1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56
ide_end_rq(ide_drive_t * drive,struct request * rq,blk_status_t error,unsigned int nr_bytes)57 int ide_end_rq(ide_drive_t *drive, struct request *rq, blk_status_t error,
58 unsigned int nr_bytes)
59 {
60 /*
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
63 */
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67 ide_dma_on(drive);
68 }
69
70 if (!blk_update_request(rq, error, nr_bytes)) {
71 if (rq == drive->sense_rq) {
72 drive->sense_rq = NULL;
73 drive->sense_rq_active = false;
74 }
75
76 __blk_mq_end_request(rq, error);
77 return 0;
78 }
79
80 return 1;
81 }
82 EXPORT_SYMBOL_GPL(ide_end_rq);
83
ide_complete_cmd(ide_drive_t * drive,struct ide_cmd * cmd,u8 stat,u8 err)84 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
85 {
86 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
87 struct ide_taskfile *tf = &cmd->tf;
88 struct request *rq = cmd->rq;
89 u8 tf_cmd = tf->command;
90
91 tf->error = err;
92 tf->status = stat;
93
94 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
95 u8 data[2];
96
97 tp_ops->input_data(drive, cmd, data, 2);
98
99 cmd->tf.data = data[0];
100 cmd->hob.data = data[1];
101 }
102
103 ide_tf_readback(drive, cmd);
104
105 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
106 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
107 if (tf->lbal != 0xc4) {
108 printk(KERN_ERR "%s: head unload failed!\n",
109 drive->name);
110 ide_tf_dump(drive->name, cmd);
111 } else
112 drive->dev_flags |= IDE_DFLAG_PARKED;
113 }
114
115 if (rq && ata_taskfile_request(rq)) {
116 struct ide_cmd *orig_cmd = ide_req(rq)->special;
117
118 if (cmd->tf_flags & IDE_TFLAG_DYN)
119 kfree(orig_cmd);
120 else if (cmd != orig_cmd)
121 memcpy(orig_cmd, cmd, sizeof(*cmd));
122 }
123 }
124
ide_complete_rq(ide_drive_t * drive,blk_status_t error,unsigned int nr_bytes)125 int ide_complete_rq(ide_drive_t *drive, blk_status_t error, unsigned int nr_bytes)
126 {
127 ide_hwif_t *hwif = drive->hwif;
128 struct request *rq = hwif->rq;
129 int rc;
130
131 /*
132 * if failfast is set on a request, override number of sectors
133 * and complete the whole request right now
134 */
135 if (blk_noretry_request(rq) && error)
136 nr_bytes = blk_rq_sectors(rq) << 9;
137
138 rc = ide_end_rq(drive, rq, error, nr_bytes);
139 if (rc == 0)
140 hwif->rq = NULL;
141
142 return rc;
143 }
144 EXPORT_SYMBOL(ide_complete_rq);
145
ide_kill_rq(ide_drive_t * drive,struct request * rq)146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147 {
148 u8 drv_req = ata_misc_request(rq) && rq->rq_disk;
149 u8 media = drive->media;
150
151 drive->failed_pc = NULL;
152
153 if ((media == ide_floppy || media == ide_tape) && drv_req) {
154 scsi_req(rq)->result = 0;
155 } else {
156 if (media == ide_tape)
157 scsi_req(rq)->result = IDE_DRV_ERROR_GENERAL;
158 else if (blk_rq_is_passthrough(rq) && scsi_req(rq)->result == 0)
159 scsi_req(rq)->result = -EIO;
160 }
161
162 ide_complete_rq(drive, BLK_STS_IOERR, blk_rq_bytes(rq));
163 }
164
ide_tf_set_specify_cmd(ide_drive_t * drive,struct ide_taskfile * tf)165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167 tf->nsect = drive->sect;
168 tf->lbal = drive->sect;
169 tf->lbam = drive->cyl;
170 tf->lbah = drive->cyl >> 8;
171 tf->device = (drive->head - 1) | drive->select;
172 tf->command = ATA_CMD_INIT_DEV_PARAMS;
173 }
174
ide_tf_set_restore_cmd(ide_drive_t * drive,struct ide_taskfile * tf)175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177 tf->nsect = drive->sect;
178 tf->command = ATA_CMD_RESTORE;
179 }
180
ide_tf_set_setmult_cmd(ide_drive_t * drive,struct ide_taskfile * tf)181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182 {
183 tf->nsect = drive->mult_req;
184 tf->command = ATA_CMD_SET_MULTI;
185 }
186
187 /**
188 * do_special - issue some special commands
189 * @drive: drive the command is for
190 *
191 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
