• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
rbd_open(struct block_device * bdev,fmode_t mode)662 static int rbd_open(struct block_device *bdev, fmode_t mode)
663 {
664 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
rbd_release(struct gendisk * disk,fmode_t mode)681 static void rbd_release(struct gendisk *disk, fmode_t mode)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)694 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
695 {
696 	int ro;
697 
698 	if (get_user(ro, (int __user *)arg))
699 		return -EFAULT;
700 
701 	/*
702 	 * Both images mapped read-only and snapshots can't be marked
703 	 * read-write.
704 	 */
705 	if (!ro) {
706 		if (rbd_is_ro(rbd_dev))
707 			return -EROFS;
708 
709 		rbd_assert(!rbd_is_snap(rbd_dev));
710 	}
711 
712 	/* Let blkdev_roset() handle it */
713 	return -ENOTTY;
714 }
715 
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)716 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
717 			unsigned int cmd, unsigned long arg)
718 {
719 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
720 	int ret;
721 
722 	switch (cmd) {
723 	case BLKROSET:
724 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
725 		break;
726 	default:
727 		ret = -ENOTTY;
728 	}
729 
730 	return ret;
731 }
732 
733 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)734 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
735 				unsigned int cmd, unsigned long arg)
736 {
737 	return rbd_ioctl(bdev, mode, cmd, arg);
738 }
739 #endif /* CONFIG_COMPAT */
740 
741 static const struct block_device_operations rbd_bd_ops = {
742 	.owner			= THIS_MODULE,
743 	.open			= rbd_open,
744 	.release		= rbd_release,
745 	.ioctl			= rbd_ioctl,
746 #ifdef CONFIG_COMPAT
747 	.compat_ioctl		= rbd_compat_ioctl,
748 #endif
749 };
750 
751 /*
752  * Initialize an rbd client instance.  Success or not, this function
753  * consumes ceph_opts.  Caller holds client_mutex.
754  */
rbd_client_create(struct ceph_options * ceph_opts)755 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
756 {
757 	struct rbd_client *rbdc;
758 	int ret = -ENOMEM;
759 
760 	dout("%s:\n", __func__);
761 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
762 	if (!rbdc)
763 		goto out_opt;
764 
765 	kref_init(&rbdc->kref);
766 	INIT_LIST_HEAD(&rbdc->node);
767 
768 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
769 	if (IS_ERR(rbdc->client))
770 		goto out_rbdc;
771 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
772 
773 	ret = ceph_open_session(rbdc->client);
774 	if (ret < 0)
775 		goto out_client;
776 
777 	spin_lock(&rbd_client_list_lock);
778 	list_add_tail(&rbdc->node, &rbd_client_list);
779 	spin_unlock(&rbd_client_list_lock);
780 
781 	dout("%s: rbdc %p\n", __func__, rbdc);
782 
783 	return rbdc;
784 out_client:
785 	ceph_destroy_client(rbdc->client);
786 out_rbdc:
787 	kfree(rbdc);
788 out_opt:
789 	if (ceph_opts)
790 		ceph_destroy_options(ceph_opts);
791 	dout("%s: error %d\n", __func__, ret);
792 
793 	return ERR_PTR(ret);
794 }
795 
__rbd_get_client(struct rbd_client * rbdc)796 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
797 {
798 	kref_get(&rbdc->kref);
799 
800 	return rbdc;
801 }
802 
803 /*
804  * Find a ceph client with specific addr and configuration.  If
805  * found, bump its reference count.
806  */
rbd_client_find(struct ceph_options * ceph_opts)807 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
808 {
809 	struct rbd_client *client_node;
810 	bool found = false;
811 
812 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
813 		return NULL;
814 
815 	spin_lock(&rbd_client_list_lock);
816 	list_for_each_entry(client_node, &rbd_client_list, node) {
817 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
818 			__rbd_get_client(client_node);
819 
820 			found = true;
821 			break;
822 		}
823 	}
824 	spin_unlock(&rbd_client_list_lock);
825 
826 	return found ? client_node : NULL;
827 }
828 
829 /*
830  * (Per device) rbd map options
831  */
832 enum {
833 	Opt_queue_depth,
834 	Opt_alloc_size,
835 	Opt_lock_timeout,
836 	/* int args above */
837 	Opt_pool_ns,
838 	Opt_compression_hint,
839 	/* string args above */
840 	Opt_read_only,
841 	Opt_read_write,
842 	Opt_lock_on_read,
843 	Opt_exclusive,
844 	Opt_notrim,
845 };
846 
847 enum {
848 	Opt_compression_hint_none,
849 	Opt_compression_hint_compressible,
850 	Opt_compression_hint_incompressible,
851 };
852 
853 static const struct constant_table rbd_param_compression_hint[] = {
854 	{"none",		Opt_compression_hint_none},
855 	{"compressible",	Opt_compression_hint_compressible},
856 	{"incompressible",	Opt_compression_hint_incompressible},
857 	{}
858 };
859 
860 static const struct fs_parameter_spec rbd_parameters[] = {
861 	fsparam_u32	("alloc_size",			Opt_alloc_size),
862 	fsparam_enum	("compression_hint",		Opt_compression_hint,
863 			 rbd_param_compression_hint),
864 	fsparam_flag	("exclusive",			Opt_exclusive),
865 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
866 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
867 	fsparam_flag	("notrim",			Opt_notrim),
868 	fsparam_string	("_pool_ns",			Opt_pool_ns),
869 	fsparam_u32	("queue_depth",			Opt_queue_depth),
870 	fsparam_flag	("read_only",			Opt_read_only),
871 	fsparam_flag	("read_write",			Opt_read_write),
872 	fsparam_flag	("ro",				Opt_read_only),
873 	fsparam_flag	("rw",				Opt_read_write),
874 	{}
875 };
876 
877 struct rbd_options {
878 	int	queue_depth;
879 	int	alloc_size;
880 	unsigned long	lock_timeout;
881 	bool	read_only;
882 	bool	lock_on_read;
883 	bool	exclusive;
884 	bool	trim;
885 
886 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
887 };
888 
889 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
890 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
891 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
892 #define RBD_READ_ONLY_DEFAULT	false
893 #define RBD_LOCK_ON_READ_DEFAULT false
894 #define RBD_EXCLUSIVE_DEFAULT	false
895 #define RBD_TRIM_DEFAULT	true
896 
897 struct rbd_parse_opts_ctx {
898 	struct rbd_spec		*spec;
899 	struct ceph_options	*copts;
900 	struct rbd_options	*opts;
901 };
902 
obj_op_name(enum obj_operation_type op_type)903 static char* obj_op_name(enum obj_operation_type op_type)
904 {
905 	switch (op_type) {
906 	case OBJ_OP_READ:
907 		return "read";
908 	case OBJ_OP_WRITE:
909 		return "write";
910 	case OBJ_OP_DISCARD:
911 		return "discard";
912 	case OBJ_OP_ZEROOUT:
913 		return "zeroout";
914 	default:
915 		return "???";
916 	}
917 }
918 
919 /*
920  * Destroy ceph client
921  *
922  * Caller must hold rbd_client_list_lock.
923  */
rbd_client_release(struct kref * kref)924 static void rbd_client_release(struct kref *kref)
925 {
926 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
927 
928 	dout("%s: rbdc %p\n", __func__, rbdc);
929 	spin_lock(&rbd_client_list_lock);
930 	list_del(&rbdc->node);
931 	spin_unlock(&rbd_client_list_lock);
932 
933 	ceph_destroy_client(rbdc->client);
934 	kfree(rbdc);
935 }
936 
937 /*
938  * Drop reference to ceph client node. If it's not referenced anymore, release
939  * it.
940  */
rbd_put_client(struct rbd_client * rbdc)941 static void rbd_put_client(struct rbd_client *rbdc)
942 {
943 	if (rbdc)
944 		kref_put(&rbdc->kref, rbd_client_release);
945 }
946 
947 /*
948  * Get a ceph client with specific addr and configuration, if one does
949  * not exist create it.  Either way, ceph_opts is consumed by this
950  * function.
951  */
rbd_get_client(struct ceph_options * ceph_opts)952 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
953 {
954 	struct rbd_client *rbdc;
955 	int ret;
956 
957 	mutex_lock(&client_mutex);
958 	rbdc = rbd_client_find(ceph_opts);
959 	if (rbdc) {
960 		ceph_destroy_options(ceph_opts);
961 
962 		/*
963 		 * Using an existing client.  Make sure ->pg_pools is up to
964 		 * date before we look up the pool id in do_rbd_add().
965 		 */
966 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
967 					rbdc->client->options->mount_timeout);
968 		if (ret) {
969 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
970 			rbd_put_client(rbdc);
971 			rbdc = ERR_PTR(ret);
972 		}
973 	} else {
974 		rbdc = rbd_client_create(ceph_opts);
975 	}
976 	mutex_unlock(&client_mutex);
977 
978 	return rbdc;
979 }
980 
rbd_image_format_valid(u32 image_format)981 static bool rbd_image_format_valid(u32 image_format)
982 {
983 	return image_format == 1 || image_format == 2;
984 }
985 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)986 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
987 {
988 	size_t size;
989 	u32 snap_count;
990 
991 	/* The header has to start with the magic rbd header text */
992 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
993 		return false;
994 
995 	/* The bio layer requires at least sector-sized I/O */
996 
997 	if (ondisk->options.order < SECTOR_SHIFT)
998 		return false;
999 
1000 	/* If we use u64 in a few spots we may be able to loosen this */
1001 
1002 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1003 		return false;
1004 
1005 	/*
1006 	 * The size of a snapshot header has to fit in a size_t, and
1007 	 * that limits the number of snapshots.
1008 	 */
1009 	snap_count = le32_to_cpu(ondisk->snap_count);
1010 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1011 	if (snap_count > size / sizeof (__le64))
1012 		return false;
1013 
1014 	/*
1015 	 * Not only that, but the size of the entire the snapshot
1016 	 * header must also be representable in a size_t.
1017 	 */
1018 	size -= snap_count * sizeof (__le64);
1019 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1020 		return false;
1021 
1022 	return true;
1023 }
1024 
1025 /*
1026  * returns the size of an object in the image
1027  */
rbd_obj_bytes(struct rbd_image_header * header)1028 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1029 {
1030 	return 1U << header->obj_order;
1031 }
1032 
rbd_init_layout(struct rbd_device * rbd_dev)1033 static void rbd_init_layout(struct rbd_device *rbd_dev)
1034 {
1035 	if (rbd_dev->header.stripe_unit == 0 ||
1036 	    rbd_dev->header.stripe_count == 0) {
1037 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1038 		rbd_dev->header.stripe_count = 1;
1039 	}
1040 
1041 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1042 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1043 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1044 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1045 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1046 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1047 }
1048 
rbd_image_header_cleanup(struct rbd_image_header * header)1049 static void rbd_image_header_cleanup(struct rbd_image_header *header)
1050 {
1051 	kfree(header->object_prefix);
1052 	ceph_put_snap_context(header->snapc);
1053 	kfree(header->snap_sizes);
1054 	kfree(header->snap_names);
1055 
1056 	memset(header, 0, sizeof(*header));
1057 }
1058 
1059 /*
1060  * Fill an rbd image header with information from the given format 1
1061  * on-disk header.
1062  */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1063 static int rbd_header_from_disk(struct rbd_image_header *header,
1064 				struct rbd_image_header_ondisk *ondisk,
1065 				bool first_time)
1066 {
1067 	struct ceph_snap_context *snapc;
1068 	char *object_prefix = NULL;
1069 	char *snap_names = NULL;
1070 	u64 *snap_sizes = NULL;
1071 	u32 snap_count;
1072 	int ret = -ENOMEM;
1073 	u32 i;
1074 
1075 	/* Allocate this now to avoid having to handle failure below */
1076 
1077 	if (first_time) {
1078 		object_prefix = kstrndup(ondisk->object_prefix,
1079 					 sizeof(ondisk->object_prefix),
1080 					 GFP_KERNEL);
1081 		if (!object_prefix)
1082 			return -ENOMEM;
1083 	}
1084 
1085 	/* Allocate the snapshot context and fill it in */
1086 
1087 	snap_count = le32_to_cpu(ondisk->snap_count);
1088 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1089 	if (!snapc)
1090 		goto out_err;
1091 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1092 	if (snap_count) {
1093 		struct rbd_image_snap_ondisk *snaps;
1094 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1095 
1096 		/* We'll keep a copy of the snapshot names... */
1097 
1098 		if (snap_names_len > (u64)SIZE_MAX)
1099 			goto out_2big;
1100 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1101 		if (!snap_names)
1102 			goto out_err;
1103 
1104 		/* ...as well as the array of their sizes. */
1105 		snap_sizes = kmalloc_array(snap_count,
1106 					   sizeof(*header->snap_sizes),
1107 					   GFP_KERNEL);
1108 		if (!snap_sizes)
1109 			goto out_err;
1110 
1111 		/*
1112 		 * Copy the names, and fill in each snapshot's id
1113 		 * and size.
1114 		 *
1115 		 * Note that rbd_dev_v1_header_info() guarantees the
1116 		 * ondisk buffer we're working with has
1117 		 * snap_names_len bytes beyond the end of the
1118 		 * snapshot id array, this memcpy() is safe.
1119 		 */
1120 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1121 		snaps = ondisk->snaps;
1122 		for (i = 0; i < snap_count; i++) {
1123 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1124 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1125 		}
1126 	}
1127 
1128 	/* We won't fail any more, fill in the header */
1129 
1130 	if (first_time) {
1131 		header->object_prefix = object_prefix;
1132 		header->obj_order = ondisk->options.order;
1133 	}
1134 
1135 	/* The remaining fields always get updated (when we refresh) */
1136 
1137 	header->image_size = le64_to_cpu(ondisk->image_size);
1138 	header->snapc = snapc;
1139 	header->snap_names = snap_names;
1140 	header->snap_sizes = snap_sizes;
1141 
1142 	return 0;
1143 out_2big:
1144 	ret = -EIO;
1145 out_err:
1146 	kfree(snap_sizes);
1147 	kfree(snap_names);
1148 	ceph_put_snap_context(snapc);
1149 	kfree(object_prefix);
1150 
1151 	return ret;
1152 }
1153 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1154 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1155 {
1156 	const char *snap_name;
1157 
1158 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1159 
1160 	/* Skip over names until we find the one we are looking for */
1161 
1162 	snap_name = rbd_dev->header.snap_names;
1163 	while (which--)
1164 		snap_name += strlen(snap_name) + 1;
1165 
1166 	return kstrdup(snap_name, GFP_KERNEL);
1167 }
1168 
1169 /*
1170  * Snapshot id comparison function for use with qsort()/bsearch().
1171  * Note that result is for snapshots in *descending* order.
1172  */
snapid_compare_reverse(const void * s1,const void * s2)1173 static int snapid_compare_reverse(const void *s1, const void *s2)
1174 {
1175 	u64 snap_id1 = *(u64 *)s1;
1176 	u64 snap_id2 = *(u64 *)s2;
1177 
1178 	if (snap_id1 < snap_id2)
1179 		return 1;
1180 	return snap_id1 == snap_id2 ? 0 : -1;
1181 }
1182 
1183 /*
1184  * Search a snapshot context to see if the given snapshot id is
1185  * present.
1186  *
1187  * Returns the position of the snapshot id in the array if it's found,
1188  * or BAD_SNAP_INDEX otherwise.
1189  *
1190  * Note: The snapshot array is in kept sorted (by the osd) in
1191  * reverse order, highest snapshot id first.
1192  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1193 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1194 {
1195 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1196 	u64 *found;
1197 
1198 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1199 				sizeof (snap_id), snapid_compare_reverse);
1200 
1201 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1202 }
1203 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1204 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1205 					u64 snap_id)
1206 {
1207 	u32 which;
1208 	const char *snap_name;
1209 
1210 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1211 	if (which == BAD_SNAP_INDEX)
1212 		return ERR_PTR(-ENOENT);
1213 
1214 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1215 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1216 }
1217 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1218 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1219 {
1220 	if (snap_id == CEPH_NOSNAP)
1221 		return RBD_SNAP_HEAD_NAME;
1222 
1223 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1224 	if (rbd_dev->image_format == 1)
1225 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1226 
1227 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1228 }
1229 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1230 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1231 				u64 *snap_size)
1232 {
1233 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1234 	if (snap_id == CEPH_NOSNAP) {
1235 		*snap_size = rbd_dev->header.image_size;
1236 	} else if (rbd_dev->image_format == 1) {
1237 		u32 which;
1238 
1239 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1240 		if (which == BAD_SNAP_INDEX)
1241 			return -ENOENT;
1242 
1243 		*snap_size = rbd_dev->header.snap_sizes[which];
1244 	} else {
1245 		u64 size = 0;
1246 		int ret;
1247 
1248 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1249 		if (ret)
1250 			return ret;
1251 
1252 		*snap_size = size;
1253 	}
1254 	return 0;
1255 }
1256 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1257 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1258 {
1259 	u64 snap_id = rbd_dev->spec->snap_id;
1260 	u64 size = 0;
1261 	int ret;
1262 
1263 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1264 	if (ret)
1265 		return ret;
1266 
1267 	rbd_dev->mapping.size = size;
1268 	return 0;
1269 }
1270 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1271 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1272 {
1273 	rbd_dev->mapping.size = 0;
1274 }
1275 
zero_bvec(struct bio_vec * bv)1276 static void zero_bvec(struct bio_vec *bv)
1277 {
1278 	void *buf;
1279 	unsigned long flags;
1280 
1281 	buf = bvec_kmap_irq(bv, &flags);
1282 	memset(buf, 0, bv->bv_len);
1283 	flush_dcache_page(bv->bv_page);
1284 	bvec_kunmap_irq(buf, &flags);
1285 }
1286 
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1287 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1288 {
1289 	struct ceph_bio_iter it = *bio_pos;
1290 
1291 	ceph_bio_iter_advance(&it, off);
1292 	ceph_bio_iter_advance_step(&it, bytes, ({
1293 		zero_bvec(&bv);
1294 	}));
1295 }
1296 
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1297 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1298 {
1299 	struct ceph_bvec_iter it = *bvec_pos;
1300 
1301 	ceph_bvec_iter_advance(&it, off);
1302 	ceph_bvec_iter_advance_step(&it, bytes, ({
1303 		zero_bvec(&bv);
1304 	}));
1305 }
1306 
1307 /*
1308  * Zero a range in @obj_req data buffer defined by a bio (list) or
1309  * (private) bio_vec array.
1310  *
1311  * @off is relative to the start of the data buffer.
1312  */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1313 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1314 			       u32 bytes)
1315 {
1316 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1317 
1318 	switch (obj_req->img_request->data_type) {
1319 	case OBJ_REQUEST_BIO:
1320 		zero_bios(&obj_req->bio_pos, off, bytes);
1321 		break;
1322 	case OBJ_REQUEST_BVECS:
1323 	case OBJ_REQUEST_OWN_BVECS:
1324 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1325 		break;
1326 	default:
1327 		BUG();
1328 	}
1329 }
1330 
1331 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1332 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1333 {
1334 	rbd_assert(obj_request != NULL);
1335 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1336 		kref_read(&obj_request->kref));
1337 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1338 }
1339 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1340 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1341 					struct rbd_obj_request *obj_request)
1342 {
1343 	rbd_assert(obj_request->img_request == NULL);
1344 
1345 	/* Image request now owns object's original reference */
1346 	obj_request->img_request = img_request;
1347 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1348 }
1349 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1350 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1351 					struct rbd_obj_request *obj_request)
1352 {
1353 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1354 	list_del(&obj_request->ex.oe_item);
1355 	rbd_assert(obj_request->img_request == img_request);
1356 	rbd_obj_request_put(obj_request);
1357 }
1358 
rbd_osd_submit(struct ceph_osd_request * osd_req)1359 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1360 {
1361 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1362 
1363 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1364 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1365 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1366 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1367 }
1368 
1369 /*
1370  * The default/initial value for all image request flags is 0.  Each
1371  * is conditionally set to 1 at image request initialization time
1372  * and currently never change thereafter.
1373  */
img_request_layered_set(struct rbd_img_request * img_request)1374 static void img_request_layered_set(struct rbd_img_request *img_request)
1375 {
1376 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1377 }
1378 
img_request_layered_test(struct rbd_img_request * img_request)1379 static bool img_request_layered_test(struct rbd_img_request *img_request)
1380 {
1381 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1382 }
1383 
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1384 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1385 {
1386 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1387 
1388 	return !obj_req->ex.oe_off &&
1389 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1390 }
1391 
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1392 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1393 {
1394 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1395 
1396 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1397 					rbd_dev->layout.object_size;
1398 }
1399 
1400 /*
1401  * Must be called after rbd_obj_calc_img_extents().
1402  */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1403 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1404 {
1405 	rbd_assert(obj_req->img_request->snapc);
1406 
1407 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1408 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1409 		     obj_req->ex.oe_objno);
1410 		return;
1411 	}
1412 
1413 	if (!obj_req->num_img_extents) {
1414 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1415 		     obj_req->ex.oe_objno);
1416 		return;
1417 	}
1418 
1419 	if (rbd_obj_is_entire(obj_req) &&
1420 	    !obj_req->img_request->snapc->num_snaps) {
1421 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1422 		     obj_req->ex.oe_objno);
1423 		return;
1424 	}
1425 
1426 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1427 }
1428 
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1429 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1430 {
1431 	return ceph_file_extents_bytes(obj_req->img_extents,
1432 				       obj_req->num_img_extents);
1433 }
1434 
rbd_img_is_write(struct rbd_img_request * img_req)1435 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1436 {
1437 	switch (img_req->op_type) {
1438 	case OBJ_OP_READ:
1439 		return false;
1440 	case OBJ_OP_WRITE:
1441 	case OBJ_OP_DISCARD:
1442 	case OBJ_OP_ZEROOUT:
1443 		return true;
1444 	default:
1445 		BUG();
1446 	}
1447 }
1448 
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1449 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1450 {
1451 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1452 	int result;
1453 
1454 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1455 	     osd_req->r_result, obj_req);
1456 
1457 	/*
1458 	 * Writes aren't allowed to return a data payload.  In some
1459 	 * guarded write cases (e.g. stat + zero on an empty object)
1460 	 * a stat response makes it through, but we don't care.
1461 	 */
1462 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1463 		result = 0;
1464 	else
1465 		result = osd_req->r_result;
1466 
1467 	rbd_obj_handle_request(obj_req, result);
1468 }
1469 
rbd_osd_format_read(struct ceph_osd_request * osd_req)1470 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1471 {
1472 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1473 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1474 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1475 
1476 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1477 	osd_req->r_snapid = obj_request->img_request->snap_id;
1478 }
1479 
rbd_osd_format_write(struct ceph_osd_request * osd_req)1480 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1481 {
1482 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1483 
1484 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1485 	ktime_get_real_ts64(&osd_req->r_mtime);
1486 	osd_req->r_data_offset = obj_request->ex.oe_off;
1487 }
1488 
1489 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1490 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1491 			  struct ceph_snap_context *snapc, int num_ops)
1492 {
1493 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1494 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1495 	struct ceph_osd_request *req;
1496 	const char *name_format = rbd_dev->image_format == 1 ?
1497 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1498 	int ret;
1499 
1500 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1501 	if (!req)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1505 	req->r_callback = rbd_osd_req_callback;
1506 	req->r_priv = obj_req;
1507 
1508 	/*
1509 	 * Data objects may be stored in a separate pool, but always in
1510 	 * the same namespace in that pool as the header in its pool.
