1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the Intel SCU IPC mechanism
4 *
5 * (C) Copyright 2008-2010,2015 Intel Corporation
6 * Author: Sreedhara DS (sreedhara.ds@intel.com)
7 *
8 * SCU running in ARC processor communicates with other entity running in IA
9 * core through IPC mechanism which in turn messaging between IA core ad SCU.
10 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13 * along with other APIs.
14 */
15
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25
26 #include <asm/intel_scu_ipc.h>
27
28 /* IPC defines the following message types */
29 #define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */
30
31 /* Command id associated with message IPCMSG_PCNTRL */
32 #define IPC_CMD_PCNTRL_W 0 /* Register write */
33 #define IPC_CMD_PCNTRL_R 1 /* Register read */
34 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
35
36 /*
37 * IPC register summary
38 *
39 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
40 * To read or write information to the SCU, driver writes to IPC-1 memory
41 * mapped registers. The following is the IPC mechanism
42 *
43 * 1. IA core cDMI interface claims this transaction and converts it to a
44 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
45 *
46 * 2. South Complex cDMI block receives this message and writes it to
47 * the IPC-1 register block, causing an interrupt to the SCU
48 *
49 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
50 * message handler is called within firmware.
51 */
52
53 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
54 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
55 #define IPC_IOC 0x100 /* IPC command register IOC bit */
56
57 struct intel_scu_ipc_dev {
58 struct device dev;
59 struct resource mem;
60 struct module *owner;
61 int irq;
62 void __iomem *ipc_base;
63 struct completion cmd_complete;
64 };
65
66 #define IPC_STATUS 0x04
67 #define IPC_STATUS_IRQ BIT(2)
68 #define IPC_STATUS_ERR BIT(1)
69 #define IPC_STATUS_BUSY BIT(0)
70
71 /*
72 * IPC Write/Read Buffers:
73 * 16 byte buffer for sending and receiving data to and from SCU.
74 */
75 #define IPC_WRITE_BUFFER 0x80
76 #define IPC_READ_BUFFER 0x90
77
78 /* Timeout in jiffies */
79 #define IPC_TIMEOUT (3 * HZ)
80
81 static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
82 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
83
84 static struct class intel_scu_ipc_class = {
85 .name = "intel_scu_ipc",
86 .owner = THIS_MODULE,
87 };
88
89 /**
90 * intel_scu_ipc_dev_get() - Get SCU IPC instance
91 *
92 * The recommended new API takes SCU IPC instance as parameter and this
93 * function can be called by driver to get the instance. This also makes
94 * sure the driver providing the IPC functionality cannot be unloaded
95 * while the caller has the instance.
96 *
97 * Call intel_scu_ipc_dev_put() to release the instance.
98 *
99 * Returns %NULL if SCU IPC is not currently available.
100 */
intel_scu_ipc_dev_get(void)101 struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
102 {
103 struct intel_scu_ipc_dev *scu = NULL;
104
105 mutex_lock(&ipclock);
106 if (ipcdev) {
107 get_device(&ipcdev->dev);
108 /*
109 * Prevent the IPC provider from being unloaded while it
110 * is being used.
111 */
112 if (!try_module_get(ipcdev->owner))
113 put_device(&ipcdev->dev);
114 else
115 scu = ipcdev;
116 }
117
118 mutex_unlock(&ipclock);
119 return scu;
120 }
121 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
122
123 /**
124 * intel_scu_ipc_dev_put() - Put SCU IPC instance
125 * @scu: SCU IPC instance
126 *
127 * This function releases the SCU IPC instance retrieved from
128 * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
129 * unloaded.
130 */
intel_scu_ipc_dev_put(struct intel_scu_ipc_dev * scu)131 void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
132 {
133 if (scu) {
134 module_put(scu->owner);
135 put_device(&scu->dev);
136 }
137 }
138 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
139
140 struct intel_scu_ipc_devres {
141 struct intel_scu_ipc_dev *scu;
142 };
143
devm_intel_scu_ipc_dev_release(struct device * dev,void * res)144 static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
145 {
146 struct intel_scu_ipc_devres *dr = res;
147 struct intel_scu_ipc_dev *scu = dr->scu;
148
149 intel_scu_ipc_dev_put(scu);
150 }
151
152 /**
153 * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
154 * @dev: Device requesting the SCU IPC device
155 *
156 * The recommended new API takes SCU IPC instance as parameter and this
157 * function can be called by driver to get the instance. This also makes
158 * sure the driver providing the IPC functionality cannot be unloaded
159 * while the caller has the instance.
160 *
161 * Returns %NULL if SCU IPC is not currently available.
162 */
devm_intel_scu_ipc_dev_get(struct device * dev)163 struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
164 {
165 struct intel_scu_ipc_devres *dr;
166 struct intel_scu_ipc_dev *scu;
167
168 dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
169 if (!dr)
170 return NULL;
171
172 scu = intel_scu_ipc_dev_get();
173 if (!scu) {
174 devres_free(dr);
175 return NULL;
176 }
177
178 dr->scu = scu;
179 devres_add(dev, dr);
180
181 return scu;
182 }
183 EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
184
185 /*
186 * Send ipc command
187 * Command Register (Write Only):
188 * A write to this register results in an interrupt to the SCU core processor
189 * Format:
190 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
191 */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)192 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
193 {
194 reinit_completion(&scu->cmd_complete);
195 writel(cmd | IPC_IOC, scu->ipc_base);
196 }
197
198 /*
199 * Write ipc data
200 * IPC Write Buffer (Write Only):
201 * 16-byte buffer for sending data associated with IPC command to
202 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
203 */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)204 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
205 {
206 writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
207 }
208
209 /*
210 * Status Register (Read Only):
211 * Driver will read this register to get the ready/busy status of the IPC
212 * block and error status of the IPC command that was just processed by SCU
213 * Format:
214 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
215 */
ipc_read_status(struct intel_scu_ipc_dev * scu)216 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
217 {
218 return __raw_readl(scu->ipc_base + IPC_STATUS);
219 }
220
221 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)222 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
223 {
224 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
225 }
226
227 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)228 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
229 {
230 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
231 }
232
233 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)234 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
235 {
236 u8 status;
237 int err;
238
239 err = readx_poll_timeout(ipc_read_status, scu, status, !(status & IPC_STATUS_BUSY),
240 100, jiffies_to_usecs(IPC_TIMEOUT));
241 if (err)
242 return err;
243
244 return (status & IPC_STATUS_ERR) ? -EIO : 0;
245 }
246
247 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)248 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
249 {
250 int status;
251
252 wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT);
253
254 status = ipc_read_status(scu);
255 if (status & IPC_STATUS_BUSY)
256 return -ETIMEDOUT;
257
258 if (status & IPC_STATUS_ERR)
259 return -EIO;
260
261 return 0;
262 }
263
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)264 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
265 {
266 return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
267 }
268
intel_scu_ipc_get(struct intel_scu_ipc_dev * scu)269 static struct intel_scu_ipc_dev *intel_scu_ipc_get(struct intel_scu_ipc_dev *scu)
270 {
271 u8 status;
272
273 if (!scu)
274 scu = ipcdev;
275 if (!scu)
276 return ERR_PTR(-ENODEV);
277
278 status = ipc_read_status(scu);
279 if (status & IPC_STATUS_BUSY) {
280 dev_dbg(&scu->dev, "device is busy\n");
281 return ERR_PTR(-EBUSY);
282 }
283
284 return scu;
285 }
286
287 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(struct intel_scu_ipc_dev * scu