1 /*
2 * Copyright(c) 2020 Cornelis Networks, Inc.
3 * Copyright(c) 2015-2020 Intel Corporation.
4 *
5 * This file is provided under a dual BSD/GPLv2 license. When using or
6 * redistributing this file, you may do so under either license.
7 *
8 * GPL LICENSE SUMMARY
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 *
25 * - Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * - Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in
29 * the documentation and/or other materials provided with the
30 * distribution.
31 * - Neither the name of Intel Corporation nor the names of its
32 * contributors may be used to endorse or promote products derived
33 * from this software without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 *
47 */
48 #include <linux/poll.h>
49 #include <linux/cdev.h>
50 #include <linux/vmalloc.h>
51 #include <linux/io.h>
52 #include <linux/sched/mm.h>
53 #include <linux/bitmap.h>
54
55 #include <rdma/ib.h>
56
57 #include "hfi.h"
58 #include "pio.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mmu_rb.h"
63 #include "user_sdma.h"
64 #include "user_exp_rcv.h"
65 #include "aspm.h"
66
67 #undef pr_fmt
68 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69
70 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
71
72 /*
73 * File operation functions
74 */
75 static int hfi1_file_open(struct inode *inode, struct file *fp);
76 static int hfi1_file_close(struct inode *inode, struct file *fp);
77 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
78 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
79 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
80
81 static u64 kvirt_to_phys(void *addr);
82 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
83 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
84 const struct hfi1_user_info *uinfo);
85 static int init_user_ctxt(struct hfi1_filedata *fd,
86 struct hfi1_ctxtdata *uctxt);
87 static void user_init(struct hfi1_ctxtdata *uctxt);
88 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
90 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
91 u32 len);
92 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
93 u32 len);
94 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
95 u32 len);
96 static int setup_base_ctxt(struct hfi1_filedata *fd,
97 struct hfi1_ctxtdata *uctxt);
98 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
99
100 static int find_sub_ctxt(struct hfi1_filedata *fd,
101 const struct hfi1_user_info *uinfo);
102 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
103 struct hfi1_user_info *uinfo,
104 struct hfi1_ctxtdata **cd);
105 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
106 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
107 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
108 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
109 unsigned long arg);
110 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
111 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
112 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
113 unsigned long arg);
114 static vm_fault_t vma_fault(struct vm_fault *vmf);
115 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
116 unsigned long arg);
117
118 static const struct file_operations hfi1_file_ops = {
119 .owner = THIS_MODULE,
120 .write_iter = hfi1_write_iter,
121 .open = hfi1_file_open,
122 .release = hfi1_file_close,
123 .unlocked_ioctl = hfi1_file_ioctl,
124 .poll = hfi1_poll,
125 .mmap = hfi1_file_mmap,
126 .llseek = noop_llseek,
127 };
128
129 static const struct vm_operations_struct vm_ops = {
130 .fault = vma_fault,
131 };
132
133 /*
134 * Types of memories mapped into user processes' space
135 */
136 enum mmap_types {
137 PIO_BUFS = 1,
138 PIO_BUFS_SOP,
139 PIO_CRED,
140 RCV_HDRQ,
141 RCV_EGRBUF,
142 UREGS,
143 EVENTS,
144 STATUS,
145 RTAIL,
146 SUBCTXT_UREGS,
147 SUBCTXT_RCV_HDRQ,
148 SUBCTXT_EGRBUF,
149 SDMA_COMP
150 };
151
152 /*
153 * Masks and offsets defining the mmap tokens
154 */
155 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
156 #define HFI1_MMAP_OFFSET_SHIFT 0
157 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
158 #define HFI1_MMAP_SUBCTXT_SHIFT 12
159 #define HFI1_MMAP_CTXT_MASK 0xffULL
160 #define HFI1_MMAP_CTXT_SHIFT 16
161 #define HFI1_MMAP_TYPE_MASK 0xfULL
162 #define HFI1_MMAP_TYPE_SHIFT 24
163 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
164 #define HFI1_MMAP_MAGIC_SHIFT 32
165
166 #define HFI1_MMAP_MAGIC 0xdabbad00
167
168 #define HFI1_MMAP_TOKEN_SET(field, val) \
169 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
170 #define HFI1_MMAP_TOKEN_GET(field, token) \
171 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
172 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
173 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
174 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
175 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
176 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
177 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
178
179 #define dbg(fmt, ...) \
180 pr_info(fmt, ##__VA_ARGS__)
181
is_valid_mmap(u64 token)182 static inline int is_valid_mmap(u64 token)
183 {
184 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
185 }
186
hfi1_file_open(struct inode * inode,struct file * fp)187 static int hfi1_file_open(struct inode *inode, struct file *fp)
188 {
189 struct hfi1_filedata *fd;
190 struct hfi1_devdata *dd = container_of(inode->i_cdev,
191 struct hfi1_devdata,
192 user_cdev);
193
194 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
195 return -EINVAL;
196
197 if (!atomic_inc_not_zero(&dd->user_refcount))
198 return -ENXIO;
199
200 /* The real work is performed later in assign_ctxt() */
201
202 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
203
204 if (!fd || init_srcu_struct(&fd->pq_srcu))
205 goto nomem;
206 spin_lock_init(&fd->pq_rcu_lock);
207 spin_lock_init(&fd->tid_lock);
208 spin_lock_init(&fd->invalid_lock);
209 fd->rec_cpu_num = -1; /* no cpu affinity by default */
