1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64 {
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77 }
78
79 /**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86 {
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94 }
95
96 /**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104 {
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115 }
116
117 /**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124 {
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132 }
133
134 /**
135 * iavf_lock_timeout - try to set bit but give up after timeout
136 * @adapter: board private structure
137 * @bit: bit to set
138 * @msecs: timeout in msecs
139 *
140 * Returns 0 on success, negative on failure
141 **/
iavf_lock_timeout(struct iavf_adapter * adapter,enum iavf_critical_section_t bit,unsigned int msecs)142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 enum iavf_critical_section_t bit,
144 unsigned int msecs)
145 {
146 unsigned int wait, delay = 10;
147
148 for (wait = 0; wait < msecs; wait += delay) {
149 if (!test_and_set_bit(bit, &adapter->crit_section))
150 return 0;
151
152 msleep(delay);
153 }
154
155 return -1;
156 }
157
158 /**
159 * iavf_schedule_reset - Set the flags and schedule a reset event
160 * @adapter: board private structure
161 **/
iavf_schedule_reset(struct iavf_adapter * adapter)162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 if (!(adapter->flags &
165 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 queue_work(iavf_wq, &adapter->reset_task);
168 }
169 }
170
171 /**
172 * iavf_tx_timeout - Respond to a Tx Hang
173 * @netdev: network interface device structure
174 * @txqueue: queue number that is timing out
175 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 struct iavf_adapter *adapter = netdev_priv(netdev);
179
180 adapter->tx_timeout_count++;
181 iavf_schedule_reset(adapter);
182 }
183
184 /**
185 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186 * @adapter: board private structure
187 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 struct iavf_hw *hw = &adapter->hw;
191
192 if (!adapter->msix_entries)
193 return;
194
195 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196
197 iavf_flush(hw);
198
199 synchronize_irq(adapter->msix_entries[0].vector);
200 }
201
202 /**
203 * iavf_misc_irq_enable - Enable default interrupt generation settings
204 * @adapter: board private structure
205 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 struct iavf_hw *hw = &adapter->hw;
209
210 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213
214 iavf_flush(hw);
215 }
216
217 /**
218 * iavf_irq_disable - Mask off interrupt generation on the NIC
219 * @adapter: board private structure
220 **/
iavf_irq_disable(struct iavf_adapter * adapter)221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 int i;
224 struct iavf_hw *hw = &adapter->hw;
225
226 if (!adapter->msix_entries)
227 return;
228
229 for (i = 1; i < adapter->num_msix_vectors; i++) {
230 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 synchronize_irq(adapter->msix_entries[i].vector);
232 }
233 iavf_flush(hw);
234 }
235
236 /**
237 * iavf_irq_enable_queues - Enable interrupt for all queues
238 * @adapter: board private structure
239 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)240 void iavf_irq_enable_queues(struct iavf_adapter *adapter)
241 {
242 struct iavf_hw *hw = &adapter->hw;
243 int i;
244
245 for (i = 1; i < adapter->num_msix_vectors; i++) {
246 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
247 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
248 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
249 }
250 }
251
252 /**
253 * iavf_irq_enable - Enable default interrupt generation settings
254 * @adapter: board private structure
255 * @flush: boolean value whether to run rd32()
256 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)257 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
258 {
259 struct iavf_hw *hw = &adapter->hw;
260
261 iavf_misc_irq_enable(adapter);
262 iavf_irq_enable_queues(adapter);
263
264 if (flush)
265 iavf_flush(hw);
266 }
267
268 /**
269 * iavf_msix_aq - Interrupt handler for vector 0
270 * @irq: interrupt number
271 * @data: pointer to netdev
272 **/
iavf_msix_aq(int irq,void * data)273 static irqreturn_t iavf_msix_aq(int irq, void *data)
274 {
275 struct net_device *netdev = data;
276 struct iavf_adapter *adapter = netdev_priv(netdev);
277 struct iavf_hw *hw = &adapter->hw;
278
279 /* handle non-queue interrupts, these reads clear the registers */
280 rd32(hw, IAVF_VFINT_ICR01);
281 rd32(hw, IAVF_VFINT_ICR0_ENA1);
282
283 /* schedule work on the private workqueue */
284 queue_work(iavf_wq, &adapter->adminq_task);
285
286 return IRQ_HANDLED;
287 }
288
289 /**
290 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
291 * @irq: interrupt number
292 * @data: pointer to a q_vector
293 **/
iavf_msix_clean_rings(int irq,void * data)294 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
295 {
296 struct iavf_q_vector *q_vector = data;
297
298 if (!q_vector->tx.ring && !q_vector->rx.ring)
299 return IRQ_HANDLED;
300
301 napi_schedule_irqoff(&q_vector->napi);
302
303 return IRQ_HANDLED;
304 }
305
306 /**
307 * iavf_map_vector_to_rxq - associate irqs with rx queues
308 * @adapter: board private structure
309 * @v_idx: interrupt number
310 * @r_idx: queue number
311 **/
312 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)313 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
314 {
315 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
316 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
317 struct iavf_hw *hw = &adapter->hw;
318
319 rx_ring->q_vector = q_vector;
320 rx_ring->next = q_vector->rx.ring;
321 rx_ring->vsi = &adapter->vsi;
322 q_vector->rx.ring = rx_ring;
323 q_vector->rx.count++;
324 q_vector->rx.next_update = jiffies + 1;
325 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
326 q_vector->ring_mask |= BIT(r_idx);
327 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
328 q_vector->rx.current_itr >> 1);
329 q_vector->rx.current_itr = q_vector->rx.target_itr;
330 }
331
332 /**
333 * iavf_map_vector_to_txq - associate irqs with tx queues
334 * @adapter: board private structure
335 * @v_idx: interrupt number
336 * @t_idx: queue number
337 **/
338 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)339 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
340 {
341 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
342 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
343 struct iavf_hw *hw = &adapter->hw;
344
345 tx_ring->q_vector = q_vector;
346 tx_ring->next = q_vector->tx.ring;
347 tx_ring->vsi = &adapter->vsi;
348 q_vector->tx.ring = tx_ring;
349 q_vector->tx.count++;
350 q_vector->tx.next_update = jiffies + 1;
351 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
352 q_vector->num_ringpairs++;
353 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
354 q_vector->tx.target_itr >> 1);
355 q_vector->tx.current_itr = q_vector->tx.target_itr;
356 }
357
358 /**
359 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
360 * @adapter: board private structure to initialize
361 *
362 * This function maps descriptor rings to the queue-specific vectors
363 * we were allotted through the MSI-X enabling code. Ideally, we'd have
364 * one vector per ring/queue, but on a constrained vector budget, we
365 * group the rings as "efficiently" as possible. You would add new
366 * mapping configurations in here.
367 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)368 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
369 {
370 int rings_remaining = adapter->num_active_queues;
371 int ridx = 0, vidx = 0;
372 int q_vectors;
373
374 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
375
376 for (; ridx < rings_remaining; ridx++) {
377 iavf_map_vector_to_rxq(adapter, vidx, ridx);
378 iavf_map_vector_to_txq(adapter, vidx, ridx);
379
380 /* In the case where we have more queues than vectors, continue
381 * round-robin on vectors until all queues are mapped.
382 */
383 if (++vidx >= q_vectors)
384 vidx = 0;
385 }
386
387 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
388 }
389
390 /**
391 * iavf_irq_affinity_notify - Callback for affinity changes
392 * @notify: context as to what irq was changed
393 * @mask: the new affinity mask
394 *
395 * This is a callback function used by the irq_set_affinity_notifier function
396 * so that we may register to receive changes to the irq affinity masks.
397 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)398 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
399 const cpumask_t *mask)
400 {
401 struct iavf_q_vector *q_vector =
402 container_of(notify, struct iavf_q_vector, affinity_notify);
403
404 cpumask_copy(&q_vector->affinity_mask, mask);
405 }
406
407 /**
408 * iavf_irq_affinity_release - Callback for affinity notifier release
409 * @ref: internal core kernel usage
410 *
411 * This is a callback function used by the irq_set_affinity_notifier function
412 * to inform the current notification subscriber that they will no longer
413 * receive notifications.
414 **/
iavf_irq_affinity_release(struct kref * ref)415 static void iavf_irq_affinity_release(struct kref *ref) {}
416
417 /**
418 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
419 * @adapter: board private structure
420 * @basename: device basename
421 *
422 * Allocates MSI-X vectors for tx and rx handling, and requests
423 * interrupts from the kernel.
424 **/
425 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)426 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
427 {
428 unsigned int vector, q_vectors;
429 unsigned int rx_int_idx = 0, tx_int_idx = 0;
430 int irq_num, err;
431 int cpu;
432
433 iavf_irq_disable(adapter);
434 /* Decrement for Other and TCP Timer vectors */
435 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
436
437 for (vector = 0; vector < q_vectors; vector++) {
438 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
439
440 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
441
442 if (q_vector->tx.ring && q_vector->rx.ring) {
443 snprintf(q_vector->name, sizeof(q_vector->name),
444 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
445 tx_int_idx++;
446 } else if (q_vector->rx.ring) {
447 snprintf(q_vector->name, sizeof(q_vector->name),
448 "iavf-%s-rx-%d", basename, rx_int_idx++);
449 } else if (q_vector->tx.ring) {
450 snprintf(q_vector->name, sizeof(q_vector->name),
451 "iavf-%s-tx-%d", basename, tx_int_idx++);
452 } else {
453 /* skip this unused q_vector */
454 continue;
455 }
456 err = request_irq(irq_num,
457 iavf_msix_clean_rings,
458 0,
459 q_vector->name,
460 q_vector);
461 if (err) {
462 dev_info(&adapter->pdev->dev,
463 "Request_irq failed, error: %d\n", err);
464 goto free_queue_irqs;
465 }
466 /* register for affinity change notifications */
467 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
468 q_vector->affinity_notify.release =
469 iavf_irq_affinity_release;
470 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
471 /* Spread the IRQ affinity hints across online CPUs. Note that
472 * get_cpu_mask returns a mask with a permanent lifetime so
473 * it's safe to use as a hint for irq_set_affinity_hint.
474 */
475 cpu = cpumask_local_spread(q_vector->v_idx, -1);
476 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
477 }
478
479 return 0;
480
481 free_queue_irqs:
482 while (vector) {
483 vector--;
484 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
485 irq_set_affinity_notifier(irq_num, NULL);
486 irq_set_affinity_hint(irq_num, NULL);
487 free_irq(irq_num, &adapter->q_vectors[vector]);
488 }
489 return err;
490 }
491
492 /**
493 * iavf_request_misc_irq - Initialize MSI-X interrupts
494 * @adapter: board private structure
495 *
496 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
497 * vector is only for the admin queue, and stays active even when the netdev
498 * is closed.
499 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)500 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
501 {
502 struct net_device *netdev = adapter->netdev;
503 int err;
504
505 snprintf(adapter->misc_vector_name,
506 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
507 dev_name(&adapter->pdev->dev));
508 err = request_irq(adapter->msix_entries[0].vector,
509 &iavf_msix_aq, 0,
510 adapter->misc_vector_name, netdev);
511 if (err) {
512 dev_err(&adapter->pdev->dev,
513 "request_irq for %s failed: %d\n",
514 adapter->misc_vector_name, err);
515 free_irq(adapter->msix_entries[0].vector, netdev);
516 }
517 return err;
518 }
519
520 /**
521 * iavf_free_traffic_irqs - Free MSI-X interrupts
522 * @adapter: board private structure
523 *
524 * Frees all MSI-X vectors other than 0.
525 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)526 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
527 {
528 int vector, irq_num, q_vectors;
529
530 if (!adapter->msix_entries)
531 return;
532
533 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
534
535 for (vector = 0; vector < q_vectors; vector++) {
536 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
537 irq_set_affinity_notifier(irq_num, NULL);
538 irq_set_affinity_hint(irq_num, NULL);
539 free_irq(irq_num, &adapter->q_vectors[vector]);
540 }
541 }
542
543 /**
544 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
545 * @adapter: board private structure
546 *
547 * Frees MSI-X vector 0.
548 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)549 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
550 {
551 struct net_device *netdev = adapter->netdev;
552
553 if (!adapter->msix_entries)
554 return;
555
556 free_irq(adapter->msix_entries[0].vector, netdev);
557 }
558
559 /**
560 * iavf_configure_tx - Configure Transmit Unit after Reset
561 * @adapter: board private structure
562 *
563 * Configure the Tx unit of the MAC after a reset.
564 **/
iavf_configure_tx(struct iavf_adapter * adapter)565 static void iavf_configure_tx(struct iavf_adapter *adapter)
566 {
567 struct iavf_hw *hw = &adapter->hw;
568 int i;
569
570 for (i = 0; i < adapter->num_active_queues; i++)
571 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
572 }
573
574 /**
575 * iavf_configure_rx - Configure Receive Unit after Reset
576 * @adapter: board private structure
577 *
578 * Configure the Rx unit of the MAC after a reset.
579 **/
iavf_configure_rx(struct iavf_adapter * adapter)580 static void iavf_configure_rx(struct iavf_adapter *adapter)
581 {
582 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
583 struct iavf_hw *hw = &adapter->hw;
584 int i;
585
586 /* Legacy Rx will always default to a 2048 buffer size. */
587 #if (PAGE_SIZE < 8192)
588 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
589 struct net_device *netdev = adapter->netdev;
590
591 /* For jumbo frames on systems with 4K pages we have to use
592 * an order 1 page, so we might as well increase the size
593 * of our Rx buffer to make better use of the available space
594 */
595 rx_buf_len = IAVF_RXBUFFER_3072;
596
597 /* We use a 1536 buffer size for configurations with
598 * standard Ethernet mtu. On x86 this gives us enough room
599 * for shared info and 192 bytes of padding.
600 */
601 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
602 (netdev->mtu <= ETH_DATA_LEN))
603 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
604 }
605 #endif
606
607 for (i = 0; i < adapter->num_active_queues; i++) {
608 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
609 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
610
611 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
612 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
613 else
614 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
615 }
616 }
617
618 /**
619 * iavf_find_vlan - Search filter list for specific vlan filter
620 * @adapter: board private structure
621 * @vlan: vlan tag
622 *
623 * Returns ptr to the filter object or NULL. Must be called while holding the
624 * mac_vlan_list_lock.
