1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21
22 #include "internal.h"
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 static DEFINE_IDR(icc_idr);
28 static LIST_HEAD(icc_providers);
29 static int providers_count;
30 static bool synced_state;
31 static DEFINE_MUTEX(icc_lock);
32 static struct dentry *icc_debugfs_dir;
33
icc_summary_show_one(struct seq_file * s,struct icc_node * n)34 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35 {
36 if (!n)
37 return;
38
39 seq_printf(s, "%-42s %12u %12u\n",
40 n->name, n->avg_bw, n->peak_bw);
41 }
42
icc_summary_show(struct seq_file * s,void * data)43 static int icc_summary_show(struct seq_file *s, void *data)
44 {
45 struct icc_provider *provider;
46
47 seq_puts(s, " node tag avg peak\n");
48 seq_puts(s, "--------------------------------------------------------------------\n");
49
50 mutex_lock(&icc_lock);
51
52 list_for_each_entry(provider, &icc_providers, provider_list) {
53 struct icc_node *n;
54
55 list_for_each_entry(n, &provider->nodes, node_list) {
56 struct icc_req *r;
57
58 icc_summary_show_one(s, n);
59 hlist_for_each_entry(r, &n->req_list, req_node) {
60 u32 avg_bw = 0, peak_bw = 0;
61
62 if (!r->dev)
63 continue;
64
65 if (r->enabled) {
66 avg_bw = r->avg_bw;
67 peak_bw = r->peak_bw;
68 }
69
70 seq_printf(s, " %-27s %12u %12u %12u\n",
71 dev_name(r->dev), r->tag, avg_bw, peak_bw);
72 }
73 }
74 }
75
76 mutex_unlock(&icc_lock);
77
78 return 0;
79 }
80 DEFINE_SHOW_ATTRIBUTE(icc_summary);
81
icc_graph_show_link(struct seq_file * s,int level,struct icc_node * n,struct icc_node * m)82 static void icc_graph_show_link(struct seq_file *s, int level,
83 struct icc_node *n, struct icc_node *m)
84 {
85 seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86 level == 2 ? "\t\t" : "\t",
87 n->id, n->name, m->id, m->name);
88 }
89
icc_graph_show_node(struct seq_file * s,struct icc_node * n)90 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91 {
92 seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93 n->id, n->name, n->id, n->name);
94 seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95 seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96 seq_puts(s, "\"]\n");
97 }
98
icc_graph_show(struct seq_file * s,void * data)99 static int icc_graph_show(struct seq_file *s, void *data)
100 {
101 struct icc_provider *provider;
102 struct icc_node *n;
103 int cluster_index = 0;
104 int i;
105
106 seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107 mutex_lock(&icc_lock);
108
109 /* draw providers as cluster subgraphs */
110 cluster_index = 0;
111 list_for_each_entry(provider, &icc_providers, provider_list) {
112 seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113 if (provider->dev)
114 seq_printf(s, "\t\tlabel = \"%s\"\n",
115 dev_name(provider->dev));
116
117 /* draw nodes */
118 list_for_each_entry(n, &provider->nodes, node_list)
119 icc_graph_show_node(s, n);
120
121 /* draw internal links */
122 list_for_each_entry(n, &provider->nodes, node_list)
123 for (i = 0; i < n->num_links; ++i)
124 if (n->provider == n->links[i]->provider)
125 icc_graph_show_link(s, 2, n,
126 n->links[i]);
127
128 seq_puts(s, "\t}\n");
129 }
130
131 /* draw external links */
132 list_for_each_entry(provider, &icc_providers, provider_list)
133 list_for_each_entry(n, &provider->nodes, node_list)
134 for (i = 0; i < n->num_links; ++i)
135 if (n->provider != n->links[i]->provider)
136 icc_graph_show_link(s, 1, n,
137 n->links[i]);
138
139 mutex_unlock(&icc_lock);
140 seq_puts(s, "}");
141
142 return 0;
143 }
144 DEFINE_SHOW_ATTRIBUTE(icc_graph);
145
node_find(const int id)146 static struct icc_node *node_find(const int id)
147 {
148 return idr_find(&icc_idr, id);
149 }
150
path_init(struct device * dev,struct icc_node * dst,ssize_t num_nodes)151 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
152 ssize_t num_nodes)
153 {
154 struct icc_node *node = dst;
155 struct icc_path *path;
156 int i;
157
158 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
159 if (!path)
160 return ERR_PTR(-ENOMEM);
161
162 path->num_nodes = num_nodes;
163
164 for (i = num_nodes - 1; i >= 0; i--) {
