1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Brad Volkin <bradley.d.volkin@intel.com>
25 *
26 */
27
28 #include "gt/intel_engine.h"
29
30 #include "i915_drv.h"
31 #include "i915_memcpy.h"
32
33 /**
34 * DOC: batch buffer command parser
35 *
36 * Motivation:
37 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
38 * require userspace code to submit batches containing commands such as
39 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
40 * generations of the hardware will noop these commands in "unsecure" batches
41 * (which includes all userspace batches submitted via i915) even though the
42 * commands may be safe and represent the intended programming model of the
43 * device.
44 *
45 * The software command parser is similar in operation to the command parsing
46 * done in hardware for unsecure batches. However, the software parser allows
47 * some operations that would be noop'd by hardware, if the parser determines
48 * the operation is safe, and submits the batch as "secure" to prevent hardware
49 * parsing.
50 *
51 * Threats:
52 * At a high level, the hardware (and software) checks attempt to prevent
53 * granting userspace undue privileges. There are three categories of privilege.
54 *
55 * First, commands which are explicitly defined as privileged or which should
56 * only be used by the kernel driver. The parser rejects such commands
57 *
58 * Second, commands which access registers. To support correct/enhanced
59 * userspace functionality, particularly certain OpenGL extensions, the parser
60 * provides a whitelist of registers which userspace may safely access
61 *
62 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
63 * The parser always rejects such commands.
64 *
65 * The majority of the problematic commands fall in the MI_* range, with only a
66 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
67 *
68 * Implementation:
69 * Each engine maintains tables of commands and registers which the parser
70 * uses in scanning batch buffers submitted to that engine.
71 *
72 * Since the set of commands that the parser must check for is significantly
73 * smaller than the number of commands supported, the parser tables contain only
74 * those commands required by the parser. This generally works because command
75 * opcode ranges have standard command length encodings. So for commands that
76 * the parser does not need to check, it can easily skip them. This is
77 * implemented via a per-engine length decoding vfunc.
78 *
79 * Unfortunately, there are a number of commands that do not follow the standard
80 * length encoding for their opcode range, primarily amongst the MI_* commands.
81 * To handle this, the parser provides a way to define explicit "skip" entries
82 * in the per-engine command tables.
83 *
84 * Other command table entries map fairly directly to high level categories
85 * mentioned above: rejected, register whitelist. The parser implements a number
86 * of checks, including the privileged memory checks, via a general bitmasking
87 * mechanism.
88 */
89
90 /*
91 * A command that requires special handling by the command parser.
92 */
93 struct drm_i915_cmd_descriptor {
94 /*
95 * Flags describing how the command parser processes the command.
96 *
97 * CMD_DESC_FIXED: The command has a fixed length if this is set,
98 * a length mask if not set
99 * CMD_DESC_SKIP: The command is allowed but does not follow the
100 * standard length encoding for the opcode range in
101 * which it falls
102 * CMD_DESC_REJECT: The command is never allowed
103 * CMD_DESC_REGISTER: The command should be checked against the
104 * register whitelist for the appropriate ring
105 */
106 u32 flags;
107 #define CMD_DESC_FIXED (1<<0)
108 #define CMD_DESC_SKIP (1<<1)
109 #define CMD_DESC_REJECT (1<<2)
110 #define CMD_DESC_REGISTER (1<<3)
111 #define CMD_DESC_BITMASK (1<<4)
112
113 /*
114 * The command's unique identification bits and the bitmask to get them.
115 * This isn't strictly the opcode field as defined in the spec and may
116 * also include type, subtype, and/or subop fields.
117 */
118 struct {
119 u32 value;
120 u32 mask;
121 } cmd;
122
123 /*
124 * The command's length. The command is either fixed length (i.e. does
125 * not include a length field) or has a length field mask. The flag
126 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
127 * a length mask. All command entries in a command table must include
128 * length information.
129 */
130 union {
131 u32 fixed;
132 u32 mask;
133 } length;
134
135 /*
136 * Describes where to find a register address in the command to check
137 * against the ring's register whitelist. Only valid if flags has the
138 * CMD_DESC_REGISTER bit set.
139 *
140 * A non-zero step value implies that the command may access multiple
141 * registers in sequence (e.g. LRI), in that case step gives the
142 * distance in dwords between individual offset fields.
143 */
144 struct {
145 u32 offset;
146 u32 mask;
147 u32 step;
148 } reg;
149
150 #define MAX_CMD_DESC_BITMASKS 3
151 /*
152 * Describes command checks where a particular dword is masked and
153 * compared against an expected value. If the command does not match
154 * the expected value, the parser rejects it. Only valid if flags has
155 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
156 * are valid.
157 *
158 * If the check specifies a non-zero condition_mask then the parser
159 * only performs the check when the bits specified by condition_mask
160 * are non-zero.
161 */
162 struct {
163 u32 offset;
164 u32 mask;
165 u32 expected;
166 u32 condition_offset;
167 u32 condition_mask;
168 } bits[MAX_CMD_DESC_BITMASKS];
169 };
170
171 /*
172 * A table of commands requiring special handling by the command parser.
173 *
174 * Each engine has an array of tables. Each table consists of an array of
175 * command descriptors, which must be sorted with command opcodes in
176 * ascending order.