210 fd->dd = dd;
211 fp->private_data = fd;
212 return 0;
213 nomem:
214 kfree(fd);
215 fp->private_data = NULL;
216 if (atomic_dec_and_test(&dd->user_refcount))
217 complete(&dd->user_comp);
218 return -ENOMEM;
219 }
220
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)221 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
222 unsigned long arg)
223 {
224 struct hfi1_filedata *fd = fp->private_data;
225 struct hfi1_ctxtdata *uctxt = fd->uctxt;
226 int ret = 0;
227 int uval = 0;
228
229 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
230 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
231 cmd != HFI1_IOCTL_GET_VERS &&
232 !uctxt)
233 return -EINVAL;
234
235 switch (cmd) {
236 case HFI1_IOCTL_ASSIGN_CTXT:
237 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
238 break;
239
240 case HFI1_IOCTL_CTXT_INFO:
241 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
242 break;
243
244 case HFI1_IOCTL_USER_INFO:
245 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
246 break;
247
248 case HFI1_IOCTL_CREDIT_UPD:
249 if (uctxt)
250 sc_return_credits(uctxt->sc);
251 break;
252
253 case HFI1_IOCTL_TID_UPDATE:
254 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
255 break;
256
257 case HFI1_IOCTL_TID_FREE:
258 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
259 break;
260
261 case HFI1_IOCTL_TID_INVAL_READ:
262 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
263 break;
264
265 case HFI1_IOCTL_RECV_CTRL:
266 ret = manage_rcvq(uctxt, fd->subctxt, arg);
267 break;
268
269 case HFI1_IOCTL_POLL_TYPE:
270 if (get_user(uval, (int __user *)arg))
271 return -EFAULT;
272 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
273 break;
274
275 case HFI1_IOCTL_ACK_EVENT:
276 ret = user_event_ack(uctxt, fd->subctxt, arg);
277 break;
278
279 case HFI1_IOCTL_SET_PKEY:
280 ret = set_ctxt_pkey(uctxt, arg);
281 break;
282
283 case HFI1_IOCTL_CTXT_RESET:
284 ret = ctxt_reset(uctxt);
285 break;
286
287 case HFI1_IOCTL_GET_VERS:
288 uval = HFI1_USER_SWVERSION;
289 if (put_user(uval, (int __user *)arg))
290 return -EFAULT;
291 break;
292
293 default:
294 return -EINVAL;
295 }
296
297 return ret;
298 }
299
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)300 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
301 {
302 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
303 struct hfi1_user_sdma_pkt_q *pq;
304 struct hfi1_user_sdma_comp_q *cq = fd->cq;
305 int done = 0, reqs = 0;
306 unsigned long dim = from->nr_segs;
307 int idx;
308
309 if (!HFI1_CAP_IS_KSET(SDMA))
310 return -EINVAL;
311 idx = srcu_read_lock(&fd->pq_srcu);
312 pq = srcu_dereference(fd->pq, &fd->pq_srcu);
313 if (!cq || !pq) {
314 srcu_read_unlock(&fd->pq_srcu, idx);
315 return -EIO;
316 }
317
318 if (!iter_is_iovec(from) || !dim) {
319 srcu_read_unlock(&fd->pq_srcu, idx);
320 return -EINVAL;
321 }
322
323 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
324
325 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
326 srcu_read_unlock(&fd->pq_srcu, idx);
327 return -ENOSPC;
328 }
329
330 while (dim) {
331 int ret;
332 unsigned long count = 0;
333
334 ret = hfi1_user_sdma_process_request(
335 fd, (struct iovec *)(from->iov + done),
336 dim, &count);
337 if (ret) {
338 reqs = ret;
339 break;
340 }
341 dim -= count;
342 done += count;
343 reqs++;
344 }
345
346 srcu_read_unlock(&fd->pq_srcu, idx);
347 return reqs;
348 }
349
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)350 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
351 {
352 struct hfi1_filedata *fd = fp->private_data;
353 struct hfi1_ctxtdata *uctxt = fd->uctxt;
354 struct hfi1_devdata *dd;
355 unsigned long flags;
356 u64 token = vma->vm_pgoff << PAGE_SHIFT,
357 memaddr = 0;
358 void *memvirt = NULL;
359 u8 subctxt, mapio = 0, vmf = 0, type;
360 ssize_t memlen = 0;
361 int ret = 0;
362 u16 ctxt;
363
364 if (!is_valid_mmap(token) || !uctxt ||
365 !(vma->vm_flags & VM_SHARED)) {
366 ret = -EINVAL;
367 goto done;
368 }
369 dd = uctxt->dd;
370 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
371 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
372 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
373 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
374 ret = -EINVAL;
375 goto done;
376 }
377
378 flags = vma->vm_flags;
379
380 switch (type) {
381 case PIO_BUFS:
382 case PIO_BUFS_SOP:
383 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
384 /* chip pio base */
385 (uctxt->sc->hw_context * BIT(16))) +
386 /* 64K PIO space / ctxt */
387 (type == PIO_BUFS_SOP ?
388 (TXE_PIO_SIZE / 2) : 0); /* sop? */
389 /*
390 * Map only the amount allocated to the context, not the
391 * entire available context's PIO space.
392 */
393 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
394 flags &= ~VM_MAYREAD;
395 flags |= VM_DONTCOPY | VM_DONTEXPAND;
396 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
397 mapio = 1;
398 break;
399 case PIO_CRED:
400 if (flags & VM_WRITE) {
401 ret = -EPERM;
402 goto done;
403 }
404 /*
405 * The credit return location for this context could be on the
406 * second or third page allocated for credit returns (if number
407 * of enabled contexts > 64 and 128 respectively).
408 */
409 memvirt = dd->cr_base[uctxt->numa_id].va;
410 memaddr = virt_to_phys(memvirt) +
411 (((u64)uctxt->sc->hw_free -
412 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
413 memlen = PAGE_SIZE;
414 flags &= ~VM_MAYWRITE;
415 flags |= VM_DONTCOPY | VM_DONTEXPAND;
416 /*
417 * The driver has already allocated memory for credit
418 * returns and programmed it into the chip. Has that
419 * memory been flagged as non-cached?
420 */
421 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
422 mapio = 1;
423 break;
424 case RCV_HDRQ:
425 memlen = rcvhdrq_size(uctxt);
426 memvirt = uctxt->rcvhdrq;
427 break;
428 case RCV_EGRBUF: {
429 unsigned long addr;
430 int i;
431 /*
432 * The RcvEgr buffer need to be handled differently
433 * as multiple non-contiguous pages need to be mapped
434 * into the user process.
