1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_ddi.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_fifo_underrun.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdmi.h"
58 #include "intel_hotplug.h"
59 #include "intel_lspcon.h"
60 #include "intel_lvds.h"
61 #include "intel_panel.h"
62 #include "intel_psr.h"
63 #include "intel_sideband.h"
64 #include "intel_tc.h"
65 #include "intel_vdsc.h"
66
67 #define DP_DPRX_ESI_LEN 14
68
69 /* DP DSC throughput values used for slice count calculations KPixels/s */
70 #define DP_DSC_PEAK_PIXEL_RATE 2720000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
73
74 /* DP DSC FEC Overhead factor = 1/(0.972261) */
75 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
76
77 /* Compliance test status bits */
78 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
79 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82
83 struct dp_link_dpll {
84 int clock;
85 struct dpll dpll;
86 };
87
88 static const struct dp_link_dpll g4x_dpll[] = {
89 { 162000,
90 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91 { 270000,
92 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
93 };
94
95 static const struct dp_link_dpll pch_dpll[] = {
96 { 162000,
97 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98 { 270000,
99 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
100 };
101
102 static const struct dp_link_dpll vlv_dpll[] = {
103 { 162000,
104 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105 { 270000,
106 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
107 };
108
109 /*
110 * CHV supports eDP 1.4 that have more link rates.
111 * Below only provides the fixed rate but exclude variable rate.
112 */
113 static const struct dp_link_dpll chv_dpll[] = {
114 /*
115 * CHV requires to program fractional division for m2.
116 * m2 is stored in fixed point format using formula below
117 * (m2_int << 22) | m2_fraction
118 */
119 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
120 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121 { 270000, /* m2_int = 27, m2_fraction = 0 */
122 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
123 };
124
125 /* Constants for DP DSC configurations */
126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
127
128 /* With Single pipe configuration, HW is capable of supporting maximum
129 * of 4 slices per line.
130 */
131 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
132
133 /**
134 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135 * @intel_dp: DP struct
136 *
137 * If a CPU or PCH DP output is attached to an eDP panel, this function
138 * will return true, and false otherwise.
139 */
intel_dp_is_edp(struct intel_dp * intel_dp)140 bool intel_dp_is_edp(struct intel_dp *intel_dp)
141 {
142 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
143
144 return dig_port->base.type == INTEL_OUTPUT_EDP;
145 }
146
147 static void intel_dp_link_down(struct intel_encoder *encoder,
148 const struct intel_crtc_state *old_crtc_state);
149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
152 const struct intel_crtc_state *crtc_state);
153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
154 enum pipe pipe);
155 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
156
intel_dp_set_default_sink_rates(struct intel_dp * intel_dp)157 static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp)
158 {
159 intel_dp->sink_rates[0] = 162000;
160 intel_dp->num_sink_rates = 1;
161 }
162
163 /* update sink rates from dpcd */
intel_dp_set_sink_rates(struct intel_dp * intel_dp)164 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
165 {
166 static const int dp_rates[] = {
167 162000, 270000, 540000, 810000
168 };
169 int i, max_rate;
170
171 if (drm_dp_has_quirk(&intel_dp->desc, 0,
172 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
173 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
174 static const int quirk_rates[] = { 162000, 270000, 324000 };
175
176 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
177 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
178
179 return;
180 }
181
182 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
183
184 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
185 if (dp_rates[i] > max_rate)
186 break;
187 intel_dp->sink_rates[i] = dp_rates[i];
188 }
189
190 intel_dp->num_sink_rates = i;
191 }
192
193 /* Get length of rates array potentially limited by max_rate. */
intel_dp_rate_limit_len(const int * rates,int len,int max_rate)194 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
195 {
196 int i;
197
198 /* Limit results by potentially reduced max rate */
199 for (i = 0; i < len; i++) {
200 if (rates[len - i - 1] <= max_rate)
201 return len - i;
202 }
203
204 return 0;
205 }
206
207 /* Get length of common rates array potentially limited by max_rate. */
intel_dp_common_len_rate_limit(const struct intel_dp * intel_dp,int max_rate)208 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
209 int max_rate)
210 {
211 return intel_dp_rate_limit_len(intel_dp->common_rates,
212 intel_dp->num_common_rates, max_rate);
213 }
214
215 /* Theoretical max between source and sink */
intel_dp_max_common_rate(struct intel_dp * intel_dp)216 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
217 {
218 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
219 }
220
221 /* Theoretical max between source and sink */
intel_dp_max_common_lane_count(struct intel_dp * intel_dp)222 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
223 {
224 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
225 int source_max = dig_port->max_lanes;
226 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
227 int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
228
229 return min3(source_max, sink_max, fia_max);
230 }
231
intel_dp_max_lane_count(struct intel_dp * intel_dp)232 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
233 {
234 return intel_dp->max_link_lane_count;
235 }
236
237 int
intel_dp_link_required(int pixel_clock,int bpp)238 intel_dp_link_required(int pixel_clock, int bpp)
239 {
240 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
241 return DIV_ROUND_UP(pixel_clock * bpp, 8);
242 }
243
244 int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)245 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
246 {
247 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
248 * link rate that is generally expressed in Gbps. Since, 8 bits of data
249 * is transmitted every LS_Clk per lane, there is no need to account for
250 * the channel encoding that is done in the PHY layer here.
251 */
252
253 return max_link_clock * max_lanes;
254 }
255
cnl_max_source_rate(struct intel_dp * intel_dp)256 static int cnl_max_source_rate(struct intel_dp *intel_dp)
257 {
258 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
259 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
260 enum port port = dig_port->base.port;
261
262 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
263
264 /* Low voltage SKUs are limited to max of 5.4G */
265 if (voltage == VOLTAGE_INFO_0_85V)
266 return 540000;
267
268 /* For this SKU 8.1G is supported in all ports */
269 if (IS_CNL_WITH_PORT_F(dev_priv))
270 return 810000;
271
272 /* For other SKUs, max rate on ports A and D is 5.4G */
273 if (port == PORT_A || port == PORT_D)
274 return 540000;
275
276 return 810000;
277 }
278
icl_max_source_rate(struct intel_dp * intel_dp)279 static int icl_max_source_rate(struct intel_dp *intel_dp)
280 {
281 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
282 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
283 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
284
285 if (intel_phy_is_combo(dev_priv, phy) &&
286 !IS_ELKHARTLAKE(dev_priv) &&
287 !intel_dp_is_edp(intel_dp))
288 return 540000;
289
290 return 810000;
291 }
292
293 static void
intel_dp_set_source_rates(struct intel_dp * intel_dp)294 intel_dp_set_source_rates(struct intel_dp *intel_dp)
295 {
296 /* The values must be in increasing order */
297 static const int cnl_rates[] = {
298 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
299 };
300 static const int bxt_rates[] = {
301 162000, 216000, 243000, 270000, 324000, 432000, 540000
302 };
303 static const int skl_rates[] = {
304 162000, 216000, 270000, 324000, 432000, 540000
305 };
306 static const int hsw_rates[] = {
307 162000, 270000, 540000
308 };
309 static const int g4x_rates[] = {
310 162000, 270000
311 };
312 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &dig_port->base;
314 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
315 const int *source_rates;
316 int size, max_rate = 0, vbt_max_rate;
317
318 /* This should only be done once */
319 drm_WARN_ON(&dev_priv->drm,
320 intel_dp->source_rates || intel_dp->num_source_rates);
321
322 if (INTEL_GEN(dev_priv) >= 10) {
323 source_rates = cnl_rates;
324 size = ARRAY_SIZE(cnl_rates);
325 if (IS_GEN(dev_priv, 10))
326 max_rate = cnl_max_source_rate(intel_dp);
327 else
328 max_rate = icl_max_source_rate(intel_dp);
329 } else if (IS_GEN9_LP(dev_priv)) {
330 source_rates = bxt_rates;
331 size = ARRAY_SIZE(bxt_rates);
332 } else if (IS_GEN9_BC(dev_priv)) {
333 source_rates = skl_rates;
334 size = ARRAY_SIZE(skl_rates);
335 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
336 IS_BROADWELL(dev_priv)) {
337 source_rates = hsw_rates;
338 size = ARRAY_SIZE(hsw_rates);
339 } else {
340 source_rates = g4x_rates;
341 size = ARRAY_SIZE(g4x_rates);
342 }
343
344 vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
345 if (max_rate && vbt_max_rate)
346 max_rate = min(max_rate, vbt_max_rate);
347 else if (vbt_max_rate)
348 max_rate = vbt_max_rate;
349
350 if (max_rate)
351 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
352
353 intel_dp->source_rates = source_rates;
354 intel_dp->num_source_rates = size;
355 }
356
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)357 static int intersect_rates(const int *source_rates, int source_len,
358 const int *sink_rates, int sink_len,
359 int *common_rates)
360 {
361 int i = 0, j = 0, k = 0;
362
363 while (i < source_len && j < sink_len) {
364 if (source_rates[i] == sink_rates[j]) {
365 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
366 return k;
367 common_rates[k] = source_rates[i];
368 ++k;
369 ++i;
370 ++j;
371 } else if (source_rates[i] < sink_rates[j]) {
372 ++i;
373 } else {
374 ++j;
375 }
376 }
377 return k;
378 }
379
380 /* return index of rate in rates array, or -1 if not found */
intel_dp_rate_index(const int * rates,int len,int rate)381 static int intel_dp_rate_index(const int *rates, int len, int rate)
382 {
383 int i;
384
385 for (i = 0; i < len; i++)
386 if (rate == rates[i])
387 return i;
388
389 return -1;
390 }
391
intel_dp_set_common_rates(struct intel_dp * intel_dp)392 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
393 {
394 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
395
396 drm_WARN_ON(&i915->drm,
397 !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
398
399 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
400 intel_dp->num_source_rates,
401 intel_dp->sink_rates,
402 intel_dp->num_sink_rates,
403 intel_dp->common_rates);
404
405 /* Paranoia, there should always be something in common. */
406 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
407 intel_dp->common_rates[0] = 162000;
408 intel_dp->num_common_rates = 1;
409 }
410 }
411
intel_dp_link_params_valid(struct intel_dp * intel_dp,int link_rate,u8 lane_count)412 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
413 u8 lane_count)
414 {
415 /*
416 * FIXME: we need to synchronize the current link parameters with
417 * hardware readout. Currently fast link training doesn't work on
418 * boot-up.
419 */
420 if (link_rate == 0 ||
421 link_rate > intel_dp->max_link_rate)
422 return false;
423
424 if (lane_count == 0 ||
425 lane_count > intel_dp_max_lane_count(intel_dp))
426 return false;
427
428 return true;
429 }
430
intel_dp_can_link_train_fallback_for_edp(struct intel_dp * intel_dp,int link_rate,u8 lane_count)431 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
432 int link_rate,
433 u8 lane_count)
434 {
435 const struct drm_display_mode *fixed_mode =
436 intel_dp->attached_connector->panel.fixed_mode;
437 int mode_rate, max_rate;
438
439 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
440 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
441 if (mode_rate > max_rate)
442 return false;
443
444 return true;
445 }
446
intel_dp_get_link_train_fallback_values(struct intel_dp * intel_dp,int link_rate,u8 lane_count)447 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
448 int link_rate, u8 lane_count)
449 {
450 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
451 int index;
452
453 /*
454 * TODO: Enable fallback on MST links once MST link compute can handle
455 * the fallback params.
456 */
457 if (intel_dp->is_mst) {
458 drm_err(&i915->drm, "Link Training Unsuccessful\n");
459 return -1;
460 }
461
462 index = intel_dp_rate_index(intel_dp->common_rates,
463 intel_dp->num_common_rates,
464 link_rate);
465 if (index > 0) {
466 if (intel_dp_is_edp(intel_dp) &&
467 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
468 intel_dp->common_rates[index - 1],
469 lane_count)) {
470 drm_dbg_kms(&i915->drm,
471 "Retrying Link training for eDP with same parameters\n");
472 return 0;
473 }
474 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
475 intel_dp->max_link_lane_count = lane_count;
476 } else if (lane_count > 1) {
477 if (intel_dp_is_edp(intel_dp) &&
478 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
479 intel_dp_max_common_rate(intel_dp),
480 lane_count >> 1)) {
481 drm_dbg_kms(&i915->drm,
482 "Retrying Link training for eDP with same parameters\n");
483 return 0;
484 }
485 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
486 intel_dp->max_link_lane_count = lane_count >> 1;
487 } else {
488 drm_err(&i915->drm, "Link Training Unsuccessful\n");
489 return -1;
490 }
491
492 return 0;
493 }
494
intel_dp_mode_to_fec_clock(u32 mode_clock)495 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
496 {
497 return div_u64(mul_u32_u32(mode_clock, 1000000U),
498 DP_DSC_FEC_OVERHEAD_FACTOR);
499 }
500
501 static int
small_joiner_ram_size_bits(struct drm_i915_private * i915)502 small_joiner_ram_size_bits(struct drm_i915_private *i915)
503 {
504 if (INTEL_GEN(i915) >= 11)
505 return 7680 * 8;
506 else
507 return 6144 * 8;
508 }
509
intel_dp_dsc_get_output_bpp(struct drm_i915_private * i915,u32 link_clock,u32 lane_count,u32 mode_clock,u32 mode_hdisplay)510 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
511 u32 link_clock, u32 lane_count,
512 u32 mode_clock, u32 mode_hdisplay)
513 {
514 u32 bits_per_pixel, max_bpp_small_joiner_ram;
515 int i;
516
517 /*
518 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
519 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
520 * for SST -> TimeSlotsPerMTP is 1,
521 * for MST -> TimeSlotsPerMTP has to be calculated
522 */
523 bits_per_pixel = (link_clock * lane_count * 8) /
524 intel_dp_mode_to_fec_clock(mode_clock);
525 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
526
527 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
528 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
529 mode_hdisplay;
530 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
531 max_bpp_small_joiner_ram);
532
533 /*
534 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
535 * check, output bpp from small joiner RAM check)
536 */
537 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
538
539 /* Error out if the max bpp is less than smallest allowed valid bpp */
540 if (bits_per_pixel < valid_dsc_bpp[0]) {
541 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
542 bits_per_pixel, valid_dsc_bpp[0]);
543 return 0;
544 }
545
546 /* Find the nearest match in the array of known BPPs from VESA */
547 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
548 if (bits_per_pixel < valid_dsc_bpp[i + 1])
549 break;
550 }
551 bits_per_pixel = valid_dsc_bpp[i];
552
553 /*
554 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
555 * fractional part is 0
556 */
557 return bits_per_pixel << 4;
558 }
559
intel_dp_dsc_get_slice_count(struct intel_dp * intel_dp,int mode_clock,int mode_hdisplay)560 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
561 int mode_clock, int mode_hdisplay)
562 {
563 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
564 u8 min_slice_count, i;
565 int max_slice_width;
566
567 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
568 min_slice_count = DIV_ROUND_UP(mode_clock,
569 DP_DSC_MAX_ENC_THROUGHPUT_0);
570 else
571 min_slice_count = DIV_ROUND_UP(mode_clock,
572 DP_DSC_MAX_ENC_THROUGHPUT_1);
573
574 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
575 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
576 drm_dbg_kms(&i915->drm,
577 "Unsupported slice width %d by DP DSC Sink device\n",
578 max_slice_width);
579 return 0;
580 }
581 /* Also take into account max slice width */
582 min_slice_count = max_t(u8, min_slice_count,
583 DIV_ROUND_UP(mode_hdisplay,
584 max_slice_width));
585
586 /* Find the closest match to the valid slice count values */
587 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
588 if (valid_dsc_slicecount[i] >
589 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
590 false))
591 break;
592 if (min_slice_count <= valid_dsc_slicecount[i])
593 return valid_dsc_slicecount[i];
594 }
595
596 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
597 min_slice_count);
598 return 0;
599 }
600
intel_dp_hdisplay_bad(struct drm_i915_private * dev_priv,int hdisplay)601 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
602 int hdisplay)
603 {
604 /*
605 * Older platforms don't like hdisplay==4096 with DP.
606 *
607 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
608 * and frame counter increment), but we don't get vblank interrupts,
609 * and the pipe underruns immediately. The link also doesn't seem
610 * to get trained properly.
611 *
612 * On CHV the vblank interrupts don't seem to disappear but
613 * otherwise the symptoms are similar.
614 *
615 * TODO: confirm the behaviour on HSW+
616 */
617 return hdisplay == 4096 && !HAS_DDI(dev_priv);
618 }
619
620 static enum drm_mode_status
intel_dp_mode_valid_downstream(struct intel_connector * connector,const struct drm_display_mode * mode,int target_clock)621 intel_dp_mode_valid_downstream(struct intel_connector *connector,
622 const struct drm_display_mode *mode,
623 int target_clock)
624 {
625 struct intel_dp *intel_dp = intel_attached_dp(connector);
626 const struct drm_display_info *info = &connector->base.display_info;
627 int tmds_clock;
628
629 if (intel_dp->dfp.max_dotclock &&
630 target_clock > intel_dp->dfp.max_dotclock)
631 return MODE_CLOCK_HIGH;
632
633 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
634 tmds_clock = target_clock;
635 if (drm_mode_is_420_only(info, mode))
636 tmds_clock /= 2;
637
638 if (intel_dp->dfp.min_tmds_clock &&
639 tmds_clock < intel_dp->dfp.min_tmds_clock)
640 return MODE_CLOCK_LOW;
641 if (intel_dp->dfp.max_tmds_clock &&
642 tmds_clock > intel_dp->dfp.max_tmds_clock)
643 return MODE_CLOCK_HIGH;
644
645 return MODE_OK;
646 }
647
648 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)649 intel_dp_mode_valid(struct drm_connector *connector,
650 struct drm_display_mode *mode)
651 {
652 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
653 struct intel_connector *intel_connector = to_intel_connector(connector);
654 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
655 struct drm_i915_private *dev_priv = to_i915(connector->dev);
656 int target_clock = mode->clock;
657 int max_rate, mode_rate, max_lanes, max_link_clock;
658 int max_dotclk = dev_priv->max_dotclk_freq;
659 u16 dsc_max_output_bpp = 0;
660 u8 dsc_slice_count = 0;
661 enum drm_mode_status status;
662
663 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
664 return MODE_NO_DBLESCAN;
665
666 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
667 if (mode->hdisplay > fixed_mode->hdisplay)
668 return MODE_PANEL;
669
670 if (mode->vdisplay > fixed_mode->vdisplay)
671 return MODE_PANEL;
672
673 target_clock = fixed_mode->clock;
674 }
675
676 max_link_clock = intel_dp_max_link_rate(intel_dp);
677 max_lanes = intel_dp_max_lane_count(intel_dp);
678
679 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
680 mode_rate = intel_dp_link_required(target_clock, 18);
681
682 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
683 return MODE_H_ILLEGAL;
684
685 /*
686 * Output bpp is stored in 6.4 format so right shift by 4 to get the
687 * integer value since we support only integer values of bpp.
688 */
689 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
690 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
691 if (intel_dp_is_edp(intel_dp)) {
692 dsc_max_output_bpp =
693 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
694 dsc_slice_count =
695 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
696 true);
697 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
698 dsc_max_output_bpp =
699 intel_dp_dsc_get_output_bpp(dev_priv,
700 max_link_clock,
701 max_lanes,
702 target_clock,
703 mode->hdisplay) >> 4;
704 dsc_slice_count =
705 intel_dp_dsc_get_slice_count(intel_dp,
706 target_clock,
707 mode->hdisplay);
708 }
709 }
710
711 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
712 target_clock > max_dotclk)
713 return MODE_CLOCK_HIGH;
714
715 if (mode->clock < 10000)
716 return MODE_CLOCK_LOW;
717
718 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
719 return MODE_H_ILLEGAL;
720
721 status = intel_dp_mode_valid_downstream(intel_connector,
722 mode, target_clock);
723 if (status != MODE_OK)
724 return status;
725
726 return intel_mode_valid_max_plane_size(dev_priv, mode);
727 }
728
intel_dp_pack_aux(const u8 * src,int src_bytes)729 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
730 {
731 int i;
732 u32 v = 0;
733
734 if (src_bytes > 4)
735 src_bytes = 4;
736 for (i = 0; i < src_bytes; i++)
737 v |= ((u32)src[i]) << ((3 - i) * 8);
738 return v;
739 }
740
intel_dp_unpack_aux(u32 src,u8 * dst,int dst_bytes)741 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
742 {
743 int i;
744 if (dst_bytes > 4)
745 dst_bytes = 4;
746 for (i = 0; i < dst_bytes; i++)
747 dst[i] = src >> ((3-i) * 8);
748 }
749
750 static void
751 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
752 static void
753 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
754 bool force_disable_vdd);
755 static void
756 intel_dp_pps_init(struct intel_dp *intel_dp);
757
758 static intel_wakeref_t
pps_lock(struct intel_dp * intel_dp)759 pps_lock(struct intel_dp *intel_dp)
760 {
761 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
762 intel_wakeref_t wakeref;
763
764 /*
765 * See intel_power_sequencer_reset() why we need
766 * a power domain reference here.
767 */
768 wakeref = intel_display_power_get(dev_priv,
769 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
770
771 mutex_lock(&dev_priv->pps_mutex);
772
773 return wakeref;
774 }
775
776 static intel_wakeref_t
pps_unlock(struct intel_dp * intel_dp,intel_wakeref_t wakeref)777 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
778 {
779 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
780
781 mutex_unlock(&dev_priv->pps_mutex);
782 intel_display_power_put(dev_priv,
783 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
784 wakeref);
785 return 0;
786 }
787
788 #define with_pps_lock(dp, wf) \
789 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
790
791 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)792 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
793 {
794 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
795 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
796 enum pipe pipe = intel_dp->pps_pipe;
797 bool pll_enabled, release_cl_override = false;
798 enum dpio_phy phy = DPIO_PHY(pipe);
799 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
800 u32 DP;
801
802 if (drm_WARN(&dev_priv->drm,
803 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
804 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
805 pipe_name(pipe), dig_port->base.base.base.id,
806 dig_port->base.base.name))
807 return;
808
809 drm_dbg_kms(&dev_priv->drm,
810 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
811 pipe_name(pipe), dig_port->base.base.base.id,
812 dig_port->base.base.name);
813
814 /* Preserve the BIOS-computed detected bit. This is
815 * supposed to be read-only.
816 */
817 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
818 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
819 DP |= DP_PORT_WIDTH(1);
820 DP |= DP_LINK_TRAIN_PAT_1;
821
822 if (IS_CHERRYVIEW(dev_priv))
823 DP |= DP_PIPE_SEL_CHV(pipe);
824 else
825 DP |= DP_PIPE_SEL(pipe);
826
827 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
828
829 /*
830 * The DPLL for the pipe must be enabled for this to work.
831 * So enable temporarily it if it's not already enabled.
832 */
833 if (!pll_enabled) {
834 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
835 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
836
837 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
838 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
839 drm_err(&dev_priv->drm,
840 "Failed to force on pll for pipe %c!\n",
841 pipe_name(pipe));
842 return;
843 }
844 }
845
846 /*
847 * Similar magic as in intel_dp_enable_port().
848 * We _must_ do this port enable + disable trick
849 * to make this power sequencer lock onto the port.
850 * Otherwise even VDD force bit won't work.
851 */
852 intel_de_write(dev_priv, intel_dp->output_reg, DP);
853 intel_de_posting_read(dev_priv, intel_dp->output_reg);
854
855 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
856 intel_de_posting_read(dev_priv, intel_dp->output_reg);
857
858 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
859 intel_de_posting_read(dev_priv, intel_dp->output_reg);
860
861 if (!pll_enabled) {
862 vlv_force_pll_off(dev_priv, pipe);
863
864 if (release_cl_override)
865 chv_phy_powergate_ch(dev_priv, phy, ch, false);
866 }
867 }
868
vlv_find_free_pps(struct drm_i915_private * dev_priv)869 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
870 {
871 struct intel_encoder *encoder;
872 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
873
874 /*
875 * We don't have power sequencer currently.
876 * Pick one that's not used by other ports.
877 */
878 for_each_intel_dp(&dev_priv->drm, encoder) {
879 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
880
881 if (encoder->type == INTEL_OUTPUT_EDP) {
882 drm_WARN_ON(&dev_priv->drm,
883 intel_dp->active_pipe != INVALID_PIPE &&
884 intel_dp->active_pipe !=
885 intel_dp->pps_pipe);
886
887 if (intel_dp->pps_pipe != INVALID_PIPE)
888 pipes &= ~(1 << intel_dp->pps_pipe);
889 } else {
890 drm_WARN_ON(&dev_priv->drm,
891 intel_dp->pps_pipe != INVALID_PIPE);
892
893 if (intel_dp->active_pipe != INVALID_PIPE)
894 pipes &= ~(1 << intel_dp->active_pipe);
895 }
896 }
897
898 if (pipes == 0)
899 return INVALID_PIPE;
900
901 return ffs(pipes) - 1;
902 }
903
904 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)905 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
906 {
907 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
908 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
909 enum pipe pipe;
910
911 lockdep_assert_held(&dev_priv->pps_mutex);
912
913 /* We should never land here with regular DP ports */
914 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
915
916 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
917 intel_dp->active_pipe != intel_dp->pps_pipe);
918
919 if (intel_dp->pps_pipe != INVALID_PIPE)
920 return intel_dp->pps_pipe;
921
922 pipe = vlv_find_free_pps(dev_priv);
923
924 /*
925 * Didn't find one. This should not happen since there
926 * are two power sequencers and up to two eDP ports.
927 */
928 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
929 pipe = PIPE_A;
930
931 vlv_steal_power_sequencer(dev_priv, pipe);
932 intel_dp->pps_pipe = pipe;
933
934 drm_dbg_kms(&dev_priv->drm,
935 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
936 pipe_name(intel_dp->pps_pipe),
937 dig_port->base.base.base.id,
938 dig_port->base.base.name);
939
940 /* init power sequencer on this pipe and port */
941 intel_dp_init_panel_power_sequencer(intel_dp);
942 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
943
944 /*
945 * Even vdd force doesn't work until we've made
946 * the power sequencer lock in on the port.
947 */
948 vlv_power_sequencer_kick(intel_dp);
949
950 return intel_dp->pps_pipe;
951 }
952
953 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)954 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
955 {
956 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
957 int backlight_controller = dev_priv->vbt.backlight.controller;
958
959 lockdep_assert_held(&dev_priv->pps_mutex);
960
961 /* We should never land here with regular DP ports */
962 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
963
964 if (!intel_dp->pps_reset)
965 return backlight_controller;
966
967 intel_dp->pps_reset = false;
968
969 /*
970 * Only the HW needs to be reprogrammed, the SW state is fixed and
971 * has been setup during connector init.
972 */
973 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
974
975 return backlight_controller;
976 }
977
978 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
979 enum pipe pipe);
980
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)981 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
982 enum pipe pipe)
983 {
984 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
985 }
986
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)987 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
988 enum pipe pipe)
989 {
990 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
991 }
992
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)993 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
994 enum pipe pipe)
995 {
996 return true;
997 }
998
999 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)1000 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
1001 enum port port,
1002 vlv_pipe_check pipe_check)
1003 {
1004 enum pipe pipe;
1005
1006 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1007 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1008 PANEL_PORT_SELECT_MASK;
1009
1010 if (port_sel != PANEL_PORT_SELECT_VLV(port))
1011 continue;
1012
1013 if (!pipe_check(dev_priv, pipe))
1014 continue;
1015
1016 return pipe;
1017 }
1018
1019 return INVALID_PIPE;
1020 }
1021
1022 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)1023 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1024 {
1025 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1026 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1027 enum port port = dig_port->base.port;
1028
1029 lockdep_assert_held(&dev_priv->pps_mutex);
1030
1031 /* try to find a pipe with this port selected */
1032 /* first pick one where the panel is on */
1033 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1034 vlv_pipe_has_pp_on);
1035 /* didn't find one? pick one where vdd is on */
1036 if (intel_dp->pps_pipe == INVALID_PIPE)
1037 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1038 vlv_pipe_has_vdd_on);
1039 /* didn't find one? pick one with just the correct port */
1040 if (intel_dp->pps_pipe == INVALID_PIPE)
1041 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1042 vlv_pipe_any);
1043
1044 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1045 if (intel_dp->pps_pipe == INVALID_PIPE) {
1046 drm_dbg_kms(&dev_priv->drm,
1047 "no initial power sequencer for [ENCODER:%d:%s]\n",
1048 dig_port->base.base.base.id,
1049 dig_port->base.base.name);
1050 return;
1051 }
1052
1053 drm_dbg_kms(&dev_priv->drm,
1054 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1055 dig_port->base.base.base.id,
1056 dig_port->base.base.name,
1057 pipe_name(intel_dp->pps_pipe));
1058
1059 intel_dp_init_panel_power_sequencer(intel_dp);
1060 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1061 }
1062
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)1063 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1064 {
1065 struct intel_encoder *encoder;
1066
1067 if (drm_WARN_ON(&dev_priv->drm,
1068 !(IS_VALLEYVIEW(dev_priv) ||
1069 IS_CHERRYVIEW(dev_priv) ||
1070 IS_GEN9_LP(dev_priv))))
1071 return;
1072
1073 /*
1074 * We can't grab pps_mutex here due to deadlock with power_domain
1075 * mutex when power_domain functions are called while holding pps_mutex.
