• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4  * Copyright(c) 2020 Cornelis Networks, Inc.
5  * Copyright(c) 2015-2020 Intel Corporation.
6  *
7  * This file is provided under a dual BSD/GPLv2 license.  When using or
8  * redistributing this file, you may do so under either license.
9  *
10  * GPL LICENSE SUMMARY
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * BSD LICENSE
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #include <linux/interrupt.h>
52 #include <linux/pci.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/mutex.h>
55 #include <linux/list.h>
56 #include <linux/scatterlist.h>
57 #include <linux/slab.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <linux/xarray.h>
69 #include <rdma/ib_hdrs.h>
70 #include <rdma/opa_addr.h>
71 #include <linux/rhashtable.h>
72 #include <linux/netdevice.h>
73 #include <rdma/rdma_vt.h>
74 
75 #include "chip_registers.h"
76 #include "common.h"
77 #include "opfn.h"
78 #include "verbs.h"
79 #include "pio.h"
80 #include "chip.h"
81 #include "mad.h"
82 #include "qsfp.h"
83 #include "platform.h"
84 #include "affinity.h"
85 #include "msix.h"
86 
87 /* bumped 1 from s/w major version of TrueScale */
88 #define HFI1_CHIP_VERS_MAJ 3U
89 
90 /* don't care about this except printing */
91 #define HFI1_CHIP_VERS_MIN 0U
92 
93 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
94 #define HFI1_OUI 0x001175
95 #define HFI1_OUI_LSB 40
96 
97 #define DROP_PACKET_OFF		0
98 #define DROP_PACKET_ON		1
99 
100 #define NEIGHBOR_TYPE_HFI		0
101 #define NEIGHBOR_TYPE_SWITCH	1
102 
103 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
104 
105 extern unsigned long hfi1_cap_mask;
106 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
107 #define HFI1_CAP_UGET_MASK(mask, cap) \
108 	(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
109 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
110 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
111 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
112 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
113 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
114 			HFI1_CAP_MISC_MASK)
115 /* Offline Disabled Reason is 4-bits */
116 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
117 
118 /*
119  * Control context is always 0 and handles the error packets.
120  * It also handles the VL15 and multicast packets.
121  */
122 #define HFI1_CTRL_CTXT    0
123 
124 /*
125  * Driver context will store software counters for each of the events
126  * associated with these status registers
127  */
128 #define NUM_CCE_ERR_STATUS_COUNTERS 41
129 #define NUM_RCV_ERR_STATUS_COUNTERS 64
130 #define NUM_MISC_ERR_STATUS_COUNTERS 13
131 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
132 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
133 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
134 #define NUM_SEND_ERR_STATUS_COUNTERS 3
135 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
136 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
137 
138 /*
139  * per driver stats, either not device nor port-specific, or
140  * summed over all of the devices and ports.
141  * They are described by name via ipathfs filesystem, so layout
142  * and number of elements can change without breaking compatibility.
143  * If members are added or deleted hfi1_statnames[] in debugfs.c must
144  * change to match.
145  */
146 struct hfi1_ib_stats {
147 	__u64 sps_ints; /* number of interrupts handled */
148 	__u64 sps_errints; /* number of error interrupts */
149 	__u64 sps_txerrs; /* tx-related packet errors */
150 	__u64 sps_rcverrs; /* non-crc rcv packet errors */
151 	__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
152 	__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
153 	__u64 sps_ctxts; /* number of contexts currently open */
154 	__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
155 	__u64 sps_buffull;
156 	__u64 sps_hdrfull;
157 };
158 
159 extern struct hfi1_ib_stats hfi1_stats;
160 extern const struct pci_error_handlers hfi1_pci_err_handler;
161 
162 extern int num_driver_cntrs;
163 
164 /*
165  * First-cut criterion for "device is active" is
166  * two thousand dwords combined Tx, Rx traffic per
167  * 5-second interval. SMA packets are 64 dwords,
168  * and occur "a few per second", presumably each way.
169  */
170 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
171 
172 /*
173  * Below contains all data related to a single context (formerly called port).
174  */
175 
176 struct hfi1_opcode_stats_perctx;
177 
178 struct ctxt_eager_bufs {
179 	struct eager_buffer {
180 		void *addr;
181 		dma_addr_t dma;
182 		ssize_t len;
183 	} *buffers;
184 	struct {
185 		void *addr;
186 		dma_addr_t dma;
187 	} *rcvtids;
188 	u32 size;                /* total size of eager buffers */
189 	u32 rcvtid_size;         /* size of each eager rcv tid */
190 	u16 count;               /* size of buffers array */
191 	u16 numbufs;             /* number of buffers allocated */
192 	u16 alloced;             /* number of rcvarray entries used */
193 	u16 threshold;           /* head update threshold */
194 };
195 
196 struct exp_tid_set {
197 	struct list_head list;
198 	u32 count;
199 };
200 
201 struct hfi1_ctxtdata;
202 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data);
203 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
204 
205 struct tid_queue {
206 	struct list_head queue_head;
207 			/* queue head for QP TID resource waiters */
208 	u32 enqueue;	/* count of tid enqueues */
209 	u32 dequeue;	/* count of tid dequeues */
210 };
211 
212 struct hfi1_ctxtdata {
213 	/* rcvhdrq base, needs mmap before useful */
214 	void *rcvhdrq;
215 	/* kernel virtual address where hdrqtail is updated */
216 	volatile __le64 *rcvhdrtail_kvaddr;
217 	/* so functions that need physical port can get it easily */
218 	struct hfi1_pportdata *ppd;
219 	/* so file ops can get at unit */
220 	struct hfi1_devdata *dd;
221 	/* this receive context's assigned PIO ACK send context */
222 	struct send_context *sc;
223 	/* per context recv functions */
224 	const rhf_rcv_function_ptr *rhf_rcv_function_map;
225 	/*
226 	 * The interrupt handler for a particular receive context can vary
227 	 * throughout it's lifetime. This is not a lock protected data member so
228 	 * it must be updated atomically and the prev and new value must always
229 	 * be valid. Worst case is we process an extra interrupt and up to 64
230 	 * packets with the wrong interrupt handler.
231 	 */
232 	intr_handler do_interrupt;
233 	/** fast handler after autoactive */
234 	intr_handler fast_handler;
235 	/** slow handler */
236 	intr_handler slow_handler;
237 	/* napi pointer assiociated with netdev */
238 	struct napi_struct *napi;
239 	/* verbs rx_stats per rcd */
240 	struct hfi1_opcode_stats_perctx *opstats;
241 	/* clear interrupt mask */
242 	u64 imask;
243 	/* ctxt rcvhdrq head offset */
244 	u32 head;
245 	/* number of rcvhdrq entries */
246 	u16 rcvhdrq_cnt;
247 	u8 ireg;	/* clear interrupt register */
248 	/* receive packet sequence counter */
249 	u8 seq_cnt;
250 	/* size of each of the rcvhdrq entries */
251 	u8 rcvhdrqentsize;
252 	/* offset of RHF within receive header entry */
253 	u8 rhf_offset;
254 	/* dynamic receive available interrupt timeout */
255 	u8 rcvavail_timeout;
256 	/* Indicates that this is vnic context */
257 	bool is_vnic;
258 	/* vnic queue index this context is mapped to */
259 	u8 vnic_q_idx;
260 	/* Is ASPM interrupt supported for this context */
261 	bool aspm_intr_supported;
262 	/* ASPM state (enabled/disabled) for this context */
263 	bool aspm_enabled;
264 	/* Is ASPM processing enabled for this context (in intr context) */
265 	bool aspm_intr_enable;
266 	struct ctxt_eager_bufs egrbufs;
267 	/* QPs waiting for context processing */
268 	struct list_head qp_wait_list;
269 	/* tid allocation lists */
270 	struct exp_tid_set tid_group_list;
271 	struct exp_tid_set tid_used_list;
272 	struct exp_tid_set tid_full_list;
273 
274 	/* Timer for re-enabling ASPM if interrupt activity quiets down */
275 	struct timer_list aspm_timer;
276 	/* per-context configuration flags */
277 	unsigned long flags;
278 	/* array of tid_groups */
279 	struct tid_group  *groups;
280 	/* mmap of hdrq, must fit in 44 bits */
281 	dma_addr_t rcvhdrq_dma;
282 	dma_addr_t rcvhdrqtailaddr_dma;
283 	/* Last interrupt timestamp */
284 	ktime_t aspm_ts_last_intr;
285 	/* Last timestamp at which we scheduled a timer for this context */
286 	ktime_t aspm_ts_timer_sched;
287 	/* Lock to serialize between intr, timer intr and user threads */
288 	spinlock_t aspm_lock;
289 	/* Reference count the base context usage */
290 	struct kref kref;
291 	/* numa node of this context */
292 	int numa_id;
293 	/* associated msix interrupt. */
294 	s16 msix_intr;
295 	/* job key */
296 	u16 jkey;
297 	/* number of RcvArray groups for this context. */
298 	u16 rcv_array_groups;
299 	/* index of first eager TID entry. */
300 	u16 eager_base;
301 	/* number of expected TID entries */
302 	u16 expected_count;
303 	/* index of first expected TID entry. */
304 	u16 expected_base;
305 	/* Device context index */
306 	u8 ctxt;
307 
308 	/* PSM Specific fields */
309 	/* lock protecting all Expected TID data */
310 	struct mutex exp_mutex;
311 	/* lock protecting all Expected TID data of kernel contexts */
312 	spinlock_t exp_lock;
313 	/* Queue for QP's waiting for HW TID flows */
314 	struct tid_queue flow_queue;
315 	/* Queue for QP's waiting for HW receive array entries */
316 	struct tid_queue rarr_queue;
317 	/* when waiting for rcv or pioavail */
318 	wait_queue_head_t wait;
319 	/* uuid from PSM */
320 	u8 uuid[16];
321 	/* same size as task_struct .comm[], command that opened context */
322 	char comm[TASK_COMM_LEN];
323 	/* Bitmask of in use context(s) */
324 	DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
325 	/* per-context event flags for fileops/intr communication */
326 	unsigned long event_flags;
327 	/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
328 	void *subctxt_uregbase;
329 	/* An array of pages for the eager receive buffers * N */
330 	void *subctxt_rcvegrbuf;
331 	/* An array of pages for the eager header queue entries * N */
332 	void *subctxt_rcvhdr_base;
333 	/* total number of polled urgent packets */
334 	u32 urgent;
335 	/* saved total number of polled urgent packets for poll edge trigger */
336 	u32 urgent_poll;
337 	/* Type of packets or conditions we want to poll for */
338 	u16 poll_type;
339 	/* non-zero if ctxt is being shared. */
340 	u16 subctxt_id;
341 	/* The version of the library which opened this ctxt */
342 	u32 userversion;
343 	/*
344 	 * non-zero if ctxt can be shared, and defines the maximum number of
345 	 * sub-contexts for this device context.
346 	 */
347 	u8 subctxt_cnt;
348 
349 	/* Bit mask to track free TID RDMA HW flows */
350 	unsigned long flow_mask;
351 	struct tid_flow_state flows[RXE_NUM_TID_FLOWS];
352 };
353 
354 /**
355  * rcvhdrq_size - return total size in bytes for header queue
356  * @rcd: the receive context
357  *
358  * rcvhdrqentsize is in DWs, so we have to convert to bytes
359  *
360  */
rcvhdrq_size(struct hfi1_ctxtdata * rcd)361 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
362 {
363 	return PAGE_ALIGN(rcd->rcvhdrq_cnt *
364 			  rcd->rcvhdrqentsize * sizeof(u32));
365 }
366 
367 /*
368  * Represents a single packet at a high level. Put commonly computed things in
369  * here so we do not have to keep doing them over and over. The rule of thumb is
370  * if something is used one time to derive some value, store that something in
371  * here. If it is used multiple times, then store the result of that derivation
372  * in here.