177 */
178 struct drm_i915_cmd_table {
179 const struct drm_i915_cmd_descriptor *table;
180 int count;
181 };
182
183 #define STD_MI_OPCODE_SHIFT (32 - 9)
184 #define STD_3D_OPCODE_SHIFT (32 - 16)
185 #define STD_2D_OPCODE_SHIFT (32 - 10)
186 #define STD_MFX_OPCODE_SHIFT (32 - 16)
187 #define MIN_OPCODE_SHIFT 16
188
189 #define CMD(op, opm, f, lm, fl, ...) \
190 { \
191 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
192 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
193 .length = { (lm) }, \
194 __VA_ARGS__ \
195 }
196
197 /* Convenience macros to compress the tables */
198 #define SMI STD_MI_OPCODE_SHIFT
199 #define S3D STD_3D_OPCODE_SHIFT
200 #define S2D STD_2D_OPCODE_SHIFT
201 #define SMFX STD_MFX_OPCODE_SHIFT
202 #define F true
203 #define S CMD_DESC_SKIP
204 #define R CMD_DESC_REJECT
205 #define W CMD_DESC_REGISTER
206 #define B CMD_DESC_BITMASK
207
208 /* Command Mask Fixed Len Action
209 ---------------------------------------------------------- */
210 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
211 CMD( MI_NOOP, SMI, F, 1, S ),
212 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
213 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
214 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
215 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
216 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
217 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
218 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
219 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
220 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
221 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
222 .reg = { .offset = 1, .mask = 0x007FFFFC },
223 .bits = {{
224 .offset = 0,
225 .mask = MI_GLOBAL_GTT,
226 .expected = 0,
227 }}, ),
228 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
229 .reg = { .offset = 1, .mask = 0x007FFFFC },
230 .bits = {{
231 .offset = 0,
232 .mask = MI_GLOBAL_GTT,
233 .expected = 0,
234 }}, ),
235 /*
236 * MI_BATCH_BUFFER_START requires some special handling. It's not
237 * really a 'skip' action but it doesn't seem like it's worth adding
238 * a new action. See intel_engine_cmd_parser().
239 */
240 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
241 };
242
243 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
244 CMD( MI_FLUSH, SMI, F, 1, S ),
245 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
246 CMD( MI_PREDICATE, SMI, F, 1, S ),
247 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
248 CMD( MI_SET_APPID, SMI, F, 1, S ),
249 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
250 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
251 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
252 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
253 .bits = {{
254 .offset = 0,
255 .mask = MI_GLOBAL_GTT,
256 .expected = 0,
257 }}, ),
258 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
259 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
260 .bits = {{
261 .offset = 0,
262 .mask = MI_GLOBAL_GTT,
263 .expected = 0,
264 }}, ),
265 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
266 .bits = {{
267 .offset = 1,
268 .mask = MI_REPORT_PERF_COUNT_GGTT,
269 .expected = 0,
270 }}, ),
271 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
272 .bits = {{
273 .offset = 0,
274 .mask = MI_GLOBAL_GTT,
275 .expected = 0,
276 }}, ),
277 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
278 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
279 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
280 .bits = {{
281 .offset = 2,
282 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
283 .expected = 0,
284 }}, ),
285 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
286 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
287 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
288 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
289 .bits = {{
290 .offset = 1,
291 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
292 .expected = 0,
293 },
294 {
295 .offset = 1,
296 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
297 PIPE_CONTROL_STORE_DATA_INDEX),
298 .expected = 0,
299 .condition_offset = 1,
300 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
301 }}, ),
302 };
303
304 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
305 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
306 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
307 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
308 CMD( MI_SET_APPID, SMI, F, 1, S ),
309 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
310 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
311 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
312 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
313 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
314 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
315 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
316 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
317 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
318 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
319
320 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
321 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
322 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
325 };
326
327 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
328 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
329 CMD( MI_SET_APPID, SMI, F, 1, S ),
330 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
331 .bits = {{
332 .offset = 0,
333 .mask = MI_GLOBAL_GTT,
334 .expected = 0,
335 }}, ),
336 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
337 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
338 .bits = {{
339 .offset = 0,
340 .mask = MI_FLUSH_DW_NOTIFY,
341 .expected = 0,
342 },
343 {
344 .offset = 1,
345 .mask = MI_FLUSH_DW_USE_GTT,
346 .expected = 0,
347 .condition_offset = 0,
348 .condition_mask = MI_FLUSH_DW_OP_MASK,
349 },
350 {
351 .offset = 0,
352 .mask = MI_FLUSH_DW_STORE_INDEX,
353 .expected = 0,
354 .condition_offset = 0,
355 .condition_mask = MI_FLUSH_DW_OP_MASK,
356 }}, ),
357 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
358 .bits = {{
359 .offset = 0,
360 .mask = MI_GLOBAL_GTT,
361 .expected = 0,
362 }}, ),
363 /*
364 * MFX_WAIT doesn't fit the way we handle length for most commands.
365 * It has a length field but it uses a non-standard length bias.
366 * It is always 1 dword though, so just treat it as fixed length.
367 */
368 CMD( MFX_WAIT, SMFX, F, 1, S ),
369 };
370
371 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
372 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
373 CMD( MI_SET_APPID, SMI, F, 1, S ),
374 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
375 .bits = {{
376 .offset = 0,
377 .mask = MI_GLOBAL_GTT,
378 .expected = 0,
379 }}, ),
380 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
381 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
382 .bits = {{
383 .offset = 0,
384 .mask = MI_FLUSH_DW_NOTIFY,
385 .expected = 0,
386 },
387 {
388 .offset = 1,
389 .mask = MI_FLUSH_DW_USE_GTT,
390 .expected = 0,
391 .condition_offset = 0,
392 .condition_mask = MI_FLUSH_DW_OP_MASK,
393 },
394 {
395 .offset = 0,
396 .mask = MI_FLUSH_DW_STORE_INDEX,
397 .expected = 0,
398 .condition_offset = 0,
399 .condition_mask = MI_FLUSH_DW_OP_MASK,
400 }}, ),
401 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
402 .bits = {{
403 .offset = 0,
404 .mask = MI_GLOBAL_GTT,
405 .expected = 0,
406 }}, ),
407 };
408
409 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
410 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
411 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
412 .bits = {{
413 .offset = 0,
414 .mask = MI_GLOBAL_GTT,
415 .expected = 0,
416 }}, ),
417 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
418 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
419 .bits = {{
420 .offset = 0,
421 .mask = MI_FLUSH_DW_NOTIFY,
422 .expected = 0,
423 },
424 {
425 .offset = 1,
426 .mask = MI_FLUSH_DW_USE_GTT,
427 .expected = 0,
428 .condition_offset = 0,
429 .condition_mask = MI_FLUSH_DW_OP_MASK,
430 },
431 {
432 .offset = 0,
433 .mask = MI_FLUSH_DW_STORE_INDEX,
434 .expected = 0,
435 .condition_offset = 0,
436 .condition_mask = MI_FLUSH_DW_OP_MASK,
437 }}, ),
438 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
439 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
440 };
441
442 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
443 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
444 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
445 };
446
447 /*
448 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
449 * need to re-enforce the register access checks. We therefore only need to
450 * teach the cmdparser how to find the end of each command, and identify
451 * register accesses. The table doesn't need to reject any commands, and so
452 * the only commands listed here are:
453 * 1) Those that touch registers
454 * 2) Those that do not have the default 8-bit length
455 *
456 * Note that the default MI length mask chosen for this table is 0xFF, not
457 * the 0x3F used on older devices. This is because the vast majority of MI
458 * cmds on Gen9 use a standard 8-bit Length field.