1511 	 */
1512 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1513 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1514 
1515 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1516 			       rbd_dev->header.object_prefix,
1517 			       obj_req->ex.oe_objno);
1518 	if (ret)
1519 		return ERR_PTR(ret);
1520 
1521 	return req;
1522 }
1523 
1524 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1525 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1526 {
1527 	rbd_assert(obj_req->img_request->snapc);
1528 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1529 					 num_ops);
1530 }
1531 
rbd_obj_request_create(void)1532 static struct rbd_obj_request *rbd_obj_request_create(void)
1533 {
1534 	struct rbd_obj_request *obj_request;
1535 
1536 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1537 	if (!obj_request)
1538 		return NULL;
1539 
1540 	ceph_object_extent_init(&obj_request->ex);
1541 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1542 	mutex_init(&obj_request->state_mutex);
1543 	kref_init(&obj_request->kref);
1544 
1545 	dout("%s %p\n", __func__, obj_request);
1546 	return obj_request;
1547 }
1548 
rbd_obj_request_destroy(struct kref * kref)1549 static void rbd_obj_request_destroy(struct kref *kref)
1550 {
1551 	struct rbd_obj_request *obj_request;
1552 	struct ceph_osd_request *osd_req;
1553 	u32 i;
1554 
1555 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1556 
1557 	dout("%s: obj %p\n", __func__, obj_request);
1558 
1559 	while (!list_empty(&obj_request->osd_reqs)) {
1560 		osd_req = list_first_entry(&obj_request->osd_reqs,
1561 				    struct ceph_osd_request, r_private_item);
1562 		list_del_init(&osd_req->r_private_item);
1563 		ceph_osdc_put_request(osd_req);
1564 	}
1565 
1566 	switch (obj_request->img_request->data_type) {
1567 	case OBJ_REQUEST_NODATA:
1568 	case OBJ_REQUEST_BIO:
1569 	case OBJ_REQUEST_BVECS:
1570 		break;		/* Nothing to do */
1571 	case OBJ_REQUEST_OWN_BVECS:
1572 		kfree(obj_request->bvec_pos.bvecs);
1573 		break;
1574 	default:
1575 		BUG();
1576 	}
1577 
1578 	kfree(obj_request->img_extents);
1579 	if (obj_request->copyup_bvecs) {
1580 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1581 			if (obj_request->copyup_bvecs[i].bv_page)
1582 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1583 		}
1584 		kfree(obj_request->copyup_bvecs);
1585 	}
1586 
1587 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1588 }
1589 
1590 /* It's OK to call this for a device with no parent */
1591 
1592 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1593 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1594 {
1595 	rbd_dev_remove_parent(rbd_dev);
1596 	rbd_spec_put(rbd_dev->parent_spec);
1597 	rbd_dev->parent_spec = NULL;
1598 	rbd_dev->parent_overlap = 0;
1599 }
1600 
1601 /*
1602  * Parent image reference counting is used to determine when an
1603  * image's parent fields can be safely torn down--after there are no
1604  * more in-flight requests to the parent image.  When the last
1605  * reference is dropped, cleaning them up is safe.
1606  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1607 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1608 {
1609 	int counter;
1610 
1611 	if (!rbd_dev->parent_spec)
1612 		return;
1613 
1614 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1615 	if (counter > 0)
1616 		return;
1617 
1618 	/* Last reference; clean up parent data structures */
1619 
1620 	if (!counter)
1621 		rbd_dev_unparent(rbd_dev);
1622 	else
1623 		rbd_warn(rbd_dev, "parent reference underflow");
1624 }
1625 
1626 /*
1627  * If an image has a non-zero parent overlap, get a reference to its
1628  * parent.
1629  *
1630  * Returns true if the rbd device has a parent with a non-zero
1631  * overlap and a reference for it was successfully taken, or
1632  * false otherwise.
1633  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1634 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1635 {
1636 	int counter = 0;
1637 
1638 	if (!rbd_dev->parent_spec)
1639 		return false;
1640 
1641 	if (rbd_dev->parent_overlap)
1642 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1643 
1644 	if (counter < 0)
1645 		rbd_warn(rbd_dev, "parent reference overflow");
1646 
1647 	return counter > 0;
1648 }
1649 
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1650 static void rbd_img_request_init(struct rbd_img_request *img_request,
1651 				 struct rbd_device *rbd_dev,
1652 				 enum obj_operation_type op_type)
1653 {
1654 	memset(img_request, 0, sizeof(*img_request));
1655 
1656 	img_request->rbd_dev = rbd_dev;
1657 	img_request->op_type = op_type;
1658 
1659 	INIT_LIST_HEAD(&img_request->lock_item);
1660 	INIT_LIST_HEAD(&img_request->object_extents);
1661 	mutex_init(&img_request->state_mutex);
1662 }
1663 
1664 /*
1665  * Only snap_id is captured here, for reads.  For writes, snapshot
1666  * context is captured in rbd_img_object_requests() after exclusive
1667  * lock is ensured to be held.
1668  */
rbd_img_capture_header(struct rbd_img_request * img_req)1669 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1670 {
1671 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1672 
1673 	lockdep_assert_held(&rbd_dev->header_rwsem);
1674 
1675 	if (!rbd_img_is_write(img_req))
1676 		img_req->snap_id = rbd_dev->spec->snap_id;
1677 
1678 	if (rbd_dev_parent_get(rbd_dev))
1679 		img_request_layered_set(img_req);
1680 }
1681 
rbd_img_request_destroy(struct rbd_img_request * img_request)1682 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1683 {
1684 	struct rbd_obj_request *obj_request;
1685 	struct rbd_obj_request *next_obj_request;
1686 
1687 	dout("%s: img %p\n", __func__, img_request);
1688 
1689 	WARN_ON(!list_empty(&img_request->lock_item));
1690 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1691 		rbd_img_obj_request_del(img_request, obj_request);
1692 
1693 	if (img_request_layered_test(img_request))
1694 		rbd_dev_parent_put(img_request->rbd_dev);
1695 
1696 	if (rbd_img_is_write(img_request))
1697 		ceph_put_snap_context(img_request->snapc);
1698 
1699 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1700 		kmem_cache_free(rbd_img_request_cache, img_request);
1701 }
1702 
1703 #define BITS_PER_OBJ	2
1704 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1705 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1706 
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1707 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1708 				   u64 *index, u8 *shift)
1709 {
1710 	u32 off;
1711 
1712 	rbd_assert(objno < rbd_dev->object_map_size);
1713 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1714 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1715 }
1716 
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1717 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1718 {
1719 	u64 index;
1720 	u8 shift;
1721 
1722 	lockdep_assert_held(&rbd_dev->object_map_lock);
1723 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1724 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1725 }
1726 
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1727 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1728 {
1729 	u64 index;
1730 	u8 shift;
1731 	u8 *p;
1732 
1733 	lockdep_assert_held(&rbd_dev->object_map_lock);
1734 	rbd_assert(!(val & ~OBJ_MASK));
1735 
1736 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1737 	p = &rbd_dev->object_map[index];
1738 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1739 }
1740 
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1741 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1742 {
1743 	u8 state;
1744 
1745 	spin_lock(&rbd_dev->object_map_lock);
1746 	state = __rbd_object_map_get(rbd_dev, objno);
1747 	spin_unlock(&rbd_dev->object_map_lock);
1748 	return state;
1749 }
1750 
use_object_map(struct rbd_device * rbd_dev)1751 static bool use_object_map(struct rbd_device *rbd_dev)
1752 {
1753 	/*
1754 	 * An image mapped read-only can't use the object map -- it isn't
1755 	 * loaded because the header lock isn't acquired.  Someone else can
1756 	 * write to the image and update the object map behind our back.
1757 	 *
1758 	 * A snapshot can't be written to, so using the object map is always
1759 	 * safe.
1760 	 */
1761 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1762 		return false;
1763 
1764 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1765 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1766 }
1767 
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1768 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1769 {
1770 	u8 state;
1771 
1772 	/* fall back to default logic if object map is disabled or invalid */
1773 	if (!use_object_map(rbd_dev))
1774 		return true;
1775 
1776 	state = rbd_object_map_get(rbd_dev, objno);
1777 	return state != OBJECT_NONEXISTENT;
1778 }
1779 
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1780 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1781 				struct ceph_object_id *oid)
1782 {
1783 	if (snap_id == CEPH_NOSNAP)
1784 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1785 				rbd_dev->spec->image_id);
1786 	else
1787 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1788 				rbd_dev->spec->image_id, snap_id);
1789 }
1790 
rbd_object_map_lock(struct rbd_device * rbd_dev)1791 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1792 {
1793 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1794 	CEPH_DEFINE_OID_ONSTACK(oid);
1795 	u8 lock_type;
1796 	char *lock_tag;
1797 	struct ceph_locker *lockers;
1798 	u32 num_lockers;
1799 	bool broke_lock = false;
1800 	int ret;
1801 
1802 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1803 
1804 again:
1805 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1806 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1807 	if (ret != -EBUSY || broke_lock) {
1808 		if (ret == -EEXIST)
1809 			ret = 0; /* already locked by myself */
1810 		if (ret)
1811 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1812 		return ret;
1813 	}
1814 
1815 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1816 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1817 				 &lockers, &num_lockers);
1818 	if (ret) {
1819 		if (ret == -ENOENT)
1820 			goto again;
1821 
1822 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1823 		return ret;
1824 	}
1825 
1826 	kfree(lock_tag);
1827 	if (num_lockers == 0)
1828 		goto again;
1829 
1830 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1831 		 ENTITY_NAME(lockers[0].id.name));
1832 
1833 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1834 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1835 				  &lockers[0].id.name);
1836 	ceph_free_lockers(lockers, num_lockers);
1837 	if (ret) {
1838 		if (ret == -ENOENT)
1839 			goto again;
1840 
1841 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1842 		return ret;
1843 	}
1844 
1845 	broke_lock = true;
1846 	goto again;
1847 }
1848 
rbd_object_map_unlock(struct rbd_device * rbd_dev)1849 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1850 {
1851 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1852 	CEPH_DEFINE_OID_ONSTACK(oid);
1853 	int ret;
1854 
1855 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1856 
1857 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1858 			      "");
1859 	if (ret && ret != -ENOENT)
1860 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1861 }
1862 
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1863 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1864 {
1865 	u8 struct_v;
1866 	u32 struct_len;
1867 	u32 header_len;
1868 	void *header_end;
1869 	int ret;
1870 
1871 	ceph_decode_32_safe(p, end, header_len, e_inval);
1872 	header_end = *p + header_len;
1873 
1874 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1875 				  &struct_len);
1876 	if (ret)
1877 		return ret;
1878 
1879 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1880 
1881 	*p = header_end;
1882 	return 0;
1883 
1884 e_inval:
1885 	return -EINVAL;
1886 }
1887 
__rbd_object_map_load(struct rbd_device * rbd_dev)1888 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1889 {
1890 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1891 	CEPH_DEFINE_OID_ONSTACK(oid);
1892 	struct page **pages;
1893 	void *p, *end;
1894 	size_t reply_len;
1895 	u64 num_objects;
1896 	u64 object_map_bytes;
1897 	u64 object_map_size;
1898 	int num_pages;
1899 	int ret;
1900 
1901 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1902 
1903 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1904 					   rbd_dev->mapping.size);
1905 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1906 					    BITS_PER_BYTE);
1907 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1908 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1909 	if (IS_ERR(pages))
1910 		return PTR_ERR(pages);
1911 
1912 	reply_len = num_pages * PAGE_SIZE;
1913 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1914 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1915 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1916 			     NULL, 0, pages, &reply_len);
1917 	if (ret)
1918 		goto out;
1919 
1920 	p = page_address(pages[0]);
1921 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1922 	ret = decode_object_map_header(&p, end, &object_map_size);
1923 	if (ret)
1924 		goto out;
1925 
1926 	if (object_map_size != num_objects) {
1927 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1928 			 object_map_size, num_objects);
1929 		ret = -EINVAL;
1930 		goto out;
1931 	}
1932 
1933 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1934 		ret = -EINVAL;
1935 		goto out;
1936 	}
1937 
1938 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1939 	if (!rbd_dev->object_map) {
1940 		ret = -ENOMEM;
1941 		goto out;
1942 	}
1943 
1944 	rbd_dev->object_map_size = object_map_size;
1945 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1946 				   offset_in_page(p), object_map_bytes);
1947 
1948 out:
1949 	ceph_release_page_vector(pages, num_pages);
1950 	return ret;
1951 }
1952 
rbd_object_map_free(struct rbd_device * rbd_dev)1953 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1954 {
1955 	kvfree(rbd_dev->object_map);
1956 	rbd_dev->object_map = NULL;
1957 	rbd_dev->object_map_size = 0;
1958 }
1959 
rbd_object_map_load(struct rbd_device * rbd_dev)1960 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1961 {
1962 	int ret;
1963 
1964 	ret = __rbd_object_map_load(rbd_dev);
1965 	if (ret)
1966 		return ret;
1967 
1968 	ret = rbd_dev_v2_get_flags(rbd_dev);
1969 	if (ret) {
1970 		rbd_object_map_free(rbd_dev);
1971 		return ret;
1972 	}
1973 
1974 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1975 		rbd_warn(rbd_dev, "object map is invalid");
1976 
1977 	return 0;
1978 }
1979 
rbd_object_map_open(struct rbd_device * rbd_dev)1980 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1981 {
1982 	int ret;
1983 
1984 	ret = rbd_object_map_lock(rbd_dev);
1985 	if (ret)
1986 		return ret;
1987 
1988 	ret = rbd_object_map_load(rbd_dev);
1989 	if (ret) {
1990 		rbd_object_map_unlock(rbd_dev);
1991 		return ret;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
rbd_object_map_close(struct rbd_device * rbd_dev)1997 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1998 {
1999 	rbd_object_map_free(rbd_dev);
2000 	rbd_object_map_unlock(rbd_dev);
2001 }
2002 
2003 /*
2004  * This function needs snap_id (or more precisely just something to
2005  * distinguish between HEAD and snapshot object maps), new_state and
2006  * current_state that were passed to rbd_object_map_update().
2007  *
2008  * To avoid allocating and stashing a context we piggyback on the OSD
2009  * request.  A HEAD update has two ops (assert_locked).  For new_state
2010  * and current_state we decode our own object_map_update op, encoded in
2011  * rbd_cls_object_map_update().
2012  */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)2013 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2014 					struct ceph_osd_request *osd_req)
2015 {
2016 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2017 	struct ceph_osd_data *osd_data;
2018 	u64 objno;
2019 	u8 state, new_state, current_state;
2020 	bool has_current_state;
2021 	void *p;
2022 
2023 	if (osd_req->r_result)
2024 		return osd_req->r_result;
2025 
2026 	/*
2027 	 * Nothing to do for a snapshot object map.
2028 	 */
2029 	if (osd_req->r_num_ops == 1)
2030 		return 0;
2031 
2032 	/*
2033 	 * Update in-memory HEAD object map.
2034 	 */
2035 	rbd_assert(osd_req->r_num_ops == 2);
2036 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2037 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2038 
2039 	p = page_address(osd_data->pages[0]);
2040 	objno = ceph_decode_64(&p);
2041 	rbd_assert(objno == obj_req->ex.oe_objno);
2042 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2043 	new_state = ceph_decode_8(&p);
2044 	has_current_state = ceph_decode_8(&p);
2045 	if (has_current_state)
2046 		current_state = ceph_decode_8(&p);
2047 
2048 	spin_lock(&rbd_dev->object_map_lock);
2049 	state = __rbd_object_map_get(rbd_dev, objno);
2050 	if (!has_current_state || current_state == state ||
2051 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2052 		__rbd_object_map_set(rbd_dev, objno, new_state);
2053 	spin_unlock(&rbd_dev->object_map_lock);
2054 
2055 	return 0;
2056 }
2057 
rbd_object_map_callback(struct ceph_osd_request * osd_req)2058 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2059 {
2060 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2061 	int result;
2062 
2063 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2064 	     osd_req->r_result, obj_req);
2065 
2066 	result = rbd_object_map_update_finish(obj_req, osd_req);
2067 	rbd_obj_handle_request(obj_req, result);
2068 }
2069 
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2070 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2071 {
2072 	u8 state = rbd_object_map_get(rbd_dev, objno);
2073 
2074 	if (state == new_state ||
2075 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2076 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2077 		return false;
2078 
2079 	return true;
2080 }
2081 
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2082 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2083 				     int which, u64 objno, u8 new_state,
2084 				     const u8 *current_state)
2085 {
2086 	struct page **pages;
2087 	void *p, *start;
2088 	int ret;
2089 
2090 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2091 	if (ret)
2092 		return ret;
2093 
2094 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2095 	if (IS_ERR(pages))
2096 		return PTR_ERR(pages);
2097 
2098 	p = start = page_address(pages[0]);
2099 	ceph_encode_64(&p, objno);
2100 	ceph_encode_64(&p, objno + 1);
2101 	ceph_encode_8(&p, new_state);
2102 	if (current_state) {
2103 		ceph_encode_8(&p, 1);
2104 		ceph_encode_8(&p, *current_state);
2105 	} else {
2106 		ceph_encode_8(&p, 0);
2107 	}
2108 
2109 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2110 					  false, true);
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Return:
2116  *   0 - object map update sent
2117  *   1 - object map update isn't needed
2118  *  <0 - error
2119  */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2120 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2121 				 u8 new_state, const u8 *current_state)
2122 {
2123 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2124 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2125 	struct ceph_osd_request *req;
2126 	int num_ops = 1;
2127 	int which = 0;
2128 	int ret;
2129 
2130 	if (snap_id == CEPH_NOSNAP) {
2131 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2132 			return 1;
2133 
2134 		num_ops++; /* assert_locked */
2135 	}
2136 
2137 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2138 	if (!req)
2139 		return -ENOMEM;
2140 
2141 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2142 	req->r_callback = rbd_object_map_callback;
2143 	req->r_priv = obj_req;
2144 
2145 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2146 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2147 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2148 	ktime_get_real_ts64(&req->r_mtime);
2149 
2150 	if (snap_id == CEPH_NOSNAP) {
2151 		/*
2152 		 * Protect against possible race conditions during lock
2153 		 * ownership transitions.
2154 		 */
2155 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2156 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2157 		if (ret)
2158 			return ret;
2159 	}
2160 
2161 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2162 					new_state, current_state);
2163 	if (ret)
2164 		return ret;
2165 
2166 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2167 	if (ret)
2168 		return ret;
2169 
2170 	ceph_osdc_start_request(osdc, req, false);
2171 	return 0;
2172 }
2173 
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2174 static void prune_extents(struct ceph_file_extent *img_extents,
2175 			  u32 *num_img_extents, u64 overlap)
2176 {
2177 	u32 cnt = *num_img_extents;
2178 
2179 	/* drop extents completely beyond the overlap */
2180 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2181 		cnt--;
2182 
2183 	if (cnt) {
2184 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2185 
2186 		/* trim final overlapping extent */
2187 		if (ex->fe_off + ex->fe_len > overlap)
2188 			ex->fe_len = overlap - ex->fe_off;
2189 	}
2190 
2191 	*num_img_extents = cnt;
2192 }
2193 
2194 /*
2195  * Determine the byte range(s) covered by either just the object extent
2196  * or the entire object in the parent image.
2197  */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2198 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2199 				    bool entire)
2200 {
2201 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2202 	int ret;
2203 
2204 	if (!rbd_dev->parent_overlap)
2205 		return 0;
2206 
2207 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2208 				  entire ? 0 : obj_req->ex.oe_off,
2209 				  entire ? rbd_dev->layout.object_size :
2210 							obj_req->ex.oe_len,
2211 				  &obj_req->img_extents,
2212 				  &obj_req->num_img_extents);
2213 	if (ret)
2214 		return ret;
2215 
2216 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2217 		      rbd_dev->parent_overlap);
2218 	return 0;
2219 }
2220 
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2221 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2222 {
2223 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2224 
2225 	switch (obj_req->img_request->data_type) {
2226 	case OBJ_REQUEST_BIO:
2227 		osd_req_op_extent_osd_data_bio(osd_req, which,
2228 					       &obj_req->bio_pos,
2229 					       obj_req->ex.oe_len);
2230 		break;
2231 	case OBJ_REQUEST_BVECS:
2232 	case OBJ_REQUEST_OWN_BVECS:
2233 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2234 							obj_req->ex.oe_len);
2235 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2236 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2237 						    &obj_req->bvec_pos);
2238 		break;
2239 	default:
2240 		BUG();
2241 	}
2242 }
2243 
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2244 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2245 {
2246 	struct page **pages;
2247 
2248 	/*
2249 	 * The response data for a STAT call consists of:
2250 	 *     le64 length;
2251 	 *     struct {
2252 	 *         le32 tv_sec;
2253 	 *         le32 tv_nsec;
2254 	 *     } mtime;
2255 	 */
2256 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2257 	if (IS_ERR(pages))
2258 		return PTR_ERR(pages);
2259 
2260 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2261 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2262 				     8 + sizeof(struct ceph_timespec),
2263 				     0, false, true);
2264 	return 0;
2265 }
2266 
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2267 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2268 				u32 bytes)
2269 {
2270 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2271 	int ret;
2272 
2273 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2274 	if (ret)
2275 		return ret;
2276 
2277 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2278 					  obj_req->copyup_bvec_count, bytes);
2279 	return 0;
2280 }
2281 
rbd_obj_init_read(struct rbd_obj_request * obj_req)2282 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2283 {
2284 	obj_req->read_state = RBD_OBJ_READ_START;
2285 	return 0;
2286 }
2287 
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2288 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2289 				      int which)
2290 {
2291 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2292 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2293 	u16 opcode;
2294 
2295 	if (!use_object_map(rbd_dev) ||
2296 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2297 		osd_req_op_alloc_hint_init(osd_req, which++,
2298 					   rbd_dev->layout.object_size,
2299 					   rbd_dev->layout.object_size,
2300 					   rbd_dev->opts->alloc_hint_flags);
2301 	}
2302 
2303 	if (rbd_obj_is_entire(obj_req))
2304 		opcode = CEPH_OSD_OP_WRITEFULL;
2305 	else
2306 		opcode = CEPH_OSD_OP_WRITE;
2307 
2308 	osd_req_op_extent_init(osd_req, which, opcode,
2309 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2310 	rbd_osd_setup_data(osd_req, which);
2311 }
2312 
rbd_obj_init_write(struct rbd_obj_request * obj_req)2313 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2314 {
2315 	int ret;
2316 
2317 	/* reverse map the entire object onto the parent */
2318 	ret = rbd_obj_calc_img_extents(obj_req, true);
2319 	if (ret)
2320 		return ret;
2321 
2322 	obj_req->write_state = RBD_OBJ_WRITE_START;
2323 	return 0;
2324 }
2325 
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2326 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2327 {
2328 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2329 					  CEPH_OSD_OP_ZERO;
2330 }
2331 
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2332 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2333 					int which)
2334 {
2335 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2336 
2337 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2338 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2339 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2340 	} else {
2341 		osd_req_op_extent_init(osd_req, which,
2342 				       truncate_or_zero_opcode(obj_req),
2343 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2344 				       0, 0);
2345 	}
2346 }
2347 
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2348 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2349 {
2350 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2351 	u64 off, next_off;
2352 	int ret;
2353 
2354 	/*
2355 	 * Align the range to alloc_size boundary and punt on discards
2356 	 * that are too small to free up any space.
2357 	 *
2358 	 * alloc_size == object_size && is_tail() is a special case for
2359 	 * filestore with filestore_punch_hole = false, needed to allow
2360 	 * truncate (in addition to delete).
2361 	 */
2362 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2363 	    !rbd_obj_is_tail(obj_req)) {
2364 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2365 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2366 				      rbd_dev->opts->alloc_size);
2367 		if (off >= next_off)
2368 			return 1;
2369 
2370 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2371 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2372 		     off, next_off - off);
2373 		obj_req->ex.oe_off = off;
2374 		obj_req->ex.oe_len = next_off - off;
2375 	}
2376 
2377 	/* reverse map the entire object onto the parent */
2378 	ret = rbd_obj_calc_img_extents(obj_req, true);
2379 	if (ret)
2380 		return ret;
2381 
2382 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2383 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2384 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2385 
2386 	obj_req->write_state = RBD_OBJ_WRITE_START;
2387 	return 0;
2388 }
2389 
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2390 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2391 					int which)
2392 {
2393 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2394 	u16 opcode;
2395 
2396 	if (rbd_obj_is_entire(obj_req)) {
2397 		if (obj_req->num_img_extents) {
2398 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2399 				osd_req_op_init(osd_req, which++,
2400 						CEPH_OSD_OP_CREATE, 0);
2401 			opcode = CEPH_OSD_OP_TRUNCATE;
2402 		} else {
2403 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2404 			osd_req_op_init(osd_req, which++,
2405 					CEPH_OSD_OP_DELETE, 0);
2406 			opcode = 0;
2407 		}
2408 	} else {
2409 		opcode = truncate_or_zero_opcode(obj_req);
2410 	}
2411 
2412 	if (opcode)
2413 		osd_req_op_extent_init(osd_req, which, opcode,
2414 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2415 				       0, 0);
2416 }
2417 
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2418 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2419 {
2420 	int ret;
2421 
2422 	/* reverse map the entire object onto the parent */
2423 	ret = rbd_obj_calc_img_extents(obj_req, true);
2424 	if (ret)
2425 		return ret;
2426 
2427 	if (!obj_req->num_img_extents) {
2428 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2429 		if (rbd_obj_is_entire(obj_req))
2430 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2431 	}
2432 
2433 	obj_req->write_state = RBD_OBJ_WRITE_START;
2434 	return 0;
2435 }
2436 
count_write_ops(struct rbd_obj_request * obj_req)2437 static int count_write_ops(struct rbd_obj_request *obj_req)
2438 {
2439 	struct rbd_img_request *img_req = obj_req->img_request;
2440 
2441 	switch (img_req->op_type) {
2442 	case OBJ_OP_WRITE:
2443 		if (!use_object_map(img_req->rbd_dev) ||
2444 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2445 			return 2; /* setallochint + write/writefull */
2446 
2447 		return 1; /* write/writefull */
2448 	case OBJ_OP_DISCARD:
2449 		return 1; /* delete/truncate/zero */
2450 	case OBJ_OP_ZEROOUT:
2451 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2452 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2453 			return 2; /* create + truncate */
2454 
2455 		return 1; /* delete/truncate/zero */
2456 	default:
2457 		BUG();
2458 	}
2459 }
2460 
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2461 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2462 				    int which)
2463 {
2464 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2465 
2466 	switch (obj_req->img_request->op_type) {
2467 	case OBJ_OP_WRITE:
2468 		__rbd_osd_setup_write_ops(osd_req, which);
2469 		break;
2470 	case OBJ_OP_DISCARD:
2471 		__rbd_osd_setup_discard_ops(osd_req, which);
2472 		break;
2473 	case OBJ_OP_ZEROOUT:
2474 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2475 		break;
2476 	default:
2477 		BUG();
2478 	}
2479 }
2480 
2481 /*
2482  * Prune the list of object requests (adjust offset and/or length, drop
2483  * redundant requests).  Prepare object request state machines and image
2484  * request state machine for execution.