625 **/
626 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)627 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
628 {
629 struct iavf_vlan_filter *f;
630
631 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
632 if (vlan == f->vlan)
633 return f;
634 }
635 return NULL;
636 }
637
638 /**
639 * iavf_add_vlan - Add a vlan filter to the list
640 * @adapter: board private structure
641 * @vlan: VLAN tag
642 *
643 * Returns ptr to the filter object or NULL when no memory available.
644 **/
645 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)646 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
647 {
648 struct iavf_vlan_filter *f = NULL;
649
650 spin_lock_bh(&adapter->mac_vlan_list_lock);
651
652 f = iavf_find_vlan(adapter, vlan);
653 if (!f) {
654 f = kzalloc(sizeof(*f), GFP_ATOMIC);
655 if (!f)
656 goto clearout;
657
658 f->vlan = vlan;
659
660 list_add_tail(&f->list, &adapter->vlan_filter_list);
661 f->add = true;
662 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
663 }
664
665 clearout:
666 spin_unlock_bh(&adapter->mac_vlan_list_lock);
667 return f;
668 }
669
670 /**
671 * iavf_del_vlan - Remove a vlan filter from the list
672 * @adapter: board private structure
673 * @vlan: VLAN tag
674 **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)675 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
676 {
677 struct iavf_vlan_filter *f;
678
679 spin_lock_bh(&adapter->mac_vlan_list_lock);
680
681 f = iavf_find_vlan(adapter, vlan);
682 if (f) {
683 f->remove = true;
684 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
685 }
686
687 spin_unlock_bh(&adapter->mac_vlan_list_lock);
688 }
689
690 /**
691 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
692 * @netdev: network device struct
693 * @proto: unused protocol data
694 * @vid: VLAN tag
695 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)696 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
697 __always_unused __be16 proto, u16 vid)
698 {
699 struct iavf_adapter *adapter = netdev_priv(netdev);
700
701 if (!VLAN_ALLOWED(adapter))
702 return -EIO;
703 if (iavf_add_vlan(adapter, vid) == NULL)
704 return -ENOMEM;
705 return 0;
706 }
707
708 /**
709 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
710 * @netdev: network device struct
711 * @proto: unused protocol data
712 * @vid: VLAN tag
713 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)714 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
715 __always_unused __be16 proto, u16 vid)
716 {
717 struct iavf_adapter *adapter = netdev_priv(netdev);
718
719 if (VLAN_ALLOWED(adapter)) {
720 iavf_del_vlan(adapter, vid);
721 return 0;
722 }
723 return -EIO;
724 }
725
726 /**
727 * iavf_find_filter - Search filter list for specific mac filter
728 * @adapter: board private structure
729 * @macaddr: the MAC address
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)735 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
736 const u8 *macaddr)
737 {
738 struct iavf_mac_filter *f;
739
740 if (!macaddr)
741 return NULL;
742
743 list_for_each_entry(f, &adapter->mac_filter_list, list) {
744 if (ether_addr_equal(macaddr, f->macaddr))
745 return f;
746 }
747 return NULL;
748 }
749
750 /**
751 * iavf_add_filter - Add a mac filter to the filter list
752 * @adapter: board private structure
753 * @macaddr: the MAC address
754 *
755 * Returns ptr to the filter object or NULL when no memory available.
756 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)757 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
758 const u8 *macaddr)
759 {
760 struct iavf_mac_filter *f;
761
762 if (!macaddr)
763 return NULL;
764
765 f = iavf_find_filter(adapter, macaddr);
766 if (!f) {
767 f = kzalloc(sizeof(*f), GFP_ATOMIC);
768 if (!f)
769 return f;
770
771 ether_addr_copy(f->macaddr, macaddr);
772
773 list_add_tail(&f->list, &adapter->mac_filter_list);
774 f->add = true;
775 f->is_new_mac = true;
776 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
777 } else {
778 f->remove = false;
779 }
780
781 return f;
782 }
783
784 /**
785 * iavf_set_mac - NDO callback to set port mac address
786 * @netdev: network interface device structure
787 * @p: pointer to an address structure
788 *
789 * Returns 0 on success, negative on failure
790 **/
iavf_set_mac(struct net_device * netdev,void * p)791 static int iavf_set_mac(struct net_device *netdev, void *p)
792 {
793 struct iavf_adapter *adapter = netdev_priv(netdev);
794 struct iavf_hw *hw = &adapter->hw;
795 struct iavf_mac_filter *f;
796 struct sockaddr *addr = p;
797
798 if (!is_valid_ether_addr(addr->sa_data))
799 return -EADDRNOTAVAIL;
800
801 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
802 return 0;
803
804 spin_lock_bh(&adapter->mac_vlan_list_lock);
805
806 f = iavf_find_filter(adapter, hw->mac.addr);
807 if (f) {
808 f->remove = true;
809 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
810 }
811
812 f = iavf_add_filter(adapter, addr->sa_data);
813
814 spin_unlock_bh(&adapter->mac_vlan_list_lock);
815
816 if (f) {
817 ether_addr_copy(hw->mac.addr, addr->sa_data);
818 }
819
820 return (f == NULL) ? -ENOMEM : 0;
821 }
822
823 /**
824 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
825 * @netdev: the netdevice
826 * @addr: address to add
827 *
828 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
829 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
830 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)831 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
832 {
833 struct iavf_adapter *adapter = netdev_priv(netdev);
834
835 if (iavf_add_filter(adapter, addr))
836 return 0;
837 else
838 return -ENOMEM;
839 }
840
841 /**
842 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
843 * @netdev: the netdevice
844 * @addr: address to add
845 *
846 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
847 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
848 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)849 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
850 {
851 struct iavf_adapter *adapter = netdev_priv(netdev);
852 struct iavf_mac_filter *f;
853
854 /* Under some circumstances, we might receive a request to delete
855 * our own device address from our uc list. Because we store the
856 * device address in the VSI's MAC/VLAN filter list, we need to ignore
857 * such requests and not delete our device address from this list.
858 */
859 if (ether_addr_equal(addr, netdev->dev_addr))
860 return 0;
861
862 f = iavf_find_filter(adapter, addr);
863 if (f) {
864 f->remove = true;
865 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
866 }
867 return 0;
868 }
869
870 /**
871 * iavf_set_rx_mode - NDO callback to set the netdev filters
872 * @netdev: network interface device structure
873 **/
iavf_set_rx_mode(struct net_device * netdev)874 static void iavf_set_rx_mode(struct net_device *netdev)
875 {
876 struct iavf_adapter *adapter = netdev_priv(netdev);
877
878 spin_lock_bh(&adapter->mac_vlan_list_lock);
879 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
880 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
881 spin_unlock_bh(&adapter->mac_vlan_list_lock);
882
883 if (netdev->flags & IFF_PROMISC &&
884 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
885 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
886 else if (!(netdev->flags & IFF_PROMISC) &&
887 adapter->flags & IAVF_FLAG_PROMISC_ON)
888 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
889
890 if (netdev->flags & IFF_ALLMULTI &&
891 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
892 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
893 else if (!(netdev->flags & IFF_ALLMULTI) &&
894 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
895 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
896 }
897
898 /**
899 * iavf_napi_enable_all - enable NAPI on all queue vectors
900 * @adapter: board private structure
901 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)902 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
903 {
904 int q_idx;
905 struct iavf_q_vector *q_vector;
906 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
907
908 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
909 struct napi_struct *napi;
910
911 q_vector = &adapter->q_vectors[q_idx];
912 napi = &q_vector->napi;
913 napi_enable(napi);
914 }
915 }
916
917 /**
918 * iavf_napi_disable_all - disable NAPI on all queue vectors
919 * @adapter: board private structure
920 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)921 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
922 {
923 int q_idx;
924 struct iavf_q_vector *q_vector;
925 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
926
927 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
928 q_vector = &adapter->q_vectors[q_idx];
929 napi_disable(&q_vector->napi);
930 }
931 }
932
933 /**
934 * iavf_configure - set up transmit and receive data structures
935 * @adapter: board private structure
936 **/
iavf_configure(struct iavf_adapter * adapter)937 static void iavf_configure(struct iavf_adapter *adapter)
938 {
939 struct net_device *netdev = adapter->netdev;
940 int i;
941
942 iavf_set_rx_mode(netdev);
943
944 iavf_configure_tx(adapter);
945 iavf_configure_rx(adapter);
946 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
947
948 for (i = 0; i < adapter->num_active_queues; i++) {
949 struct iavf_ring *ring = &adapter->rx_rings[i];
950
951 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
952 }
953 }
954
955 /**
956 * iavf_up_complete - Finish the last steps of bringing up a connection
957 * @adapter: board private structure
958 *
959 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
960 **/
iavf_up_complete(struct iavf_adapter * adapter)961 static void iavf_up_complete(struct iavf_adapter *adapter)
962 {
963 iavf_change_state(adapter, __IAVF_RUNNING);
964 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
965
966 iavf_napi_enable_all(adapter);
967
968 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
969 if (CLIENT_ENABLED(adapter))
970 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
971 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
972 }
973
974 /**
975 * iavf_down - Shutdown the connection processing
976 * @adapter: board private structure
977 *
978 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
979 **/
iavf_down(struct iavf_adapter * adapter)980 void iavf_down(struct iavf_adapter *adapter)
981 {
982 struct net_device *netdev = adapter->netdev;
983 struct iavf_vlan_filter *vlf;
984 struct iavf_mac_filter *f;
985 struct iavf_cloud_filter *cf;
986
987 if (adapter->state <= __IAVF_DOWN_PENDING)
988 return;
989
990 netif_carrier_off(netdev);
991 netif_tx_disable(netdev);
992 adapter->link_up = false;
993 iavf_napi_disable_all(adapter);
994 iavf_irq_disable(adapter);
995
996 spin_lock_bh(&adapter->mac_vlan_list_lock);
997
998 /* clear the sync flag on all filters */
999 __dev_uc_unsync(adapter->netdev, NULL);
1000 __dev_mc_unsync(adapter->netdev, NULL);
1001
1002 /* remove all MAC filters */
1003 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1004 f->remove = true;
1005 }
1006
1007 /* remove all VLAN filters */
1008 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1009 vlf->remove = true;
1010 }
1011
1012 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1013
1014 /* remove all cloud filters */
1015 spin_lock_bh(&adapter->cloud_filter_list_lock);
1016 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1017 cf->del = true;
1018 }
1019 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1020
1021 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1022 adapter->state != __IAVF_RESETTING) {
1023 /* cancel any current operation */
1024 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1025 /* Schedule operations to close down the HW. Don't wait
1026 * here for this to complete. The watchdog is still running
1027 * and it will take care of this.
1028 */
1029 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1030 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1031 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1032 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1033 }
1034
1035 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1036 }
1037
1038 /**
1039 * iavf_acquire_msix_vectors - Setup the MSIX capability
1040 * @adapter: board private structure
1041 * @vectors: number of vectors to request
1042 *
1043 * Work with the OS to set up the MSIX vectors needed.
1044 *
1045 * Returns 0 on success, negative on failure
1046 **/
1047 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1048 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1049 {
1050 int err, vector_threshold;
1051
1052 /* We'll want at least 3 (vector_threshold):
1053 * 0) Other (Admin Queue and link, mostly)
1054 * 1) TxQ[0] Cleanup
1055 * 2) RxQ[0] Cleanup
1056 */
1057 vector_threshold = MIN_MSIX_COUNT;
1058
1059 /* The more we get, the more we will assign to Tx/Rx Cleanup
1060 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1061 * Right now, we simply care about how many we'll get; we'll
1062 * set them up later while requesting irq's.
1063 */
1064 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1065 vector_threshold, vectors);
1066 if (err < 0) {
1067 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1068 kfree(adapter->msix_entries);
1069 adapter->msix_entries = NULL;
1070 return err;
1071 }
1072
1073 /* Adjust for only the vectors we'll use, which is minimum
1074 * of max_msix_q_vectors + NONQ_VECS, or the number of
1075 * vectors we were allocated.
1076 */
1077 adapter->num_msix_vectors = err;
1078 return 0;
1079 }
1080
1081 /**
1082 * iavf_free_queues - Free memory for all rings
1083 * @adapter: board private structure to initialize
1084 *
1085 * Free all of the memory associated with queue pairs.
1086 **/
iavf_free_queues(struct iavf_adapter * adapter)1087 static void iavf_free_queues(struct iavf_adapter *adapter)
1088 {
1089 if (!adapter->vsi_res)
1090 return;
1091 adapter->num_active_queues = 0;
1092 kfree(adapter->tx_rings);
1093 adapter->tx_rings = NULL;
1094 kfree(adapter->rx_rings);
1095 adapter->rx_rings = NULL;
1096 }
1097
1098 /**
1099 * iavf_alloc_queues - Allocate memory for all rings
1100 * @adapter: board private structure to initialize
1101 *
1102 * We allocate one ring per queue at run-time since we don't know the
1103 * number of queues at compile-time. The polling_netdev array is
1104 * intended for Multiqueue, but should work fine with a single queue.
1105 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1106 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1107 {
1108 int i, num_active_queues;
1109
1110 /* If we're in reset reallocating queues we don't actually know yet for
1111 * certain the PF gave us the number of queues we asked for but we'll
1112 * assume it did. Once basic reset is finished we'll confirm once we
1113 * start negotiating config with PF.
