1 /*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68 struct sdma_engine *sde,
69 struct iowait_work *wait,
70 struct sdma_txreq *stx,
71 unsigned int seq,
72 bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79 .length = sizeof(struct ib_rdma_wr),
80 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82
83 [IB_WR_RDMA_READ] = {
84 .length = sizeof(struct ib_rdma_wr),
85 .qpt_support = BIT(IB_QPT_RC),
86 .flags = RVT_OPERATION_ATOMIC,
87 },
88
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90 .length = sizeof(struct ib_atomic_wr),
91 .qpt_support = BIT(IB_QPT_RC),
92 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96 .length = sizeof(struct ib_atomic_wr),
97 .qpt_support = BIT(IB_QPT_RC),
98 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102 .length = sizeof(struct ib_rdma_wr),
103 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105
106 [IB_WR_SEND] = {
107 .length = sizeof(struct ib_send_wr),
108 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111
112 [IB_WR_SEND_WITH_IMM] = {
113 .length = sizeof(struct ib_send_wr),
114 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117
118 [IB_WR_REG_MR] = {
119 .length = sizeof(struct ib_reg_wr),
120 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121 .flags = RVT_OPERATION_LOCAL,
122 },
123
124 [IB_WR_LOCAL_INV] = {
125 .length = sizeof(struct ib_send_wr),
126 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127 .flags = RVT_OPERATION_LOCAL,
128 },
129
130 [IB_WR_SEND_WITH_INV] = {
131 .length = sizeof(struct ib_send_wr),
132 .qpt_support = BIT(IB_QPT_RC),
133 },
134
135 [IB_WR_OPFN] = {
136 .length = sizeof(struct ib_atomic_wr),
137 .qpt_support = BIT(IB_QPT_RC),
138 .flags = RVT_OPERATION_USE_RESERVE,
139 },
140
141 [IB_WR_TID_RDMA_WRITE] = {
142 .length = sizeof(struct ib_rdma_wr),
143 .qpt_support = BIT(IB_QPT_RC),
144 .flags = RVT_OPERATION_IGN_RNR_CNT,
145 },
146
147 };
148
flush_list_head(struct list_head * l)149 static void flush_list_head(struct list_head *l)
150 {
151 while (!list_empty(l)) {
152 struct sdma_txreq *tx;
153
154 tx = list_first_entry(
155 l,
156 struct sdma_txreq,
157 list);
158 list_del_init(&tx->list);
159 hfi1_put_txreq(
160 container_of(tx, struct verbs_txreq, txreq));
161 }
162 }
163
flush_tx_list(struct rvt_qp * qp)164 static void flush_tx_list(struct rvt_qp *qp)
165 {
166 struct hfi1_qp_priv *priv = qp->priv;
167
168 flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
169 flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
170 }
171
flush_iowait(struct rvt_qp * qp)172 static void flush_iowait(struct rvt_qp *qp)
173 {
174 struct hfi1_qp_priv *priv = qp->priv;
175 unsigned long flags;
176 seqlock_t *lock = priv->s_iowait.lock;
177
178 if (!lock)
179 return;
180 write_seqlock_irqsave(lock, flags);
181 if (!list_empty(&priv->s_iowait.list)) {
182 list_del_init(&priv->s_iowait.list);
183 priv->s_iowait.lock = NULL;
184 rvt_put_qp(qp);
185 }
186 write_sequnlock_irqrestore(lock, flags);
187 }
188
189 /**
190 * This function is what we would push to the core layer if we wanted to be a
191 * "first class citizen". Instead we hide this here and rely on Verbs ULPs
192 * to blindly pass the MTU enum value from the PathRecord to us.
