• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Brad Volkin <bradley.d.volkin@intel.com>
25  *
26  */
27 
28 #include "gt/intel_engine.h"
29 
30 #include "i915_drv.h"
31 #include "i915_memcpy.h"
32 
33 /**
34  * DOC: batch buffer command parser
35  *
36  * Motivation:
37  * Certain OpenGL features (e.g. transform feedback, performance monitoring)
38  * require userspace code to submit batches containing commands such as
39  * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
40  * generations of the hardware will noop these commands in "unsecure" batches
41  * (which includes all userspace batches submitted via i915) even though the
42  * commands may be safe and represent the intended programming model of the
43  * device.
44  *
45  * The software command parser is similar in operation to the command parsing
46  * done in hardware for unsecure batches. However, the software parser allows
47  * some operations that would be noop'd by hardware, if the parser determines
48  * the operation is safe, and submits the batch as "secure" to prevent hardware
49  * parsing.
50  *
51  * Threats:
52  * At a high level, the hardware (and software) checks attempt to prevent
53  * granting userspace undue privileges. There are three categories of privilege.
54  *
55  * First, commands which are explicitly defined as privileged or which should
56  * only be used by the kernel driver. The parser rejects such commands
57  *
58  * Second, commands which access registers. To support correct/enhanced
59  * userspace functionality, particularly certain OpenGL extensions, the parser
60  * provides a whitelist of registers which userspace may safely access
61  *
62  * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
63  * The parser always rejects such commands.
64  *
65  * The majority of the problematic commands fall in the MI_* range, with only a
66  * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
67  *
68  * Implementation:
69  * Each engine maintains tables of commands and registers which the parser
70  * uses in scanning batch buffers submitted to that engine.
71  *
72  * Since the set of commands that the parser must check for is significantly
73  * smaller than the number of commands supported, the parser tables contain only
74  * those commands required by the parser. This generally works because command
75  * opcode ranges have standard command length encodings. So for commands that
76  * the parser does not need to check, it can easily skip them. This is
77  * implemented via a per-engine length decoding vfunc.
78  *
79  * Unfortunately, there are a number of commands that do not follow the standard
80  * length encoding for their opcode range, primarily amongst the MI_* commands.
81  * To handle this, the parser provides a way to define explicit "skip" entries
82  * in the per-engine command tables.
83  *
84  * Other command table entries map fairly directly to high level categories
85  * mentioned above: rejected, register whitelist. The parser implements a number
86  * of checks, including the privileged memory checks, via a general bitmasking
87  * mechanism.
88  */
89 
90 /*
91  * A command that requires special handling by the command parser.
92  */
93 struct drm_i915_cmd_descriptor {
94 	/*
95 	 * Flags describing how the command parser processes the command.
96 	 *
97 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
98 	 *                 a length mask if not set
99 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
100 	 *                standard length encoding for the opcode range in
101 	 *                which it falls
102 	 * CMD_DESC_REJECT: The command is never allowed
103 	 * CMD_DESC_REGISTER: The command should be checked against the
104 	 *                    register whitelist for the appropriate ring
105 	 */
106 	u32 flags;
107 #define CMD_DESC_FIXED    (1<<0)
108 #define CMD_DESC_SKIP     (1<<1)
109 #define CMD_DESC_REJECT   (1<<2)
110 #define CMD_DESC_REGISTER (1<<3)
111 #define CMD_DESC_BITMASK  (1<<4)
112 
113 	/*
114 	 * The command's unique identification bits and the bitmask to get them.
115 	 * This isn't strictly the opcode field as defined in the spec and may
116 	 * also include type, subtype, and/or subop fields.
117 	 */
118 	struct {
119 		u32 value;
120 		u32 mask;
121 	} cmd;
122 
123 	/*
124 	 * The command's length. The command is either fixed length (i.e. does
125 	 * not include a length field) or has a length field mask. The flag
126 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
127 	 * a length mask. All command entries in a command table must include
128 	 * length information.
129 	 */
130 	union {
131 		u32 fixed;
132 		u32 mask;
133 	} length;
134 
135 	/*
136 	 * Describes where to find a register address in the command to check
137 	 * against the ring's register whitelist. Only valid if flags has the
138 	 * CMD_DESC_REGISTER bit set.
139 	 *
140 	 * A non-zero step value implies that the command may access multiple
141 	 * registers in sequence (e.g. LRI), in that case step gives the
142 	 * distance in dwords between individual offset fields.
143 	 */
144 	struct {
145 		u32 offset;
146 		u32 mask;
147 		u32 step;
148 	} reg;
149 
150 #define MAX_CMD_DESC_BITMASKS 3
151 	/*
152 	 * Describes command checks where a particular dword is masked and
153 	 * compared against an expected value. If the command does not match
154 	 * the expected value, the parser rejects it. Only valid if flags has
155 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
156 	 * are valid.
157 	 *
158 	 * If the check specifies a non-zero condition_mask then the parser
159 	 * only performs the check when the bits specified by condition_mask
160 	 * are non-zero.
161 	 */
162 	struct {
163 		u32 offset;
164 		u32 mask;
165 		u32 expected;
166 		u32 condition_offset;
167 		u32 condition_mask;
168 	} bits[MAX_CMD_DESC_BITMASKS];
169 };
170 
171 /*
172  * A table of commands requiring special handling by the command parser.
173  *
174  * Each engine has an array of tables. Each table consists of an array of
175  * command descriptors, which must be sorted with command opcodes in
176  * ascending order.