2485  */
__rbd_img_fill_request(struct rbd_img_request * img_req)2486 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2487 {
2488 	struct rbd_obj_request *obj_req, *next_obj_req;
2489 	int ret;
2490 
2491 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2492 		switch (img_req->op_type) {
2493 		case OBJ_OP_READ:
2494 			ret = rbd_obj_init_read(obj_req);
2495 			break;
2496 		case OBJ_OP_WRITE:
2497 			ret = rbd_obj_init_write(obj_req);
2498 			break;
2499 		case OBJ_OP_DISCARD:
2500 			ret = rbd_obj_init_discard(obj_req);
2501 			break;
2502 		case OBJ_OP_ZEROOUT:
2503 			ret = rbd_obj_init_zeroout(obj_req);
2504 			break;
2505 		default:
2506 			BUG();
2507 		}
2508 		if (ret < 0)
2509 			return ret;
2510 		if (ret > 0) {
2511 			rbd_img_obj_request_del(img_req, obj_req);
2512 			continue;
2513 		}
2514 	}
2515 
2516 	img_req->state = RBD_IMG_START;
2517 	return 0;
2518 }
2519 
2520 union rbd_img_fill_iter {
2521 	struct ceph_bio_iter	bio_iter;
2522 	struct ceph_bvec_iter	bvec_iter;
2523 };
2524 
2525 struct rbd_img_fill_ctx {
2526 	enum obj_request_type	pos_type;
2527 	union rbd_img_fill_iter	*pos;
2528 	union rbd_img_fill_iter	iter;
2529 	ceph_object_extent_fn_t	set_pos_fn;
2530 	ceph_object_extent_fn_t	count_fn;
2531 	ceph_object_extent_fn_t	copy_fn;
2532 };
2533 
alloc_object_extent(void * arg)2534 static struct ceph_object_extent *alloc_object_extent(void *arg)
2535 {
2536 	struct rbd_img_request *img_req = arg;
2537 	struct rbd_obj_request *obj_req;
2538 
2539 	obj_req = rbd_obj_request_create();
2540 	if (!obj_req)
2541 		return NULL;
2542 
2543 	rbd_img_obj_request_add(img_req, obj_req);
2544 	return &obj_req->ex;
2545 }
2546 
2547 /*
2548  * While su != os && sc == 1 is technically not fancy (it's the same
2549  * layout as su == os && sc == 1), we can't use the nocopy path for it
2550  * because ->set_pos_fn() should be called only once per object.
2551  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2552  * treat su != os && sc == 1 as fancy.
2553  */
rbd_layout_is_fancy(struct ceph_file_layout * l)2554 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2555 {
2556 	return l->stripe_unit != l->object_size;
2557 }
2558 
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2559 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2560 				       struct ceph_file_extent *img_extents,
2561 				       u32 num_img_extents,
2562 				       struct rbd_img_fill_ctx *fctx)
2563 {
2564 	u32 i;
2565 	int ret;
2566 
2567 	img_req->data_type = fctx->pos_type;
2568 
2569 	/*
2570 	 * Create object requests and set each object request's starting
2571 	 * position in the provided bio (list) or bio_vec array.
2572 	 */
2573 	fctx->iter = *fctx->pos;
2574 	for (i = 0; i < num_img_extents; i++) {
2575 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2576 					   img_extents[i].fe_off,
2577 					   img_extents[i].fe_len,
2578 					   &img_req->object_extents,
2579 					   alloc_object_extent, img_req,
2580 					   fctx->set_pos_fn, &fctx->iter);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	return __rbd_img_fill_request(img_req);
2586 }
2587 
2588 /*
2589  * Map a list of image extents to a list of object extents, create the
2590  * corresponding object requests (normally each to a different object,
2591  * but not always) and add them to @img_req.  For each object request,
2592  * set up its data descriptor to point to the corresponding chunk(s) of
2593  * @fctx->pos data buffer.
2594  *
2595  * Because ceph_file_to_extents() will merge adjacent object extents
2596  * together, each object request's data descriptor may point to multiple
2597  * different chunks of @fctx->pos data buffer.
2598  *
2599  * @fctx->pos data buffer is assumed to be large enough.
2600  */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2601 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2602 				struct ceph_file_extent *img_extents,
2603 				u32 num_img_extents,
2604 				struct rbd_img_fill_ctx *fctx)
2605 {
2606 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2607 	struct rbd_obj_request *obj_req;
2608 	u32 i;
2609 	int ret;
2610 
2611 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2612 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2613 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2614 						   num_img_extents, fctx);
2615 
2616 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2617 
2618 	/*
2619 	 * Create object requests and determine ->bvec_count for each object
2620 	 * request.  Note that ->bvec_count sum over all object requests may
2621 	 * be greater than the number of bio_vecs in the provided bio (list)
2622 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2623 	 * stripe unit boundaries.
2624 	 */
2625 	fctx->iter = *fctx->pos;
2626 	for (i = 0; i < num_img_extents; i++) {
2627 		ret = ceph_file_to_extents(&rbd_dev->layout,
2628 					   img_extents[i].fe_off,
2629 					   img_extents[i].fe_len,
2630 					   &img_req->object_extents,
2631 					   alloc_object_extent, img_req,
2632 					   fctx->count_fn, &fctx->iter);
2633 		if (ret)
2634 			return ret;
2635 	}
2636 
2637 	for_each_obj_request(img_req, obj_req) {
2638 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2639 					      sizeof(*obj_req->bvec_pos.bvecs),
2640 					      GFP_NOIO);
2641 		if (!obj_req->bvec_pos.bvecs)
2642 			return -ENOMEM;
2643 	}
2644 
2645 	/*
2646 	 * Fill in each object request's private bio_vec array, splitting and
2647 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2648 	 */
2649 	fctx->iter = *fctx->pos;
2650 	for (i = 0; i < num_img_extents; i++) {
2651 		ret = ceph_iterate_extents(&rbd_dev->layout,
2652 					   img_extents[i].fe_off,
2653 					   img_extents[i].fe_len,
2654 					   &img_req->object_extents,
2655 					   fctx->copy_fn, &fctx->iter);
2656 		if (ret)
2657 			return ret;
2658 	}
2659 
2660 	return __rbd_img_fill_request(img_req);
2661 }
2662 
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2663 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2664 			       u64 off, u64 len)
2665 {
2666 	struct ceph_file_extent ex = { off, len };
2667 	union rbd_img_fill_iter dummy = {};
2668 	struct rbd_img_fill_ctx fctx = {
2669 		.pos_type = OBJ_REQUEST_NODATA,
2670 		.pos = &dummy,
2671 	};
2672 
2673 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2674 }
2675 
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2676 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 	struct rbd_obj_request *obj_req =
2679 	    container_of(ex, struct rbd_obj_request, ex);
2680 	struct ceph_bio_iter *it = arg;
2681 
2682 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2683 	obj_req->bio_pos = *it;
2684 	ceph_bio_iter_advance(it, bytes);
2685 }
2686 
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2687 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 	struct rbd_obj_request *obj_req =
2690 	    container_of(ex, struct rbd_obj_request, ex);
2691 	struct ceph_bio_iter *it = arg;
2692 
2693 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2694 	ceph_bio_iter_advance_step(it, bytes, ({
2695 		obj_req->bvec_count++;
2696 	}));
2697 
2698 }
2699 
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2700 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702 	struct rbd_obj_request *obj_req =
2703 	    container_of(ex, struct rbd_obj_request, ex);
2704 	struct ceph_bio_iter *it = arg;
2705 
2706 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2707 	ceph_bio_iter_advance_step(it, bytes, ({
2708 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2709 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2710 	}));
2711 }
2712 
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2713 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2714 				   struct ceph_file_extent *img_extents,
2715 				   u32 num_img_extents,
2716 				   struct ceph_bio_iter *bio_pos)
2717 {
2718 	struct rbd_img_fill_ctx fctx = {
2719 		.pos_type = OBJ_REQUEST_BIO,
2720 		.pos = (union rbd_img_fill_iter *)bio_pos,
2721 		.set_pos_fn = set_bio_pos,
2722 		.count_fn = count_bio_bvecs,
2723 		.copy_fn = copy_bio_bvecs,
2724 	};
2725 
2726 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2727 				    &fctx);
2728 }
2729 
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2730 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2731 				 u64 off, u64 len, struct bio *bio)
2732 {
2733 	struct ceph_file_extent ex = { off, len };
2734 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2735 
2736 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2737 }
2738 
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2739 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2740 {
2741 	struct rbd_obj_request *obj_req =
2742 	    container_of(ex, struct rbd_obj_request, ex);
2743 	struct ceph_bvec_iter *it = arg;
2744 
2745 	obj_req->bvec_pos = *it;
2746 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2747 	ceph_bvec_iter_advance(it, bytes);
2748 }
2749 
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2750 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2751 {
2752 	struct rbd_obj_request *obj_req =
2753 	    container_of(ex, struct rbd_obj_request, ex);
2754 	struct ceph_bvec_iter *it = arg;
2755 
2756 	ceph_bvec_iter_advance_step(it, bytes, ({
2757 		obj_req->bvec_count++;
2758 	}));
2759 }
2760 
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2761 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2762 {
2763 	struct rbd_obj_request *obj_req =
2764 	    container_of(ex, struct rbd_obj_request, ex);
2765 	struct ceph_bvec_iter *it = arg;
2766 
2767 	ceph_bvec_iter_advance_step(it, bytes, ({
2768 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2769 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2770 	}));
2771 }
2772 
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2773 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2774 				     struct ceph_file_extent *img_extents,
2775 				     u32 num_img_extents,
2776 				     struct ceph_bvec_iter *bvec_pos)
2777 {
2778 	struct rbd_img_fill_ctx fctx = {
2779 		.pos_type = OBJ_REQUEST_BVECS,
2780 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2781 		.set_pos_fn = set_bvec_pos,
2782 		.count_fn = count_bvecs,
2783 		.copy_fn = copy_bvecs,
2784 	};
2785 
2786 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2787 				    &fctx);
2788 }
2789 
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2790 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2791 				   struct ceph_file_extent *img_extents,
2792 				   u32 num_img_extents,
2793 				   struct bio_vec *bvecs)
2794 {
2795 	struct ceph_bvec_iter it = {
2796 		.bvecs = bvecs,
2797 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2798 							     num_img_extents) },
2799 	};
2800 
2801 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2802 					 &it);
2803 }
2804 
rbd_img_handle_request_work(struct work_struct * work)2805 static void rbd_img_handle_request_work(struct work_struct *work)
2806 {
2807 	struct rbd_img_request *img_req =
2808 	    container_of(work, struct rbd_img_request, work);
2809 
2810 	rbd_img_handle_request(img_req, img_req->work_result);
2811 }
2812 
rbd_img_schedule(struct rbd_img_request * img_req,int result)2813 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2814 {
2815 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2816 	img_req->work_result = result;
2817 	queue_work(rbd_wq, &img_req->work);
2818 }
2819 
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2820 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2821 {
2822 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2823 
2824 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2825 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2826 		return true;
2827 	}
2828 
2829 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2830 	     obj_req->ex.oe_objno);
2831 	return false;
2832 }
2833 
rbd_obj_read_object(struct rbd_obj_request * obj_req)2834 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2835 {
2836 	struct ceph_osd_request *osd_req;
2837 	int ret;
2838 
2839 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2840 	if (IS_ERR(osd_req))
2841 		return PTR_ERR(osd_req);
2842 
2843 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2844 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2845 	rbd_osd_setup_data(osd_req, 0);
2846 	rbd_osd_format_read(osd_req);
2847 
2848 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2849 	if (ret)
2850 		return ret;
2851 
2852 	rbd_osd_submit(osd_req);
2853 	return 0;
2854 }
2855 
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2856 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2857 {
2858 	struct rbd_img_request *img_req = obj_req->img_request;
2859 	struct rbd_device *parent = img_req->rbd_dev->parent;
2860 	struct rbd_img_request *child_img_req;
2861 	int ret;
2862 
2863 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2864 	if (!child_img_req)
2865 		return -ENOMEM;
2866 
2867 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2868 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2869 	child_img_req->obj_request = obj_req;
2870 
2871 	down_read(&parent->header_rwsem);
2872 	rbd_img_capture_header(child_img_req);
2873 	up_read(&parent->header_rwsem);
2874 
2875 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2876 	     obj_req);
2877 
2878 	if (!rbd_img_is_write(img_req)) {
2879 		switch (img_req->data_type) {
2880 		case OBJ_REQUEST_BIO:
2881 			ret = __rbd_img_fill_from_bio(child_img_req,
2882 						      obj_req->img_extents,
2883 						      obj_req->num_img_extents,
2884 						      &obj_req->bio_pos);
2885 			break;
2886 		case OBJ_REQUEST_BVECS:
2887 		case OBJ_REQUEST_OWN_BVECS:
2888 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2889 						      obj_req->img_extents,
2890 						      obj_req->num_img_extents,
2891 						      &obj_req->bvec_pos);
2892 			break;
2893 		default:
2894 			BUG();
2895 		}
2896 	} else {
2897 		ret = rbd_img_fill_from_bvecs(child_img_req,
2898 					      obj_req->img_extents,
2899 					      obj_req->num_img_extents,
2900 					      obj_req->copyup_bvecs);
2901 	}
2902 	if (ret) {
2903 		rbd_img_request_destroy(child_img_req);
2904 		return ret;
2905 	}
2906 
2907 	/* avoid parent chain recursion */
2908 	rbd_img_schedule(child_img_req, 0);
2909 	return 0;
2910 }
2911 
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2912 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2913 {
2914 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2915 	int ret;
2916 
2917 again:
2918 	switch (obj_req->read_state) {
2919 	case RBD_OBJ_READ_START:
2920 		rbd_assert(!*result);
2921 
2922 		if (!rbd_obj_may_exist(obj_req)) {
2923 			*result = -ENOENT;
2924 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2925 			goto again;
2926 		}
2927 
2928 		ret = rbd_obj_read_object(obj_req);
2929 		if (ret) {
2930 			*result = ret;
2931 			return true;
2932 		}
2933 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2934 		return false;
2935 	case RBD_OBJ_READ_OBJECT:
2936 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2937 			/* reverse map this object extent onto the parent */
2938 			ret = rbd_obj_calc_img_extents(obj_req, false);
2939 			if (ret) {
2940 				*result = ret;
2941 				return true;
2942 			}
2943 			if (obj_req->num_img_extents) {
2944 				ret = rbd_obj_read_from_parent(obj_req);
2945 				if (ret) {
2946 					*result = ret;
2947 					return true;
2948 				}
2949 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2950 				return false;
2951 			}
2952 		}
2953 
2954 		/*
2955 		 * -ENOENT means a hole in the image -- zero-fill the entire
2956 		 * length of the request.  A short read also implies zero-fill
2957 		 * to the end of the request.
2958 		 */
2959 		if (*result == -ENOENT) {
2960 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2961 			*result = 0;
2962 		} else if (*result >= 0) {
2963 			if (*result < obj_req->ex.oe_len)
2964 				rbd_obj_zero_range(obj_req, *result,
2965 						obj_req->ex.oe_len - *result);
2966 			else
2967 				rbd_assert(*result == obj_req->ex.oe_len);
2968 			*result = 0;
2969 		}
2970 		return true;
2971 	case RBD_OBJ_READ_PARENT:
2972 		/*
2973 		 * The parent image is read only up to the overlap -- zero-fill
2974 		 * from the overlap to the end of the request.
2975 		 */
2976 		if (!*result) {
2977 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2978 
2979 			if (obj_overlap < obj_req->ex.oe_len)
2980 				rbd_obj_zero_range(obj_req, obj_overlap,
2981 					    obj_req->ex.oe_len - obj_overlap);
2982 		}
2983 		return true;
2984 	default:
2985 		BUG();
2986 	}
2987 }
2988 
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2989 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2990 {
2991 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2992 
2993 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2994 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2995 
2996 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2997 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2998 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2999 		return true;
3000 	}
3001 
3002 	return false;
3003 }
3004 
3005 /*
3006  * Return:
3007  *   0 - object map update sent
3008  *   1 - object map update isn't needed
3009  *  <0 - error
3010  */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)3011 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3012 {
3013 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3014 	u8 new_state;
3015 
3016 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3017 		return 1;
3018 
3019 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3020 		new_state = OBJECT_PENDING;
3021 	else
3022 		new_state = OBJECT_EXISTS;
3023 
3024 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3025 }
3026 
rbd_obj_write_object(struct rbd_obj_request * obj_req)3027 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3028 {
3029 	struct ceph_osd_request *osd_req;
3030 	int num_ops = count_write_ops(obj_req);
3031 	int which = 0;
3032 	int ret;
3033 
3034 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3035 		num_ops++; /* stat */
3036 
3037 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3038 	if (IS_ERR(osd_req))
3039 		return PTR_ERR(osd_req);
3040 
3041 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3042 		ret = rbd_osd_setup_stat(osd_req, which++);
3043 		if (ret)
3044 			return ret;
3045 	}
3046 
3047 	rbd_osd_setup_write_ops(osd_req, which);
3048 	rbd_osd_format_write(osd_req);
3049 
3050 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3051 	if (ret)
3052 		return ret;
3053 
3054 	rbd_osd_submit(osd_req);
3055 	return 0;
3056 }
3057 
3058 /*
3059  * copyup_bvecs pages are never highmem pages
3060  */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)3061 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3062 {
3063 	struct ceph_bvec_iter it = {
3064 		.bvecs = bvecs,
3065 		.iter = { .bi_size = bytes },
3066 	};
3067 
3068 	ceph_bvec_iter_advance_step(&it, bytes, ({
3069 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3070 			       bv.bv_len))
3071 			return false;
3072 	}));
3073 	return true;
3074 }
3075 
3076 #define MODS_ONLY	U32_MAX
3077 
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3078 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3079 				      u32 bytes)
3080 {
3081 	struct ceph_osd_request *osd_req;
3082 	int ret;
3083 
3084 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3085 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3086 
3087 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3088 	if (IS_ERR(osd_req))
3089 		return PTR_ERR(osd_req);
3090 
3091 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3092 	if (ret)
3093 		return ret;
3094 
3095 	rbd_osd_format_write(osd_req);
3096 
3097 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3098 	if (ret)
3099 		return ret;
3100 
3101 	rbd_osd_submit(osd_req);
3102 	return 0;
3103 }
3104 
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3105 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3106 					u32 bytes)
3107 {
3108 	struct ceph_osd_request *osd_req;
3109 	int num_ops = count_write_ops(obj_req);
3110 	int which = 0;
3111 	int ret;
3112 
3113 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3114 
3115 	if (bytes != MODS_ONLY)
3116 		num_ops++; /* copyup */
3117 
3118 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3119 	if (IS_ERR(osd_req))
3120 		return PTR_ERR(osd_req);
3121 
3122 	if (bytes != MODS_ONLY) {
3123 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3124 		if (ret)
3125 			return ret;
3126 	}
3127 
3128 	rbd_osd_setup_write_ops(osd_req, which);
3129 	rbd_osd_format_write(osd_req);
3130 
3131 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3132 	if (ret)
3133 		return ret;
3134 
3135 	rbd_osd_submit(osd_req);
3136 	return 0;
3137 }
3138 
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3139 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3140 {
3141 	u32 i;
3142 
3143 	rbd_assert(!obj_req->copyup_bvecs);
3144 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3145 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3146 					sizeof(*obj_req->copyup_bvecs),
3147 					GFP_NOIO);
3148 	if (!obj_req->copyup_bvecs)
3149 		return -ENOMEM;
3150 
3151 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3152 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3153 
3154 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3155 		if (!obj_req->copyup_bvecs[i].bv_page)
3156 			return -ENOMEM;
3157 
3158 		obj_req->copyup_bvecs[i].bv_offset = 0;
3159 		obj_req->copyup_bvecs[i].bv_len = len;
3160 		obj_overlap -= len;
3161 	}
3162 
3163 	rbd_assert(!obj_overlap);
3164 	return 0;
3165 }
3166 
3167 /*
3168  * The target object doesn't exist.  Read the data for the entire
3169  * target object up to the overlap point (if any) from the parent,
3170  * so we can use it for a copyup.
3171  */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3172 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3173 {
3174 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3175 	int ret;
3176 
3177 	rbd_assert(obj_req->num_img_extents);
3178 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3179 		      rbd_dev->parent_overlap);
3180 	if (!obj_req->num_img_extents) {
3181 		/*
3182 		 * The overlap has become 0 (most likely because the
3183 		 * image has been flattened).  Re-submit the original write
3184 		 * request -- pass MODS_ONLY since the copyup isn't needed
3185 		 * anymore.
3186 		 */
3187 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3188 	}
3189 
3190 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3191 	if (ret)
3192 		return ret;
3193 
3194 	return rbd_obj_read_from_parent(obj_req);
3195 }
3196 
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3197 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3198 {
3199 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3200 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3201 	u8 new_state;
3202 	u32 i;
3203 	int ret;
3204 
3205 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3206 
3207 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3208 		return;
3209 
3210 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3211 		return;
3212 
3213 	for (i = 0; i < snapc->num_snaps; i++) {
3214 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3215 		    i + 1 < snapc->num_snaps)
3216 			new_state = OBJECT_EXISTS_CLEAN;
3217 		else
3218 			new_state = OBJECT_EXISTS;
3219 
3220 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3221 					    new_state, NULL);
3222 		if (ret < 0) {
3223 			obj_req->pending.result = ret;
3224 			return;
3225 		}
3226 
3227 		rbd_assert(!ret);
3228 		obj_req->pending.num_pending++;
3229 	}
3230 }
3231 
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3232 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3233 {
3234 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3235 	int ret;
3236 
3237 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3238 
3239 	/*
3240 	 * Only send non-zero copyup data to save some I/O and network
3241 	 * bandwidth -- zero copyup data is equivalent to the object not
3242 	 * existing.
3243 	 */
3244 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3245 		bytes = 0;
3246 
3247 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3248 		/*
3249 		 * Send a copyup request with an empty snapshot context to
3250 		 * deep-copyup the object through all existing snapshots.
3251 		 * A second request with the current snapshot context will be
3252 		 * sent for the actual modification.