193 */
verbs_mtu_enum_to_int(struct ib_device * dev,enum ib_mtu mtu)194 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
195 {
196 /* Constraining 10KB packets to 8KB packets */
197 if (mtu == (enum ib_mtu)OPA_MTU_10240)
198 mtu = (enum ib_mtu)OPA_MTU_8192;
199 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
200 }
201
hfi1_check_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)202 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
203 int attr_mask, struct ib_udata *udata)
204 {
205 struct ib_qp *ibqp = &qp->ibqp;
206 struct hfi1_ibdev *dev = to_idev(ibqp->device);
207 struct hfi1_devdata *dd = dd_from_dev(dev);
208 u8 sc;
209
210 if (attr_mask & IB_QP_AV) {
211 sc = ah_to_sc(ibqp->device, &attr->ah_attr);
212 if (sc == 0xf)
213 return -EINVAL;
214
215 if (!qp_to_sdma_engine(qp, sc) &&
216 dd->flags & HFI1_HAS_SEND_DMA)
217 return -EINVAL;
218
219 if (!qp_to_send_context(qp, sc))
220 return -EINVAL;
221 }
222
223 if (attr_mask & IB_QP_ALT_PATH) {
224 sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
225 if (sc == 0xf)
226 return -EINVAL;
227
228 if (!qp_to_sdma_engine(qp, sc) &&
229 dd->flags & HFI1_HAS_SEND_DMA)
230 return -EINVAL;
231
232 if (!qp_to_send_context(qp, sc))
233 return -EINVAL;
234 }
235
236 return 0;
237 }
238
239 /*
240 * qp_set_16b - Set the hdr_type based on whether the slid or the
241 * dlid in the connection is extended. Only applicable for RC and UC
242 * QPs. UD QPs determine this on the fly from the ah in the wqe
243 */
qp_set_16b(struct rvt_qp * qp)244 static inline void qp_set_16b(struct rvt_qp *qp)
245 {
246 struct hfi1_pportdata *ppd;
247 struct hfi1_ibport *ibp;
248 struct hfi1_qp_priv *priv = qp->priv;
249
250 /* Update ah_attr to account for extended LIDs */
251 hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
252
253 /* Create 32 bit LIDs */
254 hfi1_make_opa_lid(&qp->remote_ah_attr);
255
256 if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
257 return;
258
259 ibp = to_iport(qp->ibqp.device, qp->port_num);
260 ppd = ppd_from_ibp(ibp);
261 priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
262 }
263
hfi1_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)264 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
265 int attr_mask, struct ib_udata *udata)
266 {
267 struct ib_qp *ibqp = &qp->ibqp;
268 struct hfi1_qp_priv *priv = qp->priv;
269
270 if (attr_mask & IB_QP_AV) {
271 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
272 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
273 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
274 qp_set_16b(qp);
275 }
276
277 if (attr_mask & IB_QP_PATH_MIG_STATE &&
278 attr->path_mig_state == IB_MIG_MIGRATED &&
279 qp->s_mig_state == IB_MIG_ARMED) {
280 qp->s_flags |= HFI1_S_AHG_CLEAR;
281 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
282 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
283 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
284 qp_set_16b(qp);
285 }
286
287 opfn_qp_init(qp, attr, attr_mask);
288 }
289
290 /**
291 * hfi1_setup_wqe - set up the wqe
292 * @qp - The qp
293 * @wqe - The built wqe
294 * @call_send - Determine if the send should be posted or scheduled.
295 *
296 * Perform setup of the wqe. This is called
297 * prior to inserting the wqe into the ring but after
298 * the wqe has been setup by RDMAVT. This function
299 * allows the driver the opportunity to perform
300 * validation and additional setup of the wqe.
301 *
302 * Returns 0 on success, -EINVAL on failure
303 *
304 */
hfi1_setup_wqe(struct rvt_qp * qp,struct rvt_swqe * wqe,bool * call_send)305 int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
306 {
307 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
308 struct rvt_ah *ah;
309 struct hfi1_pportdata *ppd;
310 struct hfi1_devdata *dd;
311
312 switch (qp->ibqp.qp_type) {
313 case IB_QPT_RC:
314 hfi1_setup_tid_rdma_wqe(qp, wqe);
315 fallthrough;
316 case IB_QPT_UC:
317 if (wqe->length > 0x80000000U)
318 return -EINVAL;
319 if (wqe->length > qp->pmtu)
320 *call_send = false;
321 break;
322 case IB_QPT_SMI:
323 /*
324 * SM packets should exclusively use VL15 and their SL is
325 * ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
326 * is created, SL is 0 in most cases and as a result some
327 * fields (vl and pmtu) in ah may not be set correctly,
328 * depending on the SL2SC and SC2VL tables at the time.
329 */
330 ppd = ppd_from_ibp(ibp);
331 dd = dd_from_ppd(ppd);
332 if (wqe->length > dd->vld[15].mtu)
333 return -EINVAL;
334 break;
335 case IB_QPT_GSI:
336 case IB_QPT_UD:
337 ah = rvt_get_swqe_ah(wqe);
338 if (wqe->length > (1 << ah->log_pmtu))
339 return -EINVAL;
340 if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
341 return -EINVAL;
342 default:
343 break;
344 }
345
346 /*
347 * System latency between send and schedule is large enough that
348 * forcing call_send to true for piothreshold packets is necessary.