373  */
374 struct hfi1_packet {
375 	void *ebuf;
376 	void *hdr;
377 	void *payload;
378 	struct hfi1_ctxtdata *rcd;
379 	__le32 *rhf_addr;
380 	struct rvt_qp *qp;
381 	struct ib_other_headers *ohdr;
382 	struct ib_grh *grh;
383 	struct opa_16b_mgmt *mgmt;
384 	u64 rhf;
385 	u32 maxcnt;
386 	u32 rhqoff;
387 	u32 dlid;
388 	u32 slid;
389 	int numpkt;
390 	u16 tlen;
391 	s16 etail;
392 	u16 pkey;
393 	u8 hlen;
394 	u8 rsize;
395 	u8 updegr;
396 	u8 etype;
397 	u8 extra_byte;
398 	u8 pad;
399 	u8 sc;
400 	u8 sl;
401 	u8 opcode;
402 	bool migrated;
403 };
404 
405 /* Packet types */
406 #define HFI1_PKT_TYPE_9B  0
407 #define HFI1_PKT_TYPE_16B 1
408 
409 /*
410  * OPA 16B Header
411  */
412 #define OPA_16B_L4_MASK		0xFFull
413 #define OPA_16B_SC_MASK		0x1F00000ull
414 #define OPA_16B_SC_SHIFT	20
415 #define OPA_16B_LID_MASK	0xFFFFFull
416 #define OPA_16B_DLID_MASK	0xF000ull
417 #define OPA_16B_DLID_SHIFT	20
418 #define OPA_16B_DLID_HIGH_SHIFT	12
419 #define OPA_16B_SLID_MASK	0xF00ull
420 #define OPA_16B_SLID_SHIFT	20
421 #define OPA_16B_SLID_HIGH_SHIFT	8
422 #define OPA_16B_BECN_MASK       0x80000000ull
423 #define OPA_16B_BECN_SHIFT      31
424 #define OPA_16B_FECN_MASK       0x10000000ull
425 #define OPA_16B_FECN_SHIFT      28
426 #define OPA_16B_L2_MASK		0x60000000ull
427 #define OPA_16B_L2_SHIFT	29
428 #define OPA_16B_PKEY_MASK	0xFFFF0000ull
429 #define OPA_16B_PKEY_SHIFT	16
430 #define OPA_16B_LEN_MASK	0x7FF00000ull
431 #define OPA_16B_LEN_SHIFT	20
432 #define OPA_16B_RC_MASK		0xE000000ull
433 #define OPA_16B_RC_SHIFT	25
434 #define OPA_16B_AGE_MASK	0xFF0000ull
435 #define OPA_16B_AGE_SHIFT	16
436 #define OPA_16B_ENTROPY_MASK	0xFFFFull
437 
438 /*
439  * OPA 16B L2/L4 Encodings
440  */
441 #define OPA_16B_L4_9B		0x00
442 #define OPA_16B_L2_TYPE		0x02
443 #define OPA_16B_L4_FM		0x08
444 #define OPA_16B_L4_IB_LOCAL	0x09
445 #define OPA_16B_L4_IB_GLOBAL	0x0A
446 #define OPA_16B_L4_ETHR		OPA_VNIC_L4_ETHR
447 
448 /*
449  * OPA 16B Management
450  */
451 #define OPA_16B_L4_FM_PAD	3  /* fixed 3B pad */
452 #define OPA_16B_L4_FM_HLEN	24 /* 16B(16) + L4_FM(8) */
453 
hfi1_16B_get_l4(struct hfi1_16b_header * hdr)454 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
455 {
456 	return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
457 }
458 
hfi1_16B_get_sc(struct hfi1_16b_header * hdr)459 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
460 {
461 	return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
462 }
463 
hfi1_16B_get_dlid(struct hfi1_16b_header * hdr)464 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
465 {
466 	return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
467 		     (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
468 		     OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
469 }
470 
hfi1_16B_get_slid(struct hfi1_16b_header * hdr)471 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
472 {
473 	return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
474 		     (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
475 		     OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
476 }
477 
hfi1_16B_get_becn(struct hfi1_16b_header * hdr)478 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
479 {
480 	return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
481 }
482 
hfi1_16B_get_fecn(struct hfi1_16b_header * hdr)483 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
484 {
485 	return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
486 }
487 
hfi1_16B_get_l2(struct hfi1_16b_header * hdr)488 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
489 {
490 	return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
491 }
492 
hfi1_16B_get_pkey(struct hfi1_16b_header * hdr)493 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
494 {
495 	return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
496 }
497 
hfi1_16B_get_rc(struct hfi1_16b_header * hdr)498 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
499 {
500 	return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
501 }
502 
hfi1_16B_get_age(struct hfi1_16b_header * hdr)503 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
504 {
505 	return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
506 }
507 
hfi1_16B_get_len(struct hfi1_16b_header * hdr)508 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
509 {
510 	return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
511 }
512 
hfi1_16B_get_entropy(struct hfi1_16b_header * hdr)513 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
514 {
515 	return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
516 }
517 
518 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
519 
520 /*
521  * BTH
522  */
523 #define OPA_16B_BTH_PAD_MASK	7
hfi1_16B_bth_get_pad(struct ib_other_headers * ohdr)524 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
525 {
526 	return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
527 		   OPA_16B_BTH_PAD_MASK);
528 }
529 
530 /*
531  * 16B Management
532  */
533 #define OPA_16B_MGMT_QPN_MASK	0xFFFFFF
hfi1_16B_get_dest_qpn(struct opa_16b_mgmt * mgmt)534 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
535 {
536 	return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
537 }
538 
hfi1_16B_get_src_qpn(struct opa_16b_mgmt * mgmt)539 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
540 {
541 	return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
542 }
543 
hfi1_16B_set_qpn(struct opa_16b_mgmt * mgmt,u32 dest_qp,u32 src_qp)544 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
545 				    u32 dest_qp, u32 src_qp)
546 {
547 	mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
548 	mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
549 }
550 
551 /**
552  * hfi1_get_rc_ohdr - get extended header
553  * @opah - the opaheader
554  */
555 static inline struct ib_other_headers *
hfi1_get_rc_ohdr(struct hfi1_opa_header * opah)556 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah)
557 {
558 	struct ib_other_headers *ohdr;
559 	struct ib_header *hdr = NULL;
560 	struct hfi1_16b_header *hdr_16b = NULL;
561 
562 	/* Find out where the BTH is */
563 	if (opah->hdr_type == HFI1_PKT_TYPE_9B) {
564 		hdr = &opah->ibh;
565 		if (ib_get_lnh(hdr) == HFI1_LRH_BTH)
566 			ohdr = &hdr->u.oth;
567 		else
568 			ohdr = &hdr->u.l.oth;
569 	} else {
570 		u8 l4;
571 
572 		hdr_16b = &opah->opah;
573 		l4  = hfi1_16B_get_l4(hdr_16b);
574 		if (l4 == OPA_16B_L4_IB_LOCAL)
575 			ohdr = &hdr_16b->u.oth;
576 		else
577 			ohdr = &hdr_16b->u.l.oth;
578 	}
579 	return ohdr;
580 }
581 
582 struct rvt_sge_state;
583 
584 /*
585  * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
586  * Mostly for MADs that set or query link parameters, also ipath
587  * config interfaces
588  */
589 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
590 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
591 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
592 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
593 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
594 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
595 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
596 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
597 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
598 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
599 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
600 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
601 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
602 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
603 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
604 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
605 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
606 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
607 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
608 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
609 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
610 
611 /*
612  * HFI or Host Link States
613  *
614  * These describe the states the driver thinks the logical and physical
615  * states are in.  Used as an argument to set_link_state().  Implemented
616  * as bits for easy multi-state checking.  The actual state can only be
617  * one.
618  */
619 #define __HLS_UP_INIT_BP	0
620 #define __HLS_UP_ARMED_BP	1
621 #define __HLS_UP_ACTIVE_BP	2
622 #define __HLS_DN_DOWNDEF_BP	3	/* link down default */
623 #define __HLS_DN_POLL_BP	4
624 #define __HLS_DN_DISABLE_BP	5
625 #define __HLS_DN_OFFLINE_BP	6
626 #define __HLS_VERIFY_CAP_BP	7
627 #define __HLS_GOING_UP_BP	8
628 #define __HLS_GOING_OFFLINE_BP  9
629 #define __HLS_LINK_COOLDOWN_BP 10
630 
631 #define HLS_UP_INIT	  BIT(__HLS_UP_INIT_BP)
632 #define HLS_UP_ARMED	  BIT(__HLS_UP_ARMED_BP)
633 #define HLS_UP_ACTIVE	  BIT(__HLS_UP_ACTIVE_BP)
634 #define HLS_DN_DOWNDEF	  BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
635 #define HLS_DN_POLL	  BIT(__HLS_DN_POLL_BP)
636 #define HLS_DN_DISABLE	  BIT(__HLS_DN_DISABLE_BP)
637 #define HLS_DN_OFFLINE	  BIT(__HLS_DN_OFFLINE_BP)
638 #define HLS_VERIFY_CAP	  BIT(__HLS_VERIFY_CAP_BP)
639 #define HLS_GOING_UP	  BIT(__HLS_GOING_UP_BP)
640 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
641 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
642 
643 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
644 #define HLS_DOWN ~(HLS_UP)
645 
646 #define HLS_DEFAULT HLS_DN_POLL
647 
648 /* use this MTU size if none other is given */
649 #define HFI1_DEFAULT_ACTIVE_MTU 10240
650 /* use this MTU size as the default maximum */
651 #define HFI1_DEFAULT_MAX_MTU 10240
652 /* default partition key */
653 #define DEFAULT_PKEY 0xffff
654 
655 /*
656  * Possible fabric manager config parameters for fm_{get,set}_table()
657  */
658 #define FM_TBL_VL_HIGH_ARB		1 /* Get/set VL high prio weights */
659 #define FM_TBL_VL_LOW_ARB		2 /* Get/set VL low prio weights */
660 #define FM_TBL_BUFFER_CONTROL		3 /* Get/set Buffer Control */
661 #define FM_TBL_SC2VLNT			4 /* Get/set SC->VLnt */
662 #define FM_TBL_VL_PREEMPT_ELEMS		5 /* Get (no set) VL preempt elems */
663 #define FM_TBL_VL_PREEMPT_MATRIX	6 /* Get (no set) VL preempt matrix */
664 
665 /*
666  * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
667  * these are bits so they can be combined, e.g.
