• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
ice_set_mac_type(struct ice_hw * hw)18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
22 
23 	switch (hw->device_id) {
24 	case ICE_DEV_ID_E810C_BACKPLANE:
25 	case ICE_DEV_ID_E810C_QSFP:
26 	case ICE_DEV_ID_E810C_SFP:
27 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
28 	case ICE_DEV_ID_E810_XXV_QSFP:
29 	case ICE_DEV_ID_E810_XXV_SFP:
30 		hw->mac_type = ICE_MAC_E810;
31 		break;
32 	case ICE_DEV_ID_E823C_10G_BASE_T:
33 	case ICE_DEV_ID_E823C_BACKPLANE:
34 	case ICE_DEV_ID_E823C_QSFP:
35 	case ICE_DEV_ID_E823C_SFP:
36 	case ICE_DEV_ID_E823C_SGMII:
37 	case ICE_DEV_ID_E822C_10G_BASE_T:
38 	case ICE_DEV_ID_E822C_BACKPLANE:
39 	case ICE_DEV_ID_E822C_QSFP:
40 	case ICE_DEV_ID_E822C_SFP:
41 	case ICE_DEV_ID_E822C_SGMII:
42 	case ICE_DEV_ID_E822L_10G_BASE_T:
43 	case ICE_DEV_ID_E822L_BACKPLANE:
44 	case ICE_DEV_ID_E822L_SFP:
45 	case ICE_DEV_ID_E822L_SGMII:
46 	case ICE_DEV_ID_E823L_10G_BASE_T:
47 	case ICE_DEV_ID_E823L_1GBE:
48 	case ICE_DEV_ID_E823L_BACKPLANE:
49 	case ICE_DEV_ID_E823L_QSFP:
50 	case ICE_DEV_ID_E823L_SFP:
51 		hw->mac_type = ICE_MAC_GENERIC;
52 		break;
53 	default:
54 		hw->mac_type = ICE_MAC_UNKNOWN;
55 		break;
56 	}
57 
58 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
59 	return 0;
60 }
61 
62 /**
63  * ice_clear_pf_cfg - Clear PF configuration
64  * @hw: pointer to the hardware structure
65  *
66  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
67  * configuration, flow director filters, etc.).
68  */
ice_clear_pf_cfg(struct ice_hw * hw)69 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
70 {
71 	struct ice_aq_desc desc;
72 
73 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
74 
75 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
76 }
77 
78 /**
79  * ice_aq_manage_mac_read - manage MAC address read command
80  * @hw: pointer to the HW struct
81  * @buf: a virtual buffer to hold the manage MAC read response
82  * @buf_size: Size of the virtual buffer
83  * @cd: pointer to command details structure or NULL
84  *
85  * This function is used to return per PF station MAC address (0x0107).
86  * NOTE: Upon successful completion of this command, MAC address information
87  * is returned in user specified buffer. Please interpret user specified
88  * buffer as "manage_mac_read" response.
89  * Response such as various MAC addresses are stored in HW struct (port.mac)
90  * ice_discover_dev_caps is expected to be called before this function is
91  * called.
92  */
93 static enum ice_status
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)94 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
95 		       struct ice_sq_cd *cd)
96 {
97 	struct ice_aqc_manage_mac_read_resp *resp;
98 	struct ice_aqc_manage_mac_read *cmd;
99 	struct ice_aq_desc desc;
100 	enum ice_status status;
101 	u16 flags;
102 	u8 i;
103 
104 	cmd = &desc.params.mac_read;
105 
106 	if (buf_size < sizeof(*resp))
107 		return ICE_ERR_BUF_TOO_SHORT;
108 
109 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
110 
111 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
112 	if (status)
113 		return status;
114 
115 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
116 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
117 
118 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
119 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
120 		return ICE_ERR_CFG;
121 	}
122 
123 	/* A single port can report up to two (LAN and WoL) addresses */
124 	for (i = 0; i < cmd->num_addr; i++)
125 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
126 			ether_addr_copy(hw->port_info->mac.lan_addr,
127 					resp[i].mac_addr);
128 			ether_addr_copy(hw->port_info->mac.perm_addr,
129 					resp[i].mac_addr);
130 			break;
131 		}
132 
133 	return 0;
134 }
135 
136 /**
137  * ice_aq_get_phy_caps - returns PHY capabilities
138  * @pi: port information structure
139  * @qual_mods: report qualified modules
140  * @report_mode: report mode capabilities
141  * @pcaps: structure for PHY capabilities to be filled
142  * @cd: pointer to command details structure or NULL
143  *
144  * Returns the various PHY capabilities supported on the Port (0x0600)
145  */
146 enum ice_status
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)147 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
148 		    struct ice_aqc_get_phy_caps_data *pcaps,
149 		    struct ice_sq_cd *cd)
150 {
151 	struct ice_aqc_get_phy_caps *cmd;
152 	u16 pcaps_size = sizeof(*pcaps);
153 	struct ice_aq_desc desc;
154 	enum ice_status status;
155 	struct ice_hw *hw;
156 
157 	cmd = &desc.params.get_phy;
158 
159 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
160 		return ICE_ERR_PARAM;
161 	hw = pi->hw;
162 
163 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
164 
165 	if (qual_mods)
166 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
167 
168 	cmd->param0 |= cpu_to_le16(report_mode);
169 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
170 
171 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
172 		  report_mode);
173 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
174 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
175 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
176 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
177 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
178 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
179 		  pcaps->low_power_ctrl_an);
180 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
181 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
182 		  pcaps->eeer_value);
183 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
184 		  pcaps->link_fec_options);
185 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
186 		  pcaps->module_compliance_enforcement);
187 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
188 		  pcaps->extended_compliance_code);
189 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
190 		  pcaps->module_type[0]);
191 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
192 		  pcaps->module_type[1]);
193 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
194 		  pcaps->module_type[2]);
195 
196 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
197 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
198 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
199 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
200 		       sizeof(pi->phy.link_info.module_type));
201 	}
202 
203 	return status;
204 }
205 
206 /**
207  * ice_aq_get_link_topo_handle - get link topology node return status
208  * @pi: port information structure
209  * @node_type: requested node type
210  * @cd: pointer to command details structure or NULL
211  *
212  * Get link topology node return status for specified node type (0x06E0)
213  *
214  * Node type cage can be used to determine if cage is present. If AQC
215  * returns error (ENOENT), then no cage present. If no cage present, then
216  * connection type is backplane or BASE-T.
217  */
218 static enum ice_status
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)219 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
220 			    struct ice_sq_cd *cd)
221 {
222 	struct ice_aqc_get_link_topo *cmd;
223 	struct ice_aq_desc desc;
224 
225 	cmd = &desc.params.get_link_topo;
226 
227 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
228 
229 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
230 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
231 
232 	/* set node type */
233 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
234 
235 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
236 }
237 
238 /**
239  * ice_is_media_cage_present
240  * @pi: port information structure
241  *
242  * Returns true if media cage is present, else false. If no cage, then
243  * media type is backplane or BASE-T.
244  */
ice_is_media_cage_present(struct ice_port_info * pi)245 static bool ice_is_media_cage_present(struct ice_port_info *pi)
246 {
247 	/* Node type cage can be used to determine if cage is present. If AQC
248 	 * returns error (ENOENT), then no cage present. If no cage present then
249 	 * connection type is backplane or BASE-T.
250 	 */
251 	return !ice_aq_get_link_topo_handle(pi,
252 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
253 					    NULL);
254 }
255 
256 /**
257  * ice_get_media_type - Gets media type
258  * @pi: port information structure
259  */
ice_get_media_type(struct ice_port_info * pi)260 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
261 {
262 	struct ice_link_status *hw_link_info;
263 
264 	if (!pi)
265 		return ICE_MEDIA_UNKNOWN;
266 
267 	hw_link_info = &pi->phy.link_info;
268 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
269 		/* If more than one media type is selected, report unknown */
270 		return ICE_MEDIA_UNKNOWN;
271 
272 	if (hw_link_info->phy_type_low) {
273 		/* 1G SGMII is a special case where some DA cable PHYs
274 		 * may show this as an option when it really shouldn't
275 		 * be since SGMII is meant to be between a MAC and a PHY
276 		 * in a backplane. Try to detect this case and handle it
277 		 */
278 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
279 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
280 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
281 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
282 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
283 			return ICE_MEDIA_DA;
284 
285 		switch (hw_link_info->phy_type_low) {
286 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
287 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
288 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
289 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
290 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
291 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
292 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
293 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
294 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
295 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
296 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
297 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
298 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
299 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
300 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
301 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
302 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
303 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
304 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
305 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
306 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
307 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
308 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
309 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
310 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
311 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
312 			return ICE_MEDIA_FIBER;
313 		case ICE_PHY_TYPE_LOW_100BASE_TX:
314 		case ICE_PHY_TYPE_LOW_1000BASE_T:
315 		case ICE_PHY_TYPE_LOW_2500BASE_T:
316 		case ICE_PHY_TYPE_LOW_5GBASE_T:
317 		case ICE_PHY_TYPE_LOW_10GBASE_T:
318 		case ICE_PHY_TYPE_LOW_25GBASE_T:
319 			return ICE_MEDIA_BASET;
320 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
321 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
322 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
323 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
324 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
325 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
326 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
327 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
328 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
329 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
330 			return ICE_MEDIA_DA;
331 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
332 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
333 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
334 		case ICE_PHY_TYPE_LOW_50G_AUI2:
335 		case ICE_PHY_TYPE_LOW_50G_AUI1:
336 		case ICE_PHY_TYPE_LOW_100G_AUI4:
337 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
338 			if (ice_is_media_cage_present(pi))
339 				return ICE_MEDIA_DA;
340 			fallthrough;
341 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
342 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
343 		case ICE_PHY_TYPE_LOW_2500BASE_X:
344 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
345 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
346 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
347 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
348 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
349 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
350 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
351 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
352 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
353 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
354 			return ICE_MEDIA_BACKPLANE;
355 		}
356 	} else {
357 		switch (hw_link_info->phy_type_high) {
358 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
359 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
360 			if (ice_is_media_cage_present(pi))
361 				return ICE_MEDIA_DA;
362 			fallthrough;
363 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
364 			return ICE_MEDIA_BACKPLANE;
365 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
366 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
367 			return ICE_MEDIA_FIBER;
368 		}
369 	}
370 	return ICE_MEDIA_UNKNOWN;
371 }
372 
373 /**
374  * ice_aq_get_link_info
375  * @pi: port information structure
376  * @ena_lse: enable/disable LinkStatusEvent reporting
377  * @link: pointer to link status structure - optional
378  * @cd: pointer to command details structure or NULL
379  *
380  * Get Link Status (0x607). Returns the link status of the adapter.
381  */
382 enum ice_status
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)383 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
384 		     struct ice_link_status *link, struct ice_sq_cd *cd)
385 {
386 	struct ice_aqc_get_link_status_data link_data = { 0 };
387 	struct ice_aqc_get_link_status *resp;
388 	struct ice_link_status *li_old, *li;
389 	enum ice_media_type *hw_media_type;
390 	struct ice_fc_info *hw_fc_info;
391 	bool tx_pause, rx_pause;
392 	struct ice_aq_desc desc;
393 	enum ice_status status;
394 	struct ice_hw *hw;
395 	u16 cmd_flags;
396 
397 	if (!pi)
398 		return ICE_ERR_PARAM;
399 	hw = pi->hw;
400 	li_old = &pi->phy.link_info_old;
401 	hw_media_type = &pi->phy.media_type;
402 	li = &pi->phy.link_info;
403 	hw_fc_info = &pi->fc;
404 
405 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
406 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
407 	resp = &desc.params.get_link_status;
408 	resp->cmd_flags = cpu_to_le16(cmd_flags);
409 	resp->lport_num = pi->lport;
410 
411 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
412 
413 	if (status)
414 		return status;
415 
416 	/* save off old link status information */
417 	*li_old = *li;
418 
419 	/* update current link status information */
420 	li->link_speed = le16_to_cpu(link_data.link_speed);
421 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
422 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
423 	*hw_media_type = ice_get_media_type(pi);
424 	li->link_info = link_data.link_info;
425 	li->an_info = link_data.an_info;
426 	li->ext_info = link_data.ext_info;
427 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
428 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
429 	li->topo_media_conflict = link_data.topo_media_conflict;
430 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
431 				      ICE_AQ_CFG_PACING_TYPE_M);
432 
433 	/* update fc info */
434 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
435 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
436 	if (tx_pause && rx_pause)
437 		hw_fc_info->current_mode = ICE_FC_FULL;
438 	else if (tx_pause)
439 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
440 	else if (rx_pause)
441 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
442 	else
443 		hw_fc_info->current_mode = ICE_FC_NONE;
444 
445 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
446 
447 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
448 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
449 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
450 		  (unsigned long long)li->phy_type_low);
451 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
452 		  (unsigned long long)li->phy_type_high);
453 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
454 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
455 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
456 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
457 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
458 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
459 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
460 		  li->max_frame_size);
461 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
462 
463 	/* save link status information */
464 	if (link)
465 		*link = *li;
466 
467 	/* flag cleared so calling functions don't call AQ again */
468 	pi->phy.get_link_info = false;
469 
470 	return 0;
471 }
472 
473 /**
474  * ice_fill_tx_timer_and_fc_thresh
475  * @hw: pointer to the HW struct
476  * @cmd: pointer to MAC cfg structure
477  *
478  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
479  * descriptor
480  */
481 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)482 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
483 				struct ice_aqc_set_mac_cfg *cmd)
484 {
485 	u16 fc_thres_val, tx_timer_val;
486 	u32 val;
487 
488 	/* We read back the transmit timer and FC threshold value of
489 	 * LFC. Thus, we will use index =
490 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
491 	 *
492 	 * Also, because we are operating on transmit timer and FC
493 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
494 	 */
495 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
496 
497 	/* Retrieve the transmit timer */
498 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
499 	tx_timer_val = val &
500 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
501 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
502 
503 	/* Retrieve the FC threshold */
504 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
505 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
506 
507 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
508 }
509 
510 /**
511  * ice_aq_set_mac_cfg
512  * @hw: pointer to the HW struct
513  * @max_frame_size: Maximum Frame Size to be supported
514  * @cd: pointer to command details structure or NULL
515  *
516  * Set MAC configuration (0x0603)
517  */
518 enum ice_status
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)519 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
520 {
521 	struct ice_aqc_set_mac_cfg *cmd;
522 	struct ice_aq_desc desc;
523 
524 	cmd = &desc.params.set_mac_cfg;
525 
526 	if (max_frame_size == 0)
527 		return ICE_ERR_PARAM;
528 
529 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
530 
531 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
532 
533 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
534 
535 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
536 }
537 
538 /**
539  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
540  * @hw: pointer to the HW struct
541  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)542 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
543 {
544 	struct ice_switch_info *sw;
545 	enum ice_status status;
546 
547 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
548 				       sizeof(*hw->switch_info), GFP_KERNEL);
549 	sw = hw->switch_info;
550 
551 	if (!sw)
552 		return ICE_ERR_NO_MEMORY;
553 
554 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
555 
556 	status = ice_init_def_sw_recp(hw);
557 	if (status) {
558 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
559 		return status;
560 	}
561 	return 0;
562 }
563 
564 /**
565  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
566  * @hw: pointer to the HW struct
567  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)568 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
569 {
570 	struct ice_switch_info *sw = hw->switch_info;
571 	struct ice_vsi_list_map_info *v_pos_map;
572 	struct ice_vsi_list_map_info *v_tmp_map;
573 	struct ice_sw_recipe *recps;
574 	u8 i;
575 
576 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
577 				 list_entry) {
578 		list_del(&v_pos_map->list_entry);
579 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
580 	}
581 	recps = hw->switch_info->recp_list;
582 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
583 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
584 
585 		recps[i].root_rid = i;
586 		mutex_destroy(&recps[i].filt_rule_lock);
587 		list_for_each_entry_safe(lst_itr, tmp_entry,
588 					 &recps[i].filt_rules, list_entry) {
589 			list_del(&lst_itr->list_entry);
590 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
591 		}
592 	}
593 	ice_rm_all_sw_replay_rule_info(hw);
594 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
595 	devm_kfree(ice_hw_to_dev(hw), sw);
596 }
597 
598 /**
599  * ice_get_fw_log_cfg - get FW logging configuration
600  * @hw: pointer to the HW struct
601  */
ice_get_fw_log_cfg(struct ice_hw * hw)602 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
603 {
604 	struct ice_aq_desc desc;
605 	enum ice_status status;
606 	__le16 *config;
607 	u16 size;
608 
609 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
610 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
611 	if (!config)
612 		return ICE_ERR_NO_MEMORY;
613 
614 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
615 
616 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
617 	if (!status) {
618 		u16 i;
619 
620 		/* Save FW logging information into the HW structure */
621 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
622 			u16 v, m, flgs;
623 
624 			v = le16_to_cpu(config[i]);
625 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
626 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
627 
628 			if (m < ICE_AQC_FW_LOG_ID_MAX)
629 				hw->fw_log.evnts[m].cur = flgs;
630 		}
631 	}
632 
633 	devm_kfree(ice_hw_to_dev(hw), config);
634 
635 	return status;
636 }
637 
638 /**
639  * ice_cfg_fw_log - configure FW logging
640  * @hw: pointer to the HW struct
641  * @enable: enable certain FW logging events if true, disable all if false
642  *
643  * This function enables/disables the FW logging via Rx CQ events and a UART
644  * port based on predetermined configurations. FW logging via the Rx CQ can be
645  * enabled/disabled for individual PF's. However, FW logging via the UART can
646  * only be enabled/disabled for all PFs on the same device.
