• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 
18 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
19 static const char ice_driver_string[] = DRV_SUMMARY;
20 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
21 
22 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
23 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
24 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
25 
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
30 
31 static int debug = -1;
32 module_param(debug, int, 0644);
33 #ifndef CONFIG_DYNAMIC_DEBUG
34 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
35 #else
36 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
37 #endif /* !CONFIG_DYNAMIC_DEBUG */
38 
39 static struct workqueue_struct *ice_wq;
40 static const struct net_device_ops ice_netdev_safe_mode_ops;
41 static const struct net_device_ops ice_netdev_ops;
42 static int ice_vsi_open(struct ice_vsi *vsi);
43 
44 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
45 
46 static void ice_vsi_release_all(struct ice_pf *pf);
47 
48 /**
49  * ice_get_tx_pending - returns number of Tx descriptors not processed
50  * @ring: the ring of descriptors
51  */
ice_get_tx_pending(struct ice_ring * ring)52 static u16 ice_get_tx_pending(struct ice_ring *ring)
53 {
54 	u16 head, tail;
55 
56 	head = ring->next_to_clean;
57 	tail = ring->next_to_use;
58 
59 	if (head != tail)
60 		return (head < tail) ?
61 			tail - head : (tail + ring->count - head);
62 	return 0;
63 }
64 
65 /**
66  * ice_check_for_hang_subtask - check for and recover hung queues
67  * @pf: pointer to PF struct
68  */
ice_check_for_hang_subtask(struct ice_pf * pf)69 static void ice_check_for_hang_subtask(struct ice_pf *pf)
70 {
71 	struct ice_vsi *vsi = NULL;
72 	struct ice_hw *hw;
73 	unsigned int i;
74 	int packets;
75 	u32 v;
76 
77 	ice_for_each_vsi(pf, v)
78 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
79 			vsi = pf->vsi[v];
80 			break;
81 		}
82 
83 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
84 		return;
85 
86 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
87 		return;
88 
89 	hw = &vsi->back->hw;
90 
91 	for (i = 0; i < vsi->num_txq; i++) {
92 		struct ice_ring *tx_ring = vsi->tx_rings[i];
93 
94 		if (tx_ring && tx_ring->desc) {
95 			/* If packet counter has not changed the queue is
96 			 * likely stalled, so force an interrupt for this
97 			 * queue.
98 			 *
99 			 * prev_pkt would be negative if there was no
100 			 * pending work.
101 			 */
102 			packets = tx_ring->stats.pkts & INT_MAX;
103 			if (tx_ring->tx_stats.prev_pkt == packets) {
104 				/* Trigger sw interrupt to revive the queue */
105 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
106 				continue;
107 			}
108 
109 			/* Memory barrier between read of packet count and call
110 			 * to ice_get_tx_pending()
111 			 */
112 			smp_rmb();
113 			tx_ring->tx_stats.prev_pkt =
114 			    ice_get_tx_pending(tx_ring) ? packets : -1;
115 		}
116 	}
117 }
118 
119 /**
120  * ice_init_mac_fltr - Set initial MAC filters
121  * @pf: board private structure
122  *
123  * Set initial set of MAC filters for PF VSI; configure filters for permanent
124  * address and broadcast address. If an error is encountered, netdevice will be
125  * unregistered.
126  */
ice_init_mac_fltr(struct ice_pf * pf)127 static int ice_init_mac_fltr(struct ice_pf *pf)
128 {
129 	enum ice_status status;
130 	struct ice_vsi *vsi;
131 	u8 *perm_addr;
132 
133 	vsi = ice_get_main_vsi(pf);
134 	if (!vsi)
135 		return -EINVAL;
136 
137 	perm_addr = vsi->port_info->mac.perm_addr;
138 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
139 	if (!status)
140 		return 0;
141 
142 	/* We aren't useful with no MAC filters, so unregister if we
143 	 * had an error
144 	 */
145 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
146 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
147 			ice_stat_str(status));
148 		unregister_netdev(vsi->netdev);
149 		free_netdev(vsi->netdev);
150 		vsi->netdev = NULL;
151 	}
152 
153 	return -EIO;
154 }
155 
156 /**
157  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
158  * @netdev: the net device on which the sync is happening
159  * @addr: MAC address to sync
160  *
161  * This is a callback function which is called by the in kernel device sync
162  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
163  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
164  * MAC filters from the hardware.
165  */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)166 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
167 {
168 	struct ice_netdev_priv *np = netdev_priv(netdev);
169 	struct ice_vsi *vsi = np->vsi;
170 
171 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
172 				     ICE_FWD_TO_VSI))
173 		return -EINVAL;
174 
175 	return 0;
176 }
177 
178 /**
179  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
180  * @netdev: the net device on which the unsync is happening
181  * @addr: MAC address to unsync
182  *
183  * This is a callback function which is called by the in kernel device unsync
184  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
185  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
186  * delete the MAC filters from the hardware.
187  */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)188 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
189 {
190 	struct ice_netdev_priv *np = netdev_priv(netdev);
191 	struct ice_vsi *vsi = np->vsi;
192 
193 	/* Under some circumstances, we might receive a request to delete our
194 	 * own device address from our uc list. Because we store the device
195 	 * address in the VSI's MAC filter list, we need to ignore such
196 	 * requests and not delete our device address from this list.
197 	 */
198 	if (ether_addr_equal(addr, netdev->dev_addr))
199 		return 0;
200 
201 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
202 				     ICE_FWD_TO_VSI))
203 		return -EINVAL;
204 
205 	return 0;
206 }
207 
208 /**
209  * ice_vsi_fltr_changed - check if filter state changed
210  * @vsi: VSI to be checked
211  *
212  * returns true if filter state has changed, false otherwise.
213  */
ice_vsi_fltr_changed(struct ice_vsi * vsi)214 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
215 {
216 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
217 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
218 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
219 }
220 
221 /**
222  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
223  * @vsi: the VSI being configured
224  * @promisc_m: mask of promiscuous config bits
225  * @set_promisc: enable or disable promisc flag request
226  *
227  */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)228 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
229 {
230 	struct ice_hw *hw = &vsi->back->hw;
231 	enum ice_status status = 0;
232 
233 	if (vsi->type != ICE_VSI_PF)
234 		return 0;
235 
236 	if (vsi->vlan_ena) {
237 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
238 						  set_promisc);
239 	} else {
240 		if (set_promisc)
241 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
242 						     0);
243 		else
244 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
245 						       0);
246 	}
247 
248 	if (status)
249 		return -EIO;
250 
251 	return 0;
252 }
253 
254 /**
255  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
256  * @vsi: ptr to the VSI
257  *
258  * Push any outstanding VSI filter changes through the AdminQ.
259  */
ice_vsi_sync_fltr(struct ice_vsi * vsi)260 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
261 {
262 	struct device *dev = ice_pf_to_dev(vsi->back);
263 	struct net_device *netdev = vsi->netdev;
264 	bool promisc_forced_on = false;
265 	struct ice_pf *pf = vsi->back;
266 	struct ice_hw *hw = &pf->hw;
267 	enum ice_status status = 0;
268 	u32 changed_flags = 0;
269 	u8 promisc_m;
270 	int err = 0;
271 
272 	if (!vsi->netdev)
273 		return -EINVAL;
274 
275 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
276 		usleep_range(1000, 2000);
277 
278 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
279 	vsi->current_netdev_flags = vsi->netdev->flags;
280 
281 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
282 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
283 
284 	if (ice_vsi_fltr_changed(vsi)) {
285 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
286 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
287 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
288 
289 		/* grab the netdev's addr_list_lock */
290 		netif_addr_lock_bh(netdev);
291 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
292 			      ice_add_mac_to_unsync_list);
293 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
294 			      ice_add_mac_to_unsync_list);
295 		/* our temp lists are populated. release lock */
296 		netif_addr_unlock_bh(netdev);
297 	}
298 
299 	/* Remove MAC addresses in the unsync list */
300 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
301 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
302 	if (status) {
303 		netdev_err(netdev, "Failed to delete MAC filters\n");
304 		/* if we failed because of alloc failures, just bail */
305 		if (status == ICE_ERR_NO_MEMORY) {
306 			err = -ENOMEM;
307 			goto out;
308 		}
309 	}
310 
311 	/* Add MAC addresses in the sync list */
312 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
313 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
314 	/* If filter is added successfully or already exists, do not go into
315 	 * 'if' condition and report it as error. Instead continue processing
316 	 * rest of the function.
317 	 */
318 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
319 		netdev_err(netdev, "Failed to add MAC filters\n");
320 		/* If there is no more space for new umac filters, VSI
321 		 * should go into promiscuous mode. There should be some
322 		 * space reserved for promiscuous filters.
323 		 */
324 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
325 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
326 				      vsi->state)) {
327 			promisc_forced_on = true;
328 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
329 				    vsi->vsi_num);
330 		} else {
331 			err = -EIO;
332 			goto out;
333 		}
334 	}
335 	/* check for changes in promiscuous modes */
336 	if (changed_flags & IFF_ALLMULTI) {
337 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
338 			if (vsi->vlan_ena)
339 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
340 			else
341 				promisc_m = ICE_MCAST_PROMISC_BITS;
342 
343 			err = ice_cfg_promisc(vsi, promisc_m, true);
344 			if (err) {
345 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
346 					   vsi->vsi_num);
347 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
348 				goto out_promisc;
349 			}
350 		} else {
351 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
352 			if (vsi->vlan_ena)
353 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
354 			else
355 				promisc_m = ICE_MCAST_PROMISC_BITS;
356 
357 			err = ice_cfg_promisc(vsi, promisc_m, false);
358 			if (err) {
359 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
360 					   vsi->vsi_num);
361 				vsi->current_netdev_flags |= IFF_ALLMULTI;
362 				goto out_promisc;
363 			}
364 		}
365 	}
366 
367 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
368 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
369 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
370 		if (vsi->current_netdev_flags & IFF_PROMISC) {
371 			/* Apply Rx filter rule to get traffic from wire */
372 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
373 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
374 				if (err && err != -EEXIST) {
375 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
376 						   err, vsi->vsi_num);
377 					vsi->current_netdev_flags &=
378 						~IFF_PROMISC;
379 					goto out_promisc;
380 				}
381 				ice_cfg_vlan_pruning(vsi, false, false);
382 			}
383 		} else {
384 			/* Clear Rx filter to remove traffic from wire */
385 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
386 				err = ice_clear_dflt_vsi(pf->first_sw);
387 				if (err) {
388 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
389 						   err, vsi->vsi_num);
390 					vsi->current_netdev_flags |=
391 						IFF_PROMISC;
392 					goto out_promisc;
393 				}
394 				if (vsi->num_vlan > 1)
395 					ice_cfg_vlan_pruning(vsi, true, false);
396 			}
397 		}
398 	}
399 	goto exit;
400 
401 out_promisc:
402 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
403 	goto exit;
404 out:
405 	/* if something went wrong then set the changed flag so we try again */
406 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
407 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
408 exit:
409 	clear_bit(__ICE_CFG_BUSY, vsi->state);
410 	return err;
411 }
412 
413 /**
414  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
415  * @pf: board private structure
416  */
ice_sync_fltr_subtask(struct ice_pf * pf)417 static void ice_sync_fltr_subtask(struct ice_pf *pf)
418 {
419 	int v;
420 
421 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
422 		return;
423 
424 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
425 
426 	ice_for_each_vsi(pf, v)
427 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
428 		    ice_vsi_sync_fltr(pf->vsi[v])) {
429 			/* come back and try again later */
430 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
431 			break;
432 		}
433 }
434 
435 /**
436  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
437  * @pf: the PF
438  * @locked: is the rtnl_lock already held
439  */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)440 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
441 {
442 	int v;
443 
444 	ice_for_each_vsi(pf, v)
445 		if (pf->vsi[v])
446 			ice_dis_vsi(pf->vsi[v], locked);
447 }
448 
449 /**
450  * ice_prepare_for_reset - prep for the core to reset
451  * @pf: board private structure
452  *
453  * Inform or close all dependent features in prep for reset.
454  */
455 static void
ice_prepare_for_reset(struct ice_pf * pf)456 ice_prepare_for_reset(struct ice_pf *pf)
457 {
458 	struct ice_hw *hw = &pf->hw;
459 	unsigned int i;
460 
461 	/* already prepared for reset */
462 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
463 		return;
464 
465 	/* Notify VFs of impending reset */
466 	if (ice_check_sq_alive(hw, &hw->mailboxq))
467 		ice_vc_notify_reset(pf);
468 
469 	/* Disable VFs until reset is completed */
470 	ice_for_each_vf(pf, i)
471 		ice_set_vf_state_qs_dis(&pf->vf[i]);
472 
473 	/* clear SW filtering DB */
474 	ice_clear_hw_tbls(hw);
475 	/* disable the VSIs and their queues that are not already DOWN */
476 	ice_pf_dis_all_vsi(pf, false);
477 
478 	if (hw->port_info)
479 		ice_sched_clear_port(hw->port_info);
480 
481 	ice_shutdown_all_ctrlq(hw);
482 
483 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
484 }
485 
486 /**
487  * ice_do_reset - Initiate one of many types of resets
488  * @pf: board private structure
489  * @reset_type: reset type requested
490  * before this function was called.
491  */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)492 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
493 {
494 	struct device *dev = ice_pf_to_dev(pf);
495 	struct ice_hw *hw = &pf->hw;
496 
497 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
498 
499 	ice_prepare_for_reset(pf);
500 
501 	/* trigger the reset */
502 	if (ice_reset(hw, reset_type)) {
503 		dev_err(dev, "reset %d failed\n", reset_type);
504 		set_bit(__ICE_RESET_FAILED, pf->state);
505 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
506 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
507 		clear_bit(__ICE_PFR_REQ, pf->state);
508 		clear_bit(__ICE_CORER_REQ, pf->state);
509 		clear_bit(__ICE_GLOBR_REQ, pf->state);
510 		return;
511 	}
512 
513 	/* PFR is a bit of a special case because it doesn't result in an OICR
514 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
515 	 * associated state bits.
516 	 */
517 	if (reset_type == ICE_RESET_PFR) {
518 		pf->pfr_count++;
519 		ice_rebuild(pf, reset_type);
520 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
521 		clear_bit(__ICE_PFR_REQ, pf->state);
522 		ice_reset_all_vfs(pf, true);
523 	}
524 }
525 
526 /**
527  * ice_reset_subtask - Set up for resetting the device and driver
528  * @pf: board private structure
529  */
ice_reset_subtask(struct ice_pf * pf)530 static void ice_reset_subtask(struct ice_pf *pf)
531 {
532 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
533 
534 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
535 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
536 	 * of reset is pending and sets bits in pf->state indicating the reset
537 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
538 	 * prepare for pending reset if not already (for PF software-initiated
539 	 * global resets the software should already be prepared for it as
540 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
541 	 * by firmware or software on other PFs, that bit is not set so prepare
542 	 * for the reset now), poll for reset done, rebuild and return.
543 	 */
544 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
545 		/* Perform the largest reset requested */
546 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
547 			reset_type = ICE_RESET_CORER;
548 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
549 			reset_type = ICE_RESET_GLOBR;
550 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
551 			reset_type = ICE_RESET_EMPR;
552 		/* return if no valid reset type requested */
553 		if (reset_type == ICE_RESET_INVAL)
554 			return;
555 		ice_prepare_for_reset(pf);
556 
557 		/* make sure we are ready to rebuild */
558 		if (ice_check_reset(&pf->hw)) {
559 			set_bit(__ICE_RESET_FAILED, pf->state);
560 		} else {
561 			/* done with reset. start rebuild */
562 			pf->hw.reset_ongoing = false;
563 			ice_rebuild(pf, reset_type);
564 			/* clear bit to resume normal operations, but
565 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
566 			 */
567 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
568 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
569 			clear_bit(__ICE_PFR_REQ, pf->state);
570 			clear_bit(__ICE_CORER_REQ, pf->state);
571 			clear_bit(__ICE_GLOBR_REQ, pf->state);
572 			ice_reset_all_vfs(pf, true);
573 		}
574 
575 		return;
576 	}
577 
578 	/* No pending resets to finish processing. Check for new resets */
579 	if (test_bit(__ICE_PFR_REQ, pf->state))
580 		reset_type = ICE_RESET_PFR;
581 	if (test_bit(__ICE_CORER_REQ, pf->state))
582 		reset_type = ICE_RESET_CORER;
583 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
584 		reset_type = ICE_RESET_GLOBR;
585 	/* If no valid reset type requested just return */
586 	if (reset_type == ICE_RESET_INVAL)
587 		return;
588 
589 	/* reset if not already down or busy */
590 	if (!test_bit(__ICE_DOWN, pf->state) &&
591 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
592 		ice_do_reset(pf, reset_type);
593 	}
594 }
595 
596 /**
597  * ice_print_topo_conflict - print topology conflict message
598  * @vsi: the VSI whose topology status is being checked
599  */
ice_print_topo_conflict(struct ice_vsi * vsi)600 static void ice_print_topo_conflict(struct ice_vsi *vsi)
601 {
602 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
603 	case ICE_AQ_LINK_TOPO_CONFLICT:
604 	case ICE_AQ_LINK_MEDIA_CONFLICT:
605 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
606 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
607 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
608 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
609 		break;
610 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
611 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
612 		break;
613 	default:
614 		break;
615 	}
616 }
617 
618 /**
619  * ice_print_link_msg - print link up or down message
620  * @vsi: the VSI whose link status is being queried
621  * @isup: boolean for if the link is now up or down
622  */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)623 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
624 {
625 	struct ice_aqc_get_phy_caps_data *caps;
626 	const char *an_advertised;
627 	enum ice_status status;
628 	const char *fec_req;
629 	const char *speed;
630 	const char *fec;
631 	const char *fc;
632 	const char *an;
633 
634 	if (!vsi)
635 		return;
636 
637 	if (vsi->current_isup == isup)
638 		return;
639 
640 	vsi->current_isup = isup;
641 
642 	if (!isup) {
643 		netdev_info(vsi->netdev, "NIC Link is Down\n");
644 		return;
645 	}
646 
647 	switch (vsi->port_info->phy.link_info.link_speed) {
648 	case ICE_AQ_LINK_SPEED_100GB:
649 		speed = "100 G";
650 		break;
651 	case ICE_AQ_LINK_SPEED_50GB:
652 		speed = "50 G";
653 		break;
654 	case ICE_AQ_LINK_SPEED_40GB:
655 		speed = "40 G";
656 		break;
657 	case ICE_AQ_LINK_SPEED_25GB:
658 		speed = "25 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_20GB:
661 		speed = "20 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_10GB:
664 		speed = "10 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_5GB:
667 		speed = "5 G";
668 		break;
669 	case ICE_AQ_LINK_SPEED_2500MB:
670 		speed = "2.5 G";
671 		break;
672 	case ICE_AQ_LINK_SPEED_1000MB:
673 		speed = "1 G";
674 		break;
675 	case ICE_AQ_LINK_SPEED_100MB:
676 		speed = "100 M";
677 		break;
678 	default:
679 		speed = "Unknown";
680 		break;
681 	}
682 
683 	switch (vsi->port_info->fc.current_mode) {
684 	case ICE_FC_FULL:
685 		fc = "Rx/Tx";
686 		break;
687 	case ICE_FC_TX_PAUSE:
688 		fc = "Tx";
689 		break;
690 	case ICE_FC_RX_PAUSE:
691 		fc = "Rx";
692 		break;
693 	case ICE_FC_NONE:
694 		fc = "None";
695 		break;
696 	default:
697 		fc = "Unknown";
698 		break;
699 	}
700 
701 	/* Get FEC mode based on negotiated link info */
702 	switch (vsi->port_info->phy.link_info.fec_info) {
703 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
704 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
705 		fec = "RS-FEC";
706 		break;
707 	case ICE_AQ_LINK_25G_KR_FEC_EN:
708 		fec = "FC-FEC/BASE-R";
709 		break;
710 	default:
711 		fec = "NONE";
712 		break;
713 	}
714 
715 	/* check if autoneg completed, might be false due to not supported */
716 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
717 		an = "True";
718 	else
719 		an = "False";
720 
721 	/* Get FEC mode requested based on PHY caps last SW configuration */
722 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
723 	if (!caps) {
724 		fec_req = "Unknown";
725 		an_advertised = "Unknown";
726 		goto done;
727 	}
728 
729 	status = ice_aq_get_phy_caps(vsi->port_info, false,
730 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
731 	if (status)
732 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
733 
734 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
735 
736 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
737 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
738 		fec_req = "RS-FEC";
739 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
740 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
741 		fec_req = "FC-FEC/BASE-R";
742 	else
743 		fec_req = "NONE";
744 
745 	kfree(caps);
746 
747 done:
748 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
749 		    speed, fec_req, fec, an_advertised, an, fc);
750 	ice_print_topo_conflict(vsi);
751 }
752 
753 /**
754  * ice_vsi_link_event - update the VSI's netdev
755  * @vsi: the VSI on which the link event occurred
756  * @link_up: whether or not the VSI needs to be set up or down
757  */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)758 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
759 {
760 	if (!vsi)
761 		return;
762 
763 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
764 		return;
765 
766 	if (vsi->type == ICE_VSI_PF) {
767 		if (link_up == netif_carrier_ok(vsi->netdev))
768 			return;
769 
770 		if (link_up) {
771 			netif_carrier_on(vsi->netdev);
772 			netif_tx_wake_all_queues(vsi->netdev);
773 		} else {
774 			netif_carrier_off(vsi->netdev);
775 			netif_tx_stop_all_queues(vsi->netdev);
776 		}
777 	}
778 }
779 
780 /**
781  * ice_set_dflt_mib - send a default config MIB to the FW
782  * @pf: private PF struct
783  *
784  * This function sends a default configuration MIB to the FW.
785  *
786  * If this function errors out at any point, the driver is still able to
787  * function.  The main impact is that LFC may not operate as expected.
788  * Therefore an error state in this function should be treated with a DBG
789  * message and continue on with driver rebuild/reenable.
790  */
ice_set_dflt_mib(struct ice_pf * pf)791 static void ice_set_dflt_mib(struct ice_pf *pf)
792 {
793 	struct device *dev = ice_pf_to_dev(pf);
794 	u8 mib_type, *buf, *lldpmib = NULL;
795 	u16 len, typelen, offset = 0;
796 	struct ice_lldp_org_tlv *tlv;
797 	struct ice_hw *hw;
798 	u32 ouisubtype;
799 
800 	if (!pf) {
801 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
802 		return;
803 	}
804 
805 	hw = &pf->hw;
806 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
807 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
808 	if (!lldpmib) {
809 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
810 			__func__);
811 		return;
812 	}
813 
814 	/* Add ETS CFG TLV */
815 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
816 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
817 		   ICE_IEEE_ETS_TLV_LEN);
818 	tlv->typelen = htons(typelen);
819 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
820 		      ICE_IEEE_SUBTYPE_ETS_CFG);
821 	tlv->ouisubtype = htonl(ouisubtype);
822 
823 	buf = tlv->tlvinfo;
824 	buf[0] = 0;
825 
826 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
827 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
828 	 * Octets 13 - 20 are TSA values - leave as zeros
829 	 */
830 	buf[5] = 0x64;
831 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
832 	offset += len + 2;
833 	tlv = (struct ice_lldp_org_tlv *)
834 		((char *)tlv + sizeof(tlv->typelen) + len);
835 
836 	/* Add ETS REC TLV */
837 	buf = tlv->tlvinfo;
838 	tlv->typelen = htons(typelen);
839 
840 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
841 		      ICE_IEEE_SUBTYPE_ETS_REC);
842 	tlv->ouisubtype = htonl(ouisubtype);
843 
844 	/* First octet of buf is reserved
845 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
846 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
847 	 * Octets 13 - 20 are TSA value - leave as zeros
848 	 */
849 	buf[5] = 0x64;
850 	offset += len + 2;
851 	tlv = (struct ice_lldp_org_tlv *)
852 		((char *)tlv + sizeof(tlv->typelen) + len);
853 
854 	/* Add PFC CFG TLV */
855 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
856 		   ICE_IEEE_PFC_TLV_LEN);
857 	tlv->typelen = htons(typelen);
858 
859 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
860 		      ICE_IEEE_SUBTYPE_PFC_CFG);
861 	tlv->ouisubtype = htonl(ouisubtype);
862 
863 	/* Octet 1 left as all zeros - PFC disabled */
864 	buf[0] = 0x08;
865 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
866 	offset += len + 2;
867 
868 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
869 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
870 
871 	kfree(lldpmib);
872 }
873 
874 /**
875  * ice_link_event - process the link event
876  * @pf: PF that the link event is associated with
877  * @pi: port_info for the port that the link event is associated with
878  * @link_up: true if the physical link is up and false if it is down
879  * @link_speed: current link speed received from the link event
880  *
881  * Returns 0 on success and negative on failure
882  */
883 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)884 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
885 	       u16 link_speed)
886 {
887 	struct device *dev = ice_pf_to_dev(pf);
888 	struct ice_phy_info *phy_info;
889 	struct ice_vsi *vsi;
890 	u16 old_link_speed;
891 	bool old_link;
892 	int result;
893 
894 	phy_info = &pi->phy;
895 	phy_info->link_info_old = phy_info->link_info;
896 
897 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
898 	old_link_speed = phy_info->link_info_old.link_speed;
899 
900 	/* update the link info structures and re-enable link events,
901 	 * don't bail on failure due to other book keeping needed
902 	 */
903 	result = ice_update_link_info(pi);
904 	if (result)
905 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
906 			pi->lport);
907 
908 	/* Check if the link state is up after updating link info, and treat
909 	 * this event as an UP event since the link is actually UP now.