668  * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
669  */
670 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
671 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
672 #define HFI1_RCVCTRL_CTXT_ENB 0x04
673 #define HFI1_RCVCTRL_CTXT_DIS 0x08
674 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
675 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
676 #define HFI1_RCVCTRL_PKEY_ENB 0x40  /* Note, default is enabled */
677 #define HFI1_RCVCTRL_PKEY_DIS 0x80
678 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
679 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
680 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
681 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
682 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
683 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
684 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
685 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
686 #define HFI1_RCVCTRL_URGENT_ENB 0x40000
687 #define HFI1_RCVCTRL_URGENT_DIS 0x80000
688 
689 /* partition enforcement flags */
690 #define HFI1_PART_ENFORCE_IN	0x1
691 #define HFI1_PART_ENFORCE_OUT	0x2
692 
693 /* how often we check for synthetic counter wrap around */
694 #define SYNTH_CNT_TIME 3
695 
696 /* Counter flags */
697 #define CNTR_NORMAL		0x0 /* Normal counters, just read register */
698 #define CNTR_SYNTH		0x1 /* Synthetic counters, saturate at all 1s */
699 #define CNTR_DISABLED		0x2 /* Disable this counter */
700 #define CNTR_32BIT		0x4 /* Simulate 64 bits for this counter */
701 #define CNTR_VL			0x8 /* Per VL counter */
702 #define CNTR_SDMA              0x10
703 #define CNTR_INVALID_VL		-1  /* Specifies invalid VL */
704 #define CNTR_MODE_W		0x0
705 #define CNTR_MODE_R		0x1
706 
707 /* VLs Supported/Operational */
708 #define HFI1_MIN_VLS_SUPPORTED 1
709 #define HFI1_MAX_VLS_SUPPORTED 8
710 
711 #define HFI1_GUIDS_PER_PORT  5
712 #define HFI1_PORT_GUID_INDEX 0
713 
incr_cntr64(u64 * cntr)714 static inline void incr_cntr64(u64 *cntr)
715 {
716 	if (*cntr < (u64)-1LL)
717 		(*cntr)++;
718 }
719 
incr_cntr32(u32 * cntr)720 static inline void incr_cntr32(u32 *cntr)
721 {
722 	if (*cntr < (u32)-1LL)
723 		(*cntr)++;
724 }
725 
726 #define MAX_NAME_SIZE 64
727 struct hfi1_msix_entry {
728 	enum irq_type type;
729 	int irq;
730 	void *arg;
731 	cpumask_t mask;
732 	struct irq_affinity_notify notify;
733 };
734 
735 struct hfi1_msix_info {
736 	/* lock to synchronize in_use_msix access */
737 	spinlock_t msix_lock;
738 	DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS);
739 	struct hfi1_msix_entry *msix_entries;
740 	u16 max_requested;
741 };
742 
743 /* per-SL CCA information */
744 struct cca_timer {
745 	struct hrtimer hrtimer;
746 	struct hfi1_pportdata *ppd; /* read-only */
747 	int sl; /* read-only */
748 	u16 ccti; /* read/write - current value of CCTI */
749 };
750 
751 struct link_down_reason {
752 	/*
753 	 * SMA-facing value.  Should be set from .latest when
754 	 * HLS_UP_* -> HLS_DN_* transition actually occurs.
755 	 */
756 	u8 sma;
757 	u8 latest;
758 };
759 
760 enum {
761 	LO_PRIO_TABLE,
762 	HI_PRIO_TABLE,
763 	MAX_PRIO_TABLE
764 };
765 
766 struct vl_arb_cache {
767 	/* protect vl arb cache */
768 	spinlock_t lock;
769 	struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
770 };
771 
772 /*
773  * The structure below encapsulates data relevant to a physical IB Port.
774  * Current chips support only one such port, but the separation
775  * clarifies things a bit. Note that to conform to IB conventions,
776  * port-numbers are one-based. The first or only port is port1.
777  */
778 struct hfi1_pportdata {
779 	struct hfi1_ibport ibport_data;
780 
781 	struct hfi1_devdata *dd;
782 	struct kobject pport_cc_kobj;
783 	struct kobject sc2vl_kobj;
784 	struct kobject sl2sc_kobj;
785 	struct kobject vl2mtu_kobj;
786 
787 	/* PHY support */
788 	struct qsfp_data qsfp_info;
789 	/* Values for SI tuning of SerDes */
790 	u32 port_type;
791 	u32 tx_preset_eq;
792 	u32 tx_preset_noeq;
793 	u32 rx_preset;
794 	u8  local_atten;
795 	u8  remote_atten;
796 	u8  default_atten;
797 	u8  max_power_class;
798 
799 	/* did we read platform config from scratch registers? */
800 	bool config_from_scratch;
801 
802 	/* GUIDs for this interface, in host order, guids[0] is a port guid */
803 	u64 guids[HFI1_GUIDS_PER_PORT];
804 
805 	/* GUID for peer interface, in host order */
806 	u64 neighbor_guid;
807 
808 	/* up or down physical link state */
809 	u32 linkup;
810 
811 	/*
812 	 * this address is mapped read-only into user processes so they can
813 	 * get status cheaply, whenever they want.  One qword of status per port
814 	 */
815 	u64 *statusp;
816 
817 	/* SendDMA related entries */
818 
819 	struct workqueue_struct *hfi1_wq;
820 	struct workqueue_struct *link_wq;
821 
822 	/* move out of interrupt context */
823 	struct work_struct link_vc_work;
824 	struct work_struct link_up_work;
825 	struct work_struct link_down_work;
826 	struct work_struct sma_message_work;
827 	struct work_struct freeze_work;
828 	struct work_struct link_downgrade_work;
829 	struct work_struct link_bounce_work;
830 	struct delayed_work start_link_work;
831 	/* host link state variables */
832 	struct mutex hls_lock;
833 	u32 host_link_state;
834 
835 	/* these are the "32 bit" regs */
836 
837 	u32 ibmtu; /* The MTU programmed for this unit */
838 	/*
839 	 * Current max size IB packet (in bytes) including IB headers, that
840 	 * we can send. Changes when ibmtu changes.
841 	 */
842 	u32 ibmaxlen;
843 	u32 current_egress_rate; /* units [10^6 bits/sec] */
844 	/* LID programmed for this instance */
845 	u32 lid;
846 	/* list of pkeys programmed; 0 if not set */
847 	u16 pkeys[MAX_PKEY_VALUES];
848 	u16 link_width_supported;
849 	u16 link_width_downgrade_supported;
850 	u16 link_speed_supported;
851 	u16 link_width_enabled;
852 	u16 link_width_downgrade_enabled;
853 	u16 link_speed_enabled;
854 	u16 link_width_active;
855 	u16 link_width_downgrade_tx_active;
856 	u16 link_width_downgrade_rx_active;
857 	u16 link_speed_active;
858 	u8 vls_supported;
859 	u8 vls_operational;
860 	u8 actual_vls_operational;
861 	/* LID mask control */
862 	u8 lmc;
863 	/* Rx Polarity inversion (compensate for ~tx on partner) */
864 	u8 rx_pol_inv;
865 
866 	u8 hw_pidx;     /* physical port index */
867 	u8 port;        /* IB port number and index into dd->pports - 1 */
868 	/* type of neighbor node */
869 	u8 neighbor_type;
870 	u8 neighbor_normal;
871 	u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
872 	u8 neighbor_port_number;
873 	u8 is_sm_config_started;
874 	u8 offline_disabled_reason;
875 	u8 is_active_optimize_enabled;
876 	u8 driver_link_ready;	/* driver ready for active link */
877 	u8 link_enabled;	/* link enabled? */
878 	u8 linkinit_reason;
879 	u8 local_tx_rate;	/* rate given to 8051 firmware */
880 	u8 qsfp_retry_count;
881 
882 	/* placeholders for IB MAD packet settings */
883 	u8 overrun_threshold;
884 	u8 phy_error_threshold;
885 	unsigned int is_link_down_queued;
886 
887 	/* Used to override LED behavior for things like maintenance beaconing*/
888 	/*
889 	 * Alternates per phase of blink
890 	 * [0] holds LED off duration, [1] holds LED on duration
891 	 */
892 	unsigned long led_override_vals[2];
893 	u8 led_override_phase; /* LSB picks from vals[] */
894 	atomic_t led_override_timer_active;
895 	/* Used to flash LEDs in override mode */
896 	struct timer_list led_override_timer;
897 
898 	u32 sm_trap_qp;
899 	u32 sa_qp;
900 
901 	/*
902 	 * cca_timer_lock protects access to the per-SL cca_timer
903 	 * structures (specifically the ccti member).
904 	 */
905 	spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
906 	struct cca_timer cca_timer[OPA_MAX_SLS];
907 
908 	/* List of congestion control table entries */
909 	struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
910 
911 	/* congestion entries, each entry corresponding to a SL */
912 	struct opa_congestion_setting_entry_shadow
913 		congestion_entries[OPA_MAX_SLS];
914 
915 	/*
916 	 * cc_state_lock protects (write) access to the per-port
917 	 * struct cc_state.
918 	 */
919 	spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
920 
921 	struct cc_state __rcu *cc_state;
922 
923 	/* Total number of congestion control table entries */
924 	u16 total_cct_entry;
925 
926 	/* Bit map identifying service level */
927 	u32 cc_sl_control_map;
928 
929 	/* CA's max number of 64 entry units in the congestion control table */
930 	u8 cc_max_table_entries;
931 
932 	/*
933 	 * begin congestion log related entries
934 	 * cc_log_lock protects all congestion log related data
935 	 */
936 	spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
937 	u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
938 	u16 threshold_event_counter;
939 	struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
940 	int cc_log_idx; /* index for logging events */
941 	int cc_mad_idx; /* index for reporting events */
942 	/* end congestion log related entries */
943 
944 	struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
945 
946 	/* port relative counter buffer */
947 	u64 *cntrs;
948 	/* port relative synthetic counter buffer */
949 	u64 *scntrs;
950 	/* port_xmit_discards are synthesized from different egress errors */
951 	u64 port_xmit_discards;
952 	u64 port_xmit_discards_vl[C_VL_COUNT];
953 	u64 port_xmit_constraint_errors;
954 	u64 port_rcv_constraint_errors;
955 	/* count of 'link_err' interrupts from DC */
956 	u64 link_downed;
957 	/* number of times link retrained successfully */
958 	u64 link_up;
959 	/* number of times a link unknown frame was reported */
960 	u64 unknown_frame_count;
961 	/* port_ltp_crc_mode is returned in 'portinfo' MADs */
962 	u16 port_ltp_crc_mode;
963 	/* port_crc_mode_enabled is the crc we support */
964 	u8 port_crc_mode_enabled;
965 	/* mgmt_allowed is also returned in 'portinfo' MADs */
966 	u8 mgmt_allowed;
967 	u8 part_enforce; /* partition enforcement flags */
968 	struct link_down_reason local_link_down_reason;
969 	struct link_down_reason neigh_link_down_reason;
970 	/* Value to be sent to link peer on LinkDown .*/
971 	u8 remote_link_down_reason;
972 	/* Error events that will cause a port bounce. */
973 	u32 port_error_action;
974 	struct work_struct linkstate_active_work;
975 	/* Does this port need to prescan for FECNs */
976 	bool cc_prescan;
977 	/*
978 	 * Sample sendWaitCnt & sendWaitVlCnt during link transition
979 	 * and counter request.