349 */
350 if (wqe->length <= piothreshold)
351 *call_send = true;
352 return 0;
353 }
354
355 /**
356 * _hfi1_schedule_send - schedule progress
357 * @qp: the QP
358 *
359 * This schedules qp progress w/o regard to the s_flags.
360 *
361 * It is only used in the post send, which doesn't hold
362 * the s_lock.
363 */
_hfi1_schedule_send(struct rvt_qp * qp)364 bool _hfi1_schedule_send(struct rvt_qp *qp)
365 {
366 struct hfi1_qp_priv *priv = qp->priv;
367 struct hfi1_ibport *ibp =
368 to_iport(qp->ibqp.device, qp->port_num);
369 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
370 struct hfi1_devdata *dd = ppd->dd;
371
372 if (dd->flags & HFI1_SHUTDOWN)
373 return true;
374
375 return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
376 priv->s_sde ?
377 priv->s_sde->cpu :
378 cpumask_first(cpumask_of_node(dd->node)));
379 }
380
qp_pio_drain(struct rvt_qp * qp)381 static void qp_pio_drain(struct rvt_qp *qp)
382 {
383 struct hfi1_qp_priv *priv = qp->priv;
384
385 if (!priv->s_sendcontext)
386 return;
387 while (iowait_pio_pending(&priv->s_iowait)) {
388 write_seqlock_irq(&priv->s_sendcontext->waitlock);
389 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
390 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
391 iowait_pio_drain(&priv->s_iowait);
392 write_seqlock_irq(&priv->s_sendcontext->waitlock);
393 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
394 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
395 }
396 }
397
398 /**
399 * hfi1_schedule_send - schedule progress
400 * @qp: the QP
401 *
402 * This schedules qp progress and caller should hold
403 * the s_lock.
404 * @return true if the first leg is scheduled;
405 * false if the first leg is not scheduled.
406 */
hfi1_schedule_send(struct rvt_qp * qp)407 bool hfi1_schedule_send(struct rvt_qp *qp)
408 {
409 lockdep_assert_held(&qp->s_lock);
410 if (hfi1_send_ok(qp)) {
411 _hfi1_schedule_send(qp);
412 return true;
413 }
414 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
415 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
416 IOWAIT_PENDING_IB);
417 return false;
418 }
419
hfi1_qp_schedule(struct rvt_qp * qp)420 static void hfi1_qp_schedule(struct rvt_qp *qp)
421 {
422 struct hfi1_qp_priv *priv = qp->priv;
423 bool ret;
424
425 if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
426 ret = hfi1_schedule_send(qp);
427 if (ret)
428 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
429 }
430 if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
431 ret = hfi1_schedule_tid_send(qp);
432 if (ret)
433 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
434 }
435 }
436
hfi1_qp_wakeup(struct rvt_qp * qp,u32 flag)437 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&qp->s_lock, flags);
442 if (qp->s_flags & flag) {
443 qp->s_flags &= ~flag;
444 trace_hfi1_qpwakeup(qp, flag);
445 hfi1_qp_schedule(qp);
446 }
447 spin_unlock_irqrestore(&qp->s_lock, flags);
448 /* Notify hfi1_destroy_qp() if it is waiting. */
449 rvt_put_qp(qp);
450 }
451
hfi1_qp_unbusy(struct rvt_qp * qp,struct iowait_work * wait)452 void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
453 {
454 struct hfi1_qp_priv *priv = qp->priv;
455
456 if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
457 qp->s_flags &= ~RVT_S_BUSY;
458 /*
459 * If we are sending a first-leg packet from the second leg,
460 * we need to clear the busy flag from priv->s_flags to
461 * avoid a race condition when the qp wakes up before
462 * the call to hfi1_verbs_send() returns to the second
463 * leg. In that case, the second leg will terminate without
464 * being re-scheduled, resulting in failure to send TID RDMA
465 * WRITE DATA and TID RDMA ACK packets.