910 	 */
911 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
912 		link_up = true;
913 
914 	vsi = ice_get_main_vsi(pf);
915 	if (!vsi || !vsi->port_info)
916 		return -EINVAL;
917 
918 	/* turn off PHY if media was removed */
919 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
920 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
921 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
922 
923 		result = ice_aq_set_link_restart_an(pi, false, NULL);
924 		if (result) {
925 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
926 				vsi->vsi_num, result);
927 			return result;
928 		}
929 	}
930 
931 	/* if the old link up/down and speed is the same as the new */
932 	if (link_up == old_link && link_speed == old_link_speed)
933 		return result;
934 
935 	if (ice_is_dcb_active(pf)) {
936 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
937 			ice_dcb_rebuild(pf);
938 	} else {
939 		if (link_up)
940 			ice_set_dflt_mib(pf);
941 	}
942 	ice_vsi_link_event(vsi, link_up);
943 	ice_print_link_msg(vsi, link_up);
944 
945 	ice_vc_notify_link_state(pf);
946 
947 	return result;
948 }
949 
950 /**
951  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
952  * @pf: board private structure
953  */
ice_watchdog_subtask(struct ice_pf * pf)954 static void ice_watchdog_subtask(struct ice_pf *pf)
955 {
956 	int i;
957 
958 	/* if interface is down do nothing */
959 	if (test_bit(__ICE_DOWN, pf->state) ||
960 	    test_bit(__ICE_CFG_BUSY, pf->state))
961 		return;
962 
963 	/* make sure we don't do these things too often */
964 	if (time_before(jiffies,
965 			pf->serv_tmr_prev + pf->serv_tmr_period))
966 		return;
967 
968 	pf->serv_tmr_prev = jiffies;
969 
970 	/* Update the stats for active netdevs so the network stack
971 	 * can look at updated numbers whenever it cares to
972 	 */
973 	ice_update_pf_stats(pf);
974 	ice_for_each_vsi(pf, i)
975 		if (pf->vsi[i] && pf->vsi[i]->netdev)
976 			ice_update_vsi_stats(pf->vsi[i]);
977 }
978 
979 /**
980  * ice_init_link_events - enable/initialize link events
981  * @pi: pointer to the port_info instance
982  *
983  * Returns -EIO on failure, 0 on success
984  */
ice_init_link_events(struct ice_port_info * pi)985 static int ice_init_link_events(struct ice_port_info *pi)
986 {
987 	u16 mask;
988 
989 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
990 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
991 
992 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
993 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
994 			pi->lport);
995 		return -EIO;
996 	}
997 
998 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
999 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1000 			pi->lport);
1001 		return -EIO;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 /**
1008  * ice_handle_link_event - handle link event via ARQ
1009  * @pf: PF that the link event is associated with
1010  * @event: event structure containing link status info
1011  */
1012 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1013 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1014 {
1015 	struct ice_aqc_get_link_status_data *link_data;
1016 	struct ice_port_info *port_info;
1017 	int status;
1018 
1019 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1020 	port_info = pf->hw.port_info;
1021 	if (!port_info)
1022 		return -EINVAL;
1023 
1024 	status = ice_link_event(pf, port_info,
1025 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1026 				le16_to_cpu(link_data->link_speed));
1027 	if (status)
1028 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1029 			status);
1030 
1031 	return status;
1032 }
1033 
1034 enum ice_aq_task_state {
1035 	ICE_AQ_TASK_WAITING = 0,
1036 	ICE_AQ_TASK_COMPLETE,
1037 	ICE_AQ_TASK_CANCELED,
1038 };
1039 
1040 struct ice_aq_task {
1041 	struct hlist_node entry;
1042 
1043 	u16 opcode;
1044 	struct ice_rq_event_info *event;
1045 	enum ice_aq_task_state state;
1046 };
1047 
1048 /**
1049  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1050  * @pf: pointer to the PF private structure
1051  * @opcode: the opcode to wait for
1052  * @timeout: how long to wait, in jiffies
1053  * @event: storage for the event info
1054  *
1055  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1056  * current thread will be put to sleep until the specified event occurs or
1057  * until the given timeout is reached.
1058  *
1059  * To obtain only the descriptor contents, pass an event without an allocated
1060  * msg_buf. If the complete data buffer is desired, allocate the
1061  * event->msg_buf with enough space ahead of time.
1062  *
1063  * Returns: zero on success, or a negative error code on failure.
1064  */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1065 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1066 			  struct ice_rq_event_info *event)
1067 {
1068 	struct device *dev = ice_pf_to_dev(pf);
1069 	struct ice_aq_task *task;
1070 	unsigned long start;
1071 	long ret;
1072 	int err;
1073 
1074 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1075 	if (!task)
1076 		return -ENOMEM;
1077 
1078 	INIT_HLIST_NODE(&task->entry);
1079 	task->opcode = opcode;
1080 	task->event = event;
1081 	task->state = ICE_AQ_TASK_WAITING;
1082 
1083 	spin_lock_bh(&pf->aq_wait_lock);
1084 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1085 	spin_unlock_bh(&pf->aq_wait_lock);
1086 
1087 	start = jiffies;
1088 
1089 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1090 					       timeout);
1091 	switch (task->state) {
1092 	case ICE_AQ_TASK_WAITING:
1093 		err = ret < 0 ? ret : -ETIMEDOUT;
1094 		break;
1095 	case ICE_AQ_TASK_CANCELED:
1096 		err = ret < 0 ? ret : -ECANCELED;
1097 		break;
1098 	case ICE_AQ_TASK_COMPLETE:
1099 		err = ret < 0 ? ret : 0;
1100 		break;
1101 	default:
1102 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1103 		err = -EINVAL;
1104 		break;
1105 	}
1106 
1107 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1108 		jiffies_to_msecs(jiffies - start),
1109 		jiffies_to_msecs(timeout),
1110 		opcode);
1111 
1112 	spin_lock_bh(&pf->aq_wait_lock);
1113 	hlist_del(&task->entry);
1114 	spin_unlock_bh(&pf->aq_wait_lock);
1115 	kfree(task);
1116 
1117 	return err;
1118 }
1119 
1120 /**
1121  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1122  * @pf: pointer to the PF private structure
1123  * @opcode: the opcode of the event
1124  * @event: the event to check
1125  *
1126  * Loops over the current list of pending threads waiting for an AdminQ event.
1127  * For each matching task, copy the contents of the event into the task
1128  * structure and wake up the thread.
1129  *
1130  * If multiple threads wait for the same opcode, they will all be woken up.
1131  *
1132  * Note that event->msg_buf will only be duplicated if the event has a buffer
1133  * with enough space already allocated. Otherwise, only the descriptor and
1134  * message length will be copied.
1135  *
1136  * Returns: true if an event was found, false otherwise
1137  */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1138 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1139 				struct ice_rq_event_info *event)
1140 {
1141 	struct ice_rq_event_info *task_ev;
1142 	struct ice_aq_task *task;
1143 	bool found = false;
1144 
1145 	spin_lock_bh(&pf->aq_wait_lock);
1146 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1147 		if (task->state || task->opcode != opcode)
1148 			continue;
1149 
1150 		task_ev = task->event;
1151 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1152 		task_ev->msg_len = event->msg_len;
1153 
1154 		/* Only copy the data buffer if a destination was set */
1155 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1156 			memcpy(task_ev->msg_buf, event->msg_buf,
1157 			       event->buf_len);
1158 			task_ev->buf_len = event->buf_len;
1159 		}
1160 
1161 		task->state = ICE_AQ_TASK_COMPLETE;
1162 		found = true;
1163 	}
1164 	spin_unlock_bh(&pf->aq_wait_lock);
1165 
1166 	if (found)
1167 		wake_up(&pf->aq_wait_queue);
1168 }
1169 
1170 /**
1171  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1172  * @pf: the PF private structure
1173  *
1174  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1175  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1176  */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1177 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1178 {
1179 	struct ice_aq_task *task;
1180 
1181 	spin_lock_bh(&pf->aq_wait_lock);
1182 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1183 		task->state = ICE_AQ_TASK_CANCELED;
1184 	spin_unlock_bh(&pf->aq_wait_lock);
1185 
1186 	wake_up(&pf->aq_wait_queue);
1187 }
1188 
1189 /**
1190  * __ice_clean_ctrlq - helper function to clean controlq rings
1191  * @pf: ptr to struct ice_pf
1192  * @q_type: specific Control queue type
1193  */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1194 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1195 {
1196 	struct device *dev = ice_pf_to_dev(pf);
1197 	struct ice_rq_event_info event;
1198 	struct ice_hw *hw = &pf->hw;
1199 	struct ice_ctl_q_info *cq;
1200 	u16 pending, i = 0;
1201 	const char *qtype;
1202 	u32 oldval, val;
1203 
1204 	/* Do not clean control queue if/when PF reset fails */
1205 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1206 		return 0;
1207 
1208 	switch (q_type) {
1209 	case ICE_CTL_Q_ADMIN:
1210 		cq = &hw->adminq;
1211 		qtype = "Admin";
1212 		break;
1213 	case ICE_CTL_Q_MAILBOX:
1214 		cq = &hw->mailboxq;
1215 		qtype = "Mailbox";
1216 		break;
1217 	default:
1218 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1219 		return 0;
1220 	}
1221 
1222 	/* check for error indications - PF_xx_AxQLEN register layout for
1223 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1224 	 */
1225 	val = rd32(hw, cq->rq.len);
1226 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1227 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1228 		oldval = val;
1229 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1230 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1231 				qtype);
1232 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1233 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1234 				qtype);
1235 		}
1236 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1237 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1238 				qtype);
1239 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1240 			 PF_FW_ARQLEN_ARQCRIT_M);
1241 		if (oldval != val)
1242 			wr32(hw, cq->rq.len, val);
1243 	}
1244 
1245 	val = rd32(hw, cq->sq.len);
1246 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1247 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1248 		oldval = val;
1249 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1250 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1251 				qtype);
1252 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1253 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1254 				qtype);
1255 		}
1256 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1257 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1258 				qtype);
1259 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1260 			 PF_FW_ATQLEN_ATQCRIT_M);
1261 		if (oldval != val)
1262 			wr32(hw, cq->sq.len, val);
1263 	}
1264 
1265 	event.buf_len = cq->rq_buf_size;
1266 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1267 	if (!event.msg_buf)
1268 		return 0;
1269 
1270 	do {
1271 		enum ice_status ret;
1272 		u16 opcode;
1273 
1274 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1275 		if (ret == ICE_ERR_AQ_NO_WORK)
1276 			break;
1277 		if (ret) {
1278 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1279 				ice_stat_str(ret));
1280 			break;
1281 		}
1282 
1283 		opcode = le16_to_cpu(event.desc.opcode);
1284 
1285 		/* Notify any thread that might be waiting for this event */
1286 		ice_aq_check_events(pf, opcode, &event);
1287 
1288 		switch (opcode) {
1289 		case ice_aqc_opc_get_link_status:
1290 			if (ice_handle_link_event(pf, &event))
1291 				dev_err(dev, "Could not handle link event\n");
1292 			break;
1293 		case ice_aqc_opc_event_lan_overflow:
1294 			ice_vf_lan_overflow_event(pf, &event);
1295 			break;
1296 		case ice_mbx_opc_send_msg_to_pf:
1297 			ice_vc_process_vf_msg(pf, &event);
1298 			break;
1299 		case ice_aqc_opc_fw_logging:
1300 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1301 			break;
1302 		case ice_aqc_opc_lldp_set_mib_change:
1303 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1304 			break;
1305 		default:
1306 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1307 				qtype, opcode);
1308 			break;
1309 		}
1310 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1311 
1312 	kfree(event.msg_buf);
1313 
1314 	return pending && (i == ICE_DFLT_IRQ_WORK);
1315 }
1316 
1317 /**
1318  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1319  * @hw: pointer to hardware info
1320  * @cq: control queue information
1321  *
1322  * returns true if there are pending messages in a queue, false if there aren't
1323  */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1324 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1325 {
1326 	u16 ntu;
1327 
1328 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1329 	return cq->rq.next_to_clean != ntu;
1330 }
1331 
1332 /**
1333  * ice_clean_adminq_subtask - clean the AdminQ rings
1334  * @pf: board private structure
1335  */
ice_clean_adminq_subtask(struct ice_pf * pf)1336 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1337 {
1338 	struct ice_hw *hw = &pf->hw;
1339 
1340 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1341 		return;
1342 
1343 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1344 		return;
1345 
1346 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1347 
1348 	/* There might be a situation where new messages arrive to a control
1349 	 * queue between processing the last message and clearing the
1350 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1351 	 * ice_ctrlq_pending) and process new messages if any.
1352 	 */
1353 	if (ice_ctrlq_pending(hw, &hw->adminq))
1354 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1355 
1356 	ice_flush(hw);
1357 }
1358 
1359 /**
1360  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1361  * @pf: board private structure
1362  */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1363 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1364 {
1365 	struct ice_hw *hw = &pf->hw;
1366 
1367 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1368 		return;
1369 
1370 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1371 		return;
1372 
1373 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1374 
1375 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1376 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1377 
1378 	ice_flush(hw);
1379 }
1380 
1381 /**
1382  * ice_service_task_schedule - schedule the service task to wake up
1383  * @pf: board private structure
1384  *
1385  * If not already scheduled, this puts the task into the work queue.
1386  */
ice_service_task_schedule(struct ice_pf * pf)1387 void ice_service_task_schedule(struct ice_pf *pf)
1388 {
1389 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1390 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1391 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1392 		queue_work(ice_wq, &pf->serv_task);
1393 }
1394 
1395 /**
1396  * ice_service_task_complete - finish up the service task
1397  * @pf: board private structure
1398  */
ice_service_task_complete(struct ice_pf * pf)1399 static void ice_service_task_complete(struct ice_pf *pf)
1400 {
1401 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1402 
1403 	/* force memory (pf->state) to sync before next service task */
1404 	smp_mb__before_atomic();
1405 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1406 }
1407 
1408 /**
1409  * ice_service_task_stop - stop service task and cancel works
1410  * @pf: board private structure
1411  *
1412  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1413  * 1 otherwise.
1414  */
ice_service_task_stop(struct ice_pf * pf)1415 static int ice_service_task_stop(struct ice_pf *pf)
1416 {
1417 	int ret;
1418 
1419 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1420 
1421 	if (pf->serv_tmr.function)
1422 		del_timer_sync(&pf->serv_tmr);
1423 	if (pf->serv_task.func)
1424 		cancel_work_sync(&pf->serv_task);
1425 
1426 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1427 	return ret;
1428 }
1429 
1430 /**
1431  * ice_service_task_restart - restart service task and schedule works
1432  * @pf: board private structure
1433  *
1434  * This function is needed for suspend and resume works (e.g WoL scenario)
1435  */
ice_service_task_restart(struct ice_pf * pf)1436 static void ice_service_task_restart(struct ice_pf *pf)
1437 {
1438 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1439 	ice_service_task_schedule(pf);
1440 }
1441 
1442 /**
1443  * ice_service_timer - timer callback to schedule service task
1444  * @t: pointer to timer_list
1445  */
ice_service_timer(struct timer_list * t)1446 static void ice_service_timer(struct timer_list *t)
1447 {
1448 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1449 
1450 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1451 	ice_service_task_schedule(pf);
1452 }
1453 
1454 /**
1455  * ice_handle_mdd_event - handle malicious driver detect event
1456  * @pf: pointer to the PF structure
1457  *
1458  * Called from service task. OICR interrupt handler indicates MDD event.
1459  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1460  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1461  * disable the queue, the PF can be configured to reset the VF using ethtool
1462  * private flag mdd-auto-reset-vf.
1463  */
ice_handle_mdd_event(struct ice_pf * pf)1464 static void ice_handle_mdd_event(struct ice_pf *pf)
1465 {
1466 	struct device *dev = ice_pf_to_dev(pf);
1467 	struct ice_hw *hw = &pf->hw;
1468 	unsigned int i;
1469 	u32 reg;
1470 
1471 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1472 		/* Since the VF MDD event logging is rate limited, check if
1473 		 * there are pending MDD events.
1474 		 */
1475 		ice_print_vfs_mdd_events(pf);
1476 		return;
1477 	}
1478 
1479 	/* find what triggered an MDD event */
1480 	reg = rd32(hw, GL_MDET_TX_PQM);
1481 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1482 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1483 				GL_MDET_TX_PQM_PF_NUM_S;
1484 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1485 				GL_MDET_TX_PQM_VF_NUM_S;
1486 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1487 				GL_MDET_TX_PQM_MAL_TYPE_S;
1488 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1489 				GL_MDET_TX_PQM_QNUM_S);
1490 
1491 		if (netif_msg_tx_err(pf))
1492 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1493 				 event, queue, pf_num, vf_num);
1494 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1495 	}
1496 
1497 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1498 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1499 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1500 				GL_MDET_TX_TCLAN_PF_NUM_S;
1501 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1502 				GL_MDET_TX_TCLAN_VF_NUM_S;
1503 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1504 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1505 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1506 				GL_MDET_TX_TCLAN_QNUM_S);
1507 
1508 		if (netif_msg_tx_err(pf))
1509 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1510 				 event, queue, pf_num, vf_num);
1511 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1512 	}
1513 
1514 	reg = rd32(hw, GL_MDET_RX);
1515 	if (reg & GL_MDET_RX_VALID_M) {
1516 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1517 				GL_MDET_RX_PF_NUM_S;
1518 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1519 				GL_MDET_RX_VF_NUM_S;
1520 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1521 				GL_MDET_RX_MAL_TYPE_S;
1522 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1523 				GL_MDET_RX_QNUM_S);
1524 
1525 		if (netif_msg_rx_err(pf))
1526 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1527 				 event, queue, pf_num, vf_num);
1528 		wr32(hw, GL_MDET_RX, 0xffffffff);
1529 	}
1530 
1531 	/* check to see if this PF caused an MDD event */
1532 	reg = rd32(hw, PF_MDET_TX_PQM);
1533 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1534 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1535 		if (netif_msg_tx_err(pf))
1536 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1537 	}
1538 
1539 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1540 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1541 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1542 		if (netif_msg_tx_err(pf))
1543 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1544 	}
1545 
1546 	reg = rd32(hw, PF_MDET_RX);
1547 	if (reg & PF_MDET_RX_VALID_M) {
1548 		wr32(hw, PF_MDET_RX, 0xFFFF);
1549 		if (netif_msg_rx_err(pf))
1550 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1551 	}
1552 
1553 	/* Check to see if one of the VFs caused an MDD event, and then
1554 	 * increment counters and set print pending
1555 	 */
1556 	ice_for_each_vf(pf, i) {
1557 		struct ice_vf *vf = &pf->vf[i];
1558 
1559 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1560 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1561 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1562 			vf->mdd_tx_events.count++;
1563 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1564 			if (netif_msg_tx_err(pf))
1565 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1566 					 i);
1567 		}
1568 
1569 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1570 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1571 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1572 			vf->mdd_tx_events.count++;
1573 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1574 			if (netif_msg_tx_err(pf))
1575 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1576 					 i);
1577 		}
1578 
1579 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1580 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1581 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1582 			vf->mdd_tx_events.count++;
1583 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1584 			if (netif_msg_tx_err(pf))
1585 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1586 					 i);
1587 		}
1588 
1589 		reg = rd32(hw, VP_MDET_RX(i));
1590 		if (reg & VP_MDET_RX_VALID_M) {
1591 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1592 			vf->mdd_rx_events.count++;
1593 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1594 			if (netif_msg_rx_err(pf))
1595 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1596 					 i);
1597 
1598 			/* Since the queue is disabled on VF Rx MDD events, the
1599 			 * PF can be configured to reset the VF through ethtool
1600 			 * private flag mdd-auto-reset-vf.
1601 			 */
1602 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1603 				/* VF MDD event counters will be cleared by
1604 				 * reset, so print the event prior to reset.
1605 				 */
1606 				ice_print_vf_rx_mdd_event(vf);
1607 				mutex_lock(&pf->vf[i].cfg_lock);
1608 				ice_reset_vf(&pf->vf[i], false);
1609 				mutex_unlock(&pf->vf[i].cfg_lock);
1610 			}
1611 		}
1612 	}
1613 
1614 	ice_print_vfs_mdd_events(pf);
1615 }
1616 
1617 /**
1618  * ice_force_phys_link_state - Force the physical link state
1619  * @vsi: VSI to force the physical link state to up/down
1620  * @link_up: true/false indicates to set the physical link to up/down
1621  *
1622  * Force the physical link state by getting the current PHY capabilities from
1623  * hardware and setting the PHY config based on the determined capabilities. If
1624  * link changes a link event will be triggered because both the Enable Automatic
1625  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1626  *
1627  * Returns 0 on success, negative on failure
1628  */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1629 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1630 {
1631 	struct ice_aqc_get_phy_caps_data *pcaps;
1632 	struct ice_aqc_set_phy_cfg_data *cfg;
1633 	struct ice_port_info *pi;
1634 	struct device *dev;
1635 	int retcode;
1636 
1637 	if (!vsi || !vsi->port_info || !vsi->back)
1638 		return -EINVAL;
1639 	if (vsi->type != ICE_VSI_PF)
1640 		return 0;
1641 
1642 	dev = ice_pf_to_dev(vsi->back);
1643 
1644 	pi = vsi->port_info;
1645 
1646 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1647 	if (!pcaps)
1648 		return -ENOMEM;
1649 
1650 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1651 				      NULL);
1652 	if (retcode) {
1653 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1654 			vsi->vsi_num, retcode);
1655 		retcode = -EIO;
1656 		goto out;
1657 	}
1658 
1659 	/* No change in link */
1660 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1661 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1662 		goto out;
1663 
1664 	/* Use the current user PHY configuration. The current user PHY
1665 	 * configuration is initialized during probe from PHY capabilities
1666 	 * software mode, and updated on set PHY configuration.
1667 	 */
1668 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1669 	if (!cfg) {
1670 		retcode = -ENOMEM;
1671 		goto out;
1672 	}
1673 
1674 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1675 	if (link_up)
1676 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1677 	else
1678 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1679 
1680 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1681 	if (retcode) {
1682 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1683 			vsi->vsi_num, retcode);
1684 		retcode = -EIO;
1685 	}
1686 
1687 	kfree(cfg);
1688 out:
1689 	kfree(pcaps);
1690 	return retcode;
1691 }
1692 
1693 /**
1694  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1695  * @pi: port info structure
1696  *
1697  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1698  */
ice_init_nvm_phy_type(struct ice_port_info * pi)1699 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1700 {
1701 	struct ice_aqc_get_phy_caps_data *pcaps;
1702 	struct ice_pf *pf = pi->hw->back;
1703 	enum ice_status status;
1704 	int err = 0;
1705 
1706 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1707 	if (!pcaps)
1708 		return -ENOMEM;
1709 
1710 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1711 				     NULL);
1712 
1713 	if (status) {
1714 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1715 		err = -EIO;
1716 		goto out;
1717 	}
1718 
1719 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1720 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1721 
1722 out:
1723 	kfree(pcaps);
1724 	return err;
1725 }
1726 
1727 /**
1728  * ice_init_link_dflt_override - Initialize link default override
1729  * @pi: port info structure
1730  *
1731  * Initialize link default override and PHY total port shutdown during probe
1732  */
ice_init_link_dflt_override(struct ice_port_info * pi)1733 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1734 {
1735 	struct ice_link_default_override_tlv *ldo;
1736 	struct ice_pf *pf = pi->hw->back;
1737 
1738 	ldo = &pf->link_dflt_override;
1739 	if (ice_get_link_default_override(ldo, pi))
1740 		return;
1741 
1742 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1743 		return;
1744 
1745 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1746 	 * ethtool private flag) for ports with Port Disable bit set.
1747 	 */
1748 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1749 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1750 }
1751 
1752 /**
1753  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1754  * @pi: port info structure
1755  *
1756  * If default override is enabled, initialized the user PHY cfg speed and FEC
1757  * settings using the default override mask from the NVM.
1758  *
1759  * The PHY should only be configured with the default override settings the
1760  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1761  * is used to indicate that the user PHY cfg default override is initialized
1762  * and the PHY has not been configured with the default override settings. The
1763  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1764  * configured.
1765  */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1766 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1767 {
1768 	struct ice_link_default_override_tlv *ldo;
1769 	struct ice_aqc_set_phy_cfg_data *cfg;
1770 	struct ice_phy_info *phy = &pi->phy;
1771 	struct ice_pf *pf = pi->hw->back;
1772 
1773 	ldo = &pf->link_dflt_override;
1774 
1775 	/* If link default override is enabled, use to mask NVM PHY capabilities
1776 	 * for speed and FEC default configuration.
1777 	 */
1778 	cfg = &phy->curr_user_phy_cfg;
1779 
1780 	if (ldo->phy_type_low || ldo->phy_type_high) {
1781 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1782 				    cpu_to_le64(ldo->phy_type_low);
1783 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1784 				     cpu_to_le64(ldo->phy_type_high);
1785 	}
1786 	cfg->link_fec_opt = ldo->fec_options;
1787 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1788 
1789 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1790 }
1791 
1792 /**
1793  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1794  * @pi: port info structure
1795  *
1796  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1797  * mode to default. The PHY defaults are from get PHY capabilities topology
1798  * with media so call when media is first available. An error is returned if
1799  * called when media is not available. The PHY initialization completed state is
1800  * set here.