165 node->provider->users++;
166 hlist_add_head(&path->reqs[i].req_node, &node->req_list);
167 path->reqs[i].node = node;
168 path->reqs[i].dev = dev;
169 path->reqs[i].enabled = true;
170 /* reference to previous node was saved during path traversal */
171 node = node->reverse;
172 }
173
174 return path;
175 }
176
path_find(struct device * dev,struct icc_node * src,struct icc_node * dst)177 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
178 struct icc_node *dst)
179 {
180 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
181 struct icc_node *n, *node = NULL;
182 struct list_head traverse_list;
183 struct list_head edge_list;
184 struct list_head visited_list;
185 size_t i, depth = 1;
186 bool found = false;
187
188 INIT_LIST_HEAD(&traverse_list);
189 INIT_LIST_HEAD(&edge_list);
190 INIT_LIST_HEAD(&visited_list);
191
192 list_add(&src->search_list, &traverse_list);
193 src->reverse = NULL;
194
195 do {
196 list_for_each_entry_safe(node, n, &traverse_list, search_list) {
197 if (node == dst) {
198 found = true;
199 list_splice_init(&edge_list, &visited_list);
200 list_splice_init(&traverse_list, &visited_list);
201 break;
202 }
203 for (i = 0; i < node->num_links; i++) {
204 struct icc_node *tmp = node->links[i];
205
206 if (!tmp) {
207 path = ERR_PTR(-ENOENT);
208 goto out;
209 }
210
211 if (tmp->is_traversed)
212 continue;
213
214 tmp->is_traversed = true;
215 tmp->reverse = node;
216 list_add_tail(&tmp->search_list, &edge_list);
217 }
218 }
219
220 if (found)
221 break;
222
223 list_splice_init(&traverse_list, &visited_list);
224 list_splice_init(&edge_list, &traverse_list);
225
226 /* count the hops including the source */
227 depth++;
228
229 } while (!list_empty(&traverse_list));
230
231 out:
232
233 /* reset the traversed state */
234 list_for_each_entry_reverse(n, &visited_list, search_list)
235 n->is_traversed = false;
236
237 if (found)
238 path = path_init(dev, dst, depth);
239
240 return path;
241 }
242
243 /*
244 * We want the path to honor all bandwidth requests, so the average and peak
245 * bandwidth requirements from each consumer are aggregated at each node.
246 * The aggregation is platform specific, so each platform can customize it by
247 * implementing its own aggregate() function.
248 */
249
aggregate_requests(struct icc_node * node)250 static int aggregate_requests(struct icc_node *node)
251 {
252 struct icc_provider *p = node->provider;
253 struct icc_req *r;
254 u32 avg_bw, peak_bw;
255
256 node->avg_bw = 0;
257 node->peak_bw = 0;
258
259 if (p->pre_aggregate)
260 p->pre_aggregate(node);
261
262 hlist_for_each_entry(r, &node->req_list, req_node) {
263 if (r->enabled) {
264 avg_bw = r->avg_bw;
265 peak_bw = r->peak_bw;
266 } else {
267 avg_bw = 0;
268 peak_bw = 0;
269 }
270 p->aggregate(node, r->tag, avg_bw, peak_bw,
271 &node->avg_bw, &node->peak_bw);
272
273 /* during boot use the initial bandwidth as a floor value */
274 if (!synced_state) {
275 node->avg_bw = max(node->avg_bw, node->init_avg);
276 node->peak_bw = max(node->peak_bw, node->init_peak);
277 }
278 }
279
280 return 0;
281 }
282
apply_constraints(struct icc_path * path)283 static int apply_constraints(struct icc_path *path)
284 {
285 struct icc_node *next, *prev = NULL;
286 struct icc_provider *p;
287 int ret = -EINVAL;
288 int i;
289
290 for (i = 0; i < path->num_nodes; i++) {
291 next = path->reqs[i].node;
292 p = next->provider;
293
294 /* both endpoints should be valid master-slave pairs */
295 if (!prev || (p != prev->provider && !p->inter_set)) {
296 prev = next;
297 continue;
298 }
299
300 /* set the constraints */
301 ret = p->set(prev, next);
302 if (ret)
303 goto out;
304
305 prev = next;
306 }
307 out:
308 return ret;
309 }
310
icc_std_aggregate(struct icc_node * node,u32 tag,u32 avg_bw,u32 peak_bw,u32 * agg_avg,u32 * agg_peak)311 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
312 u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
313 {
314 *agg_avg += avg_bw;
315 *agg_peak = max(*agg_peak, peak_bw);
316
317 return 0;
318 }
319 EXPORT_SYMBOL_GPL(icc_std_aggregate);
320
321 /* of_icc_xlate_onecell() - Translate function using a single index.