466 */
467 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
468 priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
469 RVT_S_BUSY);
470 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
471 }
472 } else {
473 priv->s_flags &= ~RVT_S_BUSY;
474 }
475 }
476
iowait_sleep(struct sdma_engine * sde,struct iowait_work * wait,struct sdma_txreq * stx,uint seq,bool pkts_sent)477 static int iowait_sleep(
478 struct sdma_engine *sde,
479 struct iowait_work *wait,
480 struct sdma_txreq *stx,
481 uint seq,
482 bool pkts_sent)
483 {
484 struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
485 struct rvt_qp *qp;
486 struct hfi1_qp_priv *priv;
487 unsigned long flags;
488 int ret = 0;
489
490 qp = tx->qp;
491 priv = qp->priv;
492
493 spin_lock_irqsave(&qp->s_lock, flags);
494 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
495 /*
496 * If we couldn't queue the DMA request, save the info
497 * and try again later rather than destroying the
498 * buffer and undoing the side effects of the copy.
499 */
500 /* Make a common routine? */
501 list_add_tail(&stx->list, &wait->tx_head);
502 write_seqlock(&sde->waitlock);
503 if (sdma_progress(sde, seq, stx))
504 goto eagain;
505 if (list_empty(&priv->s_iowait.list)) {
506 struct hfi1_ibport *ibp =
507 to_iport(qp->ibqp.device, qp->port_num);
508
509 ibp->rvp.n_dmawait++;
510 qp->s_flags |= RVT_S_WAIT_DMA_DESC;
511 iowait_get_priority(&priv->s_iowait);
512 iowait_queue(pkts_sent, &priv->s_iowait,
513 &sde->dmawait);
514 priv->s_iowait.lock = &sde->waitlock;
515 trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
516 rvt_get_qp(qp);
517 }
518 write_sequnlock(&sde->waitlock);
519 hfi1_qp_unbusy(qp, wait);
520 spin_unlock_irqrestore(&qp->s_lock, flags);
521 ret = -EBUSY;
522 } else {
523 spin_unlock_irqrestore(&qp->s_lock, flags);
524 hfi1_put_txreq(tx);
525 }
526 return ret;
527 eagain:
528 write_sequnlock(&sde->waitlock);
529 spin_unlock_irqrestore(&qp->s_lock, flags);
530 list_del_init(&stx->list);
531 return -EAGAIN;
532 }
533
iowait_wakeup(struct iowait * wait,int reason)534 static void iowait_wakeup(struct iowait *wait, int reason)
535 {
536 struct rvt_qp *qp = iowait_to_qp(wait);
537
538 WARN_ON(reason != SDMA_AVAIL_REASON);
539 hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
540 }
541
iowait_sdma_drained(struct iowait * wait)542 static void iowait_sdma_drained(struct iowait *wait)
543 {
544 struct rvt_qp *qp = iowait_to_qp(wait);
545 unsigned long flags;
546
547 /*
548 * This happens when the send engine notes
549 * a QP in the error state and cannot
550 * do the flush work until that QP's
551 * sdma work has finished.
552 */
553 spin_lock_irqsave(&qp->s_lock, flags);
554 if (qp->s_flags & RVT_S_WAIT_DMA) {
555 qp->s_flags &= ~RVT_S_WAIT_DMA;
556 hfi1_schedule_send(qp);
557 }
558 spin_unlock_irqrestore(&qp->s_lock, flags);
559 }
560
hfi1_init_priority(struct iowait * w)561 static void hfi1_init_priority(struct iowait *w)
562 {
563 struct rvt_qp *qp = iowait_to_qp(w);
564 struct hfi1_qp_priv *priv = qp->priv;
565
566 if (qp->s_flags & RVT_S_ACK_PENDING)
567 w->priority++;
568 if (priv->s_flags & RVT_S_ACK_PENDING)
569 w->priority++;
570 }
571
572 /**
573 * qp_to_sdma_engine - map a qp to a send engine
574 * @qp: the QP
575 * @sc5: the 5 bit sc
576 *
577 * Return:
578 * A send engine for the qp or NULL for SMI type qp.