1801  *
1802  * These configurations are used when setting PHY
1803  * configuration. The user PHY configuration is updated on set PHY
1804  * configuration. Returns 0 on success, negative on failure
1805  */
ice_init_phy_user_cfg(struct ice_port_info * pi)1806 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1807 {
1808 	struct ice_aqc_get_phy_caps_data *pcaps;
1809 	struct ice_phy_info *phy = &pi->phy;
1810 	struct ice_pf *pf = pi->hw->back;
1811 	enum ice_status status;
1812 	struct ice_vsi *vsi;
1813 	int err = 0;
1814 
1815 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1816 		return -EIO;
1817 
1818 	vsi = ice_get_main_vsi(pf);
1819 	if (!vsi)
1820 		return -EINVAL;
1821 
1822 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1823 	if (!pcaps)
1824 		return -ENOMEM;
1825 
1826 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1827 				     NULL);
1828 	if (status) {
1829 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1830 		err = -EIO;
1831 		goto err_out;
1832 	}
1833 
1834 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1835 
1836 	/* check if lenient mode is supported and enabled */
1837 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1838 	    !(pcaps->module_compliance_enforcement &
1839 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1840 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1841 
1842 		/* if link default override is enabled, initialize user PHY
1843 		 * configuration with link default override values
1844 		 */
1845 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1846 			ice_init_phy_cfg_dflt_override(pi);
1847 			goto out;
1848 		}
1849 	}
1850 
1851 	/* if link default override is not enabled, initialize PHY using
1852 	 * topology with media
1853 	 */
1854 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1855 						      pcaps->link_fec_options);
1856 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1857 
1858 out:
1859 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1860 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1861 err_out:
1862 	kfree(pcaps);
1863 	return err;
1864 }
1865 
1866 /**
1867  * ice_configure_phy - configure PHY
1868  * @vsi: VSI of PHY
1869  *
1870  * Set the PHY configuration. If the current PHY configuration is the same as
1871  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1872  * configure the based get PHY capabilities for topology with media.
1873  */
ice_configure_phy(struct ice_vsi * vsi)1874 static int ice_configure_phy(struct ice_vsi *vsi)
1875 {
1876 	struct device *dev = ice_pf_to_dev(vsi->back);
1877 	struct ice_aqc_get_phy_caps_data *pcaps;
1878 	struct ice_aqc_set_phy_cfg_data *cfg;
1879 	struct ice_port_info *pi;
1880 	enum ice_status status;
1881 	int err = 0;
1882 
1883 	pi = vsi->port_info;
1884 	if (!pi)
1885 		return -EINVAL;
1886 
1887 	/* Ensure we have media as we cannot configure a medialess port */
1888 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1889 		return -EPERM;
1890 
1891 	ice_print_topo_conflict(vsi);
1892 
1893 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1894 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1895 		return -EPERM;
1896 
1897 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1898 		return ice_force_phys_link_state(vsi, true);
1899 
1900 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1901 	if (!pcaps)
1902 		return -ENOMEM;
1903 
1904 	/* Get current PHY config */
1905 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1906 				     NULL);
1907 	if (status) {
1908 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1909 			vsi->vsi_num, ice_stat_str(status));
1910 		err = -EIO;
1911 		goto done;
1912 	}
1913 
1914 	/* If PHY enable link is configured and configuration has not changed,
1915 	 * there's nothing to do
1916 	 */
1917 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1918 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1919 		goto done;
1920 
1921 	/* Use PHY topology as baseline for configuration */
1922 	memset(pcaps, 0, sizeof(*pcaps));
1923 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1924 				     NULL);
1925 	if (status) {
1926 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1927 			vsi->vsi_num, ice_stat_str(status));
1928 		err = -EIO;
1929 		goto done;
1930 	}
1931 
1932 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1933 	if (!cfg) {
1934 		err = -ENOMEM;
1935 		goto done;
1936 	}
1937 
1938 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1939 
1940 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1941 	 * ice_init_phy_user_cfg_ldo.
1942 	 */
1943 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1944 			       vsi->back->state)) {
1945 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1946 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1947 	} else {
1948 		u64 phy_low = 0, phy_high = 0;
1949 
1950 		ice_update_phy_type(&phy_low, &phy_high,
1951 				    pi->phy.curr_user_speed_req);
1952 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1953 		cfg->phy_type_high = pcaps->phy_type_high &
1954 				     cpu_to_le64(phy_high);
1955 	}
1956 
1957 	/* Can't provide what was requested; use PHY capabilities */
1958 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1959 		cfg->phy_type_low = pcaps->phy_type_low;
1960 		cfg->phy_type_high = pcaps->phy_type_high;
1961 	}
1962 
1963 	/* FEC */
1964 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1965 
1966 	/* Can't provide what was requested; use PHY capabilities */
1967 	if (cfg->link_fec_opt !=
1968 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1969 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1970 		cfg->link_fec_opt = pcaps->link_fec_options;
1971 	}
1972 
1973 	/* Flow Control - always supported; no need to check against
1974 	 * capabilities
1975 	 */
1976 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1977 
1978 	/* Enable link and link update */
1979 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1980 
1981 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1982 	if (status) {
1983 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1984 			vsi->vsi_num, ice_stat_str(status));
1985 		err = -EIO;
1986 	}
1987 
1988 	kfree(cfg);
1989 done:
1990 	kfree(pcaps);
1991 	return err;
1992 }
1993 
1994 /**
1995  * ice_check_media_subtask - Check for media
1996  * @pf: pointer to PF struct
1997  *
1998  * If media is available, then initialize PHY user configuration if it is not
1999  * been, and configure the PHY if the interface is up.
2000  */
ice_check_media_subtask(struct ice_pf * pf)2001 static void ice_check_media_subtask(struct ice_pf *pf)
2002 {
2003 	struct ice_port_info *pi;
2004 	struct ice_vsi *vsi;
2005 	int err;
2006 
2007 	/* No need to check for media if it's already present */
2008 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2009 		return;
2010 
2011 	vsi = ice_get_main_vsi(pf);
2012 	if (!vsi)
2013 		return;
2014 
2015 	/* Refresh link info and check if media is present */
2016 	pi = vsi->port_info;
2017 	err = ice_update_link_info(pi);
2018 	if (err)
2019 		return;
2020 
2021 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2022 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2023 			ice_init_phy_user_cfg(pi);
2024 
2025 		/* PHY settings are reset on media insertion, reconfigure
2026 		 * PHY to preserve settings.
2027 		 */
2028 		if (test_bit(__ICE_DOWN, vsi->state) &&
2029 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2030 			return;
2031 
2032 		err = ice_configure_phy(vsi);
2033 		if (!err)
2034 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2035 
2036 		/* A Link Status Event will be generated; the event handler
2037 		 * will complete bringing the interface up
2038 		 */
2039 	}
2040 }
2041 
2042 /**
2043  * ice_service_task - manage and run subtasks
2044  * @work: pointer to work_struct contained by the PF struct
2045  */
ice_service_task(struct work_struct * work)2046 static void ice_service_task(struct work_struct *work)
2047 {
2048 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2049 	unsigned long start_time = jiffies;
2050 
2051 	/* subtasks */
2052 
2053 	/* process reset requests first */
2054 	ice_reset_subtask(pf);
2055 
2056 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2057 	if (ice_is_reset_in_progress(pf->state) ||
2058 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2059 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2060 		ice_service_task_complete(pf);
2061 		return;
2062 	}
2063 
2064 	ice_clean_adminq_subtask(pf);
2065 	ice_check_media_subtask(pf);
2066 	ice_check_for_hang_subtask(pf);
2067 	ice_sync_fltr_subtask(pf);
2068 	ice_handle_mdd_event(pf);
2069 	ice_watchdog_subtask(pf);
2070 
2071 	if (ice_is_safe_mode(pf)) {
2072 		ice_service_task_complete(pf);
2073 		return;
2074 	}
2075 
2076 	ice_process_vflr_event(pf);
2077 	ice_clean_mailboxq_subtask(pf);
2078 	ice_sync_arfs_fltrs(pf);
2079 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2080 	ice_service_task_complete(pf);
2081 
2082 	/* If the tasks have taken longer than one service timer period
2083 	 * or there is more work to be done, reset the service timer to
2084 	 * schedule the service task now.
2085 	 */
2086 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2087 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2088 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2089 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2090 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2091 		mod_timer(&pf->serv_tmr, jiffies);
2092 }
2093 
2094 /**
2095  * ice_set_ctrlq_len - helper function to set controlq length
2096  * @hw: pointer to the HW instance
2097  */
ice_set_ctrlq_len(struct ice_hw * hw)2098 static void ice_set_ctrlq_len(struct ice_hw *hw)
2099 {
2100 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2101 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2102 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2103 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2104 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2105 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2106 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2107 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2108 }
2109 
2110 /**
2111  * ice_schedule_reset - schedule a reset
2112  * @pf: board private structure
2113  * @reset: reset being requested
2114  */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2115 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2116 {
2117 	struct device *dev = ice_pf_to_dev(pf);
2118 
2119 	/* bail out if earlier reset has failed */
2120 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2121 		dev_dbg(dev, "earlier reset has failed\n");
2122 		return -EIO;
2123 	}
2124 	/* bail if reset/recovery already in progress */
2125 	if (ice_is_reset_in_progress(pf->state)) {
2126 		dev_dbg(dev, "Reset already in progress\n");
2127 		return -EBUSY;
2128 	}
2129 
2130 	switch (reset) {
2131 	case ICE_RESET_PFR:
2132 		set_bit(__ICE_PFR_REQ, pf->state);
2133 		break;
2134 	case ICE_RESET_CORER:
2135 		set_bit(__ICE_CORER_REQ, pf->state);
2136 		break;
2137 	case ICE_RESET_GLOBR:
2138 		set_bit(__ICE_GLOBR_REQ, pf->state);
2139 		break;
2140 	default:
2141 		return -EINVAL;
2142 	}
2143 
2144 	ice_service_task_schedule(pf);
2145 	return 0;
2146 }
2147 
2148 /**
2149  * ice_irq_affinity_notify - Callback for affinity changes
2150  * @notify: context as to what irq was changed
2151  * @mask: the new affinity mask
2152  *
2153  * This is a callback function used by the irq_set_affinity_notifier function
2154  * so that we may register to receive changes to the irq affinity masks.
2155  */
2156 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2157 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2158 			const cpumask_t *mask)
2159 {
2160 	struct ice_q_vector *q_vector =
2161 		container_of(notify, struct ice_q_vector, affinity_notify);
2162 
2163 	cpumask_copy(&q_vector->affinity_mask, mask);
2164 }
2165 
2166 /**
2167  * ice_irq_affinity_release - Callback for affinity notifier release
2168  * @ref: internal core kernel usage
2169  *
2170  * This is a callback function used by the irq_set_affinity_notifier function
2171  * to inform the current notification subscriber that they will no longer
2172  * receive notifications.
2173  */
ice_irq_affinity_release(struct kref __always_unused * ref)2174 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2175 
2176 /**
2177  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2178  * @vsi: the VSI being configured
2179  */
ice_vsi_ena_irq(struct ice_vsi * vsi)2180 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2181 {
2182 	struct ice_hw *hw = &vsi->back->hw;
2183 	int i;
2184 
2185 	ice_for_each_q_vector(vsi, i)
2186 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2187 
2188 	ice_flush(hw);
2189 	return 0;
2190 }
2191 
2192 /**
2193  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2194  * @vsi: the VSI being configured
2195  * @basename: name for the vector
2196  */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2197 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2198 {
2199 	int q_vectors = vsi->num_q_vectors;
2200 	struct ice_pf *pf = vsi->back;
2201 	int base = vsi->base_vector;
2202 	struct device *dev;
2203 	int rx_int_idx = 0;
2204 	int tx_int_idx = 0;
2205 	int vector, err;
2206 	int irq_num;
2207 
2208 	dev = ice_pf_to_dev(pf);
2209 	for (vector = 0; vector < q_vectors; vector++) {
2210 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2211 
2212 		irq_num = pf->msix_entries[base + vector].vector;
2213 
2214 		if (q_vector->tx.ring && q_vector->rx.ring) {
2215 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2216 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2217 			tx_int_idx++;
2218 		} else if (q_vector->rx.ring) {
2219 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2220 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2221 		} else if (q_vector->tx.ring) {
2222 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2223 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2224 		} else {
2225 			/* skip this unused q_vector */
2226 			continue;
2227 		}
2228 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2229 				       q_vector->name, q_vector);
2230 		if (err) {
2231 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2232 				   err);
2233 			goto free_q_irqs;
2234 		}
2235 
2236 		/* register for affinity change notifications */
2237 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2238 			struct irq_affinity_notify *affinity_notify;
2239 
2240 			affinity_notify = &q_vector->affinity_notify;
2241 			affinity_notify->notify = ice_irq_affinity_notify;
2242 			affinity_notify->release = ice_irq_affinity_release;
2243 			irq_set_affinity_notifier(irq_num, affinity_notify);
2244 		}
2245 
2246 		/* assign the mask for this irq */
2247 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2248 	}
2249 
2250 	vsi->irqs_ready = true;
2251 	return 0;
2252 
2253 free_q_irqs:
2254 	while (vector) {
2255 		vector--;
2256 		irq_num = pf->msix_entries[base + vector].vector;
2257 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2258 			irq_set_affinity_notifier(irq_num, NULL);
2259 		irq_set_affinity_hint(irq_num, NULL);
2260 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2261 	}
2262 	return err;
2263 }
2264 
2265 /**
2266  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2267  * @vsi: VSI to setup Tx rings used by XDP
2268  *
2269  * Return 0 on success and negative value on error
2270  */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2271 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2272 {
2273 	struct device *dev = ice_pf_to_dev(vsi->back);
2274 	int i;
2275 
2276 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2277 		u16 xdp_q_idx = vsi->alloc_txq + i;
2278 		struct ice_ring *xdp_ring;
2279 
2280 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2281 
2282 		if (!xdp_ring)
2283 			goto free_xdp_rings;
2284 
2285 		xdp_ring->q_index = xdp_q_idx;
2286 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2287 		xdp_ring->ring_active = false;
2288 		xdp_ring->vsi = vsi;
2289 		xdp_ring->netdev = NULL;
2290 		xdp_ring->dev = dev;
2291 		xdp_ring->count = vsi->num_tx_desc;
2292 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2293 		if (ice_setup_tx_ring(xdp_ring))
2294 			goto free_xdp_rings;
2295 		ice_set_ring_xdp(xdp_ring);
2296 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2297 	}
2298 
2299 	return 0;
2300 
2301 free_xdp_rings:
2302 	for (; i >= 0; i--)
2303 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2304 			ice_free_tx_ring(vsi->xdp_rings[i]);
2305 	return -ENOMEM;
2306 }
2307 
2308 /**
2309  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2310  * @vsi: VSI to set the bpf prog on
2311  * @prog: the bpf prog pointer
2312  */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2313 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2314 {
2315 	struct bpf_prog *old_prog;
2316 	int i;
2317 
2318 	old_prog = xchg(&vsi->xdp_prog, prog);
2319 	if (old_prog)
2320 		bpf_prog_put(old_prog);
2321 
2322 	ice_for_each_rxq(vsi, i)
2323 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2324 }
2325 
2326 /**
2327  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2328  * @vsi: VSI to bring up Tx rings used by XDP
2329  * @prog: bpf program that will be assigned to VSI
2330  *
2331  * Return 0 on success and negative value on error
2332  */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2333 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2334 {
2335 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2336 	int xdp_rings_rem = vsi->num_xdp_txq;
2337 	struct ice_pf *pf = vsi->back;
2338 	struct ice_qs_cfg xdp_qs_cfg = {
2339 		.qs_mutex = &pf->avail_q_mutex,
2340 		.pf_map = pf->avail_txqs,
2341 		.pf_map_size = pf->max_pf_txqs,
2342 		.q_count = vsi->num_xdp_txq,
2343 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2344 		.vsi_map = vsi->txq_map,
2345 		.vsi_map_offset = vsi->alloc_txq,
2346 		.mapping_mode = ICE_VSI_MAP_CONTIG
2347 	};
2348 	enum ice_status status;
2349 	struct device *dev;
2350 	int i, v_idx;
2351 
2352 	dev = ice_pf_to_dev(pf);
2353 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2354 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2355 	if (!vsi->xdp_rings)
2356 		return -ENOMEM;
2357 
2358 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2359 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2360 		goto err_map_xdp;
2361 
2362 	if (ice_xdp_alloc_setup_rings(vsi))
2363 		goto clear_xdp_rings;
2364 
2365 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2366 	ice_for_each_q_vector(vsi, v_idx) {
2367 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2368 		int xdp_rings_per_v, q_id, q_base;
2369 
2370 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2371 					       vsi->num_q_vectors - v_idx);
2372 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2373 
2374 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2375 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2376 
2377 			xdp_ring->q_vector = q_vector;
2378 			xdp_ring->next = q_vector->tx.ring;
2379 			q_vector->tx.ring = xdp_ring;
2380 		}
2381 		xdp_rings_rem -= xdp_rings_per_v;
2382 	}
2383 
2384 	/* omit the scheduler update if in reset path; XDP queues will be
2385 	 * taken into account at the end of ice_vsi_rebuild, where
2386 	 * ice_cfg_vsi_lan is being called
2387 	 */
2388 	if (ice_is_reset_in_progress(pf->state))
2389 		return 0;
2390 
2391 	/* tell the Tx scheduler that right now we have
2392 	 * additional queues
2393 	 */
2394 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2395 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2396 
2397 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2398 				 max_txqs);
2399 	if (status) {
2400 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2401 			ice_stat_str(status));
2402 		goto clear_xdp_rings;
2403 	}
2404 
2405 	/* assign the prog only when it's not already present on VSI;
2406 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2407 	 * VSI rebuild that happens under ethtool -L can expose us to
2408 	 * the bpf_prog refcount issues as we would be swapping same
2409 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2410 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2411 	 * this is not harmful as dev_xdp_install bumps the refcount
2412 	 * before calling the op exposed by the driver;
2413 	 */
2414 	if (!ice_is_xdp_ena_vsi(vsi))
2415 		ice_vsi_assign_bpf_prog(vsi, prog);
2416 
2417 	return 0;
2418 clear_xdp_rings:
2419 	for (i = 0; i < vsi->num_xdp_txq; i++)
2420 		if (vsi->xdp_rings[i]) {
2421 			kfree_rcu(vsi->xdp_rings[i], rcu);
2422 			vsi->xdp_rings[i] = NULL;
2423 		}
2424 
2425 err_map_xdp:
2426 	mutex_lock(&pf->avail_q_mutex);
2427 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2428 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2429 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2430 	}
2431 	mutex_unlock(&pf->avail_q_mutex);
2432 
2433 	devm_kfree(dev, vsi->xdp_rings);
2434 	return -ENOMEM;
2435 }
2436 
2437 /**
2438  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2439  * @vsi: VSI to remove XDP rings
2440  *
2441  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2442  * resources
2443  */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2444 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2445 {
2446 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2447 	struct ice_pf *pf = vsi->back;
2448 	int i, v_idx;
2449 
2450 	/* q_vectors are freed in reset path so there's no point in detaching
2451 	 * rings; in case of rebuild being triggered not from reset bits
2452 	 * in pf->state won't be set, so additionally check first q_vector
2453 	 * against NULL
2454 	 */
2455 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2456 		goto free_qmap;
2457 
2458 	ice_for_each_q_vector(vsi, v_idx) {
2459 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2460 		struct ice_ring *ring;
2461 
2462 		ice_for_each_ring(ring, q_vector->tx)
2463 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2464 				break;
2465 
2466 		/* restore the value of last node prior to XDP setup */
2467 		q_vector->tx.ring = ring;
2468 	}
2469 
2470 free_qmap:
2471 	mutex_lock(&pf->avail_q_mutex);
2472 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2473 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2474 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2475 	}
2476 	mutex_unlock(&pf->avail_q_mutex);
2477 
2478 	for (i = 0; i < vsi->num_xdp_txq; i++)
2479 		if (vsi->xdp_rings[i]) {
2480 			if (vsi->xdp_rings[i]->desc) {
2481 				synchronize_rcu();
2482 				ice_free_tx_ring(vsi->xdp_rings[i]);
2483 			}
2484 			kfree_rcu(vsi->xdp_rings[i], rcu);
2485 			vsi->xdp_rings[i] = NULL;
2486 		}
2487 
2488 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2489 	vsi->xdp_rings = NULL;
2490 
2491 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2492 		return 0;
2493 
2494 	ice_vsi_assign_bpf_prog(vsi, NULL);
2495 
2496 	/* notify Tx scheduler that we destroyed XDP queues and bring
2497 	 * back the old number of child nodes
2498 	 */
2499 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2500 		max_txqs[i] = vsi->num_txq;
2501 
2502 	/* change number of XDP Tx queues to 0 */
2503 	vsi->num_xdp_txq = 0;
2504 
2505 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2506 			       max_txqs);
2507 }
2508 
2509 /**
2510  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2511  * @vsi: VSI to setup XDP for
2512  * @prog: XDP program
2513  * @extack: netlink extended ack
2514  */
2515 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2516 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2517 		   struct netlink_ext_ack *extack)
2518 {
2519 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2520 	bool if_running = netif_running(vsi->netdev);
2521 	int ret = 0, xdp_ring_err = 0;
2522 
2523 	if (frame_size > vsi->rx_buf_len) {
2524 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2525 		return -EOPNOTSUPP;
2526 	}
2527 
2528 	/* need to stop netdev while setting up the program for Rx rings */
2529 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2530 		ret = ice_down(vsi);
2531 		if (ret) {
2532 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2533 			return ret;
2534 		}
2535 	}
2536 
2537 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2538 		vsi->num_xdp_txq = vsi->alloc_rxq;
2539 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2540 		if (xdp_ring_err)
2541 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2542 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2543 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2544 		if (xdp_ring_err)
2545 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2546 	} else {
2547 		/* safe to call even when prog == vsi->xdp_prog as
2548 		 * dev_xdp_install in net/core/dev.c incremented prog's
2549 		 * refcount so corresponding bpf_prog_put won't cause
2550 		 * underflow
2551 		 */
2552 		ice_vsi_assign_bpf_prog(vsi, prog);
2553 	}
2554 
2555 	if (if_running)
2556 		ret = ice_up(vsi);
2557 
2558 	if (!ret && prog && vsi->xsk_pools) {
2559 		int i;
2560 
2561 		ice_for_each_rxq(vsi, i) {
2562 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2563 
2564 			if (rx_ring->xsk_pool)
2565 				napi_schedule(&rx_ring->q_vector->napi);
2566 		}
2567 	}
2568 
2569 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2570 }
2571 
2572 /**
2573  * ice_xdp_safe_mode - XDP handler for safe mode
2574  * @dev: netdevice
2575  * @xdp: XDP command
2576  */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2577 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2578 			     struct netdev_bpf *xdp)
2579 {
2580 	NL_SET_ERR_MSG_MOD(xdp->extack,
2581 			   "Please provide working DDP firmware package in order to use XDP\n"
2582 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2583 	return -EOPNOTSUPP;
2584 }
2585 
2586 /**
2587  * ice_xdp - implements XDP handler
2588  * @dev: netdevice
2589  * @xdp: XDP command
2590  */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2591 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2592 {
2593 	struct ice_netdev_priv *np = netdev_priv(dev);
2594 	struct ice_vsi *vsi = np->vsi;
2595 
2596 	if (vsi->type != ICE_VSI_PF) {
2597 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2598 		return -EINVAL;
2599 	}
2600 
2601 	switch (xdp->command) {
2602 	case XDP_SETUP_PROG:
2603 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2604 	case XDP_SETUP_XSK_POOL:
2605 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2606 					  xdp->xsk.queue_id);
2607 	default:
2608 		return -EINVAL;
2609 	}
2610 }
2611 
2612 /**
2613  * ice_ena_misc_vector - enable the non-queue interrupts
2614  * @pf: board private structure
2615  */
ice_ena_misc_vector(struct ice_pf * pf)2616 static void ice_ena_misc_vector(struct ice_pf *pf)
2617 {
2618 	struct ice_hw *hw = &pf->hw;
2619 	u32 val;
2620 
2621 	/* Disable anti-spoof detection interrupt to prevent spurious event
2622 	 * interrupts during a function reset. Anti-spoof functionally is
2623 	 * still supported.
2624 	 */
2625 	val = rd32(hw, GL_MDCK_TX_TDPU);
2626 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2627 	wr32(hw, GL_MDCK_TX_TDPU, val);
2628 
2629 	/* clear things first */
2630 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2631 	rd32(hw, PFINT_OICR);		/* read to clear */
2632 
2633 	val = (PFINT_OICR_ECC_ERR_M |
2634 	       PFINT_OICR_MAL_DETECT_M |
2635 	       PFINT_OICR_GRST_M |
2636 	       PFINT_OICR_PCI_EXCEPTION_M |
2637 	       PFINT_OICR_VFLR_M |
2638 	       PFINT_OICR_HMC_ERR_M |
2639 	       PFINT_OICR_PE_CRITERR_M);
2640 
2641 	wr32(hw, PFINT_OICR_ENA, val);
2642 
2643 	/* SW_ITR_IDX = 0, but don't change INTENA */
2644 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2645 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2646 }
2647 
2648 /**
2649  * ice_misc_intr - misc interrupt handler
2650  * @irq: interrupt number
2651  * @data: pointer to a q_vector
2652  */
ice_misc_intr(int __always_unused irq,void * data)2653 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2654 {
2655 	struct ice_pf *pf = (struct ice_pf *)data;
2656 	struct ice_hw *hw = &pf->hw;
2657 	irqreturn_t ret = IRQ_NONE;
2658 	struct device *dev;
2659 	u32 oicr, ena_mask;
2660 
2661 	dev = ice_pf_to_dev(pf);
2662 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2663 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2664 
2665 	oicr = rd32(hw, PFINT_OICR);
2666 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2667 
2668 	if (oicr & PFINT_OICR_SWINT_M) {
2669 		ena_mask &= ~PFINT_OICR_SWINT_M;
2670 		pf->sw_int_count++;
2671 	}
2672 
2673 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2674 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2675 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2676 	}
2677 	if (oicr & PFINT_OICR_VFLR_M) {
2678 		/* disable any further VFLR event notifications */
2679 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2680 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2681 
2682 			reg &= ~PFINT_OICR_VFLR_M;
2683 			wr32(hw, PFINT_OICR_ENA, reg);
2684 		} else {
2685 			ena_mask &= ~PFINT_OICR_VFLR_M;
2686 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2687 		}
2688 	}
2689 
2690 	if (oicr & PFINT_OICR_GRST_M) {
2691 		u32 reset;
2692 
2693 		/* we have a reset warning */
2694 		ena_mask &= ~PFINT_OICR_GRST_M;
2695 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2696 			GLGEN_RSTAT_RESET_TYPE_S;
2697 
2698 		if (reset == ICE_RESET_CORER)
2699 			pf->corer_count++;
2700 		else if (reset == ICE_RESET_GLOBR)
2701 			pf->globr_count++;
2702 		else if (reset == ICE_RESET_EMPR)
2703 			pf->empr_count++;
2704 		else
2705 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2706 
2707 		/* If a reset cycle isn't already in progress, we set a bit in
2708 		 * pf->state so that the service task can start a reset/rebuild.