193 */
194
do_special(ide_drive_t * drive)195 static ide_startstop_t do_special(ide_drive_t *drive)
196 {
197 struct ide_cmd cmd;
198
199 #ifdef DEBUG
200 printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
201 drive->special_flags);
202 #endif
203 if (drive->media != ide_disk) {
204 drive->special_flags = 0;
205 drive->mult_req = 0;
206 return ide_stopped;
207 }
208
209 memset(&cmd, 0, sizeof(cmd));
210 cmd.protocol = ATA_PROT_NODATA;
211
212 if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
213 drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
214 ide_tf_set_specify_cmd(drive, &cmd.tf);
215 } else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
216 drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
217 ide_tf_set_restore_cmd(drive, &cmd.tf);
218 } else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
219 drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
220 ide_tf_set_setmult_cmd(drive, &cmd.tf);
221 } else
222 BUG();
223
224 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
225 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
226 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
227
228 do_rw_taskfile(drive, &cmd);
229
230 return ide_started;
231 }
232
ide_map_sg(ide_drive_t * drive,struct ide_cmd * cmd)233 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
234 {
235 ide_hwif_t *hwif = drive->hwif;
236 struct scatterlist *sg = hwif->sg_table, *last_sg = NULL;
237 struct request *rq = cmd->rq;
238
239 cmd->sg_nents = __blk_rq_map_sg(drive->queue, rq, sg, &last_sg);
240 if (blk_rq_bytes(rq) && (blk_rq_bytes(rq) & rq->q->dma_pad_mask))
241 last_sg->length +=
242 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
243 }
244 EXPORT_SYMBOL_GPL(ide_map_sg);
245
ide_init_sg_cmd(struct ide_cmd * cmd,unsigned int nr_bytes)246 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
247 {
248 cmd->nbytes = cmd->nleft = nr_bytes;
249 cmd->cursg_ofs = 0;
250 cmd->cursg = NULL;
251 }
252 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
253
254 /**
255 * execute_drive_command - issue special drive command
256 * @drive: the drive to issue the command on
257 * @rq: the request structure holding the command
258 *
259 * execute_drive_cmd() issues a special drive command, usually
260 * initiated by ioctl() from the external hdparm program. The
261 * command can be a drive command, drive task or taskfile
262 * operation. Weirdly you can call it with NULL to wait for
263 * all commands to finish. Don't do this as that is due to change
264 */
265
execute_drive_cmd(ide_drive_t * drive,struct request * rq)266 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
267 struct request *rq)
268 {
269 struct ide_cmd *cmd = ide_req(rq)->special;
270
271 if (cmd) {
272 if (cmd->protocol == ATA_PROT_PIO) {
273 ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
274 ide_map_sg(drive, cmd);
275 }
276
277 return do_rw_taskfile(drive, cmd);
278 }
279
280 /*
281 * NULL is actually a valid way of waiting for
282 * all current requests to be flushed from the queue.
283 */
284 #ifdef DEBUG
285 printk("%s: DRIVE_CMD (null)\n", drive->name);
286 #endif
287 scsi_req(rq)->result = 0;
288 ide_complete_rq(drive, BLK_STS_OK, blk_rq_bytes(rq));
289
290 return ide_stopped;
291 }
292
ide_special_rq(ide_drive_t * drive,struct request * rq)293 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
294 {
295 u8 cmd = scsi_req(rq)->cmd[0];
296
297 switch (cmd) {
298 case REQ_PARK_HEADS:
299 case REQ_UNPARK_HEADS:
300 return ide_do_park_unpark(drive, rq);
301 case REQ_DEVSET_EXEC:
302 return ide_do_devset(drive, rq);
303 case REQ_DRIVE_RESET:
304 return ide_do_reset(drive);
305 default:
306 BUG();
307 }
308 }
309
310 /**
311 * start_request - start of I/O and command issuing for IDE
312 *
313 * start_request() initiates handling of a new I/O request. It
314 * accepts commands and I/O (read/write) requests.