1076 * That also means that in order to use pps_pipe the code needs to
1077 * hold both a power domain reference and pps_mutex, and the power domain
1078 * reference get/put must be done while _not_ holding pps_mutex.
1079 * pps_{lock,unlock}() do these steps in the correct order, so one
1080 * should use them always.
1081 */
1082
1083 for_each_intel_dp(&dev_priv->drm, encoder) {
1084 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1085
1086 drm_WARN_ON(&dev_priv->drm,
1087 intel_dp->active_pipe != INVALID_PIPE);
1088
1089 if (encoder->type != INTEL_OUTPUT_EDP)
1090 continue;
1091
1092 if (IS_GEN9_LP(dev_priv))
1093 intel_dp->pps_reset = true;
1094 else
1095 intel_dp->pps_pipe = INVALID_PIPE;
1096 }
1097 }
1098
1099 struct pps_registers {
1100 i915_reg_t pp_ctrl;
1101 i915_reg_t pp_stat;
1102 i915_reg_t pp_on;
1103 i915_reg_t pp_off;
1104 i915_reg_t pp_div;
1105 };
1106
intel_pps_get_registers(struct intel_dp * intel_dp,struct pps_registers * regs)1107 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1108 struct pps_registers *regs)
1109 {
1110 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1111 int pps_idx = 0;
1112
1113 memset(regs, 0, sizeof(*regs));
1114
1115 if (IS_GEN9_LP(dev_priv))
1116 pps_idx = bxt_power_sequencer_idx(intel_dp);
1117 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1118 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1119
1120 regs->pp_ctrl = PP_CONTROL(pps_idx);
1121 regs->pp_stat = PP_STATUS(pps_idx);
1122 regs->pp_on = PP_ON_DELAYS(pps_idx);
1123 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1124
1125 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1126 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1127 regs->pp_div = INVALID_MMIO_REG;
1128 else
1129 regs->pp_div = PP_DIVISOR(pps_idx);
1130 }
1131
1132 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)1133 _pp_ctrl_reg(struct intel_dp *intel_dp)
1134 {
1135 struct pps_registers regs;
1136
1137 intel_pps_get_registers(intel_dp, ®s);
1138
1139 return regs.pp_ctrl;
1140 }
1141
1142 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)1143 _pp_stat_reg(struct intel_dp *intel_dp)
1144 {
1145 struct pps_registers regs;
1146
1147 intel_pps_get_registers(intel_dp, ®s);
1148
1149 return regs.pp_stat;
1150 }
1151
1152 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1153 This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)1154 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1155 void *unused)
1156 {
1157 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1158 edp_notifier);
1159 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1160 intel_wakeref_t wakeref;
1161
1162 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1163 return 0;
1164
1165 with_pps_lock(intel_dp, wakeref) {
1166 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1167 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1168 i915_reg_t pp_ctrl_reg, pp_div_reg;
1169 u32 pp_div;
1170
1171 pp_ctrl_reg = PP_CONTROL(pipe);
1172 pp_div_reg = PP_DIVISOR(pipe);
1173 pp_div = intel_de_read(dev_priv, pp_div_reg);
1174 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1175
1176 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1177 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1178 intel_de_write(dev_priv, pp_ctrl_reg,
1179 PANEL_UNLOCK_REGS);
1180 msleep(intel_dp->panel_power_cycle_delay);
1181 }
1182 }
1183
1184 return 0;
1185 }
1186
edp_have_panel_power(struct intel_dp * intel_dp)1187 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1188 {
1189 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1190
1191 lockdep_assert_held(&dev_priv->pps_mutex);
1192
1193 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1194 intel_dp->pps_pipe == INVALID_PIPE)
1195 return false;
1196
1197 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1198 }
1199
edp_have_panel_vdd(struct intel_dp * intel_dp)1200 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1201 {
1202 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1203
1204 lockdep_assert_held(&dev_priv->pps_mutex);
1205
1206 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1207 intel_dp->pps_pipe == INVALID_PIPE)
1208 return false;
1209
1210 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1211 }
1212
1213 static void
intel_dp_check_edp(struct intel_dp * intel_dp)1214 intel_dp_check_edp(struct intel_dp *intel_dp)
1215 {
1216 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1217
1218 if (!intel_dp_is_edp(intel_dp))
1219 return;
1220
1221 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1222 drm_WARN(&dev_priv->drm, 1,
1223 "eDP powered off while attempting aux channel communication.\n");
1224 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1225 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1226 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1227 }
1228 }
1229
1230 static u32
intel_dp_aux_wait_done(struct intel_dp * intel_dp)1231 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1232 {
1233 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1234 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1235 const unsigned int timeout_ms = 10;
1236 u32 status;
1237 bool done;
1238
1239 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1240 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1241 msecs_to_jiffies_timeout(timeout_ms));
1242
1243 /* just trace the final value */
1244 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1245
1246 if (!done)
1247 drm_err(&i915->drm,
1248 "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1249 intel_dp->aux.name, timeout_ms, status);
1250 #undef C
1251
1252 return status;
1253 }
1254
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1255 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1256 {
1257 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1258
1259 if (index)
1260 return 0;
1261
1262 /*
1263 * The clock divider is based off the hrawclk, and would like to run at
1264 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1265 */
1266 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1267 }
1268
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1269 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1270 {
1271 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1272 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1273 u32 freq;
1274
1275 if (index)
1276 return 0;
1277
1278 /*
1279 * The clock divider is based off the cdclk or PCH rawclk, and would
1280 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1281 * divide by 2000 and use that
1282 */
1283 if (dig_port->aux_ch == AUX_CH_A)
1284 freq = dev_priv->cdclk.hw.cdclk;
1285 else
1286 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1287 return DIV_ROUND_CLOSEST(freq, 2000);
1288 }
1289
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1290 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1291 {
1292 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1294
1295 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1296 /* Workaround for non-ULT HSW */
1297 switch (index) {
1298 case 0: return 63;
1299 case 1: return 72;
1300 default: return 0;
1301 }
1302 }
1303
1304 return ilk_get_aux_clock_divider(intel_dp, index);
1305 }
1306
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1307 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1308 {
1309 /*
1310 * SKL doesn't need us to program the AUX clock divider (Hardware will
1311 * derive the clock from CDCLK automatically). We still implement the
1312 * get_aux_clock_divider vfunc to plug-in into the existing code.
1313 */
1314 return index ? 0 : 1;
1315 }
1316
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 aux_clock_divider)1317 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1318 int send_bytes,
1319 u32 aux_clock_divider)
1320 {
1321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1322 struct drm_i915_private *dev_priv =
1323 to_i915(dig_port->base.base.dev);
1324 u32 precharge, timeout;
1325
1326 if (IS_GEN(dev_priv, 6))
1327 precharge = 3;
1328 else
1329 precharge = 5;
1330
1331 if (IS_BROADWELL(dev_priv))
1332 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1333 else
1334 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1335
1336 return DP_AUX_CH_CTL_SEND_BUSY |
1337 DP_AUX_CH_CTL_DONE |
1338 DP_AUX_CH_CTL_INTERRUPT |
1339 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1340 timeout |
1341 DP_AUX_CH_CTL_RECEIVE_ERROR |
1342 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1343 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1344 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1345 }
1346
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 unused)1347 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1348 int send_bytes,
1349 u32 unused)
1350 {
1351 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1352 struct drm_i915_private *i915 =
1353 to_i915(dig_port->base.base.dev);
1354 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1355 u32 ret;
1356
1357 ret = DP_AUX_CH_CTL_SEND_BUSY |
1358 DP_AUX_CH_CTL_DONE |
1359 DP_AUX_CH_CTL_INTERRUPT |
1360 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1361 DP_AUX_CH_CTL_TIME_OUT_MAX |
1362 DP_AUX_CH_CTL_RECEIVE_ERROR |
1363 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1364 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1365 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1366
1367 if (intel_phy_is_tc(i915, phy) &&
1368 dig_port->tc_mode == TC_PORT_TBT_ALT)
1369 ret |= DP_AUX_CH_CTL_TBT_IO;
1370
1371 return ret;
1372 }
1373
1374 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const u8 * send,int send_bytes,u8 * recv,int recv_size,u32 aux_send_ctl_flags)1375 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1376 const u8 *send, int send_bytes,
1377 u8 *recv, int recv_size,
1378 u32 aux_send_ctl_flags)
1379 {
1380 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1381 struct drm_i915_private *i915 =
1382 to_i915(dig_port->base.base.dev);
1383 struct intel_uncore *uncore = &i915->uncore;
1384 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1385 bool is_tc_port = intel_phy_is_tc(i915, phy);
1386 i915_reg_t ch_ctl, ch_data[5];
1387 u32 aux_clock_divider;
1388 enum intel_display_power_domain aux_domain;
1389 intel_wakeref_t aux_wakeref;
1390 intel_wakeref_t pps_wakeref;
1391 int i, ret, recv_bytes;
1392 int try, clock = 0;
1393 u32 status;
1394 bool vdd;
1395
1396 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1397 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1398 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1399
1400 if (is_tc_port)
1401 intel_tc_port_lock(dig_port);
1402
1403 aux_domain = intel_aux_power_domain(dig_port);
1404
1405 aux_wakeref = intel_display_power_get(i915, aux_domain);
1406 pps_wakeref = pps_lock(intel_dp);
1407
1408 /*
1409 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1410 * In such cases we want to leave VDD enabled and it's up to upper layers
1411 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1412 * ourselves.
1413 */
1414 vdd = edp_panel_vdd_on(intel_dp);
1415
1416 /* dp aux is extremely sensitive to irq latency, hence request the
1417 * lowest possible wakeup latency and so prevent the cpu from going into
1418 * deep sleep states.
1419 */
1420 cpu_latency_qos_update_request(&intel_dp->pm_qos, 0);
1421
1422 intel_dp_check_edp(intel_dp);
1423
1424 /* Try to wait for any previous AUX channel activity */
1425 for (try = 0; try < 3; try++) {
1426 status = intel_uncore_read_notrace(uncore, ch_ctl);
1427 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1428 break;
1429 msleep(1);
1430 }
1431 /* just trace the final value */
1432 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1433
1434 if (try == 3) {
1435 const u32 status = intel_uncore_read(uncore, ch_ctl);
1436
1437 if (status != intel_dp->aux_busy_last_status) {
1438 drm_WARN(&i915->drm, 1,
1439 "%s: not started (status 0x%08x)\n",
1440 intel_dp->aux.name, status);
1441 intel_dp->aux_busy_last_status = status;
1442 }
1443
1444 ret = -EBUSY;
1445 goto out;
1446 }
1447
1448 /* Only 5 data registers! */
1449 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1450 ret = -E2BIG;
1451 goto out;
1452 }
1453
1454 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1455 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1456 send_bytes,
1457 aux_clock_divider);
1458
1459 send_ctl |= aux_send_ctl_flags;
1460
1461 /* Must try at least 3 times according to DP spec */
1462 for (try = 0; try < 5; try++) {
1463 /* Load the send data into the aux channel data registers */
1464 for (i = 0; i < send_bytes; i += 4)
1465 intel_uncore_write(uncore,
1466 ch_data[i >> 2],
1467 intel_dp_pack_aux(send + i,
1468 send_bytes - i));
1469
1470 /* Send the command and wait for it to complete */
1471 intel_uncore_write(uncore, ch_ctl, send_ctl);
1472
1473 status = intel_dp_aux_wait_done(intel_dp);
1474
1475 /* Clear done status and any errors */
1476 intel_uncore_write(uncore,
1477 ch_ctl,
1478 status |
1479 DP_AUX_CH_CTL_DONE |
1480 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1481 DP_AUX_CH_CTL_RECEIVE_ERROR);
1482
1483 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1484 * 400us delay required for errors and timeouts
1485 * Timeout errors from the HW already meet this
1486 * requirement so skip to next iteration
1487 */
1488 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1489 continue;
1490
1491 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1492 usleep_range(400, 500);
1493 continue;
1494 }
1495 if (status & DP_AUX_CH_CTL_DONE)
1496 goto done;
1497 }
1498 }
1499
1500 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1501 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1502 intel_dp->aux.name, status);
1503 ret = -EBUSY;
1504 goto out;
1505 }
1506
1507 done:
1508 /* Check for timeout or receive error.
1509 * Timeouts occur when the sink is not connected
1510 */
1511 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1512 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1513 intel_dp->aux.name, status);
1514 ret = -EIO;
1515 goto out;
1516 }
1517
1518 /* Timeouts occur when the device isn't connected, so they're
1519 * "normal" -- don't fill the kernel log with these */
1520 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1521 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1522 intel_dp->aux.name, status);
1523 ret = -ETIMEDOUT;
1524 goto out;
1525 }
1526
1527 /* Unload any bytes sent back from the other side */
1528 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1529 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1530
1531 /*
1532 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1533 * We have no idea of what happened so we return -EBUSY so
1534 * drm layer takes care for the necessary retries.
1535 */
1536 if (recv_bytes == 0 || recv_bytes > 20) {
1537 drm_dbg_kms(&i915->drm,
1538 "%s: Forbidden recv_bytes = %d on aux transaction\n",
1539 intel_dp->aux.name, recv_bytes);
1540 ret = -EBUSY;
1541 goto out;
1542 }
1543
1544 if (recv_bytes > recv_size)
1545 recv_bytes = recv_size;
1546
1547 for (i = 0; i < recv_bytes; i += 4)
1548 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1549 recv + i, recv_bytes - i);
1550
1551 ret = recv_bytes;
1552 out:
1553 cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1554
1555 if (vdd)
1556 edp_panel_vdd_off(intel_dp, false);
1557
1558 pps_unlock(intel_dp, pps_wakeref);
1559 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1560
1561 if (is_tc_port)
1562 intel_tc_port_unlock(dig_port);
1563
1564 return ret;
1565 }
1566
1567 #define BARE_ADDRESS_SIZE 3
1568 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1569
1570 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)1571 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1572 const struct drm_dp_aux_msg *msg)
1573 {
1574 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1575 txbuf[1] = (msg->address >> 8) & 0xff;
1576 txbuf[2] = msg->address & 0xff;
1577 txbuf[3] = msg->size - 1;
1578 }
1579
intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg * msg)1580 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1581 {
1582 /*
1583 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1584 * select bit to inform the hardware to send the Aksv after our header
1585 * since we can't access that data from software.
1586 */
1587 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1588 msg->address == DP_AUX_HDCP_AKSV)
1589 return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1590
1591 return 0;
1592 }
1593
1594 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1595 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1596 {
1597 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1598 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1599 u8 txbuf[20], rxbuf[20];
1600 size_t txsize, rxsize;
1601 u32 flags = intel_dp_aux_xfer_flags(msg);
1602 int ret;
1603
1604 intel_dp_aux_header(txbuf, msg);
1605
1606 switch (msg->request & ~DP_AUX_I2C_MOT) {
1607 case DP_AUX_NATIVE_WRITE:
1608 case DP_AUX_I2C_WRITE:
1609 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1610 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1611 rxsize = 2; /* 0 or 1 data bytes */
1612
1613 if (drm_WARN_ON(&i915->drm, txsize > 20))
1614 return -E2BIG;
1615
1616 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1617
1618 if (msg->buffer)
1619 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1620
1621 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1622 rxbuf, rxsize, flags);
1623 if (ret > 0) {
1624 msg->reply = rxbuf[0] >> 4;
1625
1626 if (ret > 1) {
1627 /* Number of bytes written in a short write. */
1628 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1629 } else {
1630 /* Return payload size. */
1631 ret = msg->size;
1632 }
1633 }
1634 break;
1635
1636 case DP_AUX_NATIVE_READ:
1637 case DP_AUX_I2C_READ:
1638 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1639 rxsize = msg->size + 1;
1640
1641 if (drm_WARN_ON(&i915->drm, rxsize > 20))
1642 return -E2BIG;
1643
1644 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1645 rxbuf, rxsize, flags);
1646 if (ret > 0) {
1647 msg->reply = rxbuf[0] >> 4;
1648 /*
1649 * Assume happy day, and copy the data. The caller is
1650 * expected to check msg->reply before touching it.
1651 *
1652 * Return payload size.
1653 */
1654 ret--;
1655 memcpy(msg->buffer, rxbuf + 1, ret);
1656 }
1657 break;
1658
1659 default:
1660 ret = -EINVAL;
1661 break;
1662 }
1663
1664 return ret;
1665 }
1666
1667
g4x_aux_ctl_reg(struct intel_dp * intel_dp)1668 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1669 {
1670 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1671 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1672 enum aux_ch aux_ch = dig_port->aux_ch;
1673
1674 switch (aux_ch) {
1675 case AUX_CH_B:
1676 case AUX_CH_C:
1677 case AUX_CH_D:
1678 return DP_AUX_CH_CTL(aux_ch);
1679 default:
1680 MISSING_CASE(aux_ch);
1681 return DP_AUX_CH_CTL(AUX_CH_B);
1682 }
1683 }
1684
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)1685 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1686 {
1687 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1688 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1689 enum aux_ch aux_ch = dig_port->aux_ch;
1690
1691 switch (aux_ch) {
1692 case AUX_CH_B:
1693 case AUX_CH_C:
1694 case AUX_CH_D:
1695 return DP_AUX_CH_DATA(aux_ch, index);
1696 default:
1697 MISSING_CASE(aux_ch);
1698 return DP_AUX_CH_DATA(AUX_CH_B, index);
1699 }
1700 }
1701
ilk_aux_ctl_reg(struct intel_dp * intel_dp)1702 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1703 {
1704 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706 enum aux_ch aux_ch = dig_port->aux_ch;
1707
1708 switch (aux_ch) {
1709 case AUX_CH_A:
1710 return DP_AUX_CH_CTL(aux_ch);
1711 case AUX_CH_B:
1712 case AUX_CH_C:
1713 case AUX_CH_D:
1714 return PCH_DP_AUX_CH_CTL(aux_ch);
1715 default:
1716 MISSING_CASE(aux_ch);
1717 return DP_AUX_CH_CTL(AUX_CH_A);
1718 }
1719 }
1720
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)1721 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1722 {
1723 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1724 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1725 enum aux_ch aux_ch = dig_port->aux_ch;
1726
1727 switch (aux_ch) {
1728 case AUX_CH_A:
1729 return DP_AUX_CH_DATA(aux_ch, index);
1730 case AUX_CH_B:
1731 case AUX_CH_C:
1732 case AUX_CH_D:
1733 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1734 default:
1735 MISSING_CASE(aux_ch);
1736 return DP_AUX_CH_DATA(AUX_CH_A, index);
1737 }
1738 }
1739
skl_aux_ctl_reg(struct intel_dp * intel_dp)1740 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1741 {
1742 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1743 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1744 enum aux_ch aux_ch = dig_port->aux_ch;
1745
1746 switch (aux_ch) {
1747 case AUX_CH_A:
1748 case AUX_CH_B:
1749 case AUX_CH_C:
1750 case AUX_CH_D:
1751 case AUX_CH_E:
1752 case AUX_CH_F:
1753 case AUX_CH_G:
1754 return DP_AUX_CH_CTL(aux_ch);
1755 default:
1756 MISSING_CASE(aux_ch);
1757 return DP_AUX_CH_CTL(AUX_CH_A);
1758 }
1759 }
1760
skl_aux_data_reg(struct intel_dp * intel_dp,int index)1761 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1762 {
1763 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1764 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1765 enum aux_ch aux_ch = dig_port->aux_ch;
1766
1767 switch (aux_ch) {
1768 case AUX_CH_A:
1769 case AUX_CH_B:
1770 case AUX_CH_C:
1771 case AUX_CH_D:
1772 case AUX_CH_E:
1773 case AUX_CH_F:
1774 case AUX_CH_G:
1775 return DP_AUX_CH_DATA(aux_ch, index);
1776 default:
1777 MISSING_CASE(aux_ch);
1778 return DP_AUX_CH_DATA(AUX_CH_A, index);
1779 }
1780 }
1781
1782 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1783 intel_dp_aux_fini(struct intel_dp *intel_dp)
1784 {
1785 if (cpu_latency_qos_request_active(&intel_dp->pm_qos))
1786 cpu_latency_qos_remove_request(&intel_dp->pm_qos);
1787
1788 kfree(intel_dp->aux.name);
1789 }
1790
1791 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1792 intel_dp_aux_init(struct intel_dp *intel_dp)
1793 {
1794 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1795 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1796 struct intel_encoder *encoder = &dig_port->base;
1797
1798 if (INTEL_GEN(dev_priv) >= 9) {
1799 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1800 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1801 } else if (HAS_PCH_SPLIT(dev_priv)) {
1802 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1803 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1804 } else {
1805 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1806 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1807 }
1808
1809 if (INTEL_GEN(dev_priv) >= 9)
1810 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1811 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1812 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1813 else if (HAS_PCH_SPLIT(dev_priv))
1814 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1815 else
1816 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1817
1818 if (INTEL_GEN(dev_priv) >= 9)
1819 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1820 else
1821 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1822
1823 drm_dp_aux_init(&intel_dp->aux);
1824
1825 /* Failure to allocate our preferred name is not critical */
1826 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1827 aux_ch_name(dig_port->aux_ch),
1828 port_name(encoder->port));
1829 intel_dp->aux.transfer = intel_dp_aux_transfer;
1830 cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1831 }
1832
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1833 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1834 {
1835 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1836
1837 return max_rate >= 540000;
1838 }
1839
intel_dp_source_supports_hbr3(struct intel_dp * intel_dp)1840 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1841 {
1842 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1843
1844 return max_rate >= 810000;
1845 }
1846
1847 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1848 intel_dp_set_clock(struct intel_encoder *encoder,
1849 struct intel_crtc_state *pipe_config)
1850 {
1851 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1852 const struct dp_link_dpll *divisor = NULL;
1853 int i, count = 0;
1854
1855 if (IS_G4X(dev_priv)) {
1856 divisor = g4x_dpll;
1857 count = ARRAY_SIZE(g4x_dpll);
1858 } else if (HAS_PCH_SPLIT(dev_priv)) {
1859 divisor = pch_dpll;
1860 count = ARRAY_SIZE(pch_dpll);
1861 } else if (IS_CHERRYVIEW(dev_priv)) {
1862 divisor = chv_dpll;
1863 count = ARRAY_SIZE(chv_dpll);
1864 } else if (IS_VALLEYVIEW(dev_priv)) {
1865 divisor = vlv_dpll;
1866 count = ARRAY_SIZE(vlv_dpll);
1867 }
1868
1869 if (divisor && count) {
1870 for (i = 0; i < count; i++) {
1871 if (pipe_config->port_clock == divisor[i].clock) {
1872 pipe_config->dpll = divisor[i].dpll;
1873 pipe_config->clock_set = true;
1874 break;
1875 }
1876 }
1877 }
1878 }
1879
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1880 static void snprintf_int_array(char *str, size_t len,
1881 const int *array, int nelem)
1882 {
1883 int i;
1884
1885 str[0] = '\0';
1886
1887 for (i = 0; i < nelem; i++) {
1888 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1889 if (r >= len)
1890 return;
1891 str += r;
1892 len -= r;
1893 }
1894 }
1895
intel_dp_print_rates(struct intel_dp * intel_dp)1896 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1897 {
1898 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1899 char str[128]; /* FIXME: too big for stack? */
1900
1901 if (!drm_debug_enabled(DRM_UT_KMS))
1902 return;
1903
1904 snprintf_int_array(str, sizeof(str),
1905 intel_dp->source_rates, intel_dp->num_source_rates);
1906 drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1907
1908 snprintf_int_array(str, sizeof(str),
1909 intel_dp->sink_rates, intel_dp->num_sink_rates);
1910 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1911
1912 snprintf_int_array(str, sizeof(str),
1913 intel_dp->common_rates, intel_dp->num_common_rates);
1914 drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1915 }
1916
1917 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1918 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1919 {
1920 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1921 int len;
1922
1923 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1924 if (drm_WARN_ON(&i915->drm, len <= 0))
1925 return 162000;
1926
1927 return intel_dp->common_rates[len - 1];
1928 }
1929
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1930 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1931 {
1932 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1933 int i = intel_dp_rate_index(intel_dp->sink_rates,
1934 intel_dp->num_sink_rates, rate);
1935
1936 if (drm_WARN_ON(&i915->drm, i < 0))
1937 i = 0;
1938
1939 return i;
1940 }
1941
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,u8 * link_bw,u8 * rate_select)1942 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1943 u8 *link_bw, u8 *rate_select)
1944 {
1945 /* eDP 1.4 rate select method. */
1946 if (intel_dp->use_rate_select) {
1947 *link_bw = 0;
1948 *rate_select =
1949 intel_dp_rate_select(intel_dp, port_clock);
1950 } else {
1951 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1952 *rate_select = 0;
1953 }
1954 }
1955
intel_dp_source_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1956 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1957 const struct intel_crtc_state *pipe_config)
1958 {
1959 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1960
1961 /* On TGL, FEC is supported on all Pipes */
1962 if (INTEL_GEN(dev_priv) >= 12)
1963 return true;
1964
1965 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1966 return true;
1967
1968 return false;
1969 }
1970
intel_dp_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1971 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1972 const struct intel_crtc_state *pipe_config)
1973 {
1974 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1975 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1976 }
1977
intel_dp_supports_dsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1978 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1979 const struct intel_crtc_state *crtc_state)
1980 {
1981 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1982
1983 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1984 return false;
1985
1986 return intel_dsc_source_support(encoder, crtc_state) &&
1987 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1988 }
1989
intel_dp_hdmi_ycbcr420(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1990 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
1991 const struct intel_crtc_state *crtc_state)
1992 {
1993 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
1994 (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
1995 intel_dp->dfp.ycbcr_444_to_420);
1996 }
1997
intel_dp_hdmi_tmds_clock(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)1998 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
1999 const struct intel_crtc_state *crtc_state, int bpc)
2000 {
2001 int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
2002
2003 if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
2004 clock /= 2;
2005
2006 return clock;
2007 }
2008
intel_dp_hdmi_tmds_clock_valid(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)2009 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2010 const struct intel_crtc_state *crtc_state, int bpc)
2011 {
2012 int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2013
2014 if (intel_dp->dfp.min_tmds_clock &&
2015 tmds_clock < intel_dp->dfp.min_tmds_clock)
2016 return false;
2017
2018 if (intel_dp->dfp.max_tmds_clock &&
2019 tmds_clock > intel_dp->dfp.max_tmds_clock)
2020 return false;
2021
2022 return true;
2023 }
2024
intel_dp_hdmi_deep_color_possible(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)2025 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2026 const struct intel_crtc_state *crtc_state,
2027 int bpc)
2028 {
2029
2030 return intel_hdmi_deep_color_possible(crtc_state, bpc,
2031 intel_dp->has_hdmi_sink,
2032 intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2033 intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2034 }
2035
intel_dp_max_bpp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)2036 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2037 const struct intel_crtc_state *crtc_state)
2038 {
2039 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2040 struct intel_connector *intel_connector = intel_dp->attached_connector;
2041 int bpp, bpc;
2042
2043 bpc = crtc_state->pipe_bpp / 3;
2044
2045 if (intel_dp->dfp.max_bpc)
2046 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2047
2048 if (intel_dp->dfp.min_tmds_clock) {
2049 for (; bpc >= 10; bpc -= 2) {
2050 if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2051 break;
2052 }
2053 }
2054
2055 bpp = bpc * 3;
2056 if (intel_dp_is_edp(intel_dp)) {
2057 /* Get bpp from vbt only for panels that dont have bpp in edid */
2058 if (intel_connector->base.display_info.bpc == 0 &&
2059 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2060 drm_dbg_kms(&dev_priv->drm,
2061 "clamping bpp for eDP panel to BIOS-provided %i\n",
2062 dev_priv->vbt.edp.bpp);
2063 bpp = dev_priv->vbt.edp.bpp;
2064 }
2065 }
2066
2067 return bpp;
2068 }
2069
2070 /* Adjust link config limits based on compliance test requests. */
2071 void
intel_dp_adjust_compliance_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct link_config_limits * limits)2072 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2073 struct intel_crtc_state *pipe_config,
2074 struct link_config_limits *limits)
2075 {
2076 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2077
2078 /* For DP Compliance we override the computed bpp for the pipe */
2079 if (intel_dp->compliance.test_data.bpc != 0) {
2080 int bpp = 3 * intel_dp->compliance.test_data.bpc;
2081
2082 limits->min_bpp = limits->max_bpp = bpp;
2083 pipe_config->dither_force_disable = bpp == 6 * 3;
2084
2085 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2086 }
2087
2088 /* Use values requested by Compliance Test Request */
2089 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2090 int index;
2091
2092 /* Validate the compliance test data since max values
2093 * might have changed due to link train fallback.