322 * @spec: OF phandle args to map into an interconnect node.
323 * @data: private data (pointer to struct icc_onecell_data)
324 *
325 * This is a generic translate function that can be used to model simple
326 * interconnect providers that have one device tree node and provide
327 * multiple interconnect nodes. A single cell is used as an index into
328 * an array of icc nodes specified in the icc_onecell_data struct when
329 * registering the provider.
330 */
of_icc_xlate_onecell(struct of_phandle_args * spec,void * data)331 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
332 void *data)
333 {
334 struct icc_onecell_data *icc_data = data;
335 unsigned int idx = spec->args[0];
336
337 if (idx >= icc_data->num_nodes) {
338 pr_err("%s: invalid index %u\n", __func__, idx);
339 return ERR_PTR(-EINVAL);
340 }
341
342 return icc_data->nodes[idx];
343 }
344 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
345
346 /**
347 * of_icc_get_from_provider() - Look-up interconnect node
348 * @spec: OF phandle args to use for look-up
349 *
350 * Looks for interconnect provider under the node specified by @spec and if
351 * found, uses xlate function of the provider to map phandle args to node.
352 *
353 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
354 * on failure.
355 */
of_icc_get_from_provider(struct of_phandle_args * spec)356 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
357 {
358 struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
359 struct icc_node_data *data = NULL;
360 struct icc_provider *provider;
361
362 if (!spec)
363 return ERR_PTR(-EINVAL);
364
365 mutex_lock(&icc_lock);
366 list_for_each_entry(provider, &icc_providers, provider_list) {
367 if (provider->dev->of_node == spec->np) {
368 if (provider->xlate_extended) {
369 data = provider->xlate_extended(spec, provider->data);
370 if (!IS_ERR(data)) {
371 node = data->node;
372 break;
373 }
374 } else {
375 node = provider->xlate(spec, provider->data);
376 if (!IS_ERR(node))
377 break;
378 }
379 }
380 }
381 mutex_unlock(&icc_lock);
382
383 if (!node)
384 return ERR_PTR(-EINVAL);
385
386 if (IS_ERR(node))
387 return ERR_CAST(node);
388
389 if (!data) {
390 data = kzalloc(sizeof(*data), GFP_KERNEL);
391 if (!data)
392 return ERR_PTR(-ENOMEM);
393 data->node = node;
394 }
395
396 return data;
397 }
398 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
399
devm_icc_release(struct device * dev,void * res)400 static void devm_icc_release(struct device *dev, void *res)
401 {
402 icc_put(*(struct icc_path **)res);
403 }
404
devm_of_icc_get(struct device * dev,const char * name)405 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
406 {
407 struct icc_path **ptr, *path;
408
409 ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
410 if (!ptr)
411 return ERR_PTR(-ENOMEM);
412
413 path = of_icc_get(dev, name);
414 if (!IS_ERR(path)) {
415 *ptr = path;
416 devres_add(dev, ptr);
417 } else {
418 devres_free(ptr);
419 }
420
421 return path;
422 }
423 EXPORT_SYMBOL_GPL(devm_of_icc_get);
424
425 /**
426 * of_icc_get_by_index() - get a path handle from a DT node based on index
427 * @dev: device pointer for the consumer device
428 * @idx: interconnect path index
429 *
430 * This function will search for a path between two endpoints and return an
431 * icc_path handle on success. Use icc_put() to release constraints when they
432 * are not needed anymore.
433 * If the interconnect API is disabled, NULL is returned and the consumer
434 * drivers will still build. Drivers are free to handle this specifically,
435 * but they don't have to.
436 *
437 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
438 * when the API is disabled or the "interconnects" DT property is missing.