177  */
178 struct drm_i915_cmd_table {
179 	const struct drm_i915_cmd_descriptor *table;
180 	int count;
181 };
182 
183 #define STD_MI_OPCODE_SHIFT  (32 - 9)
184 #define STD_3D_OPCODE_SHIFT  (32 - 16)
185 #define STD_2D_OPCODE_SHIFT  (32 - 10)
186 #define STD_MFX_OPCODE_SHIFT (32 - 16)
187 #define MIN_OPCODE_SHIFT 16
188 
189 #define CMD(op, opm, f, lm, fl, ...)				\
190 	{							\
191 		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
192 		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
193 		.length = { (lm) },				\
194 		__VA_ARGS__					\
195 	}
196 
197 /* Convenience macros to compress the tables */
198 #define SMI STD_MI_OPCODE_SHIFT
199 #define S3D STD_3D_OPCODE_SHIFT
200 #define S2D STD_2D_OPCODE_SHIFT
201 #define SMFX STD_MFX_OPCODE_SHIFT
202 #define F true
203 #define S CMD_DESC_SKIP
204 #define R CMD_DESC_REJECT
205 #define W CMD_DESC_REGISTER
206 #define B CMD_DESC_BITMASK
207 
208 /*            Command                          Mask   Fixed Len   Action
209 	      ---------------------------------------------------------- */
210 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
211 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
212 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
213 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
214 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
215 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
216 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
217 	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
218 	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
219 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
220 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
221 	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
222 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
223 	      .bits = {{
224 			.offset = 0,
225 			.mask = MI_GLOBAL_GTT,
226 			.expected = 0,
227 	      }},						       ),
228 	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
229 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
230 	      .bits = {{
231 			.offset = 0,
232 			.mask = MI_GLOBAL_GTT,
233 			.expected = 0,
234 	      }},						       ),
235 	/*
236 	 * MI_BATCH_BUFFER_START requires some special handling. It's not
237 	 * really a 'skip' action but it doesn't seem like it's worth adding
238 	 * a new action. See intel_engine_cmd_parser().
239 	 */
240 	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
241 };
242 
243 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
244 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
245 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
246 	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
247 	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
248 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
249 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
250 	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
251 	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
252 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
253 	      .bits = {{
254 			.offset = 0,
255 			.mask = MI_GLOBAL_GTT,
256 			.expected = 0,
257 	      }},						       ),
258 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
259 	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
260 	      .bits = {{
261 			.offset = 0,
262 			.mask = MI_GLOBAL_GTT,
263 			.expected = 0,
264 	      }},						       ),
265 	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
266 	      .bits = {{
267 			.offset = 1,
268 			.mask = MI_REPORT_PERF_COUNT_GGTT,
269 			.expected = 0,
270 	      }},						       ),
271 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
272 	      .bits = {{
273 			.offset = 0,
274 			.mask = MI_GLOBAL_GTT,
275 			.expected = 0,
276 	      }},						       ),
277 	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
278 	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
279 	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
280 	      .bits = {{
281 			.offset = 2,
282 			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
283 			.expected = 0,
284 	      }},						       ),
285 	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
286 	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
287 	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
288 	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
289 	      .bits = {{
290 			.offset = 1,
291 			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
292 			.expected = 0,
293 	      },
294 	      {
295 			.offset = 1,
296 		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
297 				 PIPE_CONTROL_STORE_DATA_INDEX),
298 			.expected = 0,
299 			.condition_offset = 1,
300 			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
301 	      }},						       ),
302 };
303 
304 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
305 	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
306 	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
307 	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
308 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
309 	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
310 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
311 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
312 	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
313 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
314 	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
315 	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
316 	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
317 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
318 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
319 
320 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
321 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
322 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
323 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
324 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
325 };
326 
327 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
328 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
329 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
330 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
331 	      .bits = {{
332 			.offset = 0,
333 			.mask = MI_GLOBAL_GTT,
334 			.expected = 0,
335 	      }},						       ),
336 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
337 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
338 	      .bits = {{
339 			.offset = 0,
340 			.mask = MI_FLUSH_DW_NOTIFY,
341 			.expected = 0,
342 	      },
343 	      {
344 			.offset = 1,
345 			.mask = MI_FLUSH_DW_USE_GTT,
346 			.expected = 0,
347 			.condition_offset = 0,
348 			.condition_mask = MI_FLUSH_DW_OP_MASK,
349 	      },
350 	      {
351 			.offset = 0,
352 			.mask = MI_FLUSH_DW_STORE_INDEX,
353 			.expected = 0,
354 			.condition_offset = 0,
355 			.condition_mask = MI_FLUSH_DW_OP_MASK,
356 	      }},						       ),
357 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
358 	      .bits = {{
359 			.offset = 0,
360 			.mask = MI_GLOBAL_GTT,
361 			.expected = 0,
362 	      }},						       ),
363 	/*
364 	 * MFX_WAIT doesn't fit the way we handle length for most commands.
365 	 * It has a length field but it uses a non-standard length bias.
366 	 * It is always 1 dword though, so just treat it as fixed length.
367 	 */
368 	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
369 };
370 
371 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
372 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
373 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
374 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
375 	      .bits = {{
376 			.offset = 0,
377 			.mask = MI_GLOBAL_GTT,
378 			.expected = 0,
379 	      }},						       ),
380 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
381 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
382 	      .bits = {{
383 			.offset = 0,
384 			.mask = MI_FLUSH_DW_NOTIFY,
385 			.expected = 0,
386 	      },
387 	      {
388 			.offset = 1,
389 			.mask = MI_FLUSH_DW_USE_GTT,
390 			.expected = 0,
391 			.condition_offset = 0,
392 			.condition_mask = MI_FLUSH_DW_OP_MASK,
393 	      },
394 	      {
395 			.offset = 0,
396 			.mask = MI_FLUSH_DW_STORE_INDEX,
397 			.expected = 0,
398 			.condition_offset = 0,
399 			.condition_mask = MI_FLUSH_DW_OP_MASK,
400 	      }},						       ),
401 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
402 	      .bits = {{
403 			.offset = 0,
404 			.mask = MI_GLOBAL_GTT,
405 			.expected = 0,
406 	      }},						       ),
407 };
408 
409 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
410 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
411 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
412 	      .bits = {{
413 			.offset = 0,
414 			.mask = MI_GLOBAL_GTT,
415 			.expected = 0,
416 	      }},						       ),
417 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
418 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
419 	      .bits = {{
420 			.offset = 0,
421 			.mask = MI_FLUSH_DW_NOTIFY,
422 			.expected = 0,
423 	      },
424 	      {
425 			.offset = 1,
426 			.mask = MI_FLUSH_DW_USE_GTT,
427 			.expected = 0,
428 			.condition_offset = 0,
429 			.condition_mask = MI_FLUSH_DW_OP_MASK,
430 	      },
431 	      {
432 			.offset = 0,
433 			.mask = MI_FLUSH_DW_STORE_INDEX,
434 			.expected = 0,
435 			.condition_offset = 0,
436 			.condition_mask = MI_FLUSH_DW_OP_MASK,
437 	      }},						       ),
438 	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
439 	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
440 };
441 
442 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
443 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
444 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
445 };
446 
447 /*
448  * For Gen9 we can still rely on the h/w to enforce cmd security, and only
449  * need to re-enforce the register access checks. We therefore only need to
450  * teach the cmdparser how to find the end of each command, and identify
451  * register accesses. The table doesn't need to reject any commands, and so
452  * the only commands listed here are:
453  *   1) Those that touch registers
454  *   2) Those that do not have the default 8-bit length
455  *
456  * Note that the default MI length mask chosen for this table is 0xFF, not
457  * the 0x3F used on older devices. This is because the vast majority of MI
458  * cmds on Gen9 use a standard 8-bit Length field.