647  *
648  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
649  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
650  * before initializing the device.
651  *
652  * When re/configuring FW logging, callers need to update the "cfg" elements of
653  * the hw->fw_log.evnts array with the desired logging event configurations for
654  * modules of interest. When disabling FW logging completely, the callers can
655  * just pass false in the "enable" parameter. On completion, the function will
656  * update the "cur" element of the hw->fw_log.evnts array with the resulting
657  * logging event configurations of the modules that are being re/configured. FW
658  * logging modules that are not part of a reconfiguration operation retain their
659  * previous states.
660  *
661  * Before resetting the device, it is recommended that the driver disables FW
662  * logging before shutting down the control queue. When disabling FW logging
663  * ("enable" = false), the latest configurations of FW logging events stored in
664  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
665  * a device reset.
666  *
667  * When enabling FW logging to emit log messages via the Rx CQ during the
668  * device's initialization phase, a mechanism alternative to interrupt handlers
669  * needs to be used to extract FW log messages from the Rx CQ periodically and
670  * to prevent the Rx CQ from being full and stalling other types of control
671  * messages from FW to SW. Interrupts are typically disabled during the device's
672  * initialization phase.
673  */
ice_cfg_fw_log(struct ice_hw * hw,bool enable)674 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
675 {
676 	struct ice_aqc_fw_logging *cmd;
677 	enum ice_status status = 0;
678 	u16 i, chgs = 0, len = 0;
679 	struct ice_aq_desc desc;
680 	__le16 *data = NULL;
681 	u8 actv_evnts = 0;
682 	void *buf = NULL;
683 
684 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
685 		return 0;
686 
687 	/* Disable FW logging only when the control queue is still responsive */
688 	if (!enable &&
689 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
690 		return 0;
691 
692 	/* Get current FW log settings */
693 	status = ice_get_fw_log_cfg(hw);
694 	if (status)
695 		return status;
696 
697 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
698 	cmd = &desc.params.fw_logging;
699 
700 	/* Indicate which controls are valid */
701 	if (hw->fw_log.cq_en)
702 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
703 
704 	if (hw->fw_log.uart_en)
705 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
706 
707 	if (enable) {
708 		/* Fill in an array of entries with FW logging modules and
709 		 * logging events being reconfigured.
710 		 */
711 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
712 			u16 val;
713 
714 			/* Keep track of enabled event types */
715 			actv_evnts |= hw->fw_log.evnts[i].cfg;
716 
717 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
718 				continue;
719 
720 			if (!data) {
721 				data = devm_kcalloc(ice_hw_to_dev(hw),
722 						    ICE_AQC_FW_LOG_ID_MAX,
723 						    sizeof(*data),
724 						    GFP_KERNEL);
725 				if (!data)
726 					return ICE_ERR_NO_MEMORY;
727 			}
728 
729 			val = i << ICE_AQC_FW_LOG_ID_S;
730 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
731 			data[chgs++] = cpu_to_le16(val);
732 		}
733 
734 		/* Only enable FW logging if at least one module is specified.
735 		 * If FW logging is currently enabled but all modules are not
736 		 * enabled to emit log messages, disable FW logging altogether.
737 		 */
738 		if (actv_evnts) {
739 			/* Leave if there is effectively no change */
740 			if (!chgs)
741 				goto out;
742 
743 			if (hw->fw_log.cq_en)
744 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
745 
746 			if (hw->fw_log.uart_en)
747 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
748 
749 			buf = data;
750 			len = sizeof(*data) * chgs;
751 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
752 		}
753 	}
754 
755 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
756 	if (!status) {
757 		/* Update the current configuration to reflect events enabled.
758 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
759 		 * logging mode is enabled for the device. They do not reflect
760 		 * actual modules being enabled to emit log messages. So, their
761 		 * values remain unchanged even when all modules are disabled.
762 		 */
763 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
764 
765 		hw->fw_log.actv_evnts = actv_evnts;
766 		for (i = 0; i < cnt; i++) {
767 			u16 v, m;
768 
769 			if (!enable) {
770 				/* When disabling all FW logging events as part
771 				 * of device's de-initialization, the original
772 				 * configurations are retained, and can be used
773 				 * to reconfigure FW logging later if the device
774 				 * is re-initialized.
775 				 */
776 				hw->fw_log.evnts[i].cur = 0;
777 				continue;
778 			}
779 
780 			v = le16_to_cpu(data[i]);
781 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
782 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
783 		}
784 	}
785 
786 out:
787 	if (data)
788 		devm_kfree(ice_hw_to_dev(hw), data);
789 
790 	return status;
791 }
792 
793 /**
794  * ice_output_fw_log
795  * @hw: pointer to the HW struct
796  * @desc: pointer to the AQ message descriptor
797  * @buf: pointer to the buffer accompanying the AQ message
798  *
799  * Formats a FW Log message and outputs it via the standard driver logs.
800  */
ice_output_fw_log(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf)801 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
802 {
803 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
804 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
805 			le16_to_cpu(desc->datalen));
806 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
807 }
808 
809 /**
810  * ice_get_itr_intrl_gran
811  * @hw: pointer to the HW struct
812  *
813  * Determines the ITR/INTRL granularities based on the maximum aggregate
814  * bandwidth according to the device's configuration during power-on.
815  */
ice_get_itr_intrl_gran(struct ice_hw * hw)816 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
817 {
818 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
819 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
820 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
821 
822 	switch (max_agg_bw) {
823 	case ICE_MAX_AGG_BW_200G:
824 	case ICE_MAX_AGG_BW_100G:
825 	case ICE_MAX_AGG_BW_50G:
826 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
827 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
828 		break;
829 	case ICE_MAX_AGG_BW_25G:
830 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
831 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
832 		break;
833 	}
834 }
835 
836 /**
837  * ice_init_hw - main hardware initialization routine
838  * @hw: pointer to the hardware structure
839  */
ice_init_hw(struct ice_hw * hw)840 enum ice_status ice_init_hw(struct ice_hw *hw)
841 {
842 	struct ice_aqc_get_phy_caps_data *pcaps;
843 	enum ice_status status;
844 	u16 mac_buf_len;
845 	void *mac_buf;
846 
847 	/* Set MAC type based on DeviceID */
848 	status = ice_set_mac_type(hw);
849 	if (status)
850 		return status;
851 
852 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
853 			 PF_FUNC_RID_FUNC_NUM_M) >>
854 		PF_FUNC_RID_FUNC_NUM_S;
855 
856 	status = ice_reset(hw, ICE_RESET_PFR);
857 	if (status)
858 		return status;
859 
860 	ice_get_itr_intrl_gran(hw);
861 
862 	status = ice_create_all_ctrlq(hw);
863 	if (status)
864 		goto err_unroll_cqinit;
865 
866 	/* Enable FW logging. Not fatal if this fails. */
867 	status = ice_cfg_fw_log(hw, true);
868 	if (status)
869 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
870 
871 	status = ice_clear_pf_cfg(hw);
872 	if (status)
873 		goto err_unroll_cqinit;
874 
875 	/* Set bit to enable Flow Director filters */
876 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
877 	INIT_LIST_HEAD(&hw->fdir_list_head);
878 
879 	ice_clear_pxe_mode(hw);
880 
881 	status = ice_init_nvm(hw);
882 	if (status)
883 		goto err_unroll_cqinit;
884 
885 	status = ice_get_caps(hw);
886 	if (status)
887 		goto err_unroll_cqinit;
888 
889 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
890 				     sizeof(*hw->port_info), GFP_KERNEL);
891 	if (!hw->port_info) {
892 		status = ICE_ERR_NO_MEMORY;
893 		goto err_unroll_cqinit;
894 	}
895 
896 	/* set the back pointer to HW */
897 	hw->port_info->hw = hw;
898 
899 	/* Initialize port_info struct with switch configuration data */
900 	status = ice_get_initial_sw_cfg(hw);
901 	if (status)
902 		goto err_unroll_alloc;
903 
904 	hw->evb_veb = true;
905 
906 	/* Query the allocated resources for Tx scheduler */
907 	status = ice_sched_query_res_alloc(hw);
908 	if (status) {
909 		ice_debug(hw, ICE_DBG_SCHED,
910 			  "Failed to get scheduler allocated resources\n");
911 		goto err_unroll_alloc;
912 	}
913 
914 	/* Initialize port_info struct with scheduler data */
915 	status = ice_sched_init_port(hw->port_info);
916 	if (status)
917 		goto err_unroll_sched;
918 
919 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
920 	if (!pcaps) {
921 		status = ICE_ERR_NO_MEMORY;
922 		goto err_unroll_sched;
923 	}
924 
925 	/* Initialize port_info struct with PHY capabilities */
926 	status = ice_aq_get_phy_caps(hw->port_info, false,
927 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
928 				     NULL);
929 	devm_kfree(ice_hw_to_dev(hw), pcaps);
930 	if (status)
931 		goto err_unroll_sched;
932 
933 	/* Initialize port_info struct with link information */
934 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
935 	if (status)
936 		goto err_unroll_sched;
937 
938 	/* need a valid SW entry point to build a Tx tree */
939 	if (!hw->sw_entry_point_layer) {
940 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
941 		status = ICE_ERR_CFG;
942 		goto err_unroll_sched;
943 	}
944 	INIT_LIST_HEAD(&hw->agg_list);
945 	/* Initialize max burst size */
946 	if (!hw->max_burst_size)
947 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
948 
949 	status = ice_init_fltr_mgmt_struct(hw);
950 	if (status)
951 		goto err_unroll_sched;
952 
953 	/* Get MAC information */
954 	/* A single port can report up to two (LAN and WoL) addresses */
955 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
956 			       sizeof(struct ice_aqc_manage_mac_read_resp),
957 			       GFP_KERNEL);
958 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
959 
960 	if (!mac_buf) {
961 		status = ICE_ERR_NO_MEMORY;
962 		goto err_unroll_fltr_mgmt_struct;
963 	}
964 
965 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
966 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
967 
968 	if (status)
969 		goto err_unroll_fltr_mgmt_struct;
970 	/* enable jumbo frame support at MAC level */
971 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
972 	if (status)
973 		goto err_unroll_fltr_mgmt_struct;
974 	/* Obtain counter base index which would be used by flow director */
975 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
976 	if (status)
977 		goto err_unroll_fltr_mgmt_struct;
978 	status = ice_init_hw_tbls(hw);
979 	if (status)
980 		goto err_unroll_fltr_mgmt_struct;
981 	mutex_init(&hw->tnl_lock);
982 	return 0;
983 
984 err_unroll_fltr_mgmt_struct:
985 	ice_cleanup_fltr_mgmt_struct(hw);
986 err_unroll_sched:
987 	ice_sched_cleanup_all(hw);
988 err_unroll_alloc:
989 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
990 err_unroll_cqinit:
991 	ice_destroy_all_ctrlq(hw);
992 	return status;
993 }
994 
995 /**
996  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
997  * @hw: pointer to the hardware structure
998  *
999  * This should be called only during nominal operation, not as a result of
1000  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1001  * applicable initializations if it fails for any reason.
1002  */
ice_deinit_hw(struct ice_hw * hw)1003 void ice_deinit_hw(struct ice_hw *hw)
1004 {
1005 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1006 	ice_cleanup_fltr_mgmt_struct(hw);
1007 
1008 	ice_sched_cleanup_all(hw);
1009 	ice_sched_clear_agg(hw);
1010 	ice_free_seg(hw);
1011 	ice_free_hw_tbls(hw);
1012 	mutex_destroy(&hw->tnl_lock);
1013 
1014 	if (hw->port_info) {
1015 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1016 		hw->port_info = NULL;
1017 	}
1018 
1019 	/* Attempt to disable FW logging before shutting down control queues */
1020 	ice_cfg_fw_log(hw, false);
1021 	ice_destroy_all_ctrlq(hw);
1022 
1023 	/* Clear VSI contexts if not already cleared */
1024 	ice_clear_all_vsi_ctx(hw);
1025 }
1026 
1027 /**
1028  * ice_check_reset - Check to see if a global reset is complete
1029  * @hw: pointer to the hardware structure
1030  */
ice_check_reset(struct ice_hw * hw)1031 enum ice_status ice_check_reset(struct ice_hw *hw)
1032 {
1033 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1034 
1035 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1036 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1037 	 * Add 1sec for outstanding AQ commands that can take a long time.
1038 	 */
1039 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1040 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1041 
1042 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1043 		mdelay(100);
1044 		reg = rd32(hw, GLGEN_RSTAT);
1045 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1046 			break;
1047 	}
1048 
1049 	if (cnt == grst_timeout) {
1050 		ice_debug(hw, ICE_DBG_INIT,
1051 			  "Global reset polling failed to complete.\n");
1052 		return ICE_ERR_RESET_FAILED;
1053 	}
1054 
1055 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1056 				 GLNVM_ULD_PCIER_DONE_1_M |\
1057 				 GLNVM_ULD_CORER_DONE_M |\
1058 				 GLNVM_ULD_GLOBR_DONE_M |\
1059 				 GLNVM_ULD_POR_DONE_M |\
1060 				 GLNVM_ULD_POR_DONE_1_M |\
1061 				 GLNVM_ULD_PCIER_DONE_2_M)
1062 
1063 	uld_mask = ICE_RESET_DONE_MASK;
1064 
1065 	/* Device is Active; check Global Reset processes are done */
1066 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1067 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1068 		if (reg == uld_mask) {
1069 			ice_debug(hw, ICE_DBG_INIT,
1070 				  "Global reset processes done. %d\n", cnt);
1071 			break;
1072 		}
1073 		mdelay(10);
1074 	}
1075 
1076 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1077 		ice_debug(hw, ICE_DBG_INIT,
1078 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1079 			  reg);
1080 		return ICE_ERR_RESET_FAILED;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * ice_pf_reset - Reset the PF
1088  * @hw: pointer to the hardware structure
1089  *
1090  * If a global reset has been triggered, this function checks
1091  * for its completion and then issues the PF reset
1092  */
ice_pf_reset(struct ice_hw * hw)1093 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1094 {
1095 	u32 cnt, reg;
1096 
1097 	/* If at function entry a global reset was already in progress, i.e.
1098 	 * state is not 'device active' or any of the reset done bits are not
1099 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1100 	 * global reset is done.