579 */
qp_to_sdma_engine(struct rvt_qp * qp,u8 sc5)580 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
581 {
582 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
583 struct sdma_engine *sde;
584
585 if (!(dd->flags & HFI1_HAS_SEND_DMA))
586 return NULL;
587 switch (qp->ibqp.qp_type) {
588 case IB_QPT_SMI:
589 return NULL;
590 default:
591 break;
592 }
593 sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
594 return sde;
595 }
596
597 /*
598 * qp_to_send_context - map a qp to a send context
599 * @qp: the QP
600 * @sc5: the 5 bit sc
601 *
602 * Return:
603 * A send context for the qp
604 */
qp_to_send_context(struct rvt_qp * qp,u8 sc5)605 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
606 {
607 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
608
609 switch (qp->ibqp.qp_type) {
610 case IB_QPT_SMI:
611 /* SMA packets to VL15 */
612 return dd->vld[15].sc;
613 default:
614 break;
615 }
616
617 return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
618 sc5);
619 }
620
621 static const char * const qp_type_str[] = {
622 "SMI", "GSI", "RC", "UC", "UD",
623 };
624
qp_idle(struct rvt_qp * qp)625 static int qp_idle(struct rvt_qp *qp)
626 {
627 return
628 qp->s_last == qp->s_acked &&
629 qp->s_acked == qp->s_cur &&
630 qp->s_cur == qp->s_tail &&
631 qp->s_tail == qp->s_head;
632 }
633
634 /**
635 * qp_iter_print - print the qp information to seq_file
636 * @s: the seq_file to emit the qp information on
637 * @iter: the iterator for the qp hash list
638 */
qp_iter_print(struct seq_file * s,struct rvt_qp_iter * iter)639 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
640 {
641 struct rvt_swqe *wqe;
642 struct rvt_qp *qp = iter->qp;
643 struct hfi1_qp_priv *priv = qp->priv;
644 struct sdma_engine *sde;
645 struct send_context *send_context;
646 struct rvt_ack_entry *e = NULL;
647 struct rvt_srq *srq = qp->ibqp.srq ?
648 ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
649
650 sde = qp_to_sdma_engine(qp, priv->s_sc);
651 wqe = rvt_get_swqe_ptr(qp, qp->s_last);
652 send_context = qp_to_send_context(qp, priv->s_sc);
653 if (qp->s_ack_queue)
654 e = &qp->s_ack_queue[qp->s_tail_ack_queue];
655 seq_printf(s,
656 "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
657 iter->n,
658 qp_idle(qp) ? "I" : "B",
659 qp->ibqp.qp_num,
660 atomic_read(&qp->refcount),
661 qp_type_str[qp->ibqp.qp_type],
662 qp->state,
663 wqe ? wqe->wr.opcode : 0,
664 qp->s_flags,
665 iowait_sdma_pending(&priv->s_iowait),
666 iowait_pio_pending(&priv->s_iowait),
667 !list_empty(&priv->s_iowait.list),
668 qp->timeout,
669 wqe ? wqe->ssn : 0,
670 qp->s_lsn,
671 qp->s_last_psn,
672 qp->s_psn, qp->s_next_psn,
673 qp->s_sending_psn, qp->s_sending_hpsn,
674 qp->r_psn,
675 qp->s_last, qp->s_acked, qp->s_cur,
676 qp->s_tail, qp->s_head, qp->s_size,
677 qp->s_avail,
678 /* ack_queue ring pointers, size */
679 qp->s_tail_ack_queue, qp->r_head_ack_queue,
680 rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
681 /* remote QP info */
682 qp->remote_qpn,
683 rdma_ah_get_dlid(&qp->remote_ah_attr),
684 rdma_ah_get_sl(&qp->remote_ah_attr),
685 qp->pmtu,
686 qp->s_retry,
687 qp->s_retry_cnt,
688 qp->s_rnr_retry_cnt,
689 qp->s_rnr_retry,