459  * All the Gen9 blitter instructions are standard 0xFF length mask, and
460  * none allow access to non-general registers, so in fact no BLT cmds are
461  * included in the table at all.
462  *
463  */
464 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
465 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
466 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
467 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
468 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
469 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
470 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
471 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
472 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
473 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
474 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
475 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
476 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
477 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
478 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
479 	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
480 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
481 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
482 	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
483 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
484 	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
485 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
486 
487 	/*
488 	 * We allow BB_START but apply further checks. We just sanitize the
489 	 * basic fields here.
490 	 */
491 #define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
492 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
493 	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
494 	      .bits = {{
495 			.offset = 0,
496 			.mask = MI_BB_START_OPERAND_MASK,
497 			.expected = MI_BB_START_OPERAND_EXPECT,
498 	      }},						       ),
499 };
500 
501 static const struct drm_i915_cmd_descriptor noop_desc =
502 	CMD(MI_NOOP, SMI, F, 1, S);
503 
504 #undef CMD
505 #undef SMI
506 #undef S3D
507 #undef S2D
508 #undef SMFX
509 #undef F
510 #undef S
511 #undef R
512 #undef W
513 #undef B
514 
515 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
516 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
517 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
518 };
519 
520 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
521 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
522 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
523 	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
524 };
525 
526 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
527 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
528 	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
529 };
530 
531 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
532 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
533 	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
534 };
535 
536 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
537 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
538 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
539 };
540 
541 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
542 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
543 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
544 	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
545 };
546 
547 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
548 	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
549 };
550 
551 
552 /*
553  * Register whitelists, sorted by increasing register offset.
554  */
555 
556 /*
557  * An individual whitelist entry granting access to register addr.  If
558  * mask is non-zero the argument of immediate register writes will be
559  * AND-ed with mask, and the command will be rejected if the result
560  * doesn't match value.
561  *
562  * Registers with non-zero mask are only allowed to be written using
563  * LRI.
564  */
565 struct drm_i915_reg_descriptor {
566 	i915_reg_t addr;
567 	u32 mask;
568 	u32 value;
569 };
570 
571 /* Convenience macro for adding 32-bit registers. */
572 #define REG32(_reg, ...) \
573 	{ .addr = (_reg), __VA_ARGS__ }
574 
575 #define REG32_IDX(_reg, idx) \
576 	{ .addr = _reg(idx) }
577 
578 /*
579  * Convenience macro for adding 64-bit registers.
580  *
581  * Some registers that userspace accesses are 64 bits. The register
582  * access commands only allow 32-bit accesses. Hence, we have to include
583  * entries for both halves of the 64-bit registers.
584  */
585 #define REG64(_reg) \
586 	{ .addr = _reg }, \
587 	{ .addr = _reg ## _UDW }
588 
589 #define REG64_IDX(_reg, idx) \
590 	{ .addr = _reg(idx) }, \
591 	{ .addr = _reg ## _UDW(idx) }
592 
593 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
594 	REG64(GPGPU_THREADS_DISPATCHED),
595 	REG64(HS_INVOCATION_COUNT),
596 	REG64(DS_INVOCATION_COUNT),
597 	REG64(IA_VERTICES_COUNT),
598 	REG64(IA_PRIMITIVES_COUNT),
599 	REG64(VS_INVOCATION_COUNT),
600 	REG64(GS_INVOCATION_COUNT),
601 	REG64(GS_PRIMITIVES_COUNT),
602 	REG64(CL_INVOCATION_COUNT),
603 	REG64(CL_PRIMITIVES_COUNT),
604 	REG64(PS_INVOCATION_COUNT),
605 	REG64(PS_DEPTH_COUNT),
606 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
607 	REG64(MI_PREDICATE_SRC0),
608 	REG64(MI_PREDICATE_SRC1),
609 	REG32(GEN7_3DPRIM_END_OFFSET),
610 	REG32(GEN7_3DPRIM_START_VERTEX),
611 	REG32(GEN7_3DPRIM_VERTEX_COUNT),
612 	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
613 	REG32(GEN7_3DPRIM_START_INSTANCE),
614 	REG32(GEN7_3DPRIM_BASE_VERTEX),
615 	REG32(GEN7_GPGPU_DISPATCHDIMX),
616 	REG32(GEN7_GPGPU_DISPATCHDIMY),
617 	REG32(GEN7_GPGPU_DISPATCHDIMZ),
618 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
619 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
620 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
621 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
622 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
623 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
624 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
625 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
626 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
627 	REG32(GEN7_SO_WRITE_OFFSET(0)),
628 	REG32(GEN7_SO_WRITE_OFFSET(1)),
629 	REG32(GEN7_SO_WRITE_OFFSET(2)),
630 	REG32(GEN7_SO_WRITE_OFFSET(3)),
631 	REG32(GEN7_L3SQCREG1),
632 	REG32(GEN7_L3CNTLREG2),
633 	REG32(GEN7_L3CNTLREG3),
634 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
635 };
636 
637 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
638 	REG64_IDX(HSW_CS_GPR, 0),
639 	REG64_IDX(HSW_CS_GPR, 1),
640 	REG64_IDX(HSW_CS_GPR, 2),
641 	REG64_IDX(HSW_CS_GPR, 3),
642 	REG64_IDX(HSW_CS_GPR, 4),
643 	REG64_IDX(HSW_CS_GPR, 5),
644 	REG64_IDX(HSW_CS_GPR, 6),
645 	REG64_IDX(HSW_CS_GPR, 7),
646 	REG64_IDX(HSW_CS_GPR, 8),
647 	REG64_IDX(HSW_CS_GPR, 9),
648 	REG64_IDX(HSW_CS_GPR, 10),
649 	REG64_IDX(HSW_CS_GPR, 11),
650 	REG64_IDX(HSW_CS_GPR, 12),
651 	REG64_IDX(HSW_CS_GPR, 13),
652 	REG64_IDX(HSW_CS_GPR, 14),