1101 	 */
1102 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1103 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1104 		/* poll on global reset currently in progress until done */
1105 		if (ice_check_reset(hw))
1106 			return ICE_ERR_RESET_FAILED;
1107 
1108 		return 0;
1109 	}
1110 
1111 	/* Reset the PF */
1112 	reg = rd32(hw, PFGEN_CTRL);
1113 
1114 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1115 
1116 	/* Wait for the PFR to complete. The wait time is the global config lock
1117 	 * timeout plus the PFR timeout which will account for a possible reset
1118 	 * that is occurring during a download package operation.
1119 	 */
1120 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1121 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1122 		reg = rd32(hw, PFGEN_CTRL);
1123 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1124 			break;
1125 
1126 		mdelay(1);
1127 	}
1128 
1129 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1130 		ice_debug(hw, ICE_DBG_INIT,
1131 			  "PF reset polling failed to complete.\n");
1132 		return ICE_ERR_RESET_FAILED;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  * ice_reset - Perform different types of reset
1140  * @hw: pointer to the hardware structure
1141  * @req: reset request
1142  *
1143  * This function triggers a reset as specified by the req parameter.
1144  *
1145  * Note:
1146  * If anything other than a PF reset is triggered, PXE mode is restored.
1147  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1148  * interface has been restored in the rebuild flow.
1149  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1150 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1151 {
1152 	u32 val = 0;
1153 
1154 	switch (req) {
1155 	case ICE_RESET_PFR:
1156 		return ice_pf_reset(hw);
1157 	case ICE_RESET_CORER:
1158 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1159 		val = GLGEN_RTRIG_CORER_M;
1160 		break;
1161 	case ICE_RESET_GLOBR:
1162 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1163 		val = GLGEN_RTRIG_GLOBR_M;
1164 		break;
1165 	default:
1166 		return ICE_ERR_PARAM;
1167 	}
1168 
1169 	val |= rd32(hw, GLGEN_RTRIG);
1170 	wr32(hw, GLGEN_RTRIG, val);
1171 	ice_flush(hw);
1172 
1173 	/* wait for the FW to be ready */
1174 	return ice_check_reset(hw);
1175 }
1176 
1177 /**
1178  * ice_copy_rxq_ctx_to_hw
1179  * @hw: pointer to the hardware structure
1180  * @ice_rxq_ctx: pointer to the rxq context
1181  * @rxq_index: the index of the Rx queue
1182  *
1183  * Copies rxq context from dense structure to HW register space
1184  */
1185 static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)1186 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1187 {
1188 	u8 i;
1189 
1190 	if (!ice_rxq_ctx)
1191 		return ICE_ERR_BAD_PTR;
1192 
1193 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1194 		return ICE_ERR_PARAM;
1195 
1196 	/* Copy each dword separately to HW */
1197 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1198 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1199 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1200 
1201 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1202 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /* LAN Rx Queue Context */
1209 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1210 	/* Field		Width	LSB */
1211 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1212 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1213 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1214 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1215 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1216 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1217 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1218 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1219 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1220 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1221 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1222 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1223 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1224 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1225 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1226 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1227 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1228 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1229 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1230 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1231 	{ 0 }
1232 };
1233 
1234 /**
1235  * ice_write_rxq_ctx
1236  * @hw: pointer to the hardware structure
1237  * @rlan_ctx: pointer to the rxq context
1238  * @rxq_index: the index of the Rx queue
1239  *
1240  * Converts rxq context from sparse to dense structure and then writes
1241  * it to HW register space and enables the hardware to prefetch descriptors
1242  * instead of only fetching them on demand
1243  */
1244 enum ice_status
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1245 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1246 		  u32 rxq_index)
1247 {
1248 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1249 
1250 	if (!rlan_ctx)
1251 		return ICE_ERR_BAD_PTR;
1252 
1253 	rlan_ctx->prefena = 1;
1254 
1255 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1256 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1257 }
1258 
1259 /* LAN Tx Queue Context */
1260 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1261 				    /* Field			Width	LSB */
1262 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1263 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1264 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1265 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1266 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1267 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1268 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1269 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1270 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1271 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1272 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1273 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1274 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1275 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1276 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1277 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1278 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1279 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1280 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1281 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1282 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1283 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1284 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1285 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1286 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1287 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1288 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1289 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1290 	{ 0 }
1291 };
1292 
1293 /* FW Admin Queue command wrappers */
1294 
1295 /* Software lock/mutex that is meant to be held while the Global Config Lock
1296  * in firmware is acquired by the software to prevent most (but not all) types
1297  * of AQ commands from being sent to FW
1298  */
1299 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1300 
1301 /**
1302  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1303  * @hw: pointer to the HW struct
1304  * @desc: descriptor describing the command
1305  * @buf: buffer to use for indirect commands (NULL for direct commands)
1306  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1307  * @cd: pointer to command details structure
1308  *
1309  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1310  */
1311 enum ice_status
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1312 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1313 		u16 buf_size, struct ice_sq_cd *cd)
1314 {
1315 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1316 	bool lock_acquired = false;
1317 	enum ice_status status;
1318 
1319 	/* When a package download is in process (i.e. when the firmware's
1320 	 * Global Configuration Lock resource is held), only the Download
1321 	 * Package, Get Version, Get Package Info List and Release Resource
1322 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1323 	 * allowed; all others must block until the package download completes
1324 	 * and the Global Config Lock is released.  See also
1325 	 * ice_acquire_global_cfg_lock().
1326 	 */
1327 	switch (le16_to_cpu(desc->opcode)) {
1328 	case ice_aqc_opc_download_pkg:
1329 	case ice_aqc_opc_get_pkg_info_list:
1330 	case ice_aqc_opc_get_ver:
1331 		break;
1332 	case ice_aqc_opc_release_res:
1333 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1334 			break;
1335 		fallthrough;
1336 	default:
1337 		mutex_lock(&ice_global_cfg_lock_sw);
1338 		lock_acquired = true;
1339 		break;
1340 	}
1341 
1342 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1343 	if (lock_acquired)
1344 		mutex_unlock(&ice_global_cfg_lock_sw);
1345 
1346 	return status;
1347 }
1348 
1349 /**
1350  * ice_aq_get_fw_ver
1351  * @hw: pointer to the HW struct
1352  * @cd: pointer to command details structure or NULL
1353  *
1354  * Get the firmware version (0x0001) from the admin queue commands
1355  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1356 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1357 {
1358 	struct ice_aqc_get_ver *resp;
1359 	struct ice_aq_desc desc;
1360 	enum ice_status status;
1361 
1362 	resp = &desc.params.get_ver;
1363 
1364 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1365 
1366 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1367 
1368 	if (!status) {
1369 		hw->fw_branch = resp->fw_branch;
1370 		hw->fw_maj_ver = resp->fw_major;
1371 		hw->fw_min_ver = resp->fw_minor;
1372 		hw->fw_patch = resp->fw_patch;
1373 		hw->fw_build = le32_to_cpu(resp->fw_build);
1374 		hw->api_branch = resp->api_branch;
1375 		hw->api_maj_ver = resp->api_major;
1376 		hw->api_min_ver = resp->api_minor;
1377 		hw->api_patch = resp->api_patch;
1378 	}
1379 
1380 	return status;
1381 }
1382 
1383 /**
1384  * ice_aq_send_driver_ver
1385  * @hw: pointer to the HW struct
1386  * @dv: driver's major, minor version
1387  * @cd: pointer to command details structure or NULL
1388  *
1389  * Send the driver version (0x0002) to the firmware
1390  */
1391 enum ice_status
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1392 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1393 		       struct ice_sq_cd *cd)
1394 {
1395 	struct ice_aqc_driver_ver *cmd;
1396 	struct ice_aq_desc desc;
1397 	u16 len;
1398 
1399 	cmd = &desc.params.driver_ver;
1400 
1401 	if (!dv)
1402 		return ICE_ERR_PARAM;
1403 
1404 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1405 
1406 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1407 	cmd->major_ver = dv->major_ver;
1408 	cmd->minor_ver = dv->minor_ver;
1409 	cmd->build_ver = dv->build_ver;
1410 	cmd->subbuild_ver = dv->subbuild_ver;
1411 
1412 	len = 0;
1413 	while (len < sizeof(dv->driver_string) &&
1414 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1415 		len++;
1416 
1417 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1418 }
1419 
1420 /**
1421  * ice_aq_q_shutdown
1422  * @hw: pointer to the HW struct
1423  * @unloading: is the driver unloading itself
1424  *
1425  * Tell the Firmware that we're shutting down the AdminQ and whether
1426  * or not the driver is unloading as well (0x0003).
1427  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1428 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1429 {
1430 	struct ice_aqc_q_shutdown *cmd;
1431 	struct ice_aq_desc desc;
1432 
1433 	cmd = &desc.params.q_shutdown;
1434 
1435 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1436 
1437 	if (unloading)
1438 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1439 
1440 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1441 }
1442 
1443 /**
1444  * ice_aq_req_res
1445  * @hw: pointer to the HW struct
1446  * @res: resource ID
1447  * @access: access type
1448  * @sdp_number: resource number
1449  * @timeout: the maximum time in ms that the driver may hold the resource
1450  * @cd: pointer to command details structure or NULL
1451  *
1452  * Requests common resource using the admin queue commands (0x0008).
1453  * When attempting to acquire the Global Config Lock, the driver can
1454  * learn of three states:
1455  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1456  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1457  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1458  *                          successfully downloaded the package; the driver does
1459  *                          not have to download the package and can continue
1460  *                          loading
1461  *
1462  * Note that if the caller is in an acquire lock, perform action, release lock
1463  * phase of operation, it is possible that the FW may detect a timeout and issue
1464  * a CORER. In this case, the driver will receive a CORER interrupt and will
1465  * have to determine its cause. The calling thread that is handling this flow
1466  * will likely get an error propagated back to it indicating the Download
1467  * Package, Update Package or the Release Resource AQ commands timed out.
1468  */
1469 static enum ice_status
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1470 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1471 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1472 	       struct ice_sq_cd *cd)
1473 {
1474 	struct ice_aqc_req_res *cmd_resp;
1475 	struct ice_aq_desc desc;
1476 	enum ice_status status;
1477 
1478 	cmd_resp = &desc.params.res_owner;
1479 
1480 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1481 
1482 	cmd_resp->res_id = cpu_to_le16(res);
1483 	cmd_resp->access_type = cpu_to_le16(access);
1484 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1485 	cmd_resp->timeout = cpu_to_le32(*timeout);
1486 	*timeout = 0;
1487 
1488 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1489 
1490 	/* The completion specifies the maximum time in ms that the driver
1491 	 * may hold the resource in the Timeout field.
1492 	 */
1493 
1494 	/* Global config lock response utilizes an additional status field.
1495 	 *
1496 	 * If the Global config lock resource is held by some other driver, the
1497 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1498 	 * and the timeout field indicates the maximum time the current owner
1499 	 * of the resource has to free it.
1500 	 */
1501 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1502 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1503 			*timeout = le32_to_cpu(cmd_resp->timeout);
1504 			return 0;
1505 		} else if (le16_to_cpu(cmd_resp->status) ==
1506 			   ICE_AQ_RES_GLBL_IN_PROG) {
1507 			*timeout = le32_to_cpu(cmd_resp->timeout);
1508 			return ICE_ERR_AQ_ERROR;
1509 		} else if (le16_to_cpu(cmd_resp->status) ==
1510 			   ICE_AQ_RES_GLBL_DONE) {
1511 			return ICE_ERR_AQ_NO_WORK;
1512 		}
1513 
1514 		/* invalid FW response, force a timeout immediately */
1515 		*timeout = 0;
1516 		return ICE_ERR_AQ_ERROR;
1517 	}
1518 
1519 	/* If the resource is held by some other driver, the command completes
1520 	 * with a busy return value and the timeout field indicates the maximum
1521 	 * time the current owner of the resource has to free it.
1522 	 */
1523 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1524 		*timeout = le32_to_cpu(cmd_resp->timeout);
1525 
1526 	return status;
1527 }
1528 
1529 /**
1530  * ice_aq_release_res
1531  * @hw: pointer to the HW struct
1532  * @res: resource ID
1533  * @sdp_number: resource number
1534  * @cd: pointer to command details structure or NULL
1535  *
1536  * release common resource using the admin queue commands (0x0009)
1537  */
1538 static enum ice_status
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1539 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1540 		   struct ice_sq_cd *cd)
1541 {
1542 	struct ice_aqc_req_res *cmd;
1543 	struct ice_aq_desc desc;
1544 
1545 	cmd = &desc.params.res_owner;
1546 
1547 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1548 
1549 	cmd->res_id = cpu_to_le16(res);
1550 	cmd->res_number = cpu_to_le32(sdp_number);
1551 
1552 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1553 }
1554 
1555 /**
1556  * ice_acquire_res
1557  * @hw: pointer to the HW structure
1558  * @res: resource ID
1559  * @access: access type (read or write)
1560  * @timeout: timeout in milliseconds
1561  *
1562  * This function will attempt to acquire the ownership of a resource.
1563  */
1564 enum ice_status
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1565 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1566 		enum ice_aq_res_access_type access, u32 timeout)
1567 {
1568 #define ICE_RES_POLLING_DELAY_MS	10
1569 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1570 	u32 time_left = timeout;
1571 	enum ice_status status;
1572 
1573 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1574 
1575 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1576 	 * previously acquired the resource and performed any necessary updates;
1577 	 * in this case the caller does not obtain the resource and has no
1578 	 * further work to do.
1579 	 */
1580 	if (status == ICE_ERR_AQ_NO_WORK)
1581 		goto ice_acquire_res_exit;
1582 
1583 	if (status)
1584 		ice_debug(hw, ICE_DBG_RES,
1585 			  "resource %d acquire type %d failed.\n", res, access);
1586 
1587 	/* If necessary, poll until the current lock owner timeouts */
1588 	timeout = time_left;
1589 	while (status && timeout && time_left) {
1590 		mdelay(delay);
1591 		timeout = (timeout > delay) ? timeout - delay : 0;
1592 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1593 
1594 		if (status == ICE_ERR_AQ_NO_WORK)
1595 			/* lock free, but no work to do */
1596 			break;
1597 
1598 		if (!status)
1599 			/* lock acquired */
1600 			break;
1601 	}
1602 	if (status && status != ICE_ERR_AQ_NO_WORK)
1603 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1604 
1605 ice_acquire_res_exit:
1606 	if (status == ICE_ERR_AQ_NO_WORK) {
1607 		if (access == ICE_RES_WRITE)
1608 			ice_debug(hw, ICE_DBG_RES,
1609 				  "resource indicates no work to do.\n");
1610 		else
1611 			ice_debug(hw, ICE_DBG_RES,
1612 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1613 	}
1614 	return status;
1615 }
1616 
1617 /**
1618  * ice_release_res
1619  * @hw: pointer to the HW structure
1620  * @res: resource ID
1621  *
1622  * This function will release a resource using the proper Admin Command.