980 	 */
981 	u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
982 	u16 prev_link_width;
983 	u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
984 };
985 
986 typedef void (*opcode_handler)(struct hfi1_packet *packet);
987 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
988 			      struct hfi1_pkt_state *ps,
989 			      struct rvt_swqe *wqe);
990 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
991 extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[];
992 
993 /* return values for the RHF receive functions */
994 #define RHF_RCV_CONTINUE  0	/* keep going */
995 #define RHF_RCV_DONE	  1	/* stop, this packet processed */
996 #define RHF_RCV_REPROCESS 2	/* stop. retain this packet */
997 
998 struct rcv_array_data {
999 	u16 ngroups;
1000 	u16 nctxt_extra;
1001 	u8 group_size;
1002 };
1003 
1004 struct per_vl_data {
1005 	u16 mtu;
1006 	struct send_context *sc;
1007 };
1008 
1009 /* 16 to directly index */
1010 #define PER_VL_SEND_CONTEXTS 16
1011 
1012 struct err_info_rcvport {
1013 	u8 status_and_code;
1014 	u64 packet_flit1;
1015 	u64 packet_flit2;
1016 };
1017 
1018 struct err_info_constraint {
1019 	u8 status;
1020 	u16 pkey;
1021 	u32 slid;
1022 };
1023 
1024 struct hfi1_temp {
1025 	unsigned int curr;       /* current temperature */
1026 	unsigned int lo_lim;     /* low temperature limit */
1027 	unsigned int hi_lim;     /* high temperature limit */
1028 	unsigned int crit_lim;   /* critical temperature limit */
1029 	u8 triggers;      /* temperature triggers */
1030 };
1031 
1032 struct hfi1_i2c_bus {
1033 	struct hfi1_devdata *controlling_dd; /* current controlling device */
1034 	struct i2c_adapter adapter;	/* bus details */
1035 	struct i2c_algo_bit_data algo;	/* bus algorithm details */
1036 	int num;			/* bus number, 0 or 1 */
1037 };
1038 
1039 /* common data between shared ASIC HFIs */
1040 struct hfi1_asic_data {
1041 	struct hfi1_devdata *dds[2];	/* back pointers */
1042 	struct mutex asic_resource_mutex;
1043 	struct hfi1_i2c_bus *i2c_bus0;
1044 	struct hfi1_i2c_bus *i2c_bus1;
1045 };
1046 
1047 /* sizes for both the QP and RSM map tables */
1048 #define NUM_MAP_ENTRIES	 256
1049 #define NUM_MAP_REGS      32
1050 
1051 /* Virtual NIC information */
1052 struct hfi1_vnic_data {
1053 	struct kmem_cache *txreq_cache;
1054 	u8 num_vports;
1055 };
1056 
1057 struct hfi1_vnic_vport_info;
1058 
1059 /* device data struct now contains only "general per-device" info.
1060  * fields related to a physical IB port are in a hfi1_pportdata struct.
1061  */
1062 struct sdma_engine;
1063 struct sdma_vl_map;
1064 
1065 #define BOARD_VERS_MAX 96 /* how long the version string can be */
1066 #define SERIAL_MAX 16 /* length of the serial number */
1067 
1068 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
1069 struct hfi1_devdata {
1070 	struct hfi1_ibdev verbs_dev;     /* must be first */
1071 	/* pointers to related structs for this device */
1072 	/* pci access data structure */
1073 	struct pci_dev *pcidev;
1074 	struct cdev user_cdev;
1075 	struct cdev diag_cdev;
1076 	struct cdev ui_cdev;
1077 	struct device *user_device;
1078 	struct device *diag_device;
1079 	struct device *ui_device;
1080 
1081 	/* first mapping up to RcvArray */
1082 	u8 __iomem *kregbase1;
1083 	resource_size_t physaddr;
1084 
1085 	/* second uncached mapping from RcvArray to pio send buffers */
1086 	u8 __iomem *kregbase2;
1087 	/* for detecting offset above kregbase2 address */
1088 	u32 base2_start;
1089 
1090 	/* Per VL data. Enough for all VLs but not all elements are set/used. */
1091 	struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
1092 	/* send context data */
1093 	struct send_context_info *send_contexts;
1094 	/* map hardware send contexts to software index */
1095 	u8 *hw_to_sw;
1096 	/* spinlock for allocating and releasing send context resources */
1097 	spinlock_t sc_lock;
1098 	/* lock for pio_map */
1099 	spinlock_t pio_map_lock;
1100 	/* Send Context initialization lock. */
1101 	spinlock_t sc_init_lock;
1102 	/* lock for sdma_map */
1103 	spinlock_t                          sde_map_lock;
1104 	/* array of kernel send contexts */
1105 	struct send_context **kernel_send_context;
1106 	/* array of vl maps */
1107 	struct pio_vl_map __rcu *pio_map;
1108 	/* default flags to last descriptor */
1109 	u64 default_desc1;
1110 
1111 	/* fields common to all SDMA engines */
1112 
1113 	volatile __le64                    *sdma_heads_dma; /* DMA'ed by chip */
1114 	dma_addr_t                          sdma_heads_phys;
1115 	void                               *sdma_pad_dma; /* DMA'ed by chip */
1116 	dma_addr_t                          sdma_pad_phys;
1117 	/* for deallocation */
1118 	size_t                              sdma_heads_size;
1119 	/* num used */
1120 	u32                                 num_sdma;
1121 	/* array of engines sized by num_sdma */
1122 	struct sdma_engine                 *per_sdma;
1123 	/* array of vl maps */
1124 	struct sdma_vl_map __rcu           *sdma_map;
1125 	/* SPC freeze waitqueue and variable */
1126 	wait_queue_head_t		  sdma_unfreeze_wq;
1127 	atomic_t			  sdma_unfreeze_count;
1128 
1129 	u32 lcb_access_count;		/* count of LCB users */
1130 
1131 	/* common data between shared ASIC HFIs in this OS */
1132 	struct hfi1_asic_data *asic_data;
1133 
1134 	/* mem-mapped pointer to base of PIO buffers */
1135 	void __iomem *piobase;
1136 	/*
1137 	 * write-combining mem-mapped pointer to base of RcvArray
1138 	 * memory.
1139 	 */
1140 	void __iomem *rcvarray_wc;
1141 	/*
1142 	 * credit return base - a per-NUMA range of DMA address that
1143 	 * the chip will use to update the per-context free counter
1144 	 */
1145 	struct credit_return_base *cr_base;
1146 
1147 	/* send context numbers and sizes for each type */
1148 	struct sc_config_sizes sc_sizes[SC_MAX];
1149 
1150 	char *boardname; /* human readable board info */
1151 
1152 	u64 ctx0_seq_drop;
1153 
1154 	/* reset value */
1155 	u64 z_int_counter;
1156 	u64 z_rcv_limit;
1157 	u64 z_send_schedule;
1158 
1159 	u64 __percpu *send_schedule;
1160 	/* number of reserved contexts for netdev usage */
1161 	u16 num_netdev_contexts;
1162 	/* number of receive contexts in use by the driver */
1163 	u32 num_rcv_contexts;
1164 	/* number of pio send contexts in use by the driver */
1165 	u32 num_send_contexts;
1166 	/*
1167 	 * number of ctxts available for PSM open
1168 	 */
1169 	u32 freectxts;
1170 	/* total number of available user/PSM contexts */
1171 	u32 num_user_contexts;
1172 	/* base receive interrupt timeout, in CSR units */
1173 	u32 rcv_intr_timeout_csr;
1174 
1175 	spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1176 	spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1177 	spinlock_t uctxt_lock; /* protect rcd changes */
1178 	struct mutex dc8051_lock; /* exclusive access to 8051 */
1179 	struct workqueue_struct *update_cntr_wq;
1180 	struct work_struct update_cntr_work;
1181 	/* exclusive access to 8051 memory */
1182 	spinlock_t dc8051_memlock;
1183 	int dc8051_timed_out;	/* remember if the 8051 timed out */
1184 	/*
1185 	 * A page that will hold event notification bitmaps for all
1186 	 * contexts. This page will be mapped into all processes.
1187 	 */
1188 	unsigned long *events;
1189 	/*
1190 	 * per unit status, see also portdata statusp
1191 	 * mapped read-only into user processes so they can get unit and
1192 	 * IB link status cheaply
1193 	 */
1194 	struct hfi1_status *status;
1195 
1196 	/* revision register shadow */
1197 	u64 revision;
1198 	/* Base GUID for device (network order) */
1199 	u64 base_guid;
1200 
1201 	/* both sides of the PCIe link are gen3 capable */
1202 	u8 link_gen3_capable;
1203 	u8 dc_shutdown;
1204 	/* localbus width (1, 2,4,8,16,32) from config space  */
1205 	u32 lbus_width;
1206 	/* localbus speed in MHz */
1207 	u32 lbus_speed;
1208 	int unit; /* unit # of this chip */
1209 	int node; /* home node of this chip */
1210 
1211 	/* save these PCI fields to restore after a reset */
1212 	u32 pcibar0;
1213 	u32 pcibar1;
1214 	u32 pci_rom;
1215 	u16 pci_command;
1216 	u16 pcie_devctl;
1217 	u16 pcie_lnkctl;
1218 	u16 pcie_devctl2;
1219 	u32 pci_msix0;
1220 	u32 pci_tph2;
1221 
1222 	/*
1223 	 * ASCII serial number, from flash, large enough for original
1224 	 * all digit strings, and longer serial number format
1225 	 */
1226 	u8 serial[SERIAL_MAX];
1227 	/* human readable board version */
1228 	u8 boardversion[BOARD_VERS_MAX];
1229 	u8 lbus_info[32]; /* human readable localbus info */
1230 	/* chip major rev, from CceRevision */
1231 	u8 majrev;
1232 	/* chip minor rev, from CceRevision */
1233 	u8 minrev;
1234 	/* hardware ID */
1235 	u8 hfi1_id;
1236 	/* implementation code */
1237 	u8 icode;
1238 	/* vAU of this device */
1239 	u8 vau;
1240 	/* vCU of this device */
1241 	u8 vcu;
1242 	/* link credits of this device */
1243 	u16 link_credits;
1244 	/* initial vl15 credits to use */
1245 	u16 vl15_init;
1246 
1247 	/*
1248 	 * Cached value for vl15buf, read during verify cap interrupt. VL15
1249 	 * credits are to be kept at 0 and set when handling the link-up
1250 	 * interrupt. This removes the possibility of receiving VL15 MAD
1251 	 * packets before this HFI is ready.
1252 	 */
1253 	u16 vl15buf_cached;
1254 
1255 	/* Misc small ints */
1256 	u8 n_krcv_queues;
1257 	u8 qos_shift;
1258 
1259 	u16 irev;	/* implementation revision */
1260 	u32 dc8051_ver; /* 8051 firmware version */
1261 
1262 	spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1263 	struct platform_config platform_config;
1264 	struct platform_config_cache pcfg_cache;
1265 
1266 	struct diag_client *diag_client;
1267 
1268 	/* general interrupt: mask of handled interrupts */
1269 	u64 gi_mask[CCE_NUM_INT_CSRS];
1270 
1271 	struct rcv_array_data rcv_entries;
1272 
1273 	/* cycle length of PS* counters in HW (in picoseconds) */
1274 	u16 psxmitwait_check_rate;
1275 
1276 	/*
1277 	 * 64 bit synthetic counters
1278 	 */
1279 	struct timer_list synth_stats_timer;
1280 
1281 	/* MSI-X information */
1282 	struct hfi1_msix_info msix_info;
1283 
1284 	/*
1285 	 * device counters
1286 	 */
1287 	char *cntrnames;
1288 	size_t cntrnameslen;
1289 	size_t ndevcntrs;
1290 	u64 *cntrs;
1291 	u64 *scntrs;
1292 
1293 	/*
1294 	 * remembered values for synthetic counters
1295 	 */
1296 	u64 last_tx;
1297 	u64 last_rx;
1298 
1299 	/*
1300 	 * per-port counters
1301 	 */
1302 	size_t nportcntrs;
1303 	char *portcntrnames;
1304 	size_t portcntrnameslen;
1305 
1306 	struct err_info_rcvport err_info_rcvport;
1307 	struct err_info_constraint err_info_rcv_constraint;
1308 	struct err_info_constraint err_info_xmit_constraint;
1309 
1310 	atomic_t drop_packet;
1311 	bool do_drop;
1312 	u8 err_info_uncorrectable;
1313 	u8 err_info_fmconfig;
1314 
1315 	/*
1316 	 * Software counters for the status bits defined by the
1317 	 * associated error status registers
1318 	 */
1319 	u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1320 	u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1321 	u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1322 	u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1323 	u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1324 	u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1325 	u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1326 
1327 	/* Software counter that spans all contexts */
1328 	u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1329 	/* Software counter that spans all DMA engines */
1330 	u64 sw_send_dma_eng_err_status_cnt[
1331 		NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1332 	/* Software counter that aggregates all cce_err_status errors */
1333 	u64 sw_cce_err_status_aggregate;
1334 	/* Software counter that aggregates all bypass packet rcv errors */
1335 	u64 sw_rcv_bypass_packet_errors;
1336 
1337 	/* Save the enabled LCB error bits */
1338 	u64 lcb_err_en;
1339 	struct cpu_mask_set *comp_vect;
1340 	int *comp_vect_mappings;
1341 	u32 comp_vect_possible_cpus;
1342 
1343 	/*
1344 	 * Capability to have different send engines simply by changing a
1345 	 * pointer value.