315 *
316 * FIXME: this function needs a rename
317 */
318
start_request(ide_drive_t * drive,struct request * rq)319 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
320 {
321 ide_startstop_t startstop;
322
323 #ifdef DEBUG
324 printk("%s: start_request: current=0x%08lx\n",
325 drive->hwif->name, (unsigned long) rq);
326 #endif
327
328 /* bail early if we've exceeded max_failures */
329 if (drive->max_failures && (drive->failures > drive->max_failures)) {
330 rq->rq_flags |= RQF_FAILED;
331 goto kill_rq;
332 }
333
334 if (drive->prep_rq && !drive->prep_rq(drive, rq))
335 return ide_stopped;
336
337 if (ata_pm_request(rq))
338 ide_check_pm_state(drive, rq);
339
340 drive->hwif->tp_ops->dev_select(drive);
341 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
342 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
343 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
344 return startstop;
345 }
346
347 if (drive->special_flags == 0) {
348 struct ide_driver *drv;
349
350 /*
351 * We reset the drive so we need to issue a SETFEATURES.
352 * Do it _after_ do_special() restored device parameters.
353 */
354 if (drive->current_speed == 0xff)
355 ide_config_drive_speed(drive, drive->desired_speed);
356
357 if (ata_taskfile_request(rq))
358 return execute_drive_cmd(drive, rq);
359 else if (ata_pm_request(rq)) {
360 struct ide_pm_state *pm = ide_req(rq)->special;
361 #ifdef DEBUG_PM
362 printk("%s: start_power_step(step: %d)\n",
363 drive->name, pm->pm_step);
364 #endif
365 startstop = ide_start_power_step(drive, rq);
366 if (startstop == ide_stopped &&
367 pm->pm_step == IDE_PM_COMPLETED)
368 ide_complete_pm_rq(drive, rq);
369 return startstop;
370 } else if (!rq->rq_disk && ata_misc_request(rq))
371 /*
372 * TODO: Once all ULDs have been modified to
373 * check for specific op codes rather than
374 * blindly accepting any special request, the
375 * check for ->rq_disk above may be replaced
376 * by a more suitable mechanism or even
377 * dropped entirely.
378 */
379 return ide_special_rq(drive, rq);
380
381 drv = *(struct ide_driver **)rq->rq_disk->private_data;
382
383 return drv->do_request(drive, rq, blk_rq_pos(rq));
384 }
385 return do_special(drive);
386 kill_rq:
387 ide_kill_rq(drive, rq);
388 return ide_stopped;
389 }
390
391 /**
392 * ide_stall_queue - pause an IDE device
393 * @drive: drive to stall
394 * @timeout: time to stall for (jiffies)
395 *
396 * ide_stall_queue() can be used by a drive to give excess bandwidth back
397 * to the port by sleeping for timeout jiffies.