2094 */
2095 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2096 intel_dp->compliance.test_lane_count)) {
2097 index = intel_dp_rate_index(intel_dp->common_rates,
2098 intel_dp->num_common_rates,
2099 intel_dp->compliance.test_link_rate);
2100 if (index >= 0)
2101 limits->min_clock = limits->max_clock = index;
2102 limits->min_lane_count = limits->max_lane_count =
2103 intel_dp->compliance.test_lane_count;
2104 }
2105 }
2106 }
2107
intel_dp_output_bpp(const struct intel_crtc_state * crtc_state,int bpp)2108 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2109 {
2110 /*
2111 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2112 * format of the number of bytes per pixel will be half the number
2113 * of bytes of RGB pixel.
2114 */
2115 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2116 bpp /= 2;
2117
2118 return bpp;
2119 }
2120
2121 /* Optimize link config in order: max bpp, min clock, min lanes */
2122 static int
intel_dp_compute_link_config_wide(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,const struct link_config_limits * limits)2123 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2124 struct intel_crtc_state *pipe_config,
2125 const struct link_config_limits *limits)
2126 {
2127 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2128 int bpp, clock, lane_count;
2129 int mode_rate, link_clock, link_avail;
2130
2131 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2132 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2133
2134 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2135 output_bpp);
2136
2137 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2138 for (lane_count = limits->min_lane_count;
2139 lane_count <= limits->max_lane_count;
2140 lane_count <<= 1) {
2141 link_clock = intel_dp->common_rates[clock];
2142 link_avail = intel_dp_max_data_rate(link_clock,
2143 lane_count);
2144
2145 if (mode_rate <= link_avail) {
2146 pipe_config->lane_count = lane_count;
2147 pipe_config->pipe_bpp = bpp;
2148 pipe_config->port_clock = link_clock;
2149
2150 return 0;
2151 }
2152 }
2153 }
2154 }
2155
2156 return -EINVAL;
2157 }
2158
intel_dp_dsc_compute_bpp(struct intel_dp * intel_dp,u8 dsc_max_bpc)2159 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2160 {
2161 int i, num_bpc;
2162 u8 dsc_bpc[3] = {0};
2163
2164 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2165 dsc_bpc);
2166 for (i = 0; i < num_bpc; i++) {
2167 if (dsc_max_bpc >= dsc_bpc[i])
2168 return dsc_bpc[i] * 3;
2169 }
2170
2171 return 0;
2172 }
2173
2174 #define DSC_SUPPORTED_VERSION_MIN 1
2175
intel_dp_dsc_compute_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)2176 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2177 struct intel_crtc_state *crtc_state)
2178 {
2179 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2180 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2181 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2182 u8 line_buf_depth;
2183 int ret;
2184
2185 ret = intel_dsc_compute_params(encoder, crtc_state);
2186 if (ret)
2187 return ret;
2188
2189 /*
2190 * Slice Height of 8 works for all currently available panels. So start
2191 * with that if pic_height is an integral multiple of 8. Eventually add
2192 * logic to try multiple slice heights.
2193 */
2194 if (vdsc_cfg->pic_height % 8 == 0)
2195 vdsc_cfg->slice_height = 8;
2196 else if (vdsc_cfg->pic_height % 4 == 0)
2197 vdsc_cfg->slice_height = 4;
2198 else
2199 vdsc_cfg->slice_height = 2;
2200
2201 vdsc_cfg->dsc_version_major =
2202 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2203 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2204 vdsc_cfg->dsc_version_minor =
2205 min(DSC_SUPPORTED_VERSION_MIN,
2206 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2207 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2208
2209 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2210 DP_DSC_RGB;
2211
2212 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2213 if (!line_buf_depth) {
2214 drm_dbg_kms(&i915->drm,
2215 "DSC Sink Line Buffer Depth invalid\n");
2216 return -EINVAL;
2217 }
2218
2219 if (vdsc_cfg->dsc_version_minor == 2)
2220 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2221 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2222 else
2223 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2224 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2225
2226 vdsc_cfg->block_pred_enable =
2227 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2228 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2229
2230 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2231 }
2232
intel_dp_dsc_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state,struct link_config_limits * limits)2233 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2234 struct intel_crtc_state *pipe_config,
2235 struct drm_connector_state *conn_state,
2236 struct link_config_limits *limits)
2237 {
2238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2239 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2240 const struct drm_display_mode *adjusted_mode =
2241 &pipe_config->hw.adjusted_mode;
2242 u8 dsc_max_bpc;
2243 int pipe_bpp;
2244 int ret;
2245
2246 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2247 intel_dp_supports_fec(intel_dp, pipe_config);
2248
2249 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2250 return -EINVAL;
2251
2252 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2253 if (INTEL_GEN(dev_priv) >= 12)
2254 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2255 else
2256 dsc_max_bpc = min_t(u8, 10,
2257 conn_state->max_requested_bpc);
2258
2259 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2260
2261 /* Min Input BPC for ICL+ is 8 */
2262 if (pipe_bpp < 8 * 3) {
2263 drm_dbg_kms(&dev_priv->drm,
2264 "No DSC support for less than 8bpc\n");
2265 return -EINVAL;
2266 }
2267
2268 /*
2269 * For now enable DSC for max bpp, max link rate, max lane count.
2270 * Optimize this later for the minimum possible link rate/lane count
2271 * with DSC enabled for the requested mode.
2272 */
2273 pipe_config->pipe_bpp = pipe_bpp;
2274 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2275 pipe_config->lane_count = limits->max_lane_count;
2276
2277 if (intel_dp_is_edp(intel_dp)) {
2278 pipe_config->dsc.compressed_bpp =
2279 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2280 pipe_config->pipe_bpp);
2281 pipe_config->dsc.slice_count =
2282 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2283 true);
2284 if (!pipe_config->dsc.slice_count) {
2285 drm_dbg_kms(&dev_priv->drm, "Unsupported Slice Count %d\n",
2286 pipe_config->dsc.slice_count);
2287 return -EINVAL;
2288 }
2289 } else {
2290 u16 dsc_max_output_bpp;
2291 u8 dsc_dp_slice_count;
2292
2293 dsc_max_output_bpp =
2294 intel_dp_dsc_get_output_bpp(dev_priv,
2295 pipe_config->port_clock,
2296 pipe_config->lane_count,
2297 adjusted_mode->crtc_clock,
2298 adjusted_mode->crtc_hdisplay);
2299 dsc_dp_slice_count =
2300 intel_dp_dsc_get_slice_count(intel_dp,
2301 adjusted_mode->crtc_clock,
2302 adjusted_mode->crtc_hdisplay);
2303 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2304 drm_dbg_kms(&dev_priv->drm,
2305 "Compressed BPP/Slice Count not supported\n");
2306 return -EINVAL;
2307 }
2308 pipe_config->dsc.compressed_bpp = min_t(u16,
2309 dsc_max_output_bpp >> 4,
2310 pipe_config->pipe_bpp);
2311 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2312 }
2313 /*
2314 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2315 * is greater than the maximum Cdclock and if slice count is even
2316 * then we need to use 2 VDSC instances.
2317 */
2318 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2319 if (pipe_config->dsc.slice_count > 1) {
2320 pipe_config->dsc.dsc_split = true;
2321 } else {
2322 drm_dbg_kms(&dev_priv->drm,
2323 "Cannot split stream to use 2 VDSC instances\n");
2324 return -EINVAL;
2325 }
2326 }
2327
2328 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2329 if (ret < 0) {
2330 drm_dbg_kms(&dev_priv->drm,
2331 "Cannot compute valid DSC parameters for Input Bpp = %d "
2332 "Compressed BPP = %d\n",
2333 pipe_config->pipe_bpp,
2334 pipe_config->dsc.compressed_bpp);
2335 return ret;
2336 }
2337
2338 pipe_config->dsc.compression_enable = true;
2339 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2340 "Compressed Bpp = %d Slice Count = %d\n",
2341 pipe_config->pipe_bpp,
2342 pipe_config->dsc.compressed_bpp,
2343 pipe_config->dsc.slice_count);
2344
2345 return 0;
2346 }
2347
intel_dp_min_bpp(const struct intel_crtc_state * crtc_state)2348 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2349 {
2350 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2351 return 6 * 3;
2352 else
2353 return 8 * 3;
2354 }
2355
2356 static int
intel_dp_compute_link_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2357 intel_dp_compute_link_config(struct intel_encoder *encoder,
2358 struct intel_crtc_state *pipe_config,
2359 struct drm_connector_state *conn_state)
2360 {
2361 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2362 const struct drm_display_mode *adjusted_mode =
2363 &pipe_config->hw.adjusted_mode;
2364 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2365 struct link_config_limits limits;
2366 int common_len;
2367 int ret;
2368
2369 common_len = intel_dp_common_len_rate_limit(intel_dp,
2370 intel_dp->max_link_rate);
2371
2372 /* No common link rates between source and sink */
2373 drm_WARN_ON(encoder->base.dev, common_len <= 0);
2374
2375 limits.min_clock = 0;
2376 limits.max_clock = common_len - 1;
2377
2378 limits.min_lane_count = 1;
2379 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2380
2381 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2382 limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2383
2384 if (intel_dp_is_edp(intel_dp)) {
2385 /*
2386 * Use the maximum clock and number of lanes the eDP panel
2387 * advertizes being capable of. The panels are generally
2388 * designed to support only a single clock and lane
2389 * configuration, and typically these values correspond to the
2390 * native resolution of the panel.
2391 */
2392 limits.min_lane_count = limits.max_lane_count;
2393 limits.min_clock = limits.max_clock;
2394 }
2395
2396 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2397
2398 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2399 "max rate %d max bpp %d pixel clock %iKHz\n",
2400 limits.max_lane_count,
2401 intel_dp->common_rates[limits.max_clock],
2402 limits.max_bpp, adjusted_mode->crtc_clock);
2403
2404 /*
2405 * Optimize for slow and wide. This is the place to add alternative
2406 * optimization policy.
2407 */
2408 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2409
2410 /* enable compression if the mode doesn't fit available BW */
2411 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2412 if (ret || intel_dp->force_dsc_en) {
2413 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2414 conn_state, &limits);
2415 if (ret < 0)
2416 return ret;
2417 }
2418
2419 if (pipe_config->dsc.compression_enable) {
2420 drm_dbg_kms(&i915->drm,
2421 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2422 pipe_config->lane_count, pipe_config->port_clock,
2423 pipe_config->pipe_bpp,
2424 pipe_config->dsc.compressed_bpp);
2425
2426 drm_dbg_kms(&i915->drm,
2427 "DP link rate required %i available %i\n",
2428 intel_dp_link_required(adjusted_mode->crtc_clock,
2429 pipe_config->dsc.compressed_bpp),
2430 intel_dp_max_data_rate(pipe_config->port_clock,
2431 pipe_config->lane_count));
2432 } else {
2433 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2434 pipe_config->lane_count, pipe_config->port_clock,
2435 pipe_config->pipe_bpp);
2436
2437 drm_dbg_kms(&i915->drm,
2438 "DP link rate required %i available %i\n",
2439 intel_dp_link_required(adjusted_mode->crtc_clock,
2440 pipe_config->pipe_bpp),
2441 intel_dp_max_data_rate(pipe_config->port_clock,
2442 pipe_config->lane_count));
2443 }
2444 return 0;
2445 }
2446
2447 static int
intel_dp_ycbcr420_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2448 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2449 struct intel_crtc_state *crtc_state,
2450 const struct drm_connector_state *conn_state)
2451 {
2452 struct drm_connector *connector = conn_state->connector;
2453 const struct drm_display_info *info = &connector->display_info;
2454 const struct drm_display_mode *adjusted_mode =
2455 &crtc_state->hw.adjusted_mode;
2456
2457 if (!connector->ycbcr_420_allowed)
2458 return 0;
2459
2460 if (!drm_mode_is_420_only(info, adjusted_mode))
2461 return 0;
2462
2463 if (intel_dp->dfp.ycbcr_444_to_420) {
2464 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
2465 return 0;
2466 }
2467
2468 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2469
2470 return intel_pch_panel_fitting(crtc_state, conn_state);
2471 }
2472
intel_dp_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2473 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2474 const struct drm_connector_state *conn_state)
2475 {
2476 const struct intel_digital_connector_state *intel_conn_state =
2477 to_intel_digital_connector_state(conn_state);
2478 const struct drm_display_mode *adjusted_mode =
2479 &crtc_state->hw.adjusted_mode;
2480
2481 /*
2482 * Our YCbCr output is always limited range.
2483 * crtc_state->limited_color_range only applies to RGB,
2484 * and it must never be set for YCbCr or we risk setting
2485 * some conflicting bits in PIPECONF which will mess up
2486 * the colors on the monitor.
2487 */
2488 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2489 return false;
2490
2491 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2492 /*
2493 * See:
2494 * CEA-861-E - 5.1 Default Encoding Parameters
2495 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2496 */
2497 return crtc_state->pipe_bpp != 18 &&
2498 drm_default_rgb_quant_range(adjusted_mode) ==
2499 HDMI_QUANTIZATION_RANGE_LIMITED;
2500 } else {
2501 return intel_conn_state->broadcast_rgb ==
2502 INTEL_BROADCAST_RGB_LIMITED;
2503 }
2504 }
2505
intel_dp_port_has_audio(struct drm_i915_private * dev_priv,enum port port)2506 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2507 enum port port)
2508 {
2509 if (IS_G4X(dev_priv))
2510 return false;
2511 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2512 return false;
2513
2514 return true;
2515 }
2516
intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2517 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2518 const struct drm_connector_state *conn_state,
2519 struct drm_dp_vsc_sdp *vsc)
2520 {
2521 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2522 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2523
2524 /*
2525 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2526 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2527 * Colorimetry Format indication.
2528 */
2529 vsc->revision = 0x5;
2530 vsc->length = 0x13;
2531
2532 /* DP 1.4a spec, Table 2-120 */
2533 switch (crtc_state->output_format) {
2534 case INTEL_OUTPUT_FORMAT_YCBCR444:
2535 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2536 break;
2537 case INTEL_OUTPUT_FORMAT_YCBCR420:
2538 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2539 break;
2540 case INTEL_OUTPUT_FORMAT_RGB:
2541 default:
2542 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2543 }
2544
2545 switch (conn_state->colorspace) {
2546 case DRM_MODE_COLORIMETRY_BT709_YCC:
2547 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2548 break;
2549 case DRM_MODE_COLORIMETRY_XVYCC_601:
2550 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2551 break;
2552 case DRM_MODE_COLORIMETRY_XVYCC_709:
2553 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2554 break;
2555 case DRM_MODE_COLORIMETRY_SYCC_601:
2556 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2557 break;
2558 case DRM_MODE_COLORIMETRY_OPYCC_601:
2559 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2560 break;
2561 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2562 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2563 break;
2564 case DRM_MODE_COLORIMETRY_BT2020_RGB:
2565 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2566 break;
2567 case DRM_MODE_COLORIMETRY_BT2020_YCC:
2568 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2569 break;
2570 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2571 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2572 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2573 break;
2574 default:
2575 /*
2576 * RGB->YCBCR color conversion uses the BT.709
2577 * color space.
2578 */
2579 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2580 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2581 else
2582 vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2583 break;
2584 }
2585
2586 vsc->bpc = crtc_state->pipe_bpp / 3;
2587
2588 /* only RGB pixelformat supports 6 bpc */
2589 drm_WARN_ON(&dev_priv->drm,
2590 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2591
2592 /* all YCbCr are always limited range */
2593 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2594 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2595 }
2596
intel_dp_compute_vsc_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2597 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2598 struct intel_crtc_state *crtc_state,
2599 const struct drm_connector_state *conn_state)
2600 {
2601 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2602
2603 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2604 if (crtc_state->has_psr)
2605 return;
2606
2607 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2608 return;
2609
2610 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2611 vsc->sdp_type = DP_SDP_VSC;
2612 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2613 &crtc_state->infoframes.vsc);
2614 }
2615
intel_dp_compute_psr_vsc_sdp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2616 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2617 const struct intel_crtc_state *crtc_state,
2618 const struct drm_connector_state *conn_state,
2619 struct drm_dp_vsc_sdp *vsc)
2620 {
2621 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2622
2623 vsc->sdp_type = DP_SDP_VSC;
2624
2625 if (dev_priv->psr.psr2_enabled) {
2626 if (dev_priv->psr.colorimetry_support &&
2627 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2628 /* [PSR2, +Colorimetry] */
2629 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2630 vsc);
2631 } else {
2632 /*
2633 * [PSR2, -Colorimetry]
2634 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2635 * 3D stereo + PSR/PSR2 + Y-coordinate.
2636 */
2637 vsc->revision = 0x4;
2638 vsc->length = 0xe;
2639 }
2640 } else {
2641 /*
2642 * [PSR1]
2643 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2644 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2645 * higher).
2646 */
2647 vsc->revision = 0x2;
2648 vsc->length = 0x8;
2649 }
2650 }
2651
2652 static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2653 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2654 struct intel_crtc_state *crtc_state,
2655 const struct drm_connector_state *conn_state)
2656 {
2657 int ret;
2658 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2659 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2660
2661 if (!conn_state->hdr_output_metadata)
2662 return;
2663
2664 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2665
2666 if (ret) {
2667 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2668 return;
2669 }
2670
2671 crtc_state->infoframes.enable |=
2672 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2673 }
2674
2675 static void
intel_dp_drrs_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,int output_bpp,bool constant_n)2676 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2677 struct intel_crtc_state *pipe_config,
2678 int output_bpp, bool constant_n)
2679 {
2680 struct intel_connector *intel_connector = intel_dp->attached_connector;
2681 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2682
2683 /*
2684 * DRRS and PSR can't be enable together, so giving preference to PSR
2685 * as it allows more power-savings by complete shutting down display,
2686 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2687 * after intel_psr_compute_config().
2688 */
2689 if (pipe_config->has_psr)
2690 return;
2691
2692 if (!intel_connector->panel.downclock_mode ||
2693 dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2694 return;
2695
2696 pipe_config->has_drrs = true;
2697 intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2698 intel_connector->panel.downclock_mode->clock,
2699 pipe_config->port_clock, &pipe_config->dp_m2_n2,
2700 constant_n, pipe_config->fec_enable);
2701 }
2702
2703 int
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2704 intel_dp_compute_config(struct intel_encoder *encoder,
2705 struct intel_crtc_state *pipe_config,
2706 struct drm_connector_state *conn_state)
2707 {
2708 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2709 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2710 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2711 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2712 enum port port = encoder->port;
2713 struct intel_connector *intel_connector = intel_dp->attached_connector;
2714 struct intel_digital_connector_state *intel_conn_state =
2715 to_intel_digital_connector_state(conn_state);
2716 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2717 DP_DPCD_QUIRK_CONSTANT_N);
2718 int ret = 0, output_bpp;
2719
2720 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2721 pipe_config->has_pch_encoder = true;
2722
2723 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2724
2725 if (lspcon->active)
2726 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2727 else
2728 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2729 conn_state);
2730 if (ret)
2731 return ret;
2732
2733 if (!intel_dp_port_has_audio(dev_priv, port))
2734 pipe_config->has_audio = false;
2735 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2736 pipe_config->has_audio = intel_dp->has_audio;
2737 else
2738 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2739
2740 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2741 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2742 adjusted_mode);
2743
2744 if (HAS_GMCH(dev_priv))
2745 ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2746 else
2747 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2748 if (ret)
2749 return ret;
2750 }
2751
2752 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2753 return -EINVAL;
2754
2755 if (HAS_GMCH(dev_priv) &&
2756 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2757 return -EINVAL;
2758
2759 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2760 return -EINVAL;
2761
2762 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2763 return -EINVAL;
2764
2765 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2766 if (ret < 0)
2767 return ret;
2768
2769 pipe_config->limited_color_range =
2770 intel_dp_limited_color_range(pipe_config, conn_state);
2771
2772 if (pipe_config->dsc.compression_enable)
2773 output_bpp = pipe_config->dsc.compressed_bpp;
2774 else
2775 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2776
2777 intel_link_compute_m_n(output_bpp,
2778 pipe_config->lane_count,
2779 adjusted_mode->crtc_clock,
2780 pipe_config->port_clock,
2781 &pipe_config->dp_m_n,
2782 constant_n, pipe_config->fec_enable);
2783
2784 if (!HAS_DDI(dev_priv))
2785 intel_dp_set_clock(encoder, pipe_config);
2786
2787 intel_psr_compute_config(intel_dp, pipe_config);
2788 intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2789 constant_n);
2790 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2791 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2792
2793 return 0;
2794 }
2795
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,u8 lane_count,bool link_mst)2796 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2797 int link_rate, u8 lane_count,
2798 bool link_mst)
2799 {
2800 intel_dp->link_trained = false;
2801 intel_dp->link_rate = link_rate;
2802 intel_dp->lane_count = lane_count;
2803 intel_dp->link_mst = link_mst;
2804 }
2805
intel_dp_prepare(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)2806 static void intel_dp_prepare(struct intel_encoder *encoder,
2807 const struct intel_crtc_state *pipe_config)
2808 {
2809 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2810 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2811 enum port port = encoder->port;
2812 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2813 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2814
2815 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2816 pipe_config->lane_count,
2817 intel_crtc_has_type(pipe_config,
2818 INTEL_OUTPUT_DP_MST));
2819
2820 /*
2821 * There are four kinds of DP registers:
2822 *
2823 * IBX PCH
2824 * SNB CPU
2825 * IVB CPU
2826 * CPT PCH
2827 *
2828 * IBX PCH and CPU are the same for almost everything,
2829 * except that the CPU DP PLL is configured in this
2830 * register
2831 *
2832 * CPT PCH is quite different, having many bits moved
2833 * to the TRANS_DP_CTL register instead. That
2834 * configuration happens (oddly) in ilk_pch_enable
2835 */
2836
2837 /* Preserve the BIOS-computed detected bit. This is
2838 * supposed to be read-only.
2839 */
2840 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2841
2842 /* Handle DP bits in common between all three register formats */
2843 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2844 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2845
2846 /* Split out the IBX/CPU vs CPT settings */
2847
2848 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2849 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2850 intel_dp->DP |= DP_SYNC_HS_HIGH;
2851 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2852 intel_dp->DP |= DP_SYNC_VS_HIGH;
2853 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2854
2855 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2856 intel_dp->DP |= DP_ENHANCED_FRAMING;
2857
2858 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2859 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2860 u32 trans_dp;
2861
2862 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2863
2864 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2865 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2866 trans_dp |= TRANS_DP_ENH_FRAMING;
2867 else
2868 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2869 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2870 } else {
2871 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2872 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2873
2874 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2875 intel_dp->DP |= DP_SYNC_HS_HIGH;
2876 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2877 intel_dp->DP |= DP_SYNC_VS_HIGH;
2878 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2879
2880 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2881 intel_dp->DP |= DP_ENHANCED_FRAMING;
2882
2883 if (IS_CHERRYVIEW(dev_priv))
2884 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2885 else
2886 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2887 }
2888 }
2889
2890 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2891 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2892
2893 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2894 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2895
2896 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2897 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2898
2899 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2900
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)2901 static void wait_panel_status(struct intel_dp *intel_dp,
2902 u32 mask,
2903 u32 value)
2904 {
2905 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2906 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2907
2908 lockdep_assert_held(&dev_priv->pps_mutex);
2909
2910 intel_pps_verify_state(intel_dp);
2911
2912 pp_stat_reg = _pp_stat_reg(intel_dp);
2913 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2914
2915 drm_dbg_kms(&dev_priv->drm,
2916 "mask %08x value %08x status %08x control %08x\n",
2917 mask, value,
2918 intel_de_read(dev_priv, pp_stat_reg),
2919 intel_de_read(dev_priv, pp_ctrl_reg));
2920
2921 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2922 mask, value, 5000))
2923 drm_err(&dev_priv->drm,
2924 "Panel status timeout: status %08x control %08x\n",
2925 intel_de_read(dev_priv, pp_stat_reg),
2926 intel_de_read(dev_priv, pp_ctrl_reg));
2927
2928 drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2929 }
2930
wait_panel_on(struct intel_dp * intel_dp)2931 static void wait_panel_on(struct intel_dp *intel_dp)
2932 {
2933 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2934
2935 drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2936 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2937 }
2938
wait_panel_off(struct intel_dp * intel_dp)2939 static void wait_panel_off(struct intel_dp *intel_dp)
2940 {
2941 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2942
2943 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2944 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2945 }
2946
wait_panel_power_cycle(struct intel_dp * intel_dp)2947 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2948 {
2949 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2950 ktime_t panel_power_on_time;
2951 s64 panel_power_off_duration;
2952
2953 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2954
2955 /* take the difference of currrent time and panel power off time
2956 * and then make panel wait for t11_t12 if needed. */
2957 panel_power_on_time = ktime_get_boottime();
2958 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2959
2960 /* When we disable the VDD override bit last we have to do the manual
2961 * wait. */
2962 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2963 wait_remaining_ms_from_jiffies(jiffies,
2964 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2965
2966 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2967 }
2968
wait_backlight_on(struct intel_dp * intel_dp)2969 static void wait_backlight_on(struct intel_dp *intel_dp)
2970 {
2971 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2972 intel_dp->backlight_on_delay);
2973 }
2974
edp_wait_backlight_off(struct intel_dp * intel_dp)2975 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2976 {
2977 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2978 intel_dp->backlight_off_delay);
2979 }
2980
2981 /* Read the current pp_control value, unlocking the register if it
2982 * is locked
2983 */
2984
ilk_get_pp_control(struct intel_dp * intel_dp)2985 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2986 {
2987 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2988 u32 control;
2989
2990 lockdep_assert_held(&dev_priv->pps_mutex);
2991
2992 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2993 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2994 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2995 control &= ~PANEL_UNLOCK_MASK;
2996 control |= PANEL_UNLOCK_REGS;
2997 }
2998 return control;
2999 }
3000
3001 /*
3002 * Must be paired with edp_panel_vdd_off().
3003 * Must hold pps_mutex around the whole on/off sequence.
3004 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3005 */
edp_panel_vdd_on(struct intel_dp * intel_dp)3006 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
3007 {
3008 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3009 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3010 u32 pp;
3011 i915_reg_t pp_stat_reg, pp_ctrl_reg;
3012 bool need_to_disable = !intel_dp->want_panel_vdd;
3013
3014 lockdep_assert_held(&dev_priv->pps_mutex);
3015
3016 if (!intel_dp_is_edp(intel_dp))
3017 return false;
3018
3019 cancel_delayed_work(&intel_dp->panel_vdd_work);
3020 intel_dp->want_panel_vdd = true;
3021
3022 if (edp_have_panel_vdd(intel_dp))
3023 return need_to_disable;
3024
3025 intel_display_power_get(dev_priv,
3026 intel_aux_power_domain(dig_port));
3027
3028 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3029 dig_port->base.base.base.id,
3030 dig_port->base.base.name);
3031
3032 if (!edp_have_panel_power(intel_dp))
3033 wait_panel_power_cycle(intel_dp);
3034
3035 pp = ilk_get_pp_control(intel_dp);
3036 pp |= EDP_FORCE_VDD;
3037
3038 pp_stat_reg = _pp_stat_reg(intel_dp);
3039 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3040
3041 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3042 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3043 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3044 intel_de_read(dev_priv, pp_stat_reg),
3045 intel_de_read(dev_priv, pp_ctrl_reg));
3046 /*
3047 * If the panel wasn't on, delay before accessing aux channel
3048 */
3049 if (!edp_have_panel_power(intel_dp)) {
3050 drm_dbg_kms(&dev_priv->drm,
3051 "[ENCODER:%d:%s] panel power wasn't enabled\n",
3052 dig_port->base.base.base.id,
3053 dig_port->base.base.name);
3054 msleep(intel_dp->panel_power_up_delay);
3055 }
3056
3057 return need_to_disable;
3058 }
3059
3060 /*
3061 * Must be paired with intel_edp_panel_vdd_off() or
3062 * intel_edp_panel_off().
3063 * Nested calls to these functions are not allowed since
3064 * we drop the lock. Caller must use some higher level
3065 * locking to prevent nested calls from other threads.