1114 */
1115 if (adapter->num_req_queues)
1116 num_active_queues = adapter->num_req_queues;
1117 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1118 adapter->num_tc)
1119 num_active_queues = adapter->ch_config.total_qps;
1120 else
1121 num_active_queues = min_t(int,
1122 adapter->vsi_res->num_queue_pairs,
1123 (int)(num_online_cpus()));
1124
1125
1126 adapter->tx_rings = kcalloc(num_active_queues,
1127 sizeof(struct iavf_ring), GFP_KERNEL);
1128 if (!adapter->tx_rings)
1129 goto err_out;
1130 adapter->rx_rings = kcalloc(num_active_queues,
1131 sizeof(struct iavf_ring), GFP_KERNEL);
1132 if (!adapter->rx_rings)
1133 goto err_out;
1134
1135 for (i = 0; i < num_active_queues; i++) {
1136 struct iavf_ring *tx_ring;
1137 struct iavf_ring *rx_ring;
1138
1139 tx_ring = &adapter->tx_rings[i];
1140
1141 tx_ring->queue_index = i;
1142 tx_ring->netdev = adapter->netdev;
1143 tx_ring->dev = &adapter->pdev->dev;
1144 tx_ring->count = adapter->tx_desc_count;
1145 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1146 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1147 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1148
1149 rx_ring = &adapter->rx_rings[i];
1150 rx_ring->queue_index = i;
1151 rx_ring->netdev = adapter->netdev;
1152 rx_ring->dev = &adapter->pdev->dev;
1153 rx_ring->count = adapter->rx_desc_count;
1154 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1155 }
1156
1157 adapter->num_active_queues = num_active_queues;
1158
1159 return 0;
1160
1161 err_out:
1162 iavf_free_queues(adapter);
1163 return -ENOMEM;
1164 }
1165
1166 /**
1167 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1168 * @adapter: board private structure to initialize
1169 *
1170 * Attempt to configure the interrupts using the best available
1171 * capabilities of the hardware and the kernel.
1172 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1173 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1174 {
1175 int vector, v_budget;
1176 int pairs = 0;
1177 int err = 0;
1178
1179 if (!adapter->vsi_res) {
1180 err = -EIO;
1181 goto out;
1182 }
1183 pairs = adapter->num_active_queues;
1184
1185 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1186 * us much good if we have more vectors than CPUs. However, we already
1187 * limit the total number of queues by the number of CPUs so we do not
1188 * need any further limiting here.
1189 */
1190 v_budget = min_t(int, pairs + NONQ_VECS,
1191 (int)adapter->vf_res->max_vectors);
1192
1193 adapter->msix_entries = kcalloc(v_budget,
1194 sizeof(struct msix_entry), GFP_KERNEL);
1195 if (!adapter->msix_entries) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199
1200 for (vector = 0; vector < v_budget; vector++)
1201 adapter->msix_entries[vector].entry = vector;
1202
1203 err = iavf_acquire_msix_vectors(adapter, v_budget);
1204
1205 out:
1206 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1207 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1208 return err;
1209 }
1210
1211 /**
1212 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1213 * @adapter: board private structure
1214 *
1215 * Return 0 on success, negative on failure
1216 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1217 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1218 {
1219 struct iavf_aqc_get_set_rss_key_data *rss_key =
1220 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1221 struct iavf_hw *hw = &adapter->hw;
1222 int ret = 0;
1223
1224 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1225 /* bail because we already have a command pending */
1226 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1227 adapter->current_op);
1228 return -EBUSY;
1229 }
1230
1231 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1232 if (ret) {
1233 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1234 iavf_stat_str(hw, ret),
1235 iavf_aq_str(hw, hw->aq.asq_last_status));
1236 return ret;
1237
1238 }
1239
1240 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1241 adapter->rss_lut, adapter->rss_lut_size);
1242 if (ret) {
1243 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1244 iavf_stat_str(hw, ret),
1245 iavf_aq_str(hw, hw->aq.asq_last_status));
1246 }
1247
1248 return ret;
1249
1250 }
1251
1252 /**
1253 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1254 * @adapter: board private structure
1255 *
1256 * Returns 0 on success, negative on failure
1257 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1258 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1259 {
1260 struct iavf_hw *hw = &adapter->hw;
1261 u32 *dw;
1262 u16 i;
1263
1264 dw = (u32 *)adapter->rss_key;
1265 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1266 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1267
1268 dw = (u32 *)adapter->rss_lut;
1269 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1270 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1271
1272 iavf_flush(hw);
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * iavf_config_rss - Configure RSS keys and lut
1279 * @adapter: board private structure
1280 *
1281 * Returns 0 on success, negative on failure
1282 **/
iavf_config_rss(struct iavf_adapter * adapter)1283 int iavf_config_rss(struct iavf_adapter *adapter)
1284 {
1285
1286 if (RSS_PF(adapter)) {
1287 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1288 IAVF_FLAG_AQ_SET_RSS_KEY;
1289 return 0;
1290 } else if (RSS_AQ(adapter)) {
1291 return iavf_config_rss_aq(adapter);
1292 } else {
1293 return iavf_config_rss_reg(adapter);
1294 }
1295 }
1296
1297 /**
1298 * iavf_fill_rss_lut - Fill the lut with default values
1299 * @adapter: board private structure
1300 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1301 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1302 {
1303 u16 i;
1304
1305 for (i = 0; i < adapter->rss_lut_size; i++)
1306 adapter->rss_lut[i] = i % adapter->num_active_queues;
1307 }
1308
1309 /**
1310 * iavf_init_rss - Prepare for RSS
1311 * @adapter: board private structure
1312 *
1313 * Return 0 on success, negative on failure
1314 **/
iavf_init_rss(struct iavf_adapter * adapter)1315 static int iavf_init_rss(struct iavf_adapter *adapter)
1316 {
1317 struct iavf_hw *hw = &adapter->hw;
1318
1319 if (!RSS_PF(adapter)) {
1320 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1321 if (adapter->vf_res->vf_cap_flags &
1322 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1323 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1324 else
1325 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1326
1327 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1328 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1329 }
1330
1331 iavf_fill_rss_lut(adapter);
1332 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1333
1334 return iavf_config_rss(adapter);
1335 }
1336
1337 /**
1338 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one q_vector per queue interrupt. If allocation fails we
1342 * return -ENOMEM.
1343 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1344 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1345 {
1346 int q_idx = 0, num_q_vectors;
1347 struct iavf_q_vector *q_vector;
1348
1349 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1350 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1351 GFP_KERNEL);
1352 if (!adapter->q_vectors)
1353 return -ENOMEM;
1354
1355 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1356 q_vector = &adapter->q_vectors[q_idx];
1357 q_vector->adapter = adapter;
1358 q_vector->vsi = &adapter->vsi;
1359 q_vector->v_idx = q_idx;
1360 q_vector->reg_idx = q_idx;
1361 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1362 netif_napi_add(adapter->netdev, &q_vector->napi,
1363 iavf_napi_poll, NAPI_POLL_WEIGHT);
1364 }
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1371 * @adapter: board private structure to initialize
1372 *
1373 * This function frees the memory allocated to the q_vectors. In addition if
1374 * NAPI is enabled it will delete any references to the NAPI struct prior
1375 * to freeing the q_vector.
1376 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1377 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1378 {
1379 int q_idx, num_q_vectors;
1380
1381 if (!adapter->q_vectors)
1382 return;
1383
1384 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1385
1386 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1387 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1388
1389 netif_napi_del(&q_vector->napi);
1390 }
1391 kfree(adapter->q_vectors);
1392 adapter->q_vectors = NULL;
1393 }
1394
1395 /**
1396 * iavf_reset_interrupt_capability - Reset MSIX setup
1397 * @adapter: board private structure
1398 *
1399 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1400 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1401 {
1402 if (!adapter->msix_entries)
1403 return;
1404
1405 pci_disable_msix(adapter->pdev);
1406 kfree(adapter->msix_entries);
1407 adapter->msix_entries = NULL;
1408 }
1409
1410 /**
1411 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1412 * @adapter: board private structure to initialize
1413 *
1414 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1415 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1416 {
1417 int err;
1418
1419 err = iavf_alloc_queues(adapter);
1420 if (err) {
1421 dev_err(&adapter->pdev->dev,
1422 "Unable to allocate memory for queues\n");
1423 goto err_alloc_queues;
1424 }
1425
1426 rtnl_lock();
1427 err = iavf_set_interrupt_capability(adapter);
1428 rtnl_unlock();
1429 if (err) {
1430 dev_err(&adapter->pdev->dev,
1431 "Unable to setup interrupt capabilities\n");
1432 goto err_set_interrupt;
1433 }
1434
1435 err = iavf_alloc_q_vectors(adapter);
1436 if (err) {
1437 dev_err(&adapter->pdev->dev,
1438 "Unable to allocate memory for queue vectors\n");
1439 goto err_alloc_q_vectors;
1440 }
1441
1442 /* If we've made it so far while ADq flag being ON, then we haven't
1443 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1444 * resources have been allocated in the reset path.
1445 * Now we can truly claim that ADq is enabled.
1446 */
1447 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1448 adapter->num_tc)
1449 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1450 adapter->num_tc);
1451
1452 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1453 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1454 adapter->num_active_queues);
1455
1456 return 0;
1457 err_alloc_q_vectors:
1458 iavf_reset_interrupt_capability(adapter);
1459 err_set_interrupt:
1460 iavf_free_queues(adapter);
1461 err_alloc_queues:
1462 return err;
1463 }
1464
1465 /**
1466 * iavf_free_rss - Free memory used by RSS structs
1467 * @adapter: board private structure
1468 **/
iavf_free_rss(struct iavf_adapter * adapter)1469 static void iavf_free_rss(struct iavf_adapter *adapter)
1470 {
1471 kfree(adapter->rss_key);
1472 adapter->rss_key = NULL;
1473
1474 kfree(adapter->rss_lut);
1475 adapter->rss_lut = NULL;
1476 }
1477
1478 /**
1479 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1480 * @adapter: board private structure
1481 *
1482 * Returns 0 on success, negative on failure
1483 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1484 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1485 {
1486 struct net_device *netdev = adapter->netdev;
1487 int err;
1488
1489 if (netif_running(netdev))
1490 iavf_free_traffic_irqs(adapter);
1491 iavf_free_misc_irq(adapter);
1492 iavf_reset_interrupt_capability(adapter);
1493 iavf_free_q_vectors(adapter);
1494 iavf_free_queues(adapter);
1495
1496 err = iavf_init_interrupt_scheme(adapter);
1497 if (err)
1498 goto err;
1499
1500 netif_tx_stop_all_queues(netdev);
1501
1502 err = iavf_request_misc_irq(adapter);
1503 if (err)
1504 goto err;
1505
1506 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1507
1508 iavf_map_rings_to_vectors(adapter);
1509 err:
1510 return err;
1511 }
1512
1513 /**
1514 * iavf_process_aq_command - process aq_required flags
1515 * and sends aq command
1516 * @adapter: pointer to iavf adapter structure
1517 *
1518 * Returns 0 on success
1519 * Returns error code if no command was sent
1520 * or error code if the command failed.
1521 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1522 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1523 {
1524 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1525 return iavf_send_vf_config_msg(adapter);
1526 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1527 iavf_disable_queues(adapter);
1528 return 0;
1529 }
1530
1531 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1532 iavf_map_queues(adapter);
1533 return 0;
1534 }
1535
1536 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1537 iavf_add_ether_addrs(adapter);
1538 return 0;
1539 }
1540
1541 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1542 iavf_add_vlans(adapter);
1543 return 0;
1544 }
1545
1546 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1547 iavf_del_ether_addrs(adapter);
1548 return 0;
1549 }
1550
1551 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1552 iavf_del_vlans(adapter);
1553 return 0;
1554 }
1555
1556 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1557 iavf_enable_vlan_stripping(adapter);
1558 return 0;
1559 }
1560
1561 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1562 iavf_disable_vlan_stripping(adapter);
1563 return 0;
1564 }
1565
1566 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1567 iavf_configure_queues(adapter);
1568 return 0;
1569 }
1570
1571 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1572 iavf_enable_queues(adapter);
1573 return 0;
1574 }
1575
1576 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1577 /* This message goes straight to the firmware, not the
1578 * PF, so we don't have to set current_op as we will
1579 * not get a response through the ARQ.
1580 */
1581 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1582 return 0;
1583 }
1584 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1585 iavf_get_hena(adapter);
1586 return 0;
1587 }
1588 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1589 iavf_set_hena(adapter);
1590 return 0;
1591 }
1592 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1593 iavf_set_rss_key(adapter);
1594 return 0;
1595 }
1596 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1597 iavf_set_rss_lut(adapter);
1598 return 0;
1599 }
1600
1601 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1602 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1603 FLAG_VF_MULTICAST_PROMISC);
1604 return 0;
1605 }
1606
1607 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1608 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1609 return 0;
1610 }
1611 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1612 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 iavf_set_promiscuous(adapter, 0);
1614 return 0;
1615 }
1616
1617 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 iavf_enable_channels(adapter);
1619 return 0;
1620 }
1621
1622 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 iavf_disable_channels(adapter);
1624 return 0;
1625 }
1626 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 iavf_add_cloud_filter(adapter);
1628 return 0;
1629 }
1630
1631 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 iavf_del_cloud_filter(adapter);
1633 return 0;
1634 }
1635 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 iavf_del_cloud_filter(adapter);
1637 return 0;
1638 }
1639 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 iavf_add_cloud_filter(adapter);
1641 return 0;
1642 }
1643 return -EAGAIN;
1644 }
1645
1646 /**
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
iavf_startup(struct iavf_adapter * adapter)1654 static int iavf_startup(struct iavf_adapter *adapter)
1655 {
1656 struct pci_dev *pdev = adapter->pdev;
1657 struct iavf_hw *hw = &adapter->hw;
1658 int err;
1659
1660 WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662 /* driver loaded, probe complete */
1663 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 err = iavf_set_mac_type(hw);
1666 if (err) {
1667 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 goto err;
1669 }
1670
1671 err = iavf_check_reset_complete(hw);
1672 if (err) {
1673 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 err);
1675 goto err;
1676 }
1677 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682 err = iavf_init_adminq(hw);
1683 if (err) {
1684 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 goto err;
1686 }
1687 err = iavf_send_api_ver(adapter);
1688 if (err) {
1689 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 iavf_shutdown_adminq(hw);
1691 goto err;
1692 }
1693 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
1694 err:
1695 return err;
1696 }
1697
1698 /**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
iavf_init_version_check(struct iavf_adapter * adapter)1706 static int iavf_init_version_check(struct iavf_adapter *adapter)
1707 {
1708 struct pci_dev *pdev = adapter->pdev;
1709 struct iavf_hw *hw = &adapter->hw;
1710 int err = -EAGAIN;
1711
1712 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714 if (!iavf_asq_done(hw)) {
1715 dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 iavf_shutdown_adminq(hw);
1717 iavf_change_state(adapter, __IAVF_STARTUP);
1718 goto err;
1719 }
1720
1721 /* aq msg sent, awaiting reply */
1722 err = iavf_verify_api_ver(adapter);
1723 if (err) {
1724 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 err = iavf_send_api_ver(adapter);
1726 else
1727 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 adapter->pf_version.major,
1729 adapter->pf_version.minor,
1730 VIRTCHNL_VERSION_MAJOR,
1731 VIRTCHNL_VERSION_MINOR);
1732 goto err;
1733 }
1734 err = iavf_send_vf_config_msg(adapter);
1735 if (err) {
1736 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 err);
1738 goto err;
1739 }
1740 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
1741 err:
1742 return err;
1743 }
1744
1745 /**
1746 * iavf_init_get_resources - third step of driver startup
1747 * @adapter: board private structure
1748 *
1749 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1750 * finishes driver initialization procedure.