398 */
399
ide_stall_queue(ide_drive_t * drive,unsigned long timeout)400 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
401 {
402 if (timeout > WAIT_WORSTCASE)
403 timeout = WAIT_WORSTCASE;
404 drive->sleep = timeout + jiffies;
405 drive->dev_flags |= IDE_DFLAG_SLEEPING;
406 }
407 EXPORT_SYMBOL(ide_stall_queue);
408
ide_lock_port(ide_hwif_t * hwif)409 static inline int ide_lock_port(ide_hwif_t *hwif)
410 {
411 if (hwif->busy)
412 return 1;
413
414 hwif->busy = 1;
415
416 return 0;
417 }
418
ide_unlock_port(ide_hwif_t * hwif)419 static inline void ide_unlock_port(ide_hwif_t *hwif)
420 {
421 hwif->busy = 0;
422 }
423
ide_lock_host(struct ide_host * host,ide_hwif_t * hwif)424 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
425 {
426 int rc = 0;
427
428 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
429 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
430 if (rc == 0) {
431 if (host->get_lock)
432 host->get_lock(ide_intr, hwif);
433 }
434 }
435 return rc;
436 }
437
ide_unlock_host(struct ide_host * host)438 static inline void ide_unlock_host(struct ide_host *host)
439 {
440 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
441 if (host->release_lock)
442 host->release_lock();
443 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
444 }
445 }
446
ide_requeue_and_plug(ide_drive_t * drive,struct request * rq)447 void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
448 {
449 struct request_queue *q = drive->queue;
450
451 /* Use 3ms as that was the old plug delay */
452 if (rq) {
453 blk_mq_requeue_request(rq, false);
454 blk_mq_delay_kick_requeue_list(q, 3);
455 } else
456 blk_mq_delay_run_hw_queue(q->queue_hw_ctx[0], 3);
457 }
458
ide_issue_rq(ide_drive_t * drive,struct request * rq,bool local_requeue)459 blk_status_t ide_issue_rq(ide_drive_t *drive, struct request *rq,
460 bool local_requeue)
461 {
462 ide_hwif_t *hwif = drive->hwif;
463 struct ide_host *host = hwif->host;
464 ide_startstop_t startstop;
465
466 if (!blk_rq_is_passthrough(rq) && !(rq->rq_flags & RQF_DONTPREP)) {
467 rq->rq_flags |= RQF_DONTPREP;
468 ide_req(rq)->special = NULL;
469 }
470
471 /* HLD do_request() callback might sleep, make sure it's okay */
472 might_sleep();
473
474 if (ide_lock_host(host, hwif))
475 return BLK_STS_DEV_RESOURCE;
476
477 spin_lock_irq(&hwif->lock);
478
479 if (!ide_lock_port(hwif)) {
480 ide_hwif_t *prev_port;
481
482 WARN_ON_ONCE(hwif->rq);
483 repeat:
484 prev_port = hwif->host->cur_port;
485 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
486 time_after(drive->sleep, jiffies)) {
487 ide_unlock_port(hwif);
488 goto plug_device;
489 }
490
491 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
492 hwif != prev_port) {
493 ide_drive_t *cur_dev =
494 prev_port ? prev_port->cur_dev : NULL;
495
496 /*
497 * set nIEN for previous port, drives in the
498 * quirk list may not like intr setups/cleanups
499 */
500 if (cur_dev &&
501 (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
502 prev_port->tp_ops->write_devctl(prev_port,
503 ATA_NIEN |
504 ATA_DEVCTL_OBS);
505
506 hwif->host->cur_port = hwif;
507 }
508 hwif->cur_dev = drive;
509 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
510
511 /*
512 * Sanity: don't accept a request that isn't a PM request
513 * if we are currently power managed. This is very important as
514 * blk_stop_queue() doesn't prevent the blk_fetch_request()
515 * above to return us whatever is in the queue. Since we call
516 * ide_do_request() ourselves, we end up taking requests while
517 * the queue is blocked...
518 */
519 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
520 ata_pm_request(rq) == 0 &&
521 (rq->rq_flags & RQF_PM) == 0) {
522 /* there should be no pending command at this point */
523 ide_unlock_port(hwif);
524 goto plug_device;
525 }
526
527 scsi_req(rq)->resid_len = blk_rq_bytes(rq);
528 hwif->rq = rq;
529
530 spin_unlock_irq(&hwif->lock);
531 startstop = start_request(drive, rq);
532 spin_lock_irq(&hwif->lock);
533
534 if (startstop == ide_stopped) {
535 rq = hwif->rq;
536 hwif->rq = NULL;
537 if (rq)
538 goto repeat;
539 ide_unlock_port(hwif);
540 goto out;
541 }
542 } else {
543 plug_device:
544 if (local_requeue)
545 list_add(&rq->queuelist, &drive->rq_list);
546 spin_unlock_irq(&hwif->lock);
547 ide_unlock_host(host);
548 if (!local_requeue)
549 ide_requeue_and_plug(drive, rq);
550 return BLK_STS_OK;
551 }
552
553 out:
554 spin_unlock_irq(&hwif->lock);
555 if (rq == NULL)
556 ide_unlock_host(host);
557 return BLK_STS_OK;
558 }
559
560 /*
561 * Issue a new request to a device.