439 */
of_icc_get_by_index(struct device * dev,int idx)440 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
441 {
442 struct icc_path *path;
443 struct icc_node_data *src_data, *dst_data;
444 struct device_node *np;
445 struct of_phandle_args src_args, dst_args;
446 int ret;
447
448 if (!dev || !dev->of_node)
449 return ERR_PTR(-ENODEV);
450
451 np = dev->of_node;
452
453 /*
454 * When the consumer DT node do not have "interconnects" property
455 * return a NULL path to skip setting constraints.
456 */
457 if (!of_find_property(np, "interconnects", NULL))
458 return NULL;
459
460 /*
461 * We use a combination of phandle and specifier for endpoint. For now
462 * lets support only global ids and extend this in the future if needed
463 * without breaking DT compatibility.
464 */
465 ret = of_parse_phandle_with_args(np, "interconnects",
466 "#interconnect-cells", idx * 2,
467 &src_args);
468 if (ret)
469 return ERR_PTR(ret);
470
471 of_node_put(src_args.np);
472
473 ret = of_parse_phandle_with_args(np, "interconnects",
474 "#interconnect-cells", idx * 2 + 1,
475 &dst_args);
476 if (ret)
477 return ERR_PTR(ret);
478
479 of_node_put(dst_args.np);
480
481 src_data = of_icc_get_from_provider(&src_args);
482
483 if (IS_ERR(src_data)) {
484 dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
485 return ERR_CAST(src_data);
486 }
487
488 dst_data = of_icc_get_from_provider(&dst_args);
489
490 if (IS_ERR(dst_data)) {
491 dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
492 kfree(src_data);
493 return ERR_CAST(dst_data);
494 }
495
496 mutex_lock(&icc_lock);
497 path = path_find(dev, src_data->node, dst_data->node);
498 mutex_unlock(&icc_lock);
499 if (IS_ERR(path)) {
500 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
501 goto free_icc_data;
502 }
503
504 if (src_data->tag && src_data->tag == dst_data->tag)
505 icc_set_tag(path, src_data->tag);
506
507 path->name = kasprintf(GFP_KERNEL, "%s-%s",
508 src_data->node->name, dst_data->node->name);
509 if (!path->name) {
510 kfree(path);
511 path = ERR_PTR(-ENOMEM);
512 }
513
514 free_icc_data:
515 kfree(src_data);
516 kfree(dst_data);
517 return path;
518 }
519 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
520
521 /**
522 * of_icc_get() - get a path handle from a DT node based on name
523 * @dev: device pointer for the consumer device
524 * @name: interconnect path name
525 *
526 * This function will search for a path between two endpoints and return an
527 * icc_path handle on success. Use icc_put() to release constraints when they
528 * are not needed anymore.
529 * If the interconnect API is disabled, NULL is returned and the consumer
530 * drivers will still build. Drivers are free to handle this specifically,
531 * but they don't have to.
532 *
533 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
534 * when the API is disabled or the "interconnects" DT property is missing.
535 */
of_icc_get(struct device * dev,const char * name)536 struct icc_path *of_icc_get(struct device *dev, const char *name)
537 {
538 struct device_node *np;
539 int idx = 0;
540
541 if (!dev || !dev->of_node)
542 return ERR_PTR(-ENODEV);
543
544 np = dev->of_node;
545
546 /*
547 * When the consumer DT node do not have "interconnects" property
548 * return a NULL path to skip setting constraints.
549 */
550 if (!of_find_property(np, "interconnects", NULL))
551 return NULL;
552
553 /*
554 * We use a combination of phandle and specifier for endpoint. For now
555 * lets support only global ids and extend this in the future if needed
556 * without breaking DT compatibility.
557 */
558 if (name) {
559 idx = of_property_match_string(np, "interconnect-names", name);
560 if (idx < 0)
561 return ERR_PTR(idx);
562 }
563
564 return of_icc_get_by_index(dev, idx);
565 }
566 EXPORT_SYMBOL_GPL(of_icc_get);
567
568 /**
569 * icc_set_tag() - set an optional tag on a path
570 * @path: the path we want to tag
571 * @tag: the tag value
572 *
573 * This function allows consumers to append a tag to the requests associated
574 * with a path, so that a different aggregation could be done based on this tag.
575 */
icc_set_tag(struct icc_path * path,u32 tag)576 void icc_set_tag(struct icc_path *path, u32 tag)
577 {
578 int i;
579
580 if (!path)
581 return;
582
583 mutex_lock(&icc_lock);
584
585 for (i = 0; i < path->num_nodes; i++)
586 path->reqs[i].tag = tag;
587
588 mutex_unlock(&icc_lock);
589 }
590 EXPORT_SYMBOL_GPL(icc_set_tag);
591
592 /**
593 * icc_get_name() - Get name of the icc path
594 * @path: reference to the path returned by icc_get()
595 *
596 * This function is used by an interconnect consumer to get the name of the icc
597 * path.