1751 * When success the state is changed to __IAVF_DOWN
1752 * when fails it returns -EAGAIN
1753 **/
iavf_init_get_resources(struct iavf_adapter * adapter)1754 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1755 {
1756 struct net_device *netdev = adapter->netdev;
1757 struct pci_dev *pdev = adapter->pdev;
1758 struct iavf_hw *hw = &adapter->hw;
1759 int err;
1760
1761 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1762 /* aq msg sent, awaiting reply */
1763 if (!adapter->vf_res) {
1764 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1765 GFP_KERNEL);
1766 if (!adapter->vf_res) {
1767 err = -ENOMEM;
1768 goto err;
1769 }
1770 }
1771 err = iavf_get_vf_config(adapter);
1772 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1773 err = iavf_send_vf_config_msg(adapter);
1774 goto err;
1775 } else if (err == IAVF_ERR_PARAM) {
1776 /* We only get ERR_PARAM if the device is in a very bad
1777 * state or if we've been disabled for previous bad
1778 * behavior. Either way, we're done now.
1779 */
1780 iavf_shutdown_adminq(hw);
1781 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1782 return 0;
1783 }
1784 if (err) {
1785 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1786 goto err_alloc;
1787 }
1788
1789 err = iavf_process_config(adapter);
1790 if (err)
1791 goto err_alloc;
1792 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796 netdev->netdev_ops = &iavf_netdev_ops;
1797 iavf_set_ethtool_ops(netdev);
1798 netdev->watchdog_timeo = 5 * HZ;
1799
1800 /* MTU range: 68 - 9710 */
1801 netdev->min_mtu = ETH_MIN_MTU;
1802 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 adapter->hw.mac.addr);
1807 eth_hw_addr_random(netdev);
1808 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 } else {
1810 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 }
1813
1814 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 err = iavf_init_interrupt_scheme(adapter);
1817 if (err)
1818 goto err_sw_init;
1819 iavf_map_rings_to_vectors(adapter);
1820 if (adapter->vf_res->vf_cap_flags &
1821 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824 err = iavf_request_misc_irq(adapter);
1825 if (err)
1826 goto err_sw_init;
1827
1828 netif_carrier_off(netdev);
1829 adapter->link_up = false;
1830
1831 /* set the semaphore to prevent any callbacks after device registration
1832 * up to time when state of driver will be set to __IAVF_DOWN
1833 */
1834 rtnl_lock();
1835 if (!adapter->netdev_registered) {
1836 err = register_netdevice(netdev);
1837 if (err) {
1838 rtnl_unlock();
1839 goto err_register;
1840 }
1841 }
1842
1843 adapter->netdev_registered = true;
1844
1845 netif_tx_stop_all_queues(netdev);
1846 if (CLIENT_ALLOWED(adapter)) {
1847 err = iavf_lan_add_device(adapter);
1848 if (err)
1849 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1850 err);
1851 }
1852 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1853 if (netdev->features & NETIF_F_GRO)
1854 dev_info(&pdev->dev, "GRO is enabled\n");
1855
1856 iavf_change_state(adapter, __IAVF_DOWN);
1857 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1858 rtnl_unlock();
1859
1860 iavf_misc_irq_enable(adapter);
1861 wake_up(&adapter->down_waitqueue);
1862
1863 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1864 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1865 if (!adapter->rss_key || !adapter->rss_lut) {
1866 err = -ENOMEM;
1867 goto err_mem;
1868 }
1869 if (RSS_AQ(adapter))
1870 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 else
1872 iavf_init_rss(adapter);
1873
1874 return err;
1875 err_mem:
1876 iavf_free_rss(adapter);
1877 err_register:
1878 iavf_free_misc_irq(adapter);
1879 err_sw_init:
1880 iavf_reset_interrupt_capability(adapter);
1881 err_alloc:
1882 kfree(adapter->vf_res);
1883 adapter->vf_res = NULL;
1884 err:
1885 return err;
1886 }
1887
1888 /**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
iavf_watchdog_task(struct work_struct * work)1892 static void iavf_watchdog_task(struct work_struct *work)
1893 {
1894 struct iavf_adapter *adapter = container_of(work,
1895 struct iavf_adapter,
1896 watchdog_task.work);
1897 struct iavf_hw *hw = &adapter->hw;
1898 u32 reg_val;
1899
1900 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 goto restart_watchdog;
1902
1903 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 iavf_change_state(adapter, __IAVF_COMM_FAILED);
1905
1906 switch (adapter->state) {
1907 case __IAVF_COMM_FAILED:
1908 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 /* A chance for redemption! */
1913 dev_err(&adapter->pdev->dev,
1914 "Hardware came out of reset. Attempting reinit.\n");
1915 iavf_change_state(adapter, __IAVF_STARTUP);
1916 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 &adapter->crit_section);
1920 /* Don't reschedule the watchdog, since we've restarted
1921 * the init task. When init_task contacts the PF and
1922 * gets everything set up again, it'll restart the
1923 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 */
1925 return;
1926 }
1927 adapter->aq_required = 0;
1928 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 &adapter->crit_section);
1931 queue_delayed_work(iavf_wq,
1932 &adapter->watchdog_task,
1933 msecs_to_jiffies(10));
1934 goto watchdog_done;
1935 case __IAVF_RESETTING:
1936 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 return;
1939 case __IAVF_DOWN:
1940 case __IAVF_DOWN_PENDING:
1941 case __IAVF_TESTING:
1942 case __IAVF_RUNNING:
1943 if (adapter->current_op) {
1944 if (!iavf_asq_done(hw)) {
1945 dev_dbg(&adapter->pdev->dev,
1946 "Admin queue timeout\n");
1947 iavf_send_api_ver(adapter);
1948 }
1949 } else {
1950 /* An error will be returned if no commands were
1951 * processed; use this opportunity to update stats
1952 */
1953 if (iavf_process_aq_command(adapter) &&
1954 adapter->state == __IAVF_RUNNING)
1955 iavf_request_stats(adapter);
1956 }
1957 break;
1958 case __IAVF_REMOVE:
1959 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1960 return;
1961 default:
1962 goto restart_watchdog;
1963 }
1964
1965 /* check for hw reset */
1966 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1967 if (!reg_val) {
1968 iavf_change_state(adapter, __IAVF_RESETTING);
1969 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1970 adapter->aq_required = 0;
1971 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1972 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1973 queue_work(iavf_wq, &adapter->reset_task);
1974 goto watchdog_done;
1975 }
1976
1977 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1978 watchdog_done:
1979 if (adapter->state == __IAVF_RUNNING ||
1980 adapter->state == __IAVF_COMM_FAILED)
1981 iavf_detect_recover_hung(&adapter->vsi);
1982 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1983 restart_watchdog:
1984 if (adapter->aq_required)
1985 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1986 msecs_to_jiffies(20));
1987 else
1988 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1989 queue_work(iavf_wq, &adapter->adminq_task);
1990 }
1991
iavf_disable_vf(struct iavf_adapter * adapter)1992 static void iavf_disable_vf(struct iavf_adapter *adapter)
1993 {
1994 struct iavf_mac_filter *f, *ftmp;
1995 struct iavf_vlan_filter *fv, *fvtmp;
1996 struct iavf_cloud_filter *cf, *cftmp;
1997
1998 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1999
2000 /* We don't use netif_running() because it may be true prior to
2001 * ndo_open() returning, so we can't assume it means all our open
2002 * tasks have finished, since we're not holding the rtnl_lock here.
2003 */
2004 if (adapter->state == __IAVF_RUNNING) {
2005 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2006 netif_carrier_off(adapter->netdev);
2007 netif_tx_disable(adapter->netdev);
2008 adapter->link_up = false;
2009 iavf_napi_disable_all(adapter);
2010 iavf_irq_disable(adapter);
2011 iavf_free_traffic_irqs(adapter);
2012 iavf_free_all_tx_resources(adapter);
2013 iavf_free_all_rx_resources(adapter);
2014 }
2015
2016 spin_lock_bh(&adapter->mac_vlan_list_lock);
2017
2018 /* Delete all of the filters */
2019 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2020 list_del(&f->list);
2021 kfree(f);
2022 }
2023
2024 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2025 list_del(&fv->list);
2026 kfree(fv);
2027 }
2028
2029 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2030
2031 spin_lock_bh(&adapter->cloud_filter_list_lock);
2032 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2033 list_del(&cf->list);
2034 kfree(cf);
2035 adapter->num_cloud_filters--;
2036 }
2037 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2038
2039 iavf_free_misc_irq(adapter);
2040 iavf_reset_interrupt_capability(adapter);
2041 iavf_free_q_vectors(adapter);
2042 iavf_free_queues(adapter);
2043 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2044 iavf_shutdown_adminq(&adapter->hw);
2045 adapter->netdev->flags &= ~IFF_UP;
2046 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2047 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2048 iavf_change_state(adapter, __IAVF_DOWN);
2049 wake_up(&adapter->down_waitqueue);
2050 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2051 }
2052
2053 /**
2054 * iavf_reset_task - Call-back task to handle hardware reset
2055 * @work: pointer to work_struct
2056 *
2057 * During reset we need to shut down and reinitialize the admin queue
2058 * before we can use it to communicate with the PF again. We also clear
2059 * and reinit the rings because that context is lost as well.
2060 **/
iavf_reset_task(struct work_struct * work)2061 static void iavf_reset_task(struct work_struct *work)
2062 {
2063 struct iavf_adapter *adapter = container_of(work,
2064 struct iavf_adapter,
2065 reset_task);
2066 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2067 struct net_device *netdev = adapter->netdev;
2068 struct iavf_hw *hw = &adapter->hw;
2069 struct iavf_mac_filter *f, *ftmp;
2070 struct iavf_vlan_filter *vlf;
2071 struct iavf_cloud_filter *cf;
2072 u32 reg_val;
2073 int i = 0, err;
2074 bool running;
2075
2076 /* When device is being removed it doesn't make sense to run the reset
2077 * task, just return in such a case.
2078 */
2079 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2080 return;
2081
2082 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2083 schedule_work(&adapter->reset_task);
2084 return;
2085 }
2086 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2087 &adapter->crit_section))
2088 usleep_range(500, 1000);
2089 if (CLIENT_ENABLED(adapter)) {
2090 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2091 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2092 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2093 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2094 cancel_delayed_work_sync(&adapter->client_task);
2095 iavf_notify_client_close(&adapter->vsi, true);
2096 }
2097 iavf_misc_irq_disable(adapter);
2098 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2099 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2100 /* Restart the AQ here. If we have been reset but didn't
2101 * detect it, or if the PF had to reinit, our AQ will be hosed.
2102 */
2103 iavf_shutdown_adminq(hw);
2104 iavf_init_adminq(hw);
2105 iavf_request_reset(adapter);
2106 }
2107 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2108
2109 /* poll until we see the reset actually happen */
2110 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2111 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2112 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2113 if (!reg_val)
2114 break;
2115 usleep_range(5000, 10000);
2116 }
2117 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2118 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2119 goto continue_reset; /* act like the reset happened */
2120 }
2121
2122 /* wait until the reset is complete and the PF is responding to us */
2123 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2124 /* sleep first to make sure a minimum wait time is met */
2125 msleep(IAVF_RESET_WAIT_MS);
2126
2127 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2128 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2129 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2130 break;
2131 }
2132
2133 pci_set_master(adapter->pdev);
2134 pci_restore_msi_state(adapter->pdev);
2135
2136 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2137 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2138 reg_val);
2139 iavf_disable_vf(adapter);
2140 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2141 return; /* Do not attempt to reinit. It's dead, Jim. */
2142 }
2143
2144 continue_reset:
2145 /* We don't use netif_running() because it may be true prior to
2146 * ndo_open() returning, so we can't assume it means all our open
2147 * tasks have finished, since we're not holding the rtnl_lock here.
2148 */
2149 running = ((adapter->state == __IAVF_RUNNING) ||
2150 (adapter->state == __IAVF_RESETTING));
2151
2152 if (running) {
2153 netif_carrier_off(netdev);
2154 netif_tx_stop_all_queues(netdev);
2155 adapter->link_up = false;
2156 iavf_napi_disable_all(adapter);
2157 }
2158 iavf_irq_disable(adapter);
2159
2160 iavf_change_state(adapter, __IAVF_RESETTING);
2161 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2162
2163 /* free the Tx/Rx rings and descriptors, might be better to just
2164 * re-use them sometime in the future
2165 */
2166 iavf_free_all_rx_resources(adapter);
2167 iavf_free_all_tx_resources(adapter);
2168
2169 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2170 /* kill and reinit the admin queue */
2171 iavf_shutdown_adminq(hw);
2172 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2173 err = iavf_init_adminq(hw);
2174 if (err)
2175 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2176 err);
2177 adapter->aq_required = 0;
2178
2179 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2180 err = iavf_reinit_interrupt_scheme(adapter);
2181 if (err)
2182 goto reset_err;
2183 }
2184
2185 if (RSS_AQ(adapter)) {
2186 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2187 } else {
2188 err = iavf_init_rss(adapter);
2189 if (err)
2190 goto reset_err;
2191 }
2192
2193 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2194 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2195
2196 spin_lock_bh(&adapter->mac_vlan_list_lock);
2197
2198 /* Delete filter for the current MAC address, it could have
2199 * been changed by the PF via administratively set MAC.
