1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008-2015 Intel Corporation
5 */
6
7 #include <linux/oom.h>
8 #include <linux/sched/mm.h>
9 #include <linux/shmem_fs.h>
10 #include <linux/slab.h>
11 #include <linux/swap.h>
12 #include <linux/pci.h>
13 #include <linux/dma-buf.h>
14 #include <linux/vmalloc.h>
15
16 #include "gt/intel_gt_requests.h"
17
18 #include "i915_trace.h"
19
swap_available(void)20 static bool swap_available(void)
21 {
22 return get_nr_swap_pages() > 0;
23 }
24
can_release_pages(struct drm_i915_gem_object * obj)25 static bool can_release_pages(struct drm_i915_gem_object *obj)
26 {
27 /* Consider only shrinkable ojects. */
28 if (!i915_gem_object_is_shrinkable(obj))
29 return false;
30
31 /*
32 * We can only return physical pages to the system if we can either
33 * discard the contents (because the user has marked them as being
34 * purgeable) or if we can move their contents out to swap.
35 */
36 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
37 }
38
unsafe_drop_pages(struct drm_i915_gem_object * obj,unsigned long shrink)39 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj,
40 unsigned long shrink)
41 {
42 unsigned long flags;
43
44 flags = 0;
45 if (shrink & I915_SHRINK_ACTIVE)
46 flags = I915_GEM_OBJECT_UNBIND_ACTIVE;
47 if (!(shrink & I915_SHRINK_BOUND))
48 flags = I915_GEM_OBJECT_UNBIND_TEST;
49
50 if (i915_gem_object_unbind(obj, flags) == 0)
51 __i915_gem_object_put_pages(obj);
52
53 return !i915_gem_object_has_pages(obj);
54 }
55
try_to_writeback(struct drm_i915_gem_object * obj,unsigned int flags)56 static void try_to_writeback(struct drm_i915_gem_object *obj,
57 unsigned int flags)
58 {
59 switch (obj->mm.madv) {
60 case I915_MADV_DONTNEED:
61 i915_gem_object_truncate(obj);
62 case __I915_MADV_PURGED:
63 return;
64 }
65
66 if (flags & I915_SHRINK_WRITEBACK)
67 i915_gem_object_writeback(obj);
68 }
69
70 /**
71 * i915_gem_shrink - Shrink buffer object caches
72 * @i915: i915 device
73 * @target: amount of memory to make available, in pages
74 * @nr_scanned: optional output for number of pages scanned (incremental)
75 * @shrink: control flags for selecting cache types
76 *
77 * This function is the main interface to the shrinker. It will try to release
78 * up to @target pages of main memory backing storage from buffer objects.
79 * Selection of the specific caches can be done with @flags. This is e.g. useful
80 * when purgeable objects should be removed from caches preferentially.
81 *
82 * Note that it's not guaranteed that released amount is actually available as
83 * free system memory - the pages might still be in-used to due to other reasons
84 * (like cpu mmaps) or the mm core has reused them before we could grab them.
85 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
86 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
87 *
88 * Also note that any kind of pinning (both per-vma address space pins and
89 * backing storage pins at the buffer object level) result in the shrinker code
90 * having to skip the object.
91 *
92 * Returns:
93 * The number of pages of backing storage actually released.
94 */
95 unsigned long
i915_gem_shrink(struct drm_i915_private * i915,unsigned long target,unsigned long * nr_scanned,unsigned int shrink)96 i915_gem_shrink(struct drm_i915_private *i915,
97 unsigned long target,
98 unsigned long *nr_scanned,
99 unsigned int shrink)
100 {
101 const struct {
102 struct list_head *list;
103 unsigned int bit;
104 } phases[] = {
105 { &i915->mm.purge_list, ~0u },
106 {
107 &i915->mm.shrink_list,
108 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
109 },
110 { NULL, 0 },
111 }, *phase;
112 intel_wakeref_t wakeref = 0;
113 unsigned long count = 0;
114 unsigned long scanned = 0;
115
116 trace_i915_gem_shrink(i915, target, shrink);
117
118 /*
119 * Unbinding of objects will require HW access; Let us not wake the
120 * device just to recover a little memory. If absolutely necessary,
121 * we will force the wake during oom-notifier.