562 */
ide_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)563 blk_status_t ide_queue_rq(struct blk_mq_hw_ctx *hctx,
564 const struct blk_mq_queue_data *bd)
565 {
566 ide_drive_t *drive = hctx->queue->queuedata;
567 ide_hwif_t *hwif = drive->hwif;
568
569 spin_lock_irq(&hwif->lock);
570 if (drive->sense_rq_active) {
571 spin_unlock_irq(&hwif->lock);
572 return BLK_STS_DEV_RESOURCE;
573 }
574 spin_unlock_irq(&hwif->lock);
575
576 blk_mq_start_request(bd->rq);
577 return ide_issue_rq(drive, bd->rq, false);
578 }
579
drive_is_ready(ide_drive_t * drive)580 static int drive_is_ready(ide_drive_t *drive)
581 {
582 ide_hwif_t *hwif = drive->hwif;
583 u8 stat = 0;
584
585 if (drive->waiting_for_dma)
586 return hwif->dma_ops->dma_test_irq(drive);
587
588 if (hwif->io_ports.ctl_addr &&
589 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
590 stat = hwif->tp_ops->read_altstatus(hwif);
591 else
592 /* Note: this may clear a pending IRQ!! */
593 stat = hwif->tp_ops->read_status(hwif);
594
595 if (stat & ATA_BUSY)
596 /* drive busy: definitely not interrupting */
597 return 0;
598
599 /* drive ready: *might* be interrupting */
600 return 1;
601 }
602
603 /**
604 * ide_timer_expiry - handle lack of an IDE interrupt
605 * @data: timer callback magic (hwif)
606 *
607 * An IDE command has timed out before the expected drive return
608 * occurred. At this point we attempt to clean up the current
609 * mess. If the current handler includes an expiry handler then
610 * we invoke the expiry handler, and providing it is happy the
611 * work is done. If that fails we apply generic recovery rules
612 * invoking the handler and checking the drive DMA status. We
613 * have an excessively incestuous relationship with the DMA
614 * logic that wants cleaning up.
615 */
616
ide_timer_expiry(struct timer_list * t)617 void ide_timer_expiry (struct timer_list *t)
618 {
619 ide_hwif_t *hwif = from_timer(hwif, t, timer);
620 ide_drive_t *drive;
621 ide_handler_t *handler;
622 unsigned long flags;
623 int wait = -1;
624 int plug_device = 0;
625 struct request *rq_in_flight;
626
627 spin_lock_irqsave(&hwif->lock, flags);
628
629 handler = hwif->handler;
630
631 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
632 /*
633 * Either a marginal timeout occurred
634 * (got the interrupt just as timer expired),
635 * or we were "sleeping" to give other devices a chance.
636 * Either way, we don't really want to complain about anything.
637 */
638 } else {
639 ide_expiry_t *expiry = hwif->expiry;
640 ide_startstop_t startstop = ide_stopped;
641
642 drive = hwif->cur_dev;
643
644 if (expiry) {
645 wait = expiry(drive);
646 if (wait > 0) { /* continue */
647 /* reset timer */
648 hwif->timer.expires = jiffies + wait;
649 hwif->req_gen_timer = hwif->req_gen;
650 add_timer(&hwif->timer);
651 spin_unlock_irqrestore(&hwif->lock, flags);
652 return;
653 }
654 }
655 hwif->handler = NULL;
656 hwif->expiry = NULL;
657 /*
658 * We need to simulate a real interrupt when invoking
659 * the handler() function, which means we need to
660 * globally mask the specific IRQ:
661 */
662 spin_unlock(&hwif->lock);
663 /* disable_irq_nosync ?? */
664 disable_irq(hwif->irq);
665
666 if (hwif->polling) {
667 startstop = handler(drive);
668 } else if (drive_is_ready(drive)) {
669 if (drive->waiting_for_dma)
670 hwif->dma_ops->dma_lost_irq(drive);
671 if (hwif->port_ops && hwif->port_ops->clear_irq)
672 hwif->port_ops->clear_irq(drive);
673
674 printk(KERN_WARNING "%s: lost interrupt\n",
675 drive->name);
676 startstop = handler(drive);
677 } else {
678 if (drive->waiting_for_dma)