2200 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2201 */
2202 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2203 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2204 list_del(&f->list);
2205 kfree(f);
2206 }
2207 }
2208 /* re-add all MAC filters */
2209 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2210 f->add = true;
2211 }
2212 /* re-add all VLAN filters */
2213 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2214 vlf->add = true;
2215 }
2216
2217 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2218
2219 /* check if TCs are running and re-add all cloud filters */
2220 spin_lock_bh(&adapter->cloud_filter_list_lock);
2221 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2222 adapter->num_tc) {
2223 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2224 cf->add = true;
2225 }
2226 }
2227 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2228
2229 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2230 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2231 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2232 iavf_misc_irq_enable(adapter);
2233
2234 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2235
2236 /* We were running when the reset started, so we need to restore some
2237 * state here.
2238 */
2239 if (running) {
2240 /* allocate transmit descriptors */
2241 err = iavf_setup_all_tx_resources(adapter);
2242 if (err)
2243 goto reset_err;
2244
2245 /* allocate receive descriptors */
2246 err = iavf_setup_all_rx_resources(adapter);
2247 if (err)
2248 goto reset_err;
2249
2250 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2251 err = iavf_request_traffic_irqs(adapter, netdev->name);
2252 if (err)
2253 goto reset_err;
2254
2255 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2256 }
2257
2258 iavf_configure(adapter);
2259
2260 /* iavf_up_complete() will switch device back
2261 * to __IAVF_RUNNING
2262 */
2263 iavf_up_complete(adapter);
2264
2265 iavf_irq_enable(adapter, true);
2266 } else {
2267 iavf_change_state(adapter, __IAVF_DOWN);
2268 wake_up(&adapter->down_waitqueue);
2269 }
2270 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2271 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2272
2273 return;
2274 reset_err:
2275 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2276 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2277 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2278 iavf_close(netdev);
2279 }
2280
2281 /**
2282 * iavf_adminq_task - worker thread to clean the admin queue
2283 * @work: pointer to work_struct containing our data
2284 **/
iavf_adminq_task(struct work_struct * work)2285 static void iavf_adminq_task(struct work_struct *work)
2286 {
2287 struct iavf_adapter *adapter =
2288 container_of(work, struct iavf_adapter, adminq_task);
2289 struct iavf_hw *hw = &adapter->hw;
2290 struct iavf_arq_event_info event;
2291 enum virtchnl_ops v_op;
2292 enum iavf_status ret, v_ret;
2293 u32 val, oldval;
2294 u16 pending;
2295
2296 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2297 goto out;
2298
2299 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2300 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2301 if (!event.msg_buf)
2302 goto out;
2303
2304 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2305 goto freedom;
2306 do {
2307 ret = iavf_clean_arq_element(hw, &event, &pending);
2308 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2309 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2310
2311 if (ret || !v_op)
2312 break; /* No event to process or error cleaning ARQ */
2313
2314 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2315 event.msg_len);
2316 if (pending != 0)
2317 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2318 } while (pending);
2319 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2320
2321 if ((adapter->flags &
2322 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2323 adapter->state == __IAVF_RESETTING)
2324 goto freedom;
2325
2326 /* check for error indications */
2327 val = rd32(hw, hw->aq.arq.len);
2328 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2329 goto freedom;
2330 oldval = val;
2331 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2332 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2333 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2334 }
2335 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2336 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2337 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2338 }
2339 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2340 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2341 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2342 }
2343 if (oldval != val)
2344 wr32(hw, hw->aq.arq.len, val);
2345
2346 val = rd32(hw, hw->aq.asq.len);
2347 oldval = val;
2348 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2349 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2350 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2351 }
2352 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2353 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2354 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2355 }
2356 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2357 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2358 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2359 }
2360 if (oldval != val)
2361 wr32(hw, hw->aq.asq.len, val);
2362
2363 freedom:
2364 kfree(event.msg_buf);
2365 out:
2366 /* re-enable Admin queue interrupt cause */
2367 iavf_misc_irq_enable(adapter);
2368 }
2369
2370 /**
2371 * iavf_client_task - worker thread to perform client work
2372 * @work: pointer to work_struct containing our data
2373 *
2374 * This task handles client interactions. Because client calls can be
2375 * reentrant, we can't handle them in the watchdog.
2376 **/
iavf_client_task(struct work_struct * work)2377 static void iavf_client_task(struct work_struct *work)
2378 {
2379 struct iavf_adapter *adapter =
2380 container_of(work, struct iavf_adapter, client_task.work);
2381
2382 /* If we can't get the client bit, just give up. We'll be rescheduled
2383 * later.
2384 */
2385
2386 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2387 return;
2388
2389 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2390 iavf_client_subtask(adapter);
2391 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2392 goto out;
2393 }
2394 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2395 iavf_notify_client_l2_params(&adapter->vsi);
2396 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2397 goto out;
2398 }
2399 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2400 iavf_notify_client_close(&adapter->vsi, false);
2401 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2402 goto out;
2403 }
2404 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2405 iavf_notify_client_open(&adapter->vsi);
2406 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2407 }
2408 out:
2409 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2410 }
2411
2412 /**
2413 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2414 * @adapter: board private structure
2415 *
2416 * Free all transmit software resources
2417 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2418 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2419 {
2420 int i;
2421
2422 if (!adapter->tx_rings)
2423 return;
2424
2425 for (i = 0; i < adapter->num_active_queues; i++)
2426 if (adapter->tx_rings[i].desc)
2427 iavf_free_tx_resources(&adapter->tx_rings[i]);
2428 }
2429
2430 /**
2431 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2432 * @adapter: board private structure
2433 *
2434 * If this function returns with an error, then it's possible one or
2435 * more of the rings is populated (while the rest are not). It is the
2436 * callers duty to clean those orphaned rings.
2437 *
2438 * Return 0 on success, negative on failure
2439 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2440 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2441 {
2442 int i, err = 0;
2443
2444 for (i = 0; i < adapter->num_active_queues; i++) {
2445 adapter->tx_rings[i].count = adapter->tx_desc_count;
2446 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2447 if (!err)
2448 continue;
2449 dev_err(&adapter->pdev->dev,
2450 "Allocation for Tx Queue %u failed\n", i);
2451 break;
2452 }
2453
2454 return err;
2455 }
2456
2457 /**
2458 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2459 * @adapter: board private structure
2460 *
2461 * If this function returns with an error, then it's possible one or
2462 * more of the rings is populated (while the rest are not). It is the
2463 * callers duty to clean those orphaned rings.
2464 *
2465 * Return 0 on success, negative on failure
2466 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2467 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2468 {
2469 int i, err = 0;
2470
2471 for (i = 0; i < adapter->num_active_queues; i++) {
2472 adapter->rx_rings[i].count = adapter->rx_desc_count;
2473 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2474 if (!err)
2475 continue;
2476 dev_err(&adapter->pdev->dev,
2477 "Allocation for Rx Queue %u failed\n", i);
2478 break;
2479 }
2480 return err;
2481 }
2482
2483 /**
2484 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2485 * @adapter: board private structure
2486 *
2487 * Free all receive software resources
2488 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2489 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2490 {
2491 int i;
2492
2493 if (!adapter->rx_rings)
2494 return;
2495
2496 for (i = 0; i < adapter->num_active_queues; i++)
2497 if (adapter->rx_rings[i].desc)
2498 iavf_free_rx_resources(&adapter->rx_rings[i]);
2499 }
2500
2501 /**
2502 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2503 * @adapter: board private structure
2504 * @max_tx_rate: max Tx bw for a tc
2505 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2506 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2507 u64 max_tx_rate)
2508 {
2509 int speed = 0, ret = 0;
2510
2511 if (ADV_LINK_SUPPORT(adapter)) {
2512 if (adapter->link_speed_mbps < U32_MAX) {
2513 speed = adapter->link_speed_mbps;
2514 goto validate_bw;
2515 } else {
2516 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2517 return -EINVAL;
2518 }
2519 }
2520
2521 switch (adapter->link_speed) {
2522 case VIRTCHNL_LINK_SPEED_40GB:
2523 speed = SPEED_40000;
2524 break;
2525 case VIRTCHNL_LINK_SPEED_25GB:
2526 speed = SPEED_25000;
2527 break;
2528 case VIRTCHNL_LINK_SPEED_20GB:
2529 speed = SPEED_20000;
2530 break;
2531 case VIRTCHNL_LINK_SPEED_10GB:
2532 speed = SPEED_10000;
2533 break;
2534 case VIRTCHNL_LINK_SPEED_5GB:
2535 speed = SPEED_5000;
2536 break;
2537 case VIRTCHNL_LINK_SPEED_2_5GB:
2538 speed = SPEED_2500;
2539 break;
2540 case VIRTCHNL_LINK_SPEED_1GB:
2541 speed = SPEED_1000;
2542 break;
2543 case VIRTCHNL_LINK_SPEED_100MB:
2544 speed = SPEED_100;
2545 break;
2546 default:
2547 break;
2548 }
2549
2550 validate_bw:
2551 if (max_tx_rate > speed) {
2552 dev_err(&adapter->pdev->dev,
2553 "Invalid tx rate specified\n");
2554 ret = -EINVAL;
2555 }
2556
2557 return ret;
2558 }
2559
2560 /**
2561 * iavf_validate_channel_config - validate queue mapping info
2562 * @adapter: board private structure
2563 * @mqprio_qopt: queue parameters
2564 *
2565 * This function validates if the config provided by the user to
2566 * configure queue channels is valid or not. Returns 0 on a valid
2567 * config.
2568 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2569 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2570 struct tc_mqprio_qopt_offload *mqprio_qopt)
2571 {
2572 u64 total_max_rate = 0;
2573 u32 tx_rate_rem = 0;
2574 int i, num_qps = 0;
2575 u64 tx_rate = 0;
2576 int ret = 0;
2577
2578 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2579 mqprio_qopt->qopt.num_tc < 1)
2580 return -EINVAL;
2581
2582 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2583 if (!mqprio_qopt->qopt.count[i] ||
2584 mqprio_qopt->qopt.offset[i] != num_qps)
2585 return -EINVAL;
2586 if (mqprio_qopt->min_rate[i]) {
2587 dev_err(&adapter->pdev->dev,
2588 "Invalid min tx rate (greater than 0) specified for TC%d\n",
2589 i);
2590 return -EINVAL;
2591 }
2592
2593 /* convert to Mbps */
2594 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2595 IAVF_MBPS_DIVISOR);
2596
2597 if (mqprio_qopt->max_rate[i] &&
2598 tx_rate < IAVF_MBPS_QUANTA) {
2599 dev_err(&adapter->pdev->dev,
2600 "Invalid max tx rate for TC%d, minimum %dMbps\n",
2601 i, IAVF_MBPS_QUANTA);
2602 return -EINVAL;
2603 }
2604
2605 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
2606
2607 if (tx_rate_rem != 0) {
2608 dev_err(&adapter->pdev->dev,
2609 "Invalid max tx rate for TC%d, not divisible by %d\n",
2610 i, IAVF_MBPS_QUANTA);
2611 return -EINVAL;
2612 }
2613
2614 total_max_rate += tx_rate;
2615 num_qps += mqprio_qopt->qopt.count[i];
2616 }
2617 if (num_qps > adapter->num_active_queues) {
2618 dev_err(&adapter->pdev->dev,
2619 "Cannot support requested number of queues\n");
2620 return -EINVAL;
2621 }
2622
2623 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2624 return ret;
2625 }
2626
2627 /**
2628 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2629 * @adapter: board private structure
2630 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2631 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2632 {
2633 struct iavf_cloud_filter *cf, *cftmp;
2634
2635 spin_lock_bh(&adapter->cloud_filter_list_lock);
2636 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2637 list) {
2638 list_del(&cf->list);
2639 kfree(cf);
2640 adapter->num_cloud_filters--;
2641 }
2642 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2643 }
2644
2645 /**
2646 * __iavf_setup_tc - configure multiple traffic classes
2647 * @netdev: network interface device structure
2648 * @type_data: tc offload data
2649 *
2650 * This function processes the config information provided by the
2651 * user to configure traffic classes/queue channels and packages the
2652 * information to request the PF to setup traffic classes.
2653 *
2654 * Returns 0 on success.