1623  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1624 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1625 {
1626 	enum ice_status status;
1627 	u32 total_delay = 0;
1628 
1629 	status = ice_aq_release_res(hw, res, 0, NULL);
1630 
1631 	/* there are some rare cases when trying to release the resource
1632 	 * results in an admin queue timeout, so handle them correctly
1633 	 */
1634 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1635 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1636 		mdelay(1);
1637 		status = ice_aq_release_res(hw, res, 0, NULL);
1638 		total_delay++;
1639 	}
1640 }
1641 
1642 /**
1643  * ice_aq_alloc_free_res - command to allocate/free resources
1644  * @hw: pointer to the HW struct
1645  * @num_entries: number of resource entries in buffer
1646  * @buf: Indirect buffer to hold data parameters and response
1647  * @buf_size: size of buffer for indirect commands
1648  * @opc: pass in the command opcode
1649  * @cd: pointer to command details structure or NULL
1650  *
1651  * Helper function to allocate/free resources using the admin queue commands
1652  */
1653 enum ice_status
ice_aq_alloc_free_res(struct ice_hw * hw,u16 num_entries,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1654 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1655 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1656 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1657 {
1658 	struct ice_aqc_alloc_free_res_cmd *cmd;
1659 	struct ice_aq_desc desc;
1660 
1661 	cmd = &desc.params.sw_res_ctrl;
1662 
1663 	if (!buf)
1664 		return ICE_ERR_PARAM;
1665 
1666 	if (buf_size < (num_entries * sizeof(buf->elem[0])))
1667 		return ICE_ERR_PARAM;
1668 
1669 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1670 
1671 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1672 
1673 	cmd->num_entries = cpu_to_le16(num_entries);
1674 
1675 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1676 }
1677 
1678 /**
1679  * ice_alloc_hw_res - allocate resource
1680  * @hw: pointer to the HW struct
1681  * @type: type of resource
1682  * @num: number of resources to allocate
1683  * @btm: allocate from bottom
1684  * @res: pointer to array that will receive the resources
1685  */
1686 enum ice_status
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)1687 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1688 {
1689 	struct ice_aqc_alloc_free_res_elem *buf;
1690 	enum ice_status status;
1691 	u16 buf_len;
1692 
1693 	buf_len = struct_size(buf, elem, num);
1694 	buf = kzalloc(buf_len, GFP_KERNEL);
1695 	if (!buf)
1696 		return ICE_ERR_NO_MEMORY;
1697 
1698 	/* Prepare buffer to allocate resource. */
1699 	buf->num_elems = cpu_to_le16(num);
1700 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1701 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1702 	if (btm)
1703 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1704 
1705 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1706 				       ice_aqc_opc_alloc_res, NULL);
1707 	if (status)
1708 		goto ice_alloc_res_exit;
1709 
1710 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1711 
1712 ice_alloc_res_exit:
1713 	kfree(buf);
1714 	return status;
1715 }
1716 
1717 /**
1718  * ice_free_hw_res - free allocated HW resource
1719  * @hw: pointer to the HW struct
1720  * @type: type of resource to free
1721  * @num: number of resources
1722  * @res: pointer to array that contains the resources to free
1723  */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)1724 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1725 {
1726 	struct ice_aqc_alloc_free_res_elem *buf;
1727 	enum ice_status status;
1728 	u16 buf_len;
1729 
1730 	buf_len = struct_size(buf, elem, num);
1731 	buf = kzalloc(buf_len, GFP_KERNEL);
1732 	if (!buf)
1733 		return ICE_ERR_NO_MEMORY;
1734 
1735 	/* Prepare buffer to free resource. */
1736 	buf->num_elems = cpu_to_le16(num);
1737 	buf->res_type = cpu_to_le16(type);
1738 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1739 
1740 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1741 				       ice_aqc_opc_free_res, NULL);
1742 	if (status)
1743 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1744 
1745 	kfree(buf);
1746 	return status;
1747 }
1748 
1749 /**
1750  * ice_get_num_per_func - determine number of resources per PF
1751  * @hw: pointer to the HW structure
1752  * @max: value to be evenly split between each PF
1753  *
1754  * Determine the number of valid functions by going through the bitmap returned
1755  * from parsing capabilities and use this to calculate the number of resources
1756  * per PF based on the max value passed in.
1757  */
ice_get_num_per_func(struct ice_hw * hw,u32 max)1758 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1759 {
1760 	u8 funcs;
1761 
1762 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1763 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1764 			 ICE_CAPS_VALID_FUNCS_M);
1765 
1766 	if (!funcs)
1767 		return 0;
1768 
1769 	return max / funcs;
1770 }
1771 
1772 /**
1773  * ice_parse_common_caps - parse common device/function capabilities
1774  * @hw: pointer to the HW struct
1775  * @caps: pointer to common capabilities structure
1776  * @elem: the capability element to parse
1777  * @prefix: message prefix for tracing capabilities
1778  *
1779  * Given a capability element, extract relevant details into the common
1780  * capability structure.
1781  *
1782  * Returns: true if the capability matches one of the common capability ids,
1783  * false otherwise.
1784  */
1785 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)1786 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1787 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1788 {
1789 	u32 logical_id = le32_to_cpu(elem->logical_id);
1790 	u32 phys_id = le32_to_cpu(elem->phys_id);
1791 	u32 number = le32_to_cpu(elem->number);
1792 	u16 cap = le16_to_cpu(elem->cap);
1793 	bool found = true;
1794 
1795 	switch (cap) {
1796 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1797 		caps->valid_functions = number;
1798 		ice_debug(hw, ICE_DBG_INIT,
1799 			  "%s: valid_functions (bitmap) = %d\n", prefix,
1800 			  caps->valid_functions);
1801 		break;
1802 	case ICE_AQC_CAPS_SRIOV:
1803 		caps->sr_iov_1_1 = (number == 1);
1804 		ice_debug(hw, ICE_DBG_INIT,
1805 			  "%s: sr_iov_1_1 = %d\n", prefix,
1806 			  caps->sr_iov_1_1);
1807 		break;
1808 	case ICE_AQC_CAPS_DCB:
1809 		caps->dcb = (number == 1);
1810 		caps->active_tc_bitmap = logical_id;
1811 		caps->maxtc = phys_id;
1812 		ice_debug(hw, ICE_DBG_INIT,
1813 			  "%s: dcb = %d\n", prefix, caps->dcb);
1814 		ice_debug(hw, ICE_DBG_INIT,
1815 			  "%s: active_tc_bitmap = %d\n", prefix,
1816 			  caps->active_tc_bitmap);
1817 		ice_debug(hw, ICE_DBG_INIT,
1818 			  "%s: maxtc = %d\n", prefix, caps->maxtc);
1819 		break;
1820 	case ICE_AQC_CAPS_RSS:
1821 		caps->rss_table_size = number;
1822 		caps->rss_table_entry_width = logical_id;
1823 		ice_debug(hw, ICE_DBG_INIT,
1824 			  "%s: rss_table_size = %d\n", prefix,
1825 			  caps->rss_table_size);
1826 		ice_debug(hw, ICE_DBG_INIT,
1827 			  "%s: rss_table_entry_width = %d\n", prefix,
1828 			  caps->rss_table_entry_width);
1829 		break;
1830 	case ICE_AQC_CAPS_RXQS:
1831 		caps->num_rxq = number;
1832 		caps->rxq_first_id = phys_id;
1833 		ice_debug(hw, ICE_DBG_INIT,
1834 			  "%s: num_rxq = %d\n", prefix,
1835 			  caps->num_rxq);
1836 		ice_debug(hw, ICE_DBG_INIT,
1837 			  "%s: rxq_first_id = %d\n", prefix,
1838 			  caps->rxq_first_id);
1839 		break;
1840 	case ICE_AQC_CAPS_TXQS:
1841 		caps->num_txq = number;
1842 		caps->txq_first_id = phys_id;
1843 		ice_debug(hw, ICE_DBG_INIT,
1844 			  "%s: num_txq = %d\n", prefix,
1845 			  caps->num_txq);
1846 		ice_debug(hw, ICE_DBG_INIT,
1847 			  "%s: txq_first_id = %d\n", prefix,
1848 			  caps->txq_first_id);
1849 		break;
1850 	case ICE_AQC_CAPS_MSIX:
1851 		caps->num_msix_vectors = number;
1852 		caps->msix_vector_first_id = phys_id;
1853 		ice_debug(hw, ICE_DBG_INIT,
1854 			  "%s: num_msix_vectors = %d\n", prefix,
1855 			  caps->num_msix_vectors);
1856 		ice_debug(hw, ICE_DBG_INIT,
1857 			  "%s: msix_vector_first_id = %d\n", prefix,
1858 			  caps->msix_vector_first_id);
1859 		break;
1860 	case ICE_AQC_CAPS_PENDING_NVM_VER:
1861 		caps->nvm_update_pending_nvm = true;
1862 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1863 		break;
1864 	case ICE_AQC_CAPS_PENDING_OROM_VER:
1865 		caps->nvm_update_pending_orom = true;
1866 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
1867 		break;
1868 	case ICE_AQC_CAPS_PENDING_NET_VER:
1869 		caps->nvm_update_pending_netlist = true;
1870 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
1871 		break;
1872 	case ICE_AQC_CAPS_NVM_MGMT:
1873 		caps->nvm_unified_update =
1874 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1875 			true : false;
1876 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1877 			  caps->nvm_unified_update);
1878 		break;
1879 	case ICE_AQC_CAPS_MAX_MTU:
1880 		caps->max_mtu = number;
1881 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1882 			  prefix, caps->max_mtu);
1883 		break;
1884 	default:
1885 		/* Not one of the recognized common capabilities */
1886 		found = false;
1887 	}
1888 
1889 	return found;
1890 }
1891 
1892 /**
1893  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1894  * @hw: pointer to the HW structure
1895  * @caps: pointer to capabilities structure to fix
1896  *
1897  * Re-calculate the capabilities that are dependent on the number of physical
1898  * ports; i.e. some features are not supported or function differently on
1899  * devices with more than 4 ports.
1900  */
1901 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)1902 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1903 {
1904 	/* This assumes device capabilities are always scanned before function
1905 	 * capabilities during the initialization flow.
1906 	 */
1907 	if (hw->dev_caps.num_funcs > 4) {
1908 		/* Max 4 TCs per port */
1909 		caps->maxtc = 4;
1910 		ice_debug(hw, ICE_DBG_INIT,
1911 			  "reducing maxtc to %d (based on #ports)\n",
1912 			  caps->maxtc);
1913 	}
1914 }
1915 
1916 /**
1917  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1918  * @hw: pointer to the HW struct
1919  * @func_p: pointer to function capabilities structure
1920  * @cap: pointer to the capability element to parse
1921  *
1922  * Extract function capabilities for ICE_AQC_CAPS_VF.
1923  */
1924 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)1925 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1926 		       struct ice_aqc_list_caps_elem *cap)
1927 {
1928 	u32 logical_id = le32_to_cpu(cap->logical_id);
1929 	u32 number = le32_to_cpu(cap->number);
1930 
1931 	func_p->num_allocd_vfs = number;
1932 	func_p->vf_base_id = logical_id;
1933 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1934 		  func_p->num_allocd_vfs);
1935 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1936 		  func_p->vf_base_id);
1937 }
1938 
1939 /**
1940  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
1941  * @hw: pointer to the HW struct
1942  * @func_p: pointer to function capabilities structure
1943  * @cap: pointer to the capability element to parse
1944  *
1945  * Extract function capabilities for ICE_AQC_CAPS_VSI.
1946  */
1947 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)1948 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1949 			struct ice_aqc_list_caps_elem *cap)
1950 {
1951 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
1952 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
1953 		  le32_to_cpu(cap->number));
1954 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
1955 		  func_p->guar_num_vsi);
1956 }
1957 
1958 /**
1959  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
1960  * @hw: pointer to the HW struct
1961  * @func_p: pointer to function capabilities structure
1962  *
1963  * Extract function capabilities for ICE_AQC_CAPS_FD.
1964  */
1965 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)1966 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
1967 {
1968 	u32 reg_val, val;
1969 
1970 	reg_val = rd32(hw, GLQF_FD_SIZE);
1971 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1972 		GLQF_FD_SIZE_FD_GSIZE_S;
1973 	func_p->fd_fltr_guar =
1974 		ice_get_num_per_func(hw, val);
1975 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1976 		GLQF_FD_SIZE_FD_BSIZE_S;
1977 	func_p->fd_fltr_best_effort = val;
1978 
1979 	ice_debug(hw, ICE_DBG_INIT,
1980 		  "func caps: fd_fltr_guar = %d\n",
1981 		  func_p->fd_fltr_guar);
1982 	ice_debug(hw, ICE_DBG_INIT,
1983 		  "func caps: fd_fltr_best_effort = %d\n",
1984 		  func_p->fd_fltr_best_effort);
1985 }
1986 
1987 /**
1988  * ice_parse_func_caps - Parse function capabilities
1989  * @hw: pointer to the HW struct
1990  * @func_p: pointer to function capabilities structure
1991  * @buf: buffer containing the function capability records
1992  * @cap_count: the number of capabilities
1993  *
1994  * Helper function to parse function (0x000A) capabilities list. For
1995  * capabilities shared between device and function, this relies on
1996  * ice_parse_common_caps.
1997  *
1998  * Loop through the list of provided capabilities and extract the relevant
1999  * data into the function capabilities structured.
2000  */
2001 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2002 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2003 		    void *buf, u32 cap_count)
2004 {
2005 	struct ice_aqc_list_caps_elem *cap_resp;
2006 	u32 i;
2007 
2008 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2009 
2010 	memset(func_p, 0, sizeof(*func_p));
2011 
2012 	for (i = 0; i < cap_count; i++) {
2013 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2014 		bool found;
2015 
2016 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2017 					      &cap_resp[i], "func caps");
2018 
2019 		switch (cap) {
2020 		case ICE_AQC_CAPS_VF:
2021 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2022 			break;
2023 		case ICE_AQC_CAPS_VSI:
2024 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2025 			break;
2026 		case ICE_AQC_CAPS_FD:
2027 			ice_parse_fdir_func_caps(hw, func_p);
2028 			break;
2029 		default:
2030 			/* Don't list common capabilities as unknown */
2031 			if (!found)
2032 				ice_debug(hw, ICE_DBG_INIT,
2033 					  "func caps: unknown capability[%d]: 0x%x\n",
2034 					  i, cap);
2035 			break;
2036 		}
2037 	}
2038 
2039 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2040 }
2041 
2042 /**
2043  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2044  * @hw: pointer to the HW struct
2045  * @dev_p: pointer to device capabilities structure
2046  * @cap: capability element to parse
2047  *
2048  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2049  */
2050 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2051 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2052 			      struct ice_aqc_list_caps_elem *cap)
2053 {
2054 	u32 number = le32_to_cpu(cap->number);
2055 
2056 	dev_p->num_funcs = hweight32(number);
2057 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2058 		  dev_p->num_funcs);
2059 }
2060 
2061 /**
2062  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2063  * @hw: pointer to the HW struct
2064  * @dev_p: pointer to device capabilities structure
2065  * @cap: capability element to parse
2066  *
2067  * Parse ICE_AQC_CAPS_VF for device capabilities.
2068  */
2069 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2070 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2071 		      struct ice_aqc_list_caps_elem *cap)
2072 {
2073 	u32 number = le32_to_cpu(cap->number);
2074 
2075 	dev_p->num_vfs_exposed = number;
2076 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2077 		  dev_p->num_vfs_exposed);
2078 }
2079 
2080 /**
2081  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2082  * @hw: pointer to the HW struct
2083  * @dev_p: pointer to device capabilities structure
2084  * @cap: capability element to parse
2085  *
2086  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2087  */
2088 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2089 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2090 		       struct ice_aqc_list_caps_elem *cap)
2091 {
2092 	u32 number = le32_to_cpu(cap->number);
2093 
2094 	dev_p->num_vsi_allocd_to_host = number;
2095 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2096 		  dev_p->num_vsi_allocd_to_host);
2097 }
2098 
2099 /**
2100  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2101  * @hw: pointer to the HW struct
2102  * @dev_p: pointer to device capabilities structure
2103  * @cap: capability element to parse
2104  *
2105  * Parse ICE_AQC_CAPS_FD for device capabilities.
2106  */
2107 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2108 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2109 			struct ice_aqc_list_caps_elem *cap)
2110 {
2111 	u32 number = le32_to_cpu(cap->number);
2112 
2113 	dev_p->num_flow_director_fltr = number;
2114 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2115 		  dev_p->num_flow_director_fltr);
2116 }
2117 
2118 /**
2119  * ice_parse_dev_caps - Parse device capabilities
2120  * @hw: pointer to the HW struct
2121  * @dev_p: pointer to device capabilities structure
2122  * @buf: buffer containing the device capability records
2123  * @cap_count: the number of capabilities
2124  *
2125  * Helper device to parse device (0x000B) capabilities list. For
2126  * capabilities shared between device and function, this relies on
2127  * ice_parse_common_caps.
2128  *
2129  * Loop through the list of provided capabilities and extract the relevant
2130  * data into the device capabilities structured.