2709 		 * We also make note of which reset happened so that peer
2710 		 * devices/drivers can be informed.
2711 		 */
2712 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2713 			if (reset == ICE_RESET_CORER)
2714 				set_bit(__ICE_CORER_RECV, pf->state);
2715 			else if (reset == ICE_RESET_GLOBR)
2716 				set_bit(__ICE_GLOBR_RECV, pf->state);
2717 			else
2718 				set_bit(__ICE_EMPR_RECV, pf->state);
2719 
2720 			/* There are couple of different bits at play here.
2721 			 * hw->reset_ongoing indicates whether the hardware is
2722 			 * in reset. This is set to true when a reset interrupt
2723 			 * is received and set back to false after the driver
2724 			 * has determined that the hardware is out of reset.
2725 			 *
2726 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2727 			 * that a post reset rebuild is required before the
2728 			 * driver is operational again. This is set above.
2729 			 *
2730 			 * As this is the start of the reset/rebuild cycle, set
2731 			 * both to indicate that.
2732 			 */
2733 			hw->reset_ongoing = true;
2734 		}
2735 	}
2736 
2737 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2738 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2739 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2740 			rd32(hw, PFHMC_ERRORINFO),
2741 			rd32(hw, PFHMC_ERRORDATA));
2742 	}
2743 
2744 	/* Report any remaining unexpected interrupts */
2745 	oicr &= ena_mask;
2746 	if (oicr) {
2747 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2748 		/* If a critical error is pending there is no choice but to
2749 		 * reset the device.
2750 		 */
2751 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2752 			    PFINT_OICR_PCI_EXCEPTION_M |
2753 			    PFINT_OICR_ECC_ERR_M)) {
2754 			set_bit(__ICE_PFR_REQ, pf->state);
2755 			ice_service_task_schedule(pf);
2756 		}
2757 	}
2758 	ret = IRQ_HANDLED;
2759 
2760 	ice_service_task_schedule(pf);
2761 	ice_irq_dynamic_ena(hw, NULL, NULL);
2762 
2763 	return ret;
2764 }
2765 
2766 /**
2767  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2768  * @hw: pointer to HW structure
2769  */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2770 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2771 {
2772 	/* disable Admin queue Interrupt causes */
2773 	wr32(hw, PFINT_FW_CTL,
2774 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2775 
2776 	/* disable Mailbox queue Interrupt causes */
2777 	wr32(hw, PFINT_MBX_CTL,
2778 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2779 
2780 	/* disable Control queue Interrupt causes */
2781 	wr32(hw, PFINT_OICR_CTL,
2782 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2783 
2784 	ice_flush(hw);
2785 }
2786 
2787 /**
2788  * ice_free_irq_msix_misc - Unroll misc vector setup
2789  * @pf: board private structure
2790  */
ice_free_irq_msix_misc(struct ice_pf * pf)2791 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2792 {
2793 	struct ice_hw *hw = &pf->hw;
2794 
2795 	ice_dis_ctrlq_interrupts(hw);
2796 
2797 	/* disable OICR interrupt */
2798 	wr32(hw, PFINT_OICR_ENA, 0);
2799 	ice_flush(hw);
2800 
2801 	if (pf->msix_entries) {
2802 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2803 		devm_free_irq(ice_pf_to_dev(pf),
2804 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2805 	}
2806 
2807 	pf->num_avail_sw_msix += 1;
2808 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2809 }
2810 
2811 /**
2812  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2813  * @hw: pointer to HW structure
2814  * @reg_idx: HW vector index to associate the control queue interrupts with
2815  */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2816 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2817 {
2818 	u32 val;
2819 
2820 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2821 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2822 	wr32(hw, PFINT_OICR_CTL, val);
2823 
2824 	/* enable Admin queue Interrupt causes */
2825 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2826 	       PFINT_FW_CTL_CAUSE_ENA_M);
2827 	wr32(hw, PFINT_FW_CTL, val);
2828 
2829 	/* enable Mailbox queue Interrupt causes */
2830 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2831 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2832 	wr32(hw, PFINT_MBX_CTL, val);
2833 
2834 	ice_flush(hw);
2835 }
2836 
2837 /**
2838  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2839  * @pf: board private structure
2840  *
2841  * This sets up the handler for MSIX 0, which is used to manage the
2842  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2843  * when in MSI or Legacy interrupt mode.
2844  */
ice_req_irq_msix_misc(struct ice_pf * pf)2845 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2846 {
2847 	struct device *dev = ice_pf_to_dev(pf);
2848 	struct ice_hw *hw = &pf->hw;
2849 	int oicr_idx, err = 0;
2850 
2851 	if (!pf->int_name[0])
2852 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2853 			 dev_driver_string(dev), dev_name(dev));
2854 
2855 	/* Do not request IRQ but do enable OICR interrupt since settings are
2856 	 * lost during reset. Note that this function is called only during
2857 	 * rebuild path and not while reset is in progress.
2858 	 */
2859 	if (ice_is_reset_in_progress(pf->state))
2860 		goto skip_req_irq;
2861 
2862 	/* reserve one vector in irq_tracker for misc interrupts */
2863 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2864 	if (oicr_idx < 0)
2865 		return oicr_idx;
2866 
2867 	pf->num_avail_sw_msix -= 1;
2868 	pf->oicr_idx = (u16)oicr_idx;
2869 
2870 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2871 			       ice_misc_intr, 0, pf->int_name, pf);
2872 	if (err) {
2873 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2874 			pf->int_name, err);
2875 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2876 		pf->num_avail_sw_msix += 1;
2877 		return err;
2878 	}
2879 
2880 skip_req_irq:
2881 	ice_ena_misc_vector(pf);
2882 
2883 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2884 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2885 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2886 
2887 	ice_flush(hw);
2888 	ice_irq_dynamic_ena(hw, NULL, NULL);
2889 
2890 	return 0;
2891 }
2892 
2893 /**
2894  * ice_napi_add - register NAPI handler for the VSI
2895  * @vsi: VSI for which NAPI handler is to be registered
2896  *
2897  * This function is only called in the driver's load path. Registering the NAPI
2898  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2899  * reset/rebuild, etc.)
2900  */
ice_napi_add(struct ice_vsi * vsi)2901 static void ice_napi_add(struct ice_vsi *vsi)
2902 {
2903 	int v_idx;
2904 
2905 	if (!vsi->netdev)
2906 		return;
2907 
2908 	ice_for_each_q_vector(vsi, v_idx)
2909 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2910 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2911 }
2912 
2913 /**
2914  * ice_set_ops - set netdev and ethtools ops for the given netdev
2915  * @netdev: netdev instance
2916  */
ice_set_ops(struct net_device * netdev)2917 static void ice_set_ops(struct net_device *netdev)
2918 {
2919 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2920 
2921 	if (ice_is_safe_mode(pf)) {
2922 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2923 		ice_set_ethtool_safe_mode_ops(netdev);
2924 		return;
2925 	}
2926 
2927 	netdev->netdev_ops = &ice_netdev_ops;
2928 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2929 	ice_set_ethtool_ops(netdev);
2930 }
2931 
2932 /**
2933  * ice_set_netdev_features - set features for the given netdev
2934  * @netdev: netdev instance
2935  */
ice_set_netdev_features(struct net_device * netdev)2936 static void ice_set_netdev_features(struct net_device *netdev)
2937 {
2938 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2939 	netdev_features_t csumo_features;
2940 	netdev_features_t vlano_features;
2941 	netdev_features_t dflt_features;
2942 	netdev_features_t tso_features;
2943 
2944 	if (ice_is_safe_mode(pf)) {
2945 		/* safe mode */
2946 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2947 		netdev->hw_features = netdev->features;
2948 		return;
2949 	}
2950 
2951 	dflt_features = NETIF_F_SG	|
2952 			NETIF_F_HIGHDMA	|
2953 			NETIF_F_NTUPLE	|
2954 			NETIF_F_RXHASH;
2955 
2956 	csumo_features = NETIF_F_RXCSUM	  |
2957 			 NETIF_F_IP_CSUM  |
2958 			 NETIF_F_SCTP_CRC |
2959 			 NETIF_F_IPV6_CSUM;
2960 
2961 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2962 			 NETIF_F_HW_VLAN_CTAG_TX     |
2963 			 NETIF_F_HW_VLAN_CTAG_RX;
2964 
2965 	tso_features = NETIF_F_TSO			|
2966 		       NETIF_F_TSO_ECN			|
2967 		       NETIF_F_TSO6			|
2968 		       NETIF_F_GSO_GRE			|
2969 		       NETIF_F_GSO_UDP_TUNNEL		|
2970 		       NETIF_F_GSO_GRE_CSUM		|
2971 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2972 		       NETIF_F_GSO_PARTIAL		|
2973 		       NETIF_F_GSO_IPXIP4		|
2974 		       NETIF_F_GSO_IPXIP6		|
2975 		       NETIF_F_GSO_UDP_L4;
2976 
2977 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2978 					NETIF_F_GSO_GRE_CSUM;
2979 	/* set features that user can change */
2980 	netdev->hw_features = dflt_features | csumo_features |
2981 			      vlano_features | tso_features;
2982 
2983 	/* add support for HW_CSUM on packets with MPLS header */
2984 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2985 
2986 	/* enable features */
2987 	netdev->features |= netdev->hw_features;
2988 	/* encap and VLAN devices inherit default, csumo and tso features */
2989 	netdev->hw_enc_features |= dflt_features | csumo_features |
2990 				   tso_features;
2991 	netdev->vlan_features |= dflt_features | csumo_features |
2992 				 tso_features;
2993 }
2994 
2995 /**
2996  * ice_cfg_netdev - Allocate, configure and register a netdev
2997  * @vsi: the VSI associated with the new netdev
2998  *
2999  * Returns 0 on success, negative value on failure
3000  */
ice_cfg_netdev(struct ice_vsi * vsi)3001 static int ice_cfg_netdev(struct ice_vsi *vsi)
3002 {
3003 	struct ice_pf *pf = vsi->back;
3004 	struct ice_netdev_priv *np;
3005 	struct net_device *netdev;
3006 	u8 mac_addr[ETH_ALEN];
3007 	int err;
3008 
3009 	err = ice_devlink_create_port(vsi);
3010 	if (err)
3011 		return err;
3012 
3013 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3014 				    vsi->alloc_rxq);
3015 	if (!netdev) {
3016 		err = -ENOMEM;
3017 		goto err_destroy_devlink_port;
3018 	}
3019 
3020 	vsi->netdev = netdev;
3021 	np = netdev_priv(netdev);
3022 	np->vsi = vsi;
3023 
3024 	ice_set_netdev_features(netdev);
3025 
3026 	ice_set_ops(netdev);
3027 
3028 	if (vsi->type == ICE_VSI_PF) {
3029 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3030 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3031 		ether_addr_copy(netdev->dev_addr, mac_addr);
3032 		ether_addr_copy(netdev->perm_addr, mac_addr);
3033 	}
3034 
3035 	netdev->priv_flags |= IFF_UNICAST_FLT;
3036 
3037 	/* Setup netdev TC information */
3038 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3039 
3040 	/* setup watchdog timeout value to be 5 second */
3041 	netdev->watchdog_timeo = 5 * HZ;
3042 
3043 	netdev->min_mtu = ETH_MIN_MTU;
3044 	netdev->max_mtu = ICE_MAX_MTU;
3045 
3046 	err = register_netdev(vsi->netdev);
3047 	if (err)
3048 		goto err_free_netdev;
3049 
3050 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3051 
3052 	netif_carrier_off(vsi->netdev);
3053 
3054 	/* make sure transmit queues start off as stopped */
3055 	netif_tx_stop_all_queues(vsi->netdev);
3056 
3057 	return 0;
3058 
3059 err_free_netdev:
3060 	free_netdev(vsi->netdev);
3061 	vsi->netdev = NULL;
3062 err_destroy_devlink_port:
3063 	ice_devlink_destroy_port(vsi);
3064 	return err;
3065 }
3066 
3067 /**
3068  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3069  * @lut: Lookup table
3070  * @rss_table_size: Lookup table size
3071  * @rss_size: Range of queue number for hashing
3072  */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3073 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3074 {
3075 	u16 i;
3076 
3077 	for (i = 0; i < rss_table_size; i++)
3078 		lut[i] = i % rss_size;
3079 }
3080 
3081 /**
3082  * ice_pf_vsi_setup - Set up a PF VSI
3083  * @pf: board private structure
3084  * @pi: pointer to the port_info instance
3085  *
3086  * Returns pointer to the successfully allocated VSI software struct
3087  * on success, otherwise returns NULL on failure.
3088  */
3089 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3090 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3091 {
3092 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3093 }
3094 
3095 /**
3096  * ice_ctrl_vsi_setup - Set up a control VSI
3097  * @pf: board private structure
3098  * @pi: pointer to the port_info instance
3099  *
3100  * Returns pointer to the successfully allocated VSI software struct
3101  * on success, otherwise returns NULL on failure.
3102  */
3103 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3104 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3105 {
3106 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3107 }
3108 
3109 /**
3110  * ice_lb_vsi_setup - Set up a loopback VSI
3111  * @pf: board private structure
3112  * @pi: pointer to the port_info instance
3113  *
3114  * Returns pointer to the successfully allocated VSI software struct
3115  * on success, otherwise returns NULL on failure.
3116  */
3117 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3118 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3119 {
3120 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3121 }
3122 
3123 /**
3124  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3125  * @netdev: network interface to be adjusted
3126  * @proto: unused protocol
3127  * @vid: VLAN ID to be added
3128  *
3129  * net_device_ops implementation for adding VLAN IDs
3130  */
3131 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3132 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3133 		    u16 vid)
3134 {
3135 	struct ice_netdev_priv *np = netdev_priv(netdev);
3136 	struct ice_vsi *vsi = np->vsi;
3137 	int ret;
3138 
3139 	if (vid >= VLAN_N_VID) {
3140 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3141 			   vid, VLAN_N_VID);
3142 		return -EINVAL;
3143 	}
3144 
3145 	if (vsi->info.pvid)
3146 		return -EINVAL;
3147 
3148 	/* VLAN 0 is added by default during load/reset */
3149 	if (!vid)
3150 		return 0;
3151 
3152 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3153 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3154 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3155 		if (ret)
3156 			return ret;
3157 	}
3158 
3159 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3160 	 * packets aren't pruned by the device's internal switch on Rx
3161 	 */
3162 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3163 	if (!ret) {
3164 		vsi->vlan_ena = true;
3165 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3166 	}
3167 
3168 	return ret;
3169 }
3170 
3171 /**
3172  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3173  * @netdev: network interface to be adjusted
3174  * @proto: unused protocol
3175  * @vid: VLAN ID to be removed
3176  *
3177  * net_device_ops implementation for removing VLAN IDs
3178  */
3179 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3180 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3181 		     u16 vid)
3182 {
3183 	struct ice_netdev_priv *np = netdev_priv(netdev);
3184 	struct ice_vsi *vsi = np->vsi;
3185 	int ret;
3186 
3187 	if (vsi->info.pvid)
3188 		return -EINVAL;
3189 
3190 	/* don't allow removal of VLAN 0 */
3191 	if (!vid)
3192 		return 0;
3193 
3194 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3195 	 * information
3196 	 */
3197 	ret = ice_vsi_kill_vlan(vsi, vid);
3198 	if (ret)
3199 		return ret;
3200 
3201 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3202 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3203 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3204 
3205 	vsi->vlan_ena = false;
3206 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3207 	return ret;
3208 }
3209 
3210 /**
3211  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3212  * @pf: board private structure
3213  *
3214  * Returns 0 on success, negative value on failure
3215  */
ice_setup_pf_sw(struct ice_pf * pf)3216 static int ice_setup_pf_sw(struct ice_pf *pf)
3217 {
3218 	struct ice_vsi *vsi;
3219 	int status = 0;
3220 
3221 	if (ice_is_reset_in_progress(pf->state))
3222 		return -EBUSY;
3223 
3224 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3225 	if (!vsi)
3226 		return -ENOMEM;
3227 
3228 	status = ice_cfg_netdev(vsi);
3229 	if (status) {
3230 		status = -ENODEV;
3231 		goto unroll_vsi_setup;
3232 	}
3233 	/* netdev has to be configured before setting frame size */
3234 	ice_vsi_cfg_frame_size(vsi);
3235 
3236 	/* Setup DCB netlink interface */
3237 	ice_dcbnl_setup(vsi);
3238 
3239 	/* registering the NAPI handler requires both the queues and
3240 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3241 	 * and ice_cfg_netdev() respectively
3242 	 */
3243 	ice_napi_add(vsi);
3244 
3245 	status = ice_set_cpu_rx_rmap(vsi);
3246 	if (status) {
3247 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3248 			vsi->vsi_num, status);
3249 		status = -EINVAL;
3250 		goto unroll_napi_add;
3251 	}
3252 	status = ice_init_mac_fltr(pf);
3253 	if (status)
3254 		goto free_cpu_rx_map;
3255 
3256 	return status;
3257 
3258 free_cpu_rx_map:
3259 	ice_free_cpu_rx_rmap(vsi);
3260 
3261 unroll_napi_add:
3262 	if (vsi) {
3263 		ice_napi_del(vsi);
3264 		if (vsi->netdev) {
3265 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3266 				unregister_netdev(vsi->netdev);
3267 			free_netdev(vsi->netdev);
3268 			vsi->netdev = NULL;
3269 		}
3270 	}
3271 
3272 unroll_vsi_setup:
3273 	ice_vsi_release(vsi);
3274 	return status;
3275 }
3276 
3277 /**
3278  * ice_get_avail_q_count - Get count of queues in use
3279  * @pf_qmap: bitmap to get queue use count from
3280  * @lock: pointer to a mutex that protects access to pf_qmap
3281  * @size: size of the bitmap
3282  */
3283 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3284 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3285 {
3286 	unsigned long bit;
3287 	u16 count = 0;
3288 
3289 	mutex_lock(lock);
3290 	for_each_clear_bit(bit, pf_qmap, size)
3291 		count++;
3292 	mutex_unlock(lock);
3293 
3294 	return count;
3295 }
3296 
3297 /**
3298  * ice_get_avail_txq_count - Get count of Tx queues in use
3299  * @pf: pointer to an ice_pf instance
3300  */
ice_get_avail_txq_count(struct ice_pf * pf)3301 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3302 {
3303 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3304 				     pf->max_pf_txqs);
3305 }
3306 
3307 /**
3308  * ice_get_avail_rxq_count - Get count of Rx queues in use
3309  * @pf: pointer to an ice_pf instance
3310  */
ice_get_avail_rxq_count(struct ice_pf * pf)3311 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3312 {
3313 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3314 				     pf->max_pf_rxqs);
3315 }
3316 
3317 /**
3318  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3319  * @pf: board private structure to initialize
3320  */
ice_deinit_pf(struct ice_pf * pf)3321 static void ice_deinit_pf(struct ice_pf *pf)
3322 {
3323 	ice_service_task_stop(pf);
3324 	mutex_destroy(&pf->sw_mutex);
3325 	mutex_destroy(&pf->tc_mutex);
3326 	mutex_destroy(&pf->avail_q_mutex);
3327 
3328 	if (pf->avail_txqs) {
3329 		bitmap_free(pf->avail_txqs);
3330 		pf->avail_txqs = NULL;
3331 	}
3332 
3333 	if (pf->avail_rxqs) {
3334 		bitmap_free(pf->avail_rxqs);
3335 		pf->avail_rxqs = NULL;
3336 	}
3337 }
3338 
3339 /**
3340  * ice_set_pf_caps - set PFs capability flags
3341  * @pf: pointer to the PF instance
3342  */
ice_set_pf_caps(struct ice_pf * pf)3343 static void ice_set_pf_caps(struct ice_pf *pf)
3344 {
3345 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3346 
3347 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3348 	if (func_caps->common_cap.dcb)
3349 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3350 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3351 	if (func_caps->common_cap.sr_iov_1_1) {
3352 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3353 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3354 					      ICE_MAX_VF_COUNT);
3355 	}
3356 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3357 	if (func_caps->common_cap.rss_table_size)
3358 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3359 
3360 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3361 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3362 		u16 unused;
3363 
3364 		/* ctrl_vsi_idx will be set to a valid value when flow director
3365 		 * is setup by ice_init_fdir
3366 		 */
3367 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3368 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3369 		/* force guaranteed filter pool for PF */
3370 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3371 				       func_caps->fd_fltr_guar);
3372 		/* force shared filter pool for PF */
3373 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3374 				       func_caps->fd_fltr_best_effort);
3375 	}
3376 
3377 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3378 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3379 }
3380 
3381 /**
3382  * ice_init_pf - Initialize general software structures (struct ice_pf)
3383  * @pf: board private structure to initialize
3384  */
ice_init_pf(struct ice_pf * pf)3385 static int ice_init_pf(struct ice_pf *pf)
3386 {
3387 	ice_set_pf_caps(pf);
3388 
3389 	mutex_init(&pf->sw_mutex);
3390 	mutex_init(&pf->tc_mutex);
3391 
3392 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3393 	spin_lock_init(&pf->aq_wait_lock);
3394 	init_waitqueue_head(&pf->aq_wait_queue);
3395 
3396 	/* setup service timer and periodic service task */
3397 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3398 	pf->serv_tmr_period = HZ;
3399 	INIT_WORK(&pf->serv_task, ice_service_task);
3400 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3401 
3402 	mutex_init(&pf->avail_q_mutex);
3403 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3404 	if (!pf->avail_txqs)
3405 		return -ENOMEM;
3406 
3407 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3408 	if (!pf->avail_rxqs) {
3409 		bitmap_free(pf->avail_txqs);
3410 		pf->avail_txqs = NULL;
3411 		return -ENOMEM;
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 /**
3418  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3419  * @pf: board private structure
3420  *
3421  * compute the number of MSIX vectors required (v_budget) and request from
3422  * the OS. Return the number of vectors reserved or negative on failure
3423  */
ice_ena_msix_range(struct ice_pf * pf)3424 static int ice_ena_msix_range(struct ice_pf *pf)
3425 {
3426 	struct device *dev = ice_pf_to_dev(pf);
3427 	int v_left, v_actual, v_budget = 0;
3428 	int needed, err, i;
3429 
3430 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3431 
3432 	/* reserve one vector for miscellaneous handler */
3433 	needed = 1;
3434 	if (v_left < needed)
3435 		goto no_hw_vecs_left_err;
3436 	v_budget += needed;
3437 	v_left -= needed;
3438 
3439 	/* reserve vectors for LAN traffic */
3440 	needed = min_t(int, num_online_cpus(), v_left);
3441 	if (v_left < needed)
3442 		goto no_hw_vecs_left_err;
3443 	pf->num_lan_msix = needed;
3444 	v_budget += needed;
3445 	v_left -= needed;
3446 
3447 	/* reserve one vector for flow director */
3448 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3449 		needed = ICE_FDIR_MSIX;
3450 		if (v_left < needed)
3451 			goto no_hw_vecs_left_err;
3452 		v_budget += needed;
3453 		v_left -= needed;
3454 	}
3455 
3456 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3457 					sizeof(*pf->msix_entries), GFP_KERNEL);
3458 
3459 	if (!pf->msix_entries) {
3460 		err = -ENOMEM;
3461 		goto exit_err;
3462 	}
3463 
3464 	for (i = 0; i < v_budget; i++)
3465 		pf->msix_entries[i].entry = i;
3466 
3467 	/* actually reserve the vectors */
3468 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3469 					 ICE_MIN_MSIX, v_budget);
3470 
3471 	if (v_actual < 0) {
3472 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3473 		err = v_actual;
3474 		goto msix_err;
3475 	}
3476 
3477 	if (v_actual < v_budget) {
3478 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3479 			 v_budget, v_actual);
3480 
3481 		if (v_actual < ICE_MIN_MSIX) {
3482 			/* error if we can't get minimum vectors */
3483 			pci_disable_msix(pf->pdev);
3484 			err = -ERANGE;
3485 			goto msix_err;
3486 		} else {
3487 			pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3488 		}
3489 	}
3490 
3491 	return v_actual;
3492 
3493 msix_err:
3494 	devm_kfree(dev, pf->msix_entries);
3495 	goto exit_err;
3496 
3497 no_hw_vecs_left_err:
3498 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3499 		needed, v_left);
3500 	err = -ERANGE;
3501 exit_err:
3502 	pf->num_lan_msix = 0;
3503 	return err;
3504 }
3505 
3506 /**
3507  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3508  * @pf: board private structure
3509  */
ice_dis_msix(struct ice_pf * pf)3510 static void ice_dis_msix(struct ice_pf *pf)
3511 {
3512 	pci_disable_msix(pf->pdev);
3513 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3514 	pf->msix_entries = NULL;
3515 }
3516 
3517 /**
3518  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3519  * @pf: board private structure
3520  */
ice_clear_interrupt_scheme(struct ice_pf * pf)3521 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3522 {
3523 	ice_dis_msix(pf);
3524 
3525 	if (pf->irq_tracker) {
3526 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3527 		pf->irq_tracker = NULL;
3528 	}
3529 }
3530 
3531 /**
3532  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3533  * @pf: board private structure to initialize
3534  */
ice_init_interrupt_scheme(struct ice_pf * pf)3535 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3536 {
3537 	int vectors;
3538 
3539 	vectors = ice_ena_msix_range(pf);
3540 
3541 	if (vectors < 0)
3542 		return vectors;
3543 
3544 	/* set up vector assignment tracking */
3545 	pf->irq_tracker =
3546 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3547 			     (sizeof(u16) * vectors), GFP_KERNEL);
3548 	if (!pf->irq_tracker) {
3549 		ice_dis_msix(pf);
3550 		return -ENOMEM;
3551 	}
3552 
3553 	/* populate SW interrupts pool with number of OS granted IRQs. */
3554 	pf->num_avail_sw_msix = (u16)vectors;
3555 	pf->irq_tracker->num_entries = (u16)vectors;
3556 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3557 
3558 	return 0;
3559 }
3560 
3561 /**
3562  * ice_is_wol_supported - check if WoL is supported
3563  * @hw: pointer to hardware info
3564  *
3565  * Check if WoL is supported based on the HW configuration.