459 * All the Gen9 blitter instructions are standard 0xFF length mask, and
460 * none allow access to non-general registers, so in fact no BLT cmds are
461 * included in the table at all.
462 *
463 */
464 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
465 CMD( MI_NOOP, SMI, F, 1, S ),
466 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
467 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
468 CMD( MI_FLUSH, SMI, F, 1, S ),
469 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
470 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
471 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
472 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
473 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
474 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
475 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
476 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
477 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
478 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
479 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
480 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
481 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
482 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
483 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
484 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
485 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
486
487 /*
488 * We allow BB_START but apply further checks. We just sanitize the
489 * basic fields here.
490 */
491 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
492 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
493 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
494 .bits = {{
495 .offset = 0,
496 .mask = MI_BB_START_OPERAND_MASK,
497 .expected = MI_BB_START_OPERAND_EXPECT,
498 }}, ),
499 };
500
501 static const struct drm_i915_cmd_descriptor noop_desc =
502 CMD(MI_NOOP, SMI, F, 1, S);
503
504 #undef CMD
505 #undef SMI
506 #undef S3D
507 #undef S2D
508 #undef SMFX
509 #undef F
510 #undef S
511 #undef R
512 #undef W
513 #undef B
514
515 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
516 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
517 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
518 };
519
520 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
521 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
522 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
523 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
524 };
525
526 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
527 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
528 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
529 };
530
531 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
532 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
533 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
534 };
535
536 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
537 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
538 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
539 };
540
541 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
542 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
543 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
544 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
545 };
546
547 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
548 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
549 };
550
551
552 /*
553 * Register whitelists, sorted by increasing register offset.
554 */
555
556 /*
557 * An individual whitelist entry granting access to register addr. If
558 * mask is non-zero the argument of immediate register writes will be
559 * AND-ed with mask, and the command will be rejected if the result
560 * doesn't match value.
561 *
562 * Registers with non-zero mask are only allowed to be written using
563 * LRI.
564 */
565 struct drm_i915_reg_descriptor {
566 i915_reg_t addr;
567 u32 mask;
568 u32 value;
569 };
570
571 /* Convenience macro for adding 32-bit registers. */
572 #define REG32(_reg, ...) \
573 { .addr = (_reg), __VA_ARGS__ }
574
575 #define REG32_IDX(_reg, idx) \
576 { .addr = _reg(idx) }
577
578 /*
579 * Convenience macro for adding 64-bit registers.
580 *
581 * Some registers that userspace accesses are 64 bits. The register
582 * access commands only allow 32-bit accesses. Hence, we have to include
583 * entries for both halves of the 64-bit registers.
584 */
585 #define REG64(_reg) \
586 { .addr = _reg }, \
587 { .addr = _reg ## _UDW }
588
589 #define REG64_IDX(_reg, idx) \
590 { .addr = _reg(idx) }, \
591 { .addr = _reg ## _UDW(idx) }
592
593 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
594 REG64(GPGPU_THREADS_DISPATCHED),
595 REG64(HS_INVOCATION_COUNT),
596 REG64(DS_INVOCATION_COUNT),
597 REG64(IA_VERTICES_COUNT),
598 REG64(IA_PRIMITIVES_COUNT),
599 REG64(VS_INVOCATION_COUNT),
600 REG64(GS_INVOCATION_COUNT),
601 REG64(GS_PRIMITIVES_COUNT),
602 REG64(CL_INVOCATION_COUNT),
603 REG64(CL_PRIMITIVES_COUNT),
604 REG64(PS_INVOCATION_COUNT),
605 REG64(PS_DEPTH_COUNT),
606 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
607 REG64(MI_PREDICATE_SRC0),
608 REG64(MI_PREDICATE_SRC1),
609 REG32(GEN7_3DPRIM_END_OFFSET),
610 REG32(GEN7_3DPRIM_START_VERTEX),
611 REG32(GEN7_3DPRIM_VERTEX_COUNT),
612 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
613 REG32(GEN7_3DPRIM_START_INSTANCE),
614 REG32(GEN7_3DPRIM_BASE_VERTEX),
615 REG32(GEN7_GPGPU_DISPATCHDIMX),
616 REG32(GEN7_GPGPU_DISPATCHDIMY),
617 REG32(GEN7_GPGPU_DISPATCHDIMZ),
618 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
619 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
620 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
621 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
622 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
623 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
624 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
625 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
626 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
627 REG32(GEN7_SO_WRITE_OFFSET(0)),
628 REG32(GEN7_SO_WRITE_OFFSET(1)),
629 REG32(GEN7_SO_WRITE_OFFSET(2)),
630 REG32(GEN7_SO_WRITE_OFFSET(3)),
631 REG32(GEN7_L3SQCREG1),
632 REG32(GEN7_L3CNTLREG2),
633 REG32(GEN7_L3CNTLREG3),
634 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
635 };
636
637 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
638 REG64_IDX(HSW_CS_GPR, 0),
639 REG64_IDX(HSW_CS_GPR, 1),
640 REG64_IDX(HSW_CS_GPR, 2),
641 REG64_IDX(HSW_CS_GPR, 3),
642 REG64_IDX(HSW_CS_GPR, 4),
643 REG64_IDX(HSW_CS_GPR, 5),
644 REG64_IDX(HSW_CS_GPR, 6),
645 REG64_IDX(HSW_CS_GPR, 7),
646 REG64_IDX(HSW_CS_GPR, 8),
647 REG64_IDX(HSW_CS_GPR, 9),
648 REG64_IDX(HSW_CS_GPR, 10),
649 REG64_IDX(HSW_CS_GPR, 11),
650 REG64_IDX(HSW_CS_GPR, 12),