679 startstop = ide_dma_timeout_retry(drive, wait);
680 else
681 startstop = ide_error(drive, "irq timeout",
682 hwif->tp_ops->read_status(hwif));
683 }
684 /* Disable interrupts again, `handler' might have enabled it */
685 spin_lock_irq(&hwif->lock);
686 enable_irq(hwif->irq);
687 if (startstop == ide_stopped && hwif->polling == 0) {
688 rq_in_flight = hwif->rq;
689 hwif->rq = NULL;
690 ide_unlock_port(hwif);
691 plug_device = 1;
692 }
693 }
694 spin_unlock_irqrestore(&hwif->lock, flags);
695
696 if (plug_device) {
697 ide_unlock_host(hwif->host);
698 ide_requeue_and_plug(drive, rq_in_flight);
699 }
700 }
701
702 /**
703 * unexpected_intr - handle an unexpected IDE interrupt
704 * @irq: interrupt line
705 * @hwif: port being processed
706 *
707 * There's nothing really useful we can do with an unexpected interrupt,
708 * other than reading the status register (to clear it), and logging it.
709 * There should be no way that an irq can happen before we're ready for it,
710 * so we needn't worry much about losing an "important" interrupt here.
711 *
712 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
713 * the drive enters "idle", "standby", or "sleep" mode, so if the status
714 * looks "good", we just ignore the interrupt completely.
715 *
716 * This routine assumes __cli() is in effect when called.
717 *
718 * If an unexpected interrupt happens on irq15 while we are handling irq14
719 * and if the two interfaces are "serialized" (CMD640), then it looks like
720 * we could screw up by interfering with a new request being set up for
721 * irq15.
722 *
723 * In reality, this is a non-issue. The new command is not sent unless
724 * the drive is ready to accept one, in which case we know the drive is
725 * not trying to interrupt us. And ide_set_handler() is always invoked
726 * before completing the issuance of any new drive command, so we will not
727 * be accidentally invoked as a result of any valid command completion
728 * interrupt.
729 */
730
unexpected_intr(int irq,ide_hwif_t * hwif)731 static void unexpected_intr(int irq, ide_hwif_t *hwif)
732 {
733 u8 stat = hwif->tp_ops->read_status(hwif);
734
735 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
736 /* Try to not flood the console with msgs */
737 static unsigned long last_msgtime, count;
738 ++count;
739
740 if (time_after(jiffies, last_msgtime + HZ)) {
741 last_msgtime = jiffies;
742 printk(KERN_ERR "%s: unexpected interrupt, "
743 "status=0x%02x, count=%ld\n",
744 hwif->name, stat, count);
745 }
746 }
747 }
748
749 /**
750 * ide_intr - default IDE interrupt handler
751 * @irq: interrupt number
752 * @dev_id: hwif
753 * @regs: unused weirdness from the kernel irq layer
754 *
755 * This is the default IRQ handler for the IDE layer. You should
756 * not need to override it. If you do be aware it is subtle in
757 * places
758 *
759 * hwif is the interface in the group currently performing
760 * a command. hwif->cur_dev is the drive and hwif->handler is
761 * the IRQ handler to call. As we issue a command the handlers
762 * step through multiple states, reassigning the handler to the
763 * next step in the process. Unlike a smart SCSI controller IDE
764 * expects the main processor to sequence the various transfer
765 * stages. We also manage a poll timer to catch up with most
766 * timeout situations. There are still a few where the handlers
767 * don't ever decide to give up.
768 *
769 * The handler eventually returns ide_stopped to indicate the
770 * request completed. At this point we issue the next request
771 * on the port and the process begins again.