3566  * Returns true if NVM supports and enables WoL for this port, false otherwise
3567  */
ice_is_wol_supported(struct ice_hw * hw)3568 bool ice_is_wol_supported(struct ice_hw *hw)
3569 {
3570 	u16 wol_ctrl;
3571 
3572 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3573 	 * word) indicates WoL is not supported on the corresponding PF ID.
3574 	 */
3575 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3576 		return false;
3577 
3578 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3579 }
3580 
3581 /**
3582  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3583  * @vsi: VSI being changed
3584  * @new_rx: new number of Rx queues
3585  * @new_tx: new number of Tx queues
3586  *
3587  * Only change the number of queues if new_tx, or new_rx is non-0.
3588  *
3589  * Returns 0 on success.
3590  */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3591 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3592 {
3593 	struct ice_pf *pf = vsi->back;
3594 	int err = 0, timeout = 50;
3595 
3596 	if (!new_rx && !new_tx)
3597 		return -EINVAL;
3598 
3599 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3600 		timeout--;
3601 		if (!timeout)
3602 			return -EBUSY;
3603 		usleep_range(1000, 2000);
3604 	}
3605 
3606 	if (new_tx)
3607 		vsi->req_txq = (u16)new_tx;
3608 	if (new_rx)
3609 		vsi->req_rxq = (u16)new_rx;
3610 
3611 	/* set for the next time the netdev is started */
3612 	if (!netif_running(vsi->netdev)) {
3613 		ice_vsi_rebuild(vsi, false);
3614 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3615 		goto done;
3616 	}
3617 
3618 	ice_vsi_close(vsi);
3619 	ice_vsi_rebuild(vsi, false);
3620 	ice_pf_dcb_recfg(pf);
3621 	ice_vsi_open(vsi);
3622 done:
3623 	clear_bit(__ICE_CFG_BUSY, pf->state);
3624 	return err;
3625 }
3626 
3627 /**
3628  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3629  * @pf: PF to configure
3630  *
3631  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3632  * VSI can still Tx/Rx VLAN tagged packets.
3633  */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3634 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3635 {
3636 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3637 	struct ice_vsi_ctx *ctxt;
3638 	enum ice_status status;
3639 	struct ice_hw *hw;
3640 
3641 	if (!vsi)
3642 		return;
3643 
3644 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3645 	if (!ctxt)
3646 		return;
3647 
3648 	hw = &pf->hw;
3649 	ctxt->info = vsi->info;
3650 
3651 	ctxt->info.valid_sections =
3652 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3653 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3654 			    ICE_AQ_VSI_PROP_SW_VALID);
3655 
3656 	/* disable VLAN anti-spoof */
3657 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3658 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3659 
3660 	/* disable VLAN pruning and keep all other settings */
3661 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3662 
3663 	/* allow all VLANs on Tx and don't strip on Rx */
3664 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3665 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3666 
3667 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3668 	if (status) {
3669 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3670 			ice_stat_str(status),
3671 			ice_aq_str(hw->adminq.sq_last_status));
3672 	} else {
3673 		vsi->info.sec_flags = ctxt->info.sec_flags;
3674 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3675 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3676 	}
3677 
3678 	kfree(ctxt);
3679 }
3680 
3681 /**
3682  * ice_log_pkg_init - log result of DDP package load
3683  * @hw: pointer to hardware info
3684  * @status: status of package load
3685  */
3686 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3687 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3688 {
3689 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3690 	struct device *dev = ice_pf_to_dev(pf);
3691 
3692 	switch (*status) {
3693 	case ICE_SUCCESS:
3694 		/* The package download AdminQ command returned success because
3695 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3696 		 * already a package loaded on the device.
3697 		 */
3698 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3699 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3700 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3701 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3702 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3703 			    sizeof(hw->pkg_name))) {
3704 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3705 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3706 					 hw->active_pkg_name,
3707 					 hw->active_pkg_ver.major,
3708 					 hw->active_pkg_ver.minor,
3709 					 hw->active_pkg_ver.update,
3710 					 hw->active_pkg_ver.draft);
3711 			else
3712 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3713 					 hw->active_pkg_name,
3714 					 hw->active_pkg_ver.major,
3715 					 hw->active_pkg_ver.minor,
3716 					 hw->active_pkg_ver.update,
3717 					 hw->active_pkg_ver.draft);
3718 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3719 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3720 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3721 				hw->active_pkg_name,
3722 				hw->active_pkg_ver.major,
3723 				hw->active_pkg_ver.minor,
3724 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3725 			*status = ICE_ERR_NOT_SUPPORTED;
3726 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3727 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3728 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3729 				 hw->active_pkg_name,
3730 				 hw->active_pkg_ver.major,
3731 				 hw->active_pkg_ver.minor,
3732 				 hw->active_pkg_ver.update,
3733 				 hw->active_pkg_ver.draft,
3734 				 hw->pkg_name,
3735 				 hw->pkg_ver.major,
3736 				 hw->pkg_ver.minor,
3737 				 hw->pkg_ver.update,
3738 				 hw->pkg_ver.draft);
3739 		} else {
3740 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3741 			*status = ICE_ERR_NOT_SUPPORTED;
3742 		}
3743 		break;
3744 	case ICE_ERR_FW_DDP_MISMATCH:
3745 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3746 		break;
3747 	case ICE_ERR_BUF_TOO_SHORT:
3748 	case ICE_ERR_CFG:
3749 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3750 		break;
3751 	case ICE_ERR_NOT_SUPPORTED:
3752 		/* Package File version not supported */
3753 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3754 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3755 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3756 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3757 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3758 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3759 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3760 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3761 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3762 		break;
3763 	case ICE_ERR_AQ_ERROR:
3764 		switch (hw->pkg_dwnld_status) {
3765 		case ICE_AQ_RC_ENOSEC:
3766 		case ICE_AQ_RC_EBADSIG:
3767 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3768 			return;
3769 		case ICE_AQ_RC_ESVN:
3770 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3771 			return;
3772 		case ICE_AQ_RC_EBADMAN:
3773 		case ICE_AQ_RC_EBADBUF:
3774 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3775 			/* poll for reset to complete */
3776 			if (ice_check_reset(hw))
3777 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3778 			return;
3779 		default:
3780 			break;
3781 		}
3782 		fallthrough;
3783 	default:
3784 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3785 			*status);
3786 		break;
3787 	}
3788 }
3789 
3790 /**
3791  * ice_load_pkg - load/reload the DDP Package file
3792  * @firmware: firmware structure when firmware requested or NULL for reload
3793  * @pf: pointer to the PF instance
3794  *
3795  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3796  * initialize HW tables.
3797  */
3798 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3799 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3800 {
3801 	enum ice_status status = ICE_ERR_PARAM;
3802 	struct device *dev = ice_pf_to_dev(pf);
3803 	struct ice_hw *hw = &pf->hw;
3804 
3805 	/* Load DDP Package */
3806 	if (firmware && !hw->pkg_copy) {
3807 		status = ice_copy_and_init_pkg(hw, firmware->data,
3808 					       firmware->size);
3809 		ice_log_pkg_init(hw, &status);
3810 	} else if (!firmware && hw->pkg_copy) {
3811 		/* Reload package during rebuild after CORER/GLOBR reset */
3812 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3813 		ice_log_pkg_init(hw, &status);
3814 	} else {
3815 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3816 	}
3817 
3818 	if (status) {
3819 		/* Safe Mode */
3820 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3821 		return;
3822 	}
3823 
3824 	/* Successful download package is the precondition for advanced
3825 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3826 	 */
3827 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3828 }
3829 
3830 /**
3831  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3832  * @pf: pointer to the PF structure
3833  *
3834  * There is no error returned here because the driver should be able to handle
3835  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3836  * specifically with Tx.
3837  */
ice_verify_cacheline_size(struct ice_pf * pf)3838 static void ice_verify_cacheline_size(struct ice_pf *pf)
3839 {
3840 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3841 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3842 			 ICE_CACHE_LINE_BYTES);
3843 }
3844 
3845 /**
3846  * ice_send_version - update firmware with driver version
3847  * @pf: PF struct
3848  *
3849  * Returns ICE_SUCCESS on success, else error code
3850  */
ice_send_version(struct ice_pf * pf)3851 static enum ice_status ice_send_version(struct ice_pf *pf)
3852 {
3853 	struct ice_driver_ver dv;
3854 
3855 	dv.major_ver = 0xff;
3856 	dv.minor_ver = 0xff;
3857 	dv.build_ver = 0xff;
3858 	dv.subbuild_ver = 0;
3859 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3860 		sizeof(dv.driver_string));
3861 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3862 }
3863 
3864 /**
3865  * ice_init_fdir - Initialize flow director VSI and configuration
3866  * @pf: pointer to the PF instance
3867  *
3868  * returns 0 on success, negative on error
3869  */
ice_init_fdir(struct ice_pf * pf)3870 static int ice_init_fdir(struct ice_pf *pf)
3871 {
3872 	struct device *dev = ice_pf_to_dev(pf);
3873 	struct ice_vsi *ctrl_vsi;
3874 	int err;
3875 
3876 	/* Side Band Flow Director needs to have a control VSI.
3877 	 * Allocate it and store it in the PF.
3878 	 */
3879 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3880 	if (!ctrl_vsi) {
3881 		dev_dbg(dev, "could not create control VSI\n");
3882 		return -ENOMEM;
3883 	}
3884 
3885 	err = ice_vsi_open_ctrl(ctrl_vsi);
3886 	if (err) {
3887 		dev_dbg(dev, "could not open control VSI\n");
3888 		goto err_vsi_open;
3889 	}
3890 
3891 	mutex_init(&pf->hw.fdir_fltr_lock);
3892 
3893 	err = ice_fdir_create_dflt_rules(pf);
3894 	if (err)
3895 		goto err_fdir_rule;
3896 
3897 	return 0;
3898 
3899 err_fdir_rule:
3900 	ice_fdir_release_flows(&pf->hw);
3901 	ice_vsi_close(ctrl_vsi);
3902 err_vsi_open:
3903 	ice_vsi_release(ctrl_vsi);
3904 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3905 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3906 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3907 	}
3908 	return err;
3909 }
3910 
3911 /**
3912  * ice_get_opt_fw_name - return optional firmware file name or NULL
3913  * @pf: pointer to the PF instance
3914  */
ice_get_opt_fw_name(struct ice_pf * pf)3915 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3916 {
3917 	/* Optional firmware name same as default with additional dash
3918 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3919 	 */
3920 	struct pci_dev *pdev = pf->pdev;
3921 	char *opt_fw_filename;
3922 	u64 dsn;
3923 
3924 	/* Determine the name of the optional file using the DSN (two
3925 	 * dwords following the start of the DSN Capability).
3926 	 */
3927 	dsn = pci_get_dsn(pdev);
3928 	if (!dsn)
3929 		return NULL;
3930 
3931 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3932 	if (!opt_fw_filename)
3933 		return NULL;
3934 
3935 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3936 		 ICE_DDP_PKG_PATH, dsn);
3937 
3938 	return opt_fw_filename;
3939 }
3940 
3941 /**
3942  * ice_request_fw - Device initialization routine
3943  * @pf: pointer to the PF instance
3944  */
ice_request_fw(struct ice_pf * pf)3945 static void ice_request_fw(struct ice_pf *pf)
3946 {
3947 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3948 	const struct firmware *firmware = NULL;
3949 	struct device *dev = ice_pf_to_dev(pf);
3950 	int err = 0;
3951 
3952 	/* optional device-specific DDP (if present) overrides the default DDP
3953 	 * package file. kernel logs a debug message if the file doesn't exist,
3954 	 * and warning messages for other errors.
3955 	 */
3956 	if (opt_fw_filename) {
3957 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3958 		if (err) {
3959 			kfree(opt_fw_filename);
3960 			goto dflt_pkg_load;
3961 		}
3962 
3963 		/* request for firmware was successful. Download to device */
3964 		ice_load_pkg(firmware, pf);
3965 		kfree(opt_fw_filename);
3966 		release_firmware(firmware);
3967 		return;
3968 	}
3969 
3970 dflt_pkg_load:
3971 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3972 	if (err) {
3973 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3974 		return;
3975 	}
3976 
3977 	/* request for firmware was successful. Download to device */
3978 	ice_load_pkg(firmware, pf);
3979 	release_firmware(firmware);
3980 }
3981 
3982 /**
3983  * ice_print_wake_reason - show the wake up cause in the log
3984  * @pf: pointer to the PF struct
3985  */
ice_print_wake_reason(struct ice_pf * pf)3986 static void ice_print_wake_reason(struct ice_pf *pf)
3987 {
3988 	u32 wus = pf->wakeup_reason;
3989 	const char *wake_str;
3990 
3991 	/* if no wake event, nothing to print */
3992 	if (!wus)
3993 		return;
3994 
3995 	if (wus & PFPM_WUS_LNKC_M)
3996 		wake_str = "Link\n";
3997 	else if (wus & PFPM_WUS_MAG_M)
3998 		wake_str = "Magic Packet\n";
3999 	else if (wus & PFPM_WUS_MNG_M)
4000 		wake_str = "Management\n";
4001 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4002 		wake_str = "Firmware Reset\n";
4003 	else
4004 		wake_str = "Unknown\n";
4005 
4006 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4007 }
4008 
4009 /**
4010  * ice_probe - Device initialization routine
4011  * @pdev: PCI device information struct
4012  * @ent: entry in ice_pci_tbl
4013  *
4014  * Returns 0 on success, negative on failure
4015  */
4016 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4017 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4018 {
4019 	struct device *dev = &pdev->dev;
4020 	struct ice_pf *pf;
4021 	struct ice_hw *hw;
4022 	int i, err;
4023 
4024 	if (pdev->is_virtfn) {
4025 		dev_err(dev, "can't probe a virtual function\n");
4026 		return -EINVAL;
4027 	}
4028 
4029 	/* when under a kdump kernel initiate a reset before enabling the
4030 	 * device in order to clear out any pending DMA transactions. These
4031 	 * transactions can cause some systems to machine check when doing
4032 	 * the pcim_enable_device() below.
4033 	 */
4034 	if (is_kdump_kernel()) {
4035 		pci_save_state(pdev);
4036 		pci_clear_master(pdev);
4037 		err = pcie_flr(pdev);
4038 		if (err)
4039 			return err;
4040 		pci_restore_state(pdev);
4041 	}
4042 
4043 	/* this driver uses devres, see
4044 	 * Documentation/driver-api/driver-model/devres.rst
4045 	 */
4046 	err = pcim_enable_device(pdev);
4047 	if (err)
4048 		return err;
4049 
4050 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4051 	if (err) {
4052 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4053 		return err;
4054 	}
4055 
4056 	pf = ice_allocate_pf(dev);
4057 	if (!pf)
4058 		return -ENOMEM;
4059 
4060 	/* set up for high or low DMA */
4061 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4062 	if (err)
4063 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4064 	if (err) {
4065 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4066 		return err;
4067 	}
4068 
4069 	pci_enable_pcie_error_reporting(pdev);
4070 	pci_set_master(pdev);
4071 
4072 	pf->pdev = pdev;
4073 	pci_set_drvdata(pdev, pf);
4074 	set_bit(__ICE_DOWN, pf->state);
4075 	/* Disable service task until DOWN bit is cleared */
4076 	set_bit(__ICE_SERVICE_DIS, pf->state);
4077 
4078 	hw = &pf->hw;
4079 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4080 	pci_save_state(pdev);
4081 
4082 	hw->back = pf;
4083 	hw->vendor_id = pdev->vendor;
4084 	hw->device_id = pdev->device;
4085 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4086 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4087 	hw->subsystem_device_id = pdev->subsystem_device;
4088 	hw->bus.device = PCI_SLOT(pdev->devfn);
4089 	hw->bus.func = PCI_FUNC(pdev->devfn);
4090 	ice_set_ctrlq_len(hw);
4091 
4092 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4093 
4094 	err = ice_devlink_register(pf);
4095 	if (err) {
4096 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4097 		goto err_exit_unroll;
4098 	}
4099 
4100 #ifndef CONFIG_DYNAMIC_DEBUG
4101 	if (debug < -1)
4102 		hw->debug_mask = debug;
4103 #endif
4104 
4105 	err = ice_init_hw(hw);
4106 	if (err) {
4107 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4108 		err = -EIO;
4109 		goto err_exit_unroll;
4110 	}
4111 
4112 	ice_request_fw(pf);
4113 
4114 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4115 	 * set in pf->state, which will cause ice_is_safe_mode to return
4116 	 * true
4117 	 */
4118 	if (ice_is_safe_mode(pf)) {
4119 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4120 		/* we already got function/device capabilities but these don't
4121 		 * reflect what the driver needs to do in safe mode. Instead of
4122 		 * adding conditional logic everywhere to ignore these
4123 		 * device/function capabilities, override them.
4124 		 */
4125 		ice_set_safe_mode_caps(hw);
4126 	}
4127 
4128 	err = ice_init_pf(pf);
4129 	if (err) {
4130 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4131 		goto err_init_pf_unroll;
4132 	}
4133 
4134 	ice_devlink_init_regions(pf);
4135 
4136 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4137 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4138 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4139 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4140 	i = 0;
4141 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4142 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4143 			pf->hw.tnl.valid_count[TNL_VXLAN];
4144 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4145 			UDP_TUNNEL_TYPE_VXLAN;
4146 		i++;
4147 	}
4148 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4149 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4150 			pf->hw.tnl.valid_count[TNL_GENEVE];
4151 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4152 			UDP_TUNNEL_TYPE_GENEVE;
4153 		i++;
4154 	}
4155 
4156 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4157 	if (!pf->num_alloc_vsi) {
4158 		err = -EIO;
4159 		goto err_init_pf_unroll;
4160 	}
4161 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4162 		dev_warn(&pf->pdev->dev,
4163 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4164 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4165 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4166 	}
4167 
4168 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4169 			       GFP_KERNEL);
4170 	if (!pf->vsi) {
4171 		err = -ENOMEM;
4172 		goto err_init_pf_unroll;
4173 	}
4174 
4175 	err = ice_init_interrupt_scheme(pf);
4176 	if (err) {
4177 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4178 		err = -EIO;
4179 		goto err_init_vsi_unroll;
4180 	}
4181 
4182 	/* In case of MSIX we are going to setup the misc vector right here
4183 	 * to handle admin queue events etc. In case of legacy and MSI
4184 	 * the misc functionality and queue processing is combined in
4185 	 * the same vector and that gets setup at open.
4186 	 */
4187 	err = ice_req_irq_msix_misc(pf);
4188 	if (err) {
4189 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4190 		goto err_init_interrupt_unroll;
4191 	}
4192 
4193 	/* create switch struct for the switch element created by FW on boot */
4194 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4195 	if (!pf->first_sw) {
4196 		err = -ENOMEM;
4197 		goto err_msix_misc_unroll;
4198 	}
4199 
4200 	if (hw->evb_veb)
4201 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4202 	else
4203 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4204 
4205 	pf->first_sw->pf = pf;
4206 
4207 	/* record the sw_id available for later use */
4208 	pf->first_sw->sw_id = hw->port_info->sw_id;
4209 
4210 	err = ice_setup_pf_sw(pf);
4211 	if (err) {
4212 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4213 		goto err_alloc_sw_unroll;
4214 	}
4215 
4216 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4217 
4218 	/* tell the firmware we are up */
4219 	err = ice_send_version(pf);
4220 	if (err) {
4221 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4222 			UTS_RELEASE, err);
4223 		goto err_send_version_unroll;
4224 	}
4225 
4226 	/* since everything is good, start the service timer */
4227 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4228 
4229 	err = ice_init_link_events(pf->hw.port_info);
4230 	if (err) {
4231 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4232 		goto err_send_version_unroll;
4233 	}
4234 
4235 	/* not a fatal error if this fails */
4236 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4237 	if (err)
4238 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4239 
4240 	/* not a fatal error if this fails */
4241 	err = ice_update_link_info(pf->hw.port_info);
4242 	if (err)
4243 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4244 
4245 	ice_init_link_dflt_override(pf->hw.port_info);
4246 
4247 	/* if media available, initialize PHY settings */
4248 	if (pf->hw.port_info->phy.link_info.link_info &
4249 	    ICE_AQ_MEDIA_AVAILABLE) {
4250 		/* not a fatal error if this fails */
4251 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4252 		if (err)
4253 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4254 
4255 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4256 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4257 
4258 			if (vsi)
4259 				ice_configure_phy(vsi);
4260 		}
4261 	} else {
4262 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4263 	}
4264 
4265 	ice_verify_cacheline_size(pf);
4266 
4267 	/* Save wakeup reason register for later use */
4268 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4269 
4270 	/* check for a power management event */
4271 	ice_print_wake_reason(pf);
4272 
4273 	/* clear wake status, all bits */
4274 	wr32(hw, PFPM_WUS, U32_MAX);
4275 
4276 	/* Disable WoL at init, wait for user to enable */
4277 	device_set_wakeup_enable(dev, false);
4278 
4279 	if (ice_is_safe_mode(pf)) {
4280 		ice_set_safe_mode_vlan_cfg(pf);
4281 		goto probe_done;
4282 	}
4283 
4284 	/* initialize DDP driven features */
4285 
4286 	/* Note: Flow director init failure is non-fatal to load */
4287 	if (ice_init_fdir(pf))
4288 		dev_err(dev, "could not initialize flow director\n");
4289 
4290 	/* Note: DCB init failure is non-fatal to load */
4291 	if (ice_init_pf_dcb(pf, false)) {
4292 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4293 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4294 	} else {
4295 		ice_cfg_lldp_mib_change(&pf->hw, true);
4296 	}
4297 
4298 	/* print PCI link speed and width */
4299 	pcie_print_link_status(pf->pdev);
4300 
4301 probe_done:
4302 	/* ready to go, so clear down state bit */
4303 	clear_bit(__ICE_DOWN, pf->state);
4304 	return 0;
4305 
4306 err_send_version_unroll:
4307 	ice_vsi_release_all(pf);
4308 err_alloc_sw_unroll:
4309 	set_bit(__ICE_SERVICE_DIS, pf->state);
4310 	set_bit(__ICE_DOWN, pf->state);
4311 	devm_kfree(dev, pf->first_sw);
4312 err_msix_misc_unroll:
4313 	ice_free_irq_msix_misc(pf);
4314 err_init_interrupt_unroll:
4315 	ice_clear_interrupt_scheme(pf);
4316 err_init_vsi_unroll:
4317 	devm_kfree(dev, pf->vsi);
4318 err_init_pf_unroll:
4319 	ice_deinit_pf(pf);
4320 	ice_devlink_destroy_regions(pf);
4321 	ice_deinit_hw(hw);
4322 err_exit_unroll:
4323 	ice_devlink_unregister(pf);
4324 	pci_disable_pcie_error_reporting(pdev);
4325 	pci_disable_device(pdev);
4326 	return err;
4327 }
4328 
4329 /**
4330  * ice_set_wake - enable or disable Wake on LAN
4331  * @pf: pointer to the PF struct
4332  *
4333  * Simple helper for WoL control
4334  */
ice_set_wake(struct ice_pf * pf)4335 static void ice_set_wake(struct ice_pf *pf)
4336 {
4337 	struct ice_hw *hw = &pf->hw;
4338 	bool wol = pf->wol_ena;
4339 
4340 	/* clear wake state, otherwise new wake events won't fire */
4341 	wr32(hw, PFPM_WUS, U32_MAX);
4342 
4343 	/* enable / disable APM wake up, no RMW needed */
4344 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4345 
4346 	/* set magic packet filter enabled */
4347 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4348 }
4349 
4350 /**
4351  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4352  * @pf: pointer to the PF struct
4353  *
4354  * Issue firmware command to enable multicast magic wake, making
4355  * sure that any locally administered address (LAA) is used for
4356  * wake, and that PF reset doesn't undo the LAA.
4357  */
ice_setup_mc_magic_wake(struct ice_pf * pf)4358 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4359 {
4360 	struct device *dev = ice_pf_to_dev(pf);
4361 	struct ice_hw *hw = &pf->hw;
4362 	enum ice_status status;
4363 	u8 mac_addr[ETH_ALEN];
4364 	struct ice_vsi *vsi;
4365 	u8 flags;
4366 
4367 	if (!pf->wol_ena)
4368 		return;
4369 
4370 	vsi = ice_get_main_vsi(pf);
4371 	if (!vsi)
4372 		return;
4373 
4374 	/* Get current MAC address in case it's an LAA */
4375 	if (vsi->netdev)
4376 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4377 	else
4378 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4379 
4380 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4381 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4382 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4383 
4384 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4385 	if (status)
4386 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4387 			ice_stat_str(status),
4388 			ice_aq_str(hw->adminq.sq_last_status));
4389 }
4390 
4391 /**
4392  * ice_remove - Device removal routine
4393  * @pdev: PCI device information struct
4394  */
ice_remove(struct pci_dev * pdev)4395 static void ice_remove(struct pci_dev *pdev)
4396 {
4397 	struct ice_pf *pf = pci_get_drvdata(pdev);
4398 	int i;
4399 
4400 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4401 		if (!ice_is_reset_in_progress(pf->state))
4402 			break;
4403 		msleep(100);
4404 	}
4405 
4406 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4407 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4408 		ice_free_vfs(pf);
4409 	}
4410 
4411 	set_bit(__ICE_DOWN, pf->state);
4412 	ice_service_task_stop(pf);
4413 
4414 	ice_aq_cancel_waiting_tasks(pf);
4415 
4416 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4417 	if (!ice_is_safe_mode(pf))
4418 		ice_remove_arfs(pf);
4419 	ice_setup_mc_magic_wake(pf);
4420 	ice_vsi_release_all(pf);
4421 	ice_set_wake(pf);
4422 	ice_free_irq_msix_misc(pf);
4423 	ice_for_each_vsi(pf, i) {
4424 		if (!pf->vsi[i])
4425 			continue;
4426 		ice_vsi_free_q_vectors(pf->vsi[i]);
4427 	}
4428 	ice_deinit_pf(pf);
4429 	ice_devlink_destroy_regions(pf);
4430 	ice_deinit_hw(&pf->hw);
4431 	ice_devlink_unregister(pf);
4432 
4433 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4434 	 * do it via ice_schedule_reset() since there is no need to rebuild
4435 	 * and the service task is already stopped.