651 REG64_IDX(HSW_CS_GPR, 13),
652 REG64_IDX(HSW_CS_GPR, 14),
653 REG64_IDX(HSW_CS_GPR, 15),
654 REG32(HSW_SCRATCH1,
655 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
656 .value = 0),
657 REG32(HSW_ROW_CHICKEN3,
658 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
659 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
660 .value = 0),
661 };
662
663 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
664 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
665 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
666 REG32(BCS_SWCTRL),
667 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
668 };
669
670 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
671 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
672 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
673 REG32(BCS_SWCTRL),
674 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
675 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
676 REG64_IDX(BCS_GPR, 0),
677 REG64_IDX(BCS_GPR, 1),
678 REG64_IDX(BCS_GPR, 2),
679 REG64_IDX(BCS_GPR, 3),
680 REG64_IDX(BCS_GPR, 4),
681 REG64_IDX(BCS_GPR, 5),
682 REG64_IDX(BCS_GPR, 6),
683 REG64_IDX(BCS_GPR, 7),
684 REG64_IDX(BCS_GPR, 8),
685 REG64_IDX(BCS_GPR, 9),
686 REG64_IDX(BCS_GPR, 10),
687 REG64_IDX(BCS_GPR, 11),
688 REG64_IDX(BCS_GPR, 12),
689 REG64_IDX(BCS_GPR, 13),
690 REG64_IDX(BCS_GPR, 14),
691 REG64_IDX(BCS_GPR, 15),
692 };
693
694 #undef REG64
695 #undef REG32
696
697 struct drm_i915_reg_table {
698 const struct drm_i915_reg_descriptor *regs;
699 int num_regs;
700 };
701
702 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
703 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
704 };
705
706 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
707 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
708 };
709
710 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
711 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
712 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
713 };
714
715 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
716 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
717 };
718
719 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
720 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
721 };
722
gen7_render_get_cmd_length_mask(u32 cmd_header)723 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
724 {
725 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
726 u32 subclient =
727 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
728
729 if (client == INSTR_MI_CLIENT)
730 return 0x3F;
731 else if (client == INSTR_RC_CLIENT) {
732 if (subclient == INSTR_MEDIA_SUBCLIENT)
733 return 0xFFFF;
734 else
735 return 0xFF;
736 }
737
738 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
739 return 0;
740 }
741
gen7_bsd_get_cmd_length_mask(u32 cmd_header)742 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
743 {
744 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
745 u32 subclient =
746 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
747 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
748
749 if (client == INSTR_MI_CLIENT)
750 return 0x3F;
751 else if (client == INSTR_RC_CLIENT) {
752 if (subclient == INSTR_MEDIA_SUBCLIENT) {
753 if (op == 6)
754 return 0xFFFF;
755 else
756 return 0xFFF;
757 } else
758 return 0xFF;
759 }
760
761 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
762 return 0;
763 }
764
gen7_blt_get_cmd_length_mask(u32 cmd_header)765 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
766 {
767 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
768
769 if (client == INSTR_MI_CLIENT)
770 return 0x3F;
771 else if (client == INSTR_BC_CLIENT)
772 return 0xFF;
773
774 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
775 return 0;
776 }
777
gen9_blt_get_cmd_length_mask(u32 cmd_header)778 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
779 {
780 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
781
782 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
783 return 0xFF;
784
785 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
786 return 0;
787 }
788
validate_cmds_sorted(const struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)789 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
790 const struct drm_i915_cmd_table *cmd_tables,
791 int cmd_table_count)
792 {
793 int i;
794 bool ret = true;
795
796 if (!cmd_tables || cmd_table_count == 0)
797 return true;
798
799 for (i = 0; i < cmd_table_count; i++) {
800 const struct drm_i915_cmd_table *table = &cmd_tables[i];
801 u32 previous = 0;
802 int j;
803
804 for (j = 0; j < table->count; j++) {
805 const struct drm_i915_cmd_descriptor *desc =
806 &table->table[j];
807 u32 curr = desc->cmd.value & desc->cmd.mask;
808
809 if (curr < previous) {
810 drm_err(&engine->i915->drm,
811 "CMD: %s [%d] command table not sorted: "
812 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
813 engine->name, engine->id,
814 i, j, curr, previous);
815 ret = false;
816 }
817
818 previous = curr;
819 }
820 }
821
822 return ret;
823 }
824
check_sorted(const struct intel_engine_cs * engine,const struct drm_i915_reg_descriptor * reg_table,int reg_count)825 static bool check_sorted(const struct intel_engine_cs *engine,
826 const struct drm_i915_reg_descriptor *reg_table,
827 int reg_count)
828 {
829 int i;
830 u32 previous = 0;
831 bool ret = true;
832
833 for (i = 0; i < reg_count; i++) {
834 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
835
836 if (curr < previous) {
837 drm_err(&engine->i915->drm,
838 "CMD: %s [%d] register table not sorted: "
839 "entry=%d reg=0x%08X prev=0x%08X\n",
840 engine->name, engine->id,
841 i, curr, previous);
842 ret = false;
843 }
844
845 previous = curr;
846 }
847
848 return ret;
849 }
850
validate_regs_sorted(struct intel_engine_cs * engine)851 static bool validate_regs_sorted(struct intel_engine_cs *engine)
852 {
853 int i;
854 const struct drm_i915_reg_table *table;
855
856 for (i = 0; i < engine->reg_table_count; i++) {
857 table = &engine->reg_tables[i];
858 if (!check_sorted(engine, table->regs, table->num_regs))
859 return false;
860 }
861
862 return true;
863 }
864
865 struct cmd_node {
866 const struct drm_i915_cmd_descriptor *desc;
867 struct hlist_node node;
868 };
869
870 /*
871 * Different command ranges have different numbers of bits for the opcode. For
872 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
873 * problem is that, for example, MI commands use bits 22:16 for other fields
874 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
875 * we mask a command from a batch it could hash to the wrong bucket due to
876 * non-opcode bits being set. But if we don't include those bits, some 3D
877 * commands may hash to the same bucket due to not including opcode bits that
878 * make the command unique. For now, we will risk hashing to the same bucket.