2131  */
2132 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2133 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2134 		   void *buf, u32 cap_count)
2135 {
2136 	struct ice_aqc_list_caps_elem *cap_resp;
2137 	u32 i;
2138 
2139 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2140 
2141 	memset(dev_p, 0, sizeof(*dev_p));
2142 
2143 	for (i = 0; i < cap_count; i++) {
2144 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2145 		bool found;
2146 
2147 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2148 					      &cap_resp[i], "dev caps");
2149 
2150 		switch (cap) {
2151 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2152 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2153 			break;
2154 		case ICE_AQC_CAPS_VF:
2155 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2156 			break;
2157 		case ICE_AQC_CAPS_VSI:
2158 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2159 			break;
2160 		case  ICE_AQC_CAPS_FD:
2161 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2162 			break;
2163 		default:
2164 			/* Don't list common capabilities as unknown */
2165 			if (!found)
2166 				ice_debug(hw, ICE_DBG_INIT,
2167 					  "dev caps: unknown capability[%d]: 0x%x\n",
2168 					  i, cap);
2169 			break;
2170 		}
2171 	}
2172 
2173 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2174 }
2175 
2176 /**
2177  * ice_aq_list_caps - query function/device capabilities
2178  * @hw: pointer to the HW struct
2179  * @buf: a buffer to hold the capabilities
2180  * @buf_size: size of the buffer
2181  * @cap_count: if not NULL, set to the number of capabilities reported
2182  * @opc: capabilities type to discover, device or function
2183  * @cd: pointer to command details structure or NULL
2184  *
2185  * Get the function (0x000A) or device (0x000B) capabilities description from
2186  * firmware and store it in the buffer.
2187  *
2188  * If the cap_count pointer is not NULL, then it is set to the number of
2189  * capabilities firmware will report. Note that if the buffer size is too
2190  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2191  * cap_count will still be updated in this case. It is recommended that the
2192  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2193  * firmware could return) to avoid this.
2194  */
2195 enum ice_status
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2196 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2197 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2198 {
2199 	struct ice_aqc_list_caps *cmd;
2200 	struct ice_aq_desc desc;
2201 	enum ice_status status;
2202 
2203 	cmd = &desc.params.get_cap;
2204 
2205 	if (opc != ice_aqc_opc_list_func_caps &&
2206 	    opc != ice_aqc_opc_list_dev_caps)
2207 		return ICE_ERR_PARAM;
2208 
2209 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2210 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2211 
2212 	if (cap_count)
2213 		*cap_count = le32_to_cpu(cmd->count);
2214 
2215 	return status;
2216 }
2217 
2218 /**
2219  * ice_discover_dev_caps - Read and extract device capabilities
2220  * @hw: pointer to the hardware structure
2221  * @dev_caps: pointer to device capabilities structure
2222  *
2223  * Read the device capabilities and extract them into the dev_caps structure
2224  * for later use.
2225  */
2226 enum ice_status
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2227 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2228 {
2229 	enum ice_status status;
2230 	u32 cap_count = 0;
2231 	void *cbuf;
2232 
2233 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2234 	if (!cbuf)
2235 		return ICE_ERR_NO_MEMORY;
2236 
2237 	/* Although the driver doesn't know the number of capabilities the
2238 	 * device will return, we can simply send a 4KB buffer, the maximum
2239 	 * possible size that firmware can return.
2240 	 */
2241 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2242 
2243 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2244 				  ice_aqc_opc_list_dev_caps, NULL);
2245 	if (!status)
2246 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2247 	kfree(cbuf);
2248 
2249 	return status;
2250 }
2251 
2252 /**
2253  * ice_discover_func_caps - Read and extract function capabilities
2254  * @hw: pointer to the hardware structure
2255  * @func_caps: pointer to function capabilities structure
2256  *
2257  * Read the function capabilities and extract them into the func_caps structure
2258  * for later use.
2259  */
2260 static enum ice_status
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2261 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2262 {
2263 	enum ice_status status;
2264 	u32 cap_count = 0;
2265 	void *cbuf;
2266 
2267 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2268 	if (!cbuf)
2269 		return ICE_ERR_NO_MEMORY;
2270 
2271 	/* Although the driver doesn't know the number of capabilities the
2272 	 * device will return, we can simply send a 4KB buffer, the maximum
2273 	 * possible size that firmware can return.
2274 	 */
2275 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2276 
2277 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2278 				  ice_aqc_opc_list_func_caps, NULL);
2279 	if (!status)
2280 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2281 	kfree(cbuf);
2282 
2283 	return status;
2284 }
2285 
2286 /**
2287  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2288  * @hw: pointer to the hardware structure
2289  */
ice_set_safe_mode_caps(struct ice_hw * hw)2290 void ice_set_safe_mode_caps(struct ice_hw *hw)
2291 {
2292 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2293 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2294 	struct ice_hw_common_caps cached_caps;
2295 	u32 num_funcs;
2296 
2297 	/* cache some func_caps values that should be restored after memset */
2298 	cached_caps = func_caps->common_cap;
2299 
2300 	/* unset func capabilities */
2301 	memset(func_caps, 0, sizeof(*func_caps));
2302 
2303 #define ICE_RESTORE_FUNC_CAP(name) \
2304 	func_caps->common_cap.name = cached_caps.name
2305 
2306 	/* restore cached values */
2307 	ICE_RESTORE_FUNC_CAP(valid_functions);
2308 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2309 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2310 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2311 	ICE_RESTORE_FUNC_CAP(max_mtu);
2312 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2313 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2314 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2315 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2316 
2317 	/* one Tx and one Rx queue in safe mode */
2318 	func_caps->common_cap.num_rxq = 1;
2319 	func_caps->common_cap.num_txq = 1;
2320 
2321 	/* two MSIX vectors, one for traffic and one for misc causes */
2322 	func_caps->common_cap.num_msix_vectors = 2;
2323 	func_caps->guar_num_vsi = 1;
2324 
2325 	/* cache some dev_caps values that should be restored after memset */
2326 	cached_caps = dev_caps->common_cap;
2327 	num_funcs = dev_caps->num_funcs;
2328 
2329 	/* unset dev capabilities */
2330 	memset(dev_caps, 0, sizeof(*dev_caps));
2331 
2332 #define ICE_RESTORE_DEV_CAP(name) \
2333 	dev_caps->common_cap.name = cached_caps.name
2334 
2335 	/* restore cached values */
2336 	ICE_RESTORE_DEV_CAP(valid_functions);
2337 	ICE_RESTORE_DEV_CAP(txq_first_id);
2338 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2339 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2340 	ICE_RESTORE_DEV_CAP(max_mtu);
2341 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2342 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2343 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2344 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2345 	dev_caps->num_funcs = num_funcs;
2346 
2347 	/* one Tx and one Rx queue per function in safe mode */
2348 	dev_caps->common_cap.num_rxq = num_funcs;
2349 	dev_caps->common_cap.num_txq = num_funcs;
2350 
2351 	/* two MSIX vectors per function */
2352 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2353 }
2354 
2355 /**
2356  * ice_get_caps - get info about the HW
2357  * @hw: pointer to the hardware structure
2358  */
ice_get_caps(struct ice_hw * hw)2359 enum ice_status ice_get_caps(struct ice_hw *hw)
2360 {
2361 	enum ice_status status;
2362 
2363 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2364 	if (status)
2365 		return status;
2366 
2367 	return ice_discover_func_caps(hw, &hw->func_caps);
2368 }
2369 
2370 /**
2371  * ice_aq_manage_mac_write - manage MAC address write command
2372  * @hw: pointer to the HW struct
2373  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2374  * @flags: flags to control write behavior
2375  * @cd: pointer to command details structure or NULL
2376  *
2377  * This function is used to write MAC address to the NVM (0x0108).
2378  */
2379 enum ice_status
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)2380 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2381 			struct ice_sq_cd *cd)
2382 {
2383 	struct ice_aqc_manage_mac_write *cmd;
2384 	struct ice_aq_desc desc;
2385 
2386 	cmd = &desc.params.mac_write;
2387 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2388 
2389 	cmd->flags = flags;
2390 	ether_addr_copy(cmd->mac_addr, mac_addr);
2391 
2392 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2393 }
2394 
2395 /**
2396  * ice_aq_clear_pxe_mode
2397  * @hw: pointer to the HW struct
2398  *
2399  * Tell the firmware that the driver is taking over from PXE (0x0110).
2400  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)2401 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2402 {
2403 	struct ice_aq_desc desc;
2404 
2405 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2406 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2407 
2408 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2409 }
2410 
2411 /**
2412  * ice_clear_pxe_mode - clear pxe operations mode
2413  * @hw: pointer to the HW struct
2414  *
2415  * Make sure all PXE mode settings are cleared, including things
2416  * like descriptor fetch/write-back mode.
2417  */
ice_clear_pxe_mode(struct ice_hw * hw)2418 void ice_clear_pxe_mode(struct ice_hw *hw)
2419 {
2420 	if (ice_check_sq_alive(hw, &hw->adminq))
2421 		ice_aq_clear_pxe_mode(hw);
2422 }
2423 
2424 /**
2425  * ice_get_link_speed_based_on_phy_type - returns link speed
2426  * @phy_type_low: lower part of phy_type
2427  * @phy_type_high: higher part of phy_type
2428  *
2429  * This helper function will convert an entry in PHY type structure
2430  * [phy_type_low, phy_type_high] to its corresponding link speed.
2431  * Note: In the structure of [phy_type_low, phy_type_high], there should
2432  * be one bit set, as this function will convert one PHY type to its
2433  * speed.
2434  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2435  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2436  */
2437 static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)2438 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2439 {
2440 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2441 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2442 
2443 	switch (phy_type_low) {
2444 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2445 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2446 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2447 		break;
2448 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2449 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2450 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2451 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2452 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2453 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2454 		break;
2455 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2456 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2457 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2458 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2459 		break;
2460 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2461 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2462 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2463 		break;
2464 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2465 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2466 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2467 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2468 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2469 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2470 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2471 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2472 		break;
2473 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2474 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2475 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2476 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2477 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2478 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2479 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2480 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2481 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2482 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2483 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2484 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2485 		break;
2486 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2487 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2488 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2489 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2490 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2491 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2492 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2493 		break;
2494 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2495 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2496 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2497 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2498 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2499 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2500 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2501 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2502 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2503 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2504 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2505 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2506 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2507 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2508 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2509 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2510 		break;
2511 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2512 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2513 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2514 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2515 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2516 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2517 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2518 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2519 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2520 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2521 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2522 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2523 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2524 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2525 		break;
2526 	default:
2527 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2528 		break;
2529 	}
2530 
2531 	switch (phy_type_high) {
2532 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2533 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2534 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2535 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2536 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2537 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2538 		break;
2539 	default:
2540 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2541 		break;
2542 	}
2543 
2544 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2545 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2546 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2547 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2548 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2549 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2550 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2551 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2552 		return speed_phy_type_low;
2553 	else
2554 		return speed_phy_type_high;
2555 }
2556 
2557 /**
2558  * ice_update_phy_type
2559  * @phy_type_low: pointer to the lower part of phy_type
2560  * @phy_type_high: pointer to the higher part of phy_type
2561  * @link_speeds_bitmap: targeted link speeds bitmap
2562  *
2563  * Note: For the link_speeds_bitmap structure, you can check it at
2564  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2565  * link_speeds_bitmap include multiple speeds.
2566  *
2567  * Each entry in this [phy_type_low, phy_type_high] structure will
2568  * present a certain link speed. This helper function will turn on bits
2569  * in [phy_type_low, phy_type_high] structure based on the value of
2570  * link_speeds_bitmap input parameter.
2571  */
2572 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)2573 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2574 		    u16 link_speeds_bitmap)
2575 {
2576 	u64 pt_high;
2577 	u64 pt_low;
2578 	int index;
2579 	u16 speed;
2580 
2581 	/* We first check with low part of phy_type */
2582 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2583 		pt_low = BIT_ULL(index);
2584 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2585 
2586 		if (link_speeds_bitmap & speed)
2587 			*phy_type_low |= BIT_ULL(index);
2588 	}
2589 
2590 	/* We then check with high part of phy_type */
2591 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2592 		pt_high = BIT_ULL(index);
2593 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2594 
2595 		if (link_speeds_bitmap & speed)
2596 			*phy_type_high |= BIT_ULL(index);
2597 	}
2598 }
2599 
2600 /**
2601  * ice_aq_set_phy_cfg
2602  * @hw: pointer to the HW struct
2603  * @pi: port info structure of the interested logical port
2604  * @cfg: structure with PHY configuration data to be set
2605  * @cd: pointer to command details structure or NULL
2606  *
2607  * Set the various PHY configuration parameters supported on the Port.
2608  * One or more of the Set PHY config parameters may be ignored in an MFP
2609  * mode as the PF may not have the privilege to set some of the PHY Config
2610  * parameters. This status will be indicated by the command response (0x0601).
2611  */
2612 enum ice_status
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)2613 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2614 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2615 {
2616 	struct ice_aq_desc desc;
2617 	enum ice_status status;
2618 
2619 	if (!cfg)
2620 		return ICE_ERR_PARAM;
2621 
2622 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2623 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2624 		ice_debug(hw, ICE_DBG_PHY,
2625 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2626 			  cfg->caps);
2627 
2628 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2629 	}
2630 
2631 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2632 	desc.params.set_phy.lport_num = pi->lport;
2633 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2634 
2635 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2636 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2637 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2638 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2639 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2640 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2641 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2642 		  cfg->low_power_ctrl_an);
2643 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2644 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2645 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2646 		  cfg->link_fec_opt);
2647 
2648 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2649 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2650 		status = 0;
2651 
2652 	if (!status)
2653 		pi->phy.curr_user_phy_cfg = *cfg;
2654 
2655 	return status;
2656 }
2657 
2658 /**
2659  * ice_update_link_info - update status of the HW network link
2660  * @pi: port info structure of the interested logical port
2661  */
ice_update_link_info(struct ice_port_info * pi)2662 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2663 {
2664 	struct ice_link_status *li;
2665 	enum ice_status status;
2666 
2667 	if (!pi)
2668 		return ICE_ERR_PARAM;
2669 
2670 	li = &pi->phy.link_info;
2671 
2672 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2673 	if (status)
2674 		return status;
2675 
2676 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2677 		struct ice_aqc_get_phy_caps_data *pcaps;
2678 		struct ice_hw *hw;
2679 
2680 		hw = pi->hw;
2681 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2682 				     GFP_KERNEL);
2683 		if (!pcaps)
2684 			return ICE_ERR_NO_MEMORY;
2685 
2686 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2687 					     pcaps, NULL);
2688 
2689 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2690 	}
2691 
2692 	return status;
2693 }
2694 
2695 /**
2696  * ice_cache_phy_user_req
2697  * @pi: port information structure
2698  * @cache_data: PHY logging data
2699  * @cache_mode: PHY logging mode
2700  *
2701  * Log the user request on (FC, FEC, SPEED) for later use.