435 */
436 memlen = uctxt->egrbufs.size;
437 if ((vma->vm_end - vma->vm_start) != memlen) {
438 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
439 (vma->vm_end - vma->vm_start), memlen);
440 ret = -EINVAL;
441 goto done;
442 }
443 if (vma->vm_flags & VM_WRITE) {
444 ret = -EPERM;
445 goto done;
446 }
447 vma->vm_flags &= ~VM_MAYWRITE;
448 addr = vma->vm_start;
449 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
450 memlen = uctxt->egrbufs.buffers[i].len;
451 memvirt = uctxt->egrbufs.buffers[i].addr;
452 ret = remap_pfn_range(
453 vma, addr,
454 /*
455 * virt_to_pfn() does the same, but
456 * it's not available on x86_64
457 * when CONFIG_MMU is enabled.
458 */
459 PFN_DOWN(__pa(memvirt)),
460 memlen,
461 vma->vm_page_prot);
462 if (ret < 0)
463 goto done;
464 addr += memlen;
465 }
466 ret = 0;
467 goto done;
468 }
469 case UREGS:
470 /*
471 * Map only the page that contains this context's user
472 * registers.
473 */
474 memaddr = (unsigned long)
475 (dd->physaddr + RXE_PER_CONTEXT_USER)
476 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
477 /*
478 * TidFlow table is on the same page as the rest of the
479 * user registers.
480 */
481 memlen = PAGE_SIZE;
482 flags |= VM_DONTCOPY | VM_DONTEXPAND;
483 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
484 mapio = 1;
485 break;
486 case EVENTS:
487 /*
488 * Use the page where this context's flags are. User level
489 * knows where it's own bitmap is within the page.
490 */
491 memaddr = (unsigned long)
492 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
493 memlen = PAGE_SIZE;
494 /*
495 * v3.7 removes VM_RESERVED but the effect is kept by
496 * using VM_IO.
497 */
498 flags |= VM_IO | VM_DONTEXPAND;
499 vmf = 1;
500 break;
501 case STATUS:
502 if (flags & VM_WRITE) {
503 ret = -EPERM;
504 goto done;
505 }
506 memaddr = kvirt_to_phys((void *)dd->status);
507 memlen = PAGE_SIZE;
508 flags |= VM_IO | VM_DONTEXPAND;
509 break;
510 case RTAIL:
511 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
512 /*
513 * If the memory allocation failed, the context alloc
514 * also would have failed, so we would never get here
515 */
516 ret = -EINVAL;
517 goto done;
518 }
519 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
520 ret = -EPERM;
521 goto done;
522 }
523 memlen = PAGE_SIZE;
524 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
525 flags &= ~VM_MAYWRITE;
526 break;
527 case SUBCTXT_UREGS:
528 memaddr = (u64)uctxt->subctxt_uregbase;
529 memlen = PAGE_SIZE;
530 flags |= VM_IO | VM_DONTEXPAND;
531 vmf = 1;
532 break;
533 case SUBCTXT_RCV_HDRQ:
534 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
535 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
536 flags |= VM_IO | VM_DONTEXPAND;
537 vmf = 1;
538 break;
539 case SUBCTXT_EGRBUF:
540 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
541 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
542 flags |= VM_IO | VM_DONTEXPAND;
543 flags &= ~VM_MAYWRITE;
544 vmf = 1;
545 break;
546 case SDMA_COMP: {
547 struct hfi1_user_sdma_comp_q *cq = fd->cq;
548
549 if (!cq) {
550 ret = -EFAULT;
551 goto done;
552 }
553 memaddr = (u64)cq->comps;
554 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
555 flags |= VM_IO | VM_DONTEXPAND;
556 vmf = 1;
557 break;
558 }
559 default:
560 ret = -EINVAL;
561 break;
562 }
563
564 if ((vma->vm_end - vma->vm_start) != memlen) {
565 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
566 uctxt->ctxt, fd->subctxt,
567 (vma->vm_end - vma->vm_start), memlen);
568 ret = -EINVAL;
569 goto done;
570 }
571
572 vma->vm_flags = flags;
573 hfi1_cdbg(PROC,
574 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
575 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
576 vma->vm_end - vma->vm_start, vma->vm_flags);
577 if (vmf) {
578 vma->vm_pgoff = PFN_DOWN(memaddr);
579 vma->vm_ops = &vm_ops;
580 ret = 0;
581 } else if (mapio) {
582 ret = io_remap_pfn_range(vma, vma->vm_start,
583 PFN_DOWN(memaddr),
584 memlen,
585 vma->vm_page_prot);
586 } else if (memvirt) {
587 ret = remap_pfn_range(vma, vma->vm_start,
588 PFN_DOWN(__pa(memvirt)),
589 memlen,
590 vma->vm_page_prot);
591 } else {
592 ret = remap_pfn_range(vma, vma->vm_start,
593 PFN_DOWN(memaddr),
594 memlen,
595 vma->vm_page_prot);
596 }
597 done:
598 return ret;
599 }
600
601 /*
602 * Local (non-chip) user memory is not mapped right away but as it is
603 * accessed by the user-level code.
604 */
vma_fault(struct vm_fault * vmf)605 static vm_fault_t vma_fault(struct vm_fault *vmf)
606 {
607 struct page *page;
608
609 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
610 if (!page)
611 return VM_FAULT_SIGBUS;
612
613 get_page(page);
614 vmf->page = page;
615
616 return 0;
617 }
618
hfi1_poll(struct file * fp,struct poll_table_struct * pt)619 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
620 {
621 struct hfi1_ctxtdata *uctxt;
622 __poll_t pollflag;
623
624 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
625 if (!uctxt)
626 pollflag = EPOLLERR;
627 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
628 pollflag = poll_urgent(fp, pt);
629 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
630 pollflag = poll_next(fp, pt);
631 else /* invalid */
632 pollflag = EPOLLERR;
633
634 return pollflag;
635 }
636
hfi1_file_close(struct inode * inode,struct file * fp)637 static int hfi1_file_close(struct inode *inode, struct file *fp)
638 {
639 struct hfi1_filedata *fdata = fp->private_data;
640 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
641 struct hfi1_devdata *dd = container_of(inode->i_cdev,
642 struct hfi1_devdata,
643 user_cdev);
644 unsigned long flags, *ev;
645
646 fp->private_data = NULL;
647
648 if (!uctxt)
649 goto done;
650
651 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
652
653 flush_wc();
654 /* drain user sdma queue */
655 hfi1_user_sdma_free_queues(fdata, uctxt);
656
657 /* release the cpu */
658 hfi1_put_proc_affinity(fdata->rec_cpu_num);
659
660 /* clean up rcv side */
661 hfi1_user_exp_rcv_free(fdata);
662
663 /*
664 * fdata->uctxt is used in the above cleanup. It is not ready to be
665 * removed until here.
