct cpu_mask_set *set = &affinity->proc;
1228 
1229 	if (cpu < 0)
1230 		return;
1231 
1232 	mutex_lock(&affinity->lock);
1233 	cpu_mask_set_put(set, cpu);
1234 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1235 	mutex_unlock(&affinity->lock);
1236 }
1237