4436 	 */
4437 	ice_reset(&pf->hw, ICE_RESET_PFR);
4438 	pci_wait_for_pending_transaction(pdev);
4439 	ice_clear_interrupt_scheme(pf);
4440 	pci_disable_pcie_error_reporting(pdev);
4441 	pci_disable_device(pdev);
4442 }
4443 
4444 /**
4445  * ice_shutdown - PCI callback for shutting down device
4446  * @pdev: PCI device information struct
4447  */
ice_shutdown(struct pci_dev * pdev)4448 static void ice_shutdown(struct pci_dev *pdev)
4449 {
4450 	struct ice_pf *pf = pci_get_drvdata(pdev);
4451 
4452 	ice_remove(pdev);
4453 
4454 	if (system_state == SYSTEM_POWER_OFF) {
4455 		pci_wake_from_d3(pdev, pf->wol_ena);
4456 		pci_set_power_state(pdev, PCI_D3hot);
4457 	}
4458 }
4459 
4460 #ifdef CONFIG_PM
4461 /**
4462  * ice_prepare_for_shutdown - prep for PCI shutdown
4463  * @pf: board private structure
4464  *
4465  * Inform or close all dependent features in prep for PCI device shutdown
4466  */
ice_prepare_for_shutdown(struct ice_pf * pf)4467 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4468 {
4469 	struct ice_hw *hw = &pf->hw;
4470 	u32 v;
4471 
4472 	/* Notify VFs of impending reset */
4473 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4474 		ice_vc_notify_reset(pf);
4475 
4476 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4477 
4478 	/* disable the VSIs and their queues that are not already DOWN */
4479 	ice_pf_dis_all_vsi(pf, false);
4480 
4481 	ice_for_each_vsi(pf, v)
4482 		if (pf->vsi[v])
4483 			pf->vsi[v]->vsi_num = 0;
4484 
4485 	ice_shutdown_all_ctrlq(hw);
4486 }
4487 
4488 /**
4489  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4490  * @pf: board private structure to reinitialize
4491  *
4492  * This routine reinitialize interrupt scheme that was cleared during
4493  * power management suspend callback.
4494  *
4495  * This should be called during resume routine to re-allocate the q_vectors
4496  * and reacquire interrupts.
4497  */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4498 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4499 {
4500 	struct device *dev = ice_pf_to_dev(pf);
4501 	int ret, v;
4502 
4503 	/* Since we clear MSIX flag during suspend, we need to
4504 	 * set it back during resume...
4505 	 */
4506 
4507 	ret = ice_init_interrupt_scheme(pf);
4508 	if (ret) {
4509 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4510 		return ret;
4511 	}
4512 
4513 	/* Remap vectors and rings, after successful re-init interrupts */
4514 	ice_for_each_vsi(pf, v) {
4515 		if (!pf->vsi[v])
4516 			continue;
4517 
4518 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4519 		if (ret)
4520 			goto err_reinit;
4521 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4522 	}
4523 
4524 	ret = ice_req_irq_msix_misc(pf);
4525 	if (ret) {
4526 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4527 			ret);
4528 		goto err_reinit;
4529 	}
4530 
4531 	return 0;
4532 
4533 err_reinit:
4534 	while (v--)
4535 		if (pf->vsi[v])
4536 			ice_vsi_free_q_vectors(pf->vsi[v]);
4537 
4538 	return ret;
4539 }
4540 
4541 /**
4542  * ice_suspend
4543  * @dev: generic device information structure
4544  *
4545  * Power Management callback to quiesce the device and prepare
4546  * for D3 transition.
4547  */
ice_suspend(struct device * dev)4548 static int __maybe_unused ice_suspend(struct device *dev)
4549 {
4550 	struct pci_dev *pdev = to_pci_dev(dev);
4551 	struct ice_pf *pf;
4552 	int disabled, v;
4553 
4554 	pf = pci_get_drvdata(pdev);
4555 
4556 	if (!ice_pf_state_is_nominal(pf)) {
4557 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4558 		return -EBUSY;
4559 	}
4560 
4561 	/* Stop watchdog tasks until resume completion.
4562 	 * Even though it is most likely that the service task is
4563 	 * disabled if the device is suspended or down, the service task's
4564 	 * state is controlled by a different state bit, and we should
4565 	 * store and honor whatever state that bit is in at this point.
4566 	 */
4567 	disabled = ice_service_task_stop(pf);
4568 
4569 	/* Already suspended?, then there is nothing to do */
4570 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4571 		if (!disabled)
4572 			ice_service_task_restart(pf);
4573 		return 0;
4574 	}
4575 
4576 	if (test_bit(__ICE_DOWN, pf->state) ||
4577 	    ice_is_reset_in_progress(pf->state)) {
4578 		dev_err(dev, "can't suspend device in reset or already down\n");
4579 		if (!disabled)
4580 			ice_service_task_restart(pf);
4581 		return 0;
4582 	}
4583 
4584 	ice_setup_mc_magic_wake(pf);
4585 
4586 	ice_prepare_for_shutdown(pf);
4587 
4588 	ice_set_wake(pf);
4589 
4590 	/* Free vectors, clear the interrupt scheme and release IRQs
4591 	 * for proper hibernation, especially with large number of CPUs.
4592 	 * Otherwise hibernation might fail when mapping all the vectors back
4593 	 * to CPU0.
4594 	 */
4595 	ice_free_irq_msix_misc(pf);
4596 	ice_for_each_vsi(pf, v) {
4597 		if (!pf->vsi[v])
4598 			continue;
4599 		ice_vsi_free_q_vectors(pf->vsi[v]);
4600 	}
4601 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4602 	ice_clear_interrupt_scheme(pf);
4603 
4604 	pci_save_state(pdev);
4605 	pci_wake_from_d3(pdev, pf->wol_ena);
4606 	pci_set_power_state(pdev, PCI_D3hot);
4607 	return 0;
4608 }
4609 
4610 /**
4611  * ice_resume - PM callback for waking up from D3
4612  * @dev: generic device information structure
4613  */
ice_resume(struct device * dev)4614 static int __maybe_unused ice_resume(struct device *dev)
4615 {
4616 	struct pci_dev *pdev = to_pci_dev(dev);
4617 	enum ice_reset_req reset_type;
4618 	struct ice_pf *pf;
4619 	struct ice_hw *hw;
4620 	int ret;
4621 
4622 	pci_set_power_state(pdev, PCI_D0);
4623 	pci_restore_state(pdev);
4624 	pci_save_state(pdev);
4625 
4626 	if (!pci_device_is_present(pdev))
4627 		return -ENODEV;
4628 
4629 	ret = pci_enable_device_mem(pdev);
4630 	if (ret) {
4631 		dev_err(dev, "Cannot enable device after suspend\n");
4632 		return ret;
4633 	}
4634 
4635 	pf = pci_get_drvdata(pdev);
4636 	hw = &pf->hw;
4637 
4638 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4639 	ice_print_wake_reason(pf);
4640 
4641 	/* We cleared the interrupt scheme when we suspended, so we need to
4642 	 * restore it now to resume device functionality.
4643 	 */
4644 	ret = ice_reinit_interrupt_scheme(pf);
4645 	if (ret)
4646 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4647 
4648 	clear_bit(__ICE_DOWN, pf->state);
4649 	/* Now perform PF reset and rebuild */
4650 	reset_type = ICE_RESET_PFR;
4651 	/* re-enable service task for reset, but allow reset to schedule it */
4652 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4653 
4654 	if (ice_schedule_reset(pf, reset_type))
4655 		dev_err(dev, "Reset during resume failed.\n");
4656 
4657 	clear_bit(__ICE_SUSPENDED, pf->state);
4658 	ice_service_task_restart(pf);
4659 
4660 	/* Restart the service task */
4661 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4662 
4663 	return 0;
4664 }
4665 #endif /* CONFIG_PM */
4666 
4667 /**
4668  * ice_pci_err_detected - warning that PCI error has been detected
4669  * @pdev: PCI device information struct
4670  * @err: the type of PCI error
4671  *
4672  * Called to warn that something happened on the PCI bus and the error handling
4673  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4674  */
4675 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4676 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4677 {
4678 	struct ice_pf *pf = pci_get_drvdata(pdev);
4679 
4680 	if (!pf) {
4681 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4682 			__func__, err);
4683 		return PCI_ERS_RESULT_DISCONNECT;
4684 	}
4685 
4686 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4687 		ice_service_task_stop(pf);
4688 
4689 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4690 			set_bit(__ICE_PFR_REQ, pf->state);
4691 			ice_prepare_for_reset(pf);
4692 		}
4693 	}
4694 
4695 	return PCI_ERS_RESULT_NEED_RESET;
4696 }
4697 
4698 /**
4699  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4700  * @pdev: PCI device information struct
4701  *
4702  * Called to determine if the driver can recover from the PCI slot reset by
4703  * using a register read to determine if the device is recoverable.
4704  */
ice_pci_err_slot_reset(struct pci_dev * pdev)4705 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4706 {
4707 	struct ice_pf *pf = pci_get_drvdata(pdev);
4708 	pci_ers_result_t result;
4709 	int err;
4710 	u32 reg;
4711 
4712 	err = pci_enable_device_mem(pdev);
4713 	if (err) {
4714 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4715 			err);
4716 		result = PCI_ERS_RESULT_DISCONNECT;
4717 	} else {
4718 		pci_set_master(pdev);
4719 		pci_restore_state(pdev);
4720 		pci_save_state(pdev);
4721 		pci_wake_from_d3(pdev, false);
4722 
4723 		/* Check for life */
4724 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4725 		if (!reg)
4726 			result = PCI_ERS_RESULT_RECOVERED;
4727 		else
4728 			result = PCI_ERS_RESULT_DISCONNECT;
4729 	}
4730 
4731 	err = pci_aer_clear_nonfatal_status(pdev);
4732 	if (err)
4733 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4734 			err);
4735 		/* non-fatal, continue */
4736 
4737 	return result;
4738 }
4739 
4740 /**
4741  * ice_pci_err_resume - restart operations after PCI error recovery
4742  * @pdev: PCI device information struct
4743  *
4744  * Called to allow the driver to bring things back up after PCI error and/or
4745  * reset recovery have finished
4746  */
ice_pci_err_resume(struct pci_dev * pdev)4747 static void ice_pci_err_resume(struct pci_dev *pdev)
4748 {
4749 	struct ice_pf *pf = pci_get_drvdata(pdev);
4750 
4751 	if (!pf) {
4752 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4753 			__func__);
4754 		return;
4755 	}
4756 
4757 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4758 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4759 			__func__);
4760 		return;
4761 	}
4762 
4763 	ice_restore_all_vfs_msi_state(pdev);
4764 
4765 	ice_do_reset(pf, ICE_RESET_PFR);
4766 	ice_service_task_restart(pf);
4767 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4768 }
4769 
4770 /**
4771  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4772  * @pdev: PCI device information struct
4773  */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4774 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4775 {
4776 	struct ice_pf *pf = pci_get_drvdata(pdev);
4777 
4778 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4779 		ice_service_task_stop(pf);
4780 
4781 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4782 			set_bit(__ICE_PFR_REQ, pf->state);
4783 			ice_prepare_for_reset(pf);
4784 		}
4785 	}
4786 }
4787 
4788 /**
4789  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4790  * @pdev: PCI device information struct
4791  */
ice_pci_err_reset_done(struct pci_dev * pdev)4792 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4793 {
4794 	ice_pci_err_resume(pdev);
4795 }
4796 
4797 /* ice_pci_tbl - PCI Device ID Table
4798  *
4799  * Wildcard entries (PCI_ANY_ID) should come last
4800  * Last entry must be all 0s
4801  *
4802  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4803  *   Class, Class Mask, private data (not used) }
4804  */
4805 static const struct pci_device_id ice_pci_tbl[] = {
4806 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4807 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4808 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4809 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4810 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4811 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4812 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4813 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4814 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4815 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4816 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4817 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4818 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4819 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4820 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4821 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4822 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4823 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4824 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4825 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4826 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4827 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4828 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4829 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4830 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4831 	/* required last entry */
4832 	{ 0, }
4833 };
4834 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4835 
4836 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4837 
4838 static const struct pci_error_handlers ice_pci_err_handler = {
4839 	.error_detected = ice_pci_err_detected,
4840 	.slot_reset = ice_pci_err_slot_reset,
4841 	.reset_prepare = ice_pci_err_reset_prepare,
4842 	.reset_done = ice_pci_err_reset_done,
4843 	.resume = ice_pci_err_resume
4844 };
4845 
4846 static struct pci_driver ice_driver = {
4847 	.name = KBUILD_MODNAME,
4848 	.id_table = ice_pci_tbl,
4849 	.probe = ice_probe,
4850 	.remove = ice_remove,
4851 #ifdef CONFIG_PM
4852 	.driver.pm = &ice_pm_ops,
4853 #endif /* CONFIG_PM */
4854 	.shutdown = ice_shutdown,
4855 	.sriov_configure = ice_sriov_configure,
4856 	.err_handler = &ice_pci_err_handler
4857 };
4858 
4859 /**
4860  * ice_module_init - Driver registration routine
4861  *
4862  * ice_module_init is the first routine called when the driver is
4863  * loaded. All it does is register with the PCI subsystem.
4864  */
ice_module_init(void)4865 static int __init ice_module_init(void)
4866 {
4867 	int status;
4868 
4869 	pr_info("%s\n", ice_driver_string);
4870 	pr_info("%s\n", ice_copyright);
4871 
4872 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
4873 	if (!ice_wq) {
4874 		pr_err("Failed to create workqueue\n");
4875 		return -ENOMEM;
4876 	}
4877 
4878 	status = pci_register_driver(&ice_driver);
4879 	if (status) {
4880 		pr_err("failed to register PCI driver, err %d\n", status);
4881 		destroy_workqueue(ice_wq);
4882 	}
4883 
4884 	return status;
4885 }
4886 module_init(ice_module_init);
4887 
4888 /**
4889  * ice_module_exit - Driver exit cleanup routine
4890  *
4891  * ice_module_exit is called just before the driver is removed
4892  * from memory.
4893  */
ice_module_exit(void)4894 static void __exit ice_module_exit(void)
4895 {
4896 	pci_unregister_driver(&ice_driver);
4897 	destroy_workqueue(ice_wq);
4898 	pr_info("module unloaded\n");
4899 }
4900 module_exit(ice_module_exit);
4901 
4902 /**
4903  * ice_set_mac_address - NDO callback to set MAC address
4904  * @netdev: network interface device structure
4905  * @pi: pointer to an address structure
4906  *
4907  * Returns 0 on success, negative on failure
4908  */
ice_set_mac_address(struct net_device * netdev,void * pi)4909 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4910 {
4911 	struct ice_netdev_priv *np = netdev_priv(netdev);
4912 	struct ice_vsi *vsi = np->vsi;
4913 	struct ice_pf *pf = vsi->back;
4914 	struct ice_hw *hw = &pf->hw;
4915 	struct sockaddr *addr = pi;
4916 	enum ice_status status;
4917 	u8 old_mac[ETH_ALEN];
4918 	u8 flags = 0;
4919 	int err = 0;
4920 	u8 *mac;
4921 
4922 	mac = (u8 *)addr->sa_data;
4923 
4924 	if (!is_valid_ether_addr(mac))
4925 		return -EADDRNOTAVAIL;
4926 
4927 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4928 		netdev_dbg(netdev, "already using mac %pM\n", mac);
4929 		return 0;
4930 	}
4931 
4932 	if (test_bit(__ICE_DOWN, pf->state) ||
4933 	    ice_is_reset_in_progress(pf->state)) {
4934 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4935 			   mac);
4936 		return -EBUSY;
4937 	}
4938 
4939 	netif_addr_lock_bh(netdev);
4940 	ether_addr_copy(old_mac, netdev->dev_addr);
4941 	/* change the netdev's MAC address */
4942 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4943 	netif_addr_unlock_bh(netdev);
4944 
4945 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4946 	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4947 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4948 		err = -EADDRNOTAVAIL;
4949 		goto err_update_filters;
4950 	}
4951 
4952 	/* Add filter for new MAC. If filter exists, return success */
4953 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4954 	if (status == ICE_ERR_ALREADY_EXISTS)
4955 		/* Although this MAC filter is already present in hardware it's
4956 		 * possible in some cases (e.g. bonding) that dev_addr was
4957 		 * modified outside of the driver and needs to be restored back
4958 		 * to this value.
4959 		 */
4960 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4961 	else if (status)
4962 		/* error if the new filter addition failed */
4963 		err = -EADDRNOTAVAIL;
4964 
4965 err_update_filters:
4966 	if (err) {
4967 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4968 			   mac);
4969 		netif_addr_lock_bh(netdev);
4970 		ether_addr_copy(netdev->dev_addr, old_mac);
4971 		netif_addr_unlock_bh(netdev);
4972 		return err;
4973 	}
4974 
4975 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4976 		   netdev->dev_addr);
4977 
4978 	/* write new MAC address to the firmware */
4979 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4980 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4981 	if (status) {
4982 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4983 			   mac, ice_stat_str(status));
4984 	}
4985 	return 0;
4986 }
4987 
4988 /**
4989  * ice_set_rx_mode - NDO callback to set the netdev filters
4990  * @netdev: network interface device structure
4991  */
ice_set_rx_mode(struct net_device * netdev)4992 static void ice_set_rx_mode(struct net_device *netdev)
4993 {
4994 	struct ice_netdev_priv *np = netdev_priv(netdev);
4995 	struct ice_vsi *vsi = np->vsi;
4996 
4997 	if (!vsi)
4998 		return;
4999 
5000 	/* Set the flags to synchronize filters
5001 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5002 	 * flags
5003 	 */
5004 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
5005 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
5006 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5007 
5008 	/* schedule our worker thread which will take care of
5009 	 * applying the new filter changes
5010 	 */
5011 	ice_service_task_schedule(vsi->back);
5012 }
5013 
5014 /**
5015  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5016  * @netdev: network interface device structure
5017  * @queue_index: Queue ID
5018  * @maxrate: maximum bandwidth in Mbps
5019  */
5020 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5021 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5022 {
5023 	struct ice_netdev_priv *np = netdev_priv(netdev);
5024 	struct ice_vsi *vsi = np->vsi;
5025 	enum ice_status status;
5026 	u16 q_handle;
5027 	u8 tc;
5028 
5029 	/* Validate maxrate requested is within permitted range */
5030 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5031 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5032 			   maxrate, queue_index);
5033 		return -EINVAL;
5034 	}
5035 
5036 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5037 	tc = ice_dcb_get_tc(vsi, queue_index);
5038 
5039 	/* Set BW back to default, when user set maxrate to 0 */
5040 	if (!maxrate)
5041 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5042 					       q_handle, ICE_MAX_BW);
5043 	else
5044 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5045 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5046 	if (status) {
5047 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5048 			   ice_stat_str(status));
5049 		return -EIO;
5050 	}
5051 
5052 	return 0;
5053 }
5054 
5055 /**
5056  * ice_fdb_add - add an entry to the hardware database
5057  * @ndm: the input from the stack
5058  * @tb: pointer to array of nladdr (unused)
5059  * @dev: the net device pointer
5060  * @addr: the MAC address entry being added
5061  * @vid: VLAN ID
5062  * @flags: instructions from stack about fdb operation
5063  * @extack: netlink extended ack
5064  */
5065 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5066 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5067 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5068 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5069 {
5070 	int err;
5071 
5072 	if (vid) {
5073 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5074 		return -EINVAL;
5075 	}
5076 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5077 		netdev_err(dev, "FDB only supports static addresses\n");
5078 		return -EINVAL;
5079 	}
5080 
5081 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5082 		err = dev_uc_add_excl(dev, addr);
5083 	else if (is_multicast_ether_addr(addr))
5084 		err = dev_mc_add_excl(dev, addr);
5085 	else
5086 		err = -EINVAL;
5087 
5088 	/* Only return duplicate errors if NLM_F_EXCL is set */
5089 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5090 		err = 0;
5091 
5092 	return err;
5093 }
5094 
5095 /**
5096  * ice_fdb_del - delete an entry from the hardware database
5097  * @ndm: the input from the stack
5098  * @tb: pointer to array of nladdr (unused)
5099  * @dev: the net device pointer
5100  * @addr: the MAC address entry being added
5101  * @vid: VLAN ID
5102  */
5103 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5104 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5105 	    struct net_device *dev, const unsigned char *addr,
5106 	    __always_unused u16 vid)
5107 {
5108 	int err;
5109 
5110 	if (ndm->ndm_state & NUD_PERMANENT) {
5111 		netdev_err(dev, "FDB only supports static addresses\n");
5112 		return -EINVAL;
5113 	}
5114 
5115 	if (is_unicast_ether_addr(addr))
5116 		err = dev_uc_del(dev, addr);
5117 	else if (is_multicast_ether_addr(addr))
5118 		err = dev_mc_del(dev, addr);
5119 	else
5120 		err = -EINVAL;
5121 
5122 	return err;
5123 }
5124 
5125 /**
5126  * ice_set_features - set the netdev feature flags
5127  * @netdev: ptr to the netdev being adjusted
5128  * @features: the feature set that the stack is suggesting
5129  */
5130 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5131 ice_set_features(struct net_device *netdev, netdev_features_t features)
5132 {
5133 	struct ice_netdev_priv *np = netdev_priv(netdev);
5134 	struct ice_vsi *vsi = np->vsi;
5135 	struct ice_pf *pf = vsi->back;
5136 	int ret = 0;
5137 
5138 	/* Don't set any netdev advanced features with device in Safe Mode */
5139 	if (ice_is_safe_mode(vsi->back)) {
5140 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5141 		return ret;
5142 	}
5143 
5144 	/* Do not change setting during reset */
5145 	if (ice_is_reset_in_progress(pf->state)) {
5146 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5147 		return -EBUSY;
5148 	}
5149 
5150 	/* Multiple features can be changed in one call so keep features in
5151 	 * separate if/else statements to guarantee each feature is checked
5152 	 */
5153 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5154 		ret = ice_vsi_manage_rss_lut(vsi, true);
5155 	else if (!(features & NETIF_F_RXHASH) &&
5156 		 netdev->features & NETIF_F_RXHASH)
5157 		ret = ice_vsi_manage_rss_lut(vsi, false);
5158 
5159 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5160 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5161 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5162 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5163 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5164 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5165 
5166 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5167 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5168 		ret = ice_vsi_manage_vlan_insertion(vsi);
5169 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5170 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5171 		ret = ice_vsi_manage_vlan_insertion(vsi);
5172 
5173 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5174 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5175 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5176 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5177 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5178 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5179 
5180 	if ((features & NETIF_F_NTUPLE) &&
5181 	    !(netdev->features & NETIF_F_NTUPLE)) {
5182 		ice_vsi_manage_fdir(vsi, true);
5183 		ice_init_arfs(vsi);
5184 	} else if (!(features & NETIF_F_NTUPLE) &&
5185 		 (netdev->features & NETIF_F_NTUPLE)) {
5186 		ice_vsi_manage_fdir(vsi, false);
5187 		ice_clear_arfs(vsi);
5188 	}
5189 
5190 	return ret;
5191 }
5192 
5193 /**
5194  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5195  * @vsi: VSI to setup VLAN properties for
5196  */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5197 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5198 {
5199 	int ret = 0;
5200 
5201 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5202 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5203 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5204 		ret = ice_vsi_manage_vlan_insertion(vsi);
5205 
5206 	return ret;
5207 }
5208 
5209 /**
5210  * ice_vsi_cfg - Setup the VSI
5211  * @vsi: the VSI being configured
5212  *
5213  * Return 0 on success and negative value on error
5214  */
ice_vsi_cfg(struct ice_vsi * vsi)5215 int ice_vsi_cfg(struct ice_vsi *vsi)
5216 {
5217 	int err;
5218 
5219 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5220 		ice_set_rx_mode(vsi->netdev);
5221 
5222 		err = ice_vsi_vlan_setup(vsi);
5223 		if (err)
5224 			return err;
5225 	}
5226 	ice_vsi_cfg_dcb_rings(vsi);
5227 
5228 	err = ice_vsi_cfg_lan_txqs(vsi);
5229 	if (!err && ice_is_xdp_ena_vsi(vsi))
5230 		err = ice_vsi_cfg_xdp_txqs(vsi);
5231 	if (!err)
5232 		err = ice_vsi_cfg_rxqs(vsi);
5233 
5234 	return err;
5235 }
5236 
5237 /**
5238  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5239  * @vsi: the VSI being configured
5240  */
ice_napi_enable_all(struct ice_vsi * vsi)5241 static void ice_napi_enable_all(struct ice_vsi *vsi)
5242 {
5243 	int q_idx;
5244 
5245 	if (!vsi->netdev)
5246 		return;
5247 
5248 	ice_for_each_q_vector(vsi, q_idx) {
5249 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5250 
5251 		if (q_vector->rx.ring || q_vector->tx.ring)
5252 			napi_enable(&q_vector->napi);
5253 	}
5254 }
5255 
5256 /**
5257  * ice_up_complete - Finish the last steps of bringing up a connection
5258  * @vsi: The VSI being configured
5259  *
5260  * Return 0 on success and negative value on error
5261  */
ice_up_complete(struct ice_vsi * vsi)5262 static int ice_up_complete(struct ice_vsi *vsi)
5263 {
5264 	struct ice_pf *pf = vsi->back;
5265 	int err;
5266 
5267 	ice_vsi_cfg_msix(vsi);
5268 
5269 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5270 	 * Tx queue group list was configured and the context bits were
5271 	 * programmed using ice_vsi_cfg_txqs
5272 	 */
5273 	err = ice_vsi_start_all_rx_rings(vsi);
5274 	if (err)
5275 		return err;
5276 
5277 	clear_bit(__ICE_DOWN, vsi->state);
5278 	ice_napi_enable_all(vsi);
5279 	ice_vsi_ena_irq(vsi);
5280 
5281 	if (vsi->port_info &&
5282 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5283 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
5284 		ice_print_link_msg(vsi, true);
5285 		netif_tx_start_all_queues(vsi->netdev);
5286 		netif_carrier_on(vsi->netdev);
5287 	}
5288 
5289 	/* Perform an initial read of the statistics registers now to
5290 	 * set the baseline so counters are ready when interface is up
5291 	 */
5292 	ice_update_eth_stats(vsi);
5293 
5294 	if (vsi->type == ICE_VSI_PF)
5295 		ice_service_task_schedule(pf);
5296 
5297 	return 0;
5298 }
5299 
5300 /**
5301  * ice_up - Bring the connection back up after being down
5302  * @vsi: VSI being configured
5303  */
ice_up(struct ice_vsi * vsi)5304 int ice_up(struct ice_vsi *vsi)
5305 {
5306 	int err;
5307 
5308 	err = ice_vsi_cfg(vsi);
5309 	if (!err)
5310 		err = ice_up_complete(vsi);
5311 
5312 	return err;
5313 }
5314 
5315 /**
5316  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5317  * @ring: Tx or Rx ring to read stats from
5318  * @pkts: packets stats counter
5319  * @bytes: bytes stats counter
5320  *
5321  * This function fetches stats from the ring considering the atomic operations
5322  * that needs to be performed to read u64 values in 32 bit machine.
