• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2020 Cornelis Networks, Inc.
3  * Copyright(c) 2015-2020 Intel Corporation.
4  *
5  * This file is provided under a dual BSD/GPLv2 license.  When using or
6  * redistributing this file, you may do so under either license.
7  *
8  * GPL LICENSE SUMMARY
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  *
25  *  - Redistributions of source code must retain the above copyright
26  *    notice, this list of conditions and the following disclaimer.
27  *  - Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in
29  *    the documentation and/or other materials provided with the
30  *    distribution.
31  *  - Neither the name of Intel Corporation nor the names of its
32  *    contributors may be used to endorse or promote products derived
33  *    from this software without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46  *
47  */
48 #include <linux/poll.h>
49 #include <linux/cdev.h>
50 #include <linux/vmalloc.h>
51 #include <linux/io.h>
52 #include <linux/sched/mm.h>
53 #include <linux/bitmap.h>
54 
55 #include <rdma/ib.h>
56 
57 #include "hfi.h"
58 #include "pio.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mmu_rb.h"
63 #include "user_sdma.h"
64 #include "user_exp_rcv.h"
65 #include "aspm.h"
66 
67 #undef pr_fmt
68 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69 
70 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
71 
72 /*
73  * File operation functions
74  */
75 static int hfi1_file_open(struct inode *inode, struct file *fp);
76 static int hfi1_file_close(struct inode *inode, struct file *fp);
77 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
78 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
79 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
80 
81 static u64 kvirt_to_phys(void *addr);
82 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
83 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
84 			  const struct hfi1_user_info *uinfo);
85 static int init_user_ctxt(struct hfi1_filedata *fd,
86 			  struct hfi1_ctxtdata *uctxt);
87 static void user_init(struct hfi1_ctxtdata *uctxt);
88 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
90 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
91 			      u32 len);
92 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
93 			      u32 len);
94 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
95 				u32 len);
96 static int setup_base_ctxt(struct hfi1_filedata *fd,
97 			   struct hfi1_ctxtdata *uctxt);
98 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
99 
100 static int find_sub_ctxt(struct hfi1_filedata *fd,
101 			 const struct hfi1_user_info *uinfo);
102 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
103 			 struct hfi1_user_info *uinfo,
104 			 struct hfi1_ctxtdata **cd);
105 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
106 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
107 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
108 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
109 			  unsigned long arg);
110 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
111 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
112 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
113 		       unsigned long arg);
114 static vm_fault_t vma_fault(struct vm_fault *vmf);
115 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
116 			    unsigned long arg);
117 
118 static const struct file_operations hfi1_file_ops = {
119 	.owner = THIS_MODULE,
120 	.write_iter = hfi1_write_iter,
121 	.open = hfi1_file_open,
122 	.release = hfi1_file_close,
123 	.unlocked_ioctl = hfi1_file_ioctl,
124 	.poll = hfi1_poll,
125 	.mmap = hfi1_file_mmap,
126 	.llseek = noop_llseek,
127 };
128 
129 static const struct vm_operations_struct vm_ops = {
130 	.fault = vma_fault,
131 };
132 
133 /*
134  * Types of memories mapped into user processes' space
135  */
136 enum mmap_types {
137 	PIO_BUFS = 1,
138 	PIO_BUFS_SOP,
139 	PIO_CRED,
140 	RCV_HDRQ,
141 	RCV_EGRBUF,
142 	UREGS,
143 	EVENTS,
144 	STATUS,
145 	RTAIL,
146 	SUBCTXT_UREGS,
147 	SUBCTXT_RCV_HDRQ,
148 	SUBCTXT_EGRBUF,
149 	SDMA_COMP
150 };
151 
152 /*
153  * Masks and offsets defining the mmap tokens
154  */
155 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
156 #define HFI1_MMAP_OFFSET_SHIFT  0
157 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
158 #define HFI1_MMAP_SUBCTXT_SHIFT 12
159 #define HFI1_MMAP_CTXT_MASK     0xffULL
160 #define HFI1_MMAP_CTXT_SHIFT    16
161 #define HFI1_MMAP_TYPE_MASK     0xfULL
162 #define HFI1_MMAP_TYPE_SHIFT    24
163 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
164 #define HFI1_MMAP_MAGIC_SHIFT   32
165 
166 #define HFI1_MMAP_MAGIC         0xdabbad00
167 
168 #define HFI1_MMAP_TOKEN_SET(field, val)	\
169 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
170 #define HFI1_MMAP_TOKEN_GET(field, token) \
171 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
172 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
173 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
174 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
175 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
176 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
177 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
178 
179 #define dbg(fmt, ...)				\
180 	pr_info(fmt, ##__VA_ARGS__)
181 
is_valid_mmap(u64 token)182 static inline int is_valid_mmap(u64 token)
183 {
184 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
185 }
186 
hfi1_file_open(struct inode * inode,struct file * fp)187 static int hfi1_file_open(struct inode *inode, struct file *fp)
188 {
189 	struct hfi1_filedata *fd;
190 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
191 					       struct hfi1_devdata,
192 					       user_cdev);
193 
194 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
195 		return -EINVAL;
196 
197 	if (!atomic_inc_not_zero(&dd->user_refcount))
198 		return -ENXIO;
199 
200 	/* The real work is performed later in assign_ctxt() */
201 
202 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
203 
204 	if (!fd || init_srcu_struct(&fd->pq_srcu))
205 		goto nomem;
206 	spin_lock_init(&fd->pq_rcu_lock);
207 	spin_lock_init(&fd->tid_lock);
208 	spin_lock_init(&fd->invalid_lock);
209 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
210 	fd->dd = dd;
211 	fp->private_data = fd;
212 	return 0;
213 nomem:
214 	kfree(fd);
215 	fp->private_data = NULL;
216 	if (atomic_dec_and_test(&dd->user_refcount))
217 		complete(&dd->user_comp);
218 	return -ENOMEM;
219 }
220 
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)221 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
222 			    unsigned long arg)
223 {
224 	struct hfi1_filedata *fd = fp->private_data;