653 	REG64_IDX(HSW_CS_GPR, 15),
654 	REG32(HSW_SCRATCH1,
655 	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
656 	      .value = 0),
657 	REG32(HSW_ROW_CHICKEN3,
658 	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
659                         HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
660 	      .value = 0),
661 };
662 
663 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
664 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
665 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
666 	REG32(BCS_SWCTRL),
667 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
668 };
669 
670 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
671 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
672 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
673 	REG32(BCS_SWCTRL),
674 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
675 	REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
676 	REG64_IDX(BCS_GPR, 0),
677 	REG64_IDX(BCS_GPR, 1),
678 	REG64_IDX(BCS_GPR, 2),
679 	REG64_IDX(BCS_GPR, 3),
680 	REG64_IDX(BCS_GPR, 4),
681 	REG64_IDX(BCS_GPR, 5),
682 	REG64_IDX(BCS_GPR, 6),
683 	REG64_IDX(BCS_GPR, 7),
684 	REG64_IDX(BCS_GPR, 8),
685 	REG64_IDX(BCS_GPR, 9),
686 	REG64_IDX(BCS_GPR, 10),
687 	REG64_IDX(BCS_GPR, 11),
688 	REG64_IDX(BCS_GPR, 12),
689 	REG64_IDX(BCS_GPR, 13),
690 	REG64_IDX(BCS_GPR, 14),
691 	REG64_IDX(BCS_GPR, 15),
692 };
693 
694 #undef REG64
695 #undef REG32
696 
697 struct drm_i915_reg_table {
698 	const struct drm_i915_reg_descriptor *regs;
699 	int num_regs;
700 };
701 
702 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
703 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
704 };
705 
706 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
707 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
708 };
709 
710 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
711 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
712 	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
713 };
714 
715 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
716 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
717 };
718 
719 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
720 	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
721 };
722 
gen7_render_get_cmd_length_mask(u32 cmd_header)723 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
724 {
725 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
726 	u32 subclient =
727 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
728 
729 	if (client == INSTR_MI_CLIENT)
730 		return 0x3F;
731 	else if (client == INSTR_RC_CLIENT) {
732 		if (subclient == INSTR_MEDIA_SUBCLIENT)
733 			return 0xFFFF;
734 		else
735 			return 0xFF;
736 	}
737 
738 	DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
739 	return 0;
740 }
741 
gen7_bsd_get_cmd_length_mask(u32 cmd_header)742 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
743 {
744 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
745 	u32 subclient =
746 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
747 	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
748 
749 	if (client == INSTR_MI_CLIENT)
750 		return 0x3F;
751 	else if (client == INSTR_RC_CLIENT) {
752 		if (subclient == INSTR_MEDIA_SUBCLIENT) {
753 			if (op == 6)
754 				return 0xFFFF;
755 			else
756 				return 0xFFF;
757 		} else
758 			return 0xFF;
759 	}
760 
761 	DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
762 	return 0;
763 }
764 
gen7_blt_get_cmd_length_mask(u32 cmd_header)765 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
766 {
767 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
768 
769 	if (client == INSTR_MI_CLIENT)
770 		return 0x3F;
771 	else if (client == INSTR_BC_CLIENT)
772 		return 0xFF;
773 
774 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
775 	return 0;
776 }
777 
gen9_blt_get_cmd_length_mask(u32 cmd_header)778 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
779 {
780 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
781 
782 	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
783 		return 0xFF;
784 
785 	DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
786 	return 0;
787 }
788 
validate_cmds_sorted(const struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)789 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
790 				 const struct drm_i915_cmd_table *cmd_tables,
791 				 int cmd_table_count)
792 {
793 	int i;
794 	bool ret = true;
795 
796 	if (!cmd_tables || cmd_table_count == 0)
797 		return true;
798 
799 	for (i = 0; i < cmd_table_count; i++) {
800 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
801 		u32 previous = 0;
802 		int j;
803 
804 		for (j = 0; j < table->count; j++) {
805 			const struct drm_i915_cmd_descriptor *desc =
806 				&table->table[j];
807 			u32 curr = desc->cmd.value & desc->cmd.mask;
808 
809 			if (curr < previous) {
810 				drm_err(&engine->i915->drm,
811 					"CMD: %s [%d] command table not sorted: "
812 					"table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
813 					engine->name, engine->id,
814 					i, j, curr, previous);
815 				ret = false;
816 			}
817 
818 			previous = curr;
819 		}
820 	}
821 
822 	return ret;
823 }
824 
check_sorted(const struct intel_engine_cs * engine,const struct drm_i915_reg_descriptor * reg_table,int reg_count)825 static bool check_sorted(const struct intel_engine_cs *engine,
826 			 const struct drm_i915_reg_descriptor *reg_table,
827 			 int reg_count)
828 {
829 	int i;
830 	u32 previous = 0;
831 	bool ret = true;
832 
833 	for (i = 0; i < reg_count; i++) {
834 		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
835 
836 		if (curr < previous) {
837 			drm_err(&engine->i915->drm,
838 				"CMD: %s [%d] register table not sorted: "
839 				"entry=%d reg=0x%08X prev=0x%08X\n",
840 				engine->name, engine->id,
841 				i, curr, previous);
842 			ret = false;
843 		}
844 
845 		previous = curr;
846 	}
847 
848 	return ret;
849 }
850 
validate_regs_sorted(struct intel_engine_cs * engine)851 static bool validate_regs_sorted(struct intel_engine_cs *engine)
852 {
853 	int i;
854 	const struct drm_i915_reg_table *table;
855 
856 	for (i = 0; i < engine->reg_table_count; i++) {
857 		table = &engine->reg_tables[i];
858 		if (!check_sorted(engine, table->regs, table->num_regs))
859 			return false;
860 	}
861 
862 	return true;
863 }
864 
865 struct cmd_node {
866 	const struct drm_i915_cmd_descriptor *desc;
867 	struct hlist_node node;
868 };
869 
870 /*
871  * Different command ranges have different numbers of bits for the opcode. For
872  * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
873  * problem is that, for example, MI commands use bits 22:16 for other fields
874  * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
875  * we mask a command from a batch it could hash to the wrong bucket due to
876  * non-opcode bits being set. But if we don't include those bits, some 3D
877  * commands may hash to the same bucket due to not including opcode bits that
878  * make the command unique. For now, we will risk hashing to the same bucket.