2655 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2656 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2657 {
2658 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2659 struct iavf_adapter *adapter = netdev_priv(netdev);
2660 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2661 u8 num_tc = 0, total_qps = 0;
2662 int ret = 0, netdev_tc = 0;
2663 u64 max_tx_rate;
2664 u16 mode;
2665 int i;
2666
2667 num_tc = mqprio_qopt->qopt.num_tc;
2668 mode = mqprio_qopt->mode;
2669
2670 /* delete queue_channel */
2671 if (!mqprio_qopt->qopt.hw) {
2672 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2673 /* reset the tc configuration */
2674 netdev_reset_tc(netdev);
2675 adapter->num_tc = 0;
2676 netif_tx_stop_all_queues(netdev);
2677 netif_tx_disable(netdev);
2678 iavf_del_all_cloud_filters(adapter);
2679 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2680 goto exit;
2681 } else {
2682 return -EINVAL;
2683 }
2684 }
2685
2686 /* add queue channel */
2687 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2688 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2689 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2690 return -EOPNOTSUPP;
2691 }
2692 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2693 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2694 return -EINVAL;
2695 }
2696
2697 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2698 if (ret)
2699 return ret;
2700 /* Return if same TC config is requested */
2701 if (adapter->num_tc == num_tc)
2702 return 0;
2703 adapter->num_tc = num_tc;
2704
2705 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2706 if (i < num_tc) {
2707 adapter->ch_config.ch_info[i].count =
2708 mqprio_qopt->qopt.count[i];
2709 adapter->ch_config.ch_info[i].offset =
2710 mqprio_qopt->qopt.offset[i];
2711 total_qps += mqprio_qopt->qopt.count[i];
2712 max_tx_rate = mqprio_qopt->max_rate[i];
2713 /* convert to Mbps */
2714 max_tx_rate = div_u64(max_tx_rate,
2715 IAVF_MBPS_DIVISOR);
2716 adapter->ch_config.ch_info[i].max_tx_rate =
2717 max_tx_rate;
2718 } else {
2719 adapter->ch_config.ch_info[i].count = 1;
2720 adapter->ch_config.ch_info[i].offset = 0;
2721 }
2722 }
2723 adapter->ch_config.total_qps = total_qps;
2724 netif_tx_stop_all_queues(netdev);
2725 netif_tx_disable(netdev);
2726 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2727 netdev_reset_tc(netdev);
2728 /* Report the tc mapping up the stack */
2729 netdev_set_num_tc(adapter->netdev, num_tc);
2730 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2731 u16 qcount = mqprio_qopt->qopt.count[i];
2732 u16 qoffset = mqprio_qopt->qopt.offset[i];
2733
2734 if (i < num_tc)
2735 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2736 qoffset);
2737 }
2738 }
2739 exit:
2740 return ret;
2741 }
2742
2743 /**
2744 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2745 * @adapter: board private structure
2746 * @f: pointer to struct flow_cls_offload
2747 * @filter: pointer to cloud filter structure
2748 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)2749 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2750 struct flow_cls_offload *f,
2751 struct iavf_cloud_filter *filter)
2752 {
2753 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2754 struct flow_dissector *dissector = rule->match.dissector;
2755 u16 n_proto_mask = 0;
2756 u16 n_proto_key = 0;
2757 u8 field_flags = 0;
2758 u16 addr_type = 0;
2759 u16 n_proto = 0;
2760 int i = 0;
2761 struct virtchnl_filter *vf = &filter->f;
2762
2763 if (dissector->used_keys &
2764 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2765 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2766 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2767 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2768 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2769 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2770 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2771 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2772 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2773 dissector->used_keys);
2774 return -EOPNOTSUPP;
2775 }
2776
2777 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2778 struct flow_match_enc_keyid match;
2779
2780 flow_rule_match_enc_keyid(rule, &match);
2781 if (match.mask->keyid != 0)
2782 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2783 }
2784
2785 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2786 struct flow_match_basic match;
2787
2788 flow_rule_match_basic(rule, &match);
2789 n_proto_key = ntohs(match.key->n_proto);
2790 n_proto_mask = ntohs(match.mask->n_proto);
2791
2792 if (n_proto_key == ETH_P_ALL) {
2793 n_proto_key = 0;
2794 n_proto_mask = 0;
2795 }
2796 n_proto = n_proto_key & n_proto_mask;
2797 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2798 return -EINVAL;
2799 if (n_proto == ETH_P_IPV6) {
2800 /* specify flow type as TCP IPv6 */
2801 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2802 }
2803
2804 if (match.key->ip_proto != IPPROTO_TCP) {
2805 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2806 return -EINVAL;
2807 }
2808 }
2809
2810 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2811 struct flow_match_eth_addrs match;
2812
2813 flow_rule_match_eth_addrs(rule, &match);
2814
2815 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2816 if (!is_zero_ether_addr(match.mask->dst)) {
2817 if (is_broadcast_ether_addr(match.mask->dst)) {
2818 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2819 } else {
2820 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2821 match.mask->dst);
2822 return IAVF_ERR_CONFIG;
2823 }
2824 }
2825
2826 if (!is_zero_ether_addr(match.mask->src)) {
2827 if (is_broadcast_ether_addr(match.mask->src)) {
2828 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2829 } else {
2830 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2831 match.mask->src);
2832 return IAVF_ERR_CONFIG;
2833 }
2834 }
2835
2836 if (!is_zero_ether_addr(match.key->dst))
2837 if (is_valid_ether_addr(match.key->dst) ||
2838 is_multicast_ether_addr(match.key->dst)) {
2839 /* set the mask if a valid dst_mac address */
2840 for (i = 0; i < ETH_ALEN; i++)
2841 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2842 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2843 match.key->dst);
2844 }
2845
2846 if (!is_zero_ether_addr(match.key->src))
2847 if (is_valid_ether_addr(match.key->src) ||
2848 is_multicast_ether_addr(match.key->src)) {
2849 /* set the mask if a valid dst_mac address */
2850 for (i = 0; i < ETH_ALEN; i++)
2851 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2852 ether_addr_copy(vf->data.tcp_spec.src_mac,
2853 match.key->src);
2854 }
2855 }
2856
2857 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2858 struct flow_match_vlan match;
2859
2860 flow_rule_match_vlan(rule, &match);
2861 if (match.mask->vlan_id) {
2862 if (match.mask->vlan_id == VLAN_VID_MASK) {
2863 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2864 } else {
2865 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2866 match.mask->vlan_id);
2867 return IAVF_ERR_CONFIG;
2868 }
2869 }
2870 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2871 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2872 }
2873
2874 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2875 struct flow_match_control match;
2876
2877 flow_rule_match_control(rule, &match);
2878 addr_type = match.key->addr_type;
2879 }
2880
2881 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2882 struct flow_match_ipv4_addrs match;
2883
2884 flow_rule_match_ipv4_addrs(rule, &match);
2885 if (match.mask->dst) {
2886 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2887 field_flags |= IAVF_CLOUD_FIELD_IIP;
2888 } else {
2889 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2890 be32_to_cpu(match.mask->dst));
2891 return IAVF_ERR_CONFIG;
2892 }
2893 }
2894
2895 if (match.mask->src) {
2896 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2897 field_flags |= IAVF_CLOUD_FIELD_IIP;
2898 } else {
2899 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2900 be32_to_cpu(match.mask->dst));
2901 return IAVF_ERR_CONFIG;
2902 }
2903 }
2904
2905 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2906 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2907 return IAVF_ERR_CONFIG;
2908 }
2909 if (match.key->dst) {
2910 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2911 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2912 }
2913 if (match.key->src) {
2914 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2915 vf->data.tcp_spec.src_ip[0] = match.key->src;
2916 }
2917 }
2918
2919 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2920 struct flow_match_ipv6_addrs match;
2921
2922 flow_rule_match_ipv6_addrs(rule, &match);
2923
2924 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2925 if (ipv6_addr_any(&match.mask->dst)) {
2926 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2927 IPV6_ADDR_ANY);
2928 return IAVF_ERR_CONFIG;
2929 }
2930
2931 /* src and dest IPv6 address should not be LOOPBACK
2932 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2933 */
2934 if (ipv6_addr_loopback(&match.key->dst) ||
2935 ipv6_addr_loopback(&match.key->src)) {
2936 dev_err(&adapter->pdev->dev,
2937 "ipv6 addr should not be loopback\n");
2938 return IAVF_ERR_CONFIG;
2939 }
2940 if (!ipv6_addr_any(&match.mask->dst) ||
2941 !ipv6_addr_any(&match.mask->src))
2942 field_flags |= IAVF_CLOUD_FIELD_IIP;
2943
2944 for (i = 0; i < 4; i++)
2945 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2946 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2947 sizeof(vf->data.tcp_spec.dst_ip));
2948 for (i = 0; i < 4; i++)
2949 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2950 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2951 sizeof(vf->data.tcp_spec.src_ip));
2952 }
2953 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2954 struct flow_match_ports match;
2955
2956 flow_rule_match_ports(rule, &match);
2957 if (match.mask->src) {
2958 if (match.mask->src == cpu_to_be16(0xffff)) {
2959 field_flags |= IAVF_CLOUD_FIELD_IIP;
2960 } else {
2961 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2962 be16_to_cpu(match.mask->src));
2963 return IAVF_ERR_CONFIG;
2964 }
2965 }
2966
2967 if (match.mask->dst) {
2968 if (match.mask->dst == cpu_to_be16(0xffff)) {
2969 field_flags |= IAVF_CLOUD_FIELD_IIP;
2970 } else {
2971 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2972 be16_to_cpu(match.mask->dst));
2973 return IAVF_ERR_CONFIG;
2974 }
2975 }
2976 if (match.key->dst) {
2977 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2978 vf->data.tcp_spec.dst_port = match.key->dst;
2979 }
2980
2981 if (match.key->src) {
2982 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2983 vf->data.tcp_spec.src_port = match.key->src;
2984 }
2985 }
2986 vf->field_flags = field_flags;
2987
2988 return 0;
2989 }
2990
2991 /**
2992 * iavf_handle_tclass - Forward to a traffic class on the device
2993 * @adapter: board private structure
2994 * @tc: traffic class index on the device
2995 * @filter: pointer to cloud filter structure
2996 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)2997 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2998 struct iavf_cloud_filter *filter)
2999 {
3000 if (tc == 0)
3001 return 0;
3002 if (tc < adapter->num_tc) {
3003 if (!filter->f.data.tcp_spec.dst_port) {
3004 dev_err(&adapter->pdev->dev,
3005 "Specify destination port to redirect to traffic class other than TC0\n");
3006 return -EINVAL;
3007 }
3008 }
3009 /* redirect to a traffic class on the same device */
3010 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3011 filter->f.action_meta = tc;
3012 return 0;
3013 }
3014
3015 /**
3016 * iavf_configure_clsflower - Add tc flower filters
3017 * @adapter: board private structure
3018 * @cls_flower: Pointer to struct flow_cls_offload
3019 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3020 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3021 struct flow_cls_offload *cls_flower)
3022 {
3023 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3024 struct iavf_cloud_filter *filter = NULL;
3025 int err = -EINVAL, count = 50;
3026
3027 if (tc < 0) {
3028 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3029 return -EINVAL;
3030 }
3031
3032 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3033 if (!filter)
3034 return -ENOMEM;
3035
3036 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3037 &adapter->crit_section)) {
3038 if (--count == 0)
3039 goto err;
3040 udelay(1);
3041 }
3042
3043 filter->cookie = cls_flower->cookie;
3044
3045 /* set the mask to all zeroes to begin with */
3046 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3047 /* start out with flow type and eth type IPv4 to begin with */
3048 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3049 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3050 if (err)
3051 goto err;
3052
3053 err = iavf_handle_tclass(adapter, tc, filter);
3054 if (err)
3055 goto err;
3056
3057 /* add filter to the list */
3058 spin_lock_bh(&adapter->cloud_filter_list_lock);
3059 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3060 adapter->num_cloud_filters++;
3061 filter->add = true;
3062 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3063 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3064 err:
3065 if (err)
3066 kfree(filter);
3067
3068 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3069 return err;
3070 }
3071
3072 /* iavf_find_cf - Find the cloud filter in the list
3073 * @adapter: Board private structure
3074 * @cookie: filter specific cookie
3075 *
3076 * Returns ptr to the filter object or NULL. Must be called while holding the
3077 * cloud_filter_list_lock.
3078 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3079 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3080 unsigned long *cookie)
3081 {
3082 struct iavf_cloud_filter *filter = NULL;
3083
3084 if (!cookie)
3085 return NULL;
3086
3087 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3088 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3089 return filter;
3090 }
3091 return NULL;
3092 }
3093
3094 /**
3095 * iavf_delete_clsflower - Remove tc flower filters
3096 * @adapter: board private structure
3097 * @cls_flower: Pointer to struct flow_cls_offload
3098 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3099 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3100 struct flow_cls_offload *cls_flower)
3101 {
3102 struct iavf_cloud_filter *filter = NULL;
3103 int err = 0;
3104
3105 spin_lock_bh(&adapter->cloud_filter_list_lock);
3106 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3107 if (filter) {
3108 filter->del = true;
3109 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3110 } else {
3111 err = -EINVAL;
3112 }
3113 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3114
3115 return err;
3116 }
3117
3118 /**
3119 * iavf_setup_tc_cls_flower - flower classifier offloads
3120 * @adapter: board private structure
3121 * @cls_flower: pointer to flow_cls_offload struct with flow info
3122 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3123 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3124 struct flow_cls_offload *cls_flower)
3125 {
3126 switch (cls_flower->command) {
3127 case FLOW_CLS_REPLACE:
3128 return iavf_configure_clsflower(adapter, cls_flower);
3129 case FLOW_CLS_DESTROY:
3130 return iavf_delete_clsflower(adapter, cls_flower);
3131 case FLOW_CLS_STATS:
3132 return -EOPNOTSUPP;
3133 default:
3134 return -EOPNOTSUPP;
3135 }
3136 }
3137
3138 /**
3139 * iavf_setup_tc_block_cb - block callback for tc
3140 * @type: type of offload
3141 * @type_data: offload data
3142 * @cb_priv:
3143 *
3144 * This function is the block callback for traffic classes
3145 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3146 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3147 void *cb_priv)
3148 {
3149 struct iavf_adapter *adapter = cb_priv;
3150
3151 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3152 return -EOPNOTSUPP;
3153
3154 switch (type) {
3155 case TC_SETUP_CLSFLOWER:
3156 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3157 default:
3158 return -EOPNOTSUPP;
3159 }
3160 }
3161
3162 static LIST_HEAD(iavf_block_cb_list);
3163
3164 /**
3165 * iavf_setup_tc - configure multiple traffic classes
3166 * @netdev: network interface device structure
3167 * @type: type of offload
3168 * @type_data: tc offload data
3169 *
3170 * This function is the callback to ndo_setup_tc in the
3171 * netdev_ops.