879 */
cmd_header_key(u32 x)880 static inline u32 cmd_header_key(u32 x)
881 {
882 switch (x >> INSTR_CLIENT_SHIFT) {
883 default:
884 case INSTR_MI_CLIENT:
885 return x >> STD_MI_OPCODE_SHIFT;
886 case INSTR_RC_CLIENT:
887 return x >> STD_3D_OPCODE_SHIFT;
888 case INSTR_BC_CLIENT:
889 return x >> STD_2D_OPCODE_SHIFT;
890 }
891 }
892
init_hash_table(struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)893 static int init_hash_table(struct intel_engine_cs *engine,
894 const struct drm_i915_cmd_table *cmd_tables,
895 int cmd_table_count)
896 {
897 int i, j;
898
899 hash_init(engine->cmd_hash);
900
901 for (i = 0; i < cmd_table_count; i++) {
902 const struct drm_i915_cmd_table *table = &cmd_tables[i];
903
904 for (j = 0; j < table->count; j++) {
905 const struct drm_i915_cmd_descriptor *desc =
906 &table->table[j];
907 struct cmd_node *desc_node =
908 kmalloc(sizeof(*desc_node), GFP_KERNEL);
909
910 if (!desc_node)
911 return -ENOMEM;
912
913 desc_node->desc = desc;
914 hash_add(engine->cmd_hash, &desc_node->node,
915 cmd_header_key(desc->cmd.value));
916 }
917 }
918
919 return 0;
920 }
921
fini_hash_table(struct intel_engine_cs * engine)922 static void fini_hash_table(struct intel_engine_cs *engine)
923 {
924 struct hlist_node *tmp;
925 struct cmd_node *desc_node;
926 int i;
927
928 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
929 hash_del(&desc_node->node);
930 kfree(desc_node);
931 }
932 }
933
934 /**
935 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
936 * @engine: the engine to initialize
937 *
938 * Optionally initializes fields related to batch buffer command parsing in the
939 * struct intel_engine_cs based on whether the platform requires software
940 * command parsing.
941 */
intel_engine_init_cmd_parser(struct intel_engine_cs * engine)942 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
943 {
944 const struct drm_i915_cmd_table *cmd_tables;
945 int cmd_table_count;
946 int ret;
947
948 if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
949 engine->class == COPY_ENGINE_CLASS))
950 return 0;
951
952 switch (engine->class) {
953 case RENDER_CLASS:
954 if (IS_HASWELL(engine->i915)) {
955 cmd_tables = hsw_render_ring_cmd_table;
956 cmd_table_count =
957 ARRAY_SIZE(hsw_render_ring_cmd_table);
958 } else {
959 cmd_tables = gen7_render_cmd_table;
960 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
961 }
962
963 if (IS_HASWELL(engine->i915)) {
964 engine->reg_tables = hsw_render_reg_tables;
965 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
966 } else {
967 engine->reg_tables = ivb_render_reg_tables;
968 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
969 }
970 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
971 break;
972 case VIDEO_DECODE_CLASS:
973 cmd_tables = gen7_video_cmd_table;
974 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
975 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
976 break;
977 case COPY_ENGINE_CLASS:
978 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
979 if (IS_GEN(engine->i915, 9)) {
980 cmd_tables = gen9_blt_cmd_table;
981 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
982 engine->get_cmd_length_mask =
983 gen9_blt_get_cmd_length_mask;
984
985 /* BCS Engine unsafe without parser */
986 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
987 } else if (IS_HASWELL(engine->i915)) {
988 cmd_tables = hsw_blt_ring_cmd_table;
989 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
990 } else {
991 cmd_tables = gen7_blt_cmd_table;
992 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
993 }
994
995 if (IS_GEN(engine->i915, 9)) {
996 engine->reg_tables = gen9_blt_reg_tables;
997 engine->reg_table_count =
998 ARRAY_SIZE(gen9_blt_reg_tables);
999 } else if (IS_HASWELL(engine->i915)) {
1000 engine->reg_tables = hsw_blt_reg_tables;
1001 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1002 } else {
1003 engine->reg_tables = ivb_blt_reg_tables;
1004 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1005 }
1006 break;
1007 case VIDEO_ENHANCEMENT_CLASS:
1008 cmd_tables = hsw_vebox_cmd_table;
1009 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1010 /* VECS can use the same length_mask function as VCS */
1011 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1012 break;
1013 default:
1014 MISSING_CASE(engine->class);
1015 goto out;
1016 }
1017
1018 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1019 drm_err(&engine->i915->drm,
1020 "%s: command descriptions are not sorted\n",
1021 engine->name);
1022 goto out;
1023 }
1024 if (!validate_regs_sorted(engine)) {
1025 drm_err(&engine->i915->drm,
1026 "%s: registers are not sorted\n", engine->name);
1027 goto out;
1028 }
1029
1030 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1031 if (ret) {
1032 drm_err(&engine->i915->drm,
1033 "%s: initialised failed!\n", engine->name);
1034 fini_hash_table(engine);
1035 goto out;
1036 }
1037
1038 engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1039
1040 out:
1041 if (intel_engine_requires_cmd_parser(engine) &&
1042 !intel_engine_using_cmd_parser(engine))
1043 return -EINVAL;
1044
1045 return 0;
1046 }
1047
1048 /**
1049 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1050 * @engine: the engine to clean up
1051 *
1052 * Releases any resources related to command parsing that may have been
1053 * initialized for the specified engine.