666 */
667 fdata->uctxt = NULL;
668 hfi1_rcd_put(uctxt);
669
670 /*
671 * Clear any left over, unhandled events so the next process that
672 * gets this context doesn't get confused.
673 */
674 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
675 *ev = 0;
676
677 spin_lock_irqsave(&dd->uctxt_lock, flags);
678 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
679 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
680 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
681 goto done;
682 }
683 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
684
685 /*
686 * Disable receive context and interrupt available, reset all
687 * RcvCtxtCtrl bits to default values.
688 */
689 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
690 HFI1_RCVCTRL_TIDFLOW_DIS |
691 HFI1_RCVCTRL_INTRAVAIL_DIS |
692 HFI1_RCVCTRL_TAILUPD_DIS |
693 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
694 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
695 HFI1_RCVCTRL_NO_EGR_DROP_DIS |
696 HFI1_RCVCTRL_URGENT_DIS, uctxt);
697 /* Clear the context's J_KEY */
698 hfi1_clear_ctxt_jkey(dd, uctxt);
699 /*
700 * If a send context is allocated, reset context integrity
701 * checks to default and disable the send context.
702 */
703 if (uctxt->sc) {
704 sc_disable(uctxt->sc);
705 set_pio_integrity(uctxt->sc);
706 }
707
708 hfi1_free_ctxt_rcv_groups(uctxt);
709 hfi1_clear_ctxt_pkey(dd, uctxt);
710
711 uctxt->event_flags = 0;
712
713 deallocate_ctxt(uctxt);
714 done:
715
716 if (atomic_dec_and_test(&dd->user_refcount))
717 complete(&dd->user_comp);
718
719 cleanup_srcu_struct(&fdata->pq_srcu);
720 kfree(fdata);
721 return 0;
722 }
723
724 /*
725 * Convert kernel *virtual* addresses to physical addresses.
726 * This is used to vmalloc'ed addresses.
727 */
kvirt_to_phys(void * addr)728 static u64 kvirt_to_phys(void *addr)
729 {
730 struct page *page;
731 u64 paddr = 0;
732
733 page = vmalloc_to_page(addr);
734 if (page)
735 paddr = page_to_pfn(page) << PAGE_SHIFT;
736
737 return paddr;
738 }
739
740 /**
741 * complete_subctxt
742 * @fd: valid filedata pointer
743 *
744 * Sub-context info can only be set up after the base context
745 * has been completed. This is indicated by the clearing of the
746 * HFI1_CTXT_BASE_UINIT bit.
747 *
748 * Wait for the bit to be cleared, and then complete the subcontext
749 * initialization.
750 *
751 */
complete_subctxt(struct hfi1_filedata * fd)752 static int complete_subctxt(struct hfi1_filedata *fd)
753 {
754 int ret;
755 unsigned long flags;
756
757 /*
758 * sub-context info can only be set up after the base context
759 * has been completed.
760 */
761 ret = wait_event_interruptible(
762 fd->uctxt->wait,
763 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
764
765 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
766 ret = -ENOMEM;
767
768 /* Finish the sub-context init */
769 if (!ret) {
770 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
771 ret = init_user_ctxt(fd, fd->uctxt);
772 }
773
774 if (ret) {
775 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
776 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
777 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
778 hfi1_rcd_put(fd->uctxt);
779 fd->uctxt = NULL;
780 }
781
782 return ret;
783 }
784
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)785 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
786 {
787 int ret;
788 unsigned int swmajor;
789 struct hfi1_ctxtdata *uctxt = NULL;
790 struct hfi1_user_info uinfo;
791
792 if (fd->uctxt)
793 return -EINVAL;
794
795 if (sizeof(uinfo) != len)
796 return -EINVAL;
797
798 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
799 return -EFAULT;
800
801 swmajor = uinfo.userversion >> 16;
802 if (swmajor != HFI1_USER_SWMAJOR)
803 return -ENODEV;
804
805 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
806 return -EINVAL;
807
808 /*
809 * Acquire the mutex to protect against multiple creations of what
810 * could be a shared base context.
811 */
812 mutex_lock(&hfi1_mutex);
813 /*
814 * Get a sub context if available (fd->uctxt will be set).
815 * ret < 0 error, 0 no context, 1 sub-context found
816 */
817 ret = find_sub_ctxt(fd, &uinfo);
818
819 /*
820 * Allocate a base context if context sharing is not required or a
821 * sub context wasn't found.
822 */
823 if (!ret)
824 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
825
826 mutex_unlock(&hfi1_mutex);
827
828 /* Depending on the context type, finish the appropriate init */
829 switch (ret) {
830 case 0:
831 ret = setup_base_ctxt(fd, uctxt);
832 if (ret)
833 deallocate_ctxt(uctxt);
834 break;
835 case 1:
836 ret = complete_subctxt(fd);
837 break;
838 default:
839 break;
840 }
841
842 return ret;
843 }
844
845 /**
846 * match_ctxt
847 * @fd: valid filedata pointer
848 * @uinfo: user info to compare base context with
849 * @uctxt: context to compare uinfo to.
850 *
851 * Compare the given context with the given information to see if it
852 * can be used for a sub context.