3253 		 */
3254 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3255 		if (ret) {
3256 			obj_req->pending.result = ret;
3257 			return;
3258 		}
3259 
3260 		obj_req->pending.num_pending++;
3261 		bytes = MODS_ONLY;
3262 	}
3263 
3264 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3265 	if (ret) {
3266 		obj_req->pending.result = ret;
3267 		return;
3268 	}
3269 
3270 	obj_req->pending.num_pending++;
3271 }
3272 
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3273 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3274 {
3275 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3276 	int ret;
3277 
3278 again:
3279 	switch (obj_req->copyup_state) {
3280 	case RBD_OBJ_COPYUP_START:
3281 		rbd_assert(!*result);
3282 
3283 		ret = rbd_obj_copyup_read_parent(obj_req);
3284 		if (ret) {
3285 			*result = ret;
3286 			return true;
3287 		}
3288 		if (obj_req->num_img_extents)
3289 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3290 		else
3291 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3292 		return false;
3293 	case RBD_OBJ_COPYUP_READ_PARENT:
3294 		if (*result)
3295 			return true;
3296 
3297 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3298 				  rbd_obj_img_extents_bytes(obj_req))) {
3299 			dout("%s %p detected zeros\n", __func__, obj_req);
3300 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3301 		}
3302 
3303 		rbd_obj_copyup_object_maps(obj_req);
3304 		if (!obj_req->pending.num_pending) {
3305 			*result = obj_req->pending.result;
3306 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3307 			goto again;
3308 		}
3309 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3310 		return false;
3311 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3312 		if (!pending_result_dec(&obj_req->pending, result))
3313 			return false;
3314 		fallthrough;
3315 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3316 		if (*result) {
3317 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3318 				 *result);
3319 			return true;
3320 		}
3321 
3322 		rbd_obj_copyup_write_object(obj_req);
3323 		if (!obj_req->pending.num_pending) {
3324 			*result = obj_req->pending.result;
3325 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3326 			goto again;
3327 		}
3328 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3329 		return false;
3330 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3331 		if (!pending_result_dec(&obj_req->pending, result))
3332 			return false;
3333 		fallthrough;
3334 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3335 		return true;
3336 	default:
3337 		BUG();
3338 	}
3339 }
3340 
3341 /*
3342  * Return:
3343  *   0 - object map update sent
3344  *   1 - object map update isn't needed
3345  *  <0 - error
3346  */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3347 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3348 {
3349 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3350 	u8 current_state = OBJECT_PENDING;
3351 
3352 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3353 		return 1;
3354 
3355 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3356 		return 1;
3357 
3358 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3359 				     &current_state);
3360 }
3361 
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3362 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3363 {
3364 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3365 	int ret;
3366 
3367 again:
3368 	switch (obj_req->write_state) {
3369 	case RBD_OBJ_WRITE_START:
3370 		rbd_assert(!*result);
3371 
3372 		rbd_obj_set_copyup_enabled(obj_req);
3373 		if (rbd_obj_write_is_noop(obj_req))
3374 			return true;
3375 
3376 		ret = rbd_obj_write_pre_object_map(obj_req);
3377 		if (ret < 0) {
3378 			*result = ret;
3379 			return true;
3380 		}
3381 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3382 		if (ret > 0)
3383 			goto again;
3384 		return false;
3385 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3386 		if (*result) {
3387 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3388 				 *result);
3389 			return true;
3390 		}
3391 		ret = rbd_obj_write_object(obj_req);
3392 		if (ret) {
3393 			*result = ret;
3394 			return true;
3395 		}
3396 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3397 		return false;
3398 	case RBD_OBJ_WRITE_OBJECT:
3399 		if (*result == -ENOENT) {
3400 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3401 				*result = 0;
3402 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3403 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3404 				goto again;
3405 			}
3406 			/*
3407 			 * On a non-existent object:
3408 			 *   delete - -ENOENT, truncate/zero - 0
3409 			 */
3410 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3411 				*result = 0;
3412 		}
3413 		if (*result)
3414 			return true;
3415 
3416 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3417 		goto again;
3418 	case __RBD_OBJ_WRITE_COPYUP:
3419 		if (!rbd_obj_advance_copyup(obj_req, result))
3420 			return false;
3421 		fallthrough;
3422 	case RBD_OBJ_WRITE_COPYUP:
3423 		if (*result) {
3424 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3425 			return true;
3426 		}
3427 		ret = rbd_obj_write_post_object_map(obj_req);
3428 		if (ret < 0) {
3429 			*result = ret;
3430 			return true;
3431 		}
3432 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3433 		if (ret > 0)
3434 			goto again;
3435 		return false;
3436 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3437 		if (*result)
3438 			rbd_warn(rbd_dev, "post object map update failed: %d",
3439 				 *result);
3440 		return true;
3441 	default:
3442 		BUG();
3443 	}
3444 }
3445 
3446 /*
3447  * Return true if @obj_req is completed.
3448  */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3449 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3450 				     int *result)
3451 {
3452 	struct rbd_img_request *img_req = obj_req->img_request;
3453 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3454 	bool done;
3455 
3456 	mutex_lock(&obj_req->state_mutex);
3457 	if (!rbd_img_is_write(img_req))
3458 		done = rbd_obj_advance_read(obj_req, result);
3459 	else
3460 		done = rbd_obj_advance_write(obj_req, result);
3461 	mutex_unlock(&obj_req->state_mutex);
3462 
3463 	if (done && *result) {
3464 		rbd_assert(*result < 0);
3465 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3466 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3467 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3468 	}
3469 	return done;
3470 }
3471 
3472 /*
3473  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3474  * recursion.
3475  */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3476 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3477 {
3478 	if (__rbd_obj_handle_request(obj_req, &result))
3479 		rbd_img_handle_request(obj_req->img_request, result);
3480 }
3481 
need_exclusive_lock(struct rbd_img_request * img_req)3482 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3483 {
3484 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3485 
3486 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3487 		return false;
3488 
3489 	if (rbd_is_ro(rbd_dev))
3490 		return false;
3491 
3492 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3493 	if (rbd_dev->opts->lock_on_read ||
3494 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3495 		return true;
3496 
3497 	return rbd_img_is_write(img_req);
3498 }
3499 
rbd_lock_add_request(struct rbd_img_request * img_req)3500 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3501 {
3502 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3503 	bool locked;
3504 
3505 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3506 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3507 	spin_lock(&rbd_dev->lock_lists_lock);
3508 	rbd_assert(list_empty(&img_req->lock_item));
3509 	if (!locked)
3510 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3511 	else
3512 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3513 	spin_unlock(&rbd_dev->lock_lists_lock);
3514 	return locked;
3515 }
3516 
rbd_lock_del_request(struct rbd_img_request * img_req)3517 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3518 {
3519 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3520 	bool need_wakeup = false;
3521 
3522 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3523 	spin_lock(&rbd_dev->lock_lists_lock);
3524 	if (!list_empty(&img_req->lock_item)) {
3525 		list_del_init(&img_req->lock_item);
3526 		need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3527 			       list_empty(&rbd_dev->running_list));
3528 	}
3529 	spin_unlock(&rbd_dev->lock_lists_lock);
3530 	if (need_wakeup)
3531 		complete(&rbd_dev->releasing_wait);
3532 }
3533 
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3534 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3535 {
3536 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3537 
3538 	if (!need_exclusive_lock(img_req))
3539 		return 1;
3540 
3541 	if (rbd_lock_add_request(img_req))
3542 		return 1;
3543 
3544 	if (rbd_dev->opts->exclusive) {
3545 		WARN_ON(1); /* lock got released? */
3546 		return -EROFS;
3547 	}
3548 
3549 	/*
3550 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3551 	 * and cancel_delayed_work() in wake_lock_waiters().
3552 	 */
3553 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3554 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3555 	return 0;
3556 }
3557 
rbd_img_object_requests(struct rbd_img_request * img_req)3558 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3559 {
3560 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3561 	struct rbd_obj_request *obj_req;
3562 
3563 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3564 	rbd_assert(!need_exclusive_lock(img_req) ||
3565 		   __rbd_is_lock_owner(rbd_dev));
3566 
3567 	if (rbd_img_is_write(img_req)) {
3568 		rbd_assert(!img_req->snapc);
3569 		down_read(&rbd_dev->header_rwsem);
3570 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3571 		up_read(&rbd_dev->header_rwsem);
3572 	}
3573 
3574 	for_each_obj_request(img_req, obj_req) {
3575 		int result = 0;
3576 
3577 		if (__rbd_obj_handle_request(obj_req, &result)) {
3578 			if (result) {
3579 				img_req->pending.result = result;
3580 				return;
3581 			}
3582 		} else {
3583 			img_req->pending.num_pending++;
3584 		}
3585 	}
3586 }
3587 
rbd_img_advance(struct rbd_img_request * img_req,int * result)3588 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3589 {
3590 	int ret;
3591 
3592 again:
3593 	switch (img_req->state) {
3594 	case RBD_IMG_START:
3595 		rbd_assert(!*result);
3596 
3597 		ret = rbd_img_exclusive_lock(img_req);
3598 		if (ret < 0) {
3599 			*result = ret;
3600 			return true;
3601 		}
3602 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3603 		if (ret > 0)
3604 			goto again;
3605 		return false;
3606 	case RBD_IMG_EXCLUSIVE_LOCK:
3607 		if (*result)
3608 			return true;
3609 
3610 		rbd_img_object_requests(img_req);
3611 		if (!img_req->pending.num_pending) {
3612 			*result = img_req->pending.result;
3613 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3614 			goto again;
3615 		}
3616 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3617 		return false;
3618 	case __RBD_IMG_OBJECT_REQUESTS:
3619 		if (!pending_result_dec(&img_req->pending, result))
3620 			return false;
3621 		fallthrough;
3622 	case RBD_IMG_OBJECT_REQUESTS:
3623 		return true;
3624 	default:
3625 		BUG();
3626 	}
3627 }
3628 
3629 /*
3630  * Return true if @img_req is completed.
3631  */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3632 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3633 				     int *result)
3634 {
3635 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3636 	bool done;
3637 
3638 	if (need_exclusive_lock(img_req)) {
3639 		down_read(&rbd_dev->lock_rwsem);
3640 		mutex_lock(&img_req->state_mutex);
3641 		done = rbd_img_advance(img_req, result);
3642 		if (done)
3643 			rbd_lock_del_request(img_req);
3644 		mutex_unlock(&img_req->state_mutex);
3645 		up_read(&rbd_dev->lock_rwsem);
3646 	} else {
3647 		mutex_lock(&img_req->state_mutex);
3648 		done = rbd_img_advance(img_req, result);
3649 		mutex_unlock(&img_req->state_mutex);
3650 	}
3651 
3652 	if (done && *result) {
3653 		rbd_assert(*result < 0);
3654 		rbd_warn(rbd_dev, "%s%s result %d",
3655 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3656 		      obj_op_name(img_req->op_type), *result);
3657 	}
3658 	return done;
3659 }
3660 
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3661 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3662 {
3663 again:
3664 	if (!__rbd_img_handle_request(img_req, &result))
3665 		return;
3666 
3667 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3668 		struct rbd_obj_request *obj_req = img_req->obj_request;
3669 
3670 		rbd_img_request_destroy(img_req);
3671 		if (__rbd_obj_handle_request(obj_req, &result)) {
3672 			img_req = obj_req->img_request;
3673 			goto again;
3674 		}
3675 	} else {
3676 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3677 
3678 		rbd_img_request_destroy(img_req);
3679 		blk_mq_end_request(rq, errno_to_blk_status(result));
3680 	}
3681 }
3682 
3683 static const struct rbd_client_id rbd_empty_cid;
3684 
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3685 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3686 			  const struct rbd_client_id *rhs)
3687 {
3688 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3689 }
3690 
rbd_get_cid(struct rbd_device * rbd_dev)3691 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3692 {
3693 	struct rbd_client_id cid;
3694 
3695 	mutex_lock(&rbd_dev->watch_mutex);
3696 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3697 	cid.handle = rbd_dev->watch_cookie;
3698 	mutex_unlock(&rbd_dev->watch_mutex);
3699 	return cid;
3700 }
3701 
3702 /*
3703  * lock_rwsem must be held for write
3704  */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3705 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3706 			      const struct rbd_client_id *cid)
3707 {
3708 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3709 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3710 	     cid->gid, cid->handle);
3711 	rbd_dev->owner_cid = *cid; /* struct */
3712 }
3713 
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3714 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3715 {
3716 	mutex_lock(&rbd_dev->watch_mutex);
3717 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3718 	mutex_unlock(&rbd_dev->watch_mutex);
3719 }
3720 
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3721 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3722 {
3723 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3724 
3725 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3726 	strcpy(rbd_dev->lock_cookie, cookie);
3727 	rbd_set_owner_cid(rbd_dev, &cid);
3728 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3729 }
3730 
3731 /*
3732  * lock_rwsem must be held for write
3733  */
rbd_lock(struct rbd_device * rbd_dev)3734 static int rbd_lock(struct rbd_device *rbd_dev)
3735 {
3736 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3737 	char cookie[32];
3738 	int ret;
3739 
3740 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3741 		rbd_dev->lock_cookie[0] != '\0');
3742 
3743 	format_lock_cookie(rbd_dev, cookie);
3744 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3745 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3746 			    RBD_LOCK_TAG, "", 0);
3747 	if (ret && ret != -EEXIST)
3748 		return ret;
3749 
3750 	__rbd_lock(rbd_dev, cookie);
3751 	return 0;
3752 }
3753 
3754 /*
3755  * lock_rwsem must be held for write
3756  */
rbd_unlock(struct rbd_device * rbd_dev)3757 static void rbd_unlock(struct rbd_device *rbd_dev)
3758 {
3759 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3760 	int ret;
3761 
3762 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3763 		rbd_dev->lock_cookie[0] == '\0');
3764 
3765 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3766 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3767 	if (ret && ret != -ENOENT)
3768 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3769 
3770 	/* treat errors as the image is unlocked */
3771 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3772 	rbd_dev->lock_cookie[0] = '\0';
3773 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3774 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3775 }
3776 
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3777 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3778 				enum rbd_notify_op notify_op,
3779 				struct page ***preply_pages,
3780 				size_t *preply_len)
3781 {
3782 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3783 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3784 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3785 	int buf_size = sizeof(buf);
3786 	void *p = buf;
3787 
3788 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3789 
3790 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3791 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3792 	ceph_encode_32(&p, notify_op);
3793 	ceph_encode_64(&p, cid.gid);
3794 	ceph_encode_64(&p, cid.handle);
3795 
3796 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3797 				&rbd_dev->header_oloc, buf, buf_size,
3798 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3799 }
3800 
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3801 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3802 			       enum rbd_notify_op notify_op)
3803 {
3804 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3805 }
3806 
rbd_notify_acquired_lock(struct work_struct * work)3807 static void rbd_notify_acquired_lock(struct work_struct *work)
3808 {
3809 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3810 						  acquired_lock_work);
3811 
3812 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3813 }
3814 
rbd_notify_released_lock(struct work_struct * work)3815 static void rbd_notify_released_lock(struct work_struct *work)
3816 {
3817 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3818 						  released_lock_work);
3819 
3820 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3821 }
3822 
rbd_request_lock(struct rbd_device * rbd_dev)3823 static int rbd_request_lock(struct rbd_device *rbd_dev)
3824 {
3825 	struct page **reply_pages;
3826 	size_t reply_len;
3827 	bool lock_owner_responded = false;
3828 	int ret;
3829 
3830 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3831 
3832 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3833 				   &reply_pages, &reply_len);
3834 	if (ret && ret != -ETIMEDOUT) {
3835 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3836 		goto out;
3837 	}
3838 
3839 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3840 		void *p = page_address(reply_pages[0]);
3841 		void *const end = p + reply_len;
3842 		u32 n;
3843 
3844 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3845 		while (n--) {
3846 			u8 struct_v;
3847 			u32 len;
3848 
3849 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3850 			p += 8 + 8; /* skip gid and cookie */
3851 
3852 			ceph_decode_32_safe(&p, end, len, e_inval);
3853 			if (!len)
3854 				continue;
3855 
3856 			if (lock_owner_responded) {
3857 				rbd_warn(rbd_dev,
3858 					 "duplicate lock owners detected");
3859 				ret = -EIO;
3860 				goto out;
3861 			}
3862 
3863 			lock_owner_responded = true;
3864 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3865 						  &struct_v, &len);
3866 			if (ret) {
3867 				rbd_warn(rbd_dev,
3868 					 "failed to decode ResponseMessage: %d",
3869 					 ret);
3870 				goto e_inval;
3871 			}
3872 
3873 			ret = ceph_decode_32(&p);
3874 		}
3875 	}
3876 
3877 	if (!lock_owner_responded) {
3878 		rbd_warn(rbd_dev, "no lock owners detected");
3879 		ret = -ETIMEDOUT;
3880 	}
3881 
3882 out:
3883 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3884 	return ret;
3885 
3886 e_inval:
3887 	ret = -EINVAL;
3888 	goto out;
3889 }
3890 
3891 /*
3892  * Either image request state machine(s) or rbd_add_acquire_lock()
3893  * (i.e. "rbd map").
3894  */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3895 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3896 {
3897 	struct rbd_img_request *img_req;
3898 
3899 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3900 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3901 
3902 	cancel_delayed_work(&rbd_dev->lock_dwork);
3903 	if (!completion_done(&rbd_dev->acquire_wait)) {
3904 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3905 			   list_empty(&rbd_dev->running_list));
3906 		rbd_dev->acquire_err = result;
3907 		complete_all(&rbd_dev->acquire_wait);
3908 		return;
3909 	}
3910 
3911 	while (!list_empty(&rbd_dev->acquiring_list)) {
3912 		img_req = list_first_entry(&rbd_dev->acquiring_list,
3913 					   struct rbd_img_request, lock_item);
3914 		mutex_lock(&img_req->state_mutex);
3915 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3916 		if (!result)
3917 			list_move_tail(&img_req->lock_item,
3918 				       &rbd_dev->running_list);
3919 		else
3920 			list_del_init(&img_req->lock_item);
3921 		rbd_img_schedule(img_req, result);
3922 		mutex_unlock(&img_req->state_mutex);
3923 	}
3924 }
3925 
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3926 static bool locker_equal(const struct ceph_locker *lhs,
3927 			 const struct ceph_locker *rhs)
3928 {
3929 	return lhs->id.name.type == rhs->id.name.type &&
3930 	       lhs->id.name.num == rhs->id.name.num &&
3931 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3932 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3933 }
3934 
free_locker(struct ceph_locker * locker)3935 static void free_locker(struct ceph_locker *locker)
3936 {
3937 	if (locker)
3938 		ceph_free_lockers(locker, 1);
3939 }
3940 
get_lock_owner_info(struct rbd_device * rbd_dev)3941 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3942 {
3943 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3944 	struct ceph_locker *lockers;
3945 	u32 num_lockers;
3946 	u8 lock_type;
3947 	char *lock_tag;
3948 	int ret;
3949 
3950 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3951 
3952 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3953 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3954 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3955 	if (ret) {
3956 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3957 		return ERR_PTR(ret);
3958 	}
3959 
3960 	if (num_lockers == 0) {
3961 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3962 		lockers = NULL;
3963 		goto out;
3964 	}
3965 
3966 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3967 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3968 			 lock_tag);
3969 		goto err_busy;
3970 	}
3971 
3972 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3973 		rbd_warn(rbd_dev, "shared lock type detected");
3974 		goto err_busy;
3975 	}
3976 
3977 	WARN_ON(num_lockers != 1);
3978 	if (strncmp(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3979 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3980 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3981 			 lockers[0].id.cookie);
3982 		goto err_busy;
3983 	}
3984 
3985 out:
3986 	kfree(lock_tag);
3987 	return lockers;
3988 
3989 err_busy:
3990 	kfree(lock_tag);
3991 	ceph_free_lockers(lockers, num_lockers);
3992 	return ERR_PTR(-EBUSY);
3993 }
3994 
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3995 static int find_watcher(struct rbd_device *rbd_dev,
3996 			const struct ceph_locker *locker)
3997 {
3998 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3999 	struct ceph_watch_item *watchers;
4000 	u32 num_watchers;
4001 	u64 cookie;
4002 	int i;
4003 	int ret;
4004 
4005 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4006 				      &rbd_dev->header_oloc, &watchers,
4007 				      &num_watchers);
4008 	if (ret) {
4009 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
4010 		return ret;
4011 	}
4012 
4013 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4014 	for (i = 0; i < num_watchers; i++) {
4015 		/*
4016 		 * Ignore addr->type while comparing.  This mimics
4017 		 * entity_addr_t::get_legacy_str() + strcmp().
4018 		 */
4019 		if (ceph_addr_equal_no_type(&watchers[i].addr,
4020 					    &locker->info.addr) &&
4021 		    watchers[i].cookie == cookie) {
4022 			struct rbd_client_id cid = {
4023 				.gid = le64_to_cpu(watchers[i].name.num),
4024 				.handle = cookie,
4025 			};
4026 
4027 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4028 			     rbd_dev, cid.gid, cid.handle);
4029 			rbd_set_owner_cid(rbd_dev, &cid);
4030 			ret = 1;
4031 			goto out;
4032 		}
4033 	}
4034 
4035 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4036 	ret = 0;
4037 out:
4038 	kfree(watchers);
4039 	return ret;
4040 }
4041 
4042 /*
4043  * lock_rwsem must be held for write
4044  */
rbd_try_lock(struct rbd_device * rbd_dev)4045 static int rbd_try_lock(struct rbd_device *rbd_dev)
4046 {
4047 	struct ceph_client *client = rbd_dev->rbd_client->client;
4048 	struct ceph_locker *locker, *refreshed_locker;
4049 	int ret;
4050 
4051 	for (;;) {
4052 		locker = refreshed_locker = NULL;
4053 
4054 		ret = rbd_lock(rbd_dev);
4055 		if (!ret)
4056 			goto out;
4057 		if (ret != -EBUSY) {
4058 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4059 			goto out;
4060 		}
4061 
4062 		/* determine if the current lock holder is still alive */
4063 		locker = get_lock_owner_info(rbd_dev);
4064 		if (IS_ERR(locker)) {
4065 			ret = PTR_ERR(locker);
4066 			locker = NULL;
4067 			goto out;
4068 		}
4069 		if (!locker)
4070 			goto again;
4071 
4072 		ret = find_watcher(rbd_dev, locker);
4073 		if (ret)
4074 			goto out; /* request lock or error */
4075 
4076 		refreshed_locker = get_lock_owner_info(rbd_dev);
4077 		if (IS_ERR(refreshed_locker)) {
4078 			ret = PTR_ERR(refreshed_locker);
4079 			refreshed_locker = NULL;
4080 			goto out;
4081 		}
4082 		if (!refreshed_locker ||
4083 		    !locker_equal(locker, refreshed_locker))
4084 			goto again;
4085 
4086 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4087 			 ENTITY_NAME(locker->id.name));
4088 
4089 		ret = ceph_monc_blocklist_add(&client->monc,
4090 					      &locker->info.addr);
4091 		if (ret) {
4092 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4093 				 ENTITY_NAME(locker->id.name), ret);
4094 			goto out;
4095 		}
4096 
4097 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4098 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4099 					  locker->id.cookie, &locker->id.name);
4100 		if (ret && ret != -ENOENT) {
4101 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4102 				 ret);
4103 			goto out;
4104 		}
4105 
4106 again:
4107 		free_locker(refreshed_locker);
4108 		free_locker(locker);
4109 	}
4110 
4111 out:
4112 	free_locker(refreshed_locker);
4113 	free_locker(locker);
4114 	return ret;
4115 }
4116 
rbd_post_acquire_action(struct rbd_device * rbd_dev)4117 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4118 {
4119 	int ret;
4120 
4121 	ret = rbd_dev_refresh(rbd_dev);
4122 	if (ret)
4123 		return ret;
4124 
4125 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4126 		ret = rbd_object_map_open(rbd_dev);
4127 		if (ret)
4128 			return ret;
4129 	}
4130 
4131 	return 0;
4132 }
4133 
4134 /*
4135  * Return:
4136  *   0 - lock acquired
4137  *   1 - caller should call rbd_request_lock()
4138  *  <0 - error
4139  */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4140 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4141 {
4142 	int ret;
4143 
4144 	down_read(&rbd_dev->lock_rwsem);
4145 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4146 	     rbd_dev->lock_state);
4147 	if (__rbd_is_lock_owner(rbd_dev)) {
4148 		up_read(&rbd_dev->lock_rwsem);
4149 		return 0;
4150 	}
4151 
4152 	up_read(&rbd_dev->lock_rwsem);
4153 	down_write(&rbd_dev->lock_rwsem);
4154 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4155 	     rbd_dev->lock_state);
4156 	if (__rbd_is_lock_owner(rbd_dev)) {
4157 		up_write(&rbd_dev->lock_rwsem);
4158 		return 0;
4159 	}
4160 
4161 	ret = rbd_try_lock(rbd_dev);
4162 	if (ret < 0) {
4163 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4164 		goto out;
4165 	}
4166 	if (ret > 0) {
4167 		up_write(&rbd_dev->lock_rwsem);
4168 		return ret;
4169 	}
4170 
4171 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4172 	rbd_assert(list_empty(&rbd_dev->running_list));
4173 
4174 	ret = rbd_post_acquire_action(rbd_dev);
4175 	if (ret) {
4176 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4177 		/*
4178 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4179 		 * rbd_lock_add_request() would let the request through,
4180 		 * assuming that e.g. object map is locked and loaded.