598 *
599 * Returns a valid pointer on success, or NULL otherwise.
600 */
icc_get_name(struct icc_path * path)601 const char *icc_get_name(struct icc_path *path)
602 {
603 if (!path)
604 return NULL;
605
606 return path->name;
607 }
608 EXPORT_SYMBOL_GPL(icc_get_name);
609
610 /**
611 * icc_set_bw() - set bandwidth constraints on an interconnect path
612 * @path: reference to the path returned by icc_get()
613 * @avg_bw: average bandwidth in kilobytes per second
614 * @peak_bw: peak bandwidth in kilobytes per second
615 *
616 * This function is used by an interconnect consumer to express its own needs
617 * in terms of bandwidth for a previously requested path between two endpoints.
618 * The requests are aggregated and each node is updated accordingly. The entire
619 * path is locked by a mutex to ensure that the set() is completed.
620 * The @path can be NULL when the "interconnects" DT properties is missing,
621 * which will mean that no constraints will be set.
622 *
623 * Returns 0 on success, or an appropriate error code otherwise.
624 */
icc_set_bw(struct icc_path * path,u32 avg_bw,u32 peak_bw)625 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
626 {
627 struct icc_node *node;
628 u32 old_avg, old_peak;
629 size_t i;
630 int ret;
631
632 if (!path)
633 return 0;
634
635 if (WARN_ON(IS_ERR(path) || !path->num_nodes))
636 return -EINVAL;
637
638 mutex_lock(&icc_lock);
639
640 old_avg = path->reqs[0].avg_bw;
641 old_peak = path->reqs[0].peak_bw;
642
643 for (i = 0; i < path->num_nodes; i++) {
644 node = path->reqs[i].node;
645
646 /* update the consumer request for this path */
647 path->reqs[i].avg_bw = avg_bw;
648 path->reqs[i].peak_bw = peak_bw;
649
650 /* aggregate requests for this node */
651 aggregate_requests(node);
652
653 trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
654 }
655
656 ret = apply_constraints(path);
657 if (ret) {
658 pr_debug("interconnect: error applying constraints (%d)\n",
659 ret);
660
661 for (i = 0; i < path->num_nodes; i++) {
662 node = path->reqs[i].node;
663 path->reqs[i].avg_bw = old_avg;
664 path->reqs[i].peak_bw = old_peak;
665 aggregate_requests(node);
666 }
667 apply_constraints(path);
668 }
669
670 mutex_unlock(&icc_lock);
671
672 trace_icc_set_bw_end(path, ret);
673
674 return ret;
675 }
676 EXPORT_SYMBOL_GPL(icc_set_bw);
677
__icc_enable(struct icc_path * path,bool enable)678 static int __icc_enable(struct icc_path *path, bool enable)
679 {
680 int i;
681
682 if (!path)
683 return 0;
684
685 if (WARN_ON(IS_ERR(path) || !path->num_nodes))
686 return -EINVAL;
687
688 mutex_lock(&icc_lock);
689
690 for (i = 0; i < path->num_nodes; i++)
691 path->reqs[i].enabled = enable;
692
693 mutex_unlock(&icc_lock);
694
695 return icc_set_bw(path, path->reqs[0].avg_bw,
696 path->reqs[0].peak_bw);
697 }
698
icc_enable(struct icc_path * path)699 int icc_enable(struct icc_path *path)
700 {
701 return __icc_enable(path, true);
702 }
703 EXPORT_SYMBOL_GPL(icc_enable);
704
icc_disable(struct icc_path * path)705 int icc_disable(struct icc_path *path)
706 {
707 return __icc_enable(path, false);
708 }
709 EXPORT_SYMBOL_GPL(icc_disable);
710
711 /**
712 * icc_get() - return a handle for path between two endpoints
713 * @dev: the device requesting the path
714 * @src_id: source device port id
715 * @dst_id: destination device port id
716 *
717 * This function will search for a path between two endpoints and return an
718 * icc_path handle on success. Use icc_put() to release
719 * constraints when they are not needed anymore.