3066 */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)3067 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3068 {
3069 intel_wakeref_t wakeref;
3070 bool vdd;
3071
3072 if (!intel_dp_is_edp(intel_dp))
3073 return;
3074
3075 vdd = false;
3076 with_pps_lock(intel_dp, wakeref)
3077 vdd = edp_panel_vdd_on(intel_dp);
3078 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3079 dp_to_dig_port(intel_dp)->base.base.base.id,
3080 dp_to_dig_port(intel_dp)->base.base.name);
3081 }
3082
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)3083 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3084 {
3085 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3086 struct intel_digital_port *dig_port =
3087 dp_to_dig_port(intel_dp);
3088 u32 pp;
3089 i915_reg_t pp_stat_reg, pp_ctrl_reg;
3090
3091 lockdep_assert_held(&dev_priv->pps_mutex);
3092
3093 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3094
3095 if (!edp_have_panel_vdd(intel_dp))
3096 return;
3097
3098 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3099 dig_port->base.base.base.id,
3100 dig_port->base.base.name);
3101
3102 pp = ilk_get_pp_control(intel_dp);
3103 pp &= ~EDP_FORCE_VDD;
3104
3105 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3106 pp_stat_reg = _pp_stat_reg(intel_dp);
3107
3108 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3109 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3110
3111 /* Make sure sequencer is idle before allowing subsequent activity */
3112 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3113 intel_de_read(dev_priv, pp_stat_reg),
3114 intel_de_read(dev_priv, pp_ctrl_reg));
3115
3116 if ((pp & PANEL_POWER_ON) == 0)
3117 intel_dp->panel_power_off_time = ktime_get_boottime();
3118
3119 intel_display_power_put_unchecked(dev_priv,
3120 intel_aux_power_domain(dig_port));
3121 }
3122
edp_panel_vdd_work(struct work_struct * __work)3123 static void edp_panel_vdd_work(struct work_struct *__work)
3124 {
3125 struct intel_dp *intel_dp =
3126 container_of(to_delayed_work(__work),
3127 struct intel_dp, panel_vdd_work);
3128 intel_wakeref_t wakeref;
3129
3130 with_pps_lock(intel_dp, wakeref) {
3131 if (!intel_dp->want_panel_vdd)
3132 edp_panel_vdd_off_sync(intel_dp);
3133 }
3134 }
3135
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)3136 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3137 {
3138 unsigned long delay;
3139
3140 /*
3141 * Queue the timer to fire a long time from now (relative to the power
3142 * down delay) to keep the panel power up across a sequence of
3143 * operations.
3144 */
3145 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3146 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3147 }
3148
3149 /*
3150 * Must be paired with edp_panel_vdd_on().
3151 * Must hold pps_mutex around the whole on/off sequence.
3152 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3153 */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)3154 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3155 {
3156 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3157
3158 lockdep_assert_held(&dev_priv->pps_mutex);
3159
3160 if (!intel_dp_is_edp(intel_dp))
3161 return;
3162
3163 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3164 dp_to_dig_port(intel_dp)->base.base.base.id,
3165 dp_to_dig_port(intel_dp)->base.base.name);
3166
3167 intel_dp->want_panel_vdd = false;
3168
3169 if (sync)
3170 edp_panel_vdd_off_sync(intel_dp);
3171 else
3172 edp_panel_vdd_schedule_off(intel_dp);
3173 }
3174
edp_panel_on(struct intel_dp * intel_dp)3175 static void edp_panel_on(struct intel_dp *intel_dp)
3176 {
3177 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3178 u32 pp;
3179 i915_reg_t pp_ctrl_reg;
3180
3181 lockdep_assert_held(&dev_priv->pps_mutex);
3182
3183 if (!intel_dp_is_edp(intel_dp))
3184 return;
3185
3186 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3187 dp_to_dig_port(intel_dp)->base.base.base.id,
3188 dp_to_dig_port(intel_dp)->base.base.name);
3189
3190 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3191 "[ENCODER:%d:%s] panel power already on\n",
3192 dp_to_dig_port(intel_dp)->base.base.base.id,
3193 dp_to_dig_port(intel_dp)->base.base.name))
3194 return;
3195
3196 wait_panel_power_cycle(intel_dp);
3197
3198 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3199 pp = ilk_get_pp_control(intel_dp);
3200 if (IS_GEN(dev_priv, 5)) {
3201 /* ILK workaround: disable reset around power sequence */
3202 pp &= ~PANEL_POWER_RESET;
3203 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3204 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3205 }
3206
3207 pp |= PANEL_POWER_ON;
3208 if (!IS_GEN(dev_priv, 5))
3209 pp |= PANEL_POWER_RESET;
3210
3211 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3212 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3213
3214 wait_panel_on(intel_dp);
3215 intel_dp->last_power_on = jiffies;
3216
3217 if (IS_GEN(dev_priv, 5)) {
3218 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3219 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3220 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3221 }
3222 }
3223
intel_edp_panel_on(struct intel_dp * intel_dp)3224 void intel_edp_panel_on(struct intel_dp *intel_dp)
3225 {
3226 intel_wakeref_t wakeref;
3227
3228 if (!intel_dp_is_edp(intel_dp))
3229 return;
3230
3231 with_pps_lock(intel_dp, wakeref)
3232 edp_panel_on(intel_dp);
3233 }
3234
3235
edp_panel_off(struct intel_dp * intel_dp)3236 static void edp_panel_off(struct intel_dp *intel_dp)
3237 {
3238 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3239 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3240 u32 pp;
3241 i915_reg_t pp_ctrl_reg;
3242
3243 lockdep_assert_held(&dev_priv->pps_mutex);
3244
3245 if (!intel_dp_is_edp(intel_dp))
3246 return;
3247
3248 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3249 dig_port->base.base.base.id, dig_port->base.base.name);
3250
3251 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3252 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3253 dig_port->base.base.base.id, dig_port->base.base.name);
3254
3255 pp = ilk_get_pp_control(intel_dp);
3256 /* We need to switch off panel power _and_ force vdd, for otherwise some
3257 * panels get very unhappy and cease to work. */
3258 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3259 EDP_BLC_ENABLE);
3260
3261 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3262
3263 intel_dp->want_panel_vdd = false;
3264
3265 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3266 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3267
3268 wait_panel_off(intel_dp);
3269 intel_dp->panel_power_off_time = ktime_get_boottime();
3270
3271 /* We got a reference when we enabled the VDD. */
3272 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3273 }
3274
intel_edp_panel_off(struct intel_dp * intel_dp)3275 void intel_edp_panel_off(struct intel_dp *intel_dp)
3276 {
3277 intel_wakeref_t wakeref;
3278
3279 if (!intel_dp_is_edp(intel_dp))
3280 return;
3281
3282 with_pps_lock(intel_dp, wakeref)
3283 edp_panel_off(intel_dp);
3284 }
3285
3286 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)3287 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3288 {
3289 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3290 intel_wakeref_t wakeref;
3291
3292 /*
3293 * If we enable the backlight right away following a panel power
3294 * on, we may see slight flicker as the panel syncs with the eDP
3295 * link. So delay a bit to make sure the image is solid before
3296 * allowing it to appear.
3297 */
3298 wait_backlight_on(intel_dp);
3299
3300 with_pps_lock(intel_dp, wakeref) {
3301 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3302 u32 pp;
3303
3304 pp = ilk_get_pp_control(intel_dp);
3305 pp |= EDP_BLC_ENABLE;
3306
3307 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3308 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3309 }
3310 }
3311
3312 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)3313 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3314 const struct drm_connector_state *conn_state)
3315 {
3316 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3317 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3318
3319 if (!intel_dp_is_edp(intel_dp))
3320 return;
3321
3322 drm_dbg_kms(&i915->drm, "\n");
3323
3324 intel_panel_enable_backlight(crtc_state, conn_state);
3325 _intel_edp_backlight_on(intel_dp);
3326 }
3327
3328 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)3329 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3330 {
3331 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3332 intel_wakeref_t wakeref;
3333
3334 if (!intel_dp_is_edp(intel_dp))
3335 return;
3336
3337 with_pps_lock(intel_dp, wakeref) {
3338 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3339 u32 pp;
3340
3341 pp = ilk_get_pp_control(intel_dp);
3342 pp &= ~EDP_BLC_ENABLE;
3343
3344 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3345 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3346 }
3347
3348 intel_dp->last_backlight_off = jiffies;
3349 edp_wait_backlight_off(intel_dp);
3350 }
3351
3352 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(const struct drm_connector_state * old_conn_state)3353 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3354 {
3355 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3356 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3357
3358 if (!intel_dp_is_edp(intel_dp))
3359 return;
3360
3361 drm_dbg_kms(&i915->drm, "\n");
3362
3363 _intel_edp_backlight_off(intel_dp);
3364 intel_panel_disable_backlight(old_conn_state);
3365 }
3366
3367 /*
3368 * Hook for controlling the panel power control backlight through the bl_power
3369 * sysfs attribute. Take care to handle multiple calls.
3370 */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)3371 static void intel_edp_backlight_power(struct intel_connector *connector,
3372 bool enable)
3373 {
3374 struct drm_i915_private *i915 = to_i915(connector->base.dev);
3375 struct intel_dp *intel_dp = intel_attached_dp(connector);
3376 intel_wakeref_t wakeref;
3377 bool is_enabled;
3378
3379 is_enabled = false;
3380 with_pps_lock(intel_dp, wakeref)
3381 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3382 if (is_enabled == enable)
3383 return;
3384
3385 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3386 enable ? "enable" : "disable");
3387
3388 if (enable)
3389 _intel_edp_backlight_on(intel_dp);
3390 else
3391 _intel_edp_backlight_off(intel_dp);
3392 }
3393
assert_dp_port(struct intel_dp * intel_dp,bool state)3394 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3395 {
3396 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3397 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3398 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3399
3400 I915_STATE_WARN(cur_state != state,
3401 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3402 dig_port->base.base.base.id, dig_port->base.base.name,
3403 onoff(state), onoff(cur_state));
3404 }
3405 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3406
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)3407 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3408 {
3409 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3410
3411 I915_STATE_WARN(cur_state != state,
3412 "eDP PLL state assertion failure (expected %s, current %s)\n",
3413 onoff(state), onoff(cur_state));
3414 }
3415 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3416 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3417
ilk_edp_pll_on(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)3418 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3419 const struct intel_crtc_state *pipe_config)
3420 {
3421 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3422 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3423
3424 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3425 assert_dp_port_disabled(intel_dp);
3426 assert_edp_pll_disabled(dev_priv);
3427
3428 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3429 pipe_config->port_clock);
3430
3431 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3432
3433 if (pipe_config->port_clock == 162000)
3434 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3435 else
3436 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3437
3438 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3439 intel_de_posting_read(dev_priv, DP_A);
3440 udelay(500);
3441
3442 /*
3443 * [DevILK] Work around required when enabling DP PLL
3444 * while a pipe is enabled going to FDI:
3445 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3446 * 2. Program DP PLL enable
3447 */
3448 if (IS_GEN(dev_priv, 5))
3449 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3450
3451 intel_dp->DP |= DP_PLL_ENABLE;
3452
3453 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3454 intel_de_posting_read(dev_priv, DP_A);
3455 udelay(200);
3456 }
3457
ilk_edp_pll_off(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3458 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3459 const struct intel_crtc_state *old_crtc_state)
3460 {
3461 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3462 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3463
3464 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3465 assert_dp_port_disabled(intel_dp);
3466 assert_edp_pll_enabled(dev_priv);
3467
3468 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3469
3470 intel_dp->DP &= ~DP_PLL_ENABLE;
3471
3472 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3473 intel_de_posting_read(dev_priv, DP_A);
3474 udelay(200);
3475 }
3476
downstream_hpd_needs_d0(struct intel_dp * intel_dp)3477 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3478 {
3479 /*
3480 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3481 * be capable of signalling downstream hpd with a long pulse.
3482 * Whether or not that means D3 is safe to use is not clear,
3483 * but let's assume so until proven otherwise.
3484 *
3485 * FIXME should really check all downstream ports...
3486 */
3487 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3488 drm_dp_is_branch(intel_dp->dpcd) &&
3489 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3490 }
3491
intel_dp_sink_set_decompression_state(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,bool enable)3492 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3493 const struct intel_crtc_state *crtc_state,
3494 bool enable)
3495 {
3496 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3497 int ret;
3498
3499 if (!crtc_state->dsc.compression_enable)
3500 return;
3501
3502 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3503 enable ? DP_DECOMPRESSION_EN : 0);
3504 if (ret < 0)
3505 drm_dbg_kms(&i915->drm,
3506 "Failed to %s sink decompression state\n",
3507 enable ? "enable" : "disable");
3508 }
3509
3510 /* If the device supports it, try to set the power state appropriately */
intel_dp_set_power(struct intel_dp * intel_dp,u8 mode)3511 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode)
3512 {
3513 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3514 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3515 int ret, i;
3516
3517 /* Should have a valid DPCD by this point */
3518 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3519 return;
3520
3521 if (mode != DP_SET_POWER_D0) {
3522 if (downstream_hpd_needs_d0(intel_dp))
3523 return;
3524
3525 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3526 } else {
3527 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3528
3529 /*
3530 * When turning on, we need to retry for 1ms to give the sink
3531 * time to wake up.
3532 */
3533 for (i = 0; i < 3; i++) {
3534 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3535 if (ret == 1)
3536 break;
3537 msleep(1);
3538 }
3539
3540 if (ret == 1 && lspcon->active)
3541 lspcon_wait_pcon_mode(lspcon);
3542 }
3543
3544 if (ret != 1)
3545 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n",
3546 encoder->base.base.id, encoder->base.name,
3547 mode == DP_SET_POWER_D0 ? "D0" : "D3");
3548 }
3549
cpt_dp_port_selected(struct drm_i915_private * dev_priv,enum port port,enum pipe * pipe)3550 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3551 enum port port, enum pipe *pipe)
3552 {
3553 enum pipe p;
3554
3555 for_each_pipe(dev_priv, p) {
3556 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3557
3558 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3559 *pipe = p;
3560 return true;
3561 }
3562 }
3563
3564 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3565 port_name(port));
3566
3567 /* must initialize pipe to something for the asserts */
3568 *pipe = PIPE_A;
3569
3570 return false;
3571 }
3572
intel_dp_port_enabled(struct drm_i915_private * dev_priv,i915_reg_t dp_reg,enum port port,enum pipe * pipe)3573 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3574 i915_reg_t dp_reg, enum port port,
3575 enum pipe *pipe)
3576 {
3577 bool ret;
3578 u32 val;
3579
3580 val = intel_de_read(dev_priv, dp_reg);
3581
3582 ret = val & DP_PORT_EN;
3583
3584 /* asserts want to know the pipe even if the port is disabled */
3585 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3586 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3587 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3588 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3589 else if (IS_CHERRYVIEW(dev_priv))
3590 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3591 else
3592 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3593
3594 return ret;
3595 }
3596
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)3597 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3598 enum pipe *pipe)
3599 {
3600 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3601 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3602 intel_wakeref_t wakeref;
3603 bool ret;
3604
3605 wakeref = intel_display_power_get_if_enabled(dev_priv,
3606 encoder->power_domain);
3607 if (!wakeref)
3608 return false;
3609
3610 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3611 encoder->port, pipe);
3612
3613 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3614
3615 return ret;
3616 }
3617
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)3618 static void intel_dp_get_config(struct intel_encoder *encoder,
3619 struct intel_crtc_state *pipe_config)
3620 {
3621 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3622 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3623 u32 tmp, flags = 0;
3624 enum port port = encoder->port;
3625 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3626
3627 if (encoder->type == INTEL_OUTPUT_EDP)
3628 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3629 else
3630 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3631
3632 tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3633
3634 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3635
3636 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3637 u32 trans_dp = intel_de_read(dev_priv,
3638 TRANS_DP_CTL(crtc->pipe));
3639
3640 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3641 flags |= DRM_MODE_FLAG_PHSYNC;
3642 else
3643 flags |= DRM_MODE_FLAG_NHSYNC;
3644
3645 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3646 flags |= DRM_MODE_FLAG_PVSYNC;
3647 else
3648 flags |= DRM_MODE_FLAG_NVSYNC;
3649 } else {
3650 if (tmp & DP_SYNC_HS_HIGH)
3651 flags |= DRM_MODE_FLAG_PHSYNC;
3652 else
3653 flags |= DRM_MODE_FLAG_NHSYNC;
3654
3655 if (tmp & DP_SYNC_VS_HIGH)
3656 flags |= DRM_MODE_FLAG_PVSYNC;
3657 else
3658 flags |= DRM_MODE_FLAG_NVSYNC;
3659 }
3660
3661 pipe_config->hw.adjusted_mode.flags |= flags;
3662
3663 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3664 pipe_config->limited_color_range = true;
3665
3666 pipe_config->lane_count =
3667 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3668
3669 intel_dp_get_m_n(crtc, pipe_config);
3670
3671 if (port == PORT_A) {
3672 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3673 pipe_config->port_clock = 162000;
3674 else
3675 pipe_config->port_clock = 270000;
3676 }
3677
3678 pipe_config->hw.adjusted_mode.crtc_clock =
3679 intel_dotclock_calculate(pipe_config->port_clock,
3680 &pipe_config->dp_m_n);
3681
3682 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3683 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3684 /*
3685 * This is a big fat ugly hack.
3686 *
3687 * Some machines in UEFI boot mode provide us a VBT that has 18
3688 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3689 * unknown we fail to light up. Yet the same BIOS boots up with
3690 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3691 * max, not what it tells us to use.
3692 *
3693 * Note: This will still be broken if the eDP panel is not lit
3694 * up by the BIOS, and thus we can't get the mode at module
3695 * load.
3696 */
3697 drm_dbg_kms(&dev_priv->drm,
3698 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3699 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3700 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3701 }
3702 }
3703
intel_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3704 static void intel_disable_dp(struct intel_atomic_state *state,
3705 struct intel_encoder *encoder,
3706 const struct intel_crtc_state *old_crtc_state,
3707 const struct drm_connector_state *old_conn_state)
3708 {
3709 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3710
3711 intel_dp->link_trained = false;
3712
3713 if (old_crtc_state->has_audio)
3714 intel_audio_codec_disable(encoder,
3715 old_crtc_state, old_conn_state);
3716
3717 /* Make sure the panel is off before trying to change the mode. But also
3718 * ensure that we have vdd while we switch off the panel. */
3719 intel_edp_panel_vdd_on(intel_dp);
3720 intel_edp_backlight_off(old_conn_state);
3721 intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
3722 intel_edp_panel_off(intel_dp);
3723 }
3724
g4x_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3725 static void g4x_disable_dp(struct intel_atomic_state *state,
3726 struct intel_encoder *encoder,
3727 const struct intel_crtc_state *old_crtc_state,
3728 const struct drm_connector_state *old_conn_state)
3729 {
3730 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3731 }
3732
vlv_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3733 static void vlv_disable_dp(struct intel_atomic_state *state,
3734 struct intel_encoder *encoder,
3735 const struct intel_crtc_state *old_crtc_state,
3736 const struct drm_connector_state *old_conn_state)
3737 {
3738 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3739 }
3740
g4x_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3741 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3742 struct intel_encoder *encoder,
3743 const struct intel_crtc_state *old_crtc_state,
3744 const struct drm_connector_state *old_conn_state)
3745 {
3746 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3747 enum port port = encoder->port;
3748
3749 /*
3750 * Bspec does not list a specific disable sequence for g4x DP.
3751 * Follow the ilk+ sequence (disable pipe before the port) for
3752 * g4x DP as it does not suffer from underruns like the normal
3753 * g4x modeset sequence (disable pipe after the port).
3754 */
3755 intel_dp_link_down(encoder, old_crtc_state);
3756
3757 /* Only ilk+ has port A */
3758 if (port == PORT_A)
3759 ilk_edp_pll_off(intel_dp, old_crtc_state);
3760 }
3761
vlv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3762 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3763 struct intel_encoder *encoder,
3764 const struct intel_crtc_state *old_crtc_state,
3765 const struct drm_connector_state *old_conn_state)
3766 {
3767 intel_dp_link_down(encoder, old_crtc_state);
3768 }
3769
chv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3770 static void chv_post_disable_dp(struct intel_atomic_state *state,
3771 struct intel_encoder *encoder,
3772 const struct intel_crtc_state *old_crtc_state,
3773 const struct drm_connector_state *old_conn_state)
3774 {
3775 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3776
3777 intel_dp_link_down(encoder, old_crtc_state);
3778
3779 vlv_dpio_get(dev_priv);
3780
3781 /* Assert data lane reset */
3782 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3783
3784 vlv_dpio_put(dev_priv);
3785 }
3786
3787 static void
cpt_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3788 cpt_set_link_train(struct intel_dp *intel_dp,
3789 u8 dp_train_pat)
3790 {
3791 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3792 u32 *DP = &intel_dp->DP;
3793
3794 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3795
3796 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3797 case DP_TRAINING_PATTERN_DISABLE:
3798 *DP |= DP_LINK_TRAIN_OFF_CPT;
3799 break;
3800 case DP_TRAINING_PATTERN_1:
3801 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3802 break;
3803 case DP_TRAINING_PATTERN_2:
3804 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3805 break;
3806 case DP_TRAINING_PATTERN_3:
3807 drm_dbg_kms(&dev_priv->drm,
3808 "TPS3 not supported, using TPS2 instead\n");
3809 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3810 break;
3811 }
3812
3813 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3814 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3815 }
3816
3817 static void
g4x_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3818 g4x_set_link_train(struct intel_dp *intel_dp,
3819 u8 dp_train_pat)
3820 {
3821 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3822 u32 *DP = &intel_dp->DP;
3823
3824 *DP &= ~DP_LINK_TRAIN_MASK;
3825
3826 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3827 case DP_TRAINING_PATTERN_DISABLE:
3828 *DP |= DP_LINK_TRAIN_OFF;
3829 break;
3830 case DP_TRAINING_PATTERN_1:
3831 *DP |= DP_LINK_TRAIN_PAT_1;
3832 break;
3833 case DP_TRAINING_PATTERN_2:
3834 *DP |= DP_LINK_TRAIN_PAT_2;
3835 break;
3836 case DP_TRAINING_PATTERN_3:
3837 drm_dbg_kms(&dev_priv->drm,
3838 "TPS3 not supported, using TPS2 instead\n");
3839 *DP |= DP_LINK_TRAIN_PAT_2;
3840 break;
3841 }
3842
3843 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3844 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3845 }
3846
intel_dp_enable_port(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3847 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3848 const struct intel_crtc_state *old_crtc_state)
3849 {
3850 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3851
3852 /* enable with pattern 1 (as per spec) */
3853
3854 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3855
3856 /*
3857 * Magic for VLV/CHV. We _must_ first set up the register
3858 * without actually enabling the port, and then do another
3859 * write to enable the port. Otherwise link training will
3860 * fail when the power sequencer is freshly used for this port.
3861 */
3862 intel_dp->DP |= DP_PORT_EN;
3863 if (old_crtc_state->has_audio)
3864 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3865
3866 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3867 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3868 }
3869
intel_dp_configure_protocol_converter(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)3870 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp,
3871 const struct intel_crtc_state *crtc_state)
3872 {
3873 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3874 u8 tmp;
3875
3876 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
3877 return;
3878
3879 if (!drm_dp_is_branch(intel_dp->dpcd))
3880 return;
3881
3882 tmp = intel_dp->has_hdmi_sink ?
3883 DP_HDMI_DVI_OUTPUT_CONFIG : 0;
3884
3885 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3886 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
3887 drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
3888 enableddisabled(intel_dp->has_hdmi_sink));
3889
3890 tmp = crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
3891 intel_dp->dfp.ycbcr_444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
3892
3893 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3894 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
3895 drm_dbg_kms(&i915->drm,
3896 "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
3897 enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
3898
3899 tmp = 0;
3900
3901 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3902 DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
3903 drm_dbg_kms(&i915->drm,
3904 "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
3905 enableddisabled(false));
3906 }
3907
intel_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3908 static void intel_enable_dp(struct intel_atomic_state *state,
3909 struct intel_encoder *encoder,
3910 const struct intel_crtc_state *pipe_config,
3911 const struct drm_connector_state *conn_state)
3912 {
3913 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3914 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3915 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3916 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3917 enum pipe pipe = crtc->pipe;
3918 intel_wakeref_t wakeref;
3919
3920 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3921 return;
3922
3923 with_pps_lock(intel_dp, wakeref) {
3924 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3925 vlv_init_panel_power_sequencer(encoder, pipe_config);
3926
3927 intel_dp_enable_port(intel_dp, pipe_config);
3928
3929 edp_panel_vdd_on(intel_dp);
3930 edp_panel_on(intel_dp);
3931 edp_panel_vdd_off(intel_dp, true);
3932 }
3933
3934 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3935 unsigned int lane_mask = 0x0;
3936
3937 if (IS_CHERRYVIEW(dev_priv))
3938 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3939
3940 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3941 lane_mask);
3942 }
3943
3944 intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
3945 intel_dp_configure_protocol_converter(intel_dp, pipe_config);
3946 intel_dp_start_link_train(intel_dp);
3947 intel_dp_stop_link_train(intel_dp);
3948
3949 if (pipe_config->has_audio) {
3950 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3951 pipe_name(pipe));
3952 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3953 }
3954 }
3955
g4x_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3956 static void g4x_enable_dp(struct intel_atomic_state *state,
3957 struct intel_encoder *encoder,
3958 const struct intel_crtc_state *pipe_config,
3959 const struct drm_connector_state *conn_state)
3960 {
3961 intel_enable_dp(state, encoder, pipe_config, conn_state);
3962 intel_edp_backlight_on(pipe_config, conn_state);
3963 }
3964
vlv_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3965 static void vlv_enable_dp(struct intel_atomic_state *state,
3966 struct intel_encoder *encoder,
3967 const struct intel_crtc_state *pipe_config,
3968 const struct drm_connector_state *conn_state)
3969 {
3970 intel_edp_backlight_on(pipe_config, conn_state);
3971 }
3972
g4x_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3973 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3974 struct intel_encoder *encoder,
3975 const struct intel_crtc_state *pipe_config,
3976 const struct drm_connector_state *conn_state)
3977 {
3978 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3979 enum port port = encoder->port;
3980
3981 intel_dp_prepare(encoder, pipe_config);
3982
3983 /* Only ilk+ has port A */
3984 if (port == PORT_A)
3985 ilk_edp_pll_on(intel_dp, pipe_config);
3986 }
3987
vlv_detach_power_sequencer(struct intel_dp * intel_dp)3988 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3989 {
3990 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3991 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3992 enum pipe pipe = intel_dp->pps_pipe;
3993 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3994
3995 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3996
3997 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3998 return;
3999
4000 edp_panel_vdd_off_sync(intel_dp);
4001
4002 /*
4003 * VLV seems to get confused when multiple power sequencers
4004 * have the same port selected (even if only one has power/vdd
4005 * enabled). The failure manifests as vlv_wait_port_ready() failing
4006 * CHV on the other hand doesn't seem to mind having the same port
4007 * selected in multiple power sequencers, but let's clear the
4008 * port select always when logically disconnecting a power sequencer
4009 * from a port.
4010 */
4011 drm_dbg_kms(&dev_priv->drm,
4012 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
4013 pipe_name(pipe), dig_port->base.base.base.id,
4014 dig_port->base.base.name);
4015 intel_de_write(dev_priv, pp_on_reg, 0);
4016 intel_de_posting_read(dev_priv, pp_on_reg);
4017
4018 intel_dp->pps_pipe = INVALID_PIPE;
4019 }
4020
vlv_steal_power_sequencer(struct drm_i915_private * dev_priv,enum pipe pipe)4021 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4022 enum pipe pipe)
4023 {
4024 struct intel_encoder *encoder;
4025
4026 lockdep_assert_held(&dev_priv->pps_mutex);
4027
4028 for_each_intel_dp(&dev_priv->drm, encoder) {
4029 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4030
4031 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4032 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4033 pipe_name(pipe), encoder->base.base.id,
4034 encoder->base.name);
4035
4036 if (intel_dp->pps_pipe != pipe)
4037 continue;
4038
4039 drm_dbg_kms(&dev_priv->drm,
4040 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4041 pipe_name(pipe), encoder->base.base.id,
4042 encoder->base.name);
4043
4044 /* make sure vdd is off before we steal it */
4045 vlv_detach_power_sequencer(intel_dp);
4046 }
4047 }
4048
vlv_init_panel_power_sequencer(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)4049 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4050 const struct intel_crtc_state *crtc_state)
4051 {
4052 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4053 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4054 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4055
4056 lockdep_assert_held(&dev_priv->pps_mutex);
4057
4058 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4059
4060 if (intel_dp->pps_pipe != INVALID_PIPE &&
4061 intel_dp->pps_pipe != crtc->pipe) {
4062 /*
4063 * If another power sequencer was being used on this
4064 * port previously make sure to turn off vdd there while
4065 * we still have control of it.
4066 */
4067 vlv_detach_power_sequencer(intel_dp);
4068 }
4069
4070 /*
4071 * We may be stealing the power
4072 * sequencer from another port.