4181 		 */
4182 		rbd_unlock(rbd_dev);
4183 	}
4184 
4185 out:
4186 	wake_lock_waiters(rbd_dev, ret);
4187 	up_write(&rbd_dev->lock_rwsem);
4188 	return ret;
4189 }
4190 
rbd_acquire_lock(struct work_struct * work)4191 static void rbd_acquire_lock(struct work_struct *work)
4192 {
4193 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4194 					    struct rbd_device, lock_dwork);
4195 	int ret;
4196 
4197 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4198 again:
4199 	ret = rbd_try_acquire_lock(rbd_dev);
4200 	if (ret <= 0) {
4201 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4202 		return;
4203 	}
4204 
4205 	ret = rbd_request_lock(rbd_dev);
4206 	if (ret == -ETIMEDOUT) {
4207 		goto again; /* treat this as a dead client */
4208 	} else if (ret == -EROFS) {
4209 		rbd_warn(rbd_dev, "peer will not release lock");
4210 		down_write(&rbd_dev->lock_rwsem);
4211 		wake_lock_waiters(rbd_dev, ret);
4212 		up_write(&rbd_dev->lock_rwsem);
4213 	} else if (ret < 0) {
4214 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4215 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4216 				 RBD_RETRY_DELAY);
4217 	} else {
4218 		/*
4219 		 * lock owner acked, but resend if we don't see them
4220 		 * release the lock
4221 		 */
4222 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4223 		     rbd_dev);
4224 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4225 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4226 	}
4227 }
4228 
rbd_quiesce_lock(struct rbd_device * rbd_dev)4229 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4230 {
4231 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4232 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4233 
4234 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4235 		return false;
4236 
4237 	/*
4238 	 * Ensure that all in-flight IO is flushed.
4239 	 */
4240 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4241 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4242 	if (list_empty(&rbd_dev->running_list))
4243 		return true;
4244 
4245 	up_write(&rbd_dev->lock_rwsem);
4246 	wait_for_completion(&rbd_dev->releasing_wait);
4247 
4248 	down_write(&rbd_dev->lock_rwsem);
4249 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4250 		return false;
4251 
4252 	rbd_assert(list_empty(&rbd_dev->running_list));
4253 	return true;
4254 }
4255 
rbd_pre_release_action(struct rbd_device * rbd_dev)4256 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4257 {
4258 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4259 		rbd_object_map_close(rbd_dev);
4260 }
4261 
__rbd_release_lock(struct rbd_device * rbd_dev)4262 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4263 {
4264 	rbd_assert(list_empty(&rbd_dev->running_list));
4265 
4266 	rbd_pre_release_action(rbd_dev);
4267 	rbd_unlock(rbd_dev);
4268 }
4269 
4270 /*
4271  * lock_rwsem must be held for write
4272  */
rbd_release_lock(struct rbd_device * rbd_dev)4273 static void rbd_release_lock(struct rbd_device *rbd_dev)
4274 {
4275 	if (!rbd_quiesce_lock(rbd_dev))
4276 		return;
4277 
4278 	__rbd_release_lock(rbd_dev);
4279 
4280 	/*
4281 	 * Give others a chance to grab the lock - we would re-acquire
4282 	 * almost immediately if we got new IO while draining the running
4283 	 * list otherwise.  We need to ack our own notifications, so this
4284 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4285 	 * way of maybe_kick_acquire().
4286 	 */
4287 	cancel_delayed_work(&rbd_dev->lock_dwork);
4288 }
4289 
rbd_release_lock_work(struct work_struct * work)4290 static void rbd_release_lock_work(struct work_struct *work)
4291 {
4292 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4293 						  unlock_work);
4294 
4295 	down_write(&rbd_dev->lock_rwsem);
4296 	rbd_release_lock(rbd_dev);
4297 	up_write(&rbd_dev->lock_rwsem);
4298 }
4299 
maybe_kick_acquire(struct rbd_device * rbd_dev)4300 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4301 {
4302 	bool have_requests;
4303 
4304 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4305 	if (__rbd_is_lock_owner(rbd_dev))
4306 		return;
4307 
4308 	spin_lock(&rbd_dev->lock_lists_lock);
4309 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4310 	spin_unlock(&rbd_dev->lock_lists_lock);
4311 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4312 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4313 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4314 	}
4315 }
4316 
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4317 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4318 				     void **p)
4319 {
4320 	struct rbd_client_id cid = { 0 };
4321 
4322 	if (struct_v >= 2) {
4323 		cid.gid = ceph_decode_64(p);
4324 		cid.handle = ceph_decode_64(p);
4325 	}
4326 
4327 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4328 	     cid.handle);
4329 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4330 		down_write(&rbd_dev->lock_rwsem);
4331 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4332 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4333 			     __func__, rbd_dev, cid.gid, cid.handle);
4334 		} else {
4335 			rbd_set_owner_cid(rbd_dev, &cid);
4336 		}
4337 		downgrade_write(&rbd_dev->lock_rwsem);
4338 	} else {
4339 		down_read(&rbd_dev->lock_rwsem);
4340 	}
4341 
4342 	maybe_kick_acquire(rbd_dev);
4343 	up_read(&rbd_dev->lock_rwsem);
4344 }
4345 
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4346 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4347 				     void **p)
4348 {
4349 	struct rbd_client_id cid = { 0 };
4350 
4351 	if (struct_v >= 2) {
4352 		cid.gid = ceph_decode_64(p);
4353 		cid.handle = ceph_decode_64(p);
4354 	}
4355 
4356 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4357 	     cid.handle);
4358 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4359 		down_write(&rbd_dev->lock_rwsem);
4360 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4361 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4362 			     __func__, rbd_dev, cid.gid, cid.handle,
4363 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4364 		} else {
4365 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4366 		}
4367 		downgrade_write(&rbd_dev->lock_rwsem);
4368 	} else {
4369 		down_read(&rbd_dev->lock_rwsem);
4370 	}
4371 
4372 	maybe_kick_acquire(rbd_dev);
4373 	up_read(&rbd_dev->lock_rwsem);
4374 }
4375 
4376 /*
4377  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4378  * ResponseMessage is needed.
4379  */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4380 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4381 				   void **p)
4382 {
4383 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4384 	struct rbd_client_id cid = { 0 };
4385 	int result = 1;
4386 
4387 	if (struct_v >= 2) {
4388 		cid.gid = ceph_decode_64(p);
4389 		cid.handle = ceph_decode_64(p);
4390 	}
4391 
4392 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4393 	     cid.handle);
4394 	if (rbd_cid_equal(&cid, &my_cid))
4395 		return result;
4396 
4397 	down_read(&rbd_dev->lock_rwsem);
4398 	if (__rbd_is_lock_owner(rbd_dev)) {
4399 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4400 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4401 			goto out_unlock;
4402 
4403 		/*
4404 		 * encode ResponseMessage(0) so the peer can detect
4405 		 * a missing owner
4406 		 */
4407 		result = 0;
4408 
4409 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4410 			if (!rbd_dev->opts->exclusive) {
4411 				dout("%s rbd_dev %p queueing unlock_work\n",
4412 				     __func__, rbd_dev);
4413 				queue_work(rbd_dev->task_wq,
4414 					   &rbd_dev->unlock_work);
4415 			} else {
4416 				/* refuse to release the lock */
4417 				result = -EROFS;
4418 			}
4419 		}
4420 	}
4421 
4422 out_unlock:
4423 	up_read(&rbd_dev->lock_rwsem);
4424 	return result;
4425 }
4426 
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4427 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4428 				     u64 notify_id, u64 cookie, s32 *result)
4429 {
4430 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4431 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4432 	int buf_size = sizeof(buf);
4433 	int ret;
4434 
4435 	if (result) {
4436 		void *p = buf;
4437 
4438 		/* encode ResponseMessage */
4439 		ceph_start_encoding(&p, 1, 1,
4440 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4441 		ceph_encode_32(&p, *result);
4442 	} else {
4443 		buf_size = 0;
4444 	}
4445 
4446 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4447 				   &rbd_dev->header_oloc, notify_id, cookie,
4448 				   buf, buf_size);
4449 	if (ret)
4450 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4451 }
4452 
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4453 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4454 				   u64 cookie)
4455 {
4456 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4457 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4458 }
4459 
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4460 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4461 					  u64 notify_id, u64 cookie, s32 result)
4462 {
4463 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4464 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4465 }
4466 
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4467 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4468 			 u64 notifier_id, void *data, size_t data_len)
4469 {
4470 	struct rbd_device *rbd_dev = arg;
4471 	void *p = data;
4472 	void *const end = p + data_len;
4473 	u8 struct_v = 0;
4474 	u32 len;
4475 	u32 notify_op;
4476 	int ret;
4477 
4478 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4479 	     __func__, rbd_dev, cookie, notify_id, data_len);
4480 	if (data_len) {
4481 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4482 					  &struct_v, &len);
4483 		if (ret) {
4484 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4485 				 ret);
4486 			return;
4487 		}
4488 
4489 		notify_op = ceph_decode_32(&p);
4490 	} else {
4491 		/* legacy notification for header updates */
4492 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4493 		len = 0;
4494 	}
4495 
4496 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4497 	switch (notify_op) {
4498 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4499 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4500 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4501 		break;
4502 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4503 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4504 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4505 		break;
4506 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4507 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4508 		if (ret <= 0)
4509 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4510 						      cookie, ret);
4511 		else
4512 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4513 		break;
4514 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4515 		ret = rbd_dev_refresh(rbd_dev);
4516 		if (ret)
4517 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4518 
4519 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4520 		break;
4521 	default:
4522 		if (rbd_is_lock_owner(rbd_dev))
4523 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4524 						      cookie, -EOPNOTSUPP);
4525 		else
4526 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4527 		break;
4528 	}
4529 }
4530 
4531 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4532 
rbd_watch_errcb(void * arg,u64 cookie,int err)4533 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4534 {
4535 	struct rbd_device *rbd_dev = arg;
4536 
4537 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4538 
4539 	down_write(&rbd_dev->lock_rwsem);
4540 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4541 	up_write(&rbd_dev->lock_rwsem);
4542 
4543 	mutex_lock(&rbd_dev->watch_mutex);
4544 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4545 		__rbd_unregister_watch(rbd_dev);
4546 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4547 
4548 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4549 	}
4550 	mutex_unlock(&rbd_dev->watch_mutex);
4551 }
4552 
4553 /*
4554  * watch_mutex must be locked
4555  */
__rbd_register_watch(struct rbd_device * rbd_dev)4556 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4557 {
4558 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4559 	struct ceph_osd_linger_request *handle;
4560 
4561 	rbd_assert(!rbd_dev->watch_handle);
4562 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4563 
4564 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4565 				 &rbd_dev->header_oloc, rbd_watch_cb,
4566 				 rbd_watch_errcb, rbd_dev);
4567 	if (IS_ERR(handle))
4568 		return PTR_ERR(handle);
4569 
4570 	rbd_dev->watch_handle = handle;
4571 	return 0;
4572 }
4573 
4574 /*
4575  * watch_mutex must be locked
4576  */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4577 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4578 {
4579 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4580 	int ret;
4581 
4582 	rbd_assert(rbd_dev->watch_handle);
4583 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4584 
4585 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4586 	if (ret)
4587 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4588 
4589 	rbd_dev->watch_handle = NULL;
4590 }
4591 
rbd_register_watch(struct rbd_device * rbd_dev)4592 static int rbd_register_watch(struct rbd_device *rbd_dev)
4593 {
4594 	int ret;
4595 
4596 	mutex_lock(&rbd_dev->watch_mutex);
4597 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4598 	ret = __rbd_register_watch(rbd_dev);
4599 	if (ret)
4600 		goto out;
4601 
4602 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4603 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4604 
4605 out:
4606 	mutex_unlock(&rbd_dev->watch_mutex);
4607 	return ret;
4608 }
4609 
cancel_tasks_sync(struct rbd_device * rbd_dev)4610 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4611 {
4612 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4613 
4614 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4615 	cancel_work_sync(&rbd_dev->released_lock_work);
4616 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4617 	cancel_work_sync(&rbd_dev->unlock_work);
4618 }
4619 
4620 /*
4621  * header_rwsem must not be held to avoid a deadlock with
4622  * rbd_dev_refresh() when flushing notifies.
4623  */
rbd_unregister_watch(struct rbd_device * rbd_dev)4624 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4625 {
4626 	cancel_tasks_sync(rbd_dev);
4627 
4628 	mutex_lock(&rbd_dev->watch_mutex);
4629 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4630 		__rbd_unregister_watch(rbd_dev);
4631 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4632 	mutex_unlock(&rbd_dev->watch_mutex);
4633 
4634 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4635 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4636 }
4637 
4638 /*
4639  * lock_rwsem must be held for write
4640  */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4641 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4642 {
4643 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4644 	char cookie[32];
4645 	int ret;
4646 
4647 	if (!rbd_quiesce_lock(rbd_dev))
4648 		return;
4649 
4650 	format_lock_cookie(rbd_dev, cookie);
4651 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4652 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4653 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4654 				  RBD_LOCK_TAG, cookie);
4655 	if (ret) {
4656 		if (ret != -EOPNOTSUPP)
4657 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4658 				 ret);
4659 
4660 		/*
4661 		 * Lock cookie cannot be updated on older OSDs, so do
4662 		 * a manual release and queue an acquire.
4663 		 */
4664 		__rbd_release_lock(rbd_dev);
4665 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4666 	} else {
4667 		__rbd_lock(rbd_dev, cookie);
4668 		wake_lock_waiters(rbd_dev, 0);
4669 	}
4670 }
4671 
rbd_reregister_watch(struct work_struct * work)4672 static void rbd_reregister_watch(struct work_struct *work)
4673 {
4674 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4675 					    struct rbd_device, watch_dwork);
4676 	int ret;
4677 
4678 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4679 
4680 	mutex_lock(&rbd_dev->watch_mutex);
4681 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4682 		mutex_unlock(&rbd_dev->watch_mutex);
4683 		return;
4684 	}
4685 
4686 	ret = __rbd_register_watch(rbd_dev);
4687 	if (ret) {
4688 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4689 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4690 			queue_delayed_work(rbd_dev->task_wq,
4691 					   &rbd_dev->watch_dwork,
4692 					   RBD_RETRY_DELAY);
4693 			mutex_unlock(&rbd_dev->watch_mutex);
4694 			return;
4695 		}
4696 
4697 		mutex_unlock(&rbd_dev->watch_mutex);
4698 		down_write(&rbd_dev->lock_rwsem);
4699 		wake_lock_waiters(rbd_dev, ret);
4700 		up_write(&rbd_dev->lock_rwsem);
4701 		return;
4702 	}
4703 
4704 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4705 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4706 	mutex_unlock(&rbd_dev->watch_mutex);
4707 
4708 	down_write(&rbd_dev->lock_rwsem);
4709 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4710 		rbd_reacquire_lock(rbd_dev);
4711 	up_write(&rbd_dev->lock_rwsem);
4712 
4713 	ret = rbd_dev_refresh(rbd_dev);
4714 	if (ret)
4715 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4716 }
4717 
4718 /*
4719  * Synchronous osd object method call.  Returns the number of bytes
4720  * returned in the outbound buffer, or a negative error code.
4721  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4722 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4723 			     struct ceph_object_id *oid,
4724 			     struct ceph_object_locator *oloc,
4725 			     const char *method_name,
4726 			     const void *outbound,
4727 			     size_t outbound_size,
4728 			     void *inbound,
4729 			     size_t inbound_size)
4730 {
4731 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4732 	struct page *req_page = NULL;
4733 	struct page *reply_page;
4734 	int ret;
4735 
4736 	/*
4737 	 * Method calls are ultimately read operations.  The result
4738 	 * should placed into the inbound buffer provided.  They
4739 	 * also supply outbound data--parameters for the object
4740 	 * method.  Currently if this is present it will be a
4741 	 * snapshot id.
4742 	 */
4743 	if (outbound) {
4744 		if (outbound_size > PAGE_SIZE)
4745 			return -E2BIG;
4746 
4747 		req_page = alloc_page(GFP_KERNEL);
4748 		if (!req_page)
4749 			return -ENOMEM;
4750 
4751 		memcpy(page_address(req_page), outbound, outbound_size);
4752 	}
4753 
4754 	reply_page = alloc_page(GFP_KERNEL);
4755 	if (!reply_page) {
4756 		if (req_page)
4757 			__free_page(req_page);
4758 		return -ENOMEM;
4759 	}
4760 
4761 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4762 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4763 			     &reply_page, &inbound_size);
4764 	if (!ret) {
4765 		memcpy(inbound, page_address(reply_page), inbound_size);
4766 		ret = inbound_size;
4767 	}
4768 
4769 	if (req_page)
4770 		__free_page(req_page);
4771 	__free_page(reply_page);
4772 	return ret;
4773 }
4774 
rbd_queue_workfn(struct work_struct * work)4775 static void rbd_queue_workfn(struct work_struct *work)
4776 {
4777 	struct rbd_img_request *img_request =
4778 	    container_of(work, struct rbd_img_request, work);
4779 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4780 	enum obj_operation_type op_type = img_request->op_type;
4781 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4782 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4783 	u64 length = blk_rq_bytes(rq);
4784 	u64 mapping_size;
4785 	int result;
4786 
4787 	/* Ignore/skip any zero-length requests */
4788 	if (!length) {
4789 		dout("%s: zero-length request\n", __func__);
4790 		result = 0;
4791 		goto err_img_request;
4792 	}
4793 
4794 	blk_mq_start_request(rq);
4795 
4796 	down_read(&rbd_dev->header_rwsem);
4797 	mapping_size = rbd_dev->mapping.size;
4798 	rbd_img_capture_header(img_request);
4799 	up_read(&rbd_dev->header_rwsem);
4800 
4801 	if (offset + length > mapping_size) {
4802 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4803 			 length, mapping_size);
4804 		result = -EIO;
4805 		goto err_img_request;
4806 	}
4807 
4808 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4809 	     img_request, obj_op_name(op_type), offset, length);
4810 
4811 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4812 		result = rbd_img_fill_nodata(img_request, offset, length);
4813 	else
4814 		result = rbd_img_fill_from_bio(img_request, offset, length,
4815 					       rq->bio);
4816 	if (result)
4817 		goto err_img_request;
4818 
4819 	rbd_img_handle_request(img_request, 0);
4820 	return;
4821 
4822 err_img_request:
4823 	rbd_img_request_destroy(img_request);
4824 	if (result)
4825 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4826 			 obj_op_name(op_type), length, offset, result);
4827 	blk_mq_end_request(rq, errno_to_blk_status(result));
4828 }
4829 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4830 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4831 		const struct blk_mq_queue_data *bd)
4832 {
4833 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4834 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4835 	enum obj_operation_type op_type;
4836 
4837 	switch (req_op(bd->rq)) {
4838 	case REQ_OP_DISCARD:
4839 		op_type = OBJ_OP_DISCARD;
4840 		break;
4841 	case REQ_OP_WRITE_ZEROES:
4842 		op_type = OBJ_OP_ZEROOUT;
4843 		break;
4844 	case REQ_OP_WRITE:
4845 		op_type = OBJ_OP_WRITE;
4846 		break;
4847 	case REQ_OP_READ:
4848 		op_type = OBJ_OP_READ;
4849 		break;
4850 	default:
4851 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4852 		return BLK_STS_IOERR;
4853 	}
4854 
4855 	rbd_img_request_init(img_req, rbd_dev, op_type);
4856 
4857 	if (rbd_img_is_write(img_req)) {
4858 		if (rbd_is_ro(rbd_dev)) {
4859 			rbd_warn(rbd_dev, "%s on read-only mapping",
4860 				 obj_op_name(img_req->op_type));
4861 			return BLK_STS_IOERR;
4862 		}
4863 		rbd_assert(!rbd_is_snap(rbd_dev));
4864 	}
4865 
4866 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4867 	queue_work(rbd_wq, &img_req->work);
4868 	return BLK_STS_OK;
4869 }
4870 
rbd_free_disk(struct rbd_device * rbd_dev)4871 static void rbd_free_disk(struct rbd_device *rbd_dev)
4872 {
4873 	blk_cleanup_queue(rbd_dev->disk->queue);
4874 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4875 	put_disk(rbd_dev->disk);
4876 	rbd_dev->disk = NULL;
4877 }
4878 
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4879 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4880 			     struct ceph_object_id *oid,
4881 			     struct ceph_object_locator *oloc,
4882 			     void *buf, int buf_len)
4883 
4884 {
4885 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4886 	struct ceph_osd_request *req;
4887 	struct page **pages;
4888 	int num_pages = calc_pages_for(0, buf_len);
4889 	int ret;
4890 
4891 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4892 	if (!req)
4893 		return -ENOMEM;
4894 
4895 	ceph_oid_copy(&req->r_base_oid, oid);
4896 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4897 	req->r_flags = CEPH_OSD_FLAG_READ;
4898 
4899 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4900 	if (IS_ERR(pages)) {
4901 		ret = PTR_ERR(pages);
4902 		goto out_req;
4903 	}
4904 
4905 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4906 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4907 					 true);
4908 
4909 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4910 	if (ret)
4911 		goto out_req;
4912 
4913 	ceph_osdc_start_request(osdc, req, false);
4914 	ret = ceph_osdc_wait_request(osdc, req);
4915 	if (ret >= 0)
4916 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4917 
4918 out_req:
4919 	ceph_osdc_put_request(req);
4920 	return ret;
4921 }
4922 
4923 /*
4924  * Read the complete header for the given rbd device.  On successful
4925  * return, the rbd_dev->header field will contain up-to-date
4926  * information about the image.
4927  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4928 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4929 				  struct rbd_image_header *header,
4930 				  bool first_time)
4931 {
4932 	struct rbd_image_header_ondisk *ondisk = NULL;
4933 	u32 snap_count = 0;
4934 	u64 names_size = 0;
4935 	u32 want_count;
4936 	int ret;
4937 
4938 	/*
4939 	 * The complete header will include an array of its 64-bit
4940 	 * snapshot ids, followed by the names of those snapshots as
4941 	 * a contiguous block of NUL-terminated strings.  Note that
4942 	 * the number of snapshots could change by the time we read
4943 	 * it in, in which case we re-read it.
4944 	 */
4945 	do {
4946 		size_t size;
4947 
4948 		kfree(ondisk);
4949 
4950 		size = sizeof (*ondisk);
4951 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4952 		size += names_size;
4953 		ondisk = kmalloc(size, GFP_KERNEL);
4954 		if (!ondisk)
4955 			return -ENOMEM;
4956 
4957 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4958 					&rbd_dev->header_oloc, ondisk, size);
4959 		if (ret < 0)
4960 			goto out;
4961 		if ((size_t)ret < size) {
4962 			ret = -ENXIO;
4963 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4964 				size, ret);
4965 			goto out;
4966 		}
4967 		if (!rbd_dev_ondisk_valid(ondisk)) {
4968 			ret = -ENXIO;
4969 			rbd_warn(rbd_dev, "invalid header");
4970 			goto out;
4971 		}
4972 
4973 		names_size = le64_to_cpu(ondisk->snap_names_len);
4974 		want_count = snap_count;
4975 		snap_count = le32_to_cpu(ondisk->snap_count);
4976 	} while (snap_count != want_count);
4977 
4978 	ret = rbd_header_from_disk(header, ondisk, first_time);
4979 out:
4980 	kfree(ondisk);
4981 
4982 	return ret;
4983 }
4984 
rbd_dev_update_size(struct rbd_device * rbd_dev)4985 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4986 {
4987 	sector_t size;
4988 
4989 	/*
4990 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4991 	 * try to update its size.  If REMOVING is set, updating size
4992 	 * is just useless work since the device can't be opened.
4993 	 */
4994 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4995 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4996 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4997 		dout("setting size to %llu sectors", (unsigned long long)size);
4998 		set_capacity(rbd_dev->disk, size);
4999 		revalidate_disk_size(rbd_dev->disk, true);
5000 	}
5001 }
5002 
5003 static const struct blk_mq_ops rbd_mq_ops = {
5004 	.queue_rq	= rbd_queue_rq,
5005 };
5006 
rbd_init_disk(struct rbd_device * rbd_dev)5007 static int rbd_init_disk(struct rbd_device *rbd_dev)
5008 {
5009 	struct gendisk *disk;
5010 	struct request_queue *q;
5011 	unsigned int objset_bytes =
5012 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5013 	int err;
5014 
5015 	/* create gendisk info */
5016 	disk = alloc_disk(single_major ?
5017 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5018 			  RBD_MINORS_PER_MAJOR);
5019 	if (!disk)
5020 		return -ENOMEM;
5021 
5022 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5023 		 rbd_dev->dev_id);
5024 	disk->major = rbd_dev->major;
5025 	disk->first_minor = rbd_dev->minor;
5026 	if (single_major)
5027 		disk->flags |= GENHD_FL_EXT_DEVT;
5028 	disk->fops = &rbd_bd_ops;
5029 	disk->private_data = rbd_dev;
5030 
5031 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5032 	rbd_dev->tag_set.ops = &rbd_mq_ops;
5033 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5034 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5035 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5036 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
5037 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
5038 
5039 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5040 	if (err)
5041 		goto out_disk;
5042 
5043 	q = blk_mq_init_queue(&rbd_dev->tag_set);
5044 	if (IS_ERR(q)) {
5045 		err = PTR_ERR(q);
5046 		goto out_tag_set;
5047 	}
5048 
5049 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5050 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5051 
5052 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5053 	q->limits.max_sectors = queue_max_hw_sectors(q);
5054 	blk_queue_max_segments(q, USHRT_MAX);
5055 	blk_queue_max_segment_size(q, UINT_MAX);
5056 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5057 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5058 
5059 	if (rbd_dev->opts->trim) {
5060 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5061 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5062 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5063 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5064 	}
5065 
5066 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5067 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5068 
5069 	/*
5070 	 * disk_release() expects a queue ref from add_disk() and will
5071 	 * put it.  Hold an extra ref until add_disk() is called.