122 */
123 if (shrink & I915_SHRINK_BOUND) {
124 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
125 if (!wakeref)
126 shrink &= ~I915_SHRINK_BOUND;
127 }
128
129 /*
130 * When shrinking the active list, we should also consider active
131 * contexts. Active contexts are pinned until they are retired, and
132 * so can not be simply unbound to retire and unpin their pages. To
133 * shrink the contexts, we must wait until the gpu is idle and
134 * completed its switch to the kernel context. In short, we do
135 * not have a good mechanism for idling a specific context, but
136 * what we can do is give them a kick so that we do not keep idle
137 * contexts around longer than is necessary.
138 */
139 if (shrink & I915_SHRINK_ACTIVE)
140 /* Retire requests to unpin all idle contexts */
141 intel_gt_retire_requests(&i915->gt);
142
143 /*
144 * As we may completely rewrite the (un)bound list whilst unbinding
145 * (due to retiring requests) we have to strictly process only
146 * one element of the list at the time, and recheck the list
147 * on every iteration.
148 *
149 * In particular, we must hold a reference whilst removing the
150 * object as we may end up waiting for and/or retiring the objects.
151 * This might release the final reference (held by the active list)
152 * and result in the object being freed from under us. This is
153 * similar to the precautions the eviction code must take whilst
154 * removing objects.
155 *
156 * Also note that although these lists do not hold a reference to
157 * the object we can safely grab one here: The final object
158 * unreferencing and the bound_list are both protected by the
159 * dev->struct_mutex and so we won't ever be able to observe an
160 * object on the bound_list with a reference count equals 0.
161 */
162 for (phase = phases; phase->list; phase++) {
163 struct list_head still_in_list;
164 struct drm_i915_gem_object *obj;
165 unsigned long flags;
166
167 if ((shrink & phase->bit) == 0)
168 continue;
169
170 INIT_LIST_HEAD(&still_in_list);
171
172 /*
173 * We serialize our access to unreferenced objects through
174 * the use of the struct_mutex. While the objects are not
175 * yet freed (due to RCU then a workqueue) we still want
176 * to be able to shrink their pages, so they remain on
177 * the unbound/bound list until actually freed.
178 */
179 spin_lock_irqsave(&i915->mm.obj_lock, flags);
180 while (count < target &&
181 (obj = list_first_entry_or_null(phase->list,
182 typeof(*obj),
183 mm.link))) {
184 list_move_tail(&obj->mm.link, &still_in_list);
185
186 if (shrink & I915_SHRINK_VMAPS &&
187 !is_vmalloc_addr(obj->mm.mapping))
188 continue;
189
190 if (!(shrink & I915_SHRINK_ACTIVE) &&
191 i915_gem_object_is_framebuffer(obj))
192 continue;
193
194 if (!can_release_pages(obj))
195 continue;
196
197 if (!kref_get_unless_zero(&obj->base.refcount))
198 continue;
199
200 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
201
202 if (unsafe_drop_pages(obj, shrink)) {
203 /* May arrive from get_pages on another bo */
204 mutex_lock(&obj->mm.lock);
205 if (!i915_gem_object_has_pages(obj)) {
206 try_to_writeback(obj, shrink);
207 count += obj->base.size >> PAGE_SHIFT;
208 }
209 mutex_unlock(&obj->mm.lock);
210 }
211
212 scanned += obj->base.size >> PAGE_SHIFT;
213 i915_gem_object_put(obj);
214
215 spin_lock_irqsave(&i915->mm.obj_lock, flags);
216 }
217 list_splice_tail(&still_in_list, phase->list);
218 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
219 }
220
221 if (shrink & I915_SHRINK_BOUND)
222 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
223
224 if (nr_scanned)
225 *nr_scanned += scanned;
226 return count;
227 }
228
229 /**
230 * i915_gem_shrink_all - Shrink buffer object caches completely
231 * @i915: i915 device
232 *
233 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
234 * caches completely. It also first waits for and retires all outstanding
235 * requests to also be able to release backing storage for active objects.
236 *
237 * This should only be used in code to intentionally quiescent the gpu or as a
238 * last-ditch effort when memory seems to have run out.
239 *
240 * Returns:
241 * The number of pages of backing storage actually released.