4073 */
4074 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4075
4076 intel_dp->active_pipe = crtc->pipe;
4077
4078 if (!intel_dp_is_edp(intel_dp))
4079 return;
4080
4081 /* now it's all ours */
4082 intel_dp->pps_pipe = crtc->pipe;
4083
4084 drm_dbg_kms(&dev_priv->drm,
4085 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4086 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4087 encoder->base.name);
4088
4089 /* init power sequencer on this pipe and port */
4090 intel_dp_init_panel_power_sequencer(intel_dp);
4091 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4092 }
4093
vlv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4094 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4095 struct intel_encoder *encoder,
4096 const struct intel_crtc_state *pipe_config,
4097 const struct drm_connector_state *conn_state)
4098 {
4099 vlv_phy_pre_encoder_enable(encoder, pipe_config);
4100
4101 intel_enable_dp(state, encoder, pipe_config, conn_state);
4102 }
4103
vlv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4104 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4105 struct intel_encoder *encoder,
4106 const struct intel_crtc_state *pipe_config,
4107 const struct drm_connector_state *conn_state)
4108 {
4109 intel_dp_prepare(encoder, pipe_config);
4110
4111 vlv_phy_pre_pll_enable(encoder, pipe_config);
4112 }
4113
chv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4114 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4115 struct intel_encoder *encoder,
4116 const struct intel_crtc_state *pipe_config,
4117 const struct drm_connector_state *conn_state)
4118 {
4119 chv_phy_pre_encoder_enable(encoder, pipe_config);
4120
4121 intel_enable_dp(state, encoder, pipe_config, conn_state);
4122
4123 /* Second common lane will stay alive on its own now */
4124 chv_phy_release_cl2_override(encoder);
4125 }
4126
chv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4127 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4128 struct intel_encoder *encoder,
4129 const struct intel_crtc_state *pipe_config,
4130 const struct drm_connector_state *conn_state)
4131 {
4132 intel_dp_prepare(encoder, pipe_config);
4133
4134 chv_phy_pre_pll_enable(encoder, pipe_config);
4135 }
4136
chv_dp_post_pll_disable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)4137 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4138 struct intel_encoder *encoder,
4139 const struct intel_crtc_state *old_crtc_state,
4140 const struct drm_connector_state *old_conn_state)
4141 {
4142 chv_phy_post_pll_disable(encoder, old_crtc_state);
4143 }
4144
4145 /*
4146 * Fetch AUX CH registers 0x202 - 0x207 which contain
4147 * link status information
4148 */
4149 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,u8 * link_status)4150 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 *link_status)
4151 {
4152 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4153 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4154 }
4155
intel_dp_voltage_max_2(struct intel_dp * intel_dp)4156 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4157 {
4158 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4159 }
4160
intel_dp_voltage_max_3(struct intel_dp * intel_dp)4161 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4162 {
4163 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4164 }
4165
intel_dp_pre_empemph_max_2(struct intel_dp * intel_dp)4166 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4167 {
4168 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4169 }
4170
intel_dp_pre_empemph_max_3(struct intel_dp * intel_dp)4171 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4172 {
4173 return DP_TRAIN_PRE_EMPH_LEVEL_3;
4174 }
4175
vlv_set_signal_levels(struct intel_dp * intel_dp)4176 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4177 {
4178 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4179 unsigned long demph_reg_value, preemph_reg_value,
4180 uniqtranscale_reg_value;
4181 u8 train_set = intel_dp->train_set[0];
4182
4183 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4184 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4185 preemph_reg_value = 0x0004000;
4186 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4187 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4188 demph_reg_value = 0x2B405555;
4189 uniqtranscale_reg_value = 0x552AB83A;
4190 break;
4191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4192 demph_reg_value = 0x2B404040;
4193 uniqtranscale_reg_value = 0x5548B83A;
4194 break;
4195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4196 demph_reg_value = 0x2B245555;
4197 uniqtranscale_reg_value = 0x5560B83A;
4198 break;
4199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4200 demph_reg_value = 0x2B405555;
4201 uniqtranscale_reg_value = 0x5598DA3A;
4202 break;
4203 default:
4204 return;
4205 }
4206 break;
4207 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4208 preemph_reg_value = 0x0002000;
4209 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4211 demph_reg_value = 0x2B404040;
4212 uniqtranscale_reg_value = 0x5552B83A;
4213 break;
4214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4215 demph_reg_value = 0x2B404848;
4216 uniqtranscale_reg_value = 0x5580B83A;
4217 break;
4218 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4219 demph_reg_value = 0x2B404040;
4220 uniqtranscale_reg_value = 0x55ADDA3A;
4221 break;
4222 default:
4223 return;
4224 }
4225 break;
4226 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4227 preemph_reg_value = 0x0000000;
4228 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4229 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4230 demph_reg_value = 0x2B305555;
4231 uniqtranscale_reg_value = 0x5570B83A;
4232 break;
4233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4234 demph_reg_value = 0x2B2B4040;
4235 uniqtranscale_reg_value = 0x55ADDA3A;
4236 break;
4237 default:
4238 return;
4239 }
4240 break;
4241 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4242 preemph_reg_value = 0x0006000;
4243 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4244 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4245 demph_reg_value = 0x1B405555;
4246 uniqtranscale_reg_value = 0x55ADDA3A;
4247 break;
4248 default:
4249 return;
4250 }
4251 break;
4252 default:
4253 return;
4254 }
4255
4256 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4257 uniqtranscale_reg_value, 0);
4258 }
4259
chv_set_signal_levels(struct intel_dp * intel_dp)4260 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4261 {
4262 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4263 u32 deemph_reg_value, margin_reg_value;
4264 bool uniq_trans_scale = false;
4265 u8 train_set = intel_dp->train_set[0];
4266
4267 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4268 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4269 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4270 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4271 deemph_reg_value = 128;
4272 margin_reg_value = 52;
4273 break;
4274 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4275 deemph_reg_value = 128;
4276 margin_reg_value = 77;
4277 break;
4278 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4279 deemph_reg_value = 128;
4280 margin_reg_value = 102;
4281 break;
4282 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4283 deemph_reg_value = 128;
4284 margin_reg_value = 154;
4285 uniq_trans_scale = true;
4286 break;
4287 default:
4288 return;
4289 }
4290 break;
4291 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4292 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4294 deemph_reg_value = 85;
4295 margin_reg_value = 78;
4296 break;
4297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4298 deemph_reg_value = 85;
4299 margin_reg_value = 116;
4300 break;
4301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4302 deemph_reg_value = 85;
4303 margin_reg_value = 154;
4304 break;
4305 default:
4306 return;
4307 }
4308 break;
4309 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4310 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4312 deemph_reg_value = 64;
4313 margin_reg_value = 104;
4314 break;
4315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4316 deemph_reg_value = 64;
4317 margin_reg_value = 154;
4318 break;
4319 default:
4320 return;
4321 }
4322 break;
4323 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4324 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4326 deemph_reg_value = 43;
4327 margin_reg_value = 154;
4328 break;
4329 default:
4330 return;
4331 }
4332 break;
4333 default:
4334 return;
4335 }
4336
4337 chv_set_phy_signal_level(encoder, deemph_reg_value,
4338 margin_reg_value, uniq_trans_scale);
4339 }
4340
g4x_signal_levels(u8 train_set)4341 static u32 g4x_signal_levels(u8 train_set)
4342 {
4343 u32 signal_levels = 0;
4344
4345 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4346 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4347 default:
4348 signal_levels |= DP_VOLTAGE_0_4;
4349 break;
4350 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4351 signal_levels |= DP_VOLTAGE_0_6;
4352 break;
4353 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4354 signal_levels |= DP_VOLTAGE_0_8;
4355 break;
4356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4357 signal_levels |= DP_VOLTAGE_1_2;
4358 break;
4359 }
4360 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4361 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4362 default:
4363 signal_levels |= DP_PRE_EMPHASIS_0;
4364 break;
4365 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4366 signal_levels |= DP_PRE_EMPHASIS_3_5;
4367 break;
4368 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4369 signal_levels |= DP_PRE_EMPHASIS_6;
4370 break;
4371 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4372 signal_levels |= DP_PRE_EMPHASIS_9_5;
4373 break;
4374 }
4375 return signal_levels;
4376 }
4377
4378 static void
g4x_set_signal_levels(struct intel_dp * intel_dp)4379 g4x_set_signal_levels(struct intel_dp *intel_dp)
4380 {
4381 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4382 u8 train_set = intel_dp->train_set[0];
4383 u32 signal_levels;
4384
4385 signal_levels = g4x_signal_levels(train_set);
4386
4387 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4388 signal_levels);
4389
4390 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4391 intel_dp->DP |= signal_levels;
4392
4393 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4394 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4395 }
4396
4397 /* SNB CPU eDP voltage swing and pre-emphasis control */
snb_cpu_edp_signal_levels(u8 train_set)4398 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4399 {
4400 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4401 DP_TRAIN_PRE_EMPHASIS_MASK);
4402
4403 switch (signal_levels) {
4404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4406 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4407 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4408 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4410 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4411 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4412 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4413 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4414 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4416 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4417 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4418 default:
4419 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4420 "0x%x\n", signal_levels);
4421 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4422 }
4423 }
4424
4425 static void
snb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4426 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4427 {
4428 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4429 u8 train_set = intel_dp->train_set[0];
4430 u32 signal_levels;
4431
4432 signal_levels = snb_cpu_edp_signal_levels(train_set);
4433
4434 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4435 signal_levels);
4436
4437 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4438 intel_dp->DP |= signal_levels;
4439
4440 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4441 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4442 }
4443
4444 /* IVB CPU eDP voltage swing and pre-emphasis control */
ivb_cpu_edp_signal_levels(u8 train_set)4445 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4446 {
4447 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4448 DP_TRAIN_PRE_EMPHASIS_MASK);
4449
4450 switch (signal_levels) {
4451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4452 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4454 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4455 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4457 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4458
4459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4460 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4462 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4463
4464 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4465 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4467 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4468
4469 default:
4470 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4471 "0x%x\n", signal_levels);
4472 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4473 }
4474 }
4475
4476 static void
ivb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4477 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4478 {
4479 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4480 u8 train_set = intel_dp->train_set[0];
4481 u32 signal_levels;
4482
4483 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4484
4485 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4486 signal_levels);
4487
4488 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4489 intel_dp->DP |= signal_levels;
4490
4491 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4492 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4493 }
4494
intel_dp_set_signal_levels(struct intel_dp * intel_dp)4495 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4496 {
4497 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4498 u8 train_set = intel_dp->train_set[0];
4499
4500 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4501 train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4502 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4503 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4504 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4505 DP_TRAIN_PRE_EMPHASIS_SHIFT,
4506 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4507 " (max)" : "");
4508
4509 intel_dp->set_signal_levels(intel_dp);
4510 }
4511
4512 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,u8 dp_train_pat)4513 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4514 u8 dp_train_pat)
4515 {
4516 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4517 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4518
4519 if (dp_train_pat & train_pat_mask)
4520 drm_dbg_kms(&dev_priv->drm,
4521 "Using DP training pattern TPS%d\n",
4522 dp_train_pat & train_pat_mask);
4523
4524 intel_dp->set_link_train(intel_dp, dp_train_pat);
4525 }
4526
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)4527 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4528 {
4529 if (intel_dp->set_idle_link_train)
4530 intel_dp->set_idle_link_train(intel_dp);
4531 }
4532
4533 static void
intel_dp_link_down(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)4534 intel_dp_link_down(struct intel_encoder *encoder,
4535 const struct intel_crtc_state *old_crtc_state)
4536 {
4537 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4538 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4539 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4540 enum port port = encoder->port;
4541 u32 DP = intel_dp->DP;
4542
4543 if (drm_WARN_ON(&dev_priv->drm,
4544 (intel_de_read(dev_priv, intel_dp->output_reg) &
4545 DP_PORT_EN) == 0))
4546 return;
4547
4548 drm_dbg_kms(&dev_priv->drm, "\n");
4549
4550 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4551 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4552 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4553 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4554 } else {
4555 DP &= ~DP_LINK_TRAIN_MASK;
4556 DP |= DP_LINK_TRAIN_PAT_IDLE;
4557 }
4558 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4559 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4560
4561 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4562 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4563 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4564
4565 /*
4566 * HW workaround for IBX, we need to move the port
4567 * to transcoder A after disabling it to allow the
4568 * matching HDMI port to be enabled on transcoder A.
4569 */
4570 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4571 /*
4572 * We get CPU/PCH FIFO underruns on the other pipe when
4573 * doing the workaround. Sweep them under the rug.
4574 */
4575 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4576 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4577
4578 /* always enable with pattern 1 (as per spec) */
4579 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4580 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4581 DP_LINK_TRAIN_PAT_1;
4582 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4583 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4584
4585 DP &= ~DP_PORT_EN;
4586 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4587 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4588
4589 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4590 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4591 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4592 }
4593
4594 msleep(intel_dp->panel_power_down_delay);
4595
4596 intel_dp->DP = DP;
4597
4598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4599 intel_wakeref_t wakeref;
4600
4601 with_pps_lock(intel_dp, wakeref)
4602 intel_dp->active_pipe = INVALID_PIPE;
4603 }
4604 }
4605
intel_dp_get_colorimetry_status(struct intel_dp * intel_dp)4606 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4607 {
4608 u8 dprx = 0;
4609
4610 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4611 &dprx) != 1)
4612 return false;
4613 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4614 }
4615
intel_dp_get_dsc_sink_cap(struct intel_dp * intel_dp)4616 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4617 {
4618 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4619
4620 /*
4621 * Clear the cached register set to avoid using stale values
4622 * for the sinks that do not support DSC.
4623 */
4624 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4625
4626 /* Clear fec_capable to avoid using stale values */
4627 intel_dp->fec_capable = 0;
4628
4629 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4630 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4631 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4632 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4633 intel_dp->dsc_dpcd,
4634 sizeof(intel_dp->dsc_dpcd)) < 0)
4635 drm_err(&i915->drm,
4636 "Failed to read DPCD register 0x%x\n",
4637 DP_DSC_SUPPORT);
4638
4639 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4640 (int)sizeof(intel_dp->dsc_dpcd),
4641 intel_dp->dsc_dpcd);
4642
4643 /* FEC is supported only on DP 1.4 */
4644 if (!intel_dp_is_edp(intel_dp) &&
4645 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4646 &intel_dp->fec_capable) < 0)
4647 drm_err(&i915->drm,
4648 "Failed to read FEC DPCD register\n");
4649
4650 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4651 intel_dp->fec_capable);
4652 }
4653 }
4654
4655 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)4656 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4657 {
4658 struct drm_i915_private *dev_priv =
4659 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4660
4661 /* this function is meant to be called only once */
4662 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4663
4664 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4665 return false;
4666
4667 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4668 drm_dp_is_branch(intel_dp->dpcd));
4669
4670 /*
4671 * Read the eDP display control registers.
4672 *
4673 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4674 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4675 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4676 * method). The display control registers should read zero if they're
4677 * not supported anyway.
4678 */
4679 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4680 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4681 sizeof(intel_dp->edp_dpcd))
4682 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4683 (int)sizeof(intel_dp->edp_dpcd),
4684 intel_dp->edp_dpcd);
4685
4686 /*
4687 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4688 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4689 */
4690 intel_psr_init_dpcd(intel_dp);
4691
4692 /* Clear the default sink rates */
4693 intel_dp->num_sink_rates = 0;
4694
4695 /* Read the eDP 1.4+ supported link rates. */
4696 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4697 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4698 int i;
4699
4700 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4701 sink_rates, sizeof(sink_rates));
4702
4703 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4704 int val = le16_to_cpu(sink_rates[i]);
4705
4706 if (val == 0)
4707 break;
4708
4709 /* Value read multiplied by 200kHz gives the per-lane
4710 * link rate in kHz. The source rates are, however,
4711 * stored in terms of LS_Clk kHz. The full conversion
4712 * back to symbols is
4713 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4714 */
4715 intel_dp->sink_rates[i] = (val * 200) / 10;
4716 }
4717 intel_dp->num_sink_rates = i;
4718 }
4719
4720 /*
4721 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4722 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4723 */
4724 if (intel_dp->num_sink_rates)
4725 intel_dp->use_rate_select = true;
4726 else
4727 intel_dp_set_sink_rates(intel_dp);
4728
4729 intel_dp_set_common_rates(intel_dp);
4730
4731 /* Read the eDP DSC DPCD registers */
4732 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4733 intel_dp_get_dsc_sink_cap(intel_dp);
4734
4735 return true;
4736 }
4737
4738 static bool
intel_dp_has_sink_count(struct intel_dp * intel_dp)4739 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4740 {
4741 if (!intel_dp->attached_connector)
4742 return false;
4743
4744 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4745 intel_dp->dpcd,
4746 &intel_dp->desc);
4747 }
4748
4749 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)4750 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4751 {
4752 int ret;
4753
4754 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4755 return false;
4756
4757 /*
4758 * Don't clobber cached eDP rates. Also skip re-reading
4759 * the OUI/ID since we know it won't change.
4760 */
4761 if (!intel_dp_is_edp(intel_dp)) {
4762 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4763 drm_dp_is_branch(intel_dp->dpcd));
4764
4765 intel_dp_set_sink_rates(intel_dp);
4766 intel_dp_set_common_rates(intel_dp);
4767 }
4768
4769 if (intel_dp_has_sink_count(intel_dp)) {
4770 ret = drm_dp_read_sink_count(&intel_dp->aux);
4771 if (ret < 0)
4772 return false;
4773
4774 /*
4775 * Sink count can change between short pulse hpd hence
4776 * a member variable in intel_dp will track any changes
4777 * between short pulse interrupts.
4778 */
4779 intel_dp->sink_count = ret;
4780
4781 /*
4782 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4783 * a dongle is present but no display. Unless we require to know
4784 * if a dongle is present or not, we don't need to update
4785 * downstream port information. So, an early return here saves
4786 * time from performing other operations which are not required.
4787 */
4788 if (!intel_dp->sink_count)
4789 return false;
4790 }
4791
4792 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4793 intel_dp->downstream_ports) == 0;
4794 }
4795
4796 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)4797 intel_dp_can_mst(struct intel_dp *intel_dp)
4798 {
4799 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4800
4801 return i915->params.enable_dp_mst &&
4802 intel_dp->can_mst &&
4803 drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4804 }
4805
4806 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)4807 intel_dp_configure_mst(struct intel_dp *intel_dp)
4808 {
4809 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4810 struct intel_encoder *encoder =
4811 &dp_to_dig_port(intel_dp)->base;
4812 bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4813
4814 drm_dbg_kms(&i915->drm,
4815 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4816 encoder->base.base.id, encoder->base.name,
4817 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4818 yesno(i915->params.enable_dp_mst));
4819
4820 if (!intel_dp->can_mst)
4821 return;
4822
4823 intel_dp->is_mst = sink_can_mst &&
4824 i915->params.enable_dp_mst;
4825
4826 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4827 intel_dp->is_mst);
4828 }
4829
4830 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)4831 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4832 {
4833 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4834 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4835 DP_DPRX_ESI_LEN;
4836 }
4837
4838 bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)4839 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4840 const struct drm_connector_state *conn_state)
4841 {
4842 /*
4843 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4844 * of Color Encoding Format and Content Color Gamut], in order to
4845 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4846 */
4847 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4848 return true;
4849
4850 switch (conn_state->colorspace) {
4851 case DRM_MODE_COLORIMETRY_SYCC_601:
4852 case DRM_MODE_COLORIMETRY_OPYCC_601:
4853 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4854 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4855 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4856 return true;
4857 default:
4858 break;
4859 }
4860
4861 return false;
4862 }
4863
intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp,size_t size)4864 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4865 struct dp_sdp *sdp, size_t size)
4866 {
4867 size_t length = sizeof(struct dp_sdp);
4868
4869 if (size < length)
4870 return -ENOSPC;
4871
4872 memset(sdp, 0, size);
4873
4874 /*
4875 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4876 * VSC SDP Header Bytes
4877 */
4878 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4879 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4880 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4881 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4882
4883 /*
4884 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4885 * per DP 1.4a spec.
4886 */
4887 if (vsc->revision != 0x5)
4888 goto out;
4889
4890 /* VSC SDP Payload for DB16 through DB18 */
4891 /* Pixel Encoding and Colorimetry Formats */
4892 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4893 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4894
4895 switch (vsc->bpc) {
4896 case 6:
4897 /* 6bpc: 0x0 */
4898 break;
4899 case 8:
4900 sdp->db[17] = 0x1; /* DB17[3:0] */
4901 break;
4902 case 10:
4903 sdp->db[17] = 0x2;
4904 break;
4905 case 12:
4906 sdp->db[17] = 0x3;
4907 break;
4908 case 16:
4909 sdp->db[17] = 0x4;
4910 break;
4911 default:
4912 MISSING_CASE(vsc->bpc);
4913 break;
4914 }
4915 /* Dynamic Range and Component Bit Depth */
4916 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4917 sdp->db[17] |= 0x80; /* DB17[7] */
4918
4919 /* Content Type */
4920 sdp->db[18] = vsc->content_type & 0x7;
4921
4922 out:
4923 return length;
4924 }
4925
4926 static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe * drm_infoframe,struct dp_sdp * sdp,size_t size)4927 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4928 struct dp_sdp *sdp,
4929 size_t size)
4930 {
4931 size_t length = sizeof(struct dp_sdp);
4932 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4933 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4934 ssize_t len;
4935
4936 if (size < length)
4937 return -ENOSPC;
4938
4939 memset(sdp, 0, size);
4940
4941 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4942 if (len < 0) {
4943 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4944 return -ENOSPC;
4945 }
4946
4947 if (len != infoframe_size) {
4948 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4949 return -ENOSPC;
4950 }
4951
4952 /*
4953 * Set up the infoframe sdp packet for HDR static metadata.
4954 * Prepare VSC Header for SU as per DP 1.4a spec,
4955 * Table 2-100 and Table 2-101
4956 */
4957
4958 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4959 sdp->sdp_header.HB0 = 0;
4960 /*
4961 * Packet Type 80h + Non-audio INFOFRAME Type value
4962 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4963 * - 80h + Non-audio INFOFRAME Type value
4964 * - InfoFrame Type: 0x07
4965 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4966 */
4967 sdp->sdp_header.HB1 = drm_infoframe->type;
4968 /*
4969 * Least Significant Eight Bits of (Data Byte Count – 1)
4970 * infoframe_size - 1
4971 */
4972 sdp->sdp_header.HB2 = 0x1D;
4973 /* INFOFRAME SDP Version Number */
4974 sdp->sdp_header.HB3 = (0x13 << 2);
4975 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4976 sdp->db[0] = drm_infoframe->version;
4977 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4978 sdp->db[1] = drm_infoframe->length;
4979 /*
4980 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4981 * HDMI_INFOFRAME_HEADER_SIZE
4982 */
4983 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4984 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4985 HDMI_DRM_INFOFRAME_SIZE);
4986
4987 /*
4988 * Size of DP infoframe sdp packet for HDR static metadata consists of
4989 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4990 * - Two Data Blocks: 2 bytes
4991 * CTA Header Byte2 (INFOFRAME Version Number)
4992 * CTA Header Byte3 (Length of INFOFRAME)
4993 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4994 *
4995 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4996 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4997 * will pad rest of the size.
4998 */
4999 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
5000 }
5001
intel_write_dp_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type)5002 static void intel_write_dp_sdp(struct intel_encoder *encoder,
5003 const struct intel_crtc_state *crtc_state,
5004 unsigned int type)
5005 {
5006 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5008 struct dp_sdp sdp = {};
5009 ssize_t len;
5010
5011 if ((crtc_state->infoframes.enable &
5012 intel_hdmi_infoframe_enable(type)) == 0)
5013 return;
5014
5015 switch (type) {
5016 case DP_SDP_VSC:
5017 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
5018 sizeof(sdp));
5019 break;
5020 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5021 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5022 &sdp, sizeof(sdp));
5023 break;
5024 default:
5025 MISSING_CASE(type);
5026 return;
5027 }
5028
5029 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5030 return;
5031
5032 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5033 }
5034
intel_write_dp_vsc_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5035 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5036 const struct intel_crtc_state *crtc_state,
5037 struct drm_dp_vsc_sdp *vsc)
5038 {
5039 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5040 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5041 struct dp_sdp sdp = {};
5042 ssize_t len;
5043
5044 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5045
5046 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5047 return;
5048
5049 dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5050 &sdp, len);
5051 }
5052
intel_dp_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)5053 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5054 bool enable,
5055 const struct intel_crtc_state *crtc_state,
5056 const struct drm_connector_state *conn_state)
5057 {
5058 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5059 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5060 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5061 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5062 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5063 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5064 u32 val = intel_de_read(dev_priv, reg);
5065
5066 /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5067 /* When PSR is enabled, this routine doesn't disable VSC DIP */
5068 if (intel_psr_enabled(intel_dp))
5069 val &= ~dip_enable;
5070 else
5071 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5072
5073 if (!enable) {
5074 intel_de_write(dev_priv, reg, val);
5075 intel_de_posting_read(dev_priv, reg);
5076 return;
5077 }
5078
5079 intel_de_write(dev_priv, reg, val);
5080 intel_de_posting_read(dev_priv, reg);
5081
5082 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5083 if (!intel_psr_enabled(intel_dp))
5084 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5085
5086 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5087 }
5088
intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp * vsc,const void * buffer,size_t size)5089 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5090 const void *buffer, size_t size)
5091 {
5092 const struct dp_sdp *sdp = buffer;
5093
5094 if (size < sizeof(struct dp_sdp))
5095 return -EINVAL;
5096
5097 memset(vsc, 0, sizeof(*vsc));
5098
5099 if (sdp->sdp_header.HB0 != 0)
5100 return -EINVAL;
5101
5102 if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5103 return -EINVAL;
5104
5105 vsc->sdp_type = sdp->sdp_header.HB1;
5106 vsc->revision = sdp->sdp_header.HB2;
5107 vsc->length = sdp->sdp_header.HB3;
5108
5109 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5110 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5111 /*
5112 * - HB2 = 0x2, HB3 = 0x8
5113 * VSC SDP supporting 3D stereo + PSR
5114 * - HB2 = 0x4, HB3 = 0xe
5115 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5116 * first scan line of the SU region (applies to eDP v1.4b
5117 * and higher).
5118 */
5119 return 0;
5120 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5121 /*
5122 * - HB2 = 0x5, HB3 = 0x13
5123 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5124 * Format.
5125 */
5126 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5127 vsc->colorimetry = sdp->db[16] & 0xf;
5128 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5129
5130 switch (sdp->db[17] & 0x7) {
5131 case 0x0:
5132 vsc->bpc = 6;
5133 break;
5134 case 0x1:
5135 vsc->bpc = 8;
5136 break;
5137 case 0x2:
5138 vsc->bpc = 10;
5139 break;
5140 case 0x3:
5141 vsc->bpc = 12;
5142 break;
5143 case 0x4:
5144 vsc->bpc = 16;
5145 break;
5146 default:
5147 MISSING_CASE(sdp->db[17] & 0x7);
5148 return -EINVAL;
5149 }
5150
5151 vsc->content_type = sdp->db[18] & 0x7;
5152 } else {
5153 return -EINVAL;
5154 }
5155
5156 return 0;
5157 }
5158
5159 static int
intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe * drm_infoframe,const void * buffer,size_t size)5160 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5161 const void *buffer, size_t size)
5162 {
5163 int ret;
5164
5165 const struct dp_sdp *sdp = buffer;
5166
5167 if (size < sizeof(struct dp_sdp))
5168 return -EINVAL;
5169
5170 if (sdp->sdp_header.HB0 != 0)
5171 return -EINVAL;
5172
5173 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5174 return -EINVAL;
5175
5176 /*
5177 * Least Significant Eight Bits of (Data Byte Count – 1)
5178 * 1Dh (i.e., Data Byte Count = 30 bytes).