1054 */
intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)1055 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1056 {
1057 if (!intel_engine_using_cmd_parser(engine))
1058 return;
1059
1060 fini_hash_table(engine);
1061 }
1062
1063 static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs * engine,u32 cmd_header)1064 find_cmd_in_table(struct intel_engine_cs *engine,
1065 u32 cmd_header)
1066 {
1067 struct cmd_node *desc_node;
1068
1069 hash_for_each_possible(engine->cmd_hash, desc_node, node,
1070 cmd_header_key(cmd_header)) {
1071 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1072 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1073 return desc;
1074 }
1075
1076 return NULL;
1077 }
1078
1079 /*
1080 * Returns a pointer to a descriptor for the command specified by cmd_header.
1081 *
1082 * The caller must supply space for a default descriptor via the default_desc
1083 * parameter. If no descriptor for the specified command exists in the engine's
1084 * command parser tables, this function fills in default_desc based on the
1085 * engine's default length encoding and returns default_desc.
1086 */
1087 static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs * engine,u32 cmd_header,const struct drm_i915_cmd_descriptor * desc,struct drm_i915_cmd_descriptor * default_desc)1088 find_cmd(struct intel_engine_cs *engine,
1089 u32 cmd_header,
1090 const struct drm_i915_cmd_descriptor *desc,
1091 struct drm_i915_cmd_descriptor *default_desc)
1092 {
1093 u32 mask;
1094
1095 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1096 return desc;
1097
1098 desc = find_cmd_in_table(engine, cmd_header);
1099 if (desc)
1100 return desc;
1101
1102 mask = engine->get_cmd_length_mask(cmd_header);
1103 if (!mask)
1104 return NULL;
1105
1106 default_desc->cmd.value = cmd_header;
1107 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1108 default_desc->length.mask = mask;
1109 default_desc->flags = CMD_DESC_SKIP;
1110 return default_desc;
1111 }
1112
1113 static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor * table,int count,u32 addr)1114 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1115 {
1116 int start = 0, end = count;
1117 while (start < end) {
1118 int mid = start + (end - start) / 2;
1119 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1120 if (ret < 0)
1121 end = mid;
1122 else if (ret > 0)
1123 start = mid + 1;
1124 else
1125 return &table[mid];
1126 }
1127 return NULL;
1128 }
1129
1130 static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs * engine,u32 addr)1131 find_reg(const struct intel_engine_cs *engine, u32 addr)
1132 {
1133 const struct drm_i915_reg_table *table = engine->reg_tables;
1134 const struct drm_i915_reg_descriptor *reg = NULL;
1135 int count = engine->reg_table_count;
1136
1137 for (; !reg && (count > 0); ++table, --count)
1138 reg = __find_reg(table->regs, table->num_regs, addr);
1139
1140 return reg;
1141 }
1142
1143 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
copy_batch(struct drm_i915_gem_object * dst_obj,struct drm_i915_gem_object * src_obj,u32 offset,u32 length)1144 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1145 struct drm_i915_gem_object *src_obj,
1146 u32 offset, u32 length)
1147 {
1148 unsigned int src_needs_clflush;
1149 unsigned int dst_needs_clflush;
1150 void *dst, *src;
1151 int ret;
1152
1153 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1154 if (ret)
1155 return ERR_PTR(ret);
1156
1157 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
1158 i915_gem_object_finish_access(dst_obj);
1159 if (IS_ERR(dst))
1160 return dst;
1161
1162 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1163 if (ret) {
1164 i915_gem_object_unpin_map(dst_obj);
1165 return ERR_PTR(ret);
1166 }
1167
1168 src = ERR_PTR(-ENODEV);
1169 if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1170 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1171 if (!IS_ERR(src)) {
1172 i915_unaligned_memcpy_from_wc(dst,
1173 src + offset,
1174 length);
1175 i915_gem_object_unpin_map(src_obj);
1176 }
1177 }
1178 if (IS_ERR(src)) {
1179 unsigned long x, n, remain;
1180 void *ptr;
1181
1182 /*
1183 * We can avoid clflushing partial cachelines before the write
1184 * if we only every write full cache-lines. Since we know that
1185 * both the source and destination are in multiples of
1186 * PAGE_SIZE, we can simply round up to the next cacheline.
1187 * We don't care about copying too much here as we only
1188 * validate up to the end of the batch.
1189 */
1190 remain = length;
1191 if (dst_needs_clflush & CLFLUSH_BEFORE)
1192 remain = round_up(remain,
1193 boot_cpu_data.x86_clflush_size);
1194
1195 ptr = dst;
1196 x = offset_in_page(offset);
1197 for (n = offset >> PAGE_SHIFT; remain; n++) {
1198 int len = min(remain, PAGE_SIZE - x);
1199
1200 src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1201 if (src_needs_clflush)
1202 drm_clflush_virt_range(src + x, len);
1203 memcpy(ptr, src + x, len);
1204 kunmap_atomic(src);
1205
1206 ptr += len;
1207 remain -= len;
1208 x = 0;
1209 }
1210 }
1211
1212 i915_gem_object_finish_access(src_obj);
1213
1214 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1215
1216 return dst;
1217 }
1218
cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,const u32 cmd)1219 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1220 const u32 cmd)
1221 {
1222 return desc->cmd.value == (cmd & desc->cmd.mask);
1223 }
1224
check_cmd(const struct intel_engine_cs * engine,const struct drm_i915_cmd_descriptor * desc,const u32 * cmd,u32 length)1225 static bool check_cmd(const struct intel_engine_cs *engine,
1226 const struct drm_i915_cmd_descriptor *desc,
1227 const u32 *cmd, u32 length)
1228 {
1229 if (desc->flags & CMD_DESC_SKIP)
1230 return true;
1231
1232 if (desc->flags & CMD_DESC_REJECT) {
1233 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1234 return false;
1235 }
1236
1237 if (desc->flags & CMD_DESC_REGISTER) {
1238 /*
1239 * Get the distance between individual register offset
1240 * fields if the command can perform more than one
1241 * access at a time.