2702  */
2703 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)2704 ice_cache_phy_user_req(struct ice_port_info *pi,
2705 		       struct ice_phy_cache_mode_data cache_data,
2706 		       enum ice_phy_cache_mode cache_mode)
2707 {
2708 	if (!pi)
2709 		return;
2710 
2711 	switch (cache_mode) {
2712 	case ICE_FC_MODE:
2713 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2714 		break;
2715 	case ICE_SPEED_MODE:
2716 		pi->phy.curr_user_speed_req =
2717 			cache_data.data.curr_user_speed_req;
2718 		break;
2719 	case ICE_FEC_MODE:
2720 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2721 		break;
2722 	default:
2723 		break;
2724 	}
2725 }
2726 
2727 /**
2728  * ice_caps_to_fc_mode
2729  * @caps: PHY capabilities
2730  *
2731  * Convert PHY FC capabilities to ice FC mode
2732  */
ice_caps_to_fc_mode(u8 caps)2733 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2734 {
2735 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2736 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2737 		return ICE_FC_FULL;
2738 
2739 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2740 		return ICE_FC_TX_PAUSE;
2741 
2742 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2743 		return ICE_FC_RX_PAUSE;
2744 
2745 	return ICE_FC_NONE;
2746 }
2747 
2748 /**
2749  * ice_caps_to_fec_mode
2750  * @caps: PHY capabilities
2751  * @fec_options: Link FEC options
2752  *
2753  * Convert PHY FEC capabilities to ice FEC mode
2754  */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)2755 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2756 {
2757 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2758 		return ICE_FEC_AUTO;
2759 
2760 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2761 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2762 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2763 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2764 		return ICE_FEC_BASER;
2765 
2766 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2767 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2768 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2769 		return ICE_FEC_RS;
2770 
2771 	return ICE_FEC_NONE;
2772 }
2773 
2774 /**
2775  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2776  * @pi: port information structure
2777  * @cfg: PHY configuration data to set FC mode
2778  * @req_mode: FC mode to configure
2779  */
2780 enum ice_status
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)2781 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2782 	       enum ice_fc_mode req_mode)
2783 {
2784 	struct ice_phy_cache_mode_data cache_data;
2785 	u8 pause_mask = 0x0;
2786 
2787 	if (!pi || !cfg)
2788 		return ICE_ERR_BAD_PTR;
2789 
2790 	switch (req_mode) {
2791 	case ICE_FC_FULL:
2792 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2793 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2794 		break;
2795 	case ICE_FC_RX_PAUSE:
2796 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2797 		break;
2798 	case ICE_FC_TX_PAUSE:
2799 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2800 		break;
2801 	default:
2802 		break;
2803 	}
2804 
2805 	/* clear the old pause settings */
2806 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2807 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2808 
2809 	/* set the new capabilities */
2810 	cfg->caps |= pause_mask;
2811 
2812 	/* Cache user FC request */
2813 	cache_data.data.curr_user_fc_req = req_mode;
2814 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2815 
2816 	return 0;
2817 }
2818 
2819 /**
2820  * ice_set_fc
2821  * @pi: port information structure
2822  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2823  * @ena_auto_link_update: enable automatic link update
2824  *
2825  * Set the requested flow control mode.
2826  */
2827 enum ice_status
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)2828 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2829 {
2830 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2831 	struct ice_aqc_get_phy_caps_data *pcaps;
2832 	enum ice_status status;
2833 	struct ice_hw *hw;
2834 
2835 	if (!pi || !aq_failures)
2836 		return ICE_ERR_BAD_PTR;
2837 
2838 	*aq_failures = 0;
2839 	hw = pi->hw;
2840 
2841 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2842 	if (!pcaps)
2843 		return ICE_ERR_NO_MEMORY;
2844 
2845 	/* Get the current PHY config */
2846 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
2847 				     pcaps, NULL);
2848 	if (status) {
2849 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2850 		goto out;
2851 	}
2852 
2853 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2854 
2855 	/* Configure the set PHY data */
2856 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2857 	if (status)
2858 		goto out;
2859 
2860 	/* If the capabilities have changed, then set the new config */
2861 	if (cfg.caps != pcaps->caps) {
2862 		int retry_count, retry_max = 10;
2863 
2864 		/* Auto restart link so settings take effect */
2865 		if (ena_auto_link_update)
2866 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2867 
2868 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2869 		if (status) {
2870 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2871 			goto out;
2872 		}
2873 
2874 		/* Update the link info
2875 		 * It sometimes takes a really long time for link to
2876 		 * come back from the atomic reset. Thus, we wait a
2877 		 * little bit.
2878 		 */
2879 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2880 			status = ice_update_link_info(pi);
2881 
2882 			if (!status)
2883 				break;
2884 
2885 			mdelay(100);
2886 		}
2887 
2888 		if (status)
2889 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2890 	}
2891 
2892 out:
2893 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2894 	return status;
2895 }
2896 
2897 /**
2898  * ice_phy_caps_equals_cfg
2899  * @phy_caps: PHY capabilities
2900  * @phy_cfg: PHY configuration
2901  *
2902  * Helper function to determine if PHY capabilities matches PHY
2903  * configuration
2904  */
2905 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)2906 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2907 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
2908 {
2909 	u8 caps_mask, cfg_mask;
2910 
2911 	if (!phy_caps || !phy_cfg)
2912 		return false;
2913 
2914 	/* These bits are not common between capabilities and configuration.
2915 	 * Do not use them to determine equality.
2916 	 */
2917 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2918 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
2919 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2920 
2921 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2922 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2923 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2924 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2925 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
2926 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
2927 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2928 		return false;
2929 
2930 	return true;
2931 }
2932 
2933 /**
2934  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2935  * @pi: port information structure
2936  * @caps: PHY ability structure to copy date from
2937  * @cfg: PHY configuration structure to copy data to
2938  *
2939  * Helper function to copy AQC PHY get ability data to PHY set configuration
2940  * data structure
2941  */
2942 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)2943 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
2944 			 struct ice_aqc_get_phy_caps_data *caps,
2945 			 struct ice_aqc_set_phy_cfg_data *cfg)
2946 {
2947 	if (!pi || !caps || !cfg)
2948 		return;
2949 
2950 	memset(cfg, 0, sizeof(*cfg));
2951 	cfg->phy_type_low = caps->phy_type_low;
2952 	cfg->phy_type_high = caps->phy_type_high;
2953 	cfg->caps = caps->caps;
2954 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
2955 	cfg->eee_cap = caps->eee_cap;
2956 	cfg->eeer_value = caps->eeer_value;
2957 	cfg->link_fec_opt = caps->link_fec_options;
2958 	cfg->module_compliance_enforcement =
2959 		caps->module_compliance_enforcement;
2960 
2961 	if (ice_fw_supports_link_override(pi->hw)) {
2962 		struct ice_link_default_override_tlv tlv;
2963 
2964 		if (ice_get_link_default_override(&tlv, pi))
2965 			return;
2966 
2967 		if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
2968 			cfg->module_compliance_enforcement |=
2969 				ICE_LINK_OVERRIDE_STRICT_MODE;
2970 	}
2971 }
2972 
2973 /**
2974  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2975  * @pi: port information structure
2976  * @cfg: PHY configuration data to set FEC mode
2977  * @fec: FEC mode to configure
2978  */
2979 enum ice_status
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)2980 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2981 		enum ice_fec_mode fec)
2982 {
2983 	struct ice_aqc_get_phy_caps_data *pcaps;
2984 	enum ice_status status;
2985 
2986 	if (!pi || !cfg)
2987 		return ICE_ERR_BAD_PTR;
2988 
2989 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2990 	if (!pcaps)
2991 		return ICE_ERR_NO_MEMORY;
2992 
2993 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
2994 				     NULL);
2995 	if (status)
2996 		goto out;
2997 
2998 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2999 	cfg->link_fec_opt = pcaps->link_fec_options;
3000 
3001 	switch (fec) {
3002 	case ICE_FEC_BASER:
3003 		/* Clear RS bits, and AND BASE-R ability
3004 		 * bits and OR request bits.
3005 		 */
3006 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3007 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3008 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3009 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3010 		break;
3011 	case ICE_FEC_RS:
3012 		/* Clear BASE-R bits, and AND RS ability
3013 		 * bits and OR request bits.
3014 		 */
3015 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3016 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3017 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3018 		break;
3019 	case ICE_FEC_NONE:
3020 		/* Clear all FEC option bits. */
3021 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3022 		break;
3023 	case ICE_FEC_AUTO:
3024 		/* AND auto FEC bit, and all caps bits. */
3025 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3026 		cfg->link_fec_opt |= pcaps->link_fec_options;
3027 		break;
3028 	default:
3029 		status = ICE_ERR_PARAM;
3030 		break;
3031 	}
3032 
3033 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
3034 		struct ice_link_default_override_tlv tlv;
3035 
3036 		status = ice_get_link_default_override(&tlv, pi);
3037 		if (status)
3038 			goto out;
3039 
3040 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3041 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3042 			cfg->link_fec_opt = tlv.fec_options;
3043 	}
3044 
3045 out:
3046 	kfree(pcaps);
3047 
3048 	return status;
3049 }
3050 
3051 /**
3052  * ice_get_link_status - get status of the HW network link
3053  * @pi: port information structure
3054  * @link_up: pointer to bool (true/false = linkup/linkdown)
3055  *
3056  * Variable link_up is true if link is up, false if link is down.
3057  * The variable link_up is invalid if status is non zero. As a
3058  * result of this call, link status reporting becomes enabled
3059  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3060 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3061 {
3062 	struct ice_phy_info *phy_info;
3063 	enum ice_status status = 0;
3064 
3065 	if (!pi || !link_up)
3066 		return ICE_ERR_PARAM;
3067 
3068 	phy_info = &pi->phy;
3069 
3070 	if (phy_info->get_link_info) {
3071 		status = ice_update_link_info(pi);
3072 
3073 		if (status)
3074 			ice_debug(pi->hw, ICE_DBG_LINK,
3075 				  "get link status error, status = %d\n",
3076 				  status);
3077 	}
3078 
3079 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3080 
3081 	return status;
3082 }
3083 
3084 /**
3085  * ice_aq_set_link_restart_an
3086  * @pi: pointer to the port information structure
3087  * @ena_link: if true: enable link, if false: disable link
3088  * @cd: pointer to command details structure or NULL
3089  *
3090  * Sets up the link and restarts the Auto-Negotiation over the link.
3091  */
3092 enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3093 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3094 			   struct ice_sq_cd *cd)
3095 {
3096 	struct ice_aqc_restart_an *cmd;
3097 	struct ice_aq_desc desc;
3098 
3099 	cmd = &desc.params.restart_an;
3100 
3101 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3102 
3103 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3104 	cmd->lport_num = pi->lport;
3105 	if (ena_link)
3106 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3107 	else
3108 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3109 
3110 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3111 }
3112 
3113 /**
3114  * ice_aq_set_event_mask
3115  * @hw: pointer to the HW struct
3116  * @port_num: port number of the physical function
3117  * @mask: event mask to be set
3118  * @cd: pointer to command details structure or NULL
3119  *
3120  * Set event mask (0x0613)
3121  */
3122 enum ice_status
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3123 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3124 		      struct ice_sq_cd *cd)
3125 {
3126 	struct ice_aqc_set_event_mask *cmd;
3127 	struct ice_aq_desc desc;
3128 
3129 	cmd = &desc.params.set_event_mask;
3130 
3131 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3132 
3133 	cmd->lport_num = port_num;
3134 
3135 	cmd->event_mask = cpu_to_le16(mask);
3136 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3137 }
3138 
3139 /**
3140  * ice_aq_set_mac_loopback
3141  * @hw: pointer to the HW struct
3142  * @ena_lpbk: Enable or Disable loopback
3143  * @cd: pointer to command details structure or NULL
3144  *
3145  * Enable/disable loopback on a given port
3146  */
3147 enum ice_status
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3148 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3149 {
3150 	struct ice_aqc_set_mac_lb *cmd;
3151 	struct ice_aq_desc desc;
3152 
3153 	cmd = &desc.params.set_mac_lb;
3154 
3155 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3156 	if (ena_lpbk)
3157 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3158 
3159 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3160 }
3161 
3162 /**
3163  * ice_aq_set_port_id_led
3164  * @pi: pointer to the port information
3165  * @is_orig_mode: is this LED set to original mode (by the net-list)
3166  * @cd: pointer to command details structure or NULL
3167  *
3168  * Set LED value for the given port (0x06e9)
3169  */
3170 enum ice_status
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3171 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3172 		       struct ice_sq_cd *cd)
3173 {
3174 	struct ice_aqc_set_port_id_led *cmd;
3175 	struct ice_hw *hw = pi->hw;
3176 	struct ice_aq_desc desc;
3177 
3178 	cmd = &desc.params.set_port_id_led;
3179 
3180 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3181 
3182 	if (is_orig_mode)
3183 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3184 	else
3185 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3186 
3187 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3188 }
3189 
3190 /**
3191  * ice_aq_sff_eeprom
3192  * @hw: pointer to the HW struct
3193  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3194  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3195  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3196  * @page: QSFP page
3197  * @set_page: set or ignore the page
3198  * @data: pointer to data buffer to be read/written to the I2C device.
3199  * @length: 1-16 for read, 1 for write.
3200  * @write: 0 read, 1 for write.
3201  * @cd: pointer to command details structure or NULL
3202  *
3203  * Read/Write SFF EEPROM (0x06EE)
3204  */
3205 enum ice_status
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)3206 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3207 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3208 		  bool write, struct ice_sq_cd *cd)
3209 {
3210 	struct ice_aqc_sff_eeprom *cmd;
3211 	struct ice_aq_desc desc;
3212 	enum ice_status status;
3213 
3214 	if (!data || (mem_addr & 0xff00))
3215 		return ICE_ERR_PARAM;
3216 
3217 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3218 	cmd = &desc.params.read_write_sff_param;
3219 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
3220 	cmd->lport_num = (u8)(lport & 0xff);
3221 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3222 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3223 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3224 					((set_page <<
3225 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3226 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3227 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3228 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3229 	if (write)
3230 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3231 
3232 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3233 	return status;
3234 }
3235 
3236 /**
3237  * __ice_aq_get_set_rss_lut
3238  * @hw: pointer to the hardware structure
3239  * @vsi_id: VSI FW index
3240  * @lut_type: LUT table type
3241  * @lut: pointer to the LUT buffer provided by the caller
3242  * @lut_size: size of the LUT buffer
3243  * @glob_lut_idx: global LUT index
3244  * @set: set true to set the table, false to get the table
3245  *
3246  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3247  */
3248 static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw * hw,u16 vsi_id,u8 lut_type,u8 * lut,u16 lut_size,u8 glob_lut_idx,bool set)3249 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
3250 			 u16 lut_size, u8 glob_lut_idx, bool set)
3251 {
3252 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3253 	struct ice_aq_desc desc;
3254 	enum ice_status status;
3255 	u16 flags = 0;
3256 
3257 	cmd_resp = &desc.params.get_set_rss_lut;
3258 
3259 	if (set) {
3260 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3261 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3262 	} else {
3263 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3264 	}
3265 
3266 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3267 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3268 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3269 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3270 
3271 	switch (lut_type) {
3272 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3273 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3274 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3275 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3276 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3277 		break;
3278 	default:
3279 		status = ICE_ERR_PARAM;
3280 		goto ice_aq_get_set_rss_lut_exit;
3281 	}
3282 
3283 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3284 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3285 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3286 
3287 		if (!set)
3288 			goto ice_aq_get_set_rss_lut_send;
3289 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3290 		if (!set)
3291 			goto ice_aq_get_set_rss_lut_send;
3292 	} else {
3293 		goto ice_aq_get_set_rss_lut_send;
3294 	}
3295 
3296 	/* LUT size is only valid for Global and PF table types */
3297 	switch (lut_size) {
3298 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3299 		break;
3300 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3301 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3302 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3303 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3304 		break;
3305 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3306 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3307 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3308 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3309 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3310 			break;
3311 		}
3312 		fallthrough;
3313 	default:
3314 		status = ICE_ERR_PARAM;
3315 		goto ice_aq_get_set_rss_lut_exit;
3316 	}
3317 
3318 ice_aq_get_set_rss_lut_send:
3319 	cmd_resp->flags = cpu_to_le16(flags);
3320 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3321 
3322 ice_aq_get_set_rss_lut_exit:
3323 	return status;
3324 }
3325 
3326 /**
3327  * ice_aq_get_rss_lut
3328  * @hw: pointer to the hardware structure
3329  * @vsi_handle: software VSI handle
3330  * @lut_type: LUT table type
3331  * @lut: pointer to the LUT buffer provided by the caller
3332  * @lut_size: size of the LUT buffer
3333  *
3334  * get the RSS lookup table, PF or VSI type
3335  */
3336 enum ice_status
ice_aq_get_rss_lut(struct ice_hw * hw,u16 vsi_handle,u8 lut_type,u8 * lut,u16 lut_size)3337 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3338 		   u8 *lut, u16 lut_size)
3339 {
3340 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3341 		return ICE_ERR_PARAM;
3342 
3343 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3344 					lut_type, lut, lut_size, 0, false);
3345 }
3346 
3347 /**
3348  * ice_aq_set_rss_lut
3349  * @hw: pointer to the hardware structure
3350  * @vsi_handle: software VSI handle
3351  * @lut_type: LUT table type
3352  * @lut: pointer to the LUT buffer provided by the caller
3353  * @lut_size: size of the LUT buffer
3354  *
3355  * set the RSS lookup table, PF or VSI type
3356  */
3357 enum ice_status
ice_aq_set_rss_lut(struct ice_hw * hw,u16 vsi_handle,u8 lut_type,u8 * lut,u16 lut_size)3358 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
3359 		   u8 *lut, u16 lut_size)
3360 {
3361 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3362 		return ICE_ERR_PARAM;
3363 
3364 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3365 					lut_type, lut, lut_size, 0, true);
3366 }
3367 
3368 /**
3369  * __ice_aq_get_set_rss_key
3370  * @hw: pointer to the HW struct
3371  * @vsi_id: VSI FW index
3372  * @key: pointer to key info struct
3373  * @set: set true to set the key, false to get the key
3374  *
3375  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3376  */
3377 static enum
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)3378 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3379 				    struct ice_aqc_get_set_rss_keys *key,
3380 				    bool set)
3381 {
3382 	struct ice_aqc_get_set_rss_key *cmd_resp;
3383 	u16 key_size = sizeof(*key);
3384 	struct ice_aq_desc desc;
3385 
3386 	cmd_resp = &desc.params.get_set_rss_key;
3387 
3388 	if (set) {
3389 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3390 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3391 	} else {
3392 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3393 	}
3394 
3395 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3396 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3397 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3398 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3399 
3400 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3401 }
3402 
3403 /**
3404  * ice_aq_get_rss_key
3405  * @hw: pointer to the HW struct
3406  * @vsi_handle: software VSI handle
3407  * @key: pointer to key info struct
3408  *
3409  * get the RSS key per VSI
3410  */
3411 enum ice_status
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)3412 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3413 		   struct ice_aqc_get_set_rss_keys *key)
3414 {
3415 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3416 		return ICE_ERR_PARAM;
3417 
3418 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3419 					key, false);
3420 }
3421 
3422 /**
3423  * ice_aq_set_rss_key
3424  * @hw: pointer to the HW struct
3425  * @vsi_handle: software VSI handle
3426  * @keys: pointer to key info struct
3427  *
3428  * set the RSS key per VSI
3429  */
3430 enum ice_status
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)3431 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3432 		   struct ice_aqc_get_set_rss_keys *keys)
3433 {
3434 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3435 		return ICE_ERR_PARAM;
3436 
3437 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3438 					keys, true);
3439 }
3440 
3441 /**
3442  * ice_aq_add_lan_txq
3443  * @hw: pointer to the hardware structure
3444  * @num_qgrps: Number of added queue groups
3445  * @qg_list: list of queue groups to be added
3446  * @buf_size: size of buffer for indirect command
3447  * @cd: pointer to command details structure or NULL
3448  *
3449  * Add Tx LAN queue (0x0C30)
3450  *
3451  * NOTE:
3452  * Prior to calling add Tx LAN queue:
3453  * Initialize the following as part of the Tx queue context:
3454  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3455  * Cache profile and Packet shaper profile.