5179 */
5180 if (sdp->sdp_header.HB2 != 0x1D)
5181 return -EINVAL;
5182
5183 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5184 if ((sdp->sdp_header.HB3 & 0x3) != 0)
5185 return -EINVAL;
5186
5187 /* INFOFRAME SDP Version Number */
5188 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5189 return -EINVAL;
5190
5191 /* CTA Header Byte 2 (INFOFRAME Version Number) */
5192 if (sdp->db[0] != 1)
5193 return -EINVAL;
5194
5195 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5196 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5197 return -EINVAL;
5198
5199 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5200 HDMI_DRM_INFOFRAME_SIZE);
5201
5202 return ret;
5203 }
5204
intel_read_dp_vsc_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5205 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5206 struct intel_crtc_state *crtc_state,
5207 struct drm_dp_vsc_sdp *vsc)
5208 {
5209 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5210 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5211 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5212 unsigned int type = DP_SDP_VSC;
5213 struct dp_sdp sdp = {};
5214 int ret;
5215
5216 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5217 if (intel_psr_enabled(intel_dp))
5218 return;
5219
5220 if ((crtc_state->infoframes.enable &
5221 intel_hdmi_infoframe_enable(type)) == 0)
5222 return;
5223
5224 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5225
5226 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5227
5228 if (ret)
5229 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5230 }
5231
intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct hdmi_drm_infoframe * drm_infoframe)5232 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5233 struct intel_crtc_state *crtc_state,
5234 struct hdmi_drm_infoframe *drm_infoframe)
5235 {
5236 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5237 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5238 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5239 struct dp_sdp sdp = {};
5240 int ret;
5241
5242 if ((crtc_state->infoframes.enable &
5243 intel_hdmi_infoframe_enable(type)) == 0)
5244 return;
5245
5246 dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5247 sizeof(sdp));
5248
5249 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5250 sizeof(sdp));
5251
5252 if (ret)
5253 drm_dbg_kms(&dev_priv->drm,
5254 "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5255 }
5256
intel_read_dp_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,unsigned int type)5257 void intel_read_dp_sdp(struct intel_encoder *encoder,
5258 struct intel_crtc_state *crtc_state,
5259 unsigned int type)
5260 {
5261 if (encoder->type != INTEL_OUTPUT_DDI)
5262 return;
5263
5264 switch (type) {
5265 case DP_SDP_VSC:
5266 intel_read_dp_vsc_sdp(encoder, crtc_state,
5267 &crtc_state->infoframes.vsc);
5268 break;
5269 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5270 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5271 &crtc_state->infoframes.drm.drm);
5272 break;
5273 default:
5274 MISSING_CASE(type);
5275 break;
5276 }
5277 }
5278
intel_dp_autotest_link_training(struct intel_dp * intel_dp)5279 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5280 {
5281 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5282 int status = 0;
5283 int test_link_rate;
5284 u8 test_lane_count, test_link_bw;
5285 /* (DP CTS 1.2)
5286 * 4.3.1.11
5287 */
5288 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5289 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5290 &test_lane_count);
5291
5292 if (status <= 0) {
5293 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5294 return DP_TEST_NAK;
5295 }
5296 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5297
5298 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5299 &test_link_bw);
5300 if (status <= 0) {
5301 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5302 return DP_TEST_NAK;
5303 }
5304 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5305
5306 /* Validate the requested link rate and lane count */
5307 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5308 test_lane_count))
5309 return DP_TEST_NAK;
5310
5311 intel_dp->compliance.test_lane_count = test_lane_count;
5312 intel_dp->compliance.test_link_rate = test_link_rate;
5313
5314 return DP_TEST_ACK;
5315 }
5316
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)5317 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5318 {
5319 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5320 u8 test_pattern;
5321 u8 test_misc;
5322 __be16 h_width, v_height;
5323 int status = 0;
5324
5325 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5326 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5327 &test_pattern);
5328 if (status <= 0) {
5329 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5330 return DP_TEST_NAK;
5331 }
5332 if (test_pattern != DP_COLOR_RAMP)
5333 return DP_TEST_NAK;
5334
5335 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5336 &h_width, 2);
5337 if (status <= 0) {
5338 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5339 return DP_TEST_NAK;
5340 }
5341
5342 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5343 &v_height, 2);
5344 if (status <= 0) {
5345 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5346 return DP_TEST_NAK;
5347 }
5348
5349 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5350 &test_misc);
5351 if (status <= 0) {
5352 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5353 return DP_TEST_NAK;
5354 }
5355 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5356 return DP_TEST_NAK;
5357 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5358 return DP_TEST_NAK;
5359 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5360 case DP_TEST_BIT_DEPTH_6:
5361 intel_dp->compliance.test_data.bpc = 6;
5362 break;
5363 case DP_TEST_BIT_DEPTH_8:
5364 intel_dp->compliance.test_data.bpc = 8;
5365 break;
5366 default:
5367 return DP_TEST_NAK;
5368 }
5369
5370 intel_dp->compliance.test_data.video_pattern = test_pattern;
5371 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5372 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5373 /* Set test active flag here so userspace doesn't interrupt things */
5374 intel_dp->compliance.test_active = true;
5375
5376 return DP_TEST_ACK;
5377 }
5378
intel_dp_autotest_edid(struct intel_dp * intel_dp)5379 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5380 {
5381 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5382 u8 test_result = DP_TEST_ACK;
5383 struct intel_connector *intel_connector = intel_dp->attached_connector;
5384 struct drm_connector *connector = &intel_connector->base;
5385
5386 if (intel_connector->detect_edid == NULL ||
5387 connector->edid_corrupt ||
5388 intel_dp->aux.i2c_defer_count > 6) {
5389 /* Check EDID read for NACKs, DEFERs and corruption
5390 * (DP CTS 1.2 Core r1.1)
5391 * 4.2.2.4 : Failed EDID read, I2C_NAK
5392 * 4.2.2.5 : Failed EDID read, I2C_DEFER
5393 * 4.2.2.6 : EDID corruption detected
5394 * Use failsafe mode for all cases
5395 */
5396 if (intel_dp->aux.i2c_nack_count > 0 ||
5397 intel_dp->aux.i2c_defer_count > 0)
5398 drm_dbg_kms(&i915->drm,
5399 "EDID read had %d NACKs, %d DEFERs\n",
5400 intel_dp->aux.i2c_nack_count,
5401 intel_dp->aux.i2c_defer_count);
5402 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5403 } else {
5404 struct edid *block = intel_connector->detect_edid;
5405
5406 /* We have to write the checksum
5407 * of the last block read
5408 */
5409 block += intel_connector->detect_edid->extensions;
5410
5411 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5412 block->checksum) <= 0)
5413 drm_dbg_kms(&i915->drm,
5414 "Failed to write EDID checksum\n");
5415
5416 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5417 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5418 }
5419
5420 /* Set test active flag here so userspace doesn't interrupt things */
5421 intel_dp->compliance.test_active = true;
5422
5423 return test_result;
5424 }
5425
intel_dp_prepare_phytest(struct intel_dp * intel_dp)5426 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5427 {
5428 struct drm_dp_phy_test_params *data =
5429 &intel_dp->compliance.test_data.phytest;
5430
5431 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5432 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5433 return DP_TEST_NAK;
5434 }
5435
5436 /*
5437 * link_mst is set to false to avoid executing mst related code
5438 * during compliance testing.
5439 */
5440 intel_dp->link_mst = false;
5441
5442 return DP_TEST_ACK;
5443 }
5444
intel_dp_phy_pattern_update(struct intel_dp * intel_dp)5445 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5446 {
5447 struct drm_i915_private *dev_priv =
5448 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5449 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5450 struct drm_dp_phy_test_params *data =
5451 &intel_dp->compliance.test_data.phytest;
5452 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5453 enum pipe pipe = crtc->pipe;
5454 u32 pattern_val;
5455
5456 switch (data->phy_pattern) {
5457 case DP_PHY_TEST_PATTERN_NONE:
5458 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5459 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5460 break;
5461 case DP_PHY_TEST_PATTERN_D10_2:
5462 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5463 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5464 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5465 break;
5466 case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5467 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5468 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5469 DDI_DP_COMP_CTL_ENABLE |
5470 DDI_DP_COMP_CTL_SCRAMBLED_0);
5471 break;
5472 case DP_PHY_TEST_PATTERN_PRBS7:
5473 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5474 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5475 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5476 break;
5477 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5478 /*
5479 * FIXME: Ideally pattern should come from DPCD 0x250. As
5480 * current firmware of DPR-100 could not set it, so hardcoding
5481 * now for complaince test.
5482 */
5483 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5484 pattern_val = 0x3e0f83e0;
5485 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5486 pattern_val = 0x0f83e0f8;
5487 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5488 pattern_val = 0x0000f83e;
5489 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5490 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5491 DDI_DP_COMP_CTL_ENABLE |
5492 DDI_DP_COMP_CTL_CUSTOM80);
5493 break;
5494 case DP_PHY_TEST_PATTERN_CP2520:
5495 /*
5496 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5497 * current firmware of DPR-100 could not set it, so hardcoding
5498 * now for complaince test.
5499 */
5500 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5501 pattern_val = 0xFB;
5502 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5503 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5504 pattern_val);
5505 break;
5506 default:
5507 WARN(1, "Invalid Phy Test Pattern\n");
5508 }
5509 }
5510
5511 static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp * intel_dp)5512 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5513 {
5514 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5515 struct drm_device *dev = dig_port->base.base.dev;
5516 struct drm_i915_private *dev_priv = to_i915(dev);
5517 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5518 enum pipe pipe = crtc->pipe;
5519 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5520
5521 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5522 TRANS_DDI_FUNC_CTL(pipe));
5523 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5524 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5525
5526 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5527 TGL_TRANS_DDI_PORT_MASK);
5528 trans_conf_value &= ~PIPECONF_ENABLE;
5529 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5530
5531 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5532 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5533 trans_ddi_func_ctl_value);
5534 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5535 }
5536
5537 static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp * intel_dp,uint8_t lane_cnt)5538 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5539 {
5540 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5541 struct drm_device *dev = dig_port->base.base.dev;
5542 struct drm_i915_private *dev_priv = to_i915(dev);
5543 enum port port = dig_port->base.port;
5544 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5545 enum pipe pipe = crtc->pipe;
5546 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5547
5548 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5549 TRANS_DDI_FUNC_CTL(pipe));
5550 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5551 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5552
5553 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5554 TGL_TRANS_DDI_SELECT_PORT(port);
5555 trans_conf_value |= PIPECONF_ENABLE;
5556 dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5557
5558 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5559 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5560 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5561 trans_ddi_func_ctl_value);
5562 }
5563
intel_dp_process_phy_request(struct intel_dp * intel_dp)5564 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5565 {
5566 struct drm_dp_phy_test_params *data =
5567 &intel_dp->compliance.test_data.phytest;
5568 u8 link_status[DP_LINK_STATUS_SIZE];
5569
5570 if (!intel_dp_get_link_status(intel_dp, link_status)) {
5571 DRM_DEBUG_KMS("failed to get link status\n");
5572 return;
5573 }
5574
5575 /* retrieve vswing & pre-emphasis setting */
5576 intel_dp_get_adjust_train(intel_dp, link_status);
5577
5578 intel_dp_autotest_phy_ddi_disable(intel_dp);
5579
5580 intel_dp_set_signal_levels(intel_dp);
5581
5582 intel_dp_phy_pattern_update(intel_dp);
5583
5584 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5585
5586 drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5587 intel_dp->dpcd[DP_DPCD_REV]);
5588 }
5589
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)5590 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5591 {
5592 u8 test_result;
5593
5594 test_result = intel_dp_prepare_phytest(intel_dp);
5595 if (test_result != DP_TEST_ACK)
5596 DRM_ERROR("Phy test preparation failed\n");
5597
5598 intel_dp_process_phy_request(intel_dp);
5599
5600 return test_result;
5601 }
5602
intel_dp_handle_test_request(struct intel_dp * intel_dp)5603 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5604 {
5605 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5606 u8 response = DP_TEST_NAK;
5607 u8 request = 0;
5608 int status;
5609
5610 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5611 if (status <= 0) {
5612 drm_dbg_kms(&i915->drm,
5613 "Could not read test request from sink\n");
5614 goto update_status;
5615 }
5616
5617 switch (request) {
5618 case DP_TEST_LINK_TRAINING:
5619 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5620 response = intel_dp_autotest_link_training(intel_dp);
5621 break;
5622 case DP_TEST_LINK_VIDEO_PATTERN:
5623 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5624 response = intel_dp_autotest_video_pattern(intel_dp);
5625 break;
5626 case DP_TEST_LINK_EDID_READ:
5627 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5628 response = intel_dp_autotest_edid(intel_dp);
5629 break;
5630 case DP_TEST_LINK_PHY_TEST_PATTERN:
5631 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5632 response = intel_dp_autotest_phy_pattern(intel_dp);
5633 break;
5634 default:
5635 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5636 request);
5637 break;
5638 }
5639
5640 if (response & DP_TEST_ACK)
5641 intel_dp->compliance.test_type = request;
5642
5643 update_status:
5644 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5645 if (status <= 0)
5646 drm_dbg_kms(&i915->drm,
5647 "Could not write test response to sink\n");
5648 }
5649
5650 /**
5651 * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5652 * @intel_dp: Intel DP struct
5653 *
5654 * Read any pending MST interrupts, call MST core to handle these and ack the
5655 * interrupts. Check if the main and AUX link state is ok.
5656 *
5657 * Returns:
5658 * - %true if pending interrupts were serviced (or no interrupts were
5659 * pending) w/o detecting an error condition.
5660 * - %false if an error condition - like AUX failure or a loss of link - is
5661 * detected, which needs servicing from the hotplug work.
5662 */
5663 static bool
intel_dp_check_mst_status(struct intel_dp * intel_dp)5664 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5665 {
5666 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5667 bool link_ok = true;
5668
5669 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5670
5671 for (;;) {
5672 /*
5673 * The +2 is because DP_DPRX_ESI_LEN is 14, but we then
5674 * pass in "esi+10" to drm_dp_channel_eq_ok(), which
5675 * takes a 6-byte array. So we actually need 16 bytes
5676 * here.
5677 *
5678 * Somebody who knows what the limits actually are
5679 * should check this, but for now this is at least
5680 * harmless and avoids a valid compiler warning about
5681 * using more of the array than we have allocated.
5682 */
5683 u8 esi[DP_DPRX_ESI_LEN+2] = {};
5684 bool handled;
5685 int retry;
5686
5687 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5688 drm_dbg_kms(&i915->drm,
5689 "failed to get ESI - device may have failed\n");
5690 link_ok = false;
5691
5692 break;
5693 }
5694
5695 /* check link status - esi[10] = 0x200c */
5696 if (intel_dp->active_mst_links > 0 && link_ok &&
5697 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5698 drm_dbg_kms(&i915->drm,
5699 "channel EQ not ok, retraining\n");
5700 link_ok = false;
5701 }
5702
5703 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5704
5705 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5706 if (!handled)
5707 break;
5708
5709 for (retry = 0; retry < 3; retry++) {
5710 int wret;
5711
5712 wret = drm_dp_dpcd_write(&intel_dp->aux,
5713 DP_SINK_COUNT_ESI+1,
5714 &esi[1], 3);
5715 if (wret == 3)
5716 break;
5717 }
5718 }
5719
5720 return link_ok;
5721 }
5722
5723 static bool
intel_dp_needs_link_retrain(struct intel_dp * intel_dp)5724 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5725 {
5726 u8 link_status[DP_LINK_STATUS_SIZE];
5727
5728 if (!intel_dp->link_trained)
5729 return false;
5730
5731 /*
5732 * While PSR source HW is enabled, it will control main-link sending
5733 * frames, enabling and disabling it so trying to do a retrain will fail
5734 * as the link would or not be on or it could mix training patterns
5735 * and frame data at the same time causing retrain to fail.
5736 * Also when exiting PSR, HW will retrain the link anyways fixing
5737 * any link status error.
5738 */
5739 if (intel_psr_enabled(intel_dp))
5740 return false;
5741
5742 if (!intel_dp_get_link_status(intel_dp, link_status))
5743 return false;
5744
5745 /*
5746 * Validate the cached values of intel_dp->link_rate and
5747 * intel_dp->lane_count before attempting to retrain.
5748 */
5749 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5750 intel_dp->lane_count))
5751 return false;
5752
5753 /* Retrain if Channel EQ or CR not ok */
5754 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5755 }
5756
intel_dp_has_connector(struct intel_dp * intel_dp,const struct drm_connector_state * conn_state)5757 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5758 const struct drm_connector_state *conn_state)
5759 {
5760 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5761 struct intel_encoder *encoder;
5762 enum pipe pipe;
5763
5764 if (!conn_state->best_encoder)
5765 return false;
5766
5767 /* SST */
5768 encoder = &dp_to_dig_port(intel_dp)->base;
5769 if (conn_state->best_encoder == &encoder->base)
5770 return true;
5771
5772 /* MST */
5773 for_each_pipe(i915, pipe) {
5774 encoder = &intel_dp->mst_encoders[pipe]->base;
5775 if (conn_state->best_encoder == &encoder->base)
5776 return true;
5777 }
5778
5779 return false;
5780 }
5781
intel_dp_prep_link_retrain(struct intel_dp * intel_dp,struct drm_modeset_acquire_ctx * ctx,u32 * crtc_mask)5782 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5783 struct drm_modeset_acquire_ctx *ctx,
5784 u32 *crtc_mask)
5785 {
5786 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5787 struct drm_connector_list_iter conn_iter;
5788 struct intel_connector *connector;
5789 int ret = 0;
5790
5791 *crtc_mask = 0;
5792
5793 if (!intel_dp_needs_link_retrain(intel_dp))
5794 return 0;
5795
5796 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5797 for_each_intel_connector_iter(connector, &conn_iter) {
5798 struct drm_connector_state *conn_state =
5799 connector->base.state;
5800 struct intel_crtc_state *crtc_state;
5801 struct intel_crtc *crtc;
5802
5803 if (!intel_dp_has_connector(intel_dp, conn_state))
5804 continue;
5805
5806 crtc = to_intel_crtc(conn_state->crtc);
5807 if (!crtc)
5808 continue;
5809
5810 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5811 if (ret)
5812 break;
5813
5814 crtc_state = to_intel_crtc_state(crtc->base.state);
5815
5816 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5817
5818 if (!crtc_state->hw.active)
5819 continue;
5820
5821 if (conn_state->commit &&
5822 !try_wait_for_completion(&conn_state->commit->hw_done))
5823 continue;
5824
5825 *crtc_mask |= drm_crtc_mask(&crtc->base);
5826 }
5827 drm_connector_list_iter_end(&conn_iter);
5828
5829 if (!intel_dp_needs_link_retrain(intel_dp))
5830 *crtc_mask = 0;
5831
5832 return ret;
5833 }
5834
intel_dp_is_connected(struct intel_dp * intel_dp)5835 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5836 {
5837 struct intel_connector *connector = intel_dp->attached_connector;
5838
5839 return connector->base.status == connector_status_connected ||
5840 intel_dp->is_mst;
5841 }
5842
intel_dp_retrain_link(struct intel_encoder * encoder,struct drm_modeset_acquire_ctx * ctx)5843 int intel_dp_retrain_link(struct intel_encoder *encoder,
5844 struct drm_modeset_acquire_ctx *ctx)
5845 {
5846 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5847 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5848 struct intel_crtc *crtc;
5849 u32 crtc_mask;
5850 int ret;
5851
5852 if (!intel_dp_is_connected(intel_dp))
5853 return 0;
5854
5855 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5856 ctx);
5857 if (ret)
5858 return ret;
5859
5860 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5861 if (ret)
5862 return ret;
5863
5864 if (crtc_mask == 0)
5865 return 0;
5866
5867 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5868 encoder->base.base.id, encoder->base.name);
5869
5870 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5871 const struct intel_crtc_state *crtc_state =
5872 to_intel_crtc_state(crtc->base.state);
5873
5874 /* Suppress underruns caused by re-training */
5875 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5876 if (crtc_state->has_pch_encoder)
5877 intel_set_pch_fifo_underrun_reporting(dev_priv,
5878 intel_crtc_pch_transcoder(crtc), false);
5879 }
5880
5881 intel_dp_start_link_train(intel_dp);
5882 intel_dp_stop_link_train(intel_dp);
5883
5884 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5885 const struct intel_crtc_state *crtc_state =
5886 to_intel_crtc_state(crtc->base.state);
5887
5888 /* Keep underrun reporting disabled until things are stable */
5889 intel_wait_for_vblank(dev_priv, crtc->pipe);
5890
5891 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5892 if (crtc_state->has_pch_encoder)
5893 intel_set_pch_fifo_underrun_reporting(dev_priv,
5894 intel_crtc_pch_transcoder(crtc), true);
5895 }
5896
5897 return 0;
5898 }
5899
5900 /*
5901 * If display is now connected check links status,
5902 * there has been known issues of link loss triggering
5903 * long pulse.
5904 *
5905 * Some sinks (eg. ASUS PB287Q) seem to perform some
5906 * weird HPD ping pong during modesets. So we can apparently
5907 * end up with HPD going low during a modeset, and then
5908 * going back up soon after. And once that happens we must
5909 * retrain the link to get a picture. That's in case no
5910 * userspace component reacted to intermittent HPD dip.
5911 */
5912 static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder * encoder,struct intel_connector * connector)5913 intel_dp_hotplug(struct intel_encoder *encoder,
5914 struct intel_connector *connector)
5915 {
5916 struct drm_modeset_acquire_ctx ctx;
5917 enum intel_hotplug_state state;
5918 int ret;
5919
5920 state = intel_encoder_hotplug(encoder, connector);
5921
5922 drm_modeset_acquire_init(&ctx, 0);
5923
5924 for (;;) {
5925 ret = intel_dp_retrain_link(encoder, &ctx);
5926
5927 if (ret == -EDEADLK) {
5928 drm_modeset_backoff(&ctx);
5929 continue;
5930 }
5931
5932 break;
5933 }
5934
5935 drm_modeset_drop_locks(&ctx);
5936 drm_modeset_acquire_fini(&ctx);
5937 drm_WARN(encoder->base.dev, ret,
5938 "Acquiring modeset locks failed with %i\n", ret);
5939
5940 /*
5941 * Keeping it consistent with intel_ddi_hotplug() and
5942 * intel_hdmi_hotplug().
5943 */
5944 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5945 state = INTEL_HOTPLUG_RETRY;
5946
5947 return state;
5948 }
5949
intel_dp_check_service_irq(struct intel_dp * intel_dp)5950 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5951 {
5952 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5953 u8 val;
5954
5955 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5956 return;
5957
5958 if (drm_dp_dpcd_readb(&intel_dp->aux,
5959 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5960 return;
5961
5962 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5963
5964 if (val & DP_AUTOMATED_TEST_REQUEST)
5965 intel_dp_handle_test_request(intel_dp);
5966
5967 if (val & DP_CP_IRQ)
5968 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5969
5970 if (val & DP_SINK_SPECIFIC_IRQ)
5971 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5972 }
5973
5974 /*
5975 * According to DP spec
5976 * 5.1.2:
5977 * 1. Read DPCD
5978 * 2. Configure link according to Receiver Capabilities
5979 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5980 * 4. Check link status on receipt of hot-plug interrupt
5981 *
5982 * intel_dp_short_pulse - handles short pulse interrupts
5983 * when full detection is not required.
5984 * Returns %true if short pulse is handled and full detection
5985 * is NOT required and %false otherwise.
5986 */
5987 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)5988 intel_dp_short_pulse(struct intel_dp *intel_dp)
5989 {
5990 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5991 u8 old_sink_count = intel_dp->sink_count;
5992 bool ret;
5993
5994 /*
5995 * Clearing compliance test variables to allow capturing
5996 * of values for next automated test request.
5997 */
5998 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5999
6000 /*
6001 * Now read the DPCD to see if it's actually running
6002 * If the current value of sink count doesn't match with
6003 * the value that was stored earlier or dpcd read failed
6004 * we need to do full detection
6005 */
6006 ret = intel_dp_get_dpcd(intel_dp);
6007
6008 if ((old_sink_count != intel_dp->sink_count) || !ret) {
6009 /* No need to proceed if we are going to do full detect */
6010 return false;
6011 }
6012
6013 intel_dp_check_service_irq(intel_dp);
6014
6015 /* Handle CEC interrupts, if any */
6016 drm_dp_cec_irq(&intel_dp->aux);
6017
6018 /* defer to the hotplug work for link retraining if needed */
6019 if (intel_dp_needs_link_retrain(intel_dp))
6020 return false;
6021
6022 intel_psr_short_pulse(intel_dp);
6023
6024 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
6025 drm_dbg_kms(&dev_priv->drm,
6026 "Link Training Compliance Test requested\n");
6027 /* Send a Hotplug Uevent to userspace to start modeset */
6028 drm_kms_helper_hotplug_event(&dev_priv->drm);
6029 }
6030
6031 return true;
6032 }
6033
6034 /* XXX this is probably wrong for multiple downstream ports */
6035 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)6036 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6037 {
6038 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6039 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6040 u8 *dpcd = intel_dp->dpcd;
6041 u8 type;
6042
6043 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6044 return connector_status_connected;
6045
6046 if (lspcon->active)
6047 lspcon_resume(lspcon);
6048
6049 if (!intel_dp_get_dpcd(intel_dp))
6050 return connector_status_disconnected;
6051
6052 /* if there's no downstream port, we're done */
6053 if (!drm_dp_is_branch(dpcd))
6054 return connector_status_connected;
6055
6056 /* If we're HPD-aware, SINK_COUNT changes dynamically */
6057 if (intel_dp_has_sink_count(intel_dp) &&
6058 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6059 return intel_dp->sink_count ?
6060 connector_status_connected : connector_status_disconnected;
6061 }
6062
6063 if (intel_dp_can_mst(intel_dp))
6064 return connector_status_connected;
6065
6066 /* If no HPD, poke DDC gently */
6067 if (drm_probe_ddc(&intel_dp->aux.ddc))
6068 return connector_status_connected;
6069
6070 /* Well we tried, say unknown for unreliable port types */
6071 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6072 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6073 if (type == DP_DS_PORT_TYPE_VGA ||
6074 type == DP_DS_PORT_TYPE_NON_EDID)
6075 return connector_status_unknown;
6076 } else {
6077 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6078 DP_DWN_STRM_PORT_TYPE_MASK;
6079 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6080 type == DP_DWN_STRM_PORT_TYPE_OTHER)
6081 return connector_status_unknown;
6082 }
6083
6084 /* Anything else is out of spec, warn and ignore */
6085 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6086 return connector_status_disconnected;
6087 }
6088
6089 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)6090 edp_detect(struct intel_dp *intel_dp)
6091 {
6092 return connector_status_connected;
6093 }
6094
ibx_digital_port_connected(struct intel_encoder * encoder)6095 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6096 {
6097 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6098 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6099
6100 return intel_de_read(dev_priv, SDEISR) & bit;
6101 }
6102
g4x_digital_port_connected(struct intel_encoder * encoder)6103 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6104 {
6105 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6106 u32 bit;
6107
6108 switch (encoder->hpd_pin) {
6109 case HPD_PORT_B:
6110 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6111 break;
6112 case HPD_PORT_C:
6113 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6114 break;
6115 case HPD_PORT_D:
6116 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6117 break;
6118 default:
6119 MISSING_CASE(encoder->hpd_pin);
6120 return false;
6121 }
6122
6123 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6124 }
6125
gm45_digital_port_connected(struct intel_encoder * encoder)6126 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6127 {
6128 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6129 u32 bit;
6130
6131 switch (encoder->hpd_pin) {
6132 case HPD_PORT_B:
6133 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6134 break;
6135 case HPD_PORT_C:
6136 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6137 break;
6138 case HPD_PORT_D:
6139 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6140 break;
6141 default:
6142 MISSING_CASE(encoder->hpd_pin);
6143 return false;
6144 }
6145
6146 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6147 }
6148
ilk_digital_port_connected(struct intel_encoder * encoder)6149 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6150 {
6151 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6152 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6153
6154 return intel_de_read(dev_priv, DEISR) & bit;
6155 }
6156
6157 /*
6158 * intel_digital_port_connected - is the specified port connected?
6159 * @encoder: intel_encoder
6160 *
6161 * In cases where there's a connector physically connected but it can't be used
6162 * by our hardware we also return false, since the rest of the driver should
6163 * pretty much treat the port as disconnected. This is relevant for type-C
6164 * (starting on ICL) where there's ownership involved.
6165 *
6166 * Return %true if port is connected, %false otherwise.
6167 */
intel_digital_port_connected(struct intel_encoder * encoder)6168 bool intel_digital_port_connected(struct intel_encoder *encoder)
6169 {
6170 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6171 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6172 bool is_connected = false;
6173 intel_wakeref_t wakeref;
6174
6175 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6176 is_connected = dig_port->connected(encoder);
6177
6178 return is_connected;
6179 }
6180
6181 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)6182 intel_dp_get_edid(struct intel_dp *intel_dp)
6183 {
6184 struct intel_connector *intel_connector = intel_dp->attached_connector;
6185
6186 /* use cached edid if we have one */
6187 if (intel_connector->edid) {
6188 /* invalid edid */
6189 if (IS_ERR(intel_connector->edid))
6190 return NULL;
6191
6192 return drm_edid_duplicate(intel_connector->edid);
6193 } else
6194 return drm_get_edid(&intel_connector->base,
6195 &intel_dp->aux.ddc);
6196 }
6197
6198 static void
intel_dp_update_dfp(struct intel_dp * intel_dp,const struct edid * edid)6199 intel_dp_update_dfp(struct intel_dp *intel_dp,
6200 const struct edid *edid)
6201 {
6202 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6203 struct intel_connector *connector = intel_dp->attached_connector;
6204
6205 intel_dp->dfp.max_bpc =
6206 drm_dp_downstream_max_bpc(intel_dp->dpcd,
6207 intel_dp->downstream_ports, edid);
6208
6209 intel_dp->dfp.max_dotclock =
6210 drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6211 intel_dp->downstream_ports);
6212
6213 intel_dp->dfp.min_tmds_clock =
6214 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6215 intel_dp->downstream_ports,
6216 edid);
6217 intel_dp->dfp.max_tmds_clock =
6218 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6219 intel_dp->downstream_ports,
6220 edid);
6221
6222 drm_dbg_kms(&i915->drm,
6223 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6224 connector->base.base.id, connector->base.name,
6225 intel_dp->dfp.max_bpc,
6226 intel_dp->dfp.max_dotclock,
6227 intel_dp->dfp.min_tmds_clock,
6228 intel_dp->dfp.max_tmds_clock);
6229 }
6230
6231 static void
intel_dp_update_420(struct intel_dp * intel_dp)6232 intel_dp_update_420(struct intel_dp *intel_dp)
6233 {
6234 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6235 struct intel_connector *connector = intel_dp->attached_connector;
6236 bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6237
6238 /* No YCbCr output support on gmch platforms */
6239 if (HAS_GMCH(i915))
6240 return;
6241
6242 /*
6243 * ILK doesn't seem capable of DP YCbCr output. The
6244 * displayed image is severly corrupted. SNB+ is fine.