690 sde,
691 sde ? sde->this_idx : 0,
692 send_context,
693 send_context ? send_context->sw_index : 0,
694 ib_cq_head(qp->ibqp.send_cq),
695 ib_cq_tail(qp->ibqp.send_cq),
696 qp->pid,
697 qp->s_state,
698 qp->s_ack_state,
699 /* ack queue information */
700 e ? e->opcode : 0,
701 e ? e->psn : 0,
702 e ? e->lpsn : 0,
703 qp->r_min_rnr_timer,
704 srq ? "SRQ" : "RQ",
705 srq ? srq->rq.size : qp->r_rq.size
706 );
707 }
708
qp_priv_alloc(struct rvt_dev_info * rdi,struct rvt_qp * qp)709 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
710 {
711 struct hfi1_qp_priv *priv;
712
713 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
714 if (!priv)
715 return ERR_PTR(-ENOMEM);
716
717 priv->owner = qp;
718
719 priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
720 rdi->dparms.node);
721 if (!priv->s_ahg) {
722 kfree(priv);
723 return ERR_PTR(-ENOMEM);
724 }
725 iowait_init(
726 &priv->s_iowait,
727 1,
728 _hfi1_do_send,
729 _hfi1_do_tid_send,
730 iowait_sleep,
731 iowait_wakeup,
732 iowait_sdma_drained,
733 hfi1_init_priority);
734 /* Init to a value to start the running average correctly */
735 priv->s_running_pkt_size = piothreshold / 2;
736 return priv;
737 }
738
qp_priv_free(struct rvt_dev_info * rdi,struct rvt_qp * qp)739 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
740 {
741 struct hfi1_qp_priv *priv = qp->priv;
742
743 hfi1_qp_priv_tid_free(rdi, qp);
744 kfree(priv->s_ahg);
745 kfree(priv);
746 }
747
free_all_qps(struct rvt_dev_info * rdi)748 unsigned free_all_qps(struct rvt_dev_info *rdi)
749 {
750 struct hfi1_ibdev *verbs_dev = container_of(rdi,
751 struct hfi1_ibdev,
752 rdi);
753 struct hfi1_devdata *dd = container_of(verbs_dev,
754 struct hfi1_devdata,
755 verbs_dev);
756 int n;
757 unsigned qp_inuse = 0;
758
759 for (n = 0; n < dd->num_pports; n++) {
760 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
761
762 rcu_read_lock();
763 if (rcu_dereference(ibp->rvp.qp[0]))
764 qp_inuse++;
765 if (rcu_dereference(ibp->rvp.qp[1]))
766 qp_inuse++;
767 rcu_read_unlock();
768 }
769
770 return qp_inuse;
771 }
772
flush_qp_waiters(struct rvt_qp * qp)773 void flush_qp_waiters(struct rvt_qp *qp)
774 {
775 lockdep_assert_held(&qp->s_lock);
776 flush_iowait(qp);
777 hfi1_tid_rdma_flush_wait(qp);
778 }
779
stop_send_queue(struct rvt_qp * qp)780 void stop_send_queue(struct rvt_qp *qp)
781 {
782 struct hfi1_qp_priv *priv = qp->priv;
783
784 iowait_cancel_work(&priv->s_iowait);
785 if (cancel_work_sync(&priv->tid_rdma.trigger_work))
786 rvt_put_qp(qp);
787 }
788
quiesce_qp(struct rvt_qp * qp)789 void quiesce_qp(struct rvt_qp *qp)
790 {
791 struct hfi1_qp_priv *priv = qp->priv;
792
793 hfi1_del_tid_reap_timer(qp);
794 hfi1_del_tid_retry_timer(qp);
795 iowait_sdma_drain(&priv->s_iowait);
796 qp_pio_drain(qp);
797 flush_tx_list(qp);
798 }
799
notify_qp_reset(struct rvt_qp * qp)800 void notify_qp_reset(struct rvt_qp *qp)
801 {
802 hfi1_qp_kern_exp_rcv_clear_all(qp);
803 qp->r_adefered = 0;
804 clear_ahg(qp);
805
806 /* Clear any OPFN state */
807 if (qp->ibqp.qp_type == IB_QPT_RC)
808 opfn_conn_error(qp);
809 }
810
811 /*
812 * Switch to alternate path.
813 * The QP s_lock should be held and interrupts disabled.