225 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
226 	int ret = 0;
227 	int uval = 0;
228 
229 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
230 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
231 	    cmd != HFI1_IOCTL_GET_VERS &&
232 	    !uctxt)
233 		return -EINVAL;
234 
235 	switch (cmd) {
236 	case HFI1_IOCTL_ASSIGN_CTXT:
237 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
238 		break;
239 
240 	case HFI1_IOCTL_CTXT_INFO:
241 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
242 		break;
243 
244 	case HFI1_IOCTL_USER_INFO:
245 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
246 		break;
247 
248 	case HFI1_IOCTL_CREDIT_UPD:
249 		if (uctxt)
250 			sc_return_credits(uctxt->sc);
251 		break;
252 
253 	case HFI1_IOCTL_TID_UPDATE:
254 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
255 		break;
256 
257 	case HFI1_IOCTL_TID_FREE:
258 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
259 		break;
260 
261 	case HFI1_IOCTL_TID_INVAL_READ:
262 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
263 		break;
264 
265 	case HFI1_IOCTL_RECV_CTRL:
266 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
267 		break;
268 
269 	case HFI1_IOCTL_POLL_TYPE:
270 		if (get_user(uval, (int __user *)arg))
271 			return -EFAULT;
272 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
273 		break;
274 
275 	case HFI1_IOCTL_ACK_EVENT:
276 		ret = user_event_ack(uctxt, fd->subctxt, arg);
277 		break;
278 
279 	case HFI1_IOCTL_SET_PKEY:
280 		ret = set_ctxt_pkey(uctxt, arg);
281 		break;
282 
283 	case HFI1_IOCTL_CTXT_RESET:
284 		ret = ctxt_reset(uctxt);
285 		break;
286 
287 	case HFI1_IOCTL_GET_VERS:
288 		uval = HFI1_USER_SWVERSION;
289 		if (put_user(uval, (int __user *)arg))
290 			return -EFAULT;
291 		break;
292 
293 	default:
294 		return -EINVAL;
295 	}
296 
297 	return ret;
298 }
299 
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)300 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
301 {
302 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
303 	struct hfi1_user_sdma_pkt_q *pq;
304 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
305 	int done = 0, reqs = 0;
306 	unsigned long dim = from->nr_segs;
307 	int idx;
308 
309 	if (!HFI1_CAP_IS_KSET(SDMA))
310 		return -EINVAL;
311 	idx = srcu_read_lock(&fd->pq_srcu);
312 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
313 	if (!cq || !pq) {
314 		srcu_read_unlock(&fd->pq_srcu, idx);
315 		return -EIO;
316 	}
317 
318 	if (!iter_is_iovec(from) || !dim) {
319 		srcu_read_unlock(&fd->pq_srcu, idx);
320 		return -EINVAL;
321 	}
322 
323 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
324 
325 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
326 		srcu_read_unlock(&fd->pq_srcu, idx);
327 		return -ENOSPC;
328 	}
329 
330 	while (dim) {
331 		int ret;
332 		unsigned long count = 0;
333 
334 		ret = hfi1_user_sdma_process_request(
335 			fd, (struct iovec *)(from->iov + done),
336 			dim, &count);
337 		if (ret) {
338 			reqs = ret;
339 			break;
340 		}
341 		dim -= count;
342 		done += count;
343 		reqs++;
344 	}
345 
346 	srcu_read_unlock(&fd->pq_srcu, idx);
347 	return reqs;
348 }
349 
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)350 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
351 {
352 	struct hfi1_filedata *fd = fp->private_data;
353 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
354 	struct hfi1_devdata *dd;
355 	unsigned long flags;
356 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
357 		memaddr = 0;
358 	void *memvirt = NULL;
359 	u8 subctxt, mapio = 0, vmf = 0, type;
360 	ssize_t memlen = 0;
361 	int ret = 0;
362 	u16 ctxt;
363 
364 	if (!is_valid_mmap(token) || !uctxt ||
365 	    !(vma->vm_flags & VM_SHARED)) {
366 		ret = -EINVAL;
367 		goto done;
368 	}
369 	dd = uctxt->dd;
370 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
371 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
372 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
373 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
374 		ret = -EINVAL;
375 		goto done;
376 	}
377 
378 	flags = vma->vm_flags;
379 
380 	switch (type) {
381 	case PIO_BUFS:
382 	case PIO_BUFS_SOP:
383 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
384 				/* chip pio base */
385 			   (uctxt->sc->hw_context * BIT(16))) +
386 				/* 64K PIO space / ctxt */
387 			(type == PIO_BUFS_SOP ?
388 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
389 		/*
390 		 * Map only the amount allocated to the context, not the
391 		 * entire available context's PIO space.
392 		 */
393 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
394 		flags &= ~VM_MAYREAD;
395 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
396 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
397 		mapio = 1;
398 		break;
399 	case PIO_CRED:
400 		if (flags & VM_WRITE) {
401 			ret = -EPERM;
402 			goto done;
403 		}
404 		/*
405 		 * The credit return location for this context could be on the
406 		 * second or third page allocated for credit returns (if number
407 		 * of enabled contexts > 64 and 128 respectively).
408 		 */
409 		memvirt = dd->cr_base[uctxt->numa_id].va;
410 		memaddr = virt_to_phys(memvirt) +
411 			(((u64)uctxt->sc->hw_free -
412 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
413 		memlen = PAGE_SIZE;
414 		flags &= ~VM_MAYWRITE;
415 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
416 		/*
417 		 * The driver has already allocated memory for credit
418 		 * returns and programmed it into the chip. Has that
419 		 * memory been flagged as non-cached?
420 		 */
421 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
422 		mapio = 1;
423 		break;
424 	case RCV_HDRQ:
425 		memlen = rcvhdrq_size(uctxt);
426 		memvirt = uctxt->rcvhdrq;
427 		break;
428 	case RCV_EGRBUF: {
429 		unsigned long addr;
430 		int i;
431 		/*
432 		 * The RcvEgr buffer need to be handled differently
433 		 * as multiple non-contiguous pages need to be mapped
434 		 * into the user process.
435 		 */
436 		memlen = uctxt->egrbufs.size;
437 		if ((vma->vm_end - vma->vm_start) != memlen) {
438 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
439 				   (vma->vm_end - vma->vm_start), memlen);
440 			ret = -EINVAL;
441 			goto done;
442 		}
443 		if (vma->vm_flags & VM_WRITE) {
444 			ret = -EPERM;
445 			goto done;
446 		}
447 		vma->vm_flags &= ~VM_MAYWRITE;
448 		addr = vma->vm_start;
449 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
450 			memlen = uctxt->egrbufs.buffers[i].len;
451 			memvirt = uctxt->egrbufs.buffers[i].addr;
452 			ret = remap_pfn_range(
453 				vma, addr,
454 				/*
455 				 * virt_to_pfn() does the same, but
456 				 * it's not available on x86_64
457 				 * when CONFIG_MMU is enabled.