853 */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)854 static int match_ctxt(struct hfi1_filedata *fd,
855 const struct hfi1_user_info *uinfo,
856 struct hfi1_ctxtdata *uctxt)
857 {
858 struct hfi1_devdata *dd = fd->dd;
859 unsigned long flags;
860 u16 subctxt;
861
862 /* Skip dynamically allocated kernel contexts */
863 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
864 return 0;
865
866 /* Skip ctxt if it doesn't match the requested one */
867 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
868 uctxt->jkey != generate_jkey(current_uid()) ||
869 uctxt->subctxt_id != uinfo->subctxt_id ||
870 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
871 return 0;
872
873 /* Verify the sharing process matches the base */
874 if (uctxt->userversion != uinfo->userversion)
875 return -EINVAL;
876
877 /* Find an unused sub context */
878 spin_lock_irqsave(&dd->uctxt_lock, flags);
879 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
880 /* context is being closed, do not use */
881 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
882 return 0;
883 }
884
885 subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
886 HFI1_MAX_SHARED_CTXTS);
887 if (subctxt >= uctxt->subctxt_cnt) {
888 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
889 return -EBUSY;
890 }
891
892 fd->subctxt = subctxt;
893 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
894 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
895
896 fd->uctxt = uctxt;
897 hfi1_rcd_get(uctxt);
898
899 return 1;
900 }
901
902 /**
903 * find_sub_ctxt
904 * @fd: valid filedata pointer
905 * @uinfo: matching info to use to find a possible context to share.
906 *
907 * The hfi1_mutex must be held when this function is called. It is
908 * necessary to ensure serialized creation of shared contexts.
909 *
910 * Return:
911 * 0 No sub-context found
912 * 1 Subcontext found and allocated
913 * errno EINVAL (incorrect parameters)
914 * EBUSY (all sub contexts in use)
915 */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)916 static int find_sub_ctxt(struct hfi1_filedata *fd,
917 const struct hfi1_user_info *uinfo)
918 {
919 struct hfi1_ctxtdata *uctxt;
920 struct hfi1_devdata *dd = fd->dd;
921 u16 i;
922 int ret;
923
924 if (!uinfo->subctxt_cnt)
925 return 0;
926
927 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
928 uctxt = hfi1_rcd_get_by_index(dd, i);
929 if (uctxt) {
930 ret = match_ctxt(fd, uinfo, uctxt);
931 hfi1_rcd_put(uctxt);
932 /* value of != 0 will return */
933 if (ret)
934 return ret;
935 }
936 }
937
938 return 0;
939 }
940
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)941 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
942 struct hfi1_user_info *uinfo,
943 struct hfi1_ctxtdata **rcd)
944 {
945 struct hfi1_ctxtdata *uctxt;
946 int ret, numa;
947
948 if (dd->flags & HFI1_FROZEN) {
949 /*
950 * Pick an error that is unique from all other errors
951 * that are returned so the user process knows that
952 * it tried to allocate while the SPC was frozen. It
953 * it should be able to retry with success in a short
954 * while.
955 */
956 return -EIO;
957 }
958
959 if (!dd->freectxts)
960 return -EBUSY;
961
962 /*
963 * If we don't have a NUMA node requested, preference is towards
964 * device NUMA node.
965 */
966 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
967 if (fd->rec_cpu_num != -1)
968 numa = cpu_to_node(fd->rec_cpu_num);
969 else
970 numa = numa_node_id();
971 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
972 if (ret < 0) {
973 dd_dev_err(dd, "user ctxtdata allocation failed\n");
974 return ret;
975 }
976 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
977 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
978 uctxt->numa_id);
979
980 /*
981 * Allocate and enable a PIO send context.
982 */
983 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
984 if (!uctxt->sc) {
985 ret = -ENOMEM;
986 goto ctxdata_free;
987 }
988 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
989 uctxt->sc->hw_context);
990 ret = sc_enable(uctxt->sc);
991 if (ret)
992 goto ctxdata_free;
993
994 /*
995 * Setup sub context information if the user-level has requested
996 * sub contexts.
997 * This has to be done here so the rest of the sub-contexts find the
998 * proper base context.
999 * NOTE: _set_bit() can be used here because the context creation is
1000 * protected by the mutex (rather than the spin_lock), and will be the
1001 * very first instance of this context.
1002 */
1003 __set_bit(0, uctxt->in_use_ctxts);
1004 if (uinfo->subctxt_cnt)
1005 init_subctxts(uctxt, uinfo);
1006 uctxt->userversion = uinfo->userversion;
1007 uctxt->flags = hfi1_cap_mask; /* save current flag state */
1008 init_waitqueue_head(&uctxt->wait);
1009 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1010 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1011 uctxt->jkey = generate_jkey(current_uid());
1012 hfi1_stats.sps_ctxts++;
1013 /*
1014 * Disable ASPM when there are open user/PSM contexts to avoid
1015 * issues with ASPM L1 exit latency
1016 */
1017 if (dd->freectxts-- == dd->num_user_contexts)
1018 aspm_disable_all(dd);
1019
1020 *rcd = uctxt;
1021
1022 return 0;
1023
1024 ctxdata_free:
1025 hfi1_free_ctxt(uctxt);
1026 return ret;
1027 }
1028
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1029 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1030 {
1031 mutex_lock(&hfi1_mutex);
1032 hfi1_stats.sps_ctxts--;
1033 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1034 aspm_enable_all(uctxt->dd);
1035 mutex_unlock(&hfi1_mutex);
1036
1037 hfi1_free_ctxt(uctxt);
1038 }
1039
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1040 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1041 const struct hfi1_user_info *uinfo)
1042 {
1043 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1044 uctxt->subctxt_id = uinfo->subctxt_id;
1045 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1046 }
1047
setup_subctxt(struct hfi1_ctxtdata * uctxt)1048 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1049 {
1050 int ret = 0;
1051 u16 num_subctxts = uctxt->subctxt_cnt;
1052
1053 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1054 if (!uctxt->subctxt_uregbase)
1055 return -ENOMEM;
1056
1057 /* We can take the size of the RcvHdr Queue from the master */
1058 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1059 num_subctxts);
1060 if (!uctxt->subctxt_rcvhdr_base) {
1061 ret = -ENOMEM;
1062 goto bail_ureg;
1063 }
1064
1065 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1066 num_subctxts);
1067 if (!uctxt->subctxt_rcvegrbuf) {
1068 ret = -ENOMEM;
1069 goto bail_rhdr;
1070 }
1071
1072 return 0;
1073
1074 bail_rhdr:
1075 vfree(uctxt->subctxt_rcvhdr_base);
1076 uctxt->subctxt_rcvhdr_base = NULL;
1077 bail_ureg:
1078 vfree(uctxt->subctxt_uregbase);
1079 uctxt->subctxt_uregbase = NULL;
1080
1081 return ret;
1082 }
1083
user_init(struct hfi1_ctxtdata * uctxt)1084 static void user_init(struct hfi1_ctxtdata *uctxt)
1085 {
1086 unsigned int rcvctrl_ops = 0;
1087
1088 /* initialize poll variables... */
1089 uctxt->urgent = 0;
1090 uctxt->urgent_poll = 0;
1091
1092 /*
1093 * Now enable the ctxt for receive.