1242 */
1243 const u32 step = desc->reg.step ? desc->reg.step : length;
1244 u32 offset;
1245
1246 for (offset = desc->reg.offset; offset < length;
1247 offset += step) {
1248 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1249 const struct drm_i915_reg_descriptor *reg =
1250 find_reg(engine, reg_addr);
1251
1252 if (!reg) {
1253 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1254 reg_addr, *cmd, engine->name);
1255 return false;
1256 }
1257
1258 /*
1259 * Check the value written to the register against the
1260 * allowed mask/value pair given in the whitelist entry.
1261 */
1262 if (reg->mask) {
1263 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1264 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1265 reg_addr);
1266 return false;
1267 }
1268
1269 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1270 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1271 reg_addr);
1272 return false;
1273 }
1274
1275 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1276 (offset + 2 > length ||
1277 (cmd[offset + 1] & reg->mask) != reg->value)) {
1278 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1279 reg_addr);
1280 return false;
1281 }
1282 }
1283 }
1284 }
1285
1286 if (desc->flags & CMD_DESC_BITMASK) {
1287 int i;
1288
1289 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1290 u32 dword;
1291
1292 if (desc->bits[i].mask == 0)
1293 break;
1294
1295 if (desc->bits[i].condition_mask != 0) {
1296 u32 offset =
1297 desc->bits[i].condition_offset;
1298 u32 condition = cmd[offset] &
1299 desc->bits[i].condition_mask;
1300
1301 if (condition == 0)
1302 continue;
1303 }
1304
1305 if (desc->bits[i].offset >= length) {
1306 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1307 *cmd, engine->name);
1308 return false;
1309 }
1310
1311 dword = cmd[desc->bits[i].offset] &
1312 desc->bits[i].mask;
1313
1314 if (dword != desc->bits[i].expected) {
1315 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1316 *cmd,
1317 desc->bits[i].mask,
1318 desc->bits[i].expected,
1319 dword, engine->name);
1320 return false;
1321 }
1322 }
1323 }
1324
1325 return true;
1326 }
1327
check_bbstart(u32 * cmd,u32 offset,u32 length,u32 batch_length,u64 batch_addr,u64 shadow_addr,const unsigned long * jump_whitelist)1328 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1329 u32 batch_length,
1330 u64 batch_addr,
1331 u64 shadow_addr,
1332 const unsigned long *jump_whitelist)
1333 {
1334 u64 jump_offset, jump_target;
1335 u32 target_cmd_offset, target_cmd_index;
1336
1337 /* For igt compatibility on older platforms */
1338 if (!jump_whitelist) {
1339 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1340 return -EACCES;
1341 }
1342
1343 if (length != 3) {
1344 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1345 length);
1346 return -EINVAL;
1347 }
1348
1349 jump_target = *(u64 *)(cmd + 1);
1350 jump_offset = jump_target - batch_addr;
1351
1352 /*
1353 * Any underflow of jump_target is guaranteed to be outside the range
1354 * of a u32, so >= test catches both too large and too small
1355 */
1356 if (jump_offset >= batch_length) {
1357 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1358 jump_target);
1359 return -EINVAL;
1360 }
1361
1362 /*
1363 * This cannot overflow a u32 because we already checked jump_offset
1364 * is within the BB, and the batch_length is a u32
1365 */
1366 target_cmd_offset = lower_32_bits(jump_offset);
1367 target_cmd_index = target_cmd_offset / sizeof(u32);
1368
1369 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1370
1371 if (target_cmd_index == offset)
1372 return 0;
1373
1374 if (IS_ERR(jump_whitelist))
1375 return PTR_ERR(jump_whitelist);
1376
1377 if (!test_bit(target_cmd_index, jump_whitelist)) {
1378 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1379 jump_target);
1380 return -EINVAL;
1381 }
1382
1383 return 0;
1384 }
1385
alloc_whitelist(u32 batch_length)1386 static unsigned long *alloc_whitelist(u32 batch_length)
1387 {
1388 unsigned long *jmp;
1389
1390 /*
1391 * We expect batch_length to be less than 256KiB for known users,
1392 * i.e. we need at most an 8KiB bitmap allocation which should be
1393 * reasonably cheap due to kmalloc caches.
1394 */
1395
1396 /* Prefer to report transient allocation failure rather than hit oom */
1397 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1398 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1399 if (!jmp)
1400 return ERR_PTR(-ENOMEM);
1401
1402 return jmp;
1403 }
1404
1405 #define LENGTH_BIAS 2
1406
1407 /**
1408 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1409 * @engine: the engine on which the batch is to execute
1410 * @batch: the batch buffer in question
1411 * @batch_offset: byte offset in the batch at which execution starts
1412 * @batch_length: length of the commands in batch_obj
1413 * @shadow: validated copy of the batch buffer in question
1414 * @trampoline: whether to emit a conditional trampoline at the end of the batch
1415 *
1416 * Parses the specified batch buffer looking for privilege violations as
1417 * described in the overview.