458 				 */
459 				PFN_DOWN(__pa(memvirt)),
460 				memlen,
461 				vma->vm_page_prot);
462 			if (ret < 0)
463 				goto done;
464 			addr += memlen;
465 		}
466 		ret = 0;
467 		goto done;
468 	}
469 	case UREGS:
470 		/*
471 		 * Map only the page that contains this context's user
472 		 * registers.
473 		 */
474 		memaddr = (unsigned long)
475 			(dd->physaddr + RXE_PER_CONTEXT_USER)
476 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
477 		/*
478 		 * TidFlow table is on the same page as the rest of the
479 		 * user registers.
480 		 */
481 		memlen = PAGE_SIZE;
482 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
483 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
484 		mapio = 1;
485 		break;
486 	case EVENTS:
487 		/*
488 		 * Use the page where this context's flags are. User level
489 		 * knows where it's own bitmap is within the page.
490 		 */
491 		memaddr = (unsigned long)
492 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
493 		memlen = PAGE_SIZE;
494 		/*
495 		 * v3.7 removes VM_RESERVED but the effect is kept by
496 		 * using VM_IO.
497 		 */
498 		flags |= VM_IO | VM_DONTEXPAND;
499 		vmf = 1;
500 		break;
501 	case STATUS:
502 		if (flags & VM_WRITE) {
503 			ret = -EPERM;
504 			goto done;
505 		}
506 		memaddr = kvirt_to_phys((void *)dd->status);
507 		memlen = PAGE_SIZE;
508 		flags |= VM_IO | VM_DONTEXPAND;
509 		break;
510 	case RTAIL:
511 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
512 			/*
513 			 * If the memory allocation failed, the context alloc
514 			 * also would have failed, so we would never get here
515 			 */
516 			ret = -EINVAL;
517 			goto done;
518 		}
519 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
520 			ret = -EPERM;
521 			goto done;
522 		}
523 		memlen = PAGE_SIZE;
524 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
525 		flags &= ~VM_MAYWRITE;
526 		break;
527 	case SUBCTXT_UREGS:
528 		memaddr = (u64)uctxt->subctxt_uregbase;
529 		memlen = PAGE_SIZE;
530 		flags |= VM_IO | VM_DONTEXPAND;
531 		vmf = 1;
532 		break;
533 	case SUBCTXT_RCV_HDRQ:
534 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
535 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
536 		flags |= VM_IO | VM_DONTEXPAND;
537 		vmf = 1;
538 		break;
539 	case SUBCTXT_EGRBUF:
540 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
541 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
542 		flags |= VM_IO | VM_DONTEXPAND;
543 		flags &= ~VM_MAYWRITE;
544 		vmf = 1;
545 		break;
546 	case SDMA_COMP: {
547 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
548 
549 		if (!cq) {
550 			ret = -EFAULT;
551 			goto done;
552 		}
553 		memaddr = (u64)cq->comps;
554 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
555 		flags |= VM_IO | VM_DONTEXPAND;
556 		vmf = 1;
557 		break;
558 	}
559 	default:
560 		ret = -EINVAL;
561 		break;
562 	}
563 
564 	if ((vma->vm_end - vma->vm_start) != memlen) {
565 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
566 			  uctxt->ctxt, fd->subctxt,
567 			  (vma->vm_end - vma->vm_start), memlen);
568 		ret = -EINVAL;
569 		goto done;
570 	}
571 
572 	vma->vm_flags = flags;
573 	hfi1_cdbg(PROC,
574 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
575 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
576 		    vma->vm_end - vma->vm_start, vma->vm_flags);
577 	if (vmf) {
578 		vma->vm_pgoff = PFN_DOWN(memaddr);
579 		vma->vm_ops = &vm_ops;
580 		ret = 0;
581 	} else if (mapio) {
582 		ret = io_remap_pfn_range(vma, vma->vm_start,
583 					 PFN_DOWN(memaddr),
584 					 memlen,
585 					 vma->vm_page_prot);
586 	} else if (memvirt) {
587 		ret = remap_pfn_range(vma, vma->vm_start,
588 				      PFN_DOWN(__pa(memvirt)),
589 				      memlen,
590 				      vma->vm_page_prot);
591 	} else {
592 		ret = remap_pfn_range(vma, vma->vm_start,
593 				      PFN_DOWN(memaddr),
594 				      memlen,
595 				      vma->vm_page_prot);
596 	}
597 done:
598 	return ret;
599 }
600 
601 /*
602  * Local (non-chip) user memory is not mapped right away but as it is
603  * accessed by the user-level code.
604  */
vma_fault(struct vm_fault * vmf)605 static vm_fault_t vma_fault(struct vm_fault *vmf)
606 {
607 	struct page *page;
608 
609 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
610 	if (!page)
611 		return VM_FAULT_SIGBUS;
612 
613 	get_page(page);
614 	vmf->page = page;
615 
616 	return 0;
617 }
618 
hfi1_poll(struct file * fp,struct poll_table_struct * pt)619 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
620 {
621 	struct hfi1_ctxtdata *uctxt;
622 	__poll_t pollflag;
623 
624 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
625 	if (!uctxt)
626 		pollflag = EPOLLERR;
627 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
628 		pollflag = poll_urgent(fp, pt);
629 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
630 		pollflag = poll_next(fp, pt);
631 	else /* invalid */
632 		pollflag = EPOLLERR;
633 
634 	return pollflag;
635 }
636 
hfi1_file_close(struct inode * inode,struct file * fp)637 static int hfi1_file_close(struct inode *inode, struct file *fp)
638 {
639 	struct hfi1_filedata *fdata = fp->private_data;
640 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
641 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
642 					       struct hfi1_devdata,
643 					       user_cdev);
644 	unsigned long flags, *ev;
645 
646 	fp->private_data = NULL;
647 
648 	if (!uctxt)
649 		goto done;
650 
651 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
652 
653 	flush_wc();
654 	/* drain user sdma queue */
655 	hfi1_user_sdma_free_queues(fdata, uctxt);
656 
657 	/* release the cpu */
658 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
659 
660 	/* clean up rcv side */
661 	hfi1_user_exp_rcv_free(fdata);
662 
663 	/*
664 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
665 	 * removed until here.