879  */
cmd_header_key(u32 x)880 static inline u32 cmd_header_key(u32 x)
881 {
882 	switch (x >> INSTR_CLIENT_SHIFT) {
883 	default:
884 	case INSTR_MI_CLIENT:
885 		return x >> STD_MI_OPCODE_SHIFT;
886 	case INSTR_RC_CLIENT:
887 		return x >> STD_3D_OPCODE_SHIFT;
888 	case INSTR_BC_CLIENT:
889 		return x >> STD_2D_OPCODE_SHIFT;
890 	}
891 }
892 
init_hash_table(struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)893 static int init_hash_table(struct intel_engine_cs *engine,
894 			   const struct drm_i915_cmd_table *cmd_tables,
895 			   int cmd_table_count)
896 {
897 	int i, j;
898 
899 	hash_init(engine->cmd_hash);
900 
901 	for (i = 0; i < cmd_table_count; i++) {
902 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
903 
904 		for (j = 0; j < table->count; j++) {
905 			const struct drm_i915_cmd_descriptor *desc =
906 				&table->table[j];
907 			struct cmd_node *desc_node =
908 				kmalloc(sizeof(*desc_node), GFP_KERNEL);
909 
910 			if (!desc_node)
911 				return -ENOMEM;
912 
913 			desc_node->desc = desc;
914 			hash_add(engine->cmd_hash, &desc_node->node,
915 				 cmd_header_key(desc->cmd.value));
916 		}
917 	}
918 
919 	return 0;
920 }
921 
fini_hash_table(struct intel_engine_cs * engine)922 static void fini_hash_table(struct intel_engine_cs *engine)
923 {
924 	struct hlist_node *tmp;
925 	struct cmd_node *desc_node;
926 	int i;
927 
928 	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
929 		hash_del(&desc_node->node);
930 		kfree(desc_node);
931 	}
932 }
933 
934 /**
935  * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
936  * @engine: the engine to initialize
937  *
938  * Optionally initializes fields related to batch buffer command parsing in the
939  * struct intel_engine_cs based on whether the platform requires software
940  * command parsing.
941  */
intel_engine_init_cmd_parser(struct intel_engine_cs * engine)942 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
943 {
944 	const struct drm_i915_cmd_table *cmd_tables;
945 	int cmd_table_count;
946 	int ret;
947 
948 	if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
949 					  engine->class == COPY_ENGINE_CLASS))
950 		return 0;
951 
952 	switch (engine->class) {
953 	case RENDER_CLASS:
954 		if (IS_HASWELL(engine->i915)) {
955 			cmd_tables = hsw_render_ring_cmd_table;
956 			cmd_table_count =
957 				ARRAY_SIZE(hsw_render_ring_cmd_table);
958 		} else {
959 			cmd_tables = gen7_render_cmd_table;
960 			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
961 		}
962 
963 		if (IS_HASWELL(engine->i915)) {
964 			engine->reg_tables = hsw_render_reg_tables;
965 			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
966 		} else {
967 			engine->reg_tables = ivb_render_reg_tables;
968 			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
969 		}
970 		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
971 		break;
972 	case VIDEO_DECODE_CLASS:
973 		cmd_tables = gen7_video_cmd_table;
974 		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
975 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
976 		break;
977 	case COPY_ENGINE_CLASS:
978 		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
979 		if (IS_GEN(engine->i915, 9)) {
980 			cmd_tables = gen9_blt_cmd_table;
981 			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
982 			engine->get_cmd_length_mask =
983 				gen9_blt_get_cmd_length_mask;
984 
985 			/* BCS Engine unsafe without parser */
986 			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
987 		} else if (IS_HASWELL(engine->i915)) {
988 			cmd_tables = hsw_blt_ring_cmd_table;
989 			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
990 		} else {
991 			cmd_tables = gen7_blt_cmd_table;
992 			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
993 		}
994 
995 		if (IS_GEN(engine->i915, 9)) {
996 			engine->reg_tables = gen9_blt_reg_tables;
997 			engine->reg_table_count =
998 				ARRAY_SIZE(gen9_blt_reg_tables);
999 		} else if (IS_HASWELL(engine->i915)) {
1000 			engine->reg_tables = hsw_blt_reg_tables;
1001 			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1002 		} else {
1003 			engine->reg_tables = ivb_blt_reg_tables;
1004 			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1005 		}
1006 		break;
1007 	case VIDEO_ENHANCEMENT_CLASS:
1008 		cmd_tables = hsw_vebox_cmd_table;
1009 		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1010 		/* VECS can use the same length_mask function as VCS */
1011 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1012 		break;
1013 	default:
1014 		MISSING_CASE(engine->class);
1015 		goto out;
1016 	}
1017 
1018 	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1019 		drm_err(&engine->i915->drm,
1020 			"%s: command descriptions are not sorted\n",
1021 			engine->name);
1022 		goto out;
1023 	}
1024 	if (!validate_regs_sorted(engine)) {
1025 		drm_err(&engine->i915->drm,
1026 			"%s: registers are not sorted\n", engine->name);
1027 		goto out;
1028 	}
1029 
1030 	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1031 	if (ret) {
1032 		drm_err(&engine->i915->drm,
1033 			"%s: initialised failed!\n", engine->name);
1034 		fini_hash_table(engine);
1035 		goto out;
1036 	}
1037 
1038 	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1039 
1040 out:
1041 	if (intel_engine_requires_cmd_parser(engine) &&
1042 	    !intel_engine_using_cmd_parser(engine))
1043 		return -EINVAL;
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1050  * @engine: the engine to clean up
1051  *
1052  * Releases any resources related to command parsing that may have been
1053  * initialized for the specified engine.