814 */
hfi1_migrate_qp(struct rvt_qp * qp)815 void hfi1_migrate_qp(struct rvt_qp *qp)
816 {
817 struct hfi1_qp_priv *priv = qp->priv;
818 struct ib_event ev;
819
820 qp->s_mig_state = IB_MIG_MIGRATED;
821 qp->remote_ah_attr = qp->alt_ah_attr;
822 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
823 qp->s_pkey_index = qp->s_alt_pkey_index;
824 qp->s_flags |= HFI1_S_AHG_CLEAR;
825 priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
826 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
827 qp_set_16b(qp);
828
829 ev.device = qp->ibqp.device;
830 ev.element.qp = &qp->ibqp;
831 ev.event = IB_EVENT_PATH_MIG;
832 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
833 }
834
mtu_to_path_mtu(u32 mtu)835 int mtu_to_path_mtu(u32 mtu)
836 {
837 return mtu_to_enum(mtu, OPA_MTU_8192);
838 }
839
mtu_from_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,u32 pmtu)840 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
841 {
842 u32 mtu;
843 struct hfi1_ibdev *verbs_dev = container_of(rdi,
844 struct hfi1_ibdev,
845 rdi);
846 struct hfi1_devdata *dd = container_of(verbs_dev,
847 struct hfi1_devdata,
848 verbs_dev);
849 struct hfi1_ibport *ibp;
850 u8 sc, vl;
851
852 ibp = &dd->pport[qp->port_num - 1].ibport_data;
853 sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
854 vl = sc_to_vlt(dd, sc);
855
856 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
857 if (vl < PER_VL_SEND_CONTEXTS)
858 mtu = min_t(u32, mtu, dd->vld[vl].mtu);
859 return mtu;
860 }
861
get_pmtu_from_attr(struct rvt_dev_info * rdi,struct rvt_qp * qp,struct ib_qp_attr * attr)862 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
863 struct ib_qp_attr *attr)
864 {
865 int mtu, pidx = qp->port_num - 1;
866 struct hfi1_ibdev *verbs_dev = container_of(rdi,
867 struct hfi1_ibdev,
868 rdi);
869 struct hfi1_devdata *dd = container_of(verbs_dev,
870 struct hfi1_devdata,
871 verbs_dev);
872 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
873 if (mtu == -1)
874 return -1; /* values less than 0 are error */
875
876 if (mtu > dd->pport[pidx].ibmtu)
877 return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
878 else
879 return attr->path_mtu;
880 }
881
notify_error_qp(struct rvt_qp * qp)882 void notify_error_qp(struct rvt_qp *qp)
883 {
884 struct hfi1_qp_priv *priv = qp->priv;
885 seqlock_t *lock = priv->s_iowait.lock;
886
887 if (lock) {
888 write_seqlock(lock);
889 if (!list_empty(&priv->s_iowait.list) &&
890 !(qp->s_flags & RVT_S_BUSY) &&
891 !(priv->s_flags & RVT_S_BUSY)) {
892 qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
893 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
894 iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
895 list_del_init(&priv->s_iowait.list);
896 priv->s_iowait.lock = NULL;
897 rvt_put_qp(qp);
898 }
899 write_sequnlock(lock);
900 }
901
902 if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
903 qp->s_hdrwords = 0;
904 if (qp->s_rdma_mr) {
905 rvt_put_mr(qp->s_rdma_mr);
906 qp->s_rdma_mr = NULL;
907 }
908 flush_tx_list(qp);
909 }
910 }
911
912 /**
913 * hfi1_qp_iter_cb - callback for iterator
914 * @qp - the qp
915 * @v - the sl in low bits of v
916 *
917 * This is called from the iterator callback to work
918 * on an individual qp.
919 */
hfi1_qp_iter_cb(struct rvt_qp * qp,u64 v)920 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
921 {
922 int lastwqe;
923 struct ib_event ev;
924 struct hfi1_ibport *ibp =
925 to_iport(qp->ibqp.device, qp->port_num);
926 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
927 u8 sl = (u8)v;
928
929 if (qp->port_num != ppd->port ||
930 (qp->ibqp.qp_type != IB_QPT_UC &&
931 qp->ibqp.qp_type != IB_QPT_RC) ||
932 rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
933 !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
934 return;
935
936 spin_lock_irq(&qp->r_lock);
937 spin_lock(&qp->s_hlock);
938 spin_lock(&qp->s_lock);
939 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
940 spin_unlock(&qp->s_lock);
941 spin_unlock(&qp->s_hlock);
942 spin_unlock_irq(&qp->r_lock);
943 if (lastwqe) {
944 ev.device = qp->ibqp.device;
945 ev.element.qp = &qp->ibqp;
946 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
947 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
948 }
949 }
950
951 /**
952 * hfi1_error_port_qps - put a port's RC/UC qps into error state
953 * @ibp: the ibport.
954 * @sl: the service level.
955 *
956 * This function places all RC/UC qps with a given service level into error
957 * state. It is generally called to force upper lay apps to abandon stale qps
958 * after an sl->sc mapping change.
959 */
hfi1_error_port_qps(struct hfi1_ibport * ibp,u8 sl)960 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
961 {
962 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
963 struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
964
965 rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
966 }
967