666 	 */
667 	fdata->uctxt = NULL;
668 	hfi1_rcd_put(uctxt);
669 
670 	/*
671 	 * Clear any left over, unhandled events so the next process that
672 	 * gets this context doesn't get confused.
673 	 */
674 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
675 	*ev = 0;
676 
677 	spin_lock_irqsave(&dd->uctxt_lock, flags);
678 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
679 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
680 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
681 		goto done;
682 	}
683 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
684 
685 	/*
686 	 * Disable receive context and interrupt available, reset all
687 	 * RcvCtxtCtrl bits to default values.
688 	 */
689 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
690 		     HFI1_RCVCTRL_TIDFLOW_DIS |
691 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
692 		     HFI1_RCVCTRL_TAILUPD_DIS |
693 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
694 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
695 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
696 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
697 	/* Clear the context's J_KEY */
698 	hfi1_clear_ctxt_jkey(dd, uctxt);
699 	/*
700 	 * If a send context is allocated, reset context integrity
701 	 * checks to default and disable the send context.
702 	 */
703 	if (uctxt->sc) {
704 		sc_disable(uctxt->sc);
705 		set_pio_integrity(uctxt->sc);
706 	}
707 
708 	hfi1_free_ctxt_rcv_groups(uctxt);
709 	hfi1_clear_ctxt_pkey(dd, uctxt);
710 
711 	uctxt->event_flags = 0;
712 
713 	deallocate_ctxt(uctxt);
714 done:
715 
716 	if (atomic_dec_and_test(&dd->user_refcount))
717 		complete(&dd->user_comp);
718 
719 	cleanup_srcu_struct(&fdata->pq_srcu);
720 	kfree(fdata);
721 	return 0;
722 }
723 
724 /*
725  * Convert kernel *virtual* addresses to physical addresses.
726  * This is used to vmalloc'ed addresses.
727  */
kvirt_to_phys(void * addr)728 static u64 kvirt_to_phys(void *addr)
729 {
730 	struct page *page;
731 	u64 paddr = 0;
732 
733 	page = vmalloc_to_page(addr);
734 	if (page)
735 		paddr = page_to_pfn(page) << PAGE_SHIFT;
736 
737 	return paddr;
738 }
739 
740 /**
741  * complete_subctxt
742  * @fd: valid filedata pointer
743  *
744  * Sub-context info can only be set up after the base context
745  * has been completed.  This is indicated by the clearing of the
746  * HFI1_CTXT_BASE_UINIT bit.
747  *
748  * Wait for the bit to be cleared, and then complete the subcontext
749  * initialization.
750  *
751  */
complete_subctxt(struct hfi1_filedata * fd)752 static int complete_subctxt(struct hfi1_filedata *fd)
753 {
754 	int ret;
755 	unsigned long flags;
756 
757 	/*
758 	 * sub-context info can only be set up after the base context
759 	 * has been completed.
760 	 */
761 	ret = wait_event_interruptible(
762 		fd->uctxt->wait,
763 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
764 
765 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
766 		ret = -ENOMEM;
767 
768 	/* Finish the sub-context init */
769 	if (!ret) {
770 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
771 		ret = init_user_ctxt(fd, fd->uctxt);
772 	}
773 
774 	if (ret) {
775 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
776 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
777 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
778 		hfi1_rcd_put(fd->uctxt);
779 		fd->uctxt = NULL;
780 	}
781 
782 	return ret;
783 }
784 
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)785 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
786 {
787 	int ret;
788 	unsigned int swmajor;
789 	struct hfi1_ctxtdata *uctxt = NULL;
790 	struct hfi1_user_info uinfo;
791 
792 	if (fd->uctxt)
793 		return -EINVAL;
794 
795 	if (sizeof(uinfo) != len)
796 		return -EINVAL;
797 
798 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
799 		return -EFAULT;
800 
801 	swmajor = uinfo.userversion >> 16;
802 	if (swmajor != HFI1_USER_SWMAJOR)
803 		return -ENODEV;
804 
805 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
806 		return -EINVAL;
807 
808 	/*
809 	 * Acquire the mutex to protect against multiple creations of what
810 	 * could be a shared base context.
811 	 */
812 	mutex_lock(&hfi1_mutex);
813 	/*
814 	 * Get a sub context if available  (fd->uctxt will be set).
815 	 * ret < 0 error, 0 no context, 1 sub-context found
816 	 */
817 	ret = find_sub_ctxt(fd, &uinfo);
818 
819 	/*
820 	 * Allocate a base context if context sharing is not required or a
821 	 * sub context wasn't found.
822 	 */
823 	if (!ret)
824 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
825 
826 	mutex_unlock(&hfi1_mutex);
827 
828 	/* Depending on the context type, finish the appropriate init */
829 	switch (ret) {
830 	case 0:
831 		ret = setup_base_ctxt(fd, uctxt);
832 		if (ret)
833 			deallocate_ctxt(uctxt);
834 		break;
835 	case 1:
836 		ret = complete_subctxt(fd);
837 		break;
838 	default:
839 		break;
840 	}
841 
842 	return ret;
843 }
844 
845 /**
846  * match_ctxt
847  * @fd: valid filedata pointer
848  * @uinfo: user info to compare base context with
849  * @uctxt: context to compare uinfo to.
850  *
851  * Compare the given context with the given information to see if it
852  * can be used for a sub context.
853  */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)854 static int match_ctxt(struct hfi1_filedata *fd,
855 		      const struct hfi1_user_info *uinfo,
856 		      struct hfi1_ctxtdata *uctxt)
857 {
858 	struct hfi1_devdata *dd = fd->dd;
859 	unsigned long flags;
860 	u16 subctxt;
861 
862 	/* Skip dynamically allocated kernel contexts */
863 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
864 		return 0;
865 
866 	/* Skip ctxt if it doesn't match the requested one */
867 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
868 	    uctxt->jkey != generate_jkey(current_uid()) ||
869 	    uctxt->subctxt_id != uinfo->subctxt_id ||
870 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
871 		return 0;
872 
873 	/* Verify the sharing process matches the base */
874 	if (uctxt->userversion != uinfo->userversion)
875 		return -EINVAL;
876 
877 	/* Find an unused sub context */
878 	spin_lock_irqsave(&dd->uctxt_lock, flags);
879 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
880 		/* context is being closed, do not use */
881 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
882 		return 0;
883 	}
884 
885 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
886 				      HFI1_MAX_SHARED_CTXTS);
887 	if (subctxt >= uctxt->subctxt_cnt) {
888 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
889 		return -EBUSY;
890 	}
891 
892 	fd->subctxt = subctxt;
893 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
894 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
895 
896 	fd->uctxt = uctxt;
897 	hfi1_rcd_get(uctxt);
898 
899 	return 1;
900 }
901 
902 /**
903  * find_sub_ctxt
904  * @fd: valid filedata pointer
905  * @uinfo: matching info to use to find a possible context to share.