1346 	 */
1347 	send_routine process_pio_send ____cacheline_aligned_in_smp;
1348 	send_routine process_dma_send;
1349 	void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1350 				u64 pbc, const void *from, size_t count);
1351 	int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1352 				     struct hfi1_vnic_vport_info *vinfo,
1353 				     struct sk_buff *skb, u64 pbc, u8 plen);
1354 	/* hfi1_pportdata, points to array of (physical) port-specific
1355 	 * data structs, indexed by pidx (0..n-1)
1356 	 */
1357 	struct hfi1_pportdata *pport;
1358 	/* receive context data */
1359 	struct hfi1_ctxtdata **rcd;
1360 	u64 __percpu *int_counter;
1361 	/* verbs tx opcode stats */
1362 	struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1363 	/* device (not port) flags, basically device capabilities */
1364 	u16 flags;
1365 	/* Number of physical ports available */
1366 	u8 num_pports;
1367 	/* Lowest context number which can be used by user processes or VNIC */
1368 	u8 first_dyn_alloc_ctxt;
1369 	/* adding a new field here would make it part of this cacheline */
1370 
1371 	/* seqlock for sc2vl */
1372 	seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1373 	u64 sc2vl[4];
1374 	u64 __percpu *rcv_limit;
1375 	/* adding a new field here would make it part of this cacheline */
1376 
1377 	/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1378 	u8 oui1;
1379 	u8 oui2;
1380 	u8 oui3;
1381 
1382 	/* Timer and counter used to detect RcvBufOvflCnt changes */
1383 	struct timer_list rcverr_timer;
1384 
1385 	wait_queue_head_t event_queue;
1386 
1387 	/* receive context tail dummy address */
1388 	__le64 *rcvhdrtail_dummy_kvaddr;
1389 	dma_addr_t rcvhdrtail_dummy_dma;
1390 
1391 	u32 rcv_ovfl_cnt;
1392 	/* Serialize ASPM enable/disable between multiple verbs contexts */
1393 	spinlock_t aspm_lock;
1394 	/* Number of verbs contexts which have disabled ASPM */
1395 	atomic_t aspm_disabled_cnt;
1396 	/* Keeps track of user space clients */
1397 	atomic_t user_refcount;
1398 	/* Used to wait for outstanding user space clients before dev removal */
1399 	struct completion user_comp;
1400 
1401 	bool eprom_available;	/* true if EPROM is available for this device */
1402 	bool aspm_supported;	/* Does HW support ASPM */
1403 	bool aspm_enabled;	/* ASPM state: enabled/disabled */
1404 	struct rhashtable *sdma_rht;
1405 
1406 	/* vnic data */
1407 	struct hfi1_vnic_data vnic;
1408 	/* Lock to protect IRQ SRC register access */
1409 	spinlock_t irq_src_lock;
1410 	int vnic_num_vports;
1411 	struct net_device *dummy_netdev;
1412 	struct hfi1_affinity_node *affinity_entry;
1413 
1414 	/* Keeps track of IPoIB RSM rule users */
1415 	atomic_t ipoib_rsm_usr_num;
1416 };
1417 
1418 /* 8051 firmware version helper */
1419 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1420 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1421 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1422 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1423 
1424 /* f_put_tid types */
1425 #define PT_EXPECTED       0
1426 #define PT_EAGER          1
1427 #define PT_INVALID_FLUSH  2
1428 #define PT_INVALID        3
1429 
1430 struct tid_rb_node;
1431 struct mmu_rb_node;
1432 struct mmu_rb_handler;
1433 
1434 /* Private data for file operations */
1435 struct hfi1_filedata {
1436 	struct srcu_struct pq_srcu;
1437 	struct hfi1_devdata *dd;
1438 	struct hfi1_ctxtdata *uctxt;
1439 	struct hfi1_user_sdma_comp_q *cq;
1440 	/* update side lock for SRCU */
1441 	spinlock_t pq_rcu_lock;
1442 	struct hfi1_user_sdma_pkt_q __rcu *pq;
1443 	u16 subctxt;
1444 	/* for cpu affinity; -1 if none */
1445 	int rec_cpu_num;
1446 	u32 tid_n_pinned;
1447 	bool use_mn;
1448 	struct tid_rb_node **entry_to_rb;
1449 	spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1450 	u32 tid_limit;
1451 	u32 tid_used;
1452 	u32 *invalid_tids;
1453 	u32 invalid_tid_idx;
1454 	/* protect invalid_tids array and invalid_tid_idx */
1455 	spinlock_t invalid_lock;
1456 };
1457 
1458 extern struct xarray hfi1_dev_table;
1459 struct hfi1_devdata *hfi1_lookup(int unit);
1460 
uctxt_offset(struct hfi1_ctxtdata * uctxt)1461 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1462 {
1463 	return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1464 		HFI1_MAX_SHARED_CTXTS;
1465 }
1466 
1467 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1468 int hfi1_count_active_units(void);
1469 
1470 int hfi1_diag_add(struct hfi1_devdata *dd);
1471 void hfi1_diag_remove(struct hfi1_devdata *dd);
1472 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1473 
1474 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1475 
1476 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1477 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1478 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1479 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1480 			 struct hfi1_ctxtdata **rcd);
1481 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1482 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1483 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1484 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1485 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1486 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1487 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1488 						 u16 ctxt);
1489 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1490 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1491 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1492 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1493 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget);
1494 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget);
1495 void set_all_slowpath(struct hfi1_devdata *dd);
1496 
1497 extern const struct pci_device_id hfi1_pci_tbl[];
1498 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1499 			 struct hfi1_pkt_state *ps,
1500 			 struct rvt_swqe *wqe);
1501 
1502 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1503 			  struct hfi1_pkt_state *ps,
1504 			  struct rvt_swqe *wqe);
1505 
1506 /* receive packet handler dispositions */
1507 #define RCV_PKT_OK      0x0 /* keep going */
1508 #define RCV_PKT_LIMIT   0x1 /* stop, hit limit, start thread */
1509 #define RCV_PKT_DONE    0x2 /* stop, no more packets detected */
1510 
1511 /**
1512  * hfi1_rcd_head - add accessor for rcd head
1513  * @rcd: the context
1514  */
hfi1_rcd_head(struct hfi1_ctxtdata * rcd)1515 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd)
1516 {
1517 	return rcd->head;
1518 }
1519 
1520 /**
1521  * hfi1_set_rcd_head - add accessor for rcd head
1522  * @rcd: the context
1523  * @head: the new head
1524  */
hfi1_set_rcd_head(struct hfi1_ctxtdata * rcd,u32 head)1525 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head)
1526 {
1527 	rcd->head = head;
1528 }
1529 
1530 /* calculate the current RHF address */
get_rhf_addr(struct hfi1_ctxtdata * rcd)1531 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1532 {
1533 	return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
1534 }
1535 
1536 /* return DMA_RTAIL configuration */
get_dma_rtail_setting(struct hfi1_ctxtdata * rcd)1537 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd)
1538 {
1539 	return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL);
1540 }
1541 
1542 /**
1543  * hfi1_seq_incr_wrap - wrapping increment for sequence
1544  * @seq: the current sequence number
1545  *
1546  * Returns: the incremented seq
1547  */
hfi1_seq_incr_wrap(u8 seq)1548 static inline u8 hfi1_seq_incr_wrap(u8 seq)
1549 {
1550 	if (++seq > RHF_MAX_SEQ)
1551 		seq = 1;
1552 	return seq;
1553 }
1554 
1555 /**
1556  * hfi1_seq_cnt - return seq_cnt member
1557  * @rcd: the receive context
1558  *
1559  * Return seq_cnt member
1560  */
hfi1_seq_cnt(struct hfi1_ctxtdata * rcd)1561 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd)
1562 {
1563 	return rcd->seq_cnt;
1564 }
1565 
1566 /**
1567  * hfi1_set_seq_cnt - return seq_cnt member
1568  * @rcd: the receive context
1569  *
1570  * Return seq_cnt member
1571  */
hfi1_set_seq_cnt(struct hfi1_ctxtdata * rcd,u8 cnt)1572 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt)
1573 {
1574 	rcd->seq_cnt = cnt;
1575 }
1576 
1577 /**
1578  * last_rcv_seq - is last
1579  * @rcd: the receive context
1580  * @seq: sequence
1581  *
1582  * return true if last packet
1583  */
last_rcv_seq(struct hfi1_ctxtdata * rcd,u32 seq)1584 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq)
1585 {
1586 	return seq != rcd->seq_cnt;
1587 }
1588 
1589 /**
1590  * rcd_seq_incr - increment context sequence number
1591  * @rcd: the receive context
1592  * @seq: the current sequence number
1593  *
1594  * Returns: true if the this was the last packet
1595  */
hfi1_seq_incr(struct hfi1_ctxtdata * rcd,u32 seq)1596 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq)
1597 {
1598 	rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt);
1599 	return last_rcv_seq(rcd, seq);
1600 }
1601 
1602 /**
1603  * get_hdrqentsize - return hdrq entry size
1604  * @rcd: the receive context
1605  */
get_hdrqentsize(struct hfi1_ctxtdata * rcd)1606 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd)
1607 {
1608 	return rcd->rcvhdrqentsize;
1609 }
1610 
1611 /**
1612  * get_hdrq_cnt - return hdrq count
1613  * @rcd: the receive context
1614  */
get_hdrq_cnt(struct hfi1_ctxtdata * rcd)1615 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd)
1616 {
1617 	return rcd->rcvhdrq_cnt;
1618 }
1619 
1620 /**
1621  * hfi1_is_slowpath - check if this context is slow path
1622  * @rcd: the receive context
1623  */
hfi1_is_slowpath(struct hfi1_ctxtdata * rcd)1624 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd)
1625 {
1626 	return rcd->do_interrupt == rcd->slow_handler;
1627 }
1628 
1629 /**
1630  * hfi1_is_fastpath - check if this context is fast path
1631  * @rcd: the receive context
1632  */
hfi1_is_fastpath(struct hfi1_ctxtdata * rcd)1633 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd)
1634 {
1635 	if (rcd->ctxt == HFI1_CTRL_CTXT)
1636 		return false;
1637 
1638 	return rcd->do_interrupt == rcd->fast_handler;
1639 }
1640 
1641 /**
1642  * hfi1_set_fast - change to the fast handler
1643  * @rcd: the receive context
1644  */
hfi1_set_fast(struct hfi1_ctxtdata * rcd)1645 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd)
1646 {
1647 	if (unlikely(!rcd))
1648 		return;
1649 	if (unlikely(!hfi1_is_fastpath(rcd)))
1650 		rcd->do_interrupt = rcd->fast_handler;
1651 }
1652 
1653 int hfi1_reset_device(int);
1654 
1655 void receive_interrupt_work(struct work_struct *work);
1656 
1657 /* extract service channel from header and rhf */
hfi1_9B_get_sc5(struct ib_header * hdr,u64 rhf)1658 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1659 {
1660 	return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1661 }
1662 
1663 #define HFI1_JKEY_WIDTH       16
1664 #define HFI1_JKEY_MASK        (BIT(16) - 1)
1665 #define HFI1_ADMIN_JKEY_RANGE 32
1666 
1667 /*
1668  * J_KEYs are split and allocated in the following groups:
1669  *   0 - 31    - users with administrator privileges
1670  *  32 - 63    - kernel protocols using KDETH packets
1671  *  64 - 65535 - all other users using KDETH packets
1672  */
generate_jkey(kuid_t uid)1673 static inline u16 generate_jkey(kuid_t uid)
1674 {
1675 	u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1676 
1677 	if (capable(CAP_SYS_ADMIN))
1678 		jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1679 	else if (jkey < 64)
1680 		jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1681 
1682 	return jkey;
1683 }
1684 
1685 /*
1686  * active_egress_rate
1687  *
1688  * returns the active egress rate in units of [10^6 bits/sec]
1689  */
active_egress_rate(struct hfi1_pportdata * ppd)1690 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1691 {
1692 	u16 link_speed = ppd->link_speed_active;
1693 	u16 link_width = ppd->link_width_active;
1694 	u32 egress_rate;
1695 
1696 	if (link_speed == OPA_LINK_SPEED_25G)
1697 		egress_rate = 25000;
1698 	else /* assume OPA_LINK_SPEED_12_5G */
1699 		egress_rate = 12500;
1700 
1701 	switch (link_width) {
1702 	case OPA_LINK_WIDTH_4X:
1703 		egress_rate *= 4;
1704 		break;
1705 	case OPA_LINK_WIDTH_3X:
1706 		egress_rate *= 3;
1707 		break;
1708 	case OPA_LINK_WIDTH_2X:
1709 		egress_rate *= 2;
1710 		break;
1711 	default:
1712 		/* assume IB_WIDTH_1X */
1713 		break;
1714 	}
1715 
1716 	return egress_rate;
1717 }
1718 
1719 /*
1720  * egress_cycles
1721  *
1722  * Returns the number of 'fabric clock cycles' to egress a packet
1723  * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1724  * rate is (approximately) 805 MHz, the units of the returned value
1725  * are (1/805 MHz).