3456  *
3457  * After add Tx LAN queue AQ command is completed:
3458  * Interrupts should be associated with specific queues,
3459  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3460  * flow.
3461  */
3462 static enum ice_status
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)3463 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3464 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3465 		   struct ice_sq_cd *cd)
3466 {
3467 	struct ice_aqc_add_tx_qgrp *list;
3468 	struct ice_aqc_add_txqs *cmd;
3469 	struct ice_aq_desc desc;
3470 	u16 i, sum_size = 0;
3471 
3472 	cmd = &desc.params.add_txqs;
3473 
3474 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3475 
3476 	if (!qg_list)
3477 		return ICE_ERR_PARAM;
3478 
3479 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3480 		return ICE_ERR_PARAM;
3481 
3482 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3483 		sum_size += struct_size(list, txqs, list->num_txqs);
3484 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3485 						      list->num_txqs);
3486 	}
3487 
3488 	if (buf_size != sum_size)
3489 		return ICE_ERR_PARAM;
3490 
3491 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3492 
3493 	cmd->num_qgrps = num_qgrps;
3494 
3495 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3496 }
3497 
3498 /**
3499  * ice_aq_dis_lan_txq
3500  * @hw: pointer to the hardware structure
3501  * @num_qgrps: number of groups in the list
3502  * @qg_list: the list of groups to disable
3503  * @buf_size: the total size of the qg_list buffer in bytes
3504  * @rst_src: if called due to reset, specifies the reset source
3505  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3506  * @cd: pointer to command details structure or NULL
3507  *
3508  * Disable LAN Tx queue (0x0C31)
3509  */
3510 static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)3511 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3512 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3513 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3514 		   struct ice_sq_cd *cd)
3515 {
3516 	struct ice_aqc_dis_txq_item *item;
3517 	struct ice_aqc_dis_txqs *cmd;
3518 	struct ice_aq_desc desc;
3519 	enum ice_status status;
3520 	u16 i, sz = 0;
3521 
3522 	cmd = &desc.params.dis_txqs;
3523 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3524 
3525 	/* qg_list can be NULL only in VM/VF reset flow */
3526 	if (!qg_list && !rst_src)
3527 		return ICE_ERR_PARAM;
3528 
3529 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3530 		return ICE_ERR_PARAM;
3531 
3532 	cmd->num_entries = num_qgrps;
3533 
3534 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3535 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3536 
3537 	switch (rst_src) {
3538 	case ICE_VM_RESET:
3539 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3540 		cmd->vmvf_and_timeout |=
3541 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3542 		break;
3543 	case ICE_VF_RESET:
3544 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3545 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3546 		cmd->vmvf_and_timeout |=
3547 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3548 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3549 		break;
3550 	case ICE_NO_RESET:
3551 	default:
3552 		break;
3553 	}
3554 
3555 	/* flush pipe on time out */
3556 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3557 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3558 	if (!qg_list)
3559 		goto do_aq;
3560 
3561 	/* set RD bit to indicate that command buffer is provided by the driver
3562 	 * and it needs to be read by the firmware
3563 	 */
3564 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3565 
3566 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3567 		u16 item_size = struct_size(item, q_id, item->num_qs);
3568 
3569 		/* If the num of queues is even, add 2 bytes of padding */
3570 		if ((item->num_qs % 2) == 0)
3571 			item_size += 2;
3572 
3573 		sz += item_size;
3574 
3575 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3576 	}
3577 
3578 	if (buf_size != sz)
3579 		return ICE_ERR_PARAM;
3580 
3581 do_aq:
3582 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3583 	if (status) {
3584 		if (!qg_list)
3585 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3586 				  vmvf_num, hw->adminq.sq_last_status);
3587 		else
3588 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3589 				  le16_to_cpu(qg_list[0].q_id[0]),
3590 				  hw->adminq.sq_last_status);
3591 	}
3592 	return status;
3593 }
3594 
3595 /* End of FW Admin Queue command wrappers */
3596 
3597 /**
3598  * ice_write_byte - write a byte to a packed context structure
3599  * @src_ctx:  the context structure to read from
3600  * @dest_ctx: the context to be written to
3601  * @ce_info:  a description of the struct to be filled
3602  */
3603 static void
ice_write_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3604 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3605 {
3606 	u8 src_byte, dest_byte, mask;
3607 	u8 *from, *dest;
3608 	u16 shift_width;
3609 
3610 	/* copy from the next struct field */
3611 	from = src_ctx + ce_info->offset;
3612 
3613 	/* prepare the bits and mask */
3614 	shift_width = ce_info->lsb % 8;
3615 	mask = (u8)(BIT(ce_info->width) - 1);
3616 
3617 	src_byte = *from;
3618 	src_byte &= mask;
3619 
3620 	/* shift to correct alignment */
3621 	mask <<= shift_width;
3622 	src_byte <<= shift_width;
3623 
3624 	/* get the current bits from the target bit string */
3625 	dest = dest_ctx + (ce_info->lsb / 8);
3626 
3627 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3628 
3629 	dest_byte &= ~mask;	/* get the bits not changing */
3630 	dest_byte |= src_byte;	/* add in the new bits */
3631 
3632 	/* put it all back */
3633 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3634 }
3635 
3636 /**
3637  * ice_write_word - write a word to a packed context structure
3638  * @src_ctx:  the context structure to read from
3639  * @dest_ctx: the context to be written to
3640  * @ce_info:  a description of the struct to be filled
3641  */
3642 static void
ice_write_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3643 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3644 {
3645 	u16 src_word, mask;
3646 	__le16 dest_word;
3647 	u8 *from, *dest;
3648 	u16 shift_width;
3649 
3650 	/* copy from the next struct field */
3651 	from = src_ctx + ce_info->offset;
3652 
3653 	/* prepare the bits and mask */
3654 	shift_width = ce_info->lsb % 8;
3655 	mask = BIT(ce_info->width) - 1;
3656 
3657 	/* don't swizzle the bits until after the mask because the mask bits
3658 	 * will be in a different bit position on big endian machines
3659 	 */
3660 	src_word = *(u16 *)from;
3661 	src_word &= mask;
3662 
3663 	/* shift to correct alignment */
3664 	mask <<= shift_width;
3665 	src_word <<= shift_width;
3666 
3667 	/* get the current bits from the target bit string */
3668 	dest = dest_ctx + (ce_info->lsb / 8);
3669 
3670 	memcpy(&dest_word, dest, sizeof(dest_word));
3671 
3672 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3673 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3674 
3675 	/* put it all back */
3676 	memcpy(dest, &dest_word, sizeof(dest_word));
3677 }
3678 
3679 /**
3680  * ice_write_dword - write a dword to a packed context structure
3681  * @src_ctx:  the context structure to read from
3682  * @dest_ctx: the context to be written to
3683  * @ce_info:  a description of the struct to be filled
3684  */
3685 static void
ice_write_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3686 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3687 {
3688 	u32 src_dword, mask;
3689 	__le32 dest_dword;
3690 	u8 *from, *dest;
3691 	u16 shift_width;
3692 
3693 	/* copy from the next struct field */
3694 	from = src_ctx + ce_info->offset;
3695 
3696 	/* prepare the bits and mask */
3697 	shift_width = ce_info->lsb % 8;
3698 
3699 	/* if the field width is exactly 32 on an x86 machine, then the shift
3700 	 * operation will not work because the SHL instructions count is masked
3701 	 * to 5 bits so the shift will do nothing
3702 	 */
3703 	if (ce_info->width < 32)
3704 		mask = BIT(ce_info->width) - 1;
3705 	else
3706 		mask = (u32)~0;
3707 
3708 	/* don't swizzle the bits until after the mask because the mask bits
3709 	 * will be in a different bit position on big endian machines
3710 	 */
3711 	src_dword = *(u32 *)from;
3712 	src_dword &= mask;
3713 
3714 	/* shift to correct alignment */
3715 	mask <<= shift_width;
3716 	src_dword <<= shift_width;
3717 
3718 	/* get the current bits from the target bit string */
3719 	dest = dest_ctx + (ce_info->lsb / 8);
3720 
3721 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3722 
3723 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3724 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3725 
3726 	/* put it all back */
3727 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3728 }
3729 
3730 /**
3731  * ice_write_qword - write a qword to a packed context structure
3732  * @src_ctx:  the context structure to read from
3733  * @dest_ctx: the context to be written to
3734  * @ce_info:  a description of the struct to be filled
3735  */
3736 static void
ice_write_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3737 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3738 {
3739 	u64 src_qword, mask;
3740 	__le64 dest_qword;
3741 	u8 *from, *dest;
3742 	u16 shift_width;
3743 
3744 	/* copy from the next struct field */
3745 	from = src_ctx + ce_info->offset;
3746 
3747 	/* prepare the bits and mask */
3748 	shift_width = ce_info->lsb % 8;
3749 
3750 	/* if the field width is exactly 64 on an x86 machine, then the shift
3751 	 * operation will not work because the SHL instructions count is masked
3752 	 * to 6 bits so the shift will do nothing
3753 	 */
3754 	if (ce_info->width < 64)
3755 		mask = BIT_ULL(ce_info->width) - 1;
3756 	else
3757 		mask = (u64)~0;
3758 
3759 	/* don't swizzle the bits until after the mask because the mask bits
3760 	 * will be in a different bit position on big endian machines
3761 	 */
3762 	src_qword = *(u64 *)from;
3763 	src_qword &= mask;
3764 
3765 	/* shift to correct alignment */
3766 	mask <<= shift_width;
3767 	src_qword <<= shift_width;
3768 
3769 	/* get the current bits from the target bit string */
3770 	dest = dest_ctx + (ce_info->lsb / 8);
3771 
3772 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3773 
3774 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3775 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3776 
3777 	/* put it all back */
3778 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3779 }
3780 
3781 /**
3782  * ice_set_ctx - set context bits in packed structure
3783  * @hw: pointer to the hardware structure
3784  * @src_ctx:  pointer to a generic non-packed context structure
3785  * @dest_ctx: pointer to memory for the packed structure
3786  * @ce_info:  a description of the structure to be transformed
3787  */
3788 enum ice_status
ice_set_ctx(struct ice_hw * hw,u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3789 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3790 	    const struct ice_ctx_ele *ce_info)
3791 {
3792 	int f;
3793 
3794 	for (f = 0; ce_info[f].width; f++) {
3795 		/* We have to deal with each element of the FW response
3796 		 * using the correct size so that we are correct regardless
3797 		 * of the endianness of the machine.
3798 		 */
3799 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3800 			ice_debug(hw, ICE_DBG_QCTX,
3801 				  "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3802 				  f, ce_info[f].width, ce_info[f].size_of);
3803 			continue;
3804 		}
3805 		switch (ce_info[f].size_of) {
3806 		case sizeof(u8):
3807 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3808 			break;
3809 		case sizeof(u16):
3810 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3811 			break;
3812 		case sizeof(u32):
3813 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3814 			break;
3815 		case sizeof(u64):
3816 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3817 			break;
3818 		default:
3819 			return ICE_ERR_INVAL_SIZE;
3820 		}
3821 	}
3822 
3823 	return 0;
3824 }
3825 
3826 /**
3827  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3828  * @hw: pointer to the HW struct
3829  * @vsi_handle: software VSI handle
3830  * @tc: TC number
3831  * @q_handle: software queue handle
3832  */
3833 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)3834 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3835 {
3836 	struct ice_vsi_ctx *vsi;
3837 	struct ice_q_ctx *q_ctx;
3838 
3839 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3840 	if (!vsi)
3841 		return NULL;
3842 	if (q_handle >= vsi->num_lan_q_entries[tc])
3843 		return NULL;
3844 	if (!vsi->lan_q_ctx[tc])
3845 		return NULL;
3846 	q_ctx = vsi->lan_q_ctx[tc];
3847 	return &q_ctx[q_handle];
3848 }
3849 
3850 /**
3851  * ice_ena_vsi_txq
3852  * @pi: port information structure
3853  * @vsi_handle: software VSI handle
3854  * @tc: TC number
3855  * @q_handle: software queue handle
3856  * @num_qgrps: Number of added queue groups
3857  * @buf: list of queue groups to be added
3858  * @buf_size: size of buffer for indirect command
3859  * @cd: pointer to command details structure or NULL
3860  *
3861  * This function adds one LAN queue
3862  */
3863 enum ice_status
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)3864 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3865 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3866 		struct ice_sq_cd *cd)
3867 {
3868 	struct ice_aqc_txsched_elem_data node = { 0 };
3869 	struct ice_sched_node *parent;
3870 	struct ice_q_ctx *q_ctx;
3871 	enum ice_status status;
3872 	struct ice_hw *hw;
3873 
3874 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3875 		return ICE_ERR_CFG;
3876 
3877 	if (num_qgrps > 1 || buf->num_txqs > 1)
3878 		return ICE_ERR_MAX_LIMIT;
3879 
3880 	hw = pi->hw;
3881 
3882 	if (!ice_is_vsi_valid(hw, vsi_handle))
3883 		return ICE_ERR_PARAM;
3884 
3885 	mutex_lock(&pi->sched_lock);
3886 
3887 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3888 	if (!q_ctx) {
3889 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3890 			  q_handle);
3891 		status = ICE_ERR_PARAM;
3892 		goto ena_txq_exit;
3893 	}
3894 
3895 	/* find a parent node */
3896 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3897 					    ICE_SCHED_NODE_OWNER_LAN);
3898 	if (!parent) {
3899 		status = ICE_ERR_PARAM;
3900 		goto ena_txq_exit;
3901 	}
3902 
3903 	buf->parent_teid = parent->info.node_teid;
3904 	node.parent_teid = parent->info.node_teid;
3905 	/* Mark that the values in the "generic" section as valid. The default
3906 	 * value in the "generic" section is zero. This means that :
3907 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3908 	 * - 0 priority among siblings, indicated by Bit 1-3.