906  *
907  * The hfi1_mutex must be held when this function is called.  It is
908  * necessary to ensure serialized creation of shared contexts.
909  *
910  * Return:
911  *    0      No sub-context found
912  *    1      Subcontext found and allocated
913  *    errno  EINVAL (incorrect parameters)
914  *           EBUSY (all sub contexts in use)
915  */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)916 static int find_sub_ctxt(struct hfi1_filedata *fd,
917 			 const struct hfi1_user_info *uinfo)
918 {
919 	struct hfi1_ctxtdata *uctxt;
920 	struct hfi1_devdata *dd = fd->dd;
921 	u16 i;
922 	int ret;
923 
924 	if (!uinfo->subctxt_cnt)
925 		return 0;
926 
927 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
928 		uctxt = hfi1_rcd_get_by_index(dd, i);
929 		if (uctxt) {
930 			ret = match_ctxt(fd, uinfo, uctxt);
931 			hfi1_rcd_put(uctxt);
932 			/* value of != 0 will return */
933 			if (ret)
934 				return ret;
935 		}
936 	}
937 
938 	return 0;
939 }
940 
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)941 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
942 			 struct hfi1_user_info *uinfo,
943 			 struct hfi1_ctxtdata **rcd)
944 {
945 	struct hfi1_ctxtdata *uctxt;
946 	int ret, numa;
947 
948 	if (dd->flags & HFI1_FROZEN) {
949 		/*
950 		 * Pick an error that is unique from all other errors
951 		 * that are returned so the user process knows that
952 		 * it tried to allocate while the SPC was frozen.  It
953 		 * it should be able to retry with success in a short
954 		 * while.
955 		 */
956 		return -EIO;
957 	}
958 
959 	if (!dd->freectxts)
960 		return -EBUSY;
961 
962 	/*
963 	 * If we don't have a NUMA node requested, preference is towards
964 	 * device NUMA node.
965 	 */
966 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
967 	if (fd->rec_cpu_num != -1)
968 		numa = cpu_to_node(fd->rec_cpu_num);
969 	else
970 		numa = numa_node_id();
971 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
972 	if (ret < 0) {
973 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
974 		return ret;
975 	}
976 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
977 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
978 		  uctxt->numa_id);
979 
980 	/*
981 	 * Allocate and enable a PIO send context.
982 	 */
983 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
984 	if (!uctxt->sc) {
985 		ret = -ENOMEM;
986 		goto ctxdata_free;
987 	}
988 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
989 		  uctxt->sc->hw_context);
990 	ret = sc_enable(uctxt->sc);
991 	if (ret)
992 		goto ctxdata_free;
993 
994 	/*
995 	 * Setup sub context information if the user-level has requested
996 	 * sub contexts.
997 	 * This has to be done here so the rest of the sub-contexts find the
998 	 * proper base context.
999 	 * NOTE: _set_bit() can be used here because the context creation is
1000 	 * protected by the mutex (rather than the spin_lock), and will be the
1001 	 * very first instance of this context.
1002 	 */
1003 	__set_bit(0, uctxt->in_use_ctxts);
1004 	if (uinfo->subctxt_cnt)
1005 		init_subctxts(uctxt, uinfo);
1006 	uctxt->userversion = uinfo->userversion;
1007 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1008 	init_waitqueue_head(&uctxt->wait);
1009 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1010 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1011 	uctxt->jkey = generate_jkey(current_uid());
1012 	hfi1_stats.sps_ctxts++;
1013 	/*
1014 	 * Disable ASPM when there are open user/PSM contexts to avoid
1015 	 * issues with ASPM L1 exit latency
1016 	 */
1017 	if (dd->freectxts-- == dd->num_user_contexts)
1018 		aspm_disable_all(dd);
1019 
1020 	*rcd = uctxt;
1021 
1022 	return 0;
1023 
1024 ctxdata_free:
1025 	hfi1_free_ctxt(uctxt);
1026 	return ret;
1027 }
1028 
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1029 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1030 {
1031 	mutex_lock(&hfi1_mutex);
1032 	hfi1_stats.sps_ctxts--;
1033 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1034 		aspm_enable_all(uctxt->dd);
1035 	mutex_unlock(&hfi1_mutex);
1036 
1037 	hfi1_free_ctxt(uctxt);
1038 }
1039 
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1040 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1041 			  const struct hfi1_user_info *uinfo)
1042 {
1043 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1044 	uctxt->subctxt_id = uinfo->subctxt_id;
1045 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1046 }
1047 
setup_subctxt(struct hfi1_ctxtdata * uctxt)1048 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1049 {
1050 	int ret = 0;
1051 	u16 num_subctxts = uctxt->subctxt_cnt;
1052 
1053 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1054 	if (!uctxt->subctxt_uregbase)
1055 		return -ENOMEM;
1056 
1057 	/* We can take the size of the RcvHdr Queue from the master */
1058 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1059 						  num_subctxts);
1060 	if (!uctxt->subctxt_rcvhdr_base) {
1061 		ret = -ENOMEM;
1062 		goto bail_ureg;
1063 	}
1064 
1065 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1066 						num_subctxts);
1067 	if (!uctxt->subctxt_rcvegrbuf) {
1068 		ret = -ENOMEM;
1069 		goto bail_rhdr;
1070 	}
1071 
1072 	return 0;
1073 
1074 bail_rhdr:
1075 	vfree(uctxt->subctxt_rcvhdr_base);
1076 	uctxt->subctxt_rcvhdr_base = NULL;
1077 bail_ureg:
1078 	vfree(uctxt->subctxt_uregbase);
1079 	uctxt->subctxt_uregbase = NULL;
1080 
1081 	return ret;
1082 }
1083 
user_init(struct hfi1_ctxtdata * uctxt)1084 static void user_init(struct hfi1_ctxtdata *uctxt)
1085 {
1086 	unsigned int rcvctrl_ops = 0;
1087 
1088 	/* initialize poll variables... */
1089 	uctxt->urgent = 0;
1090 	uctxt->urgent_poll = 0;
1091 
1092 	/*
1093 	 * Now enable the ctxt for receive.