1726  */
egress_cycles(u32 len,u32 rate)1727 static inline u32 egress_cycles(u32 len, u32 rate)
1728 {
1729 	u32 cycles;
1730 
1731 	/*
1732 	 * cycles is:
1733 	 *
1734 	 *          (length) [bits] / (rate) [bits/sec]
1735 	 *  ---------------------------------------------------
1736 	 *  fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1737 	 */
1738 
1739 	cycles = len * 8; /* bits */
1740 	cycles *= 805;
1741 	cycles /= rate;
1742 
1743 	return cycles;
1744 }
1745 
1746 void set_link_ipg(struct hfi1_pportdata *ppd);
1747 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1748 		  u32 rqpn, u8 svc_type);
1749 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1750 		u16 pkey, u32 slid, u32 dlid, u8 sc5,
1751 		const struct ib_grh *old_grh);
1752 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1753 		    u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1754 		    u8 sc5, const struct ib_grh *old_grh);
1755 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1756 				u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1757 				u8 sc5, const struct ib_grh *old_grh);
1758 
1759 #define PKEY_CHECK_INVALID -1
1760 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1761 		      u8 sc5, int8_t s_pkey_index);
1762 
1763 #define PACKET_EGRESS_TIMEOUT 350
pause_for_credit_return(struct hfi1_devdata * dd)1764 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1765 {
1766 	/* Pause at least 1us, to ensure chip returns all credits */
1767 	u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1768 
1769 	udelay(usec ? usec : 1);
1770 }
1771 
1772 /**
1773  * sc_to_vlt() reverse lookup sc to vl
1774  * @dd - devdata
1775  * @sc5 - 5 bit sc
1776  */
sc_to_vlt(struct hfi1_devdata * dd,u8 sc5)1777 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1778 {
1779 	unsigned seq;
1780 	u8 rval;
1781 
1782 	if (sc5 >= OPA_MAX_SCS)
1783 		return (u8)(0xff);
1784 
1785 	do {
1786 		seq = read_seqbegin(&dd->sc2vl_lock);
1787 		rval = *(((u8 *)dd->sc2vl) + sc5);
1788 	} while (read_seqretry(&dd->sc2vl_lock, seq));
1789 
1790 	return rval;
1791 }
1792 
1793 #define PKEY_MEMBER_MASK 0x8000
1794 #define PKEY_LOW_15_MASK 0x7fff
1795 
1796 /*
1797  * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1798  * being an entry from the ingress partition key table), return 0
1799  * otherwise. Use the matching criteria for ingress partition keys
1800  * specified in the OPAv1 spec., section 9.10.14.
1801  */
ingress_pkey_matches_entry(u16 pkey,u16 ent)1802 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1803 {
1804 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1805 	u16 ment = ent & PKEY_LOW_15_MASK;
1806 
1807 	if (mkey == ment) {
1808 		/*
1809 		 * If pkey[15] is clear (limited partition member),
1810 		 * is bit 15 in the corresponding table element
1811 		 * clear (limited member)?
1812 		 */
1813 		if (!(pkey & PKEY_MEMBER_MASK))
1814 			return !!(ent & PKEY_MEMBER_MASK);
1815 		return 1;
1816 	}
1817 	return 0;
1818 }
1819 
1820 /*
1821  * ingress_pkey_table_search - search the entire pkey table for
1822  * an entry which matches 'pkey'. return 0 if a match is found,
1823  * and 1 otherwise.
1824  */
ingress_pkey_table_search(struct hfi1_pportdata * ppd,u16 pkey)1825 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1826 {
1827 	int i;
1828 
1829 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1830 		if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1831 			return 0;
1832 	}
1833 	return 1;
1834 }
1835 
1836 /*
1837  * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1838  * i.e., increment port_rcv_constraint_errors for the port, and record
1839  * the 'error info' for this failure.
1840  */
ingress_pkey_table_fail(struct hfi1_pportdata * ppd,u16 pkey,u32 slid)1841 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1842 				    u32 slid)
1843 {
1844 	struct hfi1_devdata *dd = ppd->dd;
1845 
1846 	incr_cntr64(&ppd->port_rcv_constraint_errors);
1847 	if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1848 		dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1849 		dd->err_info_rcv_constraint.slid = slid;
1850 		dd->err_info_rcv_constraint.pkey = pkey;
1851 	}
1852 }
1853 
1854 /*
1855  * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1856  * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1857  * is a hint as to the best place in the partition key table to begin
1858  * searching. This function should not be called on the data path because
1859  * of performance reasons. On datapath pkey check is expected to be done
1860  * by HW and rcv_pkey_check function should be called instead.
1861  */
ingress_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u8 idx,u32 slid,bool force)1862 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1863 				     u8 sc5, u8 idx, u32 slid, bool force)
1864 {
1865 	if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1866 		return 0;
1867 
1868 	/* If SC15, pkey[0:14] must be 0x7fff */
1869 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1870 		goto bad;
1871 
1872 	/* Is the pkey = 0x0, or 0x8000? */
1873 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1874 		goto bad;
1875 
1876 	/* The most likely matching pkey has index 'idx' */
1877 	if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1878 		return 0;
1879 
1880 	/* no match - try the whole table */
1881 	if (!ingress_pkey_table_search(ppd, pkey))
1882 		return 0;
1883 
1884 bad:
1885 	ingress_pkey_table_fail(ppd, pkey, slid);
1886 	return 1;
1887 }
1888 
1889 /*
1890  * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1891  * otherwise. It only ensures pkey is vlid for QP0. This function
1892  * should be called on the data path instead of ingress_pkey_check
1893  * as on data path, pkey check is done by HW (except for QP0).
1894  */
rcv_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u16 slid)1895 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1896 				 u8 sc5, u16 slid)
1897 {
1898 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1899 		return 0;
1900 
1901 	/* If SC15, pkey[0:14] must be 0x7fff */
1902 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1903 		goto bad;
1904 
1905 	return 0;
1906 bad:
1907 	ingress_pkey_table_fail(ppd, pkey, slid);
1908 	return 1;
1909 }
1910 
1911 /* MTU handling */
1912 
1913 /* MTU enumeration, 256-4k match IB */
1914 #define OPA_MTU_0     0
1915 #define OPA_MTU_256   1
1916 #define OPA_MTU_512   2
1917 #define OPA_MTU_1024  3
1918 #define OPA_MTU_2048  4
1919 #define OPA_MTU_4096  5
1920 
1921 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1922 int mtu_to_enum(u32 mtu, int default_if_bad);
1923 u16 enum_to_mtu(int mtu);
valid_ib_mtu(unsigned int mtu)1924 static inline int valid_ib_mtu(unsigned int mtu)
1925 {
1926 	return mtu == 256 || mtu == 512 ||
1927 		mtu == 1024 || mtu == 2048 ||
1928 		mtu == 4096;
1929 }
1930 
valid_opa_max_mtu(unsigned int mtu)1931 static inline int valid_opa_max_mtu(unsigned int mtu)
1932 {
1933 	return mtu >= 2048 &&
1934 		(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1935 }
1936 
1937 int set_mtu(struct hfi1_pportdata *ppd);
1938 
1939 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1940 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1941 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1942 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1943 
1944 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1945 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1946 
1947 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1948 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1949 void reset_link_credits(struct hfi1_devdata *dd);
1950 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1951 
1952 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1953 
dd_from_ppd(struct hfi1_pportdata * ppd)1954 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1955 {
1956 	return ppd->dd;
1957 }
1958 
dd_from_dev(struct hfi1_ibdev * dev)1959 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1960 {
1961 	return container_of(dev, struct hfi1_devdata, verbs_dev);
1962 }
1963 
dd_from_ibdev(struct ib_device * ibdev)1964 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1965 {
1966 	return dd_from_dev(to_idev(ibdev));
1967 }
1968 
ppd_from_ibp(struct hfi1_ibport * ibp)1969 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1970 {
1971 	return container_of(ibp, struct hfi1_pportdata, ibport_data);
1972 }
1973 
dev_from_rdi(struct rvt_dev_info * rdi)1974 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1975 {
1976 	return container_of(rdi, struct hfi1_ibdev, rdi);
1977 }
1978 
to_iport(struct ib_device * ibdev,u8 port)1979 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1980 {
1981 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1982 	unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1983 
1984 	WARN_ON(pidx >= dd->num_pports);
1985 	return &dd->pport[pidx].ibport_data;
1986 }
1987 
rcd_to_iport(struct hfi1_ctxtdata * rcd)1988 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1989 {
1990 	return &rcd->ppd->ibport_data;
1991 }
1992 
1993 /**
1994  * hfi1_may_ecn - Check whether FECN or BECN processing should be done
1995  * @pkt: the packet to be evaluated
1996  *
1997  * Check whether the FECN or BECN bits in the packet's header are
1998  * enabled, depending on packet type.