5072 	 */
5073 	WARN_ON(!blk_get_queue(q));
5074 	disk->queue = q;
5075 	q->queuedata = rbd_dev;
5076 
5077 	rbd_dev->disk = disk;
5078 
5079 	return 0;
5080 out_tag_set:
5081 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5082 out_disk:
5083 	put_disk(disk);
5084 	return err;
5085 }
5086 
5087 /*
5088   sysfs
5089 */
5090 
dev_to_rbd_dev(struct device * dev)5091 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5092 {
5093 	return container_of(dev, struct rbd_device, dev);
5094 }
5095 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5096 static ssize_t rbd_size_show(struct device *dev,
5097 			     struct device_attribute *attr, char *buf)
5098 {
5099 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5100 
5101 	return sprintf(buf, "%llu\n",
5102 		(unsigned long long)rbd_dev->mapping.size);
5103 }
5104 
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5105 static ssize_t rbd_features_show(struct device *dev,
5106 			     struct device_attribute *attr, char *buf)
5107 {
5108 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5109 
5110 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5111 }
5112 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5113 static ssize_t rbd_major_show(struct device *dev,
5114 			      struct device_attribute *attr, char *buf)
5115 {
5116 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5117 
5118 	if (rbd_dev->major)
5119 		return sprintf(buf, "%d\n", rbd_dev->major);
5120 
5121 	return sprintf(buf, "(none)\n");
5122 }
5123 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5124 static ssize_t rbd_minor_show(struct device *dev,
5125 			      struct device_attribute *attr, char *buf)
5126 {
5127 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5128 
5129 	return sprintf(buf, "%d\n", rbd_dev->minor);
5130 }
5131 
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5132 static ssize_t rbd_client_addr_show(struct device *dev,
5133 				    struct device_attribute *attr, char *buf)
5134 {
5135 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5136 	struct ceph_entity_addr *client_addr =
5137 	    ceph_client_addr(rbd_dev->rbd_client->client);
5138 
5139 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5140 		       le32_to_cpu(client_addr->nonce));
5141 }
5142 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5143 static ssize_t rbd_client_id_show(struct device *dev,
5144 				  struct device_attribute *attr, char *buf)
5145 {
5146 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5147 
5148 	return sprintf(buf, "client%lld\n",
5149 		       ceph_client_gid(rbd_dev->rbd_client->client));
5150 }
5151 
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5152 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5153 				     struct device_attribute *attr, char *buf)
5154 {
5155 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156 
5157 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5158 }
5159 
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5160 static ssize_t rbd_config_info_show(struct device *dev,
5161 				    struct device_attribute *attr, char *buf)
5162 {
5163 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5164 
5165 	if (!capable(CAP_SYS_ADMIN))
5166 		return -EPERM;
5167 
5168 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5169 }
5170 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5171 static ssize_t rbd_pool_show(struct device *dev,
5172 			     struct device_attribute *attr, char *buf)
5173 {
5174 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5175 
5176 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5177 }
5178 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5179 static ssize_t rbd_pool_id_show(struct device *dev,
5180 			     struct device_attribute *attr, char *buf)
5181 {
5182 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5183 
5184 	return sprintf(buf, "%llu\n",
5185 			(unsigned long long) rbd_dev->spec->pool_id);
5186 }
5187 
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5188 static ssize_t rbd_pool_ns_show(struct device *dev,
5189 				struct device_attribute *attr, char *buf)
5190 {
5191 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5192 
5193 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5194 }
5195 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5196 static ssize_t rbd_name_show(struct device *dev,
5197 			     struct device_attribute *attr, char *buf)
5198 {
5199 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5200 
5201 	if (rbd_dev->spec->image_name)
5202 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5203 
5204 	return sprintf(buf, "(unknown)\n");
5205 }
5206 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5207 static ssize_t rbd_image_id_show(struct device *dev,
5208 			     struct device_attribute *attr, char *buf)
5209 {
5210 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5211 
5212 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5213 }
5214 
5215 /*
5216  * Shows the name of the currently-mapped snapshot (or
5217  * RBD_SNAP_HEAD_NAME for the base image).
5218  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5219 static ssize_t rbd_snap_show(struct device *dev,
5220 			     struct device_attribute *attr,
5221 			     char *buf)
5222 {
5223 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5224 
5225 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5226 }
5227 
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5228 static ssize_t rbd_snap_id_show(struct device *dev,
5229 				struct device_attribute *attr, char *buf)
5230 {
5231 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5232 
5233 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5234 }
5235 
5236 /*
5237  * For a v2 image, shows the chain of parent images, separated by empty
5238  * lines.  For v1 images or if there is no parent, shows "(no parent
5239  * image)".
5240  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5241 static ssize_t rbd_parent_show(struct device *dev,
5242 			       struct device_attribute *attr,
5243 			       char *buf)
5244 {
5245 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5246 	ssize_t count = 0;
5247 
5248 	if (!rbd_dev->parent)
5249 		return sprintf(buf, "(no parent image)\n");
5250 
5251 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5252 		struct rbd_spec *spec = rbd_dev->parent_spec;
5253 
5254 		count += sprintf(&buf[count], "%s"
5255 			    "pool_id %llu\npool_name %s\n"
5256 			    "pool_ns %s\n"
5257 			    "image_id %s\nimage_name %s\n"
5258 			    "snap_id %llu\nsnap_name %s\n"
5259 			    "overlap %llu\n",
5260 			    !count ? "" : "\n", /* first? */
5261 			    spec->pool_id, spec->pool_name,
5262 			    spec->pool_ns ?: "",
5263 			    spec->image_id, spec->image_name ?: "(unknown)",
5264 			    spec->snap_id, spec->snap_name,
5265 			    rbd_dev->parent_overlap);
5266 	}
5267 
5268 	return count;
5269 }
5270 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5271 static ssize_t rbd_image_refresh(struct device *dev,
5272 				 struct device_attribute *attr,
5273 				 const char *buf,
5274 				 size_t size)
5275 {
5276 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5277 	int ret;
5278 
5279 	if (!capable(CAP_SYS_ADMIN))
5280 		return -EPERM;
5281 
5282 	ret = rbd_dev_refresh(rbd_dev);
5283 	if (ret)
5284 		return ret;
5285 
5286 	return size;
5287 }
5288 
5289 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5290 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5291 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5292 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5293 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5294 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5295 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5296 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5297 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5298 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5299 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5300 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5301 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5302 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5303 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5304 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5305 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5306 
5307 static struct attribute *rbd_attrs[] = {
5308 	&dev_attr_size.attr,
5309 	&dev_attr_features.attr,
5310 	&dev_attr_major.attr,
5311 	&dev_attr_minor.attr,
5312 	&dev_attr_client_addr.attr,
5313 	&dev_attr_client_id.attr,
5314 	&dev_attr_cluster_fsid.attr,
5315 	&dev_attr_config_info.attr,
5316 	&dev_attr_pool.attr,
5317 	&dev_attr_pool_id.attr,
5318 	&dev_attr_pool_ns.attr,
5319 	&dev_attr_name.attr,
5320 	&dev_attr_image_id.attr,
5321 	&dev_attr_current_snap.attr,
5322 	&dev_attr_snap_id.attr,
5323 	&dev_attr_parent.attr,
5324 	&dev_attr_refresh.attr,
5325 	NULL
5326 };
5327 
5328 static struct attribute_group rbd_attr_group = {
5329 	.attrs = rbd_attrs,
5330 };
5331 
5332 static const struct attribute_group *rbd_attr_groups[] = {
5333 	&rbd_attr_group,
5334 	NULL
5335 };
5336 
5337 static void rbd_dev_release(struct device *dev);
5338 
5339 static const struct device_type rbd_device_type = {
5340 	.name		= "rbd",
5341 	.groups		= rbd_attr_groups,
5342 	.release	= rbd_dev_release,
5343 };
5344 
rbd_spec_get(struct rbd_spec * spec)5345 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5346 {
5347 	kref_get(&spec->kref);
5348 
5349 	return spec;
5350 }
5351 
5352 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5353 static void rbd_spec_put(struct rbd_spec *spec)
5354 {
5355 	if (spec)
5356 		kref_put(&spec->kref, rbd_spec_free);
5357 }
5358 
rbd_spec_alloc(void)5359 static struct rbd_spec *rbd_spec_alloc(void)
5360 {
5361 	struct rbd_spec *spec;
5362 
5363 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5364 	if (!spec)
5365 		return NULL;
5366 
5367 	spec->pool_id = CEPH_NOPOOL;
5368 	spec->snap_id = CEPH_NOSNAP;
5369 	kref_init(&spec->kref);
5370 
5371 	return spec;
5372 }
5373 
rbd_spec_free(struct kref * kref)5374 static void rbd_spec_free(struct kref *kref)
5375 {
5376 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5377 
5378 	kfree(spec->pool_name);
5379 	kfree(spec->pool_ns);
5380 	kfree(spec->image_id);
5381 	kfree(spec->image_name);
5382 	kfree(spec->snap_name);
5383 	kfree(spec);
5384 }
5385 
rbd_dev_free(struct rbd_device * rbd_dev)5386 static void rbd_dev_free(struct rbd_device *rbd_dev)
5387 {
5388 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5389 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5390 
5391 	ceph_oid_destroy(&rbd_dev->header_oid);
5392 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5393 	kfree(rbd_dev->config_info);
5394 
5395 	rbd_put_client(rbd_dev->rbd_client);
5396 	rbd_spec_put(rbd_dev->spec);
5397 	kfree(rbd_dev->opts);
5398 	kfree(rbd_dev);
5399 }
5400 
rbd_dev_release(struct device * dev)5401 static void rbd_dev_release(struct device *dev)
5402 {
5403 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5404 	bool need_put = !!rbd_dev->opts;
5405 
5406 	if (need_put) {
5407 		destroy_workqueue(rbd_dev->task_wq);
5408 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5409 	}
5410 
5411 	rbd_dev_free(rbd_dev);
5412 
5413 	/*
5414 	 * This is racy, but way better than putting module outside of
5415 	 * the release callback.  The race window is pretty small, so
5416 	 * doing something similar to dm (dm-builtin.c) is overkill.
5417 	 */
5418 	if (need_put)
5419 		module_put(THIS_MODULE);
5420 }
5421 
__rbd_dev_create(struct rbd_spec * spec)5422 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5423 {
5424 	struct rbd_device *rbd_dev;
5425 
5426 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5427 	if (!rbd_dev)
5428 		return NULL;
5429 
5430 	spin_lock_init(&rbd_dev->lock);
5431 	INIT_LIST_HEAD(&rbd_dev->node);
5432 	init_rwsem(&rbd_dev->header_rwsem);
5433 
5434 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5435 	ceph_oid_init(&rbd_dev->header_oid);
5436 	rbd_dev->header_oloc.pool = spec->pool_id;
5437 	if (spec->pool_ns) {
5438 		WARN_ON(!*spec->pool_ns);
5439 		rbd_dev->header_oloc.pool_ns =
5440 		    ceph_find_or_create_string(spec->pool_ns,
5441 					       strlen(spec->pool_ns));
5442 	}
5443 
5444 	mutex_init(&rbd_dev->watch_mutex);
5445 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5446 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5447 
5448 	init_rwsem(&rbd_dev->lock_rwsem);
5449 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5450 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5451 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5452 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5453 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5454 	spin_lock_init(&rbd_dev->lock_lists_lock);
5455 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5456 	INIT_LIST_HEAD(&rbd_dev->running_list);
5457 	init_completion(&rbd_dev->acquire_wait);
5458 	init_completion(&rbd_dev->releasing_wait);
5459 
5460 	spin_lock_init(&rbd_dev->object_map_lock);
5461 
5462 	rbd_dev->dev.bus = &rbd_bus_type;
5463 	rbd_dev->dev.type = &rbd_device_type;
5464 	rbd_dev->dev.parent = &rbd_root_dev;
5465 	device_initialize(&rbd_dev->dev);
5466 
5467 	return rbd_dev;
5468 }
5469 
5470 /*
5471  * Create a mapping rbd_dev.
5472  */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5473 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5474 					 struct rbd_spec *spec,
5475 					 struct rbd_options *opts)
5476 {
5477 	struct rbd_device *rbd_dev;
5478 
5479 	rbd_dev = __rbd_dev_create(spec);
5480 	if (!rbd_dev)
5481 		return NULL;
5482 
5483 	/* get an id and fill in device name */
5484 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5485 					 minor_to_rbd_dev_id(1 << MINORBITS),
5486 					 GFP_KERNEL);
5487 	if (rbd_dev->dev_id < 0)
5488 		goto fail_rbd_dev;
5489 
5490 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5491 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5492 						   rbd_dev->name);
5493 	if (!rbd_dev->task_wq)
5494 		goto fail_dev_id;
5495 
5496 	/* we have a ref from do_rbd_add() */
5497 	__module_get(THIS_MODULE);
5498 
5499 	rbd_dev->rbd_client = rbdc;
5500 	rbd_dev->spec = spec;
5501 	rbd_dev->opts = opts;
5502 
5503 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5504 	return rbd_dev;
5505 
5506 fail_dev_id:
5507 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5508 fail_rbd_dev:
5509 	rbd_dev_free(rbd_dev);
5510 	return NULL;
5511 }
5512 
rbd_dev_destroy(struct rbd_device * rbd_dev)5513 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5514 {
5515 	if (rbd_dev)
5516 		put_device(&rbd_dev->dev);
5517 }
5518 
5519 /*
5520  * Get the size and object order for an image snapshot, or if
5521  * snap_id is CEPH_NOSNAP, gets this information for the base
5522  * image.
5523  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5524 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5525 				u8 *order, u64 *snap_size)
5526 {
5527 	__le64 snapid = cpu_to_le64(snap_id);
5528 	int ret;
5529 	struct {
5530 		u8 order;
5531 		__le64 size;
5532 	} __attribute__ ((packed)) size_buf = { 0 };
5533 
5534 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535 				  &rbd_dev->header_oloc, "get_size",
5536 				  &snapid, sizeof(snapid),
5537 				  &size_buf, sizeof(size_buf));
5538 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 	if (ret < 0)
5540 		return ret;
5541 	if (ret < sizeof (size_buf))
5542 		return -ERANGE;
5543 
5544 	if (order) {
5545 		*order = size_buf.order;
5546 		dout("  order %u", (unsigned int)*order);
5547 	}
5548 	*snap_size = le64_to_cpu(size_buf.size);
5549 
5550 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5551 		(unsigned long long)snap_id,
5552 		(unsigned long long)*snap_size);
5553 
5554 	return 0;
5555 }
5556 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5557 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5558 				    char **pobject_prefix)
5559 {
5560 	size_t size;
5561 	void *reply_buf;
5562 	char *object_prefix;
5563 	int ret;
5564 	void *p;
5565 
5566 	/* Response will be an encoded string, which includes a length */
5567 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5568 	reply_buf = kzalloc(size, GFP_KERNEL);
5569 	if (!reply_buf)
5570 		return -ENOMEM;
5571 
5572 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5573 				  &rbd_dev->header_oloc, "get_object_prefix",
5574 				  NULL, 0, reply_buf, size);
5575 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5576 	if (ret < 0)
5577 		goto out;
5578 
5579 	p = reply_buf;
5580 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5581 						    GFP_NOIO);
5582 	if (IS_ERR(object_prefix)) {
5583 		ret = PTR_ERR(object_prefix);
5584 		goto out;
5585 	}
5586 	ret = 0;
5587 
5588 	*pobject_prefix = object_prefix;
5589 	dout("  object_prefix = %s\n", object_prefix);
5590 out:
5591 	kfree(reply_buf);
5592 
5593 	return ret;
5594 }
5595 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5596 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5597 				     bool read_only, u64 *snap_features)
5598 {
5599 	struct {
5600 		__le64 snap_id;
5601 		u8 read_only;
5602 	} features_in;
5603 	struct {
5604 		__le64 features;
5605 		__le64 incompat;
5606 	} __attribute__ ((packed)) features_buf = { 0 };
5607 	u64 unsup;
5608 	int ret;
5609 
5610 	features_in.snap_id = cpu_to_le64(snap_id);
5611 	features_in.read_only = read_only;
5612 
5613 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5614 				  &rbd_dev->header_oloc, "get_features",
5615 				  &features_in, sizeof(features_in),
5616 				  &features_buf, sizeof(features_buf));
5617 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5618 	if (ret < 0)
5619 		return ret;
5620 	if (ret < sizeof (features_buf))
5621 		return -ERANGE;
5622 
5623 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5624 	if (unsup) {
5625 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5626 			 unsup);
5627 		return -ENXIO;
5628 	}
5629 
5630 	*snap_features = le64_to_cpu(features_buf.features);
5631 
5632 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5633 		(unsigned long long)snap_id,
5634 		(unsigned long long)*snap_features,
5635 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5636 
5637 	return 0;
5638 }
5639 
5640 /*
5641  * These are generic image flags, but since they are used only for
5642  * object map, store them in rbd_dev->object_map_flags.
5643  *
5644  * For the same reason, this function is called only on object map
5645  * (re)load and not on header refresh.
5646  */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5647 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5648 {
5649 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5650 	__le64 flags;
5651 	int ret;
5652 
5653 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5654 				  &rbd_dev->header_oloc, "get_flags",
5655 				  &snapid, sizeof(snapid),
5656 				  &flags, sizeof(flags));
5657 	if (ret < 0)
5658 		return ret;
5659 	if (ret < sizeof(flags))
5660 		return -EBADMSG;
5661 
5662 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5663 	return 0;
5664 }
5665 
5666 struct parent_image_info {
5667 	u64		pool_id;
5668 	const char	*pool_ns;
5669 	const char	*image_id;
5670 	u64		snap_id;
5671 
5672 	bool		has_overlap;
5673 	u64		overlap;
5674 };
5675 
rbd_parent_info_cleanup(struct parent_image_info * pii)5676 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5677 {
5678 	kfree(pii->pool_ns);
5679 	kfree(pii->image_id);
5680 
5681 	memset(pii, 0, sizeof(*pii));
5682 }
5683 
5684 /*
5685  * The caller is responsible for @pii.
5686  */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5687 static int decode_parent_image_spec(void **p, void *end,
5688 				    struct parent_image_info *pii)
5689 {
5690 	u8 struct_v;
5691 	u32 struct_len;
5692 	int ret;
5693 
5694 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5695 				  &struct_v, &struct_len);
5696 	if (ret)
5697 		return ret;
5698 
5699 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5700 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5701 	if (IS_ERR(pii->pool_ns)) {
5702 		ret = PTR_ERR(pii->pool_ns);
5703 		pii->pool_ns = NULL;
5704 		return ret;
5705 	}
5706 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5707 	if (IS_ERR(pii->image_id)) {
5708 		ret = PTR_ERR(pii->image_id);
5709 		pii->image_id = NULL;
5710 		return ret;
5711 	}
5712 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5713 	return 0;
5714 
5715 e_inval:
5716 	return -EINVAL;
5717 }
5718 
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5719 static int __get_parent_info(struct rbd_device *rbd_dev,
5720 			     struct page *req_page,
5721 			     struct page *reply_page,
5722 			     struct parent_image_info *pii)
5723 {
5724 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5725 	size_t reply_len = PAGE_SIZE;
5726 	void *p, *end;
5727 	int ret;
5728 
5729 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5730 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5731 			     req_page, sizeof(u64), &reply_page, &reply_len);
5732 	if (ret)
5733 		return ret == -EOPNOTSUPP ? 1 : ret;
5734 
5735 	p = page_address(reply_page);
5736 	end = p + reply_len;
5737 	ret = decode_parent_image_spec(&p, end, pii);
5738 	if (ret)
5739 		return ret;
5740 
5741 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5742 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5743 			     req_page, sizeof(u64), &reply_page, &reply_len);
5744 	if (ret)
5745 		return ret;
5746 
5747 	p = page_address(reply_page);
5748 	end = p + reply_len;
5749 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5750 	if (pii->has_overlap)
5751 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5752 
5753 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5754 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5755 	     pii->has_overlap, pii->overlap);
5756 	return 0;
5757 
5758 e_inval:
5759 	return -EINVAL;
5760 }
5761 
5762 /*
5763  * The caller is responsible for @pii.
5764  */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5765 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5766 				    struct page *req_page,
5767 				    struct page *reply_page,
5768 				    struct parent_image_info *pii)
5769 {
5770 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5771 	size_t reply_len = PAGE_SIZE;
5772 	void *p, *end;
5773 	int ret;
5774 
5775 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5776 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5777 			     req_page, sizeof(u64), &reply_page, &reply_len);
5778 	if (ret)
5779 		return ret;
5780 
5781 	p = page_address(reply_page);
5782 	end = p + reply_len;
5783 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5784 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5785 	if (IS_ERR(pii->image_id)) {
5786 		ret = PTR_ERR(pii->image_id);
5787 		pii->image_id = NULL;
5788 		return ret;
5789 	}
5790 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5791 	pii->has_overlap = true;
5792 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5793 
5794 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5795 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5796 	     pii->has_overlap, pii->overlap);
5797 	return 0;
5798 
5799 e_inval:
5800 	return -EINVAL;
5801 }
5802 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5803 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5804 				  struct parent_image_info *pii)
5805 {
5806 	struct page *req_page, *reply_page;
5807 	void *p;
5808 	int ret;
5809 
5810 	req_page = alloc_page(GFP_KERNEL);
5811 	if (!req_page)
5812 		return -ENOMEM;
5813 
5814 	reply_page = alloc_page(GFP_KERNEL);
5815 	if (!reply_page) {
5816 		__free_page(req_page);
5817 		return -ENOMEM;
5818 	}
5819 
5820 	p = page_address(req_page);
5821 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5822 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5823 	if (ret > 0)
5824 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5825 					       pii);
5826 
5827 	__free_page(req_page);
5828 	__free_page(reply_page);
5829 	return ret;
5830 }
5831 
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5832 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5833 {
5834 	struct rbd_spec *parent_spec;
5835 	struct parent_image_info pii = { 0 };
5836 	int ret;
5837 
5838 	parent_spec = rbd_spec_alloc();
5839 	if (!parent_spec)
5840 		return -ENOMEM;
5841 
5842 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5843 	if (ret)
5844 		goto out_err;
5845 
5846 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5847 		goto out;	/* No parent?  No problem. */
5848 
5849 	/* The ceph file layout needs to fit pool id in 32 bits */
5850 
5851 	ret = -EIO;
5852 	if (pii.pool_id > (u64)U32_MAX) {
5853 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5854 			(unsigned long long)pii.pool_id, U32_MAX);
5855 		goto out_err;
5856 	}
5857 
5858 	/*
5859 	 * The parent won't change except when the clone is flattened,
5860 	 * so we only need to record the parent image spec once.
5861 	 */
5862 	parent_spec->pool_id = pii.pool_id;
5863 	if (pii.pool_ns && *pii.pool_ns) {
5864 		parent_spec->pool_ns = pii.pool_ns;
5865 		pii.pool_ns = NULL;
5866 	}
5867 	parent_spec->image_id = pii.image_id;
5868 	pii.image_id = NULL;
5869 	parent_spec->snap_id = pii.snap_id;
5870 
5871 	rbd_assert(!rbd_dev->parent_spec);
5872 	rbd_dev->parent_spec = parent_spec;
5873 	parent_spec = NULL;	/* rbd_dev now owns this */
5874 
5875 	/*
5876 	 * Record the parent overlap.  If it's zero, issue a warning as
5877 	 * we will proceed as if there is no parent.