772 */
773
ide_intr(int irq,void * dev_id)774 irqreturn_t ide_intr (int irq, void *dev_id)
775 {
776 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
777 struct ide_host *host = hwif->host;
778 ide_drive_t *drive;
779 ide_handler_t *handler;
780 unsigned long flags;
781 ide_startstop_t startstop;
782 irqreturn_t irq_ret = IRQ_NONE;
783 int plug_device = 0;
784 struct request *rq_in_flight;
785
786 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
787 if (hwif != host->cur_port)
788 goto out_early;
789 }
790
791 spin_lock_irqsave(&hwif->lock, flags);
792
793 if (hwif->port_ops && hwif->port_ops->test_irq &&
794 hwif->port_ops->test_irq(hwif) == 0)
795 goto out;
796
797 handler = hwif->handler;
798
799 if (handler == NULL || hwif->polling) {
800 /*
801 * Not expecting an interrupt from this drive.
802 * That means this could be:
803 * (1) an interrupt from another PCI device
804 * sharing the same PCI INT# as us.
805 * or (2) a drive just entered sleep or standby mode,
806 * and is interrupting to let us know.
807 * or (3) a spurious interrupt of unknown origin.
808 *
809 * For PCI, we cannot tell the difference,
810 * so in that case we just ignore it and hope it goes away.
811 */
812 if ((host->irq_flags & IRQF_SHARED) == 0) {
813 /*
814 * Probably not a shared PCI interrupt,
815 * so we can safely try to do something about it:
816 */
817 unexpected_intr(irq, hwif);
818 } else {
819 /*
820 * Whack the status register, just in case
821 * we have a leftover pending IRQ.
822 */
823 (void)hwif->tp_ops->read_status(hwif);
824 }
825 goto out;
826 }
827
828 drive = hwif->cur_dev;
829
830 if (!drive_is_ready(drive))
831 /*
832 * This happens regularly when we share a PCI IRQ with
833 * another device. Unfortunately, it can also happen
834 * with some buggy drives that trigger the IRQ before
835 * their status register is up to date. Hopefully we have
836 * enough advance overhead that the latter isn't a problem.
837 */
838 goto out;
839
840 hwif->handler = NULL;
841 hwif->expiry = NULL;
842 hwif->req_gen++;
843 del_timer(&hwif->timer);
844 spin_unlock(&hwif->lock);
845
846 if (hwif->port_ops && hwif->port_ops->clear_irq)
847 hwif->port_ops->clear_irq(drive);
848
849 if (drive->dev_flags & IDE_DFLAG_UNMASK)
850 local_irq_enable_in_hardirq();
851
852 /* service this interrupt, may set handler for next interrupt */
853 startstop = handler(drive);
854
855 spin_lock_irq(&hwif->lock);
856 /*
857 * Note that handler() may have set things up for another
858 * interrupt to occur soon, but it cannot happen until
859 * we exit from this routine, because it will be the
860 * same irq as is currently being serviced here, and Linux
861 * won't allow another of the same (on any CPU) until we return.
862 */
863 if (startstop == ide_stopped && hwif->polling == 0) {
864 BUG_ON(hwif->handler);
865 rq_in_flight = hwif->rq;
866 hwif->rq = NULL;
867 ide_unlock_port(hwif);
868 plug_device = 1;
869 }
870 irq_ret = IRQ_HANDLED;
871 out:
872 spin_unlock_irqrestore(&hwif->lock, flags);
873 out_early:
874 if (plug_device) {
875 ide_unlock_host(hwif->host);
876 ide_requeue_and_plug(drive, rq_in_flight);
877 }
878
879 return irq_ret;
880 }
881 EXPORT_SYMBOL_GPL(ide_intr);
882
ide_pad_transfer(ide_drive_t * drive,int write,int len)883 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
884 {
885 ide_hwif_t *hwif = drive->hwif;
886 u8 buf[4] = { 0 };
887
888 while (len > 0) {
889 if (write)
890 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
891 else
892 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
893 len -= 4;
894 }
895 }
896 EXPORT_SYMBOL_GPL(ide_pad_transfer);
897
ide_insert_request_head(ide_drive_t * drive,struct request * rq)898 void ide_insert_request_head(ide_drive_t *drive, struct request *rq)
899 {
900 drive->sense_rq_active = true;
901 list_add_tail(&rq->queuelist, &drive->rq_list);
902 kblockd_schedule_work(&drive->rq_work);
903 }
904 EXPORT_SYMBOL_GPL(ide_insert_request_head);
905