1999  *
2000  * This function only checks for FECN and BECN bits. Additional checks
2001  * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
2002  * ensure correct handling.
2003  */
hfi1_may_ecn(struct hfi1_packet * pkt)2004 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
2005 {
2006 	bool fecn, becn;
2007 
2008 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
2009 		fecn = hfi1_16B_get_fecn(pkt->hdr);
2010 		becn = hfi1_16B_get_becn(pkt->hdr);
2011 	} else {
2012 		fecn = ib_bth_get_fecn(pkt->ohdr);
2013 		becn = ib_bth_get_becn(pkt->ohdr);
2014 	}
2015 	return fecn || becn;
2016 }
2017 
2018 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
2019 			       bool prescan);
process_ecn(struct rvt_qp * qp,struct hfi1_packet * pkt)2020 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
2021 {
2022 	bool do_work;
2023 
2024 	do_work = hfi1_may_ecn(pkt);
2025 	if (unlikely(do_work))
2026 		return hfi1_process_ecn_slowpath(qp, pkt, false);
2027 	return false;
2028 }
2029 
2030 /*
2031  * Return the indexed PKEY from the port PKEY table.
2032  */
hfi1_get_pkey(struct hfi1_ibport * ibp,unsigned index)2033 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
2034 {
2035 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2036 	u16 ret;
2037 
2038 	if (index >= ARRAY_SIZE(ppd->pkeys))
2039 		ret = 0;
2040 	else
2041 		ret = ppd->pkeys[index];
2042 
2043 	return ret;
2044 }
2045 
2046 /*
2047  * Return the indexed GUID from the port GUIDs table.
2048  */
get_sguid(struct hfi1_ibport * ibp,unsigned int index)2049 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
2050 {
2051 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2052 
2053 	WARN_ON(index >= HFI1_GUIDS_PER_PORT);
2054 	return cpu_to_be64(ppd->guids[index]);
2055 }
2056 
2057 /*
2058  * Called by readers of cc_state only, must call under rcu_read_lock().
2059  */
get_cc_state(struct hfi1_pportdata * ppd)2060 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
2061 {
2062 	return rcu_dereference(ppd->cc_state);
2063 }
2064 
2065 /*
2066  * Called by writers of cc_state only,  must call under cc_state_lock.
2067  */
2068 static inline
get_cc_state_protected(struct hfi1_pportdata * ppd)2069 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
2070 {
2071 	return rcu_dereference_protected(ppd->cc_state,
2072 					 lockdep_is_held(&ppd->cc_state_lock));
2073 }
2074 
2075 /*
2076  * values for dd->flags (_device_ related flags)
2077  */
2078 #define HFI1_INITTED           0x1    /* chip and driver up and initted */
2079 #define HFI1_PRESENT           0x2    /* chip accesses can be done */
2080 #define HFI1_FROZEN            0x4    /* chip in SPC freeze */
2081 #define HFI1_HAS_SDMA_TIMEOUT  0x8
2082 #define HFI1_HAS_SEND_DMA      0x10   /* Supports Send DMA */
2083 #define HFI1_FORCED_FREEZE     0x80   /* driver forced freeze mode */
2084 #define HFI1_SHUTDOWN          0x100  /* device is shutting down */
2085 
2086 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
2087 #define HFI1_PBC_LENGTH_MASK                     ((1 << 11) - 1)
2088 
2089 /* ctxt_flag bit offsets */
2090 		/* base context has not finished initializing */
2091 #define HFI1_CTXT_BASE_UNINIT 1
2092 		/* base context initaliation failed */
2093 #define HFI1_CTXT_BASE_FAILED 2
2094 		/* waiting for a packet to arrive */
2095 #define HFI1_CTXT_WAITING_RCV 3
2096 		/* waiting for an urgent packet to arrive */
2097 #define HFI1_CTXT_WAITING_URG 4
2098 
2099 /* free up any allocated data at closes */
2100 int hfi1_init_dd(struct hfi1_devdata *dd);
2101 void hfi1_free_devdata(struct hfi1_devdata *dd);
2102 
2103 /* LED beaconing functions */
2104 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
2105 			     unsigned int timeoff);
2106 void shutdown_led_override(struct hfi1_pportdata *ppd);
2107 
2108 #define HFI1_CREDIT_RETURN_RATE (100)
2109 
2110 /*
2111  * The number of words for the KDETH protocol field.  If this is
2112  * larger then the actual field used, then part of the payload
2113  * will be in the header.
2114  *
2115  * Optimally, we want this sized so that a typical case will
2116  * use full cache lines.  The typical local KDETH header would
2117  * be:
2118  *
2119  *	Bytes	Field
2120  *	  8	LRH
2121  *	 12	BHT
2122  *	 ??	KDETH
2123  *	  8	RHF
2124  *	---
2125  *	 28 + KDETH
2126  *
2127  * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
2128  */
2129 #define DEFAULT_RCVHDRSIZE 9
2130 
2131 /*
2132  * Maximal header byte count:
2133  *
2134  *	Bytes	Field
2135  *	  8	LRH
2136  *	 40	GRH (optional)
2137  *	 12	BTH
2138  *	 ??	KDETH
2139  *	  8	RHF
2140  *	---
2141  *	 68 + KDETH
2142  *
2143  * We also want to maintain a cache line alignment to assist DMA'ing
2144  * of the header bytes.  Round up to a good size.
2145  */
2146 #define DEFAULT_RCVHDR_ENTSIZE 32
2147 
2148 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
2149 			u32 nlocked, u32 npages);
2150 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
2151 			    size_t npages, bool writable, struct page **pages);
2152 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
2153 			     size_t npages, bool dirty);
2154 
2155 /**
2156  * hfi1_rcvhdrtail_kvaddr - return tail kvaddr
2157  * @rcd - the receive context
2158  */
hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata * rcd)2159 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd)
2160 {
2161 	return (__le64 *)rcd->rcvhdrtail_kvaddr;
2162 }
2163 
clear_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2164 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2165 {
2166 	u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd);
2167 
2168 	if (kv)
2169 		*kv = 0ULL;
2170 }
2171 
get_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2172 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2173 {
2174 	/*
2175 	 * volatile because it's a DMA target from the chip, routine is
2176 	 * inlined, and don't want register caching or reordering.
2177 	 */
2178 	return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd));
2179 }
2180 
hfi1_packet_present(struct hfi1_ctxtdata * rcd)2181 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd)
2182 {
2183 	if (likely(!rcd->rcvhdrtail_kvaddr)) {
2184 		u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)));
2185 
2186 		return !last_rcv_seq(rcd, seq);
2187 	}
2188 	return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd);
2189 }
2190 
2191 /*
2192  * sysfs interface.
2193  */
2194 
2195 extern const char ib_hfi1_version[];
2196 extern const struct attribute_group ib_hfi1_attr_group;
2197 
2198 int hfi1_device_create(struct hfi1_devdata *dd);
2199 void hfi1_device_remove(struct hfi1_devdata *dd);
2200 
2201 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
2202 			   struct kobject *kobj);
2203 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
2204 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
2205 /* Hook for sysfs read of QSFP */
2206 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
2207 
2208 int hfi1_pcie_init(struct hfi1_devdata *dd);
2209 void hfi1_pcie_cleanup(struct pci_dev *pdev);
2210 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
2211 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
2212 int pcie_speeds(struct hfi1_devdata *dd);
2213 int restore_pci_variables(struct hfi1_devdata *dd);
2214 int save_pci_variables(struct hfi1_devdata *dd);
2215 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
2216 void tune_pcie_caps(struct hfi1_devdata *dd);
2217 int parse_platform_config(struct hfi1_devdata *dd);
2218 int get_platform_config_field(struct hfi1_devdata *dd,
2219 			      enum platform_config_table_type_encoding
2220 			      table_type, int table_index, int field_index,
2221 			      u32 *data, u32 len);
2222 
2223 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
2224 
2225 /*
2226  * Flush write combining store buffers (if present) and perform a write
2227  * barrier.
2228  */
flush_wc(void)2229 static inline void flush_wc(void)
2230 {
2231 	asm volatile("sfence" : : : "memory");
2232 }
2233 
2234 void handle_eflags(struct hfi1_packet *packet);
2235 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2236 
2237 /* global module parameter variables */
2238 extern unsigned int hfi1_max_mtu;
2239 extern unsigned int hfi1_cu;
2240 extern unsigned int user_credit_return_threshold;
2241 extern int num_user_contexts;
2242 extern unsigned long n_krcvqs;
2243 extern uint krcvqs[];
2244 extern int krcvqsset;
2245 extern uint loopback;
2246 extern uint quick_linkup;
2247 extern uint rcv_intr_timeout;
2248 extern uint rcv_intr_count;
2249 extern uint rcv_intr_dynamic;
2250 extern ushort link_crc_mask;
2251 
2252 extern struct mutex hfi1_mutex;
2253 
2254 /* Number of seconds before our card status check...  */
2255 #define STATUS_TIMEOUT 60
2256 
2257 #define DRIVER_NAME		"hfi1"
2258 #define HFI1_USER_MINOR_BASE     0
2259 #define HFI1_TRACE_MINOR         127
2260 #define HFI1_NMINORS             255
2261 
2262 #define PCI_VENDOR_ID_INTEL 0x8086
2263 #define PCI_DEVICE_ID_INTEL0 0x24f0
2264 #define PCI_DEVICE_ID_INTEL1 0x24f1
2265 
2266 #define HFI1_PKT_USER_SC_INTEGRITY					    \
2267 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK	    \
2268 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK		\
2269 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK		    \
2270 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2271 
2272 #define HFI1_PKT_KERNEL_SC_INTEGRITY					    \
2273 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2274 
hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata * dd,u16 ctxt_type)2275 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2276 						  u16 ctxt_type)
2277 {
2278 	u64 base_sc_integrity;
2279 
2280 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2281 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2282 		return 0;
2283 
2284 	base_sc_integrity =
2285 	SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2286 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2287 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2288 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2289 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2290 #ifndef CONFIG_FAULT_INJECTION
2291 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2292 #endif
2293 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2294 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2295 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2296 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2297 	| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2298 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2299 	| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2300 	| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2301 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2302 	| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2303 
2304 	if (ctxt_type == SC_USER)
2305 		base_sc_integrity |=
2306 #ifndef CONFIG_FAULT_INJECTION
2307 			SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2308 #endif
2309 			HFI1_PKT_USER_SC_INTEGRITY;
2310 	else if (ctxt_type != SC_KERNEL)
2311 		base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2312 
2313 	/* turn on send-side job key checks if !A0 */
2314 	if (!is_ax(dd))
2315 		base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2316 
2317 	return base_sc_integrity;
2318 }
2319 
hfi1_pkt_base_sdma_integrity(struct hfi1_devdata * dd)2320 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2321 {
2322 	u64 base_sdma_integrity;
2323 
2324 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2325 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2326 		return 0;
2327 
2328 	base_sdma_integrity =
2329 	SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2330 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2331 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2332 	| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2333 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2334 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2335 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2336 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2337 	| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2338 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2339 	| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2340 	| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2341 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2342 	| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2343 
2344 	if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2345 		base_sdma_integrity |=
2346 		SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2347 
2348 	/* turn on send-side job key checks if !A0 */
2349 	if (!is_ax(dd))
2350 		base_sdma_integrity |=
2351 			SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2352 
2353 	return base_sdma_integrity;
2354 }
2355 
2356 #define dd_dev_emerg(dd, fmt, ...) \
2357 	dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2358 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2359 
2360 #define dd_dev_err(dd, fmt, ...) \
2361 	dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2362 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2363 
2364 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2365 	dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2366 			    rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2367 			    ##__VA_ARGS__)
2368 
2369 #define dd_dev_warn(dd, fmt, ...) \
2370 	dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2371 		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2372 
2373 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2374 	dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2375 			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2376 			     ##__VA_ARGS__)
2377 
2378 #define dd_dev_info(dd, fmt, ...) \
2379 	dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2380 		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2381 
2382 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2383 	dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2384 			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2385 			     ##__VA_ARGS__)
2386 
2387 #define dd_dev_dbg(dd, fmt, ...) \
2388 	dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2389 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2390 
2391 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2392 	dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2393 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2394 
2395 /*
2396  * this is used for formatting hw error messages...