6245 */
6246 if (IS_GEN(i915, 5))
6247 return;
6248
6249 is_branch = drm_dp_is_branch(intel_dp->dpcd);
6250 ycbcr_420_passthrough =
6251 drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6252 intel_dp->downstream_ports);
6253 ycbcr_444_to_420 =
6254 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6255 intel_dp->downstream_ports);
6256
6257 if (INTEL_GEN(i915) >= 11) {
6258 /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6259 intel_dp->dfp.ycbcr_444_to_420 =
6260 ycbcr_444_to_420 && !ycbcr_420_passthrough;
6261
6262 connector->base.ycbcr_420_allowed =
6263 !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6264 } else {
6265 /* 4:4:4->4:2:0 conversion is the only way */
6266 intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6267
6268 connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6269 }
6270
6271 drm_dbg_kms(&i915->drm,
6272 "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6273 connector->base.base.id, connector->base.name,
6274 yesno(connector->base.ycbcr_420_allowed),
6275 yesno(intel_dp->dfp.ycbcr_444_to_420));
6276 }
6277
6278 static void
intel_dp_set_edid(struct intel_dp * intel_dp)6279 intel_dp_set_edid(struct intel_dp *intel_dp)
6280 {
6281 struct intel_connector *connector = intel_dp->attached_connector;
6282 struct edid *edid;
6283
6284 intel_dp_unset_edid(intel_dp);
6285 edid = intel_dp_get_edid(intel_dp);
6286 connector->detect_edid = edid;
6287
6288 intel_dp_update_dfp(intel_dp, edid);
6289 intel_dp_update_420(intel_dp);
6290
6291 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6292 intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6293 intel_dp->has_audio = drm_detect_monitor_audio(edid);
6294 }
6295
6296 drm_dp_cec_set_edid(&intel_dp->aux, edid);
6297 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6298 }
6299
6300 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)6301 intel_dp_unset_edid(struct intel_dp *intel_dp)
6302 {
6303 struct intel_connector *connector = intel_dp->attached_connector;
6304
6305 drm_dp_cec_unset_edid(&intel_dp->aux);
6306 kfree(connector->detect_edid);
6307 connector->detect_edid = NULL;
6308
6309 intel_dp->has_hdmi_sink = false;
6310 intel_dp->has_audio = false;
6311 intel_dp->edid_quirks = 0;
6312
6313 intel_dp->dfp.max_bpc = 0;
6314 intel_dp->dfp.max_dotclock = 0;
6315 intel_dp->dfp.min_tmds_clock = 0;
6316 intel_dp->dfp.max_tmds_clock = 0;
6317
6318 intel_dp->dfp.ycbcr_444_to_420 = false;
6319 connector->base.ycbcr_420_allowed = false;
6320 }
6321
6322 static int
intel_dp_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)6323 intel_dp_detect(struct drm_connector *connector,
6324 struct drm_modeset_acquire_ctx *ctx,
6325 bool force)
6326 {
6327 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6328 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6329 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6330 struct intel_encoder *encoder = &dig_port->base;
6331 enum drm_connector_status status;
6332
6333 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6334 connector->base.id, connector->name);
6335 drm_WARN_ON(&dev_priv->drm,
6336 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6337
6338 if (!INTEL_DISPLAY_ENABLED(dev_priv))
6339 return connector_status_disconnected;
6340
6341 /* Can't disconnect eDP */
6342 if (intel_dp_is_edp(intel_dp))
6343 status = edp_detect(intel_dp);
6344 else if (intel_digital_port_connected(encoder))
6345 status = intel_dp_detect_dpcd(intel_dp);
6346 else
6347 status = connector_status_disconnected;
6348
6349 if (status == connector_status_disconnected) {
6350 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6351 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6352
6353 if (intel_dp->is_mst) {
6354 drm_dbg_kms(&dev_priv->drm,
6355 "MST device may have disappeared %d vs %d\n",
6356 intel_dp->is_mst,
6357 intel_dp->mst_mgr.mst_state);
6358 intel_dp->is_mst = false;
6359 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6360 intel_dp->is_mst);
6361 }
6362
6363 goto out;
6364 }
6365
6366 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6367 if (INTEL_GEN(dev_priv) >= 11)
6368 intel_dp_get_dsc_sink_cap(intel_dp);
6369
6370 intel_dp_configure_mst(intel_dp);
6371
6372 /*
6373 * TODO: Reset link params when switching to MST mode, until MST
6374 * supports link training fallback params.
6375 */
6376 if (intel_dp->reset_link_params || intel_dp->is_mst) {
6377 /* Initial max link lane count */
6378 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6379
6380 /* Initial max link rate */
6381 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6382
6383 intel_dp->reset_link_params = false;
6384 }
6385
6386 intel_dp_print_rates(intel_dp);
6387
6388 if (intel_dp->is_mst) {
6389 /*
6390 * If we are in MST mode then this connector
6391 * won't appear connected or have anything
6392 * with EDID on it
6393 */
6394 status = connector_status_disconnected;
6395 goto out;
6396 }
6397
6398 /*
6399 * Some external monitors do not signal loss of link synchronization
6400 * with an IRQ_HPD, so force a link status check.
6401 */
6402 if (!intel_dp_is_edp(intel_dp)) {
6403 int ret;
6404
6405 ret = intel_dp_retrain_link(encoder, ctx);
6406 if (ret)
6407 return ret;
6408 }
6409
6410 /*
6411 * Clearing NACK and defer counts to get their exact values
6412 * while reading EDID which are required by Compliance tests
6413 * 4.2.2.4 and 4.2.2.5
6414 */
6415 intel_dp->aux.i2c_nack_count = 0;
6416 intel_dp->aux.i2c_defer_count = 0;
6417
6418 intel_dp_set_edid(intel_dp);
6419 if (intel_dp_is_edp(intel_dp) ||
6420 to_intel_connector(connector)->detect_edid)
6421 status = connector_status_connected;
6422
6423 intel_dp_check_service_irq(intel_dp);
6424
6425 out:
6426 if (status != connector_status_connected && !intel_dp->is_mst)
6427 intel_dp_unset_edid(intel_dp);
6428
6429 /*
6430 * Make sure the refs for power wells enabled during detect are
6431 * dropped to avoid a new detect cycle triggered by HPD polling.
6432 */
6433 intel_display_power_flush_work(dev_priv);
6434
6435 if (!intel_dp_is_edp(intel_dp))
6436 drm_dp_set_subconnector_property(connector,
6437 status,
6438 intel_dp->dpcd,
6439 intel_dp->downstream_ports);
6440 return status;
6441 }
6442
6443 static void
intel_dp_force(struct drm_connector * connector)6444 intel_dp_force(struct drm_connector *connector)
6445 {
6446 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6447 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6448 struct intel_encoder *intel_encoder = &dig_port->base;
6449 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6450 enum intel_display_power_domain aux_domain =
6451 intel_aux_power_domain(dig_port);
6452 intel_wakeref_t wakeref;
6453
6454 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6455 connector->base.id, connector->name);
6456 intel_dp_unset_edid(intel_dp);
6457
6458 if (connector->status != connector_status_connected)
6459 return;
6460
6461 wakeref = intel_display_power_get(dev_priv, aux_domain);
6462
6463 intel_dp_set_edid(intel_dp);
6464
6465 intel_display_power_put(dev_priv, aux_domain, wakeref);
6466 }
6467
intel_dp_get_modes(struct drm_connector * connector)6468 static int intel_dp_get_modes(struct drm_connector *connector)
6469 {
6470 struct intel_connector *intel_connector = to_intel_connector(connector);
6471 struct edid *edid;
6472
6473 edid = intel_connector->detect_edid;
6474 if (edid) {
6475 int ret = intel_connector_update_modes(connector, edid);
6476 if (ret)
6477 return ret;
6478 }
6479
6480 /* if eDP has no EDID, fall back to fixed mode */
6481 if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6482 intel_connector->panel.fixed_mode) {
6483 struct drm_display_mode *mode;
6484
6485 mode = drm_mode_duplicate(connector->dev,
6486 intel_connector->panel.fixed_mode);
6487 if (mode) {
6488 drm_mode_probed_add(connector, mode);
6489 return 1;
6490 }
6491 }
6492
6493 if (!edid) {
6494 struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6495 struct drm_display_mode *mode;
6496
6497 mode = drm_dp_downstream_mode(connector->dev,
6498 intel_dp->dpcd,
6499 intel_dp->downstream_ports);
6500 if (mode) {
6501 drm_mode_probed_add(connector, mode);
6502 return 1;
6503 }
6504 }
6505
6506 return 0;
6507 }
6508
6509 static int
intel_dp_connector_register(struct drm_connector * connector)6510 intel_dp_connector_register(struct drm_connector *connector)
6511 {
6512 struct drm_i915_private *i915 = to_i915(connector->dev);
6513 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6514 int ret;
6515
6516 ret = intel_connector_register(connector);
6517 if (ret)
6518 return ret;
6519
6520 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6521 intel_dp->aux.name, connector->kdev->kobj.name);
6522
6523 intel_dp->aux.dev = connector->kdev;
6524 ret = drm_dp_aux_register(&intel_dp->aux);
6525 if (!ret)
6526 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6527 return ret;
6528 }
6529
6530 static void
intel_dp_connector_unregister(struct drm_connector * connector)6531 intel_dp_connector_unregister(struct drm_connector *connector)
6532 {
6533 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6534
6535 drm_dp_cec_unregister_connector(&intel_dp->aux);
6536 drm_dp_aux_unregister(&intel_dp->aux);
6537 intel_connector_unregister(connector);
6538 }
6539
intel_dp_encoder_flush_work(struct drm_encoder * encoder)6540 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6541 {
6542 struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6543 struct intel_dp *intel_dp = &dig_port->dp;
6544
6545 intel_dp_mst_encoder_cleanup(dig_port);
6546 if (intel_dp_is_edp(intel_dp)) {
6547 intel_wakeref_t wakeref;
6548
6549 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6550 /*
6551 * vdd might still be enabled do to the delayed vdd off.
6552 * Make sure vdd is actually turned off here.
6553 */
6554 with_pps_lock(intel_dp, wakeref)
6555 edp_panel_vdd_off_sync(intel_dp);
6556
6557 if (intel_dp->edp_notifier.notifier_call) {
6558 unregister_reboot_notifier(&intel_dp->edp_notifier);
6559 intel_dp->edp_notifier.notifier_call = NULL;
6560 }
6561 }
6562
6563 intel_dp_aux_fini(intel_dp);
6564 }
6565
intel_dp_encoder_destroy(struct drm_encoder * encoder)6566 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6567 {
6568 intel_dp_encoder_flush_work(encoder);
6569
6570 drm_encoder_cleanup(encoder);
6571 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6572 }
6573
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)6574 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6575 {
6576 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6577 intel_wakeref_t wakeref;
6578
6579 if (!intel_dp_is_edp(intel_dp))
6580 return;
6581
6582 /*
6583 * vdd might still be enabled do to the delayed vdd off.
6584 * Make sure vdd is actually turned off here.
6585 */
6586 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6587 with_pps_lock(intel_dp, wakeref)
6588 edp_panel_vdd_off_sync(intel_dp);
6589 }
6590
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)6591 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6592 {
6593 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6594 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6595
6596 lockdep_assert_held(&dev_priv->pps_mutex);
6597
6598 if (!edp_have_panel_vdd(intel_dp))
6599 return;
6600
6601 /*
6602 * The VDD bit needs a power domain reference, so if the bit is
6603 * already enabled when we boot or resume, grab this reference and
6604 * schedule a vdd off, so we don't hold on to the reference
6605 * indefinitely.
6606 */
6607 drm_dbg_kms(&dev_priv->drm,
6608 "VDD left on by BIOS, adjusting state tracking\n");
6609 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6610
6611 edp_panel_vdd_schedule_off(intel_dp);
6612 }
6613
vlv_active_pipe(struct intel_dp * intel_dp)6614 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6615 {
6616 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6617 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6618 enum pipe pipe;
6619
6620 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6621 encoder->port, &pipe))
6622 return pipe;
6623
6624 return INVALID_PIPE;
6625 }
6626
intel_dp_encoder_reset(struct drm_encoder * encoder)6627 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6628 {
6629 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6630 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6631 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6632 intel_wakeref_t wakeref;
6633
6634 if (!HAS_DDI(dev_priv))
6635 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6636
6637 if (lspcon->active)
6638 lspcon_resume(lspcon);
6639
6640 intel_dp->reset_link_params = true;
6641
6642 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6643 !intel_dp_is_edp(intel_dp))
6644 return;
6645
6646 with_pps_lock(intel_dp, wakeref) {
6647 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6648 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6649
6650 if (intel_dp_is_edp(intel_dp)) {
6651 /*
6652 * Reinit the power sequencer, in case BIOS did
6653 * something nasty with it.
6654 */
6655 intel_dp_pps_init(intel_dp);
6656 intel_edp_panel_vdd_sanitize(intel_dp);
6657 }
6658 }
6659 }
6660
intel_modeset_tile_group(struct intel_atomic_state * state,int tile_group_id)6661 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6662 int tile_group_id)
6663 {
6664 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6665 struct drm_connector_list_iter conn_iter;
6666 struct drm_connector *connector;
6667 int ret = 0;
6668
6669 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6670 drm_for_each_connector_iter(connector, &conn_iter) {
6671 struct drm_connector_state *conn_state;
6672 struct intel_crtc_state *crtc_state;
6673 struct intel_crtc *crtc;
6674
6675 if (!connector->has_tile ||
6676 connector->tile_group->id != tile_group_id)
6677 continue;
6678
6679 conn_state = drm_atomic_get_connector_state(&state->base,
6680 connector);
6681 if (IS_ERR(conn_state)) {
6682 ret = PTR_ERR(conn_state);
6683 break;
6684 }
6685
6686 crtc = to_intel_crtc(conn_state->crtc);
6687
6688 if (!crtc)
6689 continue;
6690
6691 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6692 crtc_state->uapi.mode_changed = true;
6693
6694 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6695 if (ret)
6696 break;
6697 }
6698 drm_connector_list_iter_end(&conn_iter);
6699
6700 return ret;
6701 }
6702
intel_modeset_affected_transcoders(struct intel_atomic_state * state,u8 transcoders)6703 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6704 {
6705 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6706 struct intel_crtc *crtc;
6707
6708 if (transcoders == 0)
6709 return 0;
6710
6711 for_each_intel_crtc(&dev_priv->drm, crtc) {
6712 struct intel_crtc_state *crtc_state;
6713 int ret;
6714
6715 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6716 if (IS_ERR(crtc_state))
6717 return PTR_ERR(crtc_state);
6718
6719 if (!crtc_state->hw.enable)
6720 continue;
6721
6722 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6723 continue;
6724
6725 crtc_state->uapi.mode_changed = true;
6726
6727 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6728 if (ret)
6729 return ret;
6730
6731 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6732 if (ret)
6733 return ret;
6734
6735 transcoders &= ~BIT(crtc_state->cpu_transcoder);
6736 }
6737
6738 drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6739
6740 return 0;
6741 }
6742
intel_modeset_synced_crtcs(struct intel_atomic_state * state,struct drm_connector * connector)6743 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6744 struct drm_connector *connector)
6745 {
6746 const struct drm_connector_state *old_conn_state =
6747 drm_atomic_get_old_connector_state(&state->base, connector);
6748 const struct intel_crtc_state *old_crtc_state;
6749 struct intel_crtc *crtc;
6750 u8 transcoders;
6751
6752 crtc = to_intel_crtc(old_conn_state->crtc);
6753 if (!crtc)
6754 return 0;
6755
6756 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6757
6758 if (!old_crtc_state->hw.active)
6759 return 0;
6760
6761 transcoders = old_crtc_state->sync_mode_slaves_mask;
6762 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6763 transcoders |= BIT(old_crtc_state->master_transcoder);
6764
6765 return intel_modeset_affected_transcoders(state,
6766 transcoders);
6767 }
6768
intel_dp_connector_atomic_check(struct drm_connector * conn,struct drm_atomic_state * _state)6769 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6770 struct drm_atomic_state *_state)
6771 {
6772 struct drm_i915_private *dev_priv = to_i915(conn->dev);
6773 struct intel_atomic_state *state = to_intel_atomic_state(_state);
6774 int ret;
6775
6776 ret = intel_digital_connector_atomic_check(conn, &state->base);
6777 if (ret)
6778 return ret;
6779
6780 /*
6781 * We don't enable port sync on BDW due to missing w/as and
6782 * due to not having adjusted the modeset sequence appropriately.
6783 */
6784 if (INTEL_GEN(dev_priv) < 9)
6785 return 0;
6786
6787 if (!intel_connector_needs_modeset(state, conn))
6788 return 0;
6789
6790 if (conn->has_tile) {
6791 ret = intel_modeset_tile_group(state, conn->tile_group->id);
6792 if (ret)
6793 return ret;
6794 }
6795
6796 return intel_modeset_synced_crtcs(state, conn);
6797 }
6798
6799 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6800 .force = intel_dp_force,
6801 .fill_modes = drm_helper_probe_single_connector_modes,
6802 .atomic_get_property = intel_digital_connector_atomic_get_property,
6803 .atomic_set_property = intel_digital_connector_atomic_set_property,
6804 .late_register = intel_dp_connector_register,
6805 .early_unregister = intel_dp_connector_unregister,
6806 .destroy = intel_connector_destroy,
6807 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6808 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6809 };
6810
6811 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6812 .detect_ctx = intel_dp_detect,
6813 .get_modes = intel_dp_get_modes,
6814 .mode_valid = intel_dp_mode_valid,
6815 .atomic_check = intel_dp_connector_atomic_check,
6816 };
6817
6818 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6819 .reset = intel_dp_encoder_reset,
6820 .destroy = intel_dp_encoder_destroy,
6821 };
6822
intel_edp_have_power(struct intel_dp * intel_dp)6823 static bool intel_edp_have_power(struct intel_dp *intel_dp)
6824 {
6825 intel_wakeref_t wakeref;
6826 bool have_power = false;
6827
6828 with_pps_lock(intel_dp, wakeref) {
6829 have_power = edp_have_panel_power(intel_dp) &&
6830 edp_have_panel_vdd(intel_dp);
6831 }
6832
6833 return have_power;
6834 }
6835
6836 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * dig_port,bool long_hpd)6837 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
6838 {
6839 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6840 struct intel_dp *intel_dp = &dig_port->dp;
6841
6842 if (dig_port->base.type == INTEL_OUTPUT_EDP &&
6843 (long_hpd || !intel_edp_have_power(intel_dp))) {
6844 /*
6845 * vdd off can generate a long/short pulse on eDP which
6846 * would require vdd on to handle it, and thus we
6847 * would end up in an endless cycle of
6848 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
6849 */
6850 drm_dbg_kms(&i915->drm,
6851 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
6852 long_hpd ? "long" : "short",
6853 dig_port->base.base.base.id,
6854 dig_port->base.base.name);
6855 return IRQ_HANDLED;
6856 }
6857
6858 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
6859 dig_port->base.base.base.id,
6860 dig_port->base.base.name,
6861 long_hpd ? "long" : "short");
6862
6863 if (long_hpd) {
6864 intel_dp->reset_link_params = true;
6865 return IRQ_NONE;
6866 }
6867
6868 if (intel_dp->is_mst) {
6869 if (!intel_dp_check_mst_status(intel_dp))
6870 return IRQ_NONE;
6871 } else if (!intel_dp_short_pulse(intel_dp)) {
6872 return IRQ_NONE;
6873 }
6874
6875 return IRQ_HANDLED;
6876 }
6877
6878 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_port_edp(struct drm_i915_private * dev_priv,enum port port)6879 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6880 {
6881 /*
6882 * eDP not supported on g4x. so bail out early just
6883 * for a bit extra safety in case the VBT is bonkers.
6884 */
6885 if (INTEL_GEN(dev_priv) < 5)
6886 return false;
6887
6888 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6889 return true;
6890
6891 return intel_bios_is_port_edp(dev_priv, port);
6892 }
6893
6894 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)6895 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6896 {
6897 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6898 enum port port = dp_to_dig_port(intel_dp)->base.port;
6899
6900 if (!intel_dp_is_edp(intel_dp))
6901 drm_connector_attach_dp_subconnector_property(connector);
6902
6903 if (!IS_G4X(dev_priv) && port != PORT_A)
6904 intel_attach_force_audio_property(connector);
6905
6906 intel_attach_broadcast_rgb_property(connector);
6907 if (HAS_GMCH(dev_priv))
6908 drm_connector_attach_max_bpc_property(connector, 6, 10);
6909 else if (INTEL_GEN(dev_priv) >= 5)
6910 drm_connector_attach_max_bpc_property(connector, 6, 12);
6911
6912 intel_attach_colorspace_property(connector);
6913
6914 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6915 drm_object_attach_property(&connector->base,
6916 connector->dev->mode_config.hdr_output_metadata_property,
6917 0);
6918
6919 if (intel_dp_is_edp(intel_dp)) {
6920 u32 allowed_scalers;
6921
6922 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6923 if (!HAS_GMCH(dev_priv))
6924 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6925
6926 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6927
6928 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6929
6930 }
6931 }
6932
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)6933 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6934 {
6935 intel_dp->panel_power_off_time = ktime_get_boottime();
6936 intel_dp->last_power_on = jiffies;
6937 intel_dp->last_backlight_off = jiffies;
6938 }
6939
6940 static void
intel_pps_readout_hw_state(struct intel_dp * intel_dp,struct edp_power_seq * seq)6941 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6942 {
6943 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6944 u32 pp_on, pp_off, pp_ctl;
6945 struct pps_registers regs;
6946
6947 intel_pps_get_registers(intel_dp, ®s);
6948
6949 pp_ctl = ilk_get_pp_control(intel_dp);
6950
6951 /* Ensure PPS is unlocked */
6952 if (!HAS_DDI(dev_priv))
6953 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6954
6955 pp_on = intel_de_read(dev_priv, regs.pp_on);
6956 pp_off = intel_de_read(dev_priv, regs.pp_off);
6957
6958 /* Pull timing values out of registers */
6959 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6960 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6961 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6962 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6963
6964 if (i915_mmio_reg_valid(regs.pp_div)) {
6965 u32 pp_div;
6966
6967 pp_div = intel_de_read(dev_priv, regs.pp_div);
6968
6969 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6970 } else {
6971 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6972 }
6973 }
6974
6975 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)6976 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6977 {
6978 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6979 state_name,
6980 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6981 }
6982
6983 static void
intel_pps_verify_state(struct intel_dp * intel_dp)6984 intel_pps_verify_state(struct intel_dp *intel_dp)
6985 {
6986 struct edp_power_seq hw;
6987 struct edp_power_seq *sw = &intel_dp->pps_delays;
6988
6989 intel_pps_readout_hw_state(intel_dp, &hw);
6990
6991 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6992 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6993 DRM_ERROR("PPS state mismatch\n");
6994 intel_pps_dump_state("sw", sw);
6995 intel_pps_dump_state("hw", &hw);
6996 }
6997 }
6998
6999 static void
intel_dp_init_panel_power_sequencer(struct intel_dp * intel_dp)7000 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7001 {
7002 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7003 struct edp_power_seq cur, vbt, spec,
7004 *final = &intel_dp->pps_delays;
7005
7006 lockdep_assert_held(&dev_priv->pps_mutex);
7007
7008 /* already initialized? */
7009 if (final->t11_t12 != 0)
7010 return;
7011
7012 intel_pps_readout_hw_state(intel_dp, &cur);
7013
7014 intel_pps_dump_state("cur", &cur);
7015
7016 vbt = dev_priv->vbt.edp.pps;
7017 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7018 * of 500ms appears to be too short. Ocassionally the panel
7019 * just fails to power back on. Increasing the delay to 800ms
7020 * seems sufficient to avoid this problem.
7021 */
7022 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7023 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7024 drm_dbg_kms(&dev_priv->drm,
7025 "Increasing T12 panel delay as per the quirk to %d\n",
7026 vbt.t11_t12);
7027 }
7028 /* T11_T12 delay is special and actually in units of 100ms, but zero
7029 * based in the hw (so we need to add 100 ms). But the sw vbt
7030 * table multiplies it with 1000 to make it in units of 100usec,
7031 * too. */
7032 vbt.t11_t12 += 100 * 10;
7033
7034 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7035 * our hw here, which are all in 100usec. */
7036 spec.t1_t3 = 210 * 10;
7037 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7038 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7039 spec.t10 = 500 * 10;
7040 /* This one is special and actually in units of 100ms, but zero
7041 * based in the hw (so we need to add 100 ms). But the sw vbt
7042 * table multiplies it with 1000 to make it in units of 100usec,
7043 * too. */
7044 spec.t11_t12 = (510 + 100) * 10;
7045
7046 intel_pps_dump_state("vbt", &vbt);
7047
7048 /* Use the max of the register settings and vbt. If both are
7049 * unset, fall back to the spec limits. */
7050 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
7051 spec.field : \
7052 max(cur.field, vbt.field))
7053 assign_final(t1_t3);
7054 assign_final(t8);
7055 assign_final(t9);
7056 assign_final(t10);
7057 assign_final(t11_t12);
7058 #undef assign_final
7059
7060 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
7061 intel_dp->panel_power_up_delay = get_delay(t1_t3);
7062 intel_dp->backlight_on_delay = get_delay(t8);
7063 intel_dp->backlight_off_delay = get_delay(t9);
7064 intel_dp->panel_power_down_delay = get_delay(t10);
7065 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7066 #undef get_delay
7067
7068 drm_dbg_kms(&dev_priv->drm,
7069 "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7070 intel_dp->panel_power_up_delay,
7071 intel_dp->panel_power_down_delay,
7072 intel_dp->panel_power_cycle_delay);
7073
7074 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7075 intel_dp->backlight_on_delay,
7076 intel_dp->backlight_off_delay);
7077
7078 /*
7079 * We override the HW backlight delays to 1 because we do manual waits
7080 * on them. For T8, even BSpec recommends doing it. For T9, if we
7081 * don't do this, we'll end up waiting for the backlight off delay
7082 * twice: once when we do the manual sleep, and once when we disable
7083 * the panel and wait for the PP_STATUS bit to become zero.
7084 */
7085 final->t8 = 1;
7086 final->t9 = 1;
7087
7088 /*
7089 * HW has only a 100msec granularity for t11_t12 so round it up
7090 * accordingly.
7091 */
7092 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7093 }
7094
7095 static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp * intel_dp,bool force_disable_vdd)7096 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7097 bool force_disable_vdd)
7098 {
7099 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7100 u32 pp_on, pp_off, port_sel = 0;
7101 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7102 struct pps_registers regs;
7103 enum port port = dp_to_dig_port(intel_dp)->base.port;
7104 const struct edp_power_seq *seq = &intel_dp->pps_delays;
7105
7106 lockdep_assert_held(&dev_priv->pps_mutex);
7107
7108 intel_pps_get_registers(intel_dp, ®s);
7109
7110 /*
7111 * On some VLV machines the BIOS can leave the VDD
7112 * enabled even on power sequencers which aren't
7113 * hooked up to any port. This would mess up the
7114 * power domain tracking the first time we pick
7115 * one of these power sequencers for use since
7116 * edp_panel_vdd_on() would notice that the VDD was
7117 * already on and therefore wouldn't grab the power
7118 * domain reference. Disable VDD first to avoid this.
7119 * This also avoids spuriously turning the VDD on as
7120 * soon as the new power sequencer gets initialized.