1094 	 * For chips that are set to DMA the tail register to memory
1095 	 * when they change (and when the update bit transitions from
1096 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1097 	 * This will (very briefly) affect any other open ctxts, but the
1098 	 * duration is very short, and therefore isn't an issue.  We
1099 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1100 	 * don't have to wait to be sure the DMA update has happened
1101 	 * (chip resets head/tail to 0 on transition to enable).
1102 	 */
1103 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1104 		clear_rcvhdrtail(uctxt);
1105 
1106 	/* Setup J_KEY before enabling the context */
1107 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1108 
1109 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1110 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1111 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1112 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1113 	/*
1114 	 * Ignore the bit in the flags for now until proper
1115 	 * support for multiple packet per rcv array entry is
1116 	 * added.
1117 	 */
1118 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1119 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1120 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1121 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1122 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1123 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1124 	/*
1125 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1126 	 * We can't rely on the correct value to be set from prior
1127 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1128 	 * for both cases.
1129 	 */
1130 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1131 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1132 	else
1133 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1134 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1135 }
1136 
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1137 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1138 {
1139 	struct hfi1_ctxt_info cinfo;
1140 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1141 
1142 	if (sizeof(cinfo) != len)
1143 		return -EINVAL;
1144 
1145 	memset(&cinfo, 0, sizeof(cinfo));
1146 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1147 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1148 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1149 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1150 	/* adjust flag if this fd is not able to cache */
1151 	if (!fd->use_mn)
1152 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1153 
1154 	cinfo.num_active = hfi1_count_active_units();
1155 	cinfo.unit = uctxt->dd->unit;
1156 	cinfo.ctxt = uctxt->ctxt;
1157 	cinfo.subctxt = fd->subctxt;
1158 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1159 				uctxt->dd->rcv_entries.group_size) +
1160 		uctxt->expected_count;
1161 	cinfo.credits = uctxt->sc->credits;
1162 	cinfo.numa_node = uctxt->numa_id;
1163 	cinfo.rec_cpu = fd->rec_cpu_num;
1164 	cinfo.send_ctxt = uctxt->sc->hw_context;
1165 
1166 	cinfo.egrtids = uctxt->egrbufs.alloced;
1167 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1168 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1169 	cinfo.sdma_ring_size = fd->cq->nentries;
1170 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1171 
1172 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1173 	if (copy_to_user((void __user *)arg, &cinfo, len))
1174 		return -EFAULT;
1175 
1176 	return 0;
1177 }
1178 
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1179 static int init_user_ctxt(struct hfi1_filedata *fd,
1180 			  struct hfi1_ctxtdata *uctxt)
1181 {
1182 	int ret;
1183 
1184 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1185 	if (ret)
1186 		return ret;
1187 
1188 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1189 	if (ret)
1190 		hfi1_user_sdma_free_queues(fd, uctxt);
1191 
1192 	return ret;
1193 }
1194 
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1195 static int setup_base_ctxt(struct hfi1_filedata *fd,
1196 			   struct hfi1_ctxtdata *uctxt)
1197 {
1198 	struct hfi1_devdata *dd = uctxt->dd;
1199 	int ret = 0;
1200 
1201 	hfi1_init_ctxt(uctxt->sc);
1202 
1203 	/* Now allocate the RcvHdr queue and eager buffers. */
1204 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1205 	if (ret)
1206 		goto done;
1207 
1208 	ret = hfi1_setup_eagerbufs(uctxt);
1209 	if (ret)
1210 		goto done;
1211 
1212 	/* If sub-contexts are enabled, do the appropriate setup */
1213 	if (uctxt->subctxt_cnt)
1214 		ret = setup_subctxt(uctxt);
1215 	if (ret)
1216 		goto done;
1217 
1218 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1219 	if (ret)
1220 		goto done;
1221 
1222 	ret = init_user_ctxt(fd, uctxt);
1223 	if (ret) {
1224 		hfi1_free_ctxt_rcv_groups(uctxt);
1225 		goto done;
1226 	}
1227 
1228 	user_init(uctxt);
1229 
1230 	/* Now that the context is set up, the fd can get a reference. */
1231 	fd->uctxt = uctxt;
1232 	hfi1_rcd_get(uctxt);
1233 
1234 done:
1235 	if (uctxt->subctxt_cnt) {
1236 		/*
1237 		 * On error, set the failed bit so sub-contexts will clean up
1238 		 * correctly.
1239 		 */
1240 		if (ret)
1241 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1242 
1243 		/*
1244 		 * Base context is done (successfully or not), notify anybody
1245 		 * using a sub-context that is waiting for this completion.
1246 		 */
1247 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1248 		wake_up(&uctxt->wait);
1249 	}
1250 
1251 	return ret;
1252 }
1253 
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1254 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1255 {
1256 	struct hfi1_base_info binfo;
1257 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1258 	struct hfi1_devdata *dd = uctxt->dd;
1259 	unsigned offset;
1260 
1261 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1262 
1263 	if (sizeof(binfo) != len)
1264 		return -EINVAL;
1265 
1266 	memset(&binfo, 0, sizeof(binfo));
1267 	binfo.hw_version = dd->revision;
1268 	binfo.sw_version = HFI1_KERN_SWVERSION;
1269 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1270 	binfo.jkey = uctxt->jkey;
1271 	/*
1272 	 * If more than 64 contexts are enabled the allocated credit
1273 	 * return will span two or three contiguous pages. Since we only
1274 	 * map the page containing the context's credit return address,
1275 	 * we need to calculate the offset in the proper page.