2397  */
2398 struct hfi1_hwerror_msgs {
2399 	u64 mask;
2400 	const char *msg;
2401 	size_t sz;
2402 };
2403 
2404 /* in intr.c... */
2405 void hfi1_format_hwerrors(u64 hwerrs,
2406 			  const struct hfi1_hwerror_msgs *hwerrmsgs,
2407 			  size_t nhwerrmsgs, char *msg, size_t lmsg);
2408 
2409 #define USER_OPCODE_CHECK_VAL 0xC0
2410 #define USER_OPCODE_CHECK_MASK 0xC0
2411 #define OPCODE_CHECK_VAL_DISABLED 0x0
2412 #define OPCODE_CHECK_MASK_DISABLED 0x0
2413 
hfi1_reset_cpu_counters(struct hfi1_devdata * dd)2414 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2415 {
2416 	struct hfi1_pportdata *ppd;
2417 	int i;
2418 
2419 	dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2420 	dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2421 	dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2422 
2423 	ppd = (struct hfi1_pportdata *)(dd + 1);
2424 	for (i = 0; i < dd->num_pports; i++, ppd++) {
2425 		ppd->ibport_data.rvp.z_rc_acks =
2426 			get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2427 		ppd->ibport_data.rvp.z_rc_qacks =
2428 			get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2429 	}
2430 }
2431 
2432 /* Control LED state */
setextled(struct hfi1_devdata * dd,u32 on)2433 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2434 {
2435 	if (on)
2436 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2437 	else
2438 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2439 }
2440 
2441 /* return the i2c resource given the target */
i2c_target(u32 target)2442 static inline u32 i2c_target(u32 target)
2443 {
2444 	return target ? CR_I2C2 : CR_I2C1;
2445 }
2446 
2447 /* return the i2c chain chip resource that this HFI uses for QSFP */
qsfp_resource(struct hfi1_devdata * dd)2448 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2449 {
2450 	return i2c_target(dd->hfi1_id);
2451 }
2452 
2453 /* Is this device integrated or discrete? */
is_integrated(struct hfi1_devdata * dd)2454 static inline bool is_integrated(struct hfi1_devdata *dd)
2455 {
2456 	return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2457 }
2458 
2459 /**
2460  * hfi1_need_drop - detect need for drop
2461  * @dd: - the device
2462  *
2463  * In some cases, the first packet needs to be dropped.
2464  *
2465  * Return true is the current packet needs to be dropped and false otherwise.
2466  */
hfi1_need_drop(struct hfi1_devdata * dd)2467 static inline bool hfi1_need_drop(struct hfi1_devdata *dd)
2468 {
2469 	if (unlikely(dd->do_drop &&
2470 		     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
2471 		     DROP_PACKET_ON)) {
2472 		dd->do_drop = false;
2473 		return true;
2474 	}
2475 	return false;
2476 }
2477 
2478 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2479 
2480 #define DD_DEV_ENTRY(dd)       __string(dev, dev_name(&(dd)->pcidev->dev))
2481 #define DD_DEV_ASSIGN(dd)      __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2482 
hfi1_update_ah_attr(struct ib_device * ibdev,struct rdma_ah_attr * attr)2483 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2484 				       struct rdma_ah_attr *attr)
2485 {
2486 	struct hfi1_pportdata *ppd;
2487 	struct hfi1_ibport *ibp;
2488 	u32 dlid = rdma_ah_get_dlid(attr);
2489 
2490 	/*
2491 	 * Kernel clients may not have setup GRH information
2492 	 * Set that here.
2493 	 */
2494 	ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2495 	ppd = ppd_from_ibp(ibp);
2496 	if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2497 	      (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2498 	    (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2499 	    (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2500 	    (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2501 	    (rdma_ah_get_make_grd(attr))) {
2502 		rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2503 		rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2504 		rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2505 	}
2506 }
2507 
2508 /*
2509  * hfi1_check_mcast- Check if the given lid is
2510  * in the OPA multicast range.
2511  *
2512  * The LID might either reside in ah.dlid or might be
2513  * in the GRH of the address handle as DGID if extended
2514  * addresses are in use.
2515  */
hfi1_check_mcast(u32 lid)2516 static inline bool hfi1_check_mcast(u32 lid)
2517 {
2518 	return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2519 		(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2520 }
2521 
2522 #define opa_get_lid(lid, format)	\
2523 	__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2524 
2525 /* Convert a lid to a specific lid space */
__opa_get_lid(u32 lid,u8 format)2526 static inline u32 __opa_get_lid(u32 lid, u8 format)
2527 {
2528 	bool is_mcast = hfi1_check_mcast(lid);
2529 
2530 	switch (format) {
2531 	case OPA_PORT_PACKET_FORMAT_8B:
2532 	case OPA_PORT_PACKET_FORMAT_10B:
2533 		if (is_mcast)
2534 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2535 				0xF0000);
2536 		return lid & 0xFFFFF;
2537 	case OPA_PORT_PACKET_FORMAT_16B:
2538 		if (is_mcast)
2539 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2540 				0xF00000);
2541 		return lid & 0xFFFFFF;
2542 	case OPA_PORT_PACKET_FORMAT_9B:
2543 		if (is_mcast)
2544 			return (lid -
2545 				opa_get_mcast_base(OPA_MCAST_NR) +
2546 				be16_to_cpu(IB_MULTICAST_LID_BASE));
2547 		else
2548 			return lid & 0xFFFF;
2549 	default:
2550 		return lid;
2551 	}
2552 }
2553 
2554 /* Return true if the given lid is the OPA 16B multicast range */
hfi1_is_16B_mcast(u32 lid)2555 static inline bool hfi1_is_16B_mcast(u32 lid)
2556 {
2557 	return ((lid >=
2558 		opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2559 		(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2560 }
2561 
hfi1_make_opa_lid(struct rdma_ah_attr * attr)2562 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2563 {
2564 	const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2565 	u32 dlid = rdma_ah_get_dlid(attr);
2566 
2567 	/* Modify ah_attr.dlid to be in the 32 bit LID space.
2568 	 * This is how the address will be laid out:
2569 	 * Assuming MCAST_NR to be 4,
2570 	 * 32 bit permissive LID = 0xFFFFFFFF
2571 	 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2572 	 * Unicast LID range = 0xEFFFFFFF to 1
2573 	 * Invalid LID = 0
2574 	 */
2575 	if (ib_is_opa_gid(&grh->dgid))
2576 		dlid = opa_get_lid_from_gid(&grh->dgid);
2577 	else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2578 		 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2579 		 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2580 		dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2581 			opa_get_mcast_base(OPA_MCAST_NR);
2582 	else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2583 		dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2584 
2585 	rdma_ah_set_dlid(attr, dlid);
2586 }
2587 
hfi1_get_packet_type(u32 lid)2588 static inline u8 hfi1_get_packet_type(u32 lid)
2589 {
2590 	/* 9B if lid > 0xF0000000 */
2591 	if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2592 		return HFI1_PKT_TYPE_9B;
2593 
2594 	/* 16B if lid > 0xC000 */
2595 	if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2596 		return HFI1_PKT_TYPE_16B;
2597 
2598 	return HFI1_PKT_TYPE_9B;
2599 }
2600 
hfi1_get_hdr_type(u32 lid,struct rdma_ah_attr * attr)2601 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2602 {
2603 	/*
2604 	 * If there was an incoming 16B packet with permissive
2605 	 * LIDs, OPA GIDs would have been programmed when those
2606 	 * packets were received. A 16B packet will have to
2607 	 * be sent in response to that packet. Return a 16B
2608 	 * header type if that's the case.
2609 	 */
2610 	if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2611 		return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2612 			HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2613 
2614 	/*
2615 	 * Return a 16B header type if either the the destination
2616 	 * or source lid is extended.
2617 	 */
2618 	if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2619 		return HFI1_PKT_TYPE_16B;
2620 
2621 	return hfi1_get_packet_type(lid);
2622 }
2623 
hfi1_make_ext_grh(struct hfi1_packet * packet,struct ib_grh * grh,u32 slid,u32 dlid)2624 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2625 				     struct ib_grh *grh, u32 slid,
2626 				     u32 dlid)
2627 {
2628 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2629 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2630 
2631 	if (!ibp)
2632 		return;
2633 
2634 	grh->hop_limit = 1;
2635 	grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2636 	if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2637 		grh->sgid.global.interface_id =
2638 			OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2639 	else
2640 		grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2641 
2642 	/*
2643 	 * Upper layers (like mad) may compare the dgid in the
2644 	 * wc that is obtained here with the sgid_index in
2645 	 * the wr. Since sgid_index in wr is always 0 for
2646 	 * extended lids, set the dgid here to the default
2647 	 * IB gid.
2648 	 */
2649 	grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2650 	grh->dgid.global.interface_id =
2651 		cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2652 }
2653 
hfi1_get_16b_padding(u32 hdr_size,u32 payload)2654 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2655 {
2656 	return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2657 		     SIZE_OF_LT) & 0x7;
2658 }
2659 
hfi1_make_ib_hdr(struct ib_header * hdr,u16 lrh0,u16 len,u16 dlid,u16 slid)2660 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2661 				    u16 lrh0, u16 len,
2662 				    u16 dlid, u16 slid)
2663 {
2664 	hdr->lrh[0] = cpu_to_be16(lrh0);
2665 	hdr->lrh[1] = cpu_to_be16(dlid);
2666 	hdr->lrh[2] = cpu_to_be16(len);
2667 	hdr->lrh[3] = cpu_to_be16(slid);
2668 }
2669 
hfi1_make_16b_hdr(struct hfi1_16b_header * hdr,u32 slid,u32 dlid,u16 len,u16 pkey,bool becn,bool fecn,u8 l4,u8 sc)2670 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2671 				     u32 slid, u32 dlid,
2672 				     u16 len, u16 pkey,
2673 				     bool becn, bool fecn, u8 l4,
2674 				     u8 sc)
2675 {
2676 	u32 lrh0 = 0;
2677 	u32 lrh1 = 0x40000000;
2678 	u32 lrh2 = 0;
2679 	u32 lrh3 = 0;
2680 
2681 	lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2682 	lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2683 	lrh0 = (lrh0 & ~OPA_16B_LID_MASK)  | (slid & OPA_16B_LID_MASK);
2684 	lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2685 	lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2686 	lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2687 	lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2688 		((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2689 	lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2690 		((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2691 	lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2692 	lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2693 
2694 	hdr->lrh[0] = lrh0;
2695 	hdr->lrh[1] = lrh1;
2696 	hdr->lrh[2] = lrh2;
2697 	hdr->lrh[3] = lrh3;
2698 }
2699 #endif                          /* _HFI1_KERNEL_H */
2700