720 * If the interconnect API is disabled, NULL is returned and the consumer
721 * drivers will still build. Drivers are free to handle this specifically,
722 * but they don't have to.
723 *
724 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
725 * interconnect API is disabled.
726 */
icc_get(struct device * dev,const int src_id,const int dst_id)727 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
728 {
729 struct icc_node *src, *dst;
730 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
731
732 mutex_lock(&icc_lock);
733
734 src = node_find(src_id);
735 if (!src)
736 goto out;
737
738 dst = node_find(dst_id);
739 if (!dst)
740 goto out;
741
742 path = path_find(dev, src, dst);
743 if (IS_ERR(path)) {
744 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
745 goto out;
746 }
747
748 path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
749 if (!path->name) {
750 kfree(path);
751 path = ERR_PTR(-ENOMEM);
752 }
753 out:
754 mutex_unlock(&icc_lock);
755 return path;
756 }
757 EXPORT_SYMBOL_GPL(icc_get);
758
759 /**
760 * icc_put() - release the reference to the icc_path
761 * @path: interconnect path
762 *
763 * Use this function to release the constraints on a path when the path is
764 * no longer needed. The constraints will be re-aggregated.
765 */
icc_put(struct icc_path * path)766 void icc_put(struct icc_path *path)
767 {
768 struct icc_node *node;
769 size_t i;
770 int ret;
771
772 if (!path || WARN_ON(IS_ERR(path)))
773 return;
774
775 ret = icc_set_bw(path, 0, 0);
776 if (ret)
777 pr_err("%s: error (%d)\n", __func__, ret);
778
779 mutex_lock(&icc_lock);
780 for (i = 0; i < path->num_nodes; i++) {
781 node = path->reqs[i].node;
782 hlist_del(&path->reqs[i].req_node);
783 if (!WARN_ON(!node->provider->users))
784 node->provider->users--;
785 }
786 mutex_unlock(&icc_lock);
787
788 kfree_const(path->name);
789 kfree(path);
790 }
791 EXPORT_SYMBOL_GPL(icc_put);
792
icc_node_create_nolock(int id)793 static struct icc_node *icc_node_create_nolock(int id)
794 {
795 struct icc_node *node;
796
797 /* check if node already exists */
798 node = node_find(id);
799 if (node)
800 return node;
801
802 node = kzalloc(sizeof(*node), GFP_KERNEL);
803 if (!node)
804 return ERR_PTR(-ENOMEM);
805
806 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
807 if (id < 0) {
808 WARN(1, "%s: couldn't get idr\n", __func__);
809 kfree(node);
810 return ERR_PTR(id);
811 }
812
813 node->id = id;
814
815 return node;
816 }
817
818 /**
819 * icc_node_create() - create a node
820 * @id: node id
821 *
822 * Return: icc_node pointer on success, or ERR_PTR() on error
823 */
icc_node_create(int id)824 struct icc_node *icc_node_create(int id)
825 {
826 struct icc_node *node;
827
828 mutex_lock(&icc_lock);
829
830 node = icc_node_create_nolock(id);
831
832 mutex_unlock(&icc_lock);
833
834 return node;
835 }
836 EXPORT_SYMBOL_GPL(icc_node_create);
837
838 /**
839 * icc_node_destroy() - destroy a node
840 * @id: node id
841 */
icc_node_destroy(int id)842 void icc_node_destroy(int id)
843 {
844 struct icc_node *node;
845
846 mutex_lock(&icc_lock);
847
848 node = node_find(id);
849 if (node) {
850 idr_remove(&icc_idr, node->id);
851 WARN_ON(!hlist_empty(&node->req_list));
852 }
853
854 mutex_unlock(&icc_lock);
855
856 if (!node)
857 return;
858
859 kfree(node->links);
860 kfree(node);
861 }
862 EXPORT_SYMBOL_GPL(icc_node_destroy);
863
864 /**
865 * icc_link_create() - create a link between two nodes
866 * @node: source node id
867 * @dst_id: destination node id
868 *
869 * Create a link between two nodes. The nodes might belong to different
870 * interconnect providers and the @dst_id node might not exist (if the
871 * provider driver has not probed yet). So just create the @dst_id node
872 * and when the actual provider driver is probed, the rest of the node
873 * data is filled.