1276 	 */
1277 	offset = ((u64)uctxt->sc->hw_free -
1278 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1279 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1280 						fd->subctxt, offset);
1281 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1282 					    fd->subctxt,
1283 					    uctxt->sc->base_addr);
1284 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1285 						uctxt->ctxt,
1286 						fd->subctxt,
1287 						uctxt->sc->base_addr);
1288 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1289 					       fd->subctxt,
1290 					       uctxt->rcvhdrq);
1291 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1292 					       fd->subctxt,
1293 					       uctxt->egrbufs.rcvtids[0].dma);
1294 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1295 						  fd->subctxt, 0);
1296 	/*
1297 	 * user regs are at
1298 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1299 	 */
1300 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1301 					     fd->subctxt, 0);
1302 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1303 				sizeof(*dd->events));
1304 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1305 					       fd->subctxt,
1306 					       offset);
1307 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1308 					       fd->subctxt,
1309 					       dd->status);
1310 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1311 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1312 							fd->subctxt, 0);
1313 	if (uctxt->subctxt_cnt) {
1314 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1315 							 uctxt->ctxt,
1316 							 fd->subctxt, 0);
1317 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1318 							  uctxt->ctxt,
1319 							  fd->subctxt, 0);
1320 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1321 							  uctxt->ctxt,
1322 							  fd->subctxt, 0);
1323 	}
1324 
1325 	if (copy_to_user((void __user *)arg, &binfo, len))
1326 		return -EFAULT;
1327 
1328 	return 0;
1329 }
1330 
1331 /**
1332  * user_exp_rcv_setup - Set up the given tid rcv list
1333  * @fd: file data of the current driver instance
1334  * @arg: ioctl argumnent for user space information
1335  * @len: length of data structure associated with ioctl command
1336  *
1337  * Wrapper to validate ioctl information before doing _rcv_setup.
1338  *
1339  */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1340 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1341 			      u32 len)
1342 {
1343 	int ret;
1344 	unsigned long addr;
1345 	struct hfi1_tid_info tinfo;
1346 
1347 	if (sizeof(tinfo) != len)
1348 		return -EINVAL;
1349 
1350 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1351 		return -EFAULT;
1352 
1353 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1354 	if (!ret) {
1355 		/*
1356 		 * Copy the number of tidlist entries we used
1357 		 * and the length of the buffer we registered.
1358 		 */
1359 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1360 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1361 				 sizeof(tinfo.tidcnt)))
1362 			ret = -EFAULT;
1363 
1364 		addr = arg + offsetof(struct hfi1_tid_info, length);
1365 		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1366 				 sizeof(tinfo.length)))
1367 			ret = -EFAULT;
1368 
1369 		if (ret)
1370 			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 /**
1377  * user_exp_rcv_clear - Clear the given tid rcv list
1378  * @fd: file data of the current driver instance
1379  * @arg: ioctl argumnent for user space information
1380  * @len: length of data structure associated with ioctl command
1381  *
1382  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1383  * of this, we need to use this wrapper to copy the user space information
1384  * before doing the clear.
1385  */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1386 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1387 			      u32 len)
1388 {
1389 	int ret;
1390 	unsigned long addr;
1391 	struct hfi1_tid_info tinfo;
1392 
1393 	if (sizeof(tinfo) != len)
1394 		return -EINVAL;
1395 
1396 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1397 		return -EFAULT;
1398 
1399 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1400 	if (!ret) {
1401 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1402 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1403 				 sizeof(tinfo.tidcnt)))
1404 			return -EFAULT;
1405 	}
1406 
1407 	return ret;
1408 }
1409 
1410 /**
1411  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1412  * @fd: file data of the current driver instance
1413  * @arg: ioctl argumnent for user space information
1414  * @len: length of data structure associated with ioctl command
1415  *
1416  * Wrapper to validate ioctl information before doing _rcv_invalid.
1417  *
1418  */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1419 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1420 				u32 len)
1421 {
1422 	int ret;
1423 	unsigned long addr;
1424 	struct hfi1_tid_info tinfo;
1425 
1426 	if (sizeof(tinfo) != len)
1427 		return -EINVAL;
1428 
1429 	if (!fd->invalid_tids)
1430 		return -EINVAL;
1431 
1432 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1433 		return -EFAULT;
1434 
1435 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1436 	if (ret)
1437 		return ret;
1438 
1439 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1440 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1441 			 sizeof(tinfo.tidcnt)))
1442 		ret = -EFAULT;
1443 
1444 	return ret;
1445 }
1446 
poll_urgent(struct file * fp,struct poll_table_struct * pt)1447 static __poll_t poll_urgent(struct file *fp,
1448 				struct poll_table_struct *pt)
1449 {
1450 	struct hfi1_filedata *fd = fp->private_data;
1451 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1452 	struct hfi1_devdata *dd = uctxt->dd;
1453 	__poll_t pollflag;
1454 
1455 	poll_wait(fp, &uctxt->wait, pt);
1456 
1457 	spin_lock_irq(&dd->uctxt_lock);
1458 	if (uctxt->urgent != uctxt->urgent_poll) {
1459 		pollflag = EPOLLIN | EPOLLRDNORM;
1460 		uctxt->urgent_poll = uctxt->urgent;
1461 	} else {
1462 		pollflag = 0;
1463 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1464 	}
1465 	spin_unlock_irq(&dd->uctxt_lock);
1466 
1467 	return pollflag;
1468 }
1469 
poll_next(struct file * fp,struct poll_table_struct * pt)1470 static __poll_t poll_next(struct file *fp,
1471 			      struct poll_table_struct *pt)
1472 {
1473 	struct hfi1_filedata *fd = fp->private_data;
1474 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1475 	struct hfi1_devdata *dd = uctxt->dd;
1476 	__poll_t pollflag;
1477 
1478 	poll_wait(fp, &uctxt->wait, pt);
1479 
1480 	spin_lock_irq(&dd->uctxt_lock);
1481 	if (hdrqempty(uctxt)) {
1482 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1483 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1484 		pollflag = 0;
1485 	} else {
1486 		pollflag = EPOLLIN | EPOLLRDNORM;
1487 	}
1488 	spin_unlock_irq(&dd->uctxt_lock);
1489 
1490 	return pollflag;
1491 }
1492 
1493 /*
1494  * Find all user contexts in use, and set the specified bit in their
1495  * event mask.
1496  * See also find_ctxt() for a similar use, that is specific to send buffers.