1054  */
intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)1055 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1056 {
1057 	if (!intel_engine_using_cmd_parser(engine))
1058 		return;
1059 
1060 	fini_hash_table(engine);
1061 }
1062 
1063 static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs * engine,u32 cmd_header)1064 find_cmd_in_table(struct intel_engine_cs *engine,
1065 		  u32 cmd_header)
1066 {
1067 	struct cmd_node *desc_node;
1068 
1069 	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1070 			       cmd_header_key(cmd_header)) {
1071 		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1072 		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1073 			return desc;
1074 	}
1075 
1076 	return NULL;
1077 }
1078 
1079 /*
1080  * Returns a pointer to a descriptor for the command specified by cmd_header.
1081  *
1082  * The caller must supply space for a default descriptor via the default_desc
1083  * parameter. If no descriptor for the specified command exists in the engine's
1084  * command parser tables, this function fills in default_desc based on the
1085  * engine's default length encoding and returns default_desc.
1086  */
1087 static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs * engine,u32 cmd_header,const struct drm_i915_cmd_descriptor * desc,struct drm_i915_cmd_descriptor * default_desc)1088 find_cmd(struct intel_engine_cs *engine,
1089 	 u32 cmd_header,
1090 	 const struct drm_i915_cmd_descriptor *desc,
1091 	 struct drm_i915_cmd_descriptor *default_desc)
1092 {
1093 	u32 mask;
1094 
1095 	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1096 		return desc;
1097 
1098 	desc = find_cmd_in_table(engine, cmd_header);
1099 	if (desc)
1100 		return desc;
1101 
1102 	mask = engine->get_cmd_length_mask(cmd_header);
1103 	if (!mask)
1104 		return NULL;
1105 
1106 	default_desc->cmd.value = cmd_header;
1107 	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1108 	default_desc->length.mask = mask;
1109 	default_desc->flags = CMD_DESC_SKIP;
1110 	return default_desc;
1111 }
1112 
1113 static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor * table,int count,u32 addr)1114 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1115 {
1116 	int start = 0, end = count;
1117 	while (start < end) {
1118 		int mid = start + (end - start) / 2;
1119 		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1120 		if (ret < 0)
1121 			end = mid;
1122 		else if (ret > 0)
1123 			start = mid + 1;
1124 		else
1125 			return &table[mid];
1126 	}
1127 	return NULL;
1128 }
1129 
1130 static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs * engine,u32 addr)1131 find_reg(const struct intel_engine_cs *engine, u32 addr)
1132 {
1133 	const struct drm_i915_reg_table *table = engine->reg_tables;
1134 	const struct drm_i915_reg_descriptor *reg = NULL;
1135 	int count = engine->reg_table_count;
1136 
1137 	for (; !reg && (count > 0); ++table, --count)
1138 		reg = __find_reg(table->regs, table->num_regs, addr);
1139 
1140 	return reg;
1141 }
1142 
1143 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
copy_batch(struct drm_i915_gem_object * dst_obj,struct drm_i915_gem_object * src_obj,u32 offset,u32 length)1144 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1145 		       struct drm_i915_gem_object *src_obj,
1146 		       u32 offset, u32 length)
1147 {
1148 	unsigned int src_needs_clflush;
1149 	unsigned int dst_needs_clflush;
1150 	void *dst, *src;
1151 	int ret;
1152 
1153 	ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1154 	if (ret)
1155 		return ERR_PTR(ret);
1156 
1157 	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
1158 	i915_gem_object_finish_access(dst_obj);
1159 	if (IS_ERR(dst))
1160 		return dst;
1161 
1162 	ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1163 	if (ret) {
1164 		i915_gem_object_unpin_map(dst_obj);
1165 		return ERR_PTR(ret);
1166 	}
1167 
1168 	src = ERR_PTR(-ENODEV);
1169 	if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1170 		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1171 		if (!IS_ERR(src)) {
1172 			i915_unaligned_memcpy_from_wc(dst,
1173 						      src + offset,
1174 						      length);
1175 			i915_gem_object_unpin_map(src_obj);
1176 		}
1177 	}
1178 	if (IS_ERR(src)) {
1179 		unsigned long x, n, remain;
1180 		void *ptr;
1181 
1182 		/*
1183 		 * We can avoid clflushing partial cachelines before the write
1184 		 * if we only every write full cache-lines. Since we know that
1185 		 * both the source and destination are in multiples of
1186 		 * PAGE_SIZE, we can simply round up to the next cacheline.
1187 		 * We don't care about copying too much here as we only
1188 		 * validate up to the end of the batch.
1189 		 */
1190 		remain = length;
1191 		if (dst_needs_clflush & CLFLUSH_BEFORE)
1192 			remain = round_up(remain,
1193 					  boot_cpu_data.x86_clflush_size);
1194 
1195 		ptr = dst;
1196 		x = offset_in_page(offset);
1197 		for (n = offset >> PAGE_SHIFT; remain; n++) {
1198 			int len = min(remain, PAGE_SIZE - x);
1199 
1200 			src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1201 			if (src_needs_clflush)
1202 				drm_clflush_virt_range(src + x, len);
1203 			memcpy(ptr, src + x, len);
1204 			kunmap_atomic(src);
1205 
1206 			ptr += len;
1207 			remain -= len;
1208 			x = 0;
1209 		}
1210 	}
1211 
1212 	i915_gem_object_finish_access(src_obj);
1213 
1214 	memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1215 
1216 	return dst;
1217 }
1218 
cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,const u32 cmd)1219 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1220 			       const u32 cmd)
1221 {
1222 	return desc->cmd.value == (cmd & desc->cmd.mask);
1223 }
1224 
check_cmd(const struct intel_engine_cs * engine,const struct drm_i915_cmd_descriptor * desc,const u32 * cmd,u32 length)1225 static bool check_cmd(const struct intel_engine_cs *engine,
1226 		      const struct drm_i915_cmd_descriptor *desc,
1227 		      const u32 *cmd, u32 length)
1228 {
1229 	if (desc->flags & CMD_DESC_SKIP)
1230 		return true;
1231 
1232 	if (desc->flags & CMD_DESC_REJECT) {
1233 		DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1234 		return false;
1235 	}
1236 
1237 	if (desc->flags & CMD_DESC_REGISTER) {
1238 		/*
1239 		 * Get the distance between individual register offset
1240 		 * fields if the command can perform more than one
1241 		 * access at a time.