874 *
875 * Return: 0 on success, or an error code otherwise
876 */
icc_link_create(struct icc_node * node,const int dst_id)877 int icc_link_create(struct icc_node *node, const int dst_id)
878 {
879 struct icc_node *dst;
880 struct icc_node **new;
881 int ret = 0;
882
883 if (!node->provider)
884 return -EINVAL;
885
886 mutex_lock(&icc_lock);
887
888 dst = node_find(dst_id);
889 if (!dst) {
890 dst = icc_node_create_nolock(dst_id);
891
892 if (IS_ERR(dst)) {
893 ret = PTR_ERR(dst);
894 goto out;
895 }
896 }
897
898 new = krealloc(node->links,
899 (node->num_links + 1) * sizeof(*node->links),
900 GFP_KERNEL);
901 if (!new) {
902 ret = -ENOMEM;
903 goto out;
904 }
905
906 node->links = new;
907 node->links[node->num_links++] = dst;
908
909 out:
910 mutex_unlock(&icc_lock);
911
912 return ret;
913 }
914 EXPORT_SYMBOL_GPL(icc_link_create);
915
916 /**
917 * icc_link_destroy() - destroy a link between two nodes
918 * @src: pointer to source node
919 * @dst: pointer to destination node
920 *
921 * Return: 0 on success, or an error code otherwise
922 */
icc_link_destroy(struct icc_node * src,struct icc_node * dst)923 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
924 {
925 struct icc_node **new;
926 size_t slot;
927 int ret = 0;
928
929 if (IS_ERR_OR_NULL(src))
930 return -EINVAL;
931
932 if (IS_ERR_OR_NULL(dst))
933 return -EINVAL;
934
935 mutex_lock(&icc_lock);
936
937 for (slot = 0; slot < src->num_links; slot++)
938 if (src->links[slot] == dst)
939 break;
940
941 if (WARN_ON(slot == src->num_links)) {
942 ret = -ENXIO;
943 goto out;
944 }
945
946 src->links[slot] = src->links[--src->num_links];
947
948 new = krealloc(src->links, src->num_links * sizeof(*src->links),
949 GFP_KERNEL);
950 if (new)
951 src->links = new;
952 else
953 ret = -ENOMEM;
954
955 out:
956 mutex_unlock(&icc_lock);
957
958 return ret;
959 }
960 EXPORT_SYMBOL_GPL(icc_link_destroy);
961
962 /**
963 * icc_node_add() - add interconnect node to interconnect provider
964 * @node: pointer to the interconnect node
965 * @provider: pointer to the interconnect provider
966 */
icc_node_add(struct icc_node * node,struct icc_provider * provider)967 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
968 {
969 mutex_lock(&icc_lock);
970
971 node->provider = provider;
972 list_add_tail(&node->node_list, &provider->nodes);
973
974 /* get the initial bandwidth values and sync them with hardware */
975 if (provider->get_bw) {
976 provider->get_bw(node, &node->init_avg, &node->init_peak);
977 } else {
978 node->init_avg = INT_MAX;
979 node->init_peak = INT_MAX;
980 }
981 node->avg_bw = node->init_avg;
982 node->peak_bw = node->init_peak;
983
984 if (provider->pre_aggregate)
985 provider->pre_aggregate(node);
986
987 if (provider->aggregate)
988 provider->aggregate(node, 0, node->init_avg, node->init_peak,
989 &node->avg_bw, &node->peak_bw);
990
991 provider->set(node, node);
992 node->avg_bw = 0;
993 node->peak_bw = 0;
994
995 mutex_unlock(&icc_lock);
996 }
997 EXPORT_SYMBOL_GPL(icc_node_add);
998
999 /**
1000 * icc_node_del() - delete interconnect node from interconnect provider
1001 * @node: pointer to the interconnect node
1002 */
icc_node_del(struct icc_node * node)1003 void icc_node_del(struct icc_node *node)
1004 {
1005 mutex_lock(&icc_lock);
1006
1007 list_del(&node->node_list);
1008
1009 mutex_unlock(&icc_lock);
1010 }
1011 EXPORT_SYMBOL_GPL(icc_node_del);
1012
1013 /**
1014 * icc_nodes_remove() - remove all previously added nodes from provider
1015 * @provider: the interconnect provider we are removing nodes from
1016 *
1017 * Return: 0 on success, or an error code otherwise
1018 */
icc_nodes_remove(struct icc_provider * provider)1019 int icc_nodes_remove(struct icc_provider *provider)
1020 {
1021 struct icc_node *n, *tmp;
1022
1023 if (WARN_ON(IS_ERR_OR_NULL(provider)))
1024 return -EINVAL;
1025