1094 * For chips that are set to DMA the tail register to memory
1095 * when they change (and when the update bit transitions from
1096 * 0 to 1. So for those chips, we turn it off and then back on.
1097 * This will (very briefly) affect any other open ctxts, but the
1098 * duration is very short, and therefore isn't an issue. We
1099 * explicitly set the in-memory tail copy to 0 beforehand, so we
1100 * don't have to wait to be sure the DMA update has happened
1101 * (chip resets head/tail to 0 on transition to enable).
1102 */
1103 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1104 clear_rcvhdrtail(uctxt);
1105
1106 /* Setup J_KEY before enabling the context */
1107 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1108
1109 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1110 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1111 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1112 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1113 /*
1114 * Ignore the bit in the flags for now until proper
1115 * support for multiple packet per rcv array entry is
1116 * added.
1117 */
1118 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1119 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1121 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1122 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1123 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1124 /*
1125 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1126 * We can't rely on the correct value to be set from prior
1127 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1128 * for both cases.
1129 */
1130 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1131 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1132 else
1133 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1134 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1135 }
1136
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1137 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1138 {
1139 struct hfi1_ctxt_info cinfo;
1140 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1141
1142 if (sizeof(cinfo) != len)
1143 return -EINVAL;
1144
1145 memset(&cinfo, 0, sizeof(cinfo));
1146 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1147 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1148 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1149 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1150 /* adjust flag if this fd is not able to cache */
1151 if (!fd->use_mn)
1152 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1153
1154 cinfo.num_active = hfi1_count_active_units();
1155 cinfo.unit = uctxt->dd->unit;
1156 cinfo.ctxt = uctxt->ctxt;
1157 cinfo.subctxt = fd->subctxt;
1158 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1159 uctxt->dd->rcv_entries.group_size) +
1160 uctxt->expected_count;
1161 cinfo.credits = uctxt->sc->credits;
1162 cinfo.numa_node = uctxt->numa_id;
1163 cinfo.rec_cpu = fd->rec_cpu_num;
1164 cinfo.send_ctxt = uctxt->sc->hw_context;
1165
1166 cinfo.egrtids = uctxt->egrbufs.alloced;
1167 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1168 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1169 cinfo.sdma_ring_size = fd->cq->nentries;
1170 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1171
1172 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1173 if (copy_to_user((void __user *)arg, &cinfo, len))
1174 return -EFAULT;
1175
1176 return 0;
1177 }
1178
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1179 static int init_user_ctxt(struct hfi1_filedata *fd,
1180 struct hfi1_ctxtdata *uctxt)
1181 {
1182 int ret;
1183
1184 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1185 if (ret)
1186 return ret;
1187
1188 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1189 if (ret)
1190 hfi1_user_sdma_free_queues(fd, uctxt);
1191
1192 return ret;
1193 }
1194
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1195 static int setup_base_ctxt(struct hfi1_filedata *fd,
1196 struct hfi1_ctxtdata *uctxt)
1197 {
1198 struct hfi1_devdata *dd = uctxt->dd;
1199 int ret = 0;
1200
1201 hfi1_init_ctxt(uctxt->sc);
1202
1203 /* Now allocate the RcvHdr queue and eager buffers. */
1204 ret = hfi1_create_rcvhdrq(dd, uctxt);
1205 if (ret)
1206 goto done;
1207
1208 ret = hfi1_setup_eagerbufs(uctxt);
1209 if (ret)
1210 goto done;
1211
1212 /* If sub-contexts are enabled, do the appropriate setup */
1213 if (uctxt->subctxt_cnt)
1214 ret = setup_subctxt(uctxt);
1215 if (ret)
1216 goto done;
1217
1218 ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1219 if (ret)
1220 goto done;
1221
1222 ret = init_user_ctxt(fd, uctxt);
1223 if (ret) {
1224 hfi1_free_ctxt_rcv_groups(uctxt);
1225 goto done;
1226 }
1227
1228 user_init(uctxt);
1229
1230 /* Now that the context is set up, the fd can get a reference. */
1231 fd->uctxt = uctxt;
1232 hfi1_rcd_get(uctxt);
1233
1234 done:
1235 if (uctxt->subctxt_cnt) {
1236 /*
1237 * On error, set the failed bit so sub-contexts will clean up
1238 * correctly.
1239 */
1240 if (ret)
1241 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1242
1243 /*
1244 * Base context is done (successfully or not), notify anybody
1245 * using a sub-context that is waiting for this completion.
1246 */
1247 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1248 wake_up(&uctxt->wait);
1249 }
1250
1251 return ret;
1252 }
1253
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1254 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1255 {
1256 struct hfi1_base_info binfo;
1257 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1258 struct hfi1_devdata *dd = uctxt->dd;
1259 unsigned offset;
1260
1261 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1262
1263 if (sizeof(binfo) != len)
1264 return -EINVAL;
1265
1266 memset(&binfo, 0, sizeof(binfo));
1267 binfo.hw_version = dd->revision;
1268 binfo.sw_version = HFI1_KERN_SWVERSION;
1269 binfo.bthqp = RVT_KDETH_QP_PREFIX;
1270 binfo.jkey = uctxt->jkey;
1271 /*
1272 * If more than 64 contexts are enabled the allocated credit
1273 * return will span two or three contiguous pages. Since we only
1274 * map the page containing the context's credit return address,
1275 * we need to calculate the offset in the proper page.