3172 *
3173 * Returns 0 on success
3174 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3175 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3176 void *type_data)
3177 {
3178 struct iavf_adapter *adapter = netdev_priv(netdev);
3179
3180 switch (type) {
3181 case TC_SETUP_QDISC_MQPRIO:
3182 return __iavf_setup_tc(netdev, type_data);
3183 case TC_SETUP_BLOCK:
3184 return flow_block_cb_setup_simple(type_data,
3185 &iavf_block_cb_list,
3186 iavf_setup_tc_block_cb,
3187 adapter, adapter, true);
3188 default:
3189 return -EOPNOTSUPP;
3190 }
3191 }
3192
3193 /**
3194 * iavf_open - Called when a network interface is made active
3195 * @netdev: network interface device structure
3196 *
3197 * Returns 0 on success, negative value on failure
3198 *
3199 * The open entry point is called when a network interface is made
3200 * active by the system (IFF_UP). At this point all resources needed
3201 * for transmit and receive operations are allocated, the interrupt
3202 * handler is registered with the OS, the watchdog is started,
3203 * and the stack is notified that the interface is ready.
3204 **/
iavf_open(struct net_device * netdev)3205 static int iavf_open(struct net_device *netdev)
3206 {
3207 struct iavf_adapter *adapter = netdev_priv(netdev);
3208 int err;
3209
3210 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3211 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3212 return -EIO;
3213 }
3214
3215 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3216 &adapter->crit_section))
3217 usleep_range(500, 1000);
3218
3219 if (adapter->state != __IAVF_DOWN) {
3220 err = -EBUSY;
3221 goto err_unlock;
3222 }
3223
3224 /* allocate transmit descriptors */
3225 err = iavf_setup_all_tx_resources(adapter);
3226 if (err)
3227 goto err_setup_tx;
3228
3229 /* allocate receive descriptors */
3230 err = iavf_setup_all_rx_resources(adapter);
3231 if (err)
3232 goto err_setup_rx;
3233
3234 /* clear any pending interrupts, may auto mask */
3235 err = iavf_request_traffic_irqs(adapter, netdev->name);
3236 if (err)
3237 goto err_req_irq;
3238
3239 spin_lock_bh(&adapter->mac_vlan_list_lock);
3240
3241 iavf_add_filter(adapter, adapter->hw.mac.addr);
3242
3243 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3244
3245 iavf_configure(adapter);
3246
3247 iavf_up_complete(adapter);
3248
3249 iavf_irq_enable(adapter, true);
3250
3251 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3252
3253 return 0;
3254
3255 err_req_irq:
3256 iavf_down(adapter);
3257 iavf_free_traffic_irqs(adapter);
3258 err_setup_rx:
3259 iavf_free_all_rx_resources(adapter);
3260 err_setup_tx:
3261 iavf_free_all_tx_resources(adapter);
3262 err_unlock:
3263 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3264
3265 return err;
3266 }
3267
3268 /**
3269 * iavf_close - Disables a network interface
3270 * @netdev: network interface device structure
3271 *
3272 * Returns 0, this is not allowed to fail
3273 *
3274 * The close entry point is called when an interface is de-activated
3275 * by the OS. The hardware is still under the drivers control, but
3276 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3277 * are freed, along with all transmit and receive resources.
3278 **/
iavf_close(struct net_device * netdev)3279 static int iavf_close(struct net_device *netdev)
3280 {
3281 struct iavf_adapter *adapter = netdev_priv(netdev);
3282 int status;
3283
3284 if (adapter->state <= __IAVF_DOWN_PENDING)
3285 return 0;
3286
3287 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3288 &adapter->crit_section))
3289 usleep_range(500, 1000);
3290
3291 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3292 if (CLIENT_ENABLED(adapter))
3293 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3294
3295 iavf_down(adapter);
3296 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3297 iavf_free_traffic_irqs(adapter);
3298
3299 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3300
3301 /* We explicitly don't free resources here because the hardware is
3302 * still active and can DMA into memory. Resources are cleared in
3303 * iavf_virtchnl_completion() after we get confirmation from the PF
3304 * driver that the rings have been stopped.
3305 *
3306 * Also, we wait for state to transition to __IAVF_DOWN before
3307 * returning. State change occurs in iavf_virtchnl_completion() after
3308 * VF resources are released (which occurs after PF driver processes and
3309 * responds to admin queue commands).
3310 */
3311
3312 status = wait_event_timeout(adapter->down_waitqueue,
3313 adapter->state == __IAVF_DOWN,
3314 msecs_to_jiffies(500));
3315 if (!status)
3316 netdev_warn(netdev, "Device resources not yet released\n");
3317 return 0;
3318 }
3319
3320 /**
3321 * iavf_change_mtu - Change the Maximum Transfer Unit
3322 * @netdev: network interface device structure
3323 * @new_mtu: new value for maximum frame size
3324 *
3325 * Returns 0 on success, negative on failure
3326 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3327 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3328 {
3329 struct iavf_adapter *adapter = netdev_priv(netdev);
3330
3331 netdev->mtu = new_mtu;
3332 if (CLIENT_ENABLED(adapter)) {
3333 iavf_notify_client_l2_params(&adapter->vsi);
3334 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3335 }
3336
3337 if (netif_running(netdev)) {
3338 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3339 queue_work(iavf_wq, &adapter->reset_task);
3340 }
3341
3342 return 0;
3343 }
3344
3345 /**
3346 * iavf_set_features - set the netdev feature flags
3347 * @netdev: ptr to the netdev being adjusted
3348 * @features: the feature set that the stack is suggesting
3349 * Note: expects to be called while under rtnl_lock()
3350 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3351 static int iavf_set_features(struct net_device *netdev,
3352 netdev_features_t features)
3353 {
3354 struct iavf_adapter *adapter = netdev_priv(netdev);
3355
3356 /* Don't allow changing VLAN_RX flag when adapter is not capable
3357 * of VLAN offload
3358 */
3359 if (!VLAN_ALLOWED(adapter)) {
3360 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3361 return -EINVAL;
3362 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3363 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3364 adapter->aq_required |=
3365 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3366 else
3367 adapter->aq_required |=
3368 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3369 }
3370
3371 return 0;
3372 }
3373
3374 /**
3375 * iavf_features_check - Validate encapsulated packet conforms to limits
3376 * @skb: skb buff
3377 * @dev: This physical port's netdev
3378 * @features: Offload features that the stack believes apply
3379 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3380 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3381 struct net_device *dev,
3382 netdev_features_t features)
3383 {
3384 size_t len;
3385
3386 /* No point in doing any of this if neither checksum nor GSO are
3387 * being requested for this frame. We can rule out both by just
3388 * checking for CHECKSUM_PARTIAL
3389 */
3390 if (skb->ip_summed != CHECKSUM_PARTIAL)
3391 return features;
3392
3393 /* We cannot support GSO if the MSS is going to be less than
3394 * 64 bytes. If it is then we need to drop support for GSO.
3395 */
3396 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3397 features &= ~NETIF_F_GSO_MASK;
3398
3399 /* MACLEN can support at most 63 words */
3400 len = skb_network_header(skb) - skb->data;
3401 if (len & ~(63 * 2))
3402 goto out_err;
3403
3404 /* IPLEN and EIPLEN can support at most 127 dwords */
3405 len = skb_transport_header(skb) - skb_network_header(skb);
3406 if (len & ~(127 * 4))
3407 goto out_err;
3408
3409 if (skb->encapsulation) {
3410 /* L4TUNLEN can support 127 words */
3411 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3412 if (len & ~(127 * 2))
3413 goto out_err;
3414
3415 /* IPLEN can support at most 127 dwords */
3416 len = skb_inner_transport_header(skb) -
3417 skb_inner_network_header(skb);
3418 if (len & ~(127 * 4))
3419 goto out_err;
3420 }
3421
3422 /* No need to validate L4LEN as TCP is the only protocol with a
3423 * a flexible value and we support all possible values supported
3424 * by TCP, which is at most 15 dwords
3425 */
3426
3427 return features;
3428 out_err:
3429 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3430 }
3431
3432 /**
3433 * iavf_fix_features - fix up the netdev feature bits
3434 * @netdev: our net device
3435 * @features: desired feature bits
3436 *
3437 * Returns fixed-up features bits
3438 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3439 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3440 netdev_features_t features)
3441 {
3442 struct iavf_adapter *adapter = netdev_priv(netdev);
3443
3444 if (adapter->vf_res &&
3445 !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3446 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3447 NETIF_F_HW_VLAN_CTAG_RX |
3448 NETIF_F_HW_VLAN_CTAG_FILTER);
3449
3450 return features;
3451 }
3452
3453 static const struct net_device_ops iavf_netdev_ops = {
3454 .ndo_open = iavf_open,
3455 .ndo_stop = iavf_close,
3456 .ndo_start_xmit = iavf_xmit_frame,
3457 .ndo_set_rx_mode = iavf_set_rx_mode,
3458 .ndo_validate_addr = eth_validate_addr,
3459 .ndo_set_mac_address = iavf_set_mac,
3460 .ndo_change_mtu = iavf_change_mtu,
3461 .ndo_tx_timeout = iavf_tx_timeout,
3462 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3463 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3464 .ndo_features_check = iavf_features_check,
3465 .ndo_fix_features = iavf_fix_features,
3466 .ndo_set_features = iavf_set_features,
3467 .ndo_setup_tc = iavf_setup_tc,
3468 };
3469
3470 /**
3471 * iavf_check_reset_complete - check that VF reset is complete
3472 * @hw: pointer to hw struct
3473 *
3474 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3475 **/
iavf_check_reset_complete(struct iavf_hw * hw)3476 static int iavf_check_reset_complete(struct iavf_hw *hw)
3477 {
3478 u32 rstat;
3479 int i;
3480
3481 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3482 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3483 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3484 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3485 (rstat == VIRTCHNL_VFR_COMPLETED))
3486 return 0;
3487 usleep_range(10, 20);
3488 }
3489 return -EBUSY;
3490 }
3491
3492 /**
3493 * iavf_process_config - Process the config information we got from the PF
3494 * @adapter: board private structure
3495 *
3496 * Verify that we have a valid config struct, and set up our netdev features
3497 * and our VSI struct.
3498 **/
iavf_process_config(struct iavf_adapter * adapter)3499 int iavf_process_config(struct iavf_adapter *adapter)
3500 {
3501 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3502 int i, num_req_queues = adapter->num_req_queues;
3503 struct net_device *netdev = adapter->netdev;
3504 struct iavf_vsi *vsi = &adapter->vsi;
3505 netdev_features_t hw_enc_features;
3506 netdev_features_t hw_features;
3507
3508 /* got VF config message back from PF, now we can parse it */
3509 for (i = 0; i < vfres->num_vsis; i++) {
3510 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3511 adapter->vsi_res = &vfres->vsi_res[i];
3512 }
3513 if (!adapter->vsi_res) {
3514 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3515 return -ENODEV;
3516 }
3517
3518 if (num_req_queues &&
3519 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3520 /* Problem. The PF gave us fewer queues than what we had
3521 * negotiated in our request. Need a reset to see if we can't
3522 * get back to a working state.
3523 */
3524 dev_err(&adapter->pdev->dev,
3525 "Requested %d queues, but PF only gave us %d.\n",
3526 num_req_queues,
3527 adapter->vsi_res->num_queue_pairs);
3528 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3529 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3530 iavf_schedule_reset(adapter);
3531 return -ENODEV;
3532 }
3533 adapter->num_req_queues = 0;
3534
3535 hw_enc_features = NETIF_F_SG |
3536 NETIF_F_IP_CSUM |
3537 NETIF_F_IPV6_CSUM |
3538 NETIF_F_HIGHDMA |
3539 NETIF_F_SOFT_FEATURES |
3540 NETIF_F_TSO |
3541 NETIF_F_TSO_ECN |
3542 NETIF_F_TSO6 |
3543 NETIF_F_SCTP_CRC |
3544 NETIF_F_RXHASH |
3545 NETIF_F_RXCSUM |
3546 0;
3547
3548 /* advertise to stack only if offloads for encapsulated packets is
3549 * supported
3550 */
3551 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3552 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3553 NETIF_F_GSO_GRE |
3554 NETIF_F_GSO_GRE_CSUM |
3555 NETIF_F_GSO_IPXIP4 |
3556 NETIF_F_GSO_IPXIP6 |
3557 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3558 NETIF_F_GSO_PARTIAL |
3559 0;
3560
3561 if (!(vfres->vf_cap_flags &
3562 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3563 netdev->gso_partial_features |=
3564 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3565
3566 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3567 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3568 netdev->hw_enc_features |= hw_enc_features;
3569 }
3570 /* record features VLANs can make use of */
3571 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3572
3573 /* Write features and hw_features separately to avoid polluting
3574 * with, or dropping, features that are set when we registered.
3575 */
3576 hw_features = hw_enc_features;
3577
3578 /* Enable VLAN features if supported */
3579 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3580 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3581 NETIF_F_HW_VLAN_CTAG_RX);
3582 /* Enable cloud filter if ADQ is supported */
3583 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3584 hw_features |= NETIF_F_HW_TC;
3585
3586 netdev->hw_features |= hw_features;
3587
3588 netdev->features |= hw_features;
3589
3590 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3591 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3592
3593 netdev->priv_flags |= IFF_UNICAST_FLT;
3594
3595 /* Do not turn on offloads when they are requested to be turned off.
3596 * TSO needs minimum 576 bytes to work correctly.
3597 */
3598 if (netdev->wanted_features) {
3599 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3600 netdev->mtu < 576)
3601 netdev->features &= ~NETIF_F_TSO;
3602 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3603 netdev->mtu < 576)
3604 netdev->features &= ~NETIF_F_TSO6;
3605 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3606 netdev->features &= ~NETIF_F_TSO_ECN;
3607 if (!(netdev->wanted_features & NETIF_F_GRO))
3608 netdev->features &= ~NETIF_F_GRO;
3609 if (!(netdev->wanted_features & NETIF_F_GSO))
3610 netdev->features &= ~NETIF_F_GSO;
3611 }
3612
3613 adapter->vsi.id = adapter->vsi_res->vsi_id;
3614
3615 adapter->vsi.back = adapter;
3616 adapter->vsi.base_vector = 1;
3617 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3618 vsi->netdev = adapter->netdev;
3619 vsi->qs_handle = adapter->vsi_res->qset_handle;
3620 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3621 adapter->rss_key_size = vfres->rss_key_size;
3622 adapter->rss_lut_size = vfres->rss_lut_size;
3623 } else {
3624 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3625 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3626 }
3627
3628 return 0;
3629 }
3630
3631 /**
3632 * iavf_init_task - worker thread to perform delayed initialization
3633 * @work: pointer to work_struct containing our data
3634 *
3635 * This task completes the work that was begun in probe. Due to the nature
3636 * of VF-PF communications, we may need to wait tens of milliseconds to get
3637 * responses back from the PF. Rather than busy-wait in probe and bog down the
3638 * whole system, we'll do it in a task so we can sleep.