1242 		 */
1243 		const u32 step = desc->reg.step ? desc->reg.step : length;
1244 		u32 offset;
1245 
1246 		for (offset = desc->reg.offset; offset < length;
1247 		     offset += step) {
1248 			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1249 			const struct drm_i915_reg_descriptor *reg =
1250 				find_reg(engine, reg_addr);
1251 
1252 			if (!reg) {
1253 				DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1254 					  reg_addr, *cmd, engine->name);
1255 				return false;
1256 			}
1257 
1258 			/*
1259 			 * Check the value written to the register against the
1260 			 * allowed mask/value pair given in the whitelist entry.
1261 			 */
1262 			if (reg->mask) {
1263 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1264 					DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1265 						  reg_addr);
1266 					return false;
1267 				}
1268 
1269 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1270 					DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1271 						  reg_addr);
1272 					return false;
1273 				}
1274 
1275 				if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1276 				    (offset + 2 > length ||
1277 				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1278 					DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1279 						  reg_addr);
1280 					return false;
1281 				}
1282 			}
1283 		}
1284 	}
1285 
1286 	if (desc->flags & CMD_DESC_BITMASK) {
1287 		int i;
1288 
1289 		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1290 			u32 dword;
1291 
1292 			if (desc->bits[i].mask == 0)
1293 				break;
1294 
1295 			if (desc->bits[i].condition_mask != 0) {
1296 				u32 offset =
1297 					desc->bits[i].condition_offset;
1298 				u32 condition = cmd[offset] &
1299 					desc->bits[i].condition_mask;
1300 
1301 				if (condition == 0)
1302 					continue;
1303 			}
1304 
1305 			if (desc->bits[i].offset >= length) {
1306 				DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1307 					  *cmd, engine->name);
1308 				return false;
1309 			}
1310 
1311 			dword = cmd[desc->bits[i].offset] &
1312 				desc->bits[i].mask;
1313 
1314 			if (dword != desc->bits[i].expected) {
1315 				DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1316 					  *cmd,
1317 					  desc->bits[i].mask,
1318 					  desc->bits[i].expected,
1319 					  dword, engine->name);
1320 				return false;
1321 			}
1322 		}
1323 	}
1324 
1325 	return true;
1326 }
1327 
check_bbstart(u32 * cmd,u32 offset,u32 length,u32 batch_length,u64 batch_addr,u64 shadow_addr,const unsigned long * jump_whitelist)1328 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1329 			 u32 batch_length,
1330 			 u64 batch_addr,
1331 			 u64 shadow_addr,
1332 			 const unsigned long *jump_whitelist)
1333 {
1334 	u64 jump_offset, jump_target;
1335 	u32 target_cmd_offset, target_cmd_index;
1336 
1337 	/* For igt compatibility on older platforms */
1338 	if (!jump_whitelist) {
1339 		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1340 		return -EACCES;
1341 	}
1342 
1343 	if (length != 3) {
1344 		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1345 			  length);
1346 		return -EINVAL;
1347 	}
1348 
1349 	jump_target = *(u64 *)(cmd + 1);
1350 	jump_offset = jump_target - batch_addr;
1351 
1352 	/*
1353 	 * Any underflow of jump_target is guaranteed to be outside the range
1354 	 * of a u32, so >= test catches both too large and too small
1355 	 */
1356 	if (jump_offset >= batch_length) {
1357 		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1358 			  jump_target);
1359 		return -EINVAL;
1360 	}
1361 
1362 	/*
1363 	 * This cannot overflow a u32 because we already checked jump_offset
1364 	 * is within the BB, and the batch_length is a u32
1365 	 */
1366 	target_cmd_offset = lower_32_bits(jump_offset);
1367 	target_cmd_index = target_cmd_offset / sizeof(u32);
1368 
1369 	*(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1370 
1371 	if (target_cmd_index == offset)
1372 		return 0;
1373 
1374 	if (IS_ERR(jump_whitelist))
1375 		return PTR_ERR(jump_whitelist);
1376 
1377 	if (!test_bit(target_cmd_index, jump_whitelist)) {
1378 		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1379 			  jump_target);
1380 		return -EINVAL;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
alloc_whitelist(u32 batch_length)1386 static unsigned long *alloc_whitelist(u32 batch_length)
1387 {
1388 	unsigned long *jmp;
1389 
1390 	/*
1391 	 * We expect batch_length to be less than 256KiB for known users,
1392 	 * i.e. we need at most an 8KiB bitmap allocation which should be
1393 	 * reasonably cheap due to kmalloc caches.
1394 	 */
1395 
1396 	/* Prefer to report transient allocation failure rather than hit oom */
1397 	jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1398 			    GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1399 	if (!jmp)
1400 		return ERR_PTR(-ENOMEM);
1401 
1402 	return jmp;
1403 }
1404 
1405 #define LENGTH_BIAS 2
1406 
1407 /**
1408  * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1409  * @engine: the engine on which the batch is to execute
1410  * @batch: the batch buffer in question
1411  * @batch_offset: byte offset in the batch at which execution starts
1412  * @batch_length: length of the commands in batch_obj
1413  * @shadow: validated copy of the batch buffer in question
1414  * @trampoline: whether to emit a conditional trampoline at the end of the batch
1415  *
1416  * Parses the specified batch buffer looking for privilege violations as
1417  * described in the overview.