1497  */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1498 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1499 {
1500 	struct hfi1_ctxtdata *uctxt;
1501 	struct hfi1_devdata *dd = ppd->dd;
1502 	u16 ctxt;
1503 
1504 	if (!dd->events)
1505 		return -EINVAL;
1506 
1507 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1508 	     ctxt++) {
1509 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1510 		if (uctxt) {
1511 			unsigned long *evs;
1512 			int i;
1513 			/*
1514 			 * subctxt_cnt is 0 if not shared, so do base
1515 			 * separately, first, then remaining subctxt, if any
1516 			 */
1517 			evs = dd->events + uctxt_offset(uctxt);
1518 			set_bit(evtbit, evs);
1519 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1520 				set_bit(evtbit, evs + i);
1521 			hfi1_rcd_put(uctxt);
1522 		}
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 /**
1529  * manage_rcvq - manage a context's receive queue
1530  * @uctxt: the context
1531  * @subctxt: the sub-context
1532  * @start_stop: action to carry out
1533  *
1534  * start_stop == 0 disables receive on the context, for use in queue
1535  * overflow conditions.  start_stop==1 re-enables, to be used to
1536  * re-init the software copy of the head register
1537  */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1538 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1539 		       unsigned long arg)
1540 {
1541 	struct hfi1_devdata *dd = uctxt->dd;
1542 	unsigned int rcvctrl_op;
1543 	int start_stop;
1544 
1545 	if (subctxt)
1546 		return 0;
1547 
1548 	if (get_user(start_stop, (int __user *)arg))
1549 		return -EFAULT;
1550 
1551 	/* atomically clear receive enable ctxt. */
1552 	if (start_stop) {
1553 		/*
1554 		 * On enable, force in-memory copy of the tail register to
1555 		 * 0, so that protocol code doesn't have to worry about
1556 		 * whether or not the chip has yet updated the in-memory
1557 		 * copy or not on return from the system call. The chip
1558 		 * always resets it's tail register back to 0 on a
1559 		 * transition from disabled to enabled.
1560 		 */
1561 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1562 			clear_rcvhdrtail(uctxt);
1563 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1564 	} else {
1565 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1566 	}
1567 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1568 	/* always; new head should be equal to new tail; see above */
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * clear the event notifier events for this context.
1575  * User process then performs actions appropriate to bit having been
1576  * set, if desired, and checks again in future.
1577  */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1578 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1579 			  unsigned long arg)
1580 {
1581 	int i;
1582 	struct hfi1_devdata *dd = uctxt->dd;
1583 	unsigned long *evs;
1584 	unsigned long events;
1585 
1586 	if (!dd->events)
1587 		return 0;
1588 
1589 	if (get_user(events, (unsigned long __user *)arg))
1590 		return -EFAULT;
1591 
1592 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1593 
1594 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1595 		if (!test_bit(i, &events))
1596 			continue;
1597 		clear_bit(i, evs);
1598 	}
1599 	return 0;
1600 }
1601 
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1602 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1603 {
1604 	int i;
1605 	struct hfi1_pportdata *ppd = uctxt->ppd;
1606 	struct hfi1_devdata *dd = uctxt->dd;
1607 	u16 pkey;
1608 
1609 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1610 		return -EPERM;
1611 
1612 	if (get_user(pkey, (u16 __user *)arg))
1613 		return -EFAULT;
1614 
1615 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1616 		return -EINVAL;
1617 
1618 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1619 		if (pkey == ppd->pkeys[i])
1620 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1621 
1622 	return -ENOENT;
1623 }
1624 
1625 /**
1626  * ctxt_reset - Reset the user context
1627  * @uctxt: valid user context
1628  */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1629 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1630 {
1631 	struct send_context *sc;
1632 	struct hfi1_devdata *dd;
1633 	int ret = 0;
1634 
1635 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1636 		return -EINVAL;
1637 
1638 	/*
1639 	 * There is no protection here. User level has to guarantee that
1640 	 * no one will be writing to the send context while it is being
1641 	 * re-initialized.  If user level breaks that guarantee, it will
1642 	 * break it's own context and no one else's.
1643 	 */
1644 	dd = uctxt->dd;
1645 	sc = uctxt->sc;
1646 
1647 	/*
1648 	 * Wait until the interrupt handler has marked the context as
1649 	 * halted or frozen. Report error if we time out.
1650 	 */
1651 	wait_event_interruptible_timeout(
1652 		sc->halt_wait, (sc->flags & SCF_HALTED),
1653 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1654 	if (!(sc->flags & SCF_HALTED))
1655 		return -ENOLCK;
1656 
1657 	/*
1658 	 * If the send context was halted due to a Freeze, wait until the
1659 	 * device has been "unfrozen" before resetting the context.
1660 	 */
1661 	if (sc->flags & SCF_FROZEN) {
1662 		wait_event_interruptible_timeout(
1663 			dd->event_queue,
1664 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1665 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1666 		if (dd->flags & HFI1_FROZEN)
1667 			return -ENOLCK;
1668 
1669 		if (dd->flags & HFI1_FORCED_FREEZE)
1670 			/*
1671 			 * Don't allow context reset if we are into
1672 			 * forced freeze
1673 			 */
1674 			return -ENODEV;
1675 
1676 		sc_disable(sc);
1677 		ret = sc_enable(sc);
1678 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1679 	} else {
1680 		ret = sc_restart(sc);
1681 	}
1682 	if (!ret)
1683 		sc_return_credits(sc);
1684 
1685 	return ret;
1686 }
1687 
user_remove(struct hfi1_devdata * dd)1688 static void user_remove(struct hfi1_devdata *dd)
1689 {
1690 
1691 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1692 }
1693 
user_add(struct hfi1_devdata * dd)1694 static int user_add(struct hfi1_devdata *dd)
1695 {
1696 	char name[10];
1697 	int ret;
1698 
1699 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1700 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1701 			     &dd->user_cdev, &dd->user_device,
1702 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1703 	if (ret)
1704 		user_remove(dd);
1705 
1706 	return ret;
1707 }
1708 
1709 /*
1710  * Create per-unit files in /dev
1711  */
hfi1_device_create(struct hfi1_devdata * dd)1712 int hfi1_device_create(struct hfi1_devdata *dd)
1713 {
1714 	return user_add(dd);
1715 }
1716 
1717 /*
1718  * Remove per-unit files in /dev
1719  * void, core kernel returns no errors for this stuff
1720  */
hfi1_device_remove(struct hfi1_devdata * dd)1721 void hfi1_device_remove(struct hfi1_devdata *dd)
1722 {
1723 	user_remove(dd);
1724 }
1725