5323  */
5324 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5325 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5326 {
5327 	unsigned int start;
5328 	*pkts = 0;
5329 	*bytes = 0;
5330 
5331 	if (!ring)
5332 		return;
5333 	do {
5334 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5335 		*pkts = ring->stats.pkts;
5336 		*bytes = ring->stats.bytes;
5337 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5338 }
5339 
5340 /**
5341  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5342  * @vsi: the VSI to be updated
5343  * @rings: rings to work on
5344  * @count: number of rings
5345  */
5346 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5347 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5348 			     u16 count)
5349 {
5350 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5351 	u16 i;
5352 
5353 	for (i = 0; i < count; i++) {
5354 		struct ice_ring *ring;
5355 		u64 pkts, bytes;
5356 
5357 		ring = READ_ONCE(rings[i]);
5358 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5359 		vsi_stats->tx_packets += pkts;
5360 		vsi_stats->tx_bytes += bytes;
5361 		vsi->tx_restart += ring->tx_stats.restart_q;
5362 		vsi->tx_busy += ring->tx_stats.tx_busy;
5363 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5364 	}
5365 }
5366 
5367 /**
5368  * ice_update_vsi_ring_stats - Update VSI stats counters
5369  * @vsi: the VSI to be updated
5370  */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5371 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5372 {
5373 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5374 	struct ice_ring *ring;
5375 	u64 pkts, bytes;
5376 	int i;
5377 
5378 	/* reset netdev stats */
5379 	vsi_stats->tx_packets = 0;
5380 	vsi_stats->tx_bytes = 0;
5381 	vsi_stats->rx_packets = 0;
5382 	vsi_stats->rx_bytes = 0;
5383 
5384 	/* reset non-netdev (extended) stats */
5385 	vsi->tx_restart = 0;
5386 	vsi->tx_busy = 0;
5387 	vsi->tx_linearize = 0;
5388 	vsi->rx_buf_failed = 0;
5389 	vsi->rx_page_failed = 0;
5390 	vsi->rx_gro_dropped = 0;
5391 
5392 	rcu_read_lock();
5393 
5394 	/* update Tx rings counters */
5395 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5396 
5397 	/* update Rx rings counters */
5398 	ice_for_each_rxq(vsi, i) {
5399 		ring = READ_ONCE(vsi->rx_rings[i]);
5400 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5401 		vsi_stats->rx_packets += pkts;
5402 		vsi_stats->rx_bytes += bytes;
5403 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5404 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5405 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5406 	}
5407 
5408 	/* update XDP Tx rings counters */
5409 	if (ice_is_xdp_ena_vsi(vsi))
5410 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5411 					     vsi->num_xdp_txq);
5412 
5413 	rcu_read_unlock();
5414 }
5415 
5416 /**
5417  * ice_update_vsi_stats - Update VSI stats counters
5418  * @vsi: the VSI to be updated
5419  */
ice_update_vsi_stats(struct ice_vsi * vsi)5420 void ice_update_vsi_stats(struct ice_vsi *vsi)
5421 {
5422 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5423 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5424 	struct ice_pf *pf = vsi->back;
5425 
5426 	if (test_bit(__ICE_DOWN, vsi->state) ||
5427 	    test_bit(__ICE_CFG_BUSY, pf->state))
5428 		return;
5429 
5430 	/* get stats as recorded by Tx/Rx rings */
5431 	ice_update_vsi_ring_stats(vsi);
5432 
5433 	/* get VSI stats as recorded by the hardware */
5434 	ice_update_eth_stats(vsi);
5435 
5436 	cur_ns->tx_errors = cur_es->tx_errors;
5437 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5438 	cur_ns->tx_dropped = cur_es->tx_discards;
5439 	cur_ns->multicast = cur_es->rx_multicast;
5440 
5441 	/* update some more netdev stats if this is main VSI */
5442 	if (vsi->type == ICE_VSI_PF) {
5443 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5444 		cur_ns->rx_errors = pf->stats.crc_errors +
5445 				    pf->stats.illegal_bytes +
5446 				    pf->stats.rx_len_errors +
5447 				    pf->stats.rx_undersize +
5448 				    pf->hw_csum_rx_error +
5449 				    pf->stats.rx_jabber +
5450 				    pf->stats.rx_fragments +
5451 				    pf->stats.rx_oversize;
5452 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5453 		/* record drops from the port level */
5454 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5455 	}
5456 }
5457 
5458 /**
5459  * ice_update_pf_stats - Update PF port stats counters
5460  * @pf: PF whose stats needs to be updated
5461  */
ice_update_pf_stats(struct ice_pf * pf)5462 void ice_update_pf_stats(struct ice_pf *pf)
5463 {
5464 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5465 	struct ice_hw *hw = &pf->hw;
5466 	u16 fd_ctr_base;
5467 	u8 port;
5468 
5469 	port = hw->port_info->lport;
5470 	prev_ps = &pf->stats_prev;
5471 	cur_ps = &pf->stats;
5472 
5473 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5474 			  &prev_ps->eth.rx_bytes,
5475 			  &cur_ps->eth.rx_bytes);
5476 
5477 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5478 			  &prev_ps->eth.rx_unicast,
5479 			  &cur_ps->eth.rx_unicast);
5480 
5481 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5482 			  &prev_ps->eth.rx_multicast,
5483 			  &cur_ps->eth.rx_multicast);
5484 
5485 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5486 			  &prev_ps->eth.rx_broadcast,
5487 			  &cur_ps->eth.rx_broadcast);
5488 
5489 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5490 			  &prev_ps->eth.rx_discards,
5491 			  &cur_ps->eth.rx_discards);
5492 
5493 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5494 			  &prev_ps->eth.tx_bytes,
5495 			  &cur_ps->eth.tx_bytes);
5496 
5497 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5498 			  &prev_ps->eth.tx_unicast,
5499 			  &cur_ps->eth.tx_unicast);
5500 
5501 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5502 			  &prev_ps->eth.tx_multicast,
5503 			  &cur_ps->eth.tx_multicast);
5504 
5505 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5506 			  &prev_ps->eth.tx_broadcast,
5507 			  &cur_ps->eth.tx_broadcast);
5508 
5509 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5510 			  &prev_ps->tx_dropped_link_down,
5511 			  &cur_ps->tx_dropped_link_down);
5512 
5513 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5514 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5515 
5516 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5517 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5518 
5519 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5520 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5521 
5522 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5523 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5524 
5525 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5526 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5527 
5528 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5529 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5530 
5531 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5532 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5533 
5534 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5535 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5536 
5537 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5538 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5539 
5540 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5541 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5542 
5543 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5544 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5545 
5546 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5547 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5548 
5549 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5550 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5551 
5552 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5553 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5554 
5555 	fd_ctr_base = hw->fd_ctr_base;
5556 
5557 	ice_stat_update40(hw,
5558 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5559 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5560 			  &cur_ps->fd_sb_match);
5561 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5562 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5563 
5564 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5565 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5566 
5567 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5568 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5569 
5570 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5571 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5572 
5573 	ice_update_dcb_stats(pf);
5574 
5575 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5576 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5577 
5578 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5579 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5580 
5581 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5582 			  &prev_ps->mac_local_faults,
5583 			  &cur_ps->mac_local_faults);
5584 
5585 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5586 			  &prev_ps->mac_remote_faults,
5587 			  &cur_ps->mac_remote_faults);
5588 
5589 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5590 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5591 
5592 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5593 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5594 
5595 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5596 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5597 
5598 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5599 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5600 
5601 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5602 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5603 
5604 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5605 
5606 	pf->stat_prev_loaded = true;
5607 }
5608 
5609 /**
5610  * ice_get_stats64 - get statistics for network device structure
5611  * @netdev: network interface device structure
5612  * @stats: main device statistics structure
5613  */
5614 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5615 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5616 {
5617 	struct ice_netdev_priv *np = netdev_priv(netdev);
5618 	struct rtnl_link_stats64 *vsi_stats;
5619 	struct ice_vsi *vsi = np->vsi;
5620 
5621 	vsi_stats = &vsi->net_stats;
5622 
5623 	if (!vsi->num_txq || !vsi->num_rxq)
5624 		return;
5625 
5626 	/* netdev packet/byte stats come from ring counter. These are obtained
5627 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5628 	 * But, only call the update routine and read the registers if VSI is
5629 	 * not down.
5630 	 */
5631 	if (!test_bit(__ICE_DOWN, vsi->state))
5632 		ice_update_vsi_ring_stats(vsi);
5633 	stats->tx_packets = vsi_stats->tx_packets;
5634 	stats->tx_bytes = vsi_stats->tx_bytes;
5635 	stats->rx_packets = vsi_stats->rx_packets;
5636 	stats->rx_bytes = vsi_stats->rx_bytes;
5637 
5638 	/* The rest of the stats can be read from the hardware but instead we
5639 	 * just return values that the watchdog task has already obtained from
5640 	 * the hardware.
5641 	 */
5642 	stats->multicast = vsi_stats->multicast;
5643 	stats->tx_errors = vsi_stats->tx_errors;
5644 	stats->tx_dropped = vsi_stats->tx_dropped;
5645 	stats->rx_errors = vsi_stats->rx_errors;
5646 	stats->rx_dropped = vsi_stats->rx_dropped;
5647 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5648 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5649 }
5650 
5651 /**
5652  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5653  * @vsi: VSI having NAPI disabled
5654  */
ice_napi_disable_all(struct ice_vsi * vsi)5655 static void ice_napi_disable_all(struct ice_vsi *vsi)
5656 {
5657 	int q_idx;
5658 
5659 	if (!vsi->netdev)
5660 		return;
5661 
5662 	ice_for_each_q_vector(vsi, q_idx) {
5663 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5664 
5665 		if (q_vector->rx.ring || q_vector->tx.ring)
5666 			napi_disable(&q_vector->napi);
5667 	}
5668 }
5669 
5670 /**
5671  * ice_down - Shutdown the connection
5672  * @vsi: The VSI being stopped
5673  */
ice_down(struct ice_vsi * vsi)5674 int ice_down(struct ice_vsi *vsi)
5675 {
5676 	int i, tx_err, rx_err, link_err = 0;
5677 
5678 	/* Caller of this function is expected to set the
5679 	 * vsi->state __ICE_DOWN bit
5680 	 */
5681 	if (vsi->netdev) {
5682 		netif_carrier_off(vsi->netdev);
5683 		netif_tx_disable(vsi->netdev);
5684 	}
5685 
5686 	ice_vsi_dis_irq(vsi);
5687 
5688 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5689 	if (tx_err)
5690 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5691 			   vsi->vsi_num, tx_err);
5692 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5693 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5694 		if (tx_err)
5695 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5696 				   vsi->vsi_num, tx_err);
5697 	}
5698 
5699 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5700 	if (rx_err)
5701 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5702 			   vsi->vsi_num, rx_err);
5703 
5704 	ice_napi_disable_all(vsi);
5705 
5706 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5707 		link_err = ice_force_phys_link_state(vsi, false);
5708 		if (link_err)
5709 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5710 				   vsi->vsi_num, link_err);
5711 	}
5712 
5713 	ice_for_each_txq(vsi, i)
5714 		ice_clean_tx_ring(vsi->tx_rings[i]);
5715 
5716 	ice_for_each_rxq(vsi, i)
5717 		ice_clean_rx_ring(vsi->rx_rings[i]);
5718 
5719 	if (tx_err || rx_err || link_err) {
5720 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5721 			   vsi->vsi_num, vsi->vsw->sw_id);
5722 		return -EIO;
5723 	}
5724 
5725 	return 0;
5726 }
5727 
5728 /**
5729  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5730  * @vsi: VSI having resources allocated
5731  *
5732  * Return 0 on success, negative on failure
5733  */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5734 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5735 {
5736 	int i, err = 0;
5737 
5738 	if (!vsi->num_txq) {
5739 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5740 			vsi->vsi_num);
5741 		return -EINVAL;
5742 	}
5743 
5744 	ice_for_each_txq(vsi, i) {
5745 		struct ice_ring *ring = vsi->tx_rings[i];
5746 
5747 		if (!ring)
5748 			return -EINVAL;
5749 
5750 		ring->netdev = vsi->netdev;
5751 		err = ice_setup_tx_ring(ring);
5752 		if (err)
5753 			break;
5754 	}
5755 
5756 	return err;
5757 }
5758 
5759 /**
5760  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5761  * @vsi: VSI having resources allocated
5762  *
5763  * Return 0 on success, negative on failure
5764  */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5765 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5766 {
5767 	int i, err = 0;
5768 
5769 	if (!vsi->num_rxq) {
5770 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5771 			vsi->vsi_num);
5772 		return -EINVAL;
5773 	}
5774 
5775 	ice_for_each_rxq(vsi, i) {
5776 		struct ice_ring *ring = vsi->rx_rings[i];
5777 
5778 		if (!ring)
5779 			return -EINVAL;
5780 
5781 		ring->netdev = vsi->netdev;
5782 		err = ice_setup_rx_ring(ring);
5783 		if (err)
5784 			break;
5785 	}
5786 
5787 	return err;
5788 }
5789 
5790 /**
5791  * ice_vsi_open_ctrl - open control VSI for use
5792  * @vsi: the VSI to open
5793  *
5794  * Initialization of the Control VSI
5795  *
5796  * Returns 0 on success, negative value on error
5797  */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5798 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5799 {
5800 	char int_name[ICE_INT_NAME_STR_LEN];
5801 	struct ice_pf *pf = vsi->back;
5802 	struct device *dev;
5803 	int err;
5804 
5805 	dev = ice_pf_to_dev(pf);
5806 	/* allocate descriptors */
5807 	err = ice_vsi_setup_tx_rings(vsi);
5808 	if (err)
5809 		goto err_setup_tx;
5810 
5811 	err = ice_vsi_setup_rx_rings(vsi);
5812 	if (err)
5813 		goto err_setup_rx;
5814 
5815 	err = ice_vsi_cfg(vsi);
5816 	if (err)
5817 		goto err_setup_rx;
5818 
5819 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5820 		 dev_driver_string(dev), dev_name(dev));
5821 	err = ice_vsi_req_irq_msix(vsi, int_name);
5822 	if (err)
5823 		goto err_setup_rx;
5824 
5825 	ice_vsi_cfg_msix(vsi);
5826 
5827 	err = ice_vsi_start_all_rx_rings(vsi);
5828 	if (err)
5829 		goto err_up_complete;
5830 
5831 	clear_bit(__ICE_DOWN, vsi->state);
5832 	ice_vsi_ena_irq(vsi);
5833 
5834 	return 0;
5835 
5836 err_up_complete:
5837 	ice_down(vsi);
5838 err_setup_rx:
5839 	ice_vsi_free_rx_rings(vsi);
5840 err_setup_tx:
5841 	ice_vsi_free_tx_rings(vsi);
5842 
5843 	return err;
5844 }
5845 
5846 /**
5847  * ice_vsi_open - Called when a network interface is made active
5848  * @vsi: the VSI to open
5849  *
5850  * Initialization of the VSI
5851  *
5852  * Returns 0 on success, negative value on error
5853  */
ice_vsi_open(struct ice_vsi * vsi)5854 static int ice_vsi_open(struct ice_vsi *vsi)
5855 {
5856 	char int_name[ICE_INT_NAME_STR_LEN];
5857 	struct ice_pf *pf = vsi->back;
5858 	int err;
5859 
5860 	/* allocate descriptors */
5861 	err = ice_vsi_setup_tx_rings(vsi);
5862 	if (err)
5863 		goto err_setup_tx;
5864 
5865 	err = ice_vsi_setup_rx_rings(vsi);
5866 	if (err)
5867 		goto err_setup_rx;
5868 
5869 	err = ice_vsi_cfg(vsi);
5870 	if (err)
5871 		goto err_setup_rx;
5872 
5873 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5874 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5875 	err = ice_vsi_req_irq_msix(vsi, int_name);
5876 	if (err)
5877 		goto err_setup_rx;
5878 
5879 	/* Notify the stack of the actual queue counts. */
5880 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5881 	if (err)
5882 		goto err_set_qs;
5883 
5884 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5885 	if (err)
5886 		goto err_set_qs;
5887 
5888 	err = ice_up_complete(vsi);
5889 	if (err)
5890 		goto err_up_complete;
5891 
5892 	return 0;
5893 
5894 err_up_complete:
5895 	ice_down(vsi);
5896 err_set_qs:
5897 	ice_vsi_free_irq(vsi);
5898 err_setup_rx:
5899 	ice_vsi_free_rx_rings(vsi);
5900 err_setup_tx:
5901 	ice_vsi_free_tx_rings(vsi);
5902 
5903 	return err;
5904 }
5905 
5906 /**
5907  * ice_vsi_release_all - Delete all VSIs
5908  * @pf: PF from which all VSIs are being removed
5909  */
ice_vsi_release_all(struct ice_pf * pf)5910 static void ice_vsi_release_all(struct ice_pf *pf)
5911 {
5912 	int err, i;
5913 
5914 	if (!pf->vsi)
5915 		return;
5916 
5917 	ice_for_each_vsi(pf, i) {
5918 		if (!pf->vsi[i])
5919 			continue;
5920 
5921 		err = ice_vsi_release(pf->vsi[i]);
5922 		if (err)
5923 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5924 				i, err, pf->vsi[i]->vsi_num);
5925 	}
5926 }
5927 
5928 /**
5929  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5930  * @pf: pointer to the PF instance
5931  * @type: VSI type to rebuild
5932  *
5933  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5934  */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5935 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5936 {
5937 	struct device *dev = ice_pf_to_dev(pf);
5938 	enum ice_status status;
5939 	int i, err;
5940 
5941 	ice_for_each_vsi(pf, i) {
5942 		struct ice_vsi *vsi = pf->vsi[i];
5943 
5944 		if (!vsi || vsi->type != type)
5945 			continue;
5946 
5947 		/* rebuild the VSI */
5948 		err = ice_vsi_rebuild(vsi, true);
5949 		if (err) {
5950 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5951 				err, vsi->idx, ice_vsi_type_str(type));
5952 			return err;
5953 		}
5954 
5955 		/* replay filters for the VSI */
5956 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5957 		if (status) {
5958 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5959 				ice_stat_str(status), vsi->idx,
5960 				ice_vsi_type_str(type));
5961 			return -EIO;
5962 		}
5963 
5964 		/* Re-map HW VSI number, using VSI handle that has been
5965 		 * previously validated in ice_replay_vsi() call above
5966 		 */
5967 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5968 
5969 		/* enable the VSI */
5970 		err = ice_ena_vsi(vsi, false);
5971 		if (err) {
5972 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5973 				err, vsi->idx, ice_vsi_type_str(type));
5974 			return err;
5975 		}
5976 
5977 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5978 			 ice_vsi_type_str(type));
5979 	}
5980 
5981 	return 0;
5982 }
5983 
5984 /**
5985  * ice_update_pf_netdev_link - Update PF netdev link status
5986  * @pf: pointer to the PF instance
5987  */
ice_update_pf_netdev_link(struct ice_pf * pf)5988 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5989 {
5990 	bool link_up;
5991 	int i;
5992 
5993 	ice_for_each_vsi(pf, i) {
5994 		struct ice_vsi *vsi = pf->vsi[i];
5995 
5996 		if (!vsi || vsi->type != ICE_VSI_PF)
5997 			return;
5998 
5999 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6000 		if (link_up) {
6001 			netif_carrier_on(pf->vsi[i]->netdev);
6002 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6003 		} else {
6004 			netif_carrier_off(pf->vsi[i]->netdev);
6005 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6006 		}
6007 	}
6008 }
6009 
6010 /**
6011  * ice_rebuild - rebuild after reset
6012  * @pf: PF to rebuild
6013  * @reset_type: type of reset
6014  *
6015  * Do not rebuild VF VSI in this flow because that is already handled via
6016  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6017  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6018  * to reset/rebuild all the VF VSI twice.