242 */
i915_gem_shrink_all(struct drm_i915_private * i915)243 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
244 {
245 intel_wakeref_t wakeref;
246 unsigned long freed = 0;
247
248 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
249 freed = i915_gem_shrink(i915, -1UL, NULL,
250 I915_SHRINK_BOUND |
251 I915_SHRINK_UNBOUND);
252 }
253
254 return freed;
255 }
256
257 static unsigned long
i915_gem_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)258 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
259 {
260 struct drm_i915_private *i915 =
261 container_of(shrinker, struct drm_i915_private, mm.shrinker);
262 unsigned long num_objects;
263 unsigned long count;
264
265 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
266 num_objects = READ_ONCE(i915->mm.shrink_count);
267
268 /*
269 * Update our preferred vmscan batch size for the next pass.
270 * Our rough guess for an effective batch size is roughly 2
271 * available GEM objects worth of pages. That is we don't want
272 * the shrinker to fire, until it is worth the cost of freeing an
273 * entire GEM object.
274 */
275 if (num_objects) {
276 unsigned long avg = 2 * count / num_objects;
277
278 i915->mm.shrinker.batch =
279 max((i915->mm.shrinker.batch + avg) >> 1,
280 128ul /* default SHRINK_BATCH */);
281 }
282
283 return count;
284 }
285
286 static unsigned long
i915_gem_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)287 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
288 {
289 struct drm_i915_private *i915 =
290 container_of(shrinker, struct drm_i915_private, mm.shrinker);
291 unsigned long freed;
292
293 sc->nr_scanned = 0;
294
295 freed = i915_gem_shrink(i915,
296 sc->nr_to_scan,
297 &sc->nr_scanned,
298 I915_SHRINK_BOUND |
299 I915_SHRINK_UNBOUND);
300 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
301 intel_wakeref_t wakeref;
302
303 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
304 freed += i915_gem_shrink(i915,
305 sc->nr_to_scan - sc->nr_scanned,
306 &sc->nr_scanned,
307 I915_SHRINK_ACTIVE |
308 I915_SHRINK_BOUND |
309 I915_SHRINK_UNBOUND |
310 I915_SHRINK_WRITEBACK);
311 }
312 }
313
314 return sc->nr_scanned ? freed : SHRINK_STOP;
315 }
316
317 static int
i915_gem_shrinker_oom(struct notifier_block * nb,unsigned long event,void * ptr)318 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
319 {
320 struct drm_i915_private *i915 =
321 container_of(nb, struct drm_i915_private, mm.oom_notifier);
322 struct drm_i915_gem_object *obj;
323 unsigned long unevictable, available, freed_pages;
324 intel_wakeref_t wakeref;
325 unsigned long flags;
326
327 freed_pages = 0;
328 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
329 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
330 I915_SHRINK_BOUND |
331 I915_SHRINK_UNBOUND |
332 I915_SHRINK_WRITEBACK);
333
334 /* Because we may be allocating inside our own driver, we cannot
335 * assert that there are no objects with pinned pages that are not
336 * being pointed to by hardware.
337 */
338 available = unevictable = 0;
339 spin_lock_irqsave(&i915->mm.obj_lock, flags);
340 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
341 if (!can_release_pages(obj))
342 unevictable += obj->base.size >> PAGE_SHIFT;
343 else
344 available += obj->base.size >> PAGE_SHIFT;
345 }
346 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
347
348 if (freed_pages || available)
349 pr_info("Purging GPU memory, %lu pages freed, "
350 "%lu pages still pinned, %lu pages left available.\n",
351 freed_pages, unevictable, available);
352
353 *(unsigned long *)ptr += freed_pages;
354 return NOTIFY_DONE;
355 }
356
357 static int
i915_gem_shrinker_vmap(struct notifier_block * nb,unsigned long event,void * ptr)358 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
359 {
360 struct drm_i915_private *i915 =
361 container_of(nb, struct drm_i915_private, mm.vmap_notifier);
362 struct i915_vma *vma, *next;
363 unsigned long freed_pages = 0;
364 intel_wakeref_t wakeref;
365
366 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
367 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
368 I915_SHRINK_BOUND |
369 I915_SHRINK_UNBOUND |
370 I915_SHRINK_VMAPS);
371