5878 	 */
5879 	if (!pii.overlap)
5880 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5881 	rbd_dev->parent_overlap = pii.overlap;
5882 
5883 out:
5884 	ret = 0;
5885 out_err:
5886 	rbd_parent_info_cleanup(&pii);
5887 	rbd_spec_put(parent_spec);
5888 	return ret;
5889 }
5890 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5891 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5892 				    u64 *stripe_unit, u64 *stripe_count)
5893 {
5894 	struct {
5895 		__le64 stripe_unit;
5896 		__le64 stripe_count;
5897 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5898 	size_t size = sizeof (striping_info_buf);
5899 	int ret;
5900 
5901 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5902 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5903 				NULL, 0, &striping_info_buf, size);
5904 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5905 	if (ret < 0)
5906 		return ret;
5907 	if (ret < size)
5908 		return -ERANGE;
5909 
5910 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5911 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5912 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5913 	     *stripe_count);
5914 
5915 	return 0;
5916 }
5917 
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5918 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5919 {
5920 	__le64 data_pool_buf;
5921 	int ret;
5922 
5923 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5924 				  &rbd_dev->header_oloc, "get_data_pool",
5925 				  NULL, 0, &data_pool_buf,
5926 				  sizeof(data_pool_buf));
5927 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5928 	if (ret < 0)
5929 		return ret;
5930 	if (ret < sizeof(data_pool_buf))
5931 		return -EBADMSG;
5932 
5933 	*data_pool_id = le64_to_cpu(data_pool_buf);
5934 	dout("  data_pool_id = %lld\n", *data_pool_id);
5935 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5936 
5937 	return 0;
5938 }
5939 
rbd_dev_image_name(struct rbd_device * rbd_dev)5940 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5941 {
5942 	CEPH_DEFINE_OID_ONSTACK(oid);
5943 	size_t image_id_size;
5944 	char *image_id;
5945 	void *p;
5946 	void *end;
5947 	size_t size;
5948 	void *reply_buf = NULL;
5949 	size_t len = 0;
5950 	char *image_name = NULL;
5951 	int ret;
5952 
5953 	rbd_assert(!rbd_dev->spec->image_name);
5954 
5955 	len = strlen(rbd_dev->spec->image_id);
5956 	image_id_size = sizeof (__le32) + len;
5957 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5958 	if (!image_id)
5959 		return NULL;
5960 
5961 	p = image_id;
5962 	end = image_id + image_id_size;
5963 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5964 
5965 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5966 	reply_buf = kmalloc(size, GFP_KERNEL);
5967 	if (!reply_buf)
5968 		goto out;
5969 
5970 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5971 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5972 				  "dir_get_name", image_id, image_id_size,
5973 				  reply_buf, size);
5974 	if (ret < 0)
5975 		goto out;
5976 	p = reply_buf;
5977 	end = reply_buf + ret;
5978 
5979 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5980 	if (IS_ERR(image_name))
5981 		image_name = NULL;
5982 	else
5983 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5984 out:
5985 	kfree(reply_buf);
5986 	kfree(image_id);
5987 
5988 	return image_name;
5989 }
5990 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5991 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5992 {
5993 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5994 	const char *snap_name;
5995 	u32 which = 0;
5996 
5997 	/* Skip over names until we find the one we are looking for */
5998 
5999 	snap_name = rbd_dev->header.snap_names;
6000 	while (which < snapc->num_snaps) {
6001 		if (!strcmp(name, snap_name))
6002 			return snapc->snaps[which];
6003 		snap_name += strlen(snap_name) + 1;
6004 		which++;
6005 	}
6006 	return CEPH_NOSNAP;
6007 }
6008 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6009 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6010 {
6011 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6012 	u32 which;
6013 	bool found = false;
6014 	u64 snap_id;
6015 
6016 	for (which = 0; !found && which < snapc->num_snaps; which++) {
6017 		const char *snap_name;
6018 
6019 		snap_id = snapc->snaps[which];
6020 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6021 		if (IS_ERR(snap_name)) {
6022 			/* ignore no-longer existing snapshots */
6023 			if (PTR_ERR(snap_name) == -ENOENT)
6024 				continue;
6025 			else
6026 				break;
6027 		}
6028 		found = !strcmp(name, snap_name);
6029 		kfree(snap_name);
6030 	}
6031 	return found ? snap_id : CEPH_NOSNAP;
6032 }
6033 
6034 /*
6035  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6036  * no snapshot by that name is found, or if an error occurs.
6037  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6038 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6039 {
6040 	if (rbd_dev->image_format == 1)
6041 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6042 
6043 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6044 }
6045 
6046 /*
6047  * An image being mapped will have everything but the snap id.
6048  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)6049 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6050 {
6051 	struct rbd_spec *spec = rbd_dev->spec;
6052 
6053 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6054 	rbd_assert(spec->image_id && spec->image_name);
6055 	rbd_assert(spec->snap_name);
6056 
6057 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6058 		u64 snap_id;
6059 
6060 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6061 		if (snap_id == CEPH_NOSNAP)
6062 			return -ENOENT;
6063 
6064 		spec->snap_id = snap_id;
6065 	} else {
6066 		spec->snap_id = CEPH_NOSNAP;
6067 	}
6068 
6069 	return 0;
6070 }
6071 
6072 /*
6073  * A parent image will have all ids but none of the names.
6074  *
6075  * All names in an rbd spec are dynamically allocated.  It's OK if we
6076  * can't figure out the name for an image id.
6077  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6078 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6079 {
6080 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6081 	struct rbd_spec *spec = rbd_dev->spec;
6082 	const char *pool_name;
6083 	const char *image_name;
6084 	const char *snap_name;
6085 	int ret;
6086 
6087 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6088 	rbd_assert(spec->image_id);
6089 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6090 
6091 	/* Get the pool name; we have to make our own copy of this */
6092 
6093 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6094 	if (!pool_name) {
6095 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6096 		return -EIO;
6097 	}
6098 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6099 	if (!pool_name)
6100 		return -ENOMEM;
6101 
6102 	/* Fetch the image name; tolerate failure here */
6103 
6104 	image_name = rbd_dev_image_name(rbd_dev);
6105 	if (!image_name)
6106 		rbd_warn(rbd_dev, "unable to get image name");
6107 
6108 	/* Fetch the snapshot name */
6109 
6110 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6111 	if (IS_ERR(snap_name)) {
6112 		ret = PTR_ERR(snap_name);
6113 		goto out_err;
6114 	}
6115 
6116 	spec->pool_name = pool_name;
6117 	spec->image_name = image_name;
6118 	spec->snap_name = snap_name;
6119 
6120 	return 0;
6121 
6122 out_err:
6123 	kfree(image_name);
6124 	kfree(pool_name);
6125 	return ret;
6126 }
6127 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6128 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6129 				   struct ceph_snap_context **psnapc)
6130 {
6131 	size_t size;
6132 	int ret;
6133 	void *reply_buf;
6134 	void *p;
6135 	void *end;
6136 	u64 seq;
6137 	u32 snap_count;
6138 	struct ceph_snap_context *snapc;
6139 	u32 i;
6140 
6141 	/*
6142 	 * We'll need room for the seq value (maximum snapshot id),
6143 	 * snapshot count, and array of that many snapshot ids.
6144 	 * For now we have a fixed upper limit on the number we're
6145 	 * prepared to receive.
6146 	 */
6147 	size = sizeof (__le64) + sizeof (__le32) +
6148 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6149 	reply_buf = kzalloc(size, GFP_KERNEL);
6150 	if (!reply_buf)
6151 		return -ENOMEM;
6152 
6153 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6154 				  &rbd_dev->header_oloc, "get_snapcontext",
6155 				  NULL, 0, reply_buf, size);
6156 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6157 	if (ret < 0)
6158 		goto out;
6159 
6160 	p = reply_buf;
6161 	end = reply_buf + ret;
6162 	ret = -ERANGE;
6163 	ceph_decode_64_safe(&p, end, seq, out);
6164 	ceph_decode_32_safe(&p, end, snap_count, out);
6165 
6166 	/*
6167 	 * Make sure the reported number of snapshot ids wouldn't go
6168 	 * beyond the end of our buffer.  But before checking that,
6169 	 * make sure the computed size of the snapshot context we
6170 	 * allocate is representable in a size_t.
6171 	 */
6172 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6173 				 / sizeof (u64)) {
6174 		ret = -EINVAL;
6175 		goto out;
6176 	}
6177 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6178 		goto out;
6179 	ret = 0;
6180 
6181 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6182 	if (!snapc) {
6183 		ret = -ENOMEM;
6184 		goto out;
6185 	}
6186 	snapc->seq = seq;
6187 	for (i = 0; i < snap_count; i++)
6188 		snapc->snaps[i] = ceph_decode_64(&p);
6189 
6190 	*psnapc = snapc;
6191 	dout("  snap context seq = %llu, snap_count = %u\n",
6192 		(unsigned long long)seq, (unsigned int)snap_count);
6193 out:
6194 	kfree(reply_buf);
6195 
6196 	return ret;
6197 }
6198 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6199 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6200 					u64 snap_id)
6201 {
6202 	size_t size;
6203 	void *reply_buf;
6204 	__le64 snapid;
6205 	int ret;
6206 	void *p;
6207 	void *end;
6208 	char *snap_name;
6209 
6210 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6211 	reply_buf = kmalloc(size, GFP_KERNEL);
6212 	if (!reply_buf)
6213 		return ERR_PTR(-ENOMEM);
6214 
6215 	snapid = cpu_to_le64(snap_id);
6216 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6217 				  &rbd_dev->header_oloc, "get_snapshot_name",
6218 				  &snapid, sizeof(snapid), reply_buf, size);
6219 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6220 	if (ret < 0) {
6221 		snap_name = ERR_PTR(ret);
6222 		goto out;
6223 	}
6224 
6225 	p = reply_buf;
6226 	end = reply_buf + ret;
6227 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6228 	if (IS_ERR(snap_name))
6229 		goto out;
6230 
6231 	dout("  snap_id 0x%016llx snap_name = %s\n",
6232 		(unsigned long long)snap_id, snap_name);
6233 out:
6234 	kfree(reply_buf);
6235 
6236 	return snap_name;
6237 }
6238 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6239 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6240 				  struct rbd_image_header *header,
6241 				  bool first_time)
6242 {
6243 	int ret;
6244 
6245 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6246 				    first_time ? &header->obj_order : NULL,
6247 				    &header->image_size);
6248 	if (ret)
6249 		return ret;
6250 
6251 	if (first_time) {
6252 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6253 		if (ret)
6254 			return ret;
6255 	}
6256 
6257 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6258 	if (ret)
6259 		return ret;
6260 
6261 	return 0;
6262 }
6263 
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6264 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6265 			       struct rbd_image_header *header,
6266 			       bool first_time)
6267 {
6268 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6269 	rbd_assert(!header->object_prefix && !header->snapc);
6270 
6271 	if (rbd_dev->image_format == 1)
6272 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6273 
6274 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6275 }
6276 
6277 /*
6278  * Skips over white space at *buf, and updates *buf to point to the
6279  * first found non-space character (if any). Returns the length of
6280  * the token (string of non-white space characters) found.  Note
6281  * that *buf must be terminated with '\0'.
6282  */
next_token(const char ** buf)6283 static inline size_t next_token(const char **buf)
6284 {
6285         /*
6286         * These are the characters that produce nonzero for
6287         * isspace() in the "C" and "POSIX" locales.
6288         */
6289         const char *spaces = " \f\n\r\t\v";
6290 
6291         *buf += strspn(*buf, spaces);	/* Find start of token */
6292 
6293 	return strcspn(*buf, spaces);   /* Return token length */
6294 }
6295 
6296 /*
6297  * Finds the next token in *buf, dynamically allocates a buffer big
6298  * enough to hold a copy of it, and copies the token into the new
6299  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6300  * that a duplicate buffer is created even for a zero-length token.
6301  *
6302  * Returns a pointer to the newly-allocated duplicate, or a null
6303  * pointer if memory for the duplicate was not available.  If
6304  * the lenp argument is a non-null pointer, the length of the token
6305  * (not including the '\0') is returned in *lenp.
6306  *
6307  * If successful, the *buf pointer will be updated to point beyond
6308  * the end of the found token.
6309  *
6310  * Note: uses GFP_KERNEL for allocation.
6311  */
dup_token(const char ** buf,size_t * lenp)6312 static inline char *dup_token(const char **buf, size_t *lenp)
6313 {
6314 	char *dup;
6315 	size_t len;
6316 
6317 	len = next_token(buf);
6318 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6319 	if (!dup)
6320 		return NULL;
6321 	*(dup + len) = '\0';
6322 	*buf += len;
6323 
6324 	if (lenp)
6325 		*lenp = len;
6326 
6327 	return dup;
6328 }
6329 
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6330 static int rbd_parse_param(struct fs_parameter *param,
6331 			    struct rbd_parse_opts_ctx *pctx)
6332 {
6333 	struct rbd_options *opt = pctx->opts;
6334 	struct fs_parse_result result;
6335 	struct p_log log = {.prefix = "rbd"};
6336 	int token, ret;
6337 
6338 	ret = ceph_parse_param(param, pctx->copts, NULL);
6339 	if (ret != -ENOPARAM)
6340 		return ret;
6341 
6342 	token = __fs_parse(&log, rbd_parameters, param, &result);
6343 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6344 	if (token < 0) {
6345 		if (token == -ENOPARAM)
6346 			return inval_plog(&log, "Unknown parameter '%s'",
6347 					  param->key);
6348 		return token;
6349 	}
6350 
6351 	switch (token) {
6352 	case Opt_queue_depth:
6353 		if (result.uint_32 < 1)
6354 			goto out_of_range;
6355 		opt->queue_depth = result.uint_32;
6356 		break;
6357 	case Opt_alloc_size:
6358 		if (result.uint_32 < SECTOR_SIZE)
6359 			goto out_of_range;
6360 		if (!is_power_of_2(result.uint_32))
6361 			return inval_plog(&log, "alloc_size must be a power of 2");
6362 		opt->alloc_size = result.uint_32;
6363 		break;
6364 	case Opt_lock_timeout:
6365 		/* 0 is "wait forever" (i.e. infinite timeout) */
6366 		if (result.uint_32 > INT_MAX / 1000)
6367 			goto out_of_range;
6368 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6369 		break;
6370 	case Opt_pool_ns:
6371 		kfree(pctx->spec->pool_ns);
6372 		pctx->spec->pool_ns = param->string;
6373 		param->string = NULL;
6374 		break;
6375 	case Opt_compression_hint:
6376 		switch (result.uint_32) {
6377 		case Opt_compression_hint_none:
6378 			opt->alloc_hint_flags &=
6379 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6380 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6381 			break;
6382 		case Opt_compression_hint_compressible:
6383 			opt->alloc_hint_flags |=
6384 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6385 			opt->alloc_hint_flags &=
6386 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6387 			break;
6388 		case Opt_compression_hint_incompressible:
6389 			opt->alloc_hint_flags |=
6390 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6391 			opt->alloc_hint_flags &=
6392 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6393 			break;
6394 		default:
6395 			BUG();
6396 		}
6397 		break;
6398 	case Opt_read_only:
6399 		opt->read_only = true;
6400 		break;
6401 	case Opt_read_write:
6402 		opt->read_only = false;
6403 		break;
6404 	case Opt_lock_on_read:
6405 		opt->lock_on_read = true;
6406 		break;
6407 	case Opt_exclusive:
6408 		opt->exclusive = true;
6409 		break;
6410 	case Opt_notrim:
6411 		opt->trim = false;
6412 		break;
6413 	default:
6414 		BUG();
6415 	}
6416 
6417 	return 0;
6418 
6419 out_of_range:
6420 	return inval_plog(&log, "%s out of range", param->key);
6421 }
6422 
6423 /*
6424  * This duplicates most of generic_parse_monolithic(), untying it from
6425  * fs_context and skipping standard superblock and security options.
6426  */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6427 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6428 {
6429 	char *key;
6430 	int ret = 0;
6431 
6432 	dout("%s '%s'\n", __func__, options);
6433 	while ((key = strsep(&options, ",")) != NULL) {
6434 		if (*key) {
6435 			struct fs_parameter param = {
6436 				.key	= key,
6437 				.type	= fs_value_is_flag,
6438 			};
6439 			char *value = strchr(key, '=');
6440 			size_t v_len = 0;
6441 
6442 			if (value) {
6443 				if (value == key)
6444 					continue;
6445 				*value++ = 0;
6446 				v_len = strlen(value);
6447 				param.string = kmemdup_nul(value, v_len,
6448 							   GFP_KERNEL);
6449 				if (!param.string)
6450 					return -ENOMEM;
6451 				param.type = fs_value_is_string;
6452 			}
6453 			param.size = v_len;
6454 
6455 			ret = rbd_parse_param(&param, pctx);
6456 			kfree(param.string);
6457 			if (ret)
6458 				break;
6459 		}
6460 	}
6461 
6462 	return ret;
6463 }
6464 
6465 /*
6466  * Parse the options provided for an "rbd add" (i.e., rbd image
6467  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6468  * and the data written is passed here via a NUL-terminated buffer.
6469  * Returns 0 if successful or an error code otherwise.
6470  *
6471  * The information extracted from these options is recorded in
6472  * the other parameters which return dynamically-allocated
6473  * structures:
6474  *  ceph_opts
6475  *      The address of a pointer that will refer to a ceph options
6476  *      structure.  Caller must release the returned pointer using
6477  *      ceph_destroy_options() when it is no longer needed.
6478  *  rbd_opts
6479  *	Address of an rbd options pointer.  Fully initialized by
6480  *	this function; caller must release with kfree().
6481  *  spec
6482  *	Address of an rbd image specification pointer.  Fully
6483  *	initialized by this function based on parsed options.
6484  *	Caller must release with rbd_spec_put().
6485  *
6486  * The options passed take this form:
6487  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6488  * where:
6489  *  <mon_addrs>
6490  *      A comma-separated list of one or more monitor addresses.
6491  *      A monitor address is an ip address, optionally followed
6492  *      by a port number (separated by a colon).
6493  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6494  *  <options>
6495  *      A comma-separated list of ceph and/or rbd options.
6496  *  <pool_name>
6497  *      The name of the rados pool containing the rbd image.
6498  *  <image_name>
6499  *      The name of the image in that pool to map.
6500  *  <snap_id>
6501  *      An optional snapshot id.  If provided, the mapping will
6502  *      present data from the image at the time that snapshot was
6503  *      created.  The image head is used if no snapshot id is
6504  *      provided.  Snapshot mappings are always read-only.
6505  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6506 static int rbd_add_parse_args(const char *buf,
6507 				struct ceph_options **ceph_opts,
6508 				struct rbd_options **opts,
6509 				struct rbd_spec **rbd_spec)
6510 {
6511 	size_t len;
6512 	char *options;
6513 	const char *mon_addrs;
6514 	char *snap_name;
6515 	size_t mon_addrs_size;
6516 	struct rbd_parse_opts_ctx pctx = { 0 };
6517 	int ret;
6518 
6519 	/* The first four tokens are required */
6520 
6521 	len = next_token(&buf);
6522 	if (!len) {
6523 		rbd_warn(NULL, "no monitor address(es) provided");
6524 		return -EINVAL;
6525 	}
6526 	mon_addrs = buf;
6527 	mon_addrs_size = len;
6528 	buf += len;
6529 
6530 	ret = -EINVAL;
6531 	options = dup_token(&buf, NULL);
6532 	if (!options)
6533 		return -ENOMEM;
6534 	if (!*options) {
6535 		rbd_warn(NULL, "no options provided");
6536 		goto out_err;
6537 	}
6538 
6539 	pctx.spec = rbd_spec_alloc();
6540 	if (!pctx.spec)
6541 		goto out_mem;
6542 
6543 	pctx.spec->pool_name = dup_token(&buf, NULL);
6544 	if (!pctx.spec->pool_name)
6545 		goto out_mem;
6546 	if (!*pctx.spec->pool_name) {
6547 		rbd_warn(NULL, "no pool name provided");
6548 		goto out_err;
6549 	}
6550 
6551 	pctx.spec->image_name = dup_token(&buf, NULL);
6552 	if (!pctx.spec->image_name)
6553 		goto out_mem;
6554 	if (!*pctx.spec->image_name) {
6555 		rbd_warn(NULL, "no image name provided");
6556 		goto out_err;
6557 	}
6558 
6559 	/*
6560 	 * Snapshot name is optional; default is to use "-"
6561 	 * (indicating the head/no snapshot).
6562 	 */
6563 	len = next_token(&buf);
6564 	if (!len) {
6565 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6566 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6567 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6568 		ret = -ENAMETOOLONG;
6569 		goto out_err;
6570 	}
6571 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6572 	if (!snap_name)
6573 		goto out_mem;
6574 	*(snap_name + len) = '\0';
6575 	pctx.spec->snap_name = snap_name;
6576 
6577 	pctx.copts = ceph_alloc_options();
6578 	if (!pctx.copts)
6579 		goto out_mem;
6580 
6581 	/* Initialize all rbd options to the defaults */
6582 
6583 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6584 	if (!pctx.opts)
6585 		goto out_mem;
6586 
6587 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6588 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6589 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6590 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6591 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6592 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6593 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6594 
6595 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6596 	if (ret)
6597 		goto out_err;
6598 
6599 	ret = rbd_parse_options(options, &pctx);
6600 	if (ret)
6601 		goto out_err;
6602 
6603 	*ceph_opts = pctx.copts;
6604 	*opts = pctx.opts;
6605 	*rbd_spec = pctx.spec;
6606 	kfree(options);
6607 	return 0;
6608 
6609 out_mem:
6610 	ret = -ENOMEM;
6611 out_err:
6612 	kfree(pctx.opts);
6613 	ceph_destroy_options(pctx.copts);
6614 	rbd_spec_put(pctx.spec);
6615 	kfree(options);
6616 	return ret;
6617 }
6618 
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6619 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6620 {
6621 	down_write(&rbd_dev->lock_rwsem);
6622 	if (__rbd_is_lock_owner(rbd_dev))
6623 		__rbd_release_lock(rbd_dev);
6624 	up_write(&rbd_dev->lock_rwsem);
6625 }
6626 
6627 /*
6628  * If the wait is interrupted, an error is returned even if the lock
6629  * was successfully acquired.  rbd_dev_image_unlock() will release it
6630  * if needed.
6631  */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6632 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6633 {
6634 	long ret;
6635 
6636 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6637 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6638 			return 0;
6639 
6640 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6641 		return -EINVAL;
6642 	}
6643 
6644 	if (rbd_is_ro(rbd_dev))
6645 		return 0;
6646 
6647 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6648 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6649 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6650 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6651 	if (ret > 0) {
6652 		ret = rbd_dev->acquire_err;
6653 	} else {
6654 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6655 		if (!ret)
6656 			ret = -ETIMEDOUT;
6657 
6658 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6659 	}
6660 	if (ret)
6661 		return ret;
6662 
6663 	/*
6664 	 * The lock may have been released by now, unless automatic lock
6665 	 * transitions are disabled.
6666 	 */
6667 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6668 	return 0;
6669 }
6670 
6671 /*
6672  * An rbd format 2 image has a unique identifier, distinct from the
6673  * name given to it by the user.  Internally, that identifier is
6674  * what's used to specify the names of objects related to the image.
6675  *
6676  * A special "rbd id" object is used to map an rbd image name to its
6677  * id.  If that object doesn't exist, then there is no v2 rbd image
6678  * with the supplied name.
6679  *
6680  * This function will record the given rbd_dev's image_id field if
6681  * it can be determined, and in that case will return 0.  If any
6682  * errors occur a negative errno will be returned and the rbd_dev's
6683  * image_id field will be unchanged (and should be NULL).
6684  */
rbd_dev_image_id(struct rbd_device * rbd_dev)6685 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6686 {
6687 	int ret;
6688 	size_t size;
6689 	CEPH_DEFINE_OID_ONSTACK(oid);
6690 	void *response;
6691 	char *image_id;
6692 
6693 	/*
6694 	 * When probing a parent image, the image id is already
6695 	 * known (and the image name likely is not).  There's no
6696 	 * need to fetch the image id again in this case.  We
6697 	 * do still need to set the image format though.
6698 	 */
6699 	if (rbd_dev->spec->image_id) {
6700 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6701 
6702 		return 0;
6703 	}
6704 
6705 	/*
6706 	 * First, see if the format 2 image id file exists, and if
6707 	 * so, get the image's persistent id from it.
6708 	 */
6709 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6710 			       rbd_dev->spec->image_name);
6711 	if (ret)
6712 		return ret;
6713 
6714 	dout("rbd id object name is %s\n", oid.name);
6715 
6716 	/* Response will be an encoded string, which includes a length */
6717 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6718 	response = kzalloc(size, GFP_NOIO);
6719 	if (!response) {
6720 		ret = -ENOMEM;
6721 		goto out;
6722 	}
6723 
6724 	/* If it doesn't exist we'll assume it's a format 1 image */
6725 
6726 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6727 				  "get_id", NULL, 0,
6728 				  response, size);
6729 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6730 	if (ret == -ENOENT) {
6731 		image_id = kstrdup("", GFP_KERNEL);
6732 		ret = image_id ? 0 : -ENOMEM;
6733 		if (!ret)
6734 			rbd_dev->image_format = 1;
6735 	} else if (ret >= 0) {
6736 		void *p = response;
6737 
6738 		image_id = ceph_extract_encoded_string(&p, p + ret,
6739 						NULL, GFP_NOIO);
6740 		ret = PTR_ERR_OR_ZERO(image_id);
6741 		if (!ret)
6742 			rbd_dev->image_format = 2;
6743 	}
6744 
6745 	if (!ret) {
6746 		rbd_dev->spec->image_id = image_id;
6747 		dout("image_id is %s\n", image_id);
6748 	}
6749 out:
6750 	kfree(response);
6751 	ceph_oid_destroy(&oid);
6752 	return ret;
6753 }
6754 
6755 /*
6756  * Undo whatever state changes are made by v1 or v2 header info
6757  * call.