1418 *
1419 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1420 * if the batch appears legal but should use hardware parsing
1421 */
1422
intel_engine_cmd_parser(struct intel_engine_cs * engine,struct i915_vma * batch,unsigned long batch_offset,unsigned long batch_length,struct i915_vma * shadow,bool trampoline)1423 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1424 struct i915_vma *batch,
1425 unsigned long batch_offset,
1426 unsigned long batch_length,
1427 struct i915_vma *shadow,
1428 bool trampoline)
1429 {
1430 u32 *cmd, *batch_end, offset = 0;
1431 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1432 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1433 unsigned long *jump_whitelist;
1434 u64 batch_addr, shadow_addr;
1435 int ret = 0;
1436
1437 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1438 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1439 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1440 batch->size));
1441 GEM_BUG_ON(!batch_length);
1442
1443 cmd = copy_batch(shadow->obj, batch->obj,
1444 batch_offset, batch_length);
1445 if (IS_ERR(cmd)) {
1446 DRM_DEBUG("CMD: Failed to copy batch\n");
1447 return PTR_ERR(cmd);
1448 }
1449
1450 jump_whitelist = NULL;
1451 if (!trampoline)
1452 /* Defer failure until attempted use */
1453 jump_whitelist = alloc_whitelist(batch_length);
1454
1455 shadow_addr = gen8_canonical_addr(shadow->node.start);
1456 batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
1457
1458 /*
1459 * We use the batch length as size because the shadow object is as
1460 * large or larger and copy_batch() will write MI_NOPs to the extra
1461 * space. Parsing should be faster in some cases this way.
1462 */
1463 batch_end = cmd + batch_length / sizeof(*batch_end);
1464 do {
1465 u32 length;
1466
1467 if (*cmd == MI_BATCH_BUFFER_END)
1468 break;
1469
1470 desc = find_cmd(engine, *cmd, desc, &default_desc);
1471 if (!desc) {
1472 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1473 ret = -EINVAL;
1474 break;
1475 }
1476
1477 if (desc->flags & CMD_DESC_FIXED)
1478 length = desc->length.fixed;
1479 else
1480 length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1481
1482 if ((batch_end - cmd) < length) {
1483 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1484 *cmd,
1485 length,
1486 batch_end - cmd);
1487 ret = -EINVAL;
1488 break;
1489 }
1490
1491 if (!check_cmd(engine, desc, cmd, length)) {
1492 ret = -EACCES;
1493 break;
1494 }
1495
1496 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1497 ret = check_bbstart(cmd, offset, length, batch_length,
1498 batch_addr, shadow_addr,
1499 jump_whitelist);
1500 break;
1501 }
1502
1503 if (!IS_ERR_OR_NULL(jump_whitelist))
1504 __set_bit(offset, jump_whitelist);
1505
1506 cmd += length;
1507 offset += length;
1508 if (cmd >= batch_end) {
1509 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1510 ret = -EINVAL;
1511 break;
1512 }
1513 } while (1);
1514
1515 if (trampoline) {
1516 /*
1517 * With the trampoline, the shadow is executed twice.
1518 *
1519 * 1 - starting at offset 0, in privileged mode
1520 * 2 - starting at offset batch_len, as non-privileged
1521 *
1522 * Only if the batch is valid and safe to execute, do we
1523 * allow the first privileged execution to proceed. If not,
1524 * we terminate the first batch and use the second batchbuffer
1525 * entry to chain to the original unsafe non-privileged batch,
1526 * leaving it to the HW to validate.
1527 */
1528 *batch_end = MI_BATCH_BUFFER_END;
1529
1530 if (ret) {
1531 /* Batch unsafe to execute with privileges, cancel! */
1532 cmd = page_mask_bits(shadow->obj->mm.mapping);
1533 *cmd = MI_BATCH_BUFFER_END;
1534
1535 /* If batch is unsafe but valid, jump to the original */
1536 if (ret == -EACCES) {
1537 unsigned int flags;
1538
1539 flags = MI_BATCH_NON_SECURE_I965;
1540 if (IS_HASWELL(engine->i915))
1541 flags = MI_BATCH_NON_SECURE_HSW;
1542
1543 GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7));
1544 __gen6_emit_bb_start(batch_end,
1545 batch_addr,
1546 flags);
1547
1548 ret = 0; /* allow execution */
1549 }
1550 }
1551 }
1552
1553 i915_gem_object_flush_map(shadow->obj);
1554
1555 if (!IS_ERR_OR_NULL(jump_whitelist))
1556 kfree(jump_whitelist);
1557 i915_gem_object_unpin_map(shadow->obj);
1558 return ret;
1559 }
1560
1561 /**
1562 * i915_cmd_parser_get_version() - get the cmd parser version number
1563 * @dev_priv: i915 device private
1564 *
1565 * The cmd parser maintains a simple increasing integer version number suitable
1566 * for passing to userspace clients to determine what operations are permitted.
1567 *
1568 * Return: the current version number of the cmd parser
1569 */
i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)1570 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1571 {
1572 struct intel_engine_cs *engine;
1573 bool active = false;
1574
1575 /* If the command parser is not enabled, report 0 - unsupported */
1576 for_each_uabi_engine(engine, dev_priv) {
1577 if (intel_engine_using_cmd_parser(engine)) {
1578 active = true;
1579 break;
1580 }
1581 }
1582 if (!active)
1583 return 0;
1584
1585 /*
1586 * Command parser version history
1587 *
1588 * 1. Initial version. Checks batches and reports violations, but leaves
1589 * hardware parsing enabled (so does not allow new use cases).
1590 * 2. Allow access to the MI_PREDICATE_SRC0 and
1591 * MI_PREDICATE_SRC1 registers.
1592 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1593 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1594 * 5. GPGPU dispatch compute indirect registers.
1595 * 6. TIMESTAMP register and Haswell CS GPR registers
1596 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1597 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1598 * rely on the HW to NOOP disallowed commands as it would without
1599 * the parser enabled.
1600 * 9. Don't whitelist or handle oacontrol specially, as ownership
1601 * for oacontrol state is moving to i915-perf.
1602 * 10. Support for Gen9 BCS Parsing
1603 */
1604 return 10;
1605 }
1606