1418  *
1419  * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1420  * if the batch appears legal but should use hardware parsing
1421  */
1422 
intel_engine_cmd_parser(struct intel_engine_cs * engine,struct i915_vma * batch,unsigned long batch_offset,unsigned long batch_length,struct i915_vma * shadow,bool trampoline)1423 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1424 			    struct i915_vma *batch,
1425 			    unsigned long batch_offset,
1426 			    unsigned long batch_length,
1427 			    struct i915_vma *shadow,
1428 			    bool trampoline)
1429 {
1430 	u32 *cmd, *batch_end, offset = 0;
1431 	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1432 	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1433 	unsigned long *jump_whitelist;
1434 	u64 batch_addr, shadow_addr;
1435 	int ret = 0;
1436 
1437 	GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1438 	GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1439 	GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1440 				     batch->size));
1441 	GEM_BUG_ON(!batch_length);
1442 
1443 	cmd = copy_batch(shadow->obj, batch->obj,
1444 			 batch_offset, batch_length);
1445 	if (IS_ERR(cmd)) {
1446 		DRM_DEBUG("CMD: Failed to copy batch\n");
1447 		return PTR_ERR(cmd);
1448 	}
1449 
1450 	jump_whitelist = NULL;
1451 	if (!trampoline)
1452 		/* Defer failure until attempted use */
1453 		jump_whitelist = alloc_whitelist(batch_length);
1454 
1455 	shadow_addr = gen8_canonical_addr(shadow->node.start);
1456 	batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
1457 
1458 	/*
1459 	 * We use the batch length as size because the shadow object is as
1460 	 * large or larger and copy_batch() will write MI_NOPs to the extra
1461 	 * space. Parsing should be faster in some cases this way.
1462 	 */
1463 	batch_end = cmd + batch_length / sizeof(*batch_end);
1464 	do {
1465 		u32 length;
1466 
1467 		if (*cmd == MI_BATCH_BUFFER_END)
1468 			break;
1469 
1470 		desc = find_cmd(engine, *cmd, desc, &default_desc);
1471 		if (!desc) {
1472 			DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1473 			ret = -EINVAL;
1474 			break;
1475 		}
1476 
1477 		if (desc->flags & CMD_DESC_FIXED)
1478 			length = desc->length.fixed;
1479 		else
1480 			length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1481 
1482 		if ((batch_end - cmd) < length) {
1483 			DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1484 				  *cmd,
1485 				  length,
1486 				  batch_end - cmd);
1487 			ret = -EINVAL;
1488 			break;
1489 		}
1490 
1491 		if (!check_cmd(engine, desc, cmd, length)) {
1492 			ret = -EACCES;
1493 			break;
1494 		}
1495 
1496 		if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1497 			ret = check_bbstart(cmd, offset, length, batch_length,
1498 					    batch_addr, shadow_addr,
1499 					    jump_whitelist);
1500 			break;
1501 		}
1502 
1503 		if (!IS_ERR_OR_NULL(jump_whitelist))
1504 			__set_bit(offset, jump_whitelist);
1505 
1506 		cmd += length;
1507 		offset += length;
1508 		if  (cmd >= batch_end) {
1509 			DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1510 			ret = -EINVAL;
1511 			break;
1512 		}
1513 	} while (1);
1514 
1515 	if (trampoline) {
1516 		/*
1517 		 * With the trampoline, the shadow is executed twice.
1518 		 *
1519 		 *   1 - starting at offset 0, in privileged mode
1520 		 *   2 - starting at offset batch_len, as non-privileged
1521 		 *
1522 		 * Only if the batch is valid and safe to execute, do we
1523 		 * allow the first privileged execution to proceed. If not,
1524 		 * we terminate the first batch and use the second batchbuffer
1525 		 * entry to chain to the original unsafe non-privileged batch,
1526 		 * leaving it to the HW to validate.
1527 		 */
1528 		*batch_end = MI_BATCH_BUFFER_END;
1529 
1530 		if (ret) {
1531 			/* Batch unsafe to execute with privileges, cancel! */
1532 			cmd = page_mask_bits(shadow->obj->mm.mapping);
1533 			*cmd = MI_BATCH_BUFFER_END;
1534 
1535 			/* If batch is unsafe but valid, jump to the original */
1536 			if (ret == -EACCES) {
1537 				unsigned int flags;
1538 
1539 				flags = MI_BATCH_NON_SECURE_I965;
1540 				if (IS_HASWELL(engine->i915))
1541 					flags = MI_BATCH_NON_SECURE_HSW;
1542 
1543 				GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7));
1544 				__gen6_emit_bb_start(batch_end,
1545 						     batch_addr,
1546 						     flags);
1547 
1548 				ret = 0; /* allow execution */
1549 			}
1550 		}
1551 	}
1552 
1553 	i915_gem_object_flush_map(shadow->obj);
1554 
1555 	if (!IS_ERR_OR_NULL(jump_whitelist))
1556 		kfree(jump_whitelist);
1557 	i915_gem_object_unpin_map(shadow->obj);
1558 	return ret;
1559 }
1560 
1561 /**
1562  * i915_cmd_parser_get_version() - get the cmd parser version number
1563  * @dev_priv: i915 device private
1564  *
1565  * The cmd parser maintains a simple increasing integer version number suitable
1566  * for passing to userspace clients to determine what operations are permitted.
1567  *
1568  * Return: the current version number of the cmd parser
1569  */
i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)1570 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1571 {
1572 	struct intel_engine_cs *engine;
1573 	bool active = false;
1574 
1575 	/* If the command parser is not enabled, report 0 - unsupported */
1576 	for_each_uabi_engine(engine, dev_priv) {
1577 		if (intel_engine_using_cmd_parser(engine)) {
1578 			active = true;
1579 			break;
1580 		}
1581 	}
1582 	if (!active)
1583 		return 0;
1584 
1585 	/*
1586 	 * Command parser version history
1587 	 *
1588 	 * 1. Initial version. Checks batches and reports violations, but leaves
1589 	 *    hardware parsing enabled (so does not allow new use cases).
1590 	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1591 	 *    MI_PREDICATE_SRC1 registers.
1592 	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1593 	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1594 	 * 5. GPGPU dispatch compute indirect registers.
1595 	 * 6. TIMESTAMP register and Haswell CS GPR registers
1596 	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1597 	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1598 	 *    rely on the HW to NOOP disallowed commands as it would without
1599 	 *    the parser enabled.
1600 	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1601 	 *    for oacontrol state is moving to i915-perf.
1602 	 * 10. Support for Gen9 BCS Parsing
1603 	 */
1604 	return 10;
1605 }
1606