6758  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6759 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6760 {
6761 	rbd_dev_parent_put(rbd_dev);
6762 	rbd_object_map_free(rbd_dev);
6763 	rbd_dev_mapping_clear(rbd_dev);
6764 
6765 	/* Free dynamic fields from the header, then zero it out */
6766 
6767 	rbd_image_header_cleanup(&rbd_dev->header);
6768 }
6769 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6770 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6771 				     struct rbd_image_header *header)
6772 {
6773 	int ret;
6774 
6775 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6776 	if (ret)
6777 		return ret;
6778 
6779 	/*
6780 	 * Get the and check features for the image.  Currently the
6781 	 * features are assumed to never change.
6782 	 */
6783 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6784 					rbd_is_ro(rbd_dev), &header->features);
6785 	if (ret)
6786 		return ret;
6787 
6788 	/* If the image supports fancy striping, get its parameters */
6789 
6790 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6791 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6792 					       &header->stripe_count);
6793 		if (ret)
6794 			return ret;
6795 	}
6796 
6797 	if (header->features & RBD_FEATURE_DATA_POOL) {
6798 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6799 		if (ret)
6800 			return ret;
6801 	}
6802 
6803 	return 0;
6804 }
6805 
6806 /*
6807  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6808  * rbd_dev_image_probe() recursion depth, which means it's also the
6809  * length of the already discovered part of the parent chain.
6810  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6811 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6812 {
6813 	struct rbd_device *parent = NULL;
6814 	int ret;
6815 
6816 	if (!rbd_dev->parent_spec)
6817 		return 0;
6818 
6819 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6820 		pr_info("parent chain is too long (%d)\n", depth);
6821 		ret = -EINVAL;
6822 		goto out_err;
6823 	}
6824 
6825 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6826 	if (!parent) {
6827 		ret = -ENOMEM;
6828 		goto out_err;
6829 	}
6830 
6831 	/*
6832 	 * Images related by parent/child relationships always share
6833 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6834 	 */
6835 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6836 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6837 
6838 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6839 
6840 	ret = rbd_dev_image_probe(parent, depth);
6841 	if (ret < 0)
6842 		goto out_err;
6843 
6844 	rbd_dev->parent = parent;
6845 	atomic_set(&rbd_dev->parent_ref, 1);
6846 	return 0;
6847 
6848 out_err:
6849 	rbd_dev_unparent(rbd_dev);
6850 	rbd_dev_destroy(parent);
6851 	return ret;
6852 }
6853 
rbd_dev_device_release(struct rbd_device * rbd_dev)6854 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6855 {
6856 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6857 	rbd_free_disk(rbd_dev);
6858 	if (!single_major)
6859 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6860 }
6861 
6862 /*
6863  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6864  * upon return.
6865  */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6866 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6867 {
6868 	int ret;
6869 
6870 	/* Record our major and minor device numbers. */
6871 
6872 	if (!single_major) {
6873 		ret = register_blkdev(0, rbd_dev->name);
6874 		if (ret < 0)
6875 			goto err_out_unlock;
6876 
6877 		rbd_dev->major = ret;
6878 		rbd_dev->minor = 0;
6879 	} else {
6880 		rbd_dev->major = rbd_major;
6881 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6882 	}
6883 
6884 	/* Set up the blkdev mapping. */
6885 
6886 	ret = rbd_init_disk(rbd_dev);
6887 	if (ret)
6888 		goto err_out_blkdev;
6889 
6890 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6891 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6892 
6893 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6894 	if (ret)
6895 		goto err_out_disk;
6896 
6897 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6898 	up_write(&rbd_dev->header_rwsem);
6899 	return 0;
6900 
6901 err_out_disk:
6902 	rbd_free_disk(rbd_dev);
6903 err_out_blkdev:
6904 	if (!single_major)
6905 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6906 err_out_unlock:
6907 	up_write(&rbd_dev->header_rwsem);
6908 	return ret;
6909 }
6910 
rbd_dev_header_name(struct rbd_device * rbd_dev)6911 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6912 {
6913 	struct rbd_spec *spec = rbd_dev->spec;
6914 	int ret;
6915 
6916 	/* Record the header object name for this rbd image. */
6917 
6918 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6919 	if (rbd_dev->image_format == 1)
6920 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6921 				       spec->image_name, RBD_SUFFIX);
6922 	else
6923 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6924 				       RBD_HEADER_PREFIX, spec->image_id);
6925 
6926 	return ret;
6927 }
6928 
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6929 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6930 {
6931 	if (!is_snap) {
6932 		pr_info("image %s/%s%s%s does not exist\n",
6933 			rbd_dev->spec->pool_name,
6934 			rbd_dev->spec->pool_ns ?: "",
6935 			rbd_dev->spec->pool_ns ? "/" : "",
6936 			rbd_dev->spec->image_name);
6937 	} else {
6938 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6939 			rbd_dev->spec->pool_name,
6940 			rbd_dev->spec->pool_ns ?: "",
6941 			rbd_dev->spec->pool_ns ? "/" : "",
6942 			rbd_dev->spec->image_name,
6943 			rbd_dev->spec->snap_name);
6944 	}
6945 }
6946 
rbd_dev_image_release(struct rbd_device * rbd_dev)6947 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6948 {
6949 	if (!rbd_is_ro(rbd_dev))
6950 		rbd_unregister_watch(rbd_dev);
6951 
6952 	rbd_dev_unprobe(rbd_dev);
6953 	rbd_dev->image_format = 0;
6954 	kfree(rbd_dev->spec->image_id);
6955 	rbd_dev->spec->image_id = NULL;
6956 }
6957 
6958 /*
6959  * Probe for the existence of the header object for the given rbd
6960  * device.  If this image is the one being mapped (i.e., not a
6961  * parent), initiate a watch on its header object before using that
6962  * object to get detailed information about the rbd image.
6963  *
6964  * On success, returns with header_rwsem held for write if called
6965  * with @depth == 0.
6966  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6967 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6968 {
6969 	bool need_watch = !rbd_is_ro(rbd_dev);
6970 	int ret;
6971 
6972 	/*
6973 	 * Get the id from the image id object.  Unless there's an
6974 	 * error, rbd_dev->spec->image_id will be filled in with
6975 	 * a dynamically-allocated string, and rbd_dev->image_format
6976 	 * will be set to either 1 or 2.
6977 	 */
6978 	ret = rbd_dev_image_id(rbd_dev);
6979 	if (ret)
6980 		return ret;
6981 
6982 	ret = rbd_dev_header_name(rbd_dev);
6983 	if (ret)
6984 		goto err_out_format;
6985 
6986 	if (need_watch) {
6987 		ret = rbd_register_watch(rbd_dev);
6988 		if (ret) {
6989 			if (ret == -ENOENT)
6990 				rbd_print_dne(rbd_dev, false);
6991 			goto err_out_format;
6992 		}
6993 	}
6994 
6995 	if (!depth)
6996 		down_write(&rbd_dev->header_rwsem);
6997 
6998 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6999 	if (ret) {
7000 		if (ret == -ENOENT && !need_watch)
7001 			rbd_print_dne(rbd_dev, false);
7002 		goto err_out_probe;
7003 	}
7004 
7005 	rbd_init_layout(rbd_dev);
7006 
7007 	/*
7008 	 * If this image is the one being mapped, we have pool name and
7009 	 * id, image name and id, and snap name - need to fill snap id.
7010 	 * Otherwise this is a parent image, identified by pool, image
7011 	 * and snap ids - need to fill in names for those ids.
7012 	 */
7013 	if (!depth)
7014 		ret = rbd_spec_fill_snap_id(rbd_dev);
7015 	else
7016 		ret = rbd_spec_fill_names(rbd_dev);
7017 	if (ret) {
7018 		if (ret == -ENOENT)
7019 			rbd_print_dne(rbd_dev, true);
7020 		goto err_out_probe;
7021 	}
7022 
7023 	ret = rbd_dev_mapping_set(rbd_dev);
7024 	if (ret)
7025 		goto err_out_probe;
7026 
7027 	if (rbd_is_snap(rbd_dev) &&
7028 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7029 		ret = rbd_object_map_load(rbd_dev);
7030 		if (ret)
7031 			goto err_out_probe;
7032 	}
7033 
7034 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7035 		ret = rbd_dev_setup_parent(rbd_dev);
7036 		if (ret)
7037 			goto err_out_probe;
7038 	}
7039 
7040 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7041 	if (ret)
7042 		goto err_out_probe;
7043 
7044 	dout("discovered format %u image, header name is %s\n",
7045 		rbd_dev->image_format, rbd_dev->header_oid.name);
7046 	return 0;
7047 
7048 err_out_probe:
7049 	if (!depth)
7050 		up_write(&rbd_dev->header_rwsem);
7051 	if (need_watch)
7052 		rbd_unregister_watch(rbd_dev);
7053 	rbd_dev_unprobe(rbd_dev);
7054 err_out_format:
7055 	rbd_dev->image_format = 0;
7056 	kfree(rbd_dev->spec->image_id);
7057 	rbd_dev->spec->image_id = NULL;
7058 	return ret;
7059 }
7060 
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)7061 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
7062 				  struct rbd_image_header *header)
7063 {
7064 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
7065 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
7066 
7067 	if (rbd_dev->header.image_size != header->image_size) {
7068 		rbd_dev->header.image_size = header->image_size;
7069 
7070 		if (!rbd_is_snap(rbd_dev)) {
7071 			rbd_dev->mapping.size = header->image_size;
7072 			rbd_dev_update_size(rbd_dev);
7073 		}
7074 	}
7075 
7076 	ceph_put_snap_context(rbd_dev->header.snapc);
7077 	rbd_dev->header.snapc = header->snapc;
7078 	header->snapc = NULL;
7079 
7080 	if (rbd_dev->image_format == 1) {
7081 		kfree(rbd_dev->header.snap_names);
7082 		rbd_dev->header.snap_names = header->snap_names;
7083 		header->snap_names = NULL;
7084 
7085 		kfree(rbd_dev->header.snap_sizes);
7086 		rbd_dev->header.snap_sizes = header->snap_sizes;
7087 		header->snap_sizes = NULL;
7088 	}
7089 }
7090 
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7091 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7092 				  struct parent_image_info *pii)
7093 {
7094 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7095 		/*
7096 		 * Either the parent never existed, or we have
7097 		 * record of it but the image got flattened so it no
7098 		 * longer has a parent.  When the parent of a
7099 		 * layered image disappears we immediately set the
7100 		 * overlap to 0.  The effect of this is that all new
7101 		 * requests will be treated as if the image had no
7102 		 * parent.
7103 		 *
7104 		 * If !pii.has_overlap, the parent image spec is not
7105 		 * applicable.  It's there to avoid duplication in each
7106 		 * snapshot record.
7107 		 */
7108 		if (rbd_dev->parent_overlap) {
7109 			rbd_dev->parent_overlap = 0;
7110 			rbd_dev_parent_put(rbd_dev);
7111 			pr_info("%s: clone has been flattened\n",
7112 				rbd_dev->disk->disk_name);
7113 		}
7114 	} else {
7115 		rbd_assert(rbd_dev->parent_spec);
7116 
7117 		/*
7118 		 * Update the parent overlap.  If it became zero, issue
7119 		 * a warning as we will proceed as if there is no parent.
7120 		 */
7121 		if (!pii->overlap && rbd_dev->parent_overlap)
7122 			rbd_warn(rbd_dev,
7123 				 "clone has become standalone (overlap 0)");
7124 		rbd_dev->parent_overlap = pii->overlap;
7125 	}
7126 }
7127 
rbd_dev_refresh(struct rbd_device * rbd_dev)7128 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7129 {
7130 	struct rbd_image_header	header = { 0 };
7131 	struct parent_image_info pii = { 0 };
7132 	int ret;
7133 
7134 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7135 
7136 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7137 	if (ret)
7138 		goto out;
7139 
7140 	/*
7141 	 * If there is a parent, see if it has disappeared due to the
7142 	 * mapped image getting flattened.
7143 	 */
7144 	if (rbd_dev->parent) {
7145 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7146 		if (ret)
7147 			goto out;
7148 	}
7149 
7150 	down_write(&rbd_dev->header_rwsem);
7151 	rbd_dev_update_header(rbd_dev, &header);
7152 	if (rbd_dev->parent)
7153 		rbd_dev_update_parent(rbd_dev, &pii);
7154 	up_write(&rbd_dev->header_rwsem);
7155 
7156 out:
7157 	rbd_parent_info_cleanup(&pii);
7158 	rbd_image_header_cleanup(&header);
7159 	return ret;
7160 }
7161 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7162 static ssize_t do_rbd_add(struct bus_type *bus,
7163 			  const char *buf,
7164 			  size_t count)
7165 {
7166 	struct rbd_device *rbd_dev = NULL;
7167 	struct ceph_options *ceph_opts = NULL;
7168 	struct rbd_options *rbd_opts = NULL;
7169 	struct rbd_spec *spec = NULL;
7170 	struct rbd_client *rbdc;
7171 	int rc;
7172 
7173 	if (!capable(CAP_SYS_ADMIN))
7174 		return -EPERM;
7175 
7176 	if (!try_module_get(THIS_MODULE))
7177 		return -ENODEV;
7178 
7179 	/* parse add command */
7180 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7181 	if (rc < 0)
7182 		goto out;
7183 
7184 	rbdc = rbd_get_client(ceph_opts);
7185 	if (IS_ERR(rbdc)) {
7186 		rc = PTR_ERR(rbdc);
7187 		goto err_out_args;
7188 	}
7189 
7190 	/* pick the pool */
7191 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7192 	if (rc < 0) {
7193 		if (rc == -ENOENT)
7194 			pr_info("pool %s does not exist\n", spec->pool_name);
7195 		goto err_out_client;
7196 	}
7197 	spec->pool_id = (u64)rc;
7198 
7199 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7200 	if (!rbd_dev) {
7201 		rc = -ENOMEM;
7202 		goto err_out_client;
7203 	}
7204 	rbdc = NULL;		/* rbd_dev now owns this */
7205 	spec = NULL;		/* rbd_dev now owns this */
7206 	rbd_opts = NULL;	/* rbd_dev now owns this */
7207 
7208 	/* if we are mapping a snapshot it will be a read-only mapping */
7209 	if (rbd_dev->opts->read_only ||
7210 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7211 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7212 
7213 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7214 	if (!rbd_dev->config_info) {
7215 		rc = -ENOMEM;
7216 		goto err_out_rbd_dev;
7217 	}
7218 
7219 	rc = rbd_dev_image_probe(rbd_dev, 0);
7220 	if (rc < 0)
7221 		goto err_out_rbd_dev;
7222 
7223 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7224 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7225 			 rbd_dev->layout.object_size);
7226 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7227 	}
7228 
7229 	rc = rbd_dev_device_setup(rbd_dev);
7230 	if (rc)
7231 		goto err_out_image_probe;
7232 
7233 	rc = rbd_add_acquire_lock(rbd_dev);
7234 	if (rc)
7235 		goto err_out_image_lock;
7236 
7237 	/* Everything's ready.  Announce the disk to the world. */
7238 
7239 	rc = device_add(&rbd_dev->dev);
7240 	if (rc)
7241 		goto err_out_image_lock;
7242 
7243 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7244 	/* see rbd_init_disk() */
7245 	blk_put_queue(rbd_dev->disk->queue);
7246 
7247 	spin_lock(&rbd_dev_list_lock);
7248 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7249 	spin_unlock(&rbd_dev_list_lock);
7250 
7251 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7252 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7253 		rbd_dev->header.features);
7254 	rc = count;
7255 out:
7256 	module_put(THIS_MODULE);
7257 	return rc;
7258 
7259 err_out_image_lock:
7260 	rbd_dev_image_unlock(rbd_dev);
7261 	rbd_dev_device_release(rbd_dev);
7262 err_out_image_probe:
7263 	rbd_dev_image_release(rbd_dev);
7264 err_out_rbd_dev:
7265 	rbd_dev_destroy(rbd_dev);
7266 err_out_client:
7267 	rbd_put_client(rbdc);
7268 err_out_args:
7269 	rbd_spec_put(spec);
7270 	kfree(rbd_opts);
7271 	goto out;
7272 }
7273 
add_store(struct bus_type * bus,const char * buf,size_t count)7274 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7275 {
7276 	if (single_major)
7277 		return -EINVAL;
7278 
7279 	return do_rbd_add(bus, buf, count);
7280 }
7281 
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7282 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7283 				      size_t count)
7284 {
7285 	return do_rbd_add(bus, buf, count);
7286 }
7287 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7288 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7289 {
7290 	while (rbd_dev->parent) {
7291 		struct rbd_device *first = rbd_dev;
7292 		struct rbd_device *second = first->parent;
7293 		struct rbd_device *third;
7294 
7295 		/*
7296 		 * Follow to the parent with no grandparent and
7297 		 * remove it.
7298 		 */
7299 		while (second && (third = second->parent)) {
7300 			first = second;
7301 			second = third;
7302 		}
7303 		rbd_assert(second);
7304 		rbd_dev_image_release(second);
7305 		rbd_dev_destroy(second);
7306 		first->parent = NULL;
7307 		first->parent_overlap = 0;
7308 
7309 		rbd_assert(first->parent_spec);
7310 		rbd_spec_put(first->parent_spec);
7311 		first->parent_spec = NULL;
7312 	}
7313 }
7314 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7315 static ssize_t do_rbd_remove(struct bus_type *bus,
7316 			     const char *buf,
7317 			     size_t count)
7318 {
7319 	struct rbd_device *rbd_dev = NULL;
7320 	struct list_head *tmp;
7321 	int dev_id;
7322 	char opt_buf[6];
7323 	bool force = false;
7324 	int ret;
7325 
7326 	if (!capable(CAP_SYS_ADMIN))
7327 		return -EPERM;
7328 
7329 	dev_id = -1;
7330 	opt_buf[0] = '\0';
7331 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7332 	if (dev_id < 0) {
7333 		pr_err("dev_id out of range\n");
7334 		return -EINVAL;
7335 	}
7336 	if (opt_buf[0] != '\0') {
7337 		if (!strcmp(opt_buf, "force")) {
7338 			force = true;
7339 		} else {
7340 			pr_err("bad remove option at '%s'\n", opt_buf);
7341 			return -EINVAL;
7342 		}
7343 	}
7344 
7345 	ret = -ENOENT;
7346 	spin_lock(&rbd_dev_list_lock);
7347 	list_for_each(tmp, &rbd_dev_list) {
7348 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7349 		if (rbd_dev->dev_id == dev_id) {
7350 			ret = 0;
7351 			break;
7352 		}
7353 	}
7354 	if (!ret) {
7355 		spin_lock_irq(&rbd_dev->lock);
7356 		if (rbd_dev->open_count && !force)
7357 			ret = -EBUSY;
7358 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7359 					  &rbd_dev->flags))
7360 			ret = -EINPROGRESS;
7361 		spin_unlock_irq(&rbd_dev->lock);
7362 	}
7363 	spin_unlock(&rbd_dev_list_lock);
7364 	if (ret)
7365 		return ret;
7366 
7367 	if (force) {
7368 		/*
7369 		 * Prevent new IO from being queued and wait for existing
7370 		 * IO to complete/fail.
7371 		 */
7372 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7373 		blk_set_queue_dying(rbd_dev->disk->queue);
7374 	}
7375 
7376 	del_gendisk(rbd_dev->disk);
7377 	spin_lock(&rbd_dev_list_lock);
7378 	list_del_init(&rbd_dev->node);
7379 	spin_unlock(&rbd_dev_list_lock);
7380 	device_del(&rbd_dev->dev);
7381 
7382 	rbd_dev_image_unlock(rbd_dev);
7383 	rbd_dev_device_release(rbd_dev);
7384 	rbd_dev_image_release(rbd_dev);
7385 	rbd_dev_destroy(rbd_dev);
7386 	return count;
7387 }
7388 
remove_store(struct bus_type * bus,const char * buf,size_t count)7389 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7390 {
7391 	if (single_major)
7392 		return -EINVAL;
7393 
7394 	return do_rbd_remove(bus, buf, count);
7395 }
7396 
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7397 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7398 					 size_t count)
7399 {
7400 	return do_rbd_remove(bus, buf, count);
7401 }
7402 
7403 /*
7404  * create control files in sysfs
7405  * /sys/bus/rbd/...
7406  */
rbd_sysfs_init(void)7407 static int __init rbd_sysfs_init(void)
7408 {
7409 	int ret;
7410 
7411 	ret = device_register(&rbd_root_dev);
7412 	if (ret < 0)
7413 		return ret;
7414 
7415 	ret = bus_register(&rbd_bus_type);
7416 	if (ret < 0)
7417 		device_unregister(&rbd_root_dev);
7418 
7419 	return ret;
7420 }
7421 
rbd_sysfs_cleanup(void)7422 static void __exit rbd_sysfs_cleanup(void)
7423 {
7424 	bus_unregister(&rbd_bus_type);
7425 	device_unregister(&rbd_root_dev);
7426 }
7427 
rbd_slab_init(void)7428 static int __init rbd_slab_init(void)
7429 {
7430 	rbd_assert(!rbd_img_request_cache);
7431 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7432 	if (!rbd_img_request_cache)
7433 		return -ENOMEM;
7434 
7435 	rbd_assert(!rbd_obj_request_cache);
7436 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7437 	if (!rbd_obj_request_cache)
7438 		goto out_err;
7439 
7440 	return 0;
7441 
7442 out_err:
7443 	kmem_cache_destroy(rbd_img_request_cache);
7444 	rbd_img_request_cache = NULL;
7445 	return -ENOMEM;
7446 }
7447 
rbd_slab_exit(void)7448 static void rbd_slab_exit(void)
7449 {
7450 	rbd_assert(rbd_obj_request_cache);
7451 	kmem_cache_destroy(rbd_obj_request_cache);
7452 	rbd_obj_request_cache = NULL;
7453 
7454 	rbd_assert(rbd_img_request_cache);
7455 	kmem_cache_destroy(rbd_img_request_cache);
7456 	rbd_img_request_cache = NULL;
7457 }
7458 
rbd_init(void)7459 static int __init rbd_init(void)
7460 {
7461 	int rc;
7462 
7463 	if (!libceph_compatible(NULL)) {
7464 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7465 		return -EINVAL;
7466 	}
7467 
7468 	rc = rbd_slab_init();
7469 	if (rc)
7470 		return rc;
7471 
7472 	/*
7473 	 * The number of active work items is limited by the number of
7474 	 * rbd devices * queue depth, so leave @max_active at default.
7475 	 */
7476 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7477 	if (!rbd_wq) {
7478 		rc = -ENOMEM;
7479 		goto err_out_slab;
7480 	}
7481 
7482 	if (single_major) {
7483 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7484 		if (rbd_major < 0) {
7485 			rc = rbd_major;
7486 			goto err_out_wq;
7487 		}
7488 	}
7489 
7490 	rc = rbd_sysfs_init();
7491 	if (rc)
7492 		goto err_out_blkdev;
7493 
7494 	if (single_major)
7495 		pr_info("loaded (major %d)\n", rbd_major);
7496 	else
7497 		pr_info("loaded\n");
7498 
7499 	return 0;
7500 
7501 err_out_blkdev:
7502 	if (single_major)
7503 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7504 err_out_wq:
7505 	destroy_workqueue(rbd_wq);
7506 err_out_slab:
7507 	rbd_slab_exit();
7508 	return rc;
7509 }
7510 
rbd_exit(void)7511 static void __exit rbd_exit(void)
7512 {
7513 	ida_destroy(&rbd_dev_id_ida);
7514 	rbd_sysfs_cleanup();
7515 	if (single_major)
7516 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7517 	destroy_workqueue(rbd_wq);
7518 	rbd_slab_exit();
7519 }
7520 
7521 module_init(rbd_init);
7522 module_exit(rbd_exit);
7523 
7524 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7525 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7526 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7527 /* following authorship retained from original osdblk.c */
7528 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7529 
7530 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7531 MODULE_LICENSE("GPL");
7532