3639 * This task only runs during driver init. Once we've established
3640 * communications with the PF driver and set up our netdev, the watchdog
3641 * takes over.
3642 **/
iavf_init_task(struct work_struct * work)3643 static void iavf_init_task(struct work_struct *work)
3644 {
3645 struct iavf_adapter *adapter = container_of(work,
3646 struct iavf_adapter,
3647 init_task.work);
3648 struct iavf_hw *hw = &adapter->hw;
3649
3650 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3651 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3652 return;
3653 }
3654 switch (adapter->state) {
3655 case __IAVF_STARTUP:
3656 if (iavf_startup(adapter) < 0)
3657 goto init_failed;
3658 break;
3659 case __IAVF_INIT_VERSION_CHECK:
3660 if (iavf_init_version_check(adapter) < 0)
3661 goto init_failed;
3662 break;
3663 case __IAVF_INIT_GET_RESOURCES:
3664 if (iavf_init_get_resources(adapter) < 0)
3665 goto init_failed;
3666 goto out;
3667 default:
3668 goto init_failed;
3669 }
3670
3671 queue_delayed_work(iavf_wq, &adapter->init_task,
3672 msecs_to_jiffies(30));
3673 goto out;
3674 init_failed:
3675 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3676 dev_err(&adapter->pdev->dev,
3677 "Failed to communicate with PF; waiting before retry\n");
3678 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3679 iavf_shutdown_adminq(hw);
3680 iavf_change_state(adapter, __IAVF_STARTUP);
3681 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3682 goto out;
3683 }
3684 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3685 out:
3686 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3687 }
3688
3689 /**
3690 * iavf_shutdown - Shutdown the device in preparation for a reboot
3691 * @pdev: pci device structure
3692 **/
iavf_shutdown(struct pci_dev * pdev)3693 static void iavf_shutdown(struct pci_dev *pdev)
3694 {
3695 struct net_device *netdev = pci_get_drvdata(pdev);
3696 struct iavf_adapter *adapter = netdev_priv(netdev);
3697
3698 netif_device_detach(netdev);
3699
3700 if (netif_running(netdev))
3701 iavf_close(netdev);
3702
3703 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3704 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3705 /* Prevent the watchdog from running. */
3706 iavf_change_state(adapter, __IAVF_REMOVE);
3707 adapter->aq_required = 0;
3708 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3709
3710 #ifdef CONFIG_PM
3711 pci_save_state(pdev);
3712
3713 #endif
3714 pci_disable_device(pdev);
3715 }
3716
3717 /**
3718 * iavf_probe - Device Initialization Routine
3719 * @pdev: PCI device information struct
3720 * @ent: entry in iavf_pci_tbl
3721 *
3722 * Returns 0 on success, negative on failure
3723 *
3724 * iavf_probe initializes an adapter identified by a pci_dev structure.
3725 * The OS initialization, configuring of the adapter private structure,
3726 * and a hardware reset occur.
3727 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3728 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3729 {
3730 struct net_device *netdev;
3731 struct iavf_adapter *adapter = NULL;
3732 struct iavf_hw *hw = NULL;
3733 int err;
3734
3735 err = pci_enable_device(pdev);
3736 if (err)
3737 return err;
3738
3739 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3740 if (err) {
3741 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3742 if (err) {
3743 dev_err(&pdev->dev,
3744 "DMA configuration failed: 0x%x\n", err);
3745 goto err_dma;
3746 }
3747 }
3748
3749 err = pci_request_regions(pdev, iavf_driver_name);
3750 if (err) {
3751 dev_err(&pdev->dev,
3752 "pci_request_regions failed 0x%x\n", err);
3753 goto err_pci_reg;
3754 }
3755
3756 pci_enable_pcie_error_reporting(pdev);
3757
3758 pci_set_master(pdev);
3759
3760 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3761 IAVF_MAX_REQ_QUEUES);
3762 if (!netdev) {
3763 err = -ENOMEM;
3764 goto err_alloc_etherdev;
3765 }
3766
3767 SET_NETDEV_DEV(netdev, &pdev->dev);
3768
3769 pci_set_drvdata(pdev, netdev);
3770 adapter = netdev_priv(netdev);
3771
3772 adapter->netdev = netdev;
3773 adapter->pdev = pdev;
3774
3775 hw = &adapter->hw;
3776 hw->back = adapter;
3777
3778 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3779 iavf_change_state(adapter, __IAVF_STARTUP);
3780
3781 /* Call save state here because it relies on the adapter struct. */
3782 pci_save_state(pdev);
3783
3784 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3785 pci_resource_len(pdev, 0));
3786 if (!hw->hw_addr) {
3787 err = -EIO;
3788 goto err_ioremap;
3789 }
3790 hw->vendor_id = pdev->vendor;
3791 hw->device_id = pdev->device;
3792 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3793 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3794 hw->subsystem_device_id = pdev->subsystem_device;
3795 hw->bus.device = PCI_SLOT(pdev->devfn);
3796 hw->bus.func = PCI_FUNC(pdev->devfn);
3797 hw->bus.bus_id = pdev->bus->number;
3798
3799 /* set up the locks for the AQ, do this only once in probe
3800 * and destroy them only once in remove
3801 */
3802 mutex_init(&hw->aq.asq_mutex);
3803 mutex_init(&hw->aq.arq_mutex);
3804
3805 spin_lock_init(&adapter->mac_vlan_list_lock);
3806 spin_lock_init(&adapter->cloud_filter_list_lock);
3807
3808 INIT_LIST_HEAD(&adapter->mac_filter_list);
3809 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3810 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3811
3812 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3813 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3814 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3815 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3816 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3817 queue_delayed_work(iavf_wq, &adapter->init_task,
3818 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3819
3820 /* Setup the wait queue for indicating transition to down status */
3821 init_waitqueue_head(&adapter->down_waitqueue);
3822
3823 return 0;
3824
3825 err_ioremap:
3826 free_netdev(netdev);
3827 err_alloc_etherdev:
3828 pci_disable_pcie_error_reporting(pdev);
3829 pci_release_regions(pdev);
3830 err_pci_reg:
3831 err_dma:
3832 pci_disable_device(pdev);
3833 return err;
3834 }
3835
3836 /**
3837 * iavf_suspend - Power management suspend routine
3838 * @dev_d: device info pointer
3839 *
3840 * Called when the system (VM) is entering sleep/suspend.
3841 **/
iavf_suspend(struct device * dev_d)3842 static int __maybe_unused iavf_suspend(struct device *dev_d)
3843 {
3844 struct net_device *netdev = dev_get_drvdata(dev_d);
3845 struct iavf_adapter *adapter = netdev_priv(netdev);
3846
3847 netif_device_detach(netdev);
3848
3849 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3850 &adapter->crit_section))
3851 usleep_range(500, 1000);
3852
3853 if (netif_running(netdev)) {
3854 rtnl_lock();
3855 iavf_down(adapter);
3856 rtnl_unlock();
3857 }
3858 iavf_free_misc_irq(adapter);
3859 iavf_reset_interrupt_capability(adapter);
3860
3861 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3862
3863 return 0;
3864 }
3865
3866 /**
3867 * iavf_resume - Power management resume routine
3868 * @dev_d: device info pointer
3869 *
3870 * Called when the system (VM) is resumed from sleep/suspend.
3871 **/
iavf_resume(struct device * dev_d)3872 static int __maybe_unused iavf_resume(struct device *dev_d)
3873 {
3874 struct pci_dev *pdev = to_pci_dev(dev_d);
3875 struct net_device *netdev = pci_get_drvdata(pdev);
3876 struct iavf_adapter *adapter = netdev_priv(netdev);
3877 u32 err;
3878
3879 pci_set_master(pdev);
3880
3881 rtnl_lock();
3882 err = iavf_set_interrupt_capability(adapter);
3883 if (err) {
3884 rtnl_unlock();
3885 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3886 return err;
3887 }
3888 err = iavf_request_misc_irq(adapter);
3889 rtnl_unlock();
3890 if (err) {
3891 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3892 return err;
3893 }
3894
3895 queue_work(iavf_wq, &adapter->reset_task);
3896
3897 netif_device_attach(netdev);
3898
3899 return err;
3900 }
3901
3902 /**
3903 * iavf_remove - Device Removal Routine
3904 * @pdev: PCI device information struct
3905 *
3906 * iavf_remove is called by the PCI subsystem to alert the driver
3907 * that it should release a PCI device. The could be caused by a
3908 * Hot-Plug event, or because the driver is going to be removed from
3909 * memory.
3910 **/
iavf_remove(struct pci_dev * pdev)3911 static void iavf_remove(struct pci_dev *pdev)
3912 {
3913 struct net_device *netdev = pci_get_drvdata(pdev);
3914 struct iavf_adapter *adapter = netdev_priv(netdev);
3915 struct iavf_vlan_filter *vlf, *vlftmp;
3916 struct iavf_mac_filter *f, *ftmp;
3917 struct iavf_cloud_filter *cf, *cftmp;
3918 struct iavf_hw *hw = &adapter->hw;
3919 int err;
3920 /* Indicate we are in remove and not to run reset_task */
3921 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3922 cancel_delayed_work_sync(&adapter->init_task);
3923 cancel_work_sync(&adapter->reset_task);
3924 cancel_delayed_work_sync(&adapter->client_task);
3925 if (adapter->netdev_registered) {
3926 unregister_netdev(netdev);
3927 adapter->netdev_registered = false;
3928 }
3929 if (CLIENT_ALLOWED(adapter)) {
3930 err = iavf_lan_del_device(adapter);
3931 if (err)
3932 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3933 err);
3934 }
3935
3936 iavf_request_reset(adapter);
3937 msleep(50);
3938 /* If the FW isn't responding, kick it once, but only once. */
3939 if (!iavf_asq_done(hw)) {
3940 iavf_request_reset(adapter);
3941 msleep(50);
3942 }
3943 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3944 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3945
3946 /* Shut down all the garbage mashers on the detention level */
3947 iavf_change_state(adapter, __IAVF_REMOVE);
3948 adapter->aq_required = 0;
3949 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3950 iavf_free_all_tx_resources(adapter);
3951 iavf_free_all_rx_resources(adapter);
3952 iavf_misc_irq_disable(adapter);
3953 iavf_free_misc_irq(adapter);
3954 iavf_reset_interrupt_capability(adapter);
3955 iavf_free_q_vectors(adapter);
3956
3957 cancel_delayed_work_sync(&adapter->watchdog_task);
3958
3959 cancel_work_sync(&adapter->adminq_task);
3960
3961 iavf_free_rss(adapter);
3962
3963 if (hw->aq.asq.count)
3964 iavf_shutdown_adminq(hw);
3965
3966 /* destroy the locks only once, here */
3967 mutex_destroy(&hw->aq.arq_mutex);
3968 mutex_destroy(&hw->aq.asq_mutex);
3969
3970 iounmap(hw->hw_addr);
3971 pci_release_regions(pdev);
3972 iavf_free_queues(adapter);
3973 kfree(adapter->vf_res);
3974 spin_lock_bh(&adapter->mac_vlan_list_lock);
3975 /* If we got removed before an up/down sequence, we've got a filter
3976 * hanging out there that we need to get rid of.
3977 */
3978 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3979 list_del(&f->list);
3980 kfree(f);
3981 }
3982 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3983 list) {
3984 list_del(&vlf->list);
3985 kfree(vlf);
3986 }
3987
3988 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3989
3990 spin_lock_bh(&adapter->cloud_filter_list_lock);
3991 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3992 list_del(&cf->list);
3993 kfree(cf);
3994 }
3995 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3996
3997 free_netdev(netdev);
3998
3999 pci_disable_pcie_error_reporting(pdev);
4000
4001 pci_disable_device(pdev);
4002 }
4003
4004 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4005
4006 static struct pci_driver iavf_driver = {
4007 .name = iavf_driver_name,
4008 .id_table = iavf_pci_tbl,
4009 .probe = iavf_probe,
4010 .remove = iavf_remove,
4011 .driver.pm = &iavf_pm_ops,
4012 .shutdown = iavf_shutdown,
4013 };
4014
4015 /**
4016 * iavf_init_module - Driver Registration Routine
4017 *
4018 * iavf_init_module is the first routine called when the driver is
4019 * loaded. All it does is register with the PCI subsystem.
4020 **/
iavf_init_module(void)4021 static int __init iavf_init_module(void)
4022 {
4023 int ret;
4024
4025 pr_info("iavf: %s\n", iavf_driver_string);
4026
4027 pr_info("%s\n", iavf_copyright);
4028
4029 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4030 iavf_driver_name);
4031 if (!iavf_wq) {
4032 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4033 return -ENOMEM;
4034 }
4035
4036 ret = pci_register_driver(&iavf_driver);
4037 if (ret)
4038 destroy_workqueue(iavf_wq);
4039
4040 return ret;
4041 }
4042
4043 module_init(iavf_init_module);
4044
4045 /**
4046 * iavf_exit_module - Driver Exit Cleanup Routine
4047 *
4048 * iavf_exit_module is called just before the driver is removed
4049 * from memory.
4050 **/
iavf_exit_module(void)4051 static void __exit iavf_exit_module(void)
4052 {
4053 pci_unregister_driver(&iavf_driver);
4054 destroy_workqueue(iavf_wq);
4055 }
4056
4057 module_exit(iavf_exit_module);
4058
4059 /* iavf_main.c */
4060