6019  */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6020 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6021 {
6022 	struct device *dev = ice_pf_to_dev(pf);
6023 	struct ice_hw *hw = &pf->hw;
6024 	enum ice_status ret;
6025 	int err;
6026 
6027 	if (test_bit(__ICE_DOWN, pf->state))
6028 		goto clear_recovery;
6029 
6030 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6031 
6032 	ret = ice_init_all_ctrlq(hw);
6033 	if (ret) {
6034 		dev_err(dev, "control queues init failed %s\n",
6035 			ice_stat_str(ret));
6036 		goto err_init_ctrlq;
6037 	}
6038 
6039 	/* if DDP was previously loaded successfully */
6040 	if (!ice_is_safe_mode(pf)) {
6041 		/* reload the SW DB of filter tables */
6042 		if (reset_type == ICE_RESET_PFR)
6043 			ice_fill_blk_tbls(hw);
6044 		else
6045 			/* Reload DDP Package after CORER/GLOBR reset */
6046 			ice_load_pkg(NULL, pf);
6047 	}
6048 
6049 	ret = ice_clear_pf_cfg(hw);
6050 	if (ret) {
6051 		dev_err(dev, "clear PF configuration failed %s\n",
6052 			ice_stat_str(ret));
6053 		goto err_init_ctrlq;
6054 	}
6055 
6056 	if (pf->first_sw->dflt_vsi_ena)
6057 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6058 	/* clear the default VSI configuration if it exists */
6059 	pf->first_sw->dflt_vsi = NULL;
6060 	pf->first_sw->dflt_vsi_ena = false;
6061 
6062 	ice_clear_pxe_mode(hw);
6063 
6064 	ret = ice_get_caps(hw);
6065 	if (ret) {
6066 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6067 		goto err_init_ctrlq;
6068 	}
6069 
6070 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6071 	if (ret) {
6072 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6073 		goto err_init_ctrlq;
6074 	}
6075 
6076 	err = ice_sched_init_port(hw->port_info);
6077 	if (err)
6078 		goto err_sched_init_port;
6079 
6080 	/* start misc vector */
6081 	err = ice_req_irq_msix_misc(pf);
6082 	if (err) {
6083 		dev_err(dev, "misc vector setup failed: %d\n", err);
6084 		goto err_sched_init_port;
6085 	}
6086 
6087 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6088 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6089 		if (!rd32(hw, PFQF_FD_SIZE)) {
6090 			u16 unused, guar, b_effort;
6091 
6092 			guar = hw->func_caps.fd_fltr_guar;
6093 			b_effort = hw->func_caps.fd_fltr_best_effort;
6094 
6095 			/* force guaranteed filter pool for PF */
6096 			ice_alloc_fd_guar_item(hw, &unused, guar);
6097 			/* force shared filter pool for PF */
6098 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6099 		}
6100 	}
6101 
6102 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6103 		ice_dcb_rebuild(pf);
6104 
6105 	/* rebuild PF VSI */
6106 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6107 	if (err) {
6108 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6109 		goto err_vsi_rebuild;
6110 	}
6111 
6112 	/* If Flow Director is active */
6113 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6114 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6115 		if (err) {
6116 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6117 			goto err_vsi_rebuild;
6118 		}
6119 
6120 		/* replay HW Flow Director recipes */
6121 		if (hw->fdir_prof)
6122 			ice_fdir_replay_flows(hw);
6123 
6124 		/* replay Flow Director filters */
6125 		ice_fdir_replay_fltrs(pf);
6126 
6127 		ice_rebuild_arfs(pf);
6128 	}
6129 
6130 	ice_update_pf_netdev_link(pf);
6131 
6132 	/* tell the firmware we are up */
6133 	ret = ice_send_version(pf);
6134 	if (ret) {
6135 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6136 			ice_stat_str(ret));
6137 		goto err_vsi_rebuild;
6138 	}
6139 
6140 	ice_replay_post(hw);
6141 
6142 	/* if we get here, reset flow is successful */
6143 	clear_bit(__ICE_RESET_FAILED, pf->state);
6144 	return;
6145 
6146 err_vsi_rebuild:
6147 err_sched_init_port:
6148 	ice_sched_cleanup_all(hw);
6149 err_init_ctrlq:
6150 	ice_shutdown_all_ctrlq(hw);
6151 	set_bit(__ICE_RESET_FAILED, pf->state);
6152 clear_recovery:
6153 	/* set this bit in PF state to control service task scheduling */
6154 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6155 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6156 }
6157 
6158 /**
6159  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6160  * @vsi: Pointer to VSI structure
6161  */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6162 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6163 {
6164 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6165 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6166 	else
6167 		return ICE_RXBUF_3072;
6168 }
6169 
6170 /**
6171  * ice_change_mtu - NDO callback to change the MTU
6172  * @netdev: network interface device structure
6173  * @new_mtu: new value for maximum frame size
6174  *
6175  * Returns 0 on success, negative on failure
6176  */
ice_change_mtu(struct net_device * netdev,int new_mtu)6177 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6178 {
6179 	struct ice_netdev_priv *np = netdev_priv(netdev);
6180 	struct ice_vsi *vsi = np->vsi;
6181 	struct ice_pf *pf = vsi->back;
6182 	u8 count = 0;
6183 
6184 	if (new_mtu == (int)netdev->mtu) {
6185 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6186 		return 0;
6187 	}
6188 
6189 	if (ice_is_xdp_ena_vsi(vsi)) {
6190 		int frame_size = ice_max_xdp_frame_size(vsi);
6191 
6192 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6193 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6194 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6195 			return -EINVAL;
6196 		}
6197 	}
6198 
6199 	if (new_mtu < (int)netdev->min_mtu) {
6200 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6201 			   netdev->min_mtu);
6202 		return -EINVAL;
6203 	} else if (new_mtu > (int)netdev->max_mtu) {
6204 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6205 			   netdev->min_mtu);
6206 		return -EINVAL;
6207 	}
6208 	/* if a reset is in progress, wait for some time for it to complete */
6209 	do {
6210 		if (ice_is_reset_in_progress(pf->state)) {
6211 			count++;
6212 			usleep_range(1000, 2000);
6213 		} else {
6214 			break;
6215 		}
6216 
6217 	} while (count < 100);
6218 
6219 	if (count == 100) {
6220 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6221 		return -EBUSY;
6222 	}
6223 
6224 	netdev->mtu = (unsigned int)new_mtu;
6225 
6226 	/* if VSI is up, bring it down and then back up */
6227 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6228 		int err;
6229 
6230 		err = ice_down(vsi);
6231 		if (err) {
6232 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6233 			return err;
6234 		}
6235 
6236 		err = ice_up(vsi);
6237 		if (err) {
6238 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6239 			return err;
6240 		}
6241 	}
6242 
6243 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6244 	return 0;
6245 }
6246 
6247 /**
6248  * ice_aq_str - convert AQ err code to a string
6249  * @aq_err: the AQ error code to convert
6250  */
ice_aq_str(enum ice_aq_err aq_err)6251 const char *ice_aq_str(enum ice_aq_err aq_err)
6252 {
6253 	switch (aq_err) {
6254 	case ICE_AQ_RC_OK:
6255 		return "OK";
6256 	case ICE_AQ_RC_EPERM:
6257 		return "ICE_AQ_RC_EPERM";
6258 	case ICE_AQ_RC_ENOENT:
6259 		return "ICE_AQ_RC_ENOENT";
6260 	case ICE_AQ_RC_ENOMEM:
6261 		return "ICE_AQ_RC_ENOMEM";
6262 	case ICE_AQ_RC_EBUSY:
6263 		return "ICE_AQ_RC_EBUSY";
6264 	case ICE_AQ_RC_EEXIST:
6265 		return "ICE_AQ_RC_EEXIST";
6266 	case ICE_AQ_RC_EINVAL:
6267 		return "ICE_AQ_RC_EINVAL";
6268 	case ICE_AQ_RC_ENOSPC:
6269 		return "ICE_AQ_RC_ENOSPC";
6270 	case ICE_AQ_RC_ENOSYS:
6271 		return "ICE_AQ_RC_ENOSYS";
6272 	case ICE_AQ_RC_EMODE:
6273 		return "ICE_AQ_RC_EMODE";
6274 	case ICE_AQ_RC_ENOSEC:
6275 		return "ICE_AQ_RC_ENOSEC";
6276 	case ICE_AQ_RC_EBADSIG:
6277 		return "ICE_AQ_RC_EBADSIG";
6278 	case ICE_AQ_RC_ESVN:
6279 		return "ICE_AQ_RC_ESVN";
6280 	case ICE_AQ_RC_EBADMAN:
6281 		return "ICE_AQ_RC_EBADMAN";
6282 	case ICE_AQ_RC_EBADBUF:
6283 		return "ICE_AQ_RC_EBADBUF";
6284 	}
6285 
6286 	return "ICE_AQ_RC_UNKNOWN";
6287 }
6288 
6289 /**
6290  * ice_stat_str - convert status err code to a string
6291  * @stat_err: the status error code to convert
6292  */
ice_stat_str(enum ice_status stat_err)6293 const char *ice_stat_str(enum ice_status stat_err)
6294 {
6295 	switch (stat_err) {
6296 	case ICE_SUCCESS:
6297 		return "OK";
6298 	case ICE_ERR_PARAM:
6299 		return "ICE_ERR_PARAM";
6300 	case ICE_ERR_NOT_IMPL:
6301 		return "ICE_ERR_NOT_IMPL";
6302 	case ICE_ERR_NOT_READY:
6303 		return "ICE_ERR_NOT_READY";
6304 	case ICE_ERR_NOT_SUPPORTED:
6305 		return "ICE_ERR_NOT_SUPPORTED";
6306 	case ICE_ERR_BAD_PTR:
6307 		return "ICE_ERR_BAD_PTR";
6308 	case ICE_ERR_INVAL_SIZE:
6309 		return "ICE_ERR_INVAL_SIZE";
6310 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6311 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6312 	case ICE_ERR_RESET_FAILED:
6313 		return "ICE_ERR_RESET_FAILED";
6314 	case ICE_ERR_FW_API_VER:
6315 		return "ICE_ERR_FW_API_VER";
6316 	case ICE_ERR_NO_MEMORY:
6317 		return "ICE_ERR_NO_MEMORY";
6318 	case ICE_ERR_CFG:
6319 		return "ICE_ERR_CFG";
6320 	case ICE_ERR_OUT_OF_RANGE:
6321 		return "ICE_ERR_OUT_OF_RANGE";
6322 	case ICE_ERR_ALREADY_EXISTS:
6323 		return "ICE_ERR_ALREADY_EXISTS";
6324 	case ICE_ERR_NVM_CHECKSUM:
6325 		return "ICE_ERR_NVM_CHECKSUM";
6326 	case ICE_ERR_BUF_TOO_SHORT:
6327 		return "ICE_ERR_BUF_TOO_SHORT";
6328 	case ICE_ERR_NVM_BLANK_MODE:
6329 		return "ICE_ERR_NVM_BLANK_MODE";
6330 	case ICE_ERR_IN_USE:
6331 		return "ICE_ERR_IN_USE";
6332 	case ICE_ERR_MAX_LIMIT:
6333 		return "ICE_ERR_MAX_LIMIT";
6334 	case ICE_ERR_RESET_ONGOING:
6335 		return "ICE_ERR_RESET_ONGOING";
6336 	case ICE_ERR_HW_TABLE:
6337 		return "ICE_ERR_HW_TABLE";
6338 	case ICE_ERR_DOES_NOT_EXIST:
6339 		return "ICE_ERR_DOES_NOT_EXIST";
6340 	case ICE_ERR_FW_DDP_MISMATCH:
6341 		return "ICE_ERR_FW_DDP_MISMATCH";
6342 	case ICE_ERR_AQ_ERROR:
6343 		return "ICE_ERR_AQ_ERROR";
6344 	case ICE_ERR_AQ_TIMEOUT:
6345 		return "ICE_ERR_AQ_TIMEOUT";
6346 	case ICE_ERR_AQ_FULL:
6347 		return "ICE_ERR_AQ_FULL";
6348 	case ICE_ERR_AQ_NO_WORK:
6349 		return "ICE_ERR_AQ_NO_WORK";
6350 	case ICE_ERR_AQ_EMPTY:
6351 		return "ICE_ERR_AQ_EMPTY";
6352 	case ICE_ERR_AQ_FW_CRITICAL:
6353 		return "ICE_ERR_AQ_FW_CRITICAL";
6354 	}
6355 
6356 	return "ICE_ERR_UNKNOWN";
6357 }
6358 
6359 /**
6360  * ice_set_rss - Set RSS keys and lut
6361  * @vsi: Pointer to VSI structure
6362  * @seed: RSS hash seed
6363  * @lut: Lookup table
6364  * @lut_size: Lookup table size
6365  *
6366  * Returns 0 on success, negative on failure
6367  */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6368 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6369 {
6370 	struct ice_pf *pf = vsi->back;
6371 	struct ice_hw *hw = &pf->hw;
6372 	enum ice_status status;
6373 	struct device *dev;
6374 
6375 	dev = ice_pf_to_dev(pf);
6376 	if (seed) {
6377 		struct ice_aqc_get_set_rss_keys *buf =
6378 				  (struct ice_aqc_get_set_rss_keys *)seed;
6379 
6380 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6381 
6382 		if (status) {
6383 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6384 				ice_stat_str(status),
6385 				ice_aq_str(hw->adminq.sq_last_status));
6386 			return -EIO;
6387 		}
6388 	}
6389 
6390 	if (lut) {
6391 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6392 					    lut, lut_size);
6393 		if (status) {
6394 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6395 				ice_stat_str(status),
6396 				ice_aq_str(hw->adminq.sq_last_status));
6397 			return -EIO;
6398 		}
6399 	}
6400 
6401 	return 0;
6402 }
6403 
6404 /**
6405  * ice_get_rss - Get RSS keys and lut
6406  * @vsi: Pointer to VSI structure
6407  * @seed: Buffer to store the keys
6408  * @lut: Buffer to store the lookup table entries
6409  * @lut_size: Size of buffer to store the lookup table entries
6410  *
6411  * Returns 0 on success, negative on failure
6412  */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6413 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6414 {
6415 	struct ice_pf *pf = vsi->back;
6416 	struct ice_hw *hw = &pf->hw;
6417 	enum ice_status status;
6418 	struct device *dev;
6419 
6420 	dev = ice_pf_to_dev(pf);
6421 	if (seed) {
6422 		struct ice_aqc_get_set_rss_keys *buf =
6423 				  (struct ice_aqc_get_set_rss_keys *)seed;
6424 
6425 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6426 		if (status) {
6427 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6428 				ice_stat_str(status),
6429 				ice_aq_str(hw->adminq.sq_last_status));
6430 			return -EIO;
6431 		}
6432 	}
6433 
6434 	if (lut) {
6435 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6436 					    lut, lut_size);
6437 		if (status) {
6438 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6439 				ice_stat_str(status),
6440 				ice_aq_str(hw->adminq.sq_last_status));
6441 			return -EIO;
6442 		}
6443 	}
6444 
6445 	return 0;
6446 }
6447 
6448 /**
6449  * ice_bridge_getlink - Get the hardware bridge mode
6450  * @skb: skb buff
6451  * @pid: process ID
6452  * @seq: RTNL message seq
6453  * @dev: the netdev being configured
6454  * @filter_mask: filter mask passed in
6455  * @nlflags: netlink flags passed in
6456  *
6457  * Return the bridge mode (VEB/VEPA)
6458  */
6459 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6460 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6461 		   struct net_device *dev, u32 filter_mask, int nlflags)
6462 {
6463 	struct ice_netdev_priv *np = netdev_priv(dev);
6464 	struct ice_vsi *vsi = np->vsi;
6465 	struct ice_pf *pf = vsi->back;
6466 	u16 bmode;
6467 
6468 	bmode = pf->first_sw->bridge_mode;
6469 
6470 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6471 				       filter_mask, NULL);
6472 }
6473 
6474 /**
6475  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6476  * @vsi: Pointer to VSI structure
6477  * @bmode: Hardware bridge mode (VEB/VEPA)
6478  *
6479  * Returns 0 on success, negative on failure
6480  */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6481 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6482 {
6483 	struct ice_aqc_vsi_props *vsi_props;
6484 	struct ice_hw *hw = &vsi->back->hw;
6485 	struct ice_vsi_ctx *ctxt;
6486 	enum ice_status status;
6487 	int ret = 0;
6488 
6489 	vsi_props = &vsi->info;
6490 
6491 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6492 	if (!ctxt)
6493 		return -ENOMEM;
6494 
6495 	ctxt->info = vsi->info;
6496 
6497 	if (bmode == BRIDGE_MODE_VEB)
6498 		/* change from VEPA to VEB mode */
6499 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6500 	else
6501 		/* change from VEB to VEPA mode */
6502 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6503 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6504 
6505 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6506 	if (status) {
6507 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6508 			bmode, ice_stat_str(status),
6509 			ice_aq_str(hw->adminq.sq_last_status));
6510 		ret = -EIO;
6511 		goto out;
6512 	}
6513 	/* Update sw flags for book keeping */
6514 	vsi_props->sw_flags = ctxt->info.sw_flags;
6515 
6516 out:
6517 	kfree(ctxt);
6518 	return ret;
6519 }
6520 
6521 /**
6522  * ice_bridge_setlink - Set the hardware bridge mode
6523  * @dev: the netdev being configured
6524  * @nlh: RTNL message
6525  * @flags: bridge setlink flags
6526  * @extack: netlink extended ack
6527  *
6528  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6529  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6530  * not already set for all VSIs connected to this switch. And also update the
6531  * unicast switch filter rules for the corresponding switch of the netdev.
6532  */
6533 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6534 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6535 		   u16 __always_unused flags,
6536 		   struct netlink_ext_ack __always_unused *extack)
6537 {
6538 	struct ice_netdev_priv *np = netdev_priv(dev);
6539 	struct ice_pf *pf = np->vsi->back;
6540 	struct nlattr *attr, *br_spec;
6541 	struct ice_hw *hw = &pf->hw;
6542 	enum ice_status status;
6543 	struct ice_sw *pf_sw;
6544 	int rem, v, err = 0;
6545 
6546 	pf_sw = pf->first_sw;
6547 	/* find the attribute in the netlink message */
6548 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6549 	if (!br_spec)
6550 		return -EINVAL;
6551 
6552 	nla_for_each_nested(attr, br_spec, rem) {
6553 		__u16 mode;
6554 
6555 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6556 			continue;
6557 		mode = nla_get_u16(attr);
6558 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6559 			return -EINVAL;
6560 		/* Continue  if bridge mode is not being flipped */
6561 		if (mode == pf_sw->bridge_mode)
6562 			continue;
6563 		/* Iterates through the PF VSI list and update the loopback
6564 		 * mode of the VSI
6565 		 */
6566 		ice_for_each_vsi(pf, v) {
6567 			if (!pf->vsi[v])
6568 				continue;
6569 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6570 			if (err)
6571 				return err;
6572 		}
6573 
6574 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6575 		/* Update the unicast switch filter rules for the corresponding
6576 		 * switch of the netdev
6577 		 */
6578 		status = ice_update_sw_rule_bridge_mode(hw);
6579 		if (status) {
6580 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6581 				   mode, ice_stat_str(status),
6582 				   ice_aq_str(hw->adminq.sq_last_status));
6583 			/* revert hw->evb_veb */
6584 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6585 			return -EIO;
6586 		}
6587 
6588 		pf_sw->bridge_mode = mode;
6589 	}
6590 
6591 	return 0;
6592 }
6593 
6594 /**
6595  * ice_tx_timeout - Respond to a Tx Hang
6596  * @netdev: network interface device structure
6597  * @txqueue: Tx queue
6598  */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6599 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6600 {
6601 	struct ice_netdev_priv *np = netdev_priv(netdev);
6602 	struct ice_ring *tx_ring = NULL;
6603 	struct ice_vsi *vsi = np->vsi;
6604 	struct ice_pf *pf = vsi->back;
6605 	u32 i;
6606 
6607 	pf->tx_timeout_count++;
6608 
6609 	/* Check if PFC is enabled for the TC to which the queue belongs
6610 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6611 	 * need to reset and rebuild
6612 	 */
6613 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6614 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6615 			 txqueue);
6616 		return;
6617 	}
6618 
6619 	/* now that we have an index, find the tx_ring struct */
6620 	for (i = 0; i < vsi->num_txq; i++)
6621 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6622 			if (txqueue == vsi->tx_rings[i]->q_index) {
6623 				tx_ring = vsi->tx_rings[i];
6624 				break;
6625 			}
6626 
6627 	/* Reset recovery level if enough time has elapsed after last timeout.
6628 	 * Also ensure no new reset action happens before next timeout period.
6629 	 */
6630 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6631 		pf->tx_timeout_recovery_level = 1;
6632 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6633 				       netdev->watchdog_timeo)))
6634 		return;
6635 
6636 	if (tx_ring) {
6637 		struct ice_hw *hw = &pf->hw;
6638 		u32 head, val = 0;
6639 
6640 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6641 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6642 		/* Read interrupt register */
6643 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6644 
6645 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6646 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6647 			    head, tx_ring->next_to_use, val);
6648 	}
6649 
6650 	pf->tx_timeout_last_recovery = jiffies;
6651 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6652 		    pf->tx_timeout_recovery_level, txqueue);
6653 
6654 	switch (pf->tx_timeout_recovery_level) {
6655 	case 1:
6656 		set_bit(__ICE_PFR_REQ, pf->state);
6657 		break;
6658 	case 2:
6659 		set_bit(__ICE_CORER_REQ, pf->state);
6660 		break;
6661 	case 3:
6662 		set_bit(__ICE_GLOBR_REQ, pf->state);
6663 		break;
6664 	default:
6665 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6666 		set_bit(__ICE_DOWN, pf->state);
6667 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6668 		set_bit(__ICE_SERVICE_DIS, pf->state);
6669 		break;
6670 	}
6671 
6672 	ice_service_task_schedule(pf);
6673 	pf->tx_timeout_recovery_level++;
6674 }
6675 
6676 /**
6677  * ice_open - Called when a network interface becomes active
6678  * @netdev: network interface device structure
6679  *
6680  * The open entry point is called when a network interface is made
6681  * active by the system (IFF_UP). At this point all resources needed
6682  * for transmit and receive operations are allocated, the interrupt
6683  * handler is registered with the OS, the netdev watchdog is enabled,
6684  * and the stack is notified that the interface is ready.
6685  *
6686  * Returns 0 on success, negative value on failure
6687  */
ice_open(struct net_device * netdev)6688 int ice_open(struct net_device *netdev)
6689 {
6690 	struct ice_netdev_priv *np = netdev_priv(netdev);
6691 	struct ice_pf *pf = np->vsi->back;
6692 
6693 	if (ice_is_reset_in_progress(pf->state)) {
6694 		netdev_err(netdev, "can't open net device while reset is in progress");
6695 		return -EBUSY;
6696 	}
6697 
6698 	return ice_open_internal(netdev);
6699 }
6700 
6701 /**
6702  * ice_open_internal - Called when a network interface becomes active
6703  * @netdev: network interface device structure
6704  *
6705  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6706  * handling routine
6707  *
6708  * Returns 0 on success, negative value on failure
6709  */
ice_open_internal(struct net_device * netdev)6710 int ice_open_internal(struct net_device *netdev)
6711 {
6712 	struct ice_netdev_priv *np = netdev_priv(netdev);
6713 	struct ice_vsi *vsi = np->vsi;
6714 	struct ice_pf *pf = vsi->back;
6715 	struct ice_port_info *pi;
6716 	int err;
6717 
6718 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6719 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6720 		return -EIO;
6721 	}
6722 
6723 	if (test_bit(__ICE_DOWN, pf->state)) {
6724 		netdev_err(netdev, "device is not ready yet\n");
6725 		return -EBUSY;
6726 	}
6727 
6728 	netif_carrier_off(netdev);
6729 
6730 	pi = vsi->port_info;
6731 	err = ice_update_link_info(pi);
6732 	if (err) {
6733 		netdev_err(netdev, "Failed to get link info, error %d\n",
6734 			   err);
6735 		return err;
6736 	}
6737 
6738 	/* Set PHY if there is media, otherwise, turn off PHY */
6739 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6740 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6741 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6742 			err = ice_init_phy_user_cfg(pi);
6743 			if (err) {
6744 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6745 					   err);
6746 				return err;
6747 			}
6748 		}
6749 
6750 		err = ice_configure_phy(vsi);
6751 		if (err) {
6752 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6753 				   err);
6754 			return err;
6755 		}
6756 	} else {
6757 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6758 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6759 		if (err) {
6760 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6761 				   vsi->vsi_num, err);
6762 			return err;
6763 		}
6764 	}
6765 
6766 	err = ice_vsi_open(vsi);
6767 	if (err)
6768 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6769 			   vsi->vsi_num, vsi->vsw->sw_id);
6770 
6771 	/* Update existing tunnels information */
6772 	udp_tunnel_get_rx_info(netdev);
6773 
6774 	return err;
6775 }
6776 
6777 /**
6778  * ice_stop - Disables a network interface
6779  * @netdev: network interface device structure
6780  *
6781  * The stop entry point is called when an interface is de-activated by the OS,
6782  * and the netdevice enters the DOWN state. The hardware is still under the
6783  * driver's control, but the netdev interface is disabled.
6784  *
6785  * Returns success only - not allowed to fail
6786  */
ice_stop(struct net_device * netdev)6787 int ice_stop(struct net_device *netdev)
6788 {
6789 	struct ice_netdev_priv *np = netdev_priv(netdev);
6790 	struct ice_vsi *vsi = np->vsi;
6791 	struct ice_pf *pf = vsi->back;
6792 
6793 	if (ice_is_reset_in_progress(pf->state)) {
6794 		netdev_err(netdev, "can't stop net device while reset is in progress");
6795 		return -EBUSY;
6796 	}
6797 
6798 	ice_vsi_close(vsi);
6799 
6800 	return 0;
6801 }
6802 
6803 /**
6804  * ice_features_check - Validate encapsulated packet conforms to limits
6805  * @skb: skb buffer
6806  * @netdev: This port's netdev
6807  * @features: Offload features that the stack believes apply
6808  */
6809 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6810 ice_features_check(struct sk_buff *skb,
6811 		   struct net_device __always_unused *netdev,
6812 		   netdev_features_t features)
6813 {
6814 	bool gso = skb_is_gso(skb);
6815 	size_t len;
6816 
6817 	/* No point in doing any of this if neither checksum nor GSO are
6818 	 * being requested for this frame. We can rule out both by just
6819 	 * checking for CHECKSUM_PARTIAL
6820 	 */
6821 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6822 		return features;
6823 
6824 	/* We cannot support GSO if the MSS is going to be less than
6825 	 * 64 bytes. If it is then we need to drop support for GSO.
6826 	 */
6827 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
6828 		features &= ~NETIF_F_GSO_MASK;
6829 
6830 	len = skb_network_offset(skb);
6831 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6832 		goto out_rm_features;
6833 
6834 	len = skb_network_header_len(skb);
6835 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6836 		goto out_rm_features;
6837 
6838 	if (skb->encapsulation) {
6839 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
6840 		 * the case of IPIP frames, the transport header pointer is
6841 		 * after the inner header! So check to make sure that this
6842 		 * is a GRE or UDP_TUNNEL frame before doing that math.
6843 		 */
6844 		if (gso && (skb_shinfo(skb)->gso_type &
6845 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
6846 			len = skb_inner_network_header(skb) -
6847 			      skb_transport_header(skb);
6848 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6849 				goto out_rm_features;
6850 		}
6851 
6852 		len = skb_inner_network_header_len(skb);
6853 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6854 			goto out_rm_features;
6855 	}
6856 
6857 	return features;
6858 out_rm_features:
6859 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6860 }
6861 
6862 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6863 	.ndo_open = ice_open,
6864 	.ndo_stop = ice_stop,
6865 	.ndo_start_xmit = ice_start_xmit,
6866 	.ndo_set_mac_address = ice_set_mac_address,
6867 	.ndo_validate_addr = eth_validate_addr,
6868 	.ndo_change_mtu = ice_change_mtu,
6869 	.ndo_get_stats64 = ice_get_stats64,
6870 	.ndo_tx_timeout = ice_tx_timeout,
6871 	.ndo_bpf = ice_xdp_safe_mode,
6872 };
6873 
6874 static const struct net_device_ops ice_netdev_ops = {
6875 	.ndo_open = ice_open,
6876 	.ndo_stop = ice_stop,
6877 	.ndo_start_xmit = ice_start_xmit,
6878 	.ndo_features_check = ice_features_check,
6879 	.ndo_set_rx_mode = ice_set_rx_mode,
6880 	.ndo_set_mac_address = ice_set_mac_address,
6881 	.ndo_validate_addr = eth_validate_addr,
6882 	.ndo_change_mtu = ice_change_mtu,
6883 	.ndo_get_stats64 = ice_get_stats64,
6884 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6885 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6886 	.ndo_set_vf_mac = ice_set_vf_mac,
6887 	.ndo_get_vf_config = ice_get_vf_cfg,
6888 	.ndo_set_vf_trust = ice_set_vf_trust,
6889 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6890 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6891 	.ndo_get_vf_stats = ice_get_vf_stats,
6892 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6893 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6894 	.ndo_set_features = ice_set_features,
6895 	.ndo_bridge_getlink = ice_bridge_getlink,
6896 	.ndo_bridge_setlink = ice_bridge_setlink,
6897 	.ndo_fdb_add = ice_fdb_add,
6898 	.ndo_fdb_del = ice_fdb_del,
6899 #ifdef CONFIG_RFS_ACCEL
6900 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6901 #endif
6902 	.ndo_tx_timeout = ice_tx_timeout,
6903 	.ndo_bpf = ice_xdp,
6904 	.ndo_xdp_xmit = ice_xdp_xmit,
6905 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6906 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6907 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6908 };
6909