3909 	 * - WFQ, indicated by Bit 4.
3910 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3911 	 * Bit 5-6.
3912 	 * - Bit 7 is reserved.
3913 	 * Without setting the generic section as valid in valid_sections, the
3914 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3915 	 */
3916 	buf->txqs[0].info.valid_sections =
3917 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
3918 		ICE_AQC_ELEM_VALID_EIR;
3919 	buf->txqs[0].info.generic = 0;
3920 	buf->txqs[0].info.cir_bw.bw_profile_idx =
3921 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3922 	buf->txqs[0].info.cir_bw.bw_alloc =
3923 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3924 	buf->txqs[0].info.eir_bw.bw_profile_idx =
3925 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3926 	buf->txqs[0].info.eir_bw.bw_alloc =
3927 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3928 
3929 	/* add the LAN queue */
3930 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3931 	if (status) {
3932 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3933 			  le16_to_cpu(buf->txqs[0].txq_id),
3934 			  hw->adminq.sq_last_status);
3935 		goto ena_txq_exit;
3936 	}
3937 
3938 	node.node_teid = buf->txqs[0].q_teid;
3939 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3940 	q_ctx->q_handle = q_handle;
3941 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3942 
3943 	/* add a leaf node into scheduler tree queue layer */
3944 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3945 	if (!status)
3946 		status = ice_sched_replay_q_bw(pi, q_ctx);
3947 
3948 ena_txq_exit:
3949 	mutex_unlock(&pi->sched_lock);
3950 	return status;
3951 }
3952 
3953 /**
3954  * ice_dis_vsi_txq
3955  * @pi: port information structure
3956  * @vsi_handle: software VSI handle
3957  * @tc: TC number
3958  * @num_queues: number of queues
3959  * @q_handles: pointer to software queue handle array
3960  * @q_ids: pointer to the q_id array
3961  * @q_teids: pointer to queue node teids
3962  * @rst_src: if called due to reset, specifies the reset source
3963  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3964  * @cd: pointer to command details structure or NULL
3965  *
3966  * This function removes queues and their corresponding nodes in SW DB
3967  */
3968 enum ice_status
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)3969 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3970 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3971 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3972 		struct ice_sq_cd *cd)
3973 {
3974 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3975 	struct ice_aqc_dis_txq_item *qg_list;
3976 	struct ice_q_ctx *q_ctx;
3977 	struct ice_hw *hw;
3978 	u16 i, buf_size;
3979 
3980 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3981 		return ICE_ERR_CFG;
3982 
3983 	hw = pi->hw;
3984 
3985 	if (!num_queues) {
3986 		/* if queue is disabled already yet the disable queue command
3987 		 * has to be sent to complete the VF reset, then call
3988 		 * ice_aq_dis_lan_txq without any queue information
3989 		 */
3990 		if (rst_src)
3991 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
3992 						  vmvf_num, NULL);
3993 		return ICE_ERR_CFG;
3994 	}
3995 
3996 	buf_size = struct_size(qg_list, q_id, 1);
3997 	qg_list = kzalloc(buf_size, GFP_KERNEL);
3998 	if (!qg_list)
3999 		return ICE_ERR_NO_MEMORY;
4000 
4001 	mutex_lock(&pi->sched_lock);
4002 
4003 	for (i = 0; i < num_queues; i++) {
4004 		struct ice_sched_node *node;
4005 
4006 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4007 		if (!node)
4008 			continue;
4009 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4010 		if (!q_ctx) {
4011 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4012 				  q_handles[i]);
4013 			continue;
4014 		}
4015 		if (q_ctx->q_handle != q_handles[i]) {
4016 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4017 				  q_ctx->q_handle, q_handles[i]);
4018 			continue;
4019 		}
4020 		qg_list->parent_teid = node->info.parent_teid;
4021 		qg_list->num_qs = 1;
4022 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4023 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4024 					    vmvf_num, cd);
4025 
4026 		if (status)
4027 			break;
4028 		ice_free_sched_node(pi, node);
4029 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4030 	}
4031 	mutex_unlock(&pi->sched_lock);
4032 	kfree(qg_list);
4033 	return status;
4034 }
4035 
4036 /**
4037  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4038  * @pi: port information structure
4039  * @vsi_handle: software VSI handle
4040  * @tc_bitmap: TC bitmap
4041  * @maxqs: max queues array per TC
4042  * @owner: LAN or RDMA
4043  *
4044  * This function adds/updates the VSI queues per TC.
4045  */
4046 static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4047 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4048 	       u16 *maxqs, u8 owner)
4049 {
4050 	enum ice_status status = 0;
4051 	u8 i;
4052 
4053 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4054 		return ICE_ERR_CFG;
4055 
4056 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4057 		return ICE_ERR_PARAM;
4058 
4059 	mutex_lock(&pi->sched_lock);
4060 
4061 	ice_for_each_traffic_class(i) {
4062 		/* configuration is possible only if TC node is present */
4063 		if (!ice_sched_get_tc_node(pi, i))
4064 			continue;
4065 
4066 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4067 					   ice_is_tc_ena(tc_bitmap, i));
4068 		if (status)
4069 			break;
4070 	}
4071 
4072 	mutex_unlock(&pi->sched_lock);
4073 	return status;
4074 }
4075 
4076 /**
4077  * ice_cfg_vsi_lan - configure VSI LAN queues
4078  * @pi: port information structure
4079  * @vsi_handle: software VSI handle
4080  * @tc_bitmap: TC bitmap
4081  * @max_lanqs: max LAN queues array per TC
4082  *
4083  * This function adds/updates the VSI LAN queues per TC.
4084  */
4085 enum ice_status
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4086 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4087 		u16 *max_lanqs)
4088 {
4089 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4090 			      ICE_SCHED_NODE_OWNER_LAN);
4091 }
4092 
4093 /**
4094  * ice_replay_pre_init - replay pre initialization
4095  * @hw: pointer to the HW struct
4096  *
4097  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4098  */
ice_replay_pre_init(struct ice_hw * hw)4099 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4100 {
4101 	struct ice_switch_info *sw = hw->switch_info;
4102 	u8 i;
4103 
4104 	/* Delete old entries from replay filter list head if there is any */
4105 	ice_rm_all_sw_replay_rule_info(hw);
4106 	/* In start of replay, move entries into replay_rules list, it
4107 	 * will allow adding rules entries back to filt_rules list,
4108 	 * which is operational list.
4109 	 */
4110 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4111 		list_replace_init(&sw->recp_list[i].filt_rules,
4112 				  &sw->recp_list[i].filt_replay_rules);
4113 
4114 	return 0;
4115 }
4116 
4117 /**
4118  * ice_replay_vsi - replay VSI configuration
4119  * @hw: pointer to the HW struct
4120  * @vsi_handle: driver VSI handle
4121  *
4122  * Restore all VSI configuration after reset. It is required to call this
4123  * function with main VSI first.
4124  */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)4125 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4126 {
4127 	enum ice_status status;
4128 
4129 	if (!ice_is_vsi_valid(hw, vsi_handle))
4130 		return ICE_ERR_PARAM;
4131 
4132 	/* Replay pre-initialization if there is any */
4133 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4134 		status = ice_replay_pre_init(hw);
4135 		if (status)
4136 			return status;
4137 	}
4138 	/* Replay per VSI all RSS configurations */
4139 	status = ice_replay_rss_cfg(hw, vsi_handle);
4140 	if (status)
4141 		return status;
4142 	/* Replay per VSI all filters */
4143 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4144 	return status;
4145 }
4146 
4147 /**
4148  * ice_replay_post - post replay configuration cleanup
4149  * @hw: pointer to the HW struct
4150  *
4151  * Post replay cleanup.
4152  */
ice_replay_post(struct ice_hw * hw)4153 void ice_replay_post(struct ice_hw *hw)
4154 {
4155 	/* Delete old entries from replay filter list head */
4156 	ice_rm_all_sw_replay_rule_info(hw);
4157 }
4158 
4159 /**
4160  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4161  * @hw: ptr to the hardware info
4162  * @reg: offset of 64 bit HW register to read from
4163  * @prev_stat_loaded: bool to specify if previous stats are loaded
4164  * @prev_stat: ptr to previous loaded stat value
4165  * @cur_stat: ptr to current stat value
4166  */
4167 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4168 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4169 		  u64 *prev_stat, u64 *cur_stat)
4170 {
4171 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4172 
4173 	/* device stats are not reset at PFR, they likely will not be zeroed
4174 	 * when the driver starts. Thus, save the value from the first read
4175 	 * without adding to the statistic value so that we report stats which
4176 	 * count up from zero.
4177 	 */
4178 	if (!prev_stat_loaded) {
4179 		*prev_stat = new_data;
4180 		return;
4181 	}
4182 
4183 	/* Calculate the difference between the new and old values, and then
4184 	 * add it to the software stat value.
4185 	 */
4186 	if (new_data >= *prev_stat)
4187 		*cur_stat += new_data - *prev_stat;
4188 	else
4189 		/* to manage the potential roll-over */
4190 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4191 
4192 	/* Update the previously stored value to prepare for next read */
4193 	*prev_stat = new_data;
4194 }
4195 
4196 /**
4197  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4198  * @hw: ptr to the hardware info
4199  * @reg: offset of HW register to read from
4200  * @prev_stat_loaded: bool to specify if previous stats are loaded
4201  * @prev_stat: ptr to previous loaded stat value
4202  * @cur_stat: ptr to current stat value
4203  */
4204 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4205 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4206 		  u64 *prev_stat, u64 *cur_stat)
4207 {
4208 	u32 new_data;
4209 
4210 	new_data = rd32(hw, reg);
4211 
4212 	/* device stats are not reset at PFR, they likely will not be zeroed
4213 	 * when the driver starts. Thus, save the value from the first read
4214 	 * without adding to the statistic value so that we report stats which
4215 	 * count up from zero.
4216 	 */
4217 	if (!prev_stat_loaded) {
4218 		*prev_stat = new_data;
4219 		return;
4220 	}
4221 
4222 	/* Calculate the difference between the new and old values, and then
4223 	 * add it to the software stat value.
4224 	 */
4225 	if (new_data >= *prev_stat)
4226 		*cur_stat += new_data - *prev_stat;
4227 	else
4228 		/* to manage the potential roll-over */
4229 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4230 
4231 	/* Update the previously stored value to prepare for next read */
4232 	*prev_stat = new_data;
4233 }
4234 
4235 /**
4236  * ice_sched_query_elem - query element information from HW
4237  * @hw: pointer to the HW struct
4238  * @node_teid: node TEID to be queried
4239  * @buf: buffer to element information
4240  *
4241  * This function queries HW element information
4242  */
4243 enum ice_status
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)4244 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4245 		     struct ice_aqc_txsched_elem_data *buf)
4246 {
4247 	u16 buf_size, num_elem_ret = 0;
4248 	enum ice_status status;
4249 
4250 	buf_size = sizeof(*buf);
4251 	memset(buf, 0, buf_size);
4252 	buf->node_teid = cpu_to_le32(node_teid);
4253 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4254 					  NULL);
4255 	if (status || num_elem_ret != 1)
4256 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4257 	return status;
4258 }
4259 
4260 /**
4261  * ice_fw_supports_link_override
4262  * @hw: pointer to the hardware structure
4263  *
4264  * Checks if the firmware supports link override
4265  */
ice_fw_supports_link_override(struct ice_hw * hw)4266 bool ice_fw_supports_link_override(struct ice_hw *hw)
4267 {
4268 	/* Currently, only supported for E810 devices */
4269 	if (hw->mac_type != ICE_MAC_E810)
4270 		return false;
4271 
4272 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4273 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4274 			return true;
4275 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4276 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4277 			return true;
4278 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4279 		return true;
4280 	}
4281 
4282 	return false;
4283 }
4284 
4285 /**
4286  * ice_get_link_default_override
4287  * @ldo: pointer to the link default override struct
4288  * @pi: pointer to the port info struct
4289  *
4290  * Gets the link default override for a port
4291  */
4292 enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)4293 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4294 			      struct ice_port_info *pi)
4295 {
4296 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4297 	struct ice_hw *hw = pi->hw;
4298 	enum ice_status status;
4299 
4300 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4301 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4302 	if (status) {
4303 		ice_debug(hw, ICE_DBG_INIT,
4304 			  "Failed to read link override TLV.\n");
4305 		return status;
4306 	}
4307 
4308 	/* Each port has its own config; calculate for our port */
4309 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4310 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4311 
4312 	/* link options first */
4313 	status = ice_read_sr_word(hw, tlv_start, &buf);
4314 	if (status) {
4315 		ice_debug(hw, ICE_DBG_INIT,
4316 			  "Failed to read override link options.\n");
4317 		return status;
4318 	}
4319 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4320 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4321 		ICE_LINK_OVERRIDE_PHY_CFG_S;
4322 
4323 	/* link PHY config */
4324 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4325 	status = ice_read_sr_word(hw, offset, &buf);
4326 	if (status) {
4327 		ice_debug(hw, ICE_DBG_INIT,
4328 			  "Failed to read override phy config.\n");
4329 		return status;
4330 	}
4331 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4332 
4333 	/* PHY types low */
4334 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4335 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4336 		status = ice_read_sr_word(hw, (offset + i), &buf);
4337 		if (status) {
4338 			ice_debug(hw, ICE_DBG_INIT,
4339 				  "Failed to read override link options.\n");
4340 			return status;
4341 		}
4342 		/* shift 16 bits at a time to fill 64 bits */
4343 		ldo->phy_type_low |= ((u64)buf << (i * 16));
4344 	}
4345 
4346 	/* PHY types high */
4347 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4348 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4349 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4350 		status = ice_read_sr_word(hw, (offset + i), &buf);
4351 		if (status) {
4352 			ice_debug(hw, ICE_DBG_INIT,
4353 				  "Failed to read override link options.\n");
4354 			return status;
4355 		}
4356 		/* shift 16 bits at a time to fill 64 bits */
4357 		ldo->phy_type_high |= ((u64)buf << (i * 16));
4358 	}
4359 
4360 	return status;
4361 }
4362 
4363 /**
4364  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4365  * @caps: get PHY capability data
4366  */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)4367 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4368 {
4369 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4370 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4371 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4372 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4373 		return true;
4374 
4375 	return false;
4376 }
4377 
4378 /**
4379  * ice_aq_set_lldp_mib - Set the LLDP MIB
4380  * @hw: pointer to the HW struct
4381  * @mib_type: Local, Remote or both Local and Remote MIBs
4382  * @buf: pointer to the caller-supplied buffer to store the MIB block
4383  * @buf_size: size of the buffer (in bytes)
4384  * @cd: pointer to command details structure or NULL
4385  *
4386  * Set the LLDP MIB. (0x0A08)
4387  */
4388 enum ice_status
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)4389 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4390 		    struct ice_sq_cd *cd)
4391 {
4392 	struct ice_aqc_lldp_set_local_mib *cmd;
4393 	struct ice_aq_desc desc;
4394 
4395 	cmd = &desc.params.lldp_set_mib;
4396 
4397 	if (buf_size == 0 || !buf)
4398 		return ICE_ERR_PARAM;
4399 
4400 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4401 
4402 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4403 	desc.datalen = cpu_to_le16(buf_size);
4404 
4405 	cmd->type = mib_type;
4406 	cmd->length = cpu_to_le16(buf_size);
4407 
4408 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4409 }
4410