1276 */
1277 offset = ((u64)uctxt->sc->hw_free -
1278 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1279 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1280 fd->subctxt, offset);
1281 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1282 fd->subctxt,
1283 uctxt->sc->base_addr);
1284 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1285 uctxt->ctxt,
1286 fd->subctxt,
1287 uctxt->sc->base_addr);
1288 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1289 fd->subctxt,
1290 uctxt->rcvhdrq);
1291 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1292 fd->subctxt,
1293 uctxt->egrbufs.rcvtids[0].dma);
1294 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1295 fd->subctxt, 0);
1296 /*
1297 * user regs are at
1298 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1299 */
1300 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1301 fd->subctxt, 0);
1302 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1303 sizeof(*dd->events));
1304 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1305 fd->subctxt,
1306 offset);
1307 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1308 fd->subctxt,
1309 dd->status);
1310 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1311 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1312 fd->subctxt, 0);
1313 if (uctxt->subctxt_cnt) {
1314 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1315 uctxt->ctxt,
1316 fd->subctxt, 0);
1317 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1318 uctxt->ctxt,
1319 fd->subctxt, 0);
1320 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1321 uctxt->ctxt,
1322 fd->subctxt, 0);
1323 }
1324
1325 if (copy_to_user((void __user *)arg, &binfo, len))
1326 return -EFAULT;
1327
1328 return 0;
1329 }
1330
1331 /**
1332 * user_exp_rcv_setup - Set up the given tid rcv list
1333 * @fd: file data of the current driver instance
1334 * @arg: ioctl argumnent for user space information
1335 * @len: length of data structure associated with ioctl command
1336 *
1337 * Wrapper to validate ioctl information before doing _rcv_setup.
1338 *
1339 */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1340 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1341 u32 len)
1342 {
1343 int ret;
1344 unsigned long addr;
1345 struct hfi1_tid_info tinfo;
1346
1347 if (sizeof(tinfo) != len)
1348 return -EINVAL;
1349
1350 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1351 return -EFAULT;
1352
1353 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1354 if (!ret) {
1355 /*
1356 * Copy the number of tidlist entries we used
1357 * and the length of the buffer we registered.
1358 */
1359 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1360 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1361 sizeof(tinfo.tidcnt)))
1362 ret = -EFAULT;
1363
1364 addr = arg + offsetof(struct hfi1_tid_info, length);
1365 if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1366 sizeof(tinfo.length)))
1367 ret = -EFAULT;
1368
1369 if (ret)
1370 hfi1_user_exp_rcv_invalid(fd, &tinfo);
1371 }
1372
1373 return ret;
1374 }
1375
1376 /**
1377 * user_exp_rcv_clear - Clear the given tid rcv list
1378 * @fd: file data of the current driver instance
1379 * @arg: ioctl argumnent for user space information
1380 * @len: length of data structure associated with ioctl command
1381 *
1382 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1383 * of this, we need to use this wrapper to copy the user space information
1384 * before doing the clear.
1385 */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1386 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1387 u32 len)
1388 {
1389 int ret;
1390 unsigned long addr;
1391 struct hfi1_tid_info tinfo;
1392
1393 if (sizeof(tinfo) != len)
1394 return -EINVAL;
1395
1396 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1397 return -EFAULT;
1398
1399 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1400 if (!ret) {
1401 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1402 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1403 sizeof(tinfo.tidcnt)))
1404 return -EFAULT;
1405 }
1406
1407 return ret;
1408 }
1409
1410 /**
1411 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1412 * @fd: file data of the current driver instance
1413 * @arg: ioctl argumnent for user space information
1414 * @len: length of data structure associated with ioctl command
1415 *
1416 * Wrapper to validate ioctl information before doing _rcv_invalid.
1417 *
1418 */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1419 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1420 u32 len)
1421 {
1422 int ret;
1423 unsigned long addr;
1424 struct hfi1_tid_info tinfo;
1425
1426 if (sizeof(tinfo) != len)
1427 return -EINVAL;
1428
1429 if (!fd->invalid_tids)
1430 return -EINVAL;
1431
1432 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1433 return -EFAULT;
1434
1435 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1436 if (ret)
1437 return ret;
1438
1439 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1440 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1441 sizeof(tinfo.tidcnt)))
1442 ret = -EFAULT;
1443
1444 return ret;
1445 }
1446
poll_urgent(struct file * fp,struct poll_table_struct * pt)1447 static __poll_t poll_urgent(struct file *fp,
1448 struct poll_table_struct *pt)
1449 {
1450 struct hfi1_filedata *fd = fp->private_data;
1451 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1452 struct hfi1_devdata *dd = uctxt->dd;
1453 __poll_t pollflag;
1454
1455 poll_wait(fp, &uctxt->wait, pt);
1456
1457 spin_lock_irq(&dd->uctxt_lock);
1458 if (uctxt->urgent != uctxt->urgent_poll) {
1459 pollflag = EPOLLIN | EPOLLRDNORM;
1460 uctxt->urgent_poll = uctxt->urgent;
1461 } else {
1462 pollflag = 0;
1463 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1464 }
1465 spin_unlock_irq(&dd->uctxt_lock);
1466
1467 return pollflag;
1468 }
1469
poll_next(struct file * fp,struct poll_table_struct * pt)1470 static __poll_t poll_next(struct file *fp,
1471 struct poll_table_struct *pt)
1472 {
1473 struct hfi1_filedata *fd = fp->private_data;
1474 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1475 struct hfi1_devdata *dd = uctxt->dd;
1476 __poll_t pollflag;
1477
1478 poll_wait(fp, &uctxt->wait, pt);
1479
1480 spin_lock_irq(&dd->uctxt_lock);
1481 if (hdrqempty(uctxt)) {
1482 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1483 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1484 pollflag = 0;
1485 } else {
1486 pollflag = EPOLLIN | EPOLLRDNORM;
1487 }
1488 spin_unlock_irq(&dd->uctxt_lock);
1489
1490 return pollflag;
1491 }
1492
1493 /*
1494 * Find all user contexts in use, and set the specified bit in their
1495 * event mask.
1496 * See also find_ctxt() for a similar use, that is specific to send buffers.