1026 list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1027 icc_node_del(n);
1028 icc_node_destroy(n->id);
1029 }
1030
1031 return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(icc_nodes_remove);
1034
1035 /**
1036 * icc_provider_add() - add a new interconnect provider
1037 * @provider: the interconnect provider that will be added into topology
1038 *
1039 * Return: 0 on success, or an error code otherwise
1040 */
icc_provider_add(struct icc_provider * provider)1041 int icc_provider_add(struct icc_provider *provider)
1042 {
1043 if (WARN_ON(!provider->set))
1044 return -EINVAL;
1045 if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1046 return -EINVAL;
1047
1048 mutex_lock(&icc_lock);
1049
1050 INIT_LIST_HEAD(&provider->nodes);
1051 list_add_tail(&provider->provider_list, &icc_providers);
1052
1053 mutex_unlock(&icc_lock);
1054
1055 dev_dbg(provider->dev, "interconnect provider added to topology\n");
1056
1057 return 0;
1058 }
1059 EXPORT_SYMBOL_GPL(icc_provider_add);
1060
1061 /**
1062 * icc_provider_del() - delete previously added interconnect provider
1063 * @provider: the interconnect provider that will be removed from topology
1064 *
1065 * Return: 0 on success, or an error code otherwise
1066 */
icc_provider_del(struct icc_provider * provider)1067 int icc_provider_del(struct icc_provider *provider)
1068 {
1069 mutex_lock(&icc_lock);
1070 if (provider->users) {
1071 pr_warn("interconnect provider still has %d users\n",
1072 provider->users);
1073 mutex_unlock(&icc_lock);
1074 return -EBUSY;
1075 }
1076
1077 if (!list_empty(&provider->nodes)) {
1078 pr_warn("interconnect provider still has nodes\n");
1079 mutex_unlock(&icc_lock);
1080 return -EBUSY;
1081 }
1082
1083 list_del(&provider->provider_list);
1084 mutex_unlock(&icc_lock);
1085
1086 return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(icc_provider_del);
1089
of_count_icc_providers(struct device_node * np)1090 static int of_count_icc_providers(struct device_node *np)
1091 {
1092 struct device_node *child;
1093 int count = 0;
1094 const struct of_device_id __maybe_unused ignore_list[] = {
1095 { .compatible = "qcom,sc7180-ipa-virt" },
1096 {}
1097 };
1098
1099 for_each_available_child_of_node(np, child) {
1100 if (of_property_read_bool(child, "#interconnect-cells") &&
1101 likely(!of_match_node(ignore_list, child)))
1102 count++;
1103 count += of_count_icc_providers(child);
1104 }
1105
1106 return count;
1107 }
1108
icc_sync_state(struct device * dev)1109 void icc_sync_state(struct device *dev)
1110 {
1111 struct icc_provider *p;
1112 struct icc_node *n;
1113 static int count;
1114
1115 count++;
1116
1117 if (count < providers_count)
1118 return;
1119
1120 mutex_lock(&icc_lock);
1121 synced_state = true;
1122 list_for_each_entry(p, &icc_providers, provider_list) {
1123 dev_dbg(p->dev, "interconnect provider is in synced state\n");
1124 list_for_each_entry(n, &p->nodes, node_list) {
1125 if (n->init_avg || n->init_peak) {
1126 n->init_avg = 0;
1127 n->init_peak = 0;
1128 aggregate_requests(n);
1129 p->set(n, n);
1130 }
1131 }
1132 }
1133 mutex_unlock(&icc_lock);
1134 }
1135 EXPORT_SYMBOL_GPL(icc_sync_state);
1136
icc_init(void)1137 static int __init icc_init(void)
1138 {
1139 struct device_node *root = of_find_node_by_path("/");
1140
1141 providers_count = of_count_icc_providers(root);
1142 of_node_put(root);
1143
1144 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1145 debugfs_create_file("interconnect_summary", 0444,
1146 icc_debugfs_dir, NULL, &icc_summary_fops);
1147 debugfs_create_file("interconnect_graph", 0444,
1148 icc_debugfs_dir, NULL, &icc_graph_fops);
1149 return 0;
1150 }
1151
1152 device_initcall(icc_init);
1153
1154 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1155 MODULE_DESCRIPTION("Interconnect Driver Core");
1156 MODULE_LICENSE("GPL v2");
1157