7121 */
7122 if (force_disable_vdd) {
7123 u32 pp = ilk_get_pp_control(intel_dp);
7124
7125 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7126 "Panel power already on\n");
7127
7128 if (pp & EDP_FORCE_VDD)
7129 drm_dbg_kms(&dev_priv->drm,
7130 "VDD already on, disabling first\n");
7131
7132 pp &= ~EDP_FORCE_VDD;
7133
7134 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7135 }
7136
7137 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7138 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7139 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7140 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7141
7142 /* Haswell doesn't have any port selection bits for the panel
7143 * power sequencer any more. */
7144 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7145 port_sel = PANEL_PORT_SELECT_VLV(port);
7146 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7147 switch (port) {
7148 case PORT_A:
7149 port_sel = PANEL_PORT_SELECT_DPA;
7150 break;
7151 case PORT_C:
7152 port_sel = PANEL_PORT_SELECT_DPC;
7153 break;
7154 case PORT_D:
7155 port_sel = PANEL_PORT_SELECT_DPD;
7156 break;
7157 default:
7158 MISSING_CASE(port);
7159 break;
7160 }
7161 }
7162
7163 pp_on |= port_sel;
7164
7165 intel_de_write(dev_priv, regs.pp_on, pp_on);
7166 intel_de_write(dev_priv, regs.pp_off, pp_off);
7167
7168 /*
7169 * Compute the divisor for the pp clock, simply match the Bspec formula.
7170 */
7171 if (i915_mmio_reg_valid(regs.pp_div)) {
7172 intel_de_write(dev_priv, regs.pp_div,
7173 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7174 } else {
7175 u32 pp_ctl;
7176
7177 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7178 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7179 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7180 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7181 }
7182
7183 drm_dbg_kms(&dev_priv->drm,
7184 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7185 intel_de_read(dev_priv, regs.pp_on),
7186 intel_de_read(dev_priv, regs.pp_off),
7187 i915_mmio_reg_valid(regs.pp_div) ?
7188 intel_de_read(dev_priv, regs.pp_div) :
7189 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7190 }
7191
intel_dp_pps_init(struct intel_dp * intel_dp)7192 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7193 {
7194 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7195
7196 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7197 vlv_initial_power_sequencer_setup(intel_dp);
7198 } else {
7199 intel_dp_init_panel_power_sequencer(intel_dp);
7200 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7201 }
7202 }
7203
7204 /**
7205 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7206 * @dev_priv: i915 device
7207 * @crtc_state: a pointer to the active intel_crtc_state
7208 * @refresh_rate: RR to be programmed
7209 *
7210 * This function gets called when refresh rate (RR) has to be changed from
7211 * one frequency to another. Switches can be between high and low RR
7212 * supported by the panel or to any other RR based on media playback (in
7213 * this case, RR value needs to be passed from user space).
7214 *
7215 * The caller of this function needs to take a lock on dev_priv->drrs.
7216 */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,int refresh_rate)7217 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7218 const struct intel_crtc_state *crtc_state,
7219 int refresh_rate)
7220 {
7221 struct intel_dp *intel_dp = dev_priv->drrs.dp;
7222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7223 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7224
7225 if (refresh_rate <= 0) {
7226 drm_dbg_kms(&dev_priv->drm,
7227 "Refresh rate should be positive non-zero.\n");
7228 return;
7229 }
7230
7231 if (intel_dp == NULL) {
7232 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7233 return;
7234 }
7235
7236 if (!intel_crtc) {
7237 drm_dbg_kms(&dev_priv->drm,
7238 "DRRS: intel_crtc not initialized\n");
7239 return;
7240 }
7241
7242 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7243 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7244 return;
7245 }
7246
7247 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7248 refresh_rate)
7249 index = DRRS_LOW_RR;
7250
7251 if (index == dev_priv->drrs.refresh_rate_type) {
7252 drm_dbg_kms(&dev_priv->drm,
7253 "DRRS requested for previously set RR...ignoring\n");
7254 return;
7255 }
7256
7257 if (!crtc_state->hw.active) {
7258 drm_dbg_kms(&dev_priv->drm,
7259 "eDP encoder disabled. CRTC not Active\n");
7260 return;
7261 }
7262
7263 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7264 switch (index) {
7265 case DRRS_HIGH_RR:
7266 intel_dp_set_m_n(crtc_state, M1_N1);
7267 break;
7268 case DRRS_LOW_RR:
7269 intel_dp_set_m_n(crtc_state, M2_N2);
7270 break;
7271 case DRRS_MAX_RR:
7272 default:
7273 drm_err(&dev_priv->drm,
7274 "Unsupported refreshrate type\n");
7275 }
7276 } else if (INTEL_GEN(dev_priv) > 6) {
7277 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7278 u32 val;
7279
7280 val = intel_de_read(dev_priv, reg);
7281 if (index > DRRS_HIGH_RR) {
7282 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7283 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7284 else
7285 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7286 } else {
7287 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7288 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7289 else
7290 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7291 }
7292 intel_de_write(dev_priv, reg, val);
7293 }
7294
7295 dev_priv->drrs.refresh_rate_type = index;
7296
7297 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7298 refresh_rate);
7299 }
7300
7301 static void
intel_edp_drrs_enable_locked(struct intel_dp * intel_dp)7302 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7303 {
7304 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7305
7306 dev_priv->drrs.busy_frontbuffer_bits = 0;
7307 dev_priv->drrs.dp = intel_dp;
7308 }
7309
7310 /**
7311 * intel_edp_drrs_enable - init drrs struct if supported
7312 * @intel_dp: DP struct
7313 * @crtc_state: A pointer to the active crtc state.
7314 *
7315 * Initializes frontbuffer_bits and drrs.dp
7316 */
intel_edp_drrs_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7317 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7318 const struct intel_crtc_state *crtc_state)
7319 {
7320 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7321
7322 if (!crtc_state->has_drrs)
7323 return;
7324
7325 drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7326
7327 mutex_lock(&dev_priv->drrs.mutex);
7328
7329 if (dev_priv->drrs.dp) {
7330 drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7331 goto unlock;
7332 }
7333
7334 intel_edp_drrs_enable_locked(intel_dp);
7335
7336 unlock:
7337 mutex_unlock(&dev_priv->drrs.mutex);
7338 }
7339
7340 static void
intel_edp_drrs_disable_locked(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7341 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7342 const struct intel_crtc_state *crtc_state)
7343 {
7344 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7345
7346 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7347 int refresh;
7348
7349 refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7350 intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7351 }
7352
7353 dev_priv->drrs.dp = NULL;
7354 }
7355
7356 /**
7357 * intel_edp_drrs_disable - Disable DRRS
7358 * @intel_dp: DP struct
7359 * @old_crtc_state: Pointer to old crtc_state.
7360 *
7361 */
intel_edp_drrs_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)7362 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7363 const struct intel_crtc_state *old_crtc_state)
7364 {
7365 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7366
7367 if (!old_crtc_state->has_drrs)
7368 return;
7369
7370 mutex_lock(&dev_priv->drrs.mutex);
7371 if (!dev_priv->drrs.dp) {
7372 mutex_unlock(&dev_priv->drrs.mutex);
7373 return;
7374 }
7375
7376 intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7377 mutex_unlock(&dev_priv->drrs.mutex);
7378
7379 cancel_delayed_work_sync(&dev_priv->drrs.work);
7380 }
7381
7382 /**
7383 * intel_edp_drrs_update - Update DRRS state
7384 * @intel_dp: Intel DP
7385 * @crtc_state: new CRTC state
7386 *
7387 * This function will update DRRS states, disabling or enabling DRRS when
7388 * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7389 * intel_edp_drrs_enable() should be called instead.
7390 */
7391 void
intel_edp_drrs_update(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7392 intel_edp_drrs_update(struct intel_dp *intel_dp,
7393 const struct intel_crtc_state *crtc_state)
7394 {
7395 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7396
7397 if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7398 return;
7399
7400 mutex_lock(&dev_priv->drrs.mutex);
7401
7402 /* New state matches current one? */
7403 if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7404 goto unlock;
7405
7406 if (crtc_state->has_drrs)
7407 intel_edp_drrs_enable_locked(intel_dp);
7408 else
7409 intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7410
7411 unlock:
7412 mutex_unlock(&dev_priv->drrs.mutex);
7413 }
7414
intel_edp_drrs_downclock_work(struct work_struct * work)7415 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7416 {
7417 struct drm_i915_private *dev_priv =
7418 container_of(work, typeof(*dev_priv), drrs.work.work);
7419 struct intel_dp *intel_dp;
7420
7421 mutex_lock(&dev_priv->drrs.mutex);
7422
7423 intel_dp = dev_priv->drrs.dp;
7424
7425 if (!intel_dp)
7426 goto unlock;
7427
7428 /*
7429 * The delayed work can race with an invalidate hence we need to
7430 * recheck.
7431 */
7432
7433 if (dev_priv->drrs.busy_frontbuffer_bits)
7434 goto unlock;
7435
7436 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7437 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7438
7439 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7440 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7441 }
7442
7443 unlock:
7444 mutex_unlock(&dev_priv->drrs.mutex);
7445 }
7446
7447 /**
7448 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7449 * @dev_priv: i915 device
7450 * @frontbuffer_bits: frontbuffer plane tracking bits
7451 *
7452 * This function gets called everytime rendering on the given planes start.
7453 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7454 *
7455 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7456 */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7457 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7458 unsigned int frontbuffer_bits)
7459 {
7460 struct intel_dp *intel_dp;
7461 struct drm_crtc *crtc;
7462 enum pipe pipe;
7463
7464 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7465 return;
7466
7467 cancel_delayed_work(&dev_priv->drrs.work);
7468
7469 mutex_lock(&dev_priv->drrs.mutex);
7470
7471 intel_dp = dev_priv->drrs.dp;
7472 if (!intel_dp) {
7473 mutex_unlock(&dev_priv->drrs.mutex);
7474 return;
7475 }
7476
7477 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7478 pipe = to_intel_crtc(crtc)->pipe;
7479
7480 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7481 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7482
7483 /* invalidate means busy screen hence upclock */
7484 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7485 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7486 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7487
7488 mutex_unlock(&dev_priv->drrs.mutex);
7489 }
7490
7491 /**
7492 * intel_edp_drrs_flush - Restart Idleness DRRS
7493 * @dev_priv: i915 device
7494 * @frontbuffer_bits: frontbuffer plane tracking bits
7495 *
7496 * This function gets called every time rendering on the given planes has
7497 * completed or flip on a crtc is completed. So DRRS should be upclocked
7498 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7499 * if no other planes are dirty.
7500 *
7501 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7502 */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7503 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7504 unsigned int frontbuffer_bits)
7505 {
7506 struct intel_dp *intel_dp;
7507 struct drm_crtc *crtc;
7508 enum pipe pipe;
7509
7510 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7511 return;
7512
7513 cancel_delayed_work(&dev_priv->drrs.work);
7514
7515 mutex_lock(&dev_priv->drrs.mutex);
7516
7517 intel_dp = dev_priv->drrs.dp;
7518 if (!intel_dp) {
7519 mutex_unlock(&dev_priv->drrs.mutex);
7520 return;
7521 }
7522
7523 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7524 pipe = to_intel_crtc(crtc)->pipe;
7525
7526 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7527 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7528
7529 /* flush means busy screen hence upclock */
7530 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7531 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7532 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7533
7534 /*
7535 * flush also means no more activity hence schedule downclock, if all
7536 * other fbs are quiescent too
7537 */
7538 if (!dev_priv->drrs.busy_frontbuffer_bits)
7539 schedule_delayed_work(&dev_priv->drrs.work,
7540 msecs_to_jiffies(1000));
7541 mutex_unlock(&dev_priv->drrs.mutex);
7542 }
7543
7544 /**
7545 * DOC: Display Refresh Rate Switching (DRRS)
7546 *
7547 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7548 * which enables swtching between low and high refresh rates,
7549 * dynamically, based on the usage scenario. This feature is applicable
7550 * for internal panels.
7551 *
7552 * Indication that the panel supports DRRS is given by the panel EDID, which
7553 * would list multiple refresh rates for one resolution.
7554 *
7555 * DRRS is of 2 types - static and seamless.
7556 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7557 * (may appear as a blink on screen) and is used in dock-undock scenario.
7558 * Seamless DRRS involves changing RR without any visual effect to the user
7559 * and can be used during normal system usage. This is done by programming
7560 * certain registers.
7561 *
7562 * Support for static/seamless DRRS may be indicated in the VBT based on
7563 * inputs from the panel spec.
7564 *
7565 * DRRS saves power by switching to low RR based on usage scenarios.
7566 *
7567 * The implementation is based on frontbuffer tracking implementation. When
7568 * there is a disturbance on the screen triggered by user activity or a periodic
7569 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7570 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7571 * made.
7572 *
7573 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7574 * and intel_edp_drrs_flush() are called.
7575 *
7576 * DRRS can be further extended to support other internal panels and also
7577 * the scenario of video playback wherein RR is set based on the rate
7578 * requested by userspace.
7579 */
7580
7581 /**
7582 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7583 * @connector: eDP connector
7584 * @fixed_mode: preferred mode of panel
7585 *
7586 * This function is called only once at driver load to initialize basic
7587 * DRRS stuff.
7588 *
7589 * Returns:
7590 * Downclock mode if panel supports it, else return NULL.
7591 * DRRS support is determined by the presence of downclock mode (apart
7592 * from VBT setting).
7593 */
7594 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * connector,struct drm_display_mode * fixed_mode)7595 intel_dp_drrs_init(struct intel_connector *connector,
7596 struct drm_display_mode *fixed_mode)
7597 {
7598 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7599 struct drm_display_mode *downclock_mode = NULL;
7600
7601 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7602 mutex_init(&dev_priv->drrs.mutex);
7603
7604 if (INTEL_GEN(dev_priv) <= 6) {
7605 drm_dbg_kms(&dev_priv->drm,
7606 "DRRS supported for Gen7 and above\n");
7607 return NULL;
7608 }
7609
7610 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7611 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7612 return NULL;
7613 }
7614
7615 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7616 if (!downclock_mode) {
7617 drm_dbg_kms(&dev_priv->drm,
7618 "Downclock mode is not found. DRRS not supported\n");
7619 return NULL;
7620 }
7621
7622 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7623
7624 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7625 drm_dbg_kms(&dev_priv->drm,
7626 "seamless DRRS supported for eDP panel.\n");
7627 return downclock_mode;
7628 }
7629
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)7630 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7631 struct intel_connector *intel_connector)
7632 {
7633 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7634 struct drm_device *dev = &dev_priv->drm;
7635 struct drm_connector *connector = &intel_connector->base;
7636 struct drm_display_mode *fixed_mode = NULL;
7637 struct drm_display_mode *downclock_mode = NULL;
7638 bool has_dpcd;
7639 enum pipe pipe = INVALID_PIPE;
7640 intel_wakeref_t wakeref;
7641 struct edid *edid;
7642
7643 if (!intel_dp_is_edp(intel_dp))
7644 return true;
7645
7646 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7647
7648 /*
7649 * On IBX/CPT we may get here with LVDS already registered. Since the
7650 * driver uses the only internal power sequencer available for both
7651 * eDP and LVDS bail out early in this case to prevent interfering
7652 * with an already powered-on LVDS power sequencer.
7653 */
7654 if (intel_get_lvds_encoder(dev_priv)) {
7655 drm_WARN_ON(dev,
7656 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7657 drm_info(&dev_priv->drm,
7658 "LVDS was detected, not registering eDP\n");
7659
7660 return false;
7661 }
7662
7663 with_pps_lock(intel_dp, wakeref) {
7664 intel_dp_init_panel_power_timestamps(intel_dp);
7665 intel_dp_pps_init(intel_dp);
7666 intel_edp_panel_vdd_sanitize(intel_dp);
7667 }
7668
7669 /* Cache DPCD and EDID for edp. */
7670 has_dpcd = intel_edp_init_dpcd(intel_dp);
7671
7672 if (!has_dpcd) {
7673 /* if this fails, presume the device is a ghost */
7674 drm_info(&dev_priv->drm,
7675 "failed to retrieve link info, disabling eDP\n");
7676 goto out_vdd_off;
7677 }
7678
7679 mutex_lock(&dev->mode_config.mutex);
7680 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7681 if (edid) {
7682 if (drm_add_edid_modes(connector, edid)) {
7683 drm_connector_update_edid_property(connector, edid);
7684 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7685 } else {
7686 kfree(edid);
7687 edid = ERR_PTR(-EINVAL);
7688 }
7689 } else {
7690 edid = ERR_PTR(-ENOENT);
7691 }
7692 intel_connector->edid = edid;
7693
7694 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7695 if (fixed_mode)
7696 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7697
7698 /* fallback to VBT if available for eDP */
7699 if (!fixed_mode)
7700 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7701 mutex_unlock(&dev->mode_config.mutex);
7702
7703 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7704 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7705 register_reboot_notifier(&intel_dp->edp_notifier);
7706
7707 /*
7708 * Figure out the current pipe for the initial backlight setup.
7709 * If the current pipe isn't valid, try the PPS pipe, and if that
7710 * fails just assume pipe A.
7711 */
7712 pipe = vlv_active_pipe(intel_dp);
7713
7714 if (pipe != PIPE_A && pipe != PIPE_B)
7715 pipe = intel_dp->pps_pipe;
7716
7717 if (pipe != PIPE_A && pipe != PIPE_B)
7718 pipe = PIPE_A;
7719
7720 drm_dbg_kms(&dev_priv->drm,
7721 "using pipe %c for initial backlight setup\n",
7722 pipe_name(pipe));
7723 }
7724
7725 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7726 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7727 intel_panel_setup_backlight(connector, pipe);
7728
7729 if (fixed_mode) {
7730 drm_connector_set_panel_orientation_with_quirk(connector,
7731 dev_priv->vbt.orientation,
7732 fixed_mode->hdisplay, fixed_mode->vdisplay);
7733 }
7734
7735 return true;
7736
7737 out_vdd_off:
7738 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7739 /*
7740 * vdd might still be enabled do to the delayed vdd off.
7741 * Make sure vdd is actually turned off here.
7742 */
7743 with_pps_lock(intel_dp, wakeref)
7744 edp_panel_vdd_off_sync(intel_dp);
7745
7746 return false;
7747 }
7748
intel_dp_modeset_retry_work_fn(struct work_struct * work)7749 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7750 {
7751 struct intel_connector *intel_connector;
7752 struct drm_connector *connector;
7753
7754 intel_connector = container_of(work, typeof(*intel_connector),
7755 modeset_retry_work);
7756 connector = &intel_connector->base;
7757 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7758 connector->name);
7759
7760 /* Grab the locks before changing connector property*/
7761 mutex_lock(&connector->dev->mode_config.mutex);
7762 /* Set connector link status to BAD and send a Uevent to notify
7763 * userspace to do a modeset.
7764 */
7765 drm_connector_set_link_status_property(connector,
7766 DRM_MODE_LINK_STATUS_BAD);
7767 mutex_unlock(&connector->dev->mode_config.mutex);
7768 /* Send Hotplug uevent so userspace can reprobe */
7769 drm_kms_helper_hotplug_event(connector->dev);
7770 }
7771
7772 bool
intel_dp_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)7773 intel_dp_init_connector(struct intel_digital_port *dig_port,
7774 struct intel_connector *intel_connector)
7775 {
7776 struct drm_connector *connector = &intel_connector->base;
7777 struct intel_dp *intel_dp = &dig_port->dp;
7778 struct intel_encoder *intel_encoder = &dig_port->base;
7779 struct drm_device *dev = intel_encoder->base.dev;
7780 struct drm_i915_private *dev_priv = to_i915(dev);
7781 enum port port = intel_encoder->port;
7782 enum phy phy = intel_port_to_phy(dev_priv, port);
7783 int type;
7784
7785 /* Initialize the work for modeset in case of link train failure */
7786 INIT_WORK(&intel_connector->modeset_retry_work,
7787 intel_dp_modeset_retry_work_fn);
7788
7789 if (drm_WARN(dev, dig_port->max_lanes < 1,
7790 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7791 dig_port->max_lanes, intel_encoder->base.base.id,
7792 intel_encoder->base.name))
7793 return false;
7794
7795 intel_dp_set_source_rates(intel_dp);
7796 intel_dp_set_default_sink_rates(intel_dp);
7797 intel_dp_set_common_rates(intel_dp);
7798
7799 intel_dp->reset_link_params = true;
7800 intel_dp->pps_pipe = INVALID_PIPE;
7801 intel_dp->active_pipe = INVALID_PIPE;
7802
7803 /* Preserve the current hw state. */
7804 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7805 intel_dp->attached_connector = intel_connector;
7806
7807 if (intel_dp_is_port_edp(dev_priv, port)) {
7808 /*
7809 * Currently we don't support eDP on TypeC ports, although in
7810 * theory it could work on TypeC legacy ports.
7811 */
7812 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7813 type = DRM_MODE_CONNECTOR_eDP;
7814 } else {
7815 type = DRM_MODE_CONNECTOR_DisplayPort;
7816 }
7817
7818 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7819 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7820
7821 /*
7822 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7823 * for DP the encoder type can be set by the caller to
7824 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7825 */
7826 if (type == DRM_MODE_CONNECTOR_eDP)
7827 intel_encoder->type = INTEL_OUTPUT_EDP;
7828
7829 /* eDP only on port B and/or C on vlv/chv */
7830 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7831 IS_CHERRYVIEW(dev_priv)) &&
7832 intel_dp_is_edp(intel_dp) &&
7833 port != PORT_B && port != PORT_C))
7834 return false;
7835
7836 drm_dbg_kms(&dev_priv->drm,
7837 "Adding %s connector on [ENCODER:%d:%s]\n",
7838 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7839 intel_encoder->base.base.id, intel_encoder->base.name);
7840
7841 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7842 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7843
7844 if (!HAS_GMCH(dev_priv))
7845 connector->interlace_allowed = true;
7846 connector->doublescan_allowed = 0;
7847
7848 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7849
7850 intel_dp_aux_init(intel_dp);
7851
7852 intel_connector_attach_encoder(intel_connector, intel_encoder);
7853
7854 if (HAS_DDI(dev_priv))
7855 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7856 else
7857 intel_connector->get_hw_state = intel_connector_get_hw_state;
7858
7859 /* init MST on ports that can support it */
7860 intel_dp_mst_encoder_init(dig_port,
7861 intel_connector->base.base.id);
7862
7863 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7864 intel_dp_aux_fini(intel_dp);
7865 intel_dp_mst_encoder_cleanup(dig_port);
7866 goto fail;
7867 }
7868
7869 intel_dp_add_properties(intel_dp, connector);
7870
7871 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7872 int ret = intel_dp_init_hdcp(dig_port, intel_connector);
7873 if (ret)
7874 drm_dbg_kms(&dev_priv->drm,
7875 "HDCP init failed, skipping.\n");
7876 }
7877
7878 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7879 * 0xd. Failure to do so will result in spurious interrupts being
7880 * generated on the port when a cable is not attached.
7881 */
7882 if (IS_G45(dev_priv)) {
7883 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7884 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7885 (temp & ~0xf) | 0xd);
7886 }
7887
7888 return true;
7889
7890 fail:
7891 drm_connector_cleanup(connector);
7892
7893 return false;
7894 }
7895
intel_dp_init(struct drm_i915_private * dev_priv,i915_reg_t output_reg,enum port port)7896 bool intel_dp_init(struct drm_i915_private *dev_priv,
7897 i915_reg_t output_reg,
7898 enum port port)
7899 {
7900 struct intel_digital_port *dig_port;
7901 struct intel_encoder *intel_encoder;
7902 struct drm_encoder *encoder;
7903 struct intel_connector *intel_connector;
7904
7905 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
7906 if (!dig_port)
7907 return false;
7908
7909 intel_connector = intel_connector_alloc();
7910 if (!intel_connector)
7911 goto err_connector_alloc;
7912
7913 intel_encoder = &dig_port->base;
7914 encoder = &intel_encoder->base;
7915
7916 mutex_init(&dig_port->hdcp_mutex);
7917
7918 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7919 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7920 "DP %c", port_name(port)))
7921 goto err_encoder_init;
7922
7923 intel_encoder->hotplug = intel_dp_hotplug;
7924 intel_encoder->compute_config = intel_dp_compute_config;
7925 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7926 intel_encoder->get_config = intel_dp_get_config;
7927 intel_encoder->update_pipe = intel_panel_update_backlight;
7928 intel_encoder->suspend = intel_dp_encoder_suspend;
7929 if (IS_CHERRYVIEW(dev_priv)) {
7930 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7931 intel_encoder->pre_enable = chv_pre_enable_dp;
7932 intel_encoder->enable = vlv_enable_dp;
7933 intel_encoder->disable = vlv_disable_dp;
7934 intel_encoder->post_disable = chv_post_disable_dp;
7935 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7936 } else if (IS_VALLEYVIEW(dev_priv)) {
7937 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7938 intel_encoder->pre_enable = vlv_pre_enable_dp;
7939 intel_encoder->enable = vlv_enable_dp;
7940 intel_encoder->disable = vlv_disable_dp;
7941 intel_encoder->post_disable = vlv_post_disable_dp;
7942 } else {
7943 intel_encoder->pre_enable = g4x_pre_enable_dp;
7944 intel_encoder->enable = g4x_enable_dp;
7945 intel_encoder->disable = g4x_disable_dp;
7946 intel_encoder->post_disable = g4x_post_disable_dp;
7947 }
7948
7949 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
7950 (HAS_PCH_CPT(dev_priv) && port != PORT_A))
7951 dig_port->dp.set_link_train = cpt_set_link_train;
7952 else
7953 dig_port->dp.set_link_train = g4x_set_link_train;
7954
7955 if (IS_CHERRYVIEW(dev_priv))
7956 dig_port->dp.set_signal_levels = chv_set_signal_levels;
7957 else if (IS_VALLEYVIEW(dev_priv))
7958 dig_port->dp.set_signal_levels = vlv_set_signal_levels;
7959 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
7960 dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
7961 else if (IS_GEN(dev_priv, 6) && port == PORT_A)
7962 dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
7963 else
7964 dig_port->dp.set_signal_levels = g4x_set_signal_levels;
7965
7966 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
7967 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
7968 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
7969 dig_port->dp.voltage_max = intel_dp_voltage_max_3;
7970 } else {
7971 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
7972 dig_port->dp.voltage_max = intel_dp_voltage_max_2;
7973 }
7974
7975 dig_port->dp.output_reg = output_reg;
7976 dig_port->max_lanes = 4;
7977 dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7978 dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7979
7980 intel_encoder->type = INTEL_OUTPUT_DP;
7981 intel_encoder->power_domain = intel_port_to_power_domain(port);
7982 if (IS_CHERRYVIEW(dev_priv)) {
7983 if (port == PORT_D)
7984 intel_encoder->pipe_mask = BIT(PIPE_C);
7985 else
7986 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7987 } else {
7988 intel_encoder->pipe_mask = ~0;
7989 }
7990 intel_encoder->cloneable = 0;
7991 intel_encoder->port = port;
7992 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7993
7994 dig_port->hpd_pulse = intel_dp_hpd_pulse;
7995
7996 if (HAS_GMCH(dev_priv)) {
7997 if (IS_GM45(dev_priv))
7998 dig_port->connected = gm45_digital_port_connected;
7999 else
8000 dig_port->connected = g4x_digital_port_connected;
8001 } else {
8002 if (port == PORT_A)
8003 dig_port->connected = ilk_digital_port_connected;
8004 else
8005 dig_port->connected = ibx_digital_port_connected;
8006 }
8007
8008 if (port != PORT_A)
8009 intel_infoframe_init(dig_port);
8010
8011 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8012 if (!intel_dp_init_connector(dig_port, intel_connector))
8013 goto err_init_connector;
8014
8015 return true;
8016
8017 err_init_connector:
8018 drm_encoder_cleanup(encoder);
8019 err_encoder_init:
8020 kfree(intel_connector);
8021 err_connector_alloc:
8022 kfree(dig_port);
8023 return false;
8024 }
8025
intel_dp_mst_suspend(struct drm_i915_private * dev_priv)8026 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8027 {
8028 struct intel_encoder *encoder;
8029
8030 for_each_intel_encoder(&dev_priv->drm, encoder) {
8031 struct intel_dp *intel_dp;
8032
8033 if (encoder->type != INTEL_OUTPUT_DDI)
8034 continue;
8035
8036 intel_dp = enc_to_intel_dp(encoder);
8037
8038 if (!intel_dp->can_mst)
8039 continue;
8040
8041 if (intel_dp->is_mst)
8042 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8043 }
8044 }
8045
intel_dp_mst_resume(struct drm_i915_private * dev_priv)8046 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8047 {
8048 struct intel_encoder *encoder;
8049
8050 for_each_intel_encoder(&dev_priv->drm, encoder) {
8051 struct intel_dp *intel_dp;
8052 int ret;
8053
8054 if (encoder->type != INTEL_OUTPUT_DDI)
8055 continue;
8056
8057 intel_dp = enc_to_intel_dp(encoder);
8058
8059 if (!intel_dp->can_mst)
8060 continue;
8061
8062 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8063 true);
8064 if (ret) {
8065 intel_dp->is_mst = false;
8066 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8067 false);
8068 }
8069 }
8070 }
8071