1497 */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1498 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1499 {
1500 struct hfi1_ctxtdata *uctxt;
1501 struct hfi1_devdata *dd = ppd->dd;
1502 u16 ctxt;
1503
1504 if (!dd->events)
1505 return -EINVAL;
1506
1507 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1508 ctxt++) {
1509 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1510 if (uctxt) {
1511 unsigned long *evs;
1512 int i;
1513 /*
1514 * subctxt_cnt is 0 if not shared, so do base
1515 * separately, first, then remaining subctxt, if any
1516 */
1517 evs = dd->events + uctxt_offset(uctxt);
1518 set_bit(evtbit, evs);
1519 for (i = 1; i < uctxt->subctxt_cnt; i++)
1520 set_bit(evtbit, evs + i);
1521 hfi1_rcd_put(uctxt);
1522 }
1523 }
1524
1525 return 0;
1526 }
1527
1528 /**
1529 * manage_rcvq - manage a context's receive queue
1530 * @uctxt: the context
1531 * @subctxt: the sub-context
1532 * @start_stop: action to carry out
1533 *
1534 * start_stop == 0 disables receive on the context, for use in queue
1535 * overflow conditions. start_stop==1 re-enables, to be used to
1536 * re-init the software copy of the head register
1537 */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1538 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1539 unsigned long arg)
1540 {
1541 struct hfi1_devdata *dd = uctxt->dd;
1542 unsigned int rcvctrl_op;
1543 int start_stop;
1544
1545 if (subctxt)
1546 return 0;
1547
1548 if (get_user(start_stop, (int __user *)arg))
1549 return -EFAULT;
1550
1551 /* atomically clear receive enable ctxt. */
1552 if (start_stop) {
1553 /*
1554 * On enable, force in-memory copy of the tail register to
1555 * 0, so that protocol code doesn't have to worry about
1556 * whether or not the chip has yet updated the in-memory
1557 * copy or not on return from the system call. The chip
1558 * always resets it's tail register back to 0 on a
1559 * transition from disabled to enabled.
1560 */
1561 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1562 clear_rcvhdrtail(uctxt);
1563 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1564 } else {
1565 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1566 }
1567 hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1568 /* always; new head should be equal to new tail; see above */
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * clear the event notifier events for this context.
1575 * User process then performs actions appropriate to bit having been
1576 * set, if desired, and checks again in future.
1577 */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1578 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1579 unsigned long arg)
1580 {
1581 int i;
1582 struct hfi1_devdata *dd = uctxt->dd;
1583 unsigned long *evs;
1584 unsigned long events;
1585
1586 if (!dd->events)
1587 return 0;
1588
1589 if (get_user(events, (unsigned long __user *)arg))
1590 return -EFAULT;
1591
1592 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1593
1594 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1595 if (!test_bit(i, &events))
1596 continue;
1597 clear_bit(i, evs);
1598 }
1599 return 0;
1600 }
1601
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1602 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1603 {
1604 int i;
1605 struct hfi1_pportdata *ppd = uctxt->ppd;
1606 struct hfi1_devdata *dd = uctxt->dd;
1607 u16 pkey;
1608
1609 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1610 return -EPERM;
1611
1612 if (get_user(pkey, (u16 __user *)arg))
1613 return -EFAULT;
1614
1615 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1616 return -EINVAL;
1617
1618 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1619 if (pkey == ppd->pkeys[i])
1620 return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1621
1622 return -ENOENT;
1623 }
1624
1625 /**
1626 * ctxt_reset - Reset the user context
1627 * @uctxt: valid user context
1628 */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1629 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1630 {
1631 struct send_context *sc;
1632 struct hfi1_devdata *dd;
1633 int ret = 0;
1634
1635 if (!uctxt || !uctxt->dd || !uctxt->sc)
1636 return -EINVAL;
1637
1638 /*
1639 * There is no protection here. User level has to guarantee that
1640 * no one will be writing to the send context while it is being
1641 * re-initialized. If user level breaks that guarantee, it will
1642 * break it's own context and no one else's.
1643 */
1644 dd = uctxt->dd;
1645 sc = uctxt->sc;
1646
1647 /*
1648 * Wait until the interrupt handler has marked the context as
1649 * halted or frozen. Report error if we time out.
1650 */
1651 wait_event_interruptible_timeout(
1652 sc->halt_wait, (sc->flags & SCF_HALTED),
1653 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1654 if (!(sc->flags & SCF_HALTED))
1655 return -ENOLCK;
1656
1657 /*
1658 * If the send context was halted due to a Freeze, wait until the
1659 * device has been "unfrozen" before resetting the context.
1660 */
1661 if (sc->flags & SCF_FROZEN) {
1662 wait_event_interruptible_timeout(
1663 dd->event_queue,
1664 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1665 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1666 if (dd->flags & HFI1_FROZEN)
1667 return -ENOLCK;
1668
1669 if (dd->flags & HFI1_FORCED_FREEZE)
1670 /*
1671 * Don't allow context reset if we are into
1672 * forced freeze
1673 */
1674 return -ENODEV;
1675
1676 sc_disable(sc);
1677 ret = sc_enable(sc);
1678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1679 } else {
1680 ret = sc_restart(sc);
1681 }
1682 if (!ret)
1683 sc_return_credits(sc);
1684
1685 return ret;
1686 }
1687
user_remove(struct hfi1_devdata * dd)1688 static void user_remove(struct hfi1_devdata *dd)
1689 {
1690
1691 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1692 }
1693
user_add(struct hfi1_devdata * dd)1694 static int user_add(struct hfi1_devdata *dd)
1695 {
1696 char name[10];
1697 int ret;
1698
1699 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1700 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1701 &dd->user_cdev, &dd->user_device,
1702 true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1703 if (ret)
1704 user_remove(dd);
1705
1706 return ret;
1707 }
1708
1709 /*
1710 * Create per-unit files in /dev
1711 */
hfi1_device_create(struct hfi1_devdata * dd)1712 int hfi1_device_create(struct hfi1_devdata *dd)
1713 {
1714 return user_add(dd);
1715 }
1716
1717 /*
1718 * Remove per-unit files in /dev
1719 * void, core kernel returns no errors for this stuff
1720 */
hfi1_device_remove(struct hfi1_devdata * dd)1721 void hfi1_device_remove(struct hfi1_devdata *dd)
1722 {
1723 user_remove(dd);
1724 }
1725