372 /* We also want to clear any cached iomaps as they wrap vmap */
373 mutex_lock(&i915->ggtt.vm.mutex);
374 list_for_each_entry_safe(vma, next,
375 &i915->ggtt.vm.bound_list, vm_link) {
376 unsigned long count = vma->node.size >> PAGE_SHIFT;
377
378 if (!vma->iomap || i915_vma_is_active(vma))
379 continue;
380
381 if (__i915_vma_unbind(vma) == 0)
382 freed_pages += count;
383 }
384 mutex_unlock(&i915->ggtt.vm.mutex);
385
386 *(unsigned long *)ptr += freed_pages;
387 return NOTIFY_DONE;
388 }
389
i915_gem_driver_register__shrinker(struct drm_i915_private * i915)390 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
391 {
392 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
393 i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
394 i915->mm.shrinker.seeks = DEFAULT_SEEKS;
395 i915->mm.shrinker.batch = 4096;
396 drm_WARN_ON(&i915->drm, register_shrinker(&i915->mm.shrinker));
397
398 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
399 drm_WARN_ON(&i915->drm, register_oom_notifier(&i915->mm.oom_notifier));
400
401 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
402 drm_WARN_ON(&i915->drm,
403 register_vmap_purge_notifier(&i915->mm.vmap_notifier));
404 }
405
i915_gem_driver_unregister__shrinker(struct drm_i915_private * i915)406 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
407 {
408 drm_WARN_ON(&i915->drm,
409 unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
410 drm_WARN_ON(&i915->drm,
411 unregister_oom_notifier(&i915->mm.oom_notifier));
412 unregister_shrinker(&i915->mm.shrinker);
413 }
414
i915_gem_shrinker_taints_mutex(struct drm_i915_private * i915,struct mutex * mutex)415 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
416 struct mutex *mutex)
417 {
418 if (!IS_ENABLED(CONFIG_LOCKDEP))
419 return;
420
421 fs_reclaim_acquire(GFP_KERNEL);
422
423 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
424 mutex_release(&mutex->dep_map, _RET_IP_);
425
426 fs_reclaim_release(GFP_KERNEL);
427 }
428
429 #define obj_to_i915(obj__) to_i915((obj__)->base.dev)
430
i915_gem_object_make_unshrinkable(struct drm_i915_gem_object * obj)431 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
432 {
433 struct drm_i915_private *i915 = obj_to_i915(obj);
434 unsigned long flags;
435
436 /*
437 * We can only be called while the pages are pinned or when
438 * the pages are released. If pinned, we should only be called
439 * from a single caller under controlled conditions; and on release
440 * only one caller may release us. Neither the two may cross.
441 */
442 if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0))
443 return;
444
445 spin_lock_irqsave(&i915->mm.obj_lock, flags);
446 if (!atomic_fetch_inc(&obj->mm.shrink_pin) &&
447 !list_empty(&obj->mm.link)) {
448 list_del_init(&obj->mm.link);
449 i915->mm.shrink_count--;
450 i915->mm.shrink_memory -= obj->base.size;
451 }
452 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
453 }
454
__i915_gem_object_make_shrinkable(struct drm_i915_gem_object * obj,struct list_head * head)455 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
456 struct list_head *head)
457 {
458 struct drm_i915_private *i915 = obj_to_i915(obj);
459 unsigned long flags;
460
461 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
462 if (!i915_gem_object_is_shrinkable(obj))
463 return;
464
465 if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1))
466 return;
467
468 spin_lock_irqsave(&i915->mm.obj_lock, flags);
469 GEM_BUG_ON(!kref_read(&obj->base.refcount));
470 if (atomic_dec_and_test(&obj->mm.shrink_pin)) {
471 GEM_BUG_ON(!list_empty(&obj->mm.link));
472
473 list_add_tail(&obj->mm.link, head);
474 i915->mm.shrink_count++;
475 i915->mm.shrink_memory += obj->base.size;
476
477 }
478 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
479 }
480
i915_gem_object_make_shrinkable(struct drm_i915_gem_object * obj)481 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
482 {
483 __i915_gem_object_make_shrinkable(obj,
484 &obj_to_i915(obj)->mm.shrink_list);
485 }
486
i915_gem_object_make_purgeable(struct drm_i915_gem_object * obj)487 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
488 {
489 __i915_gem_object_make_shrinkable(obj,
490 &obj_to_i915(obj)->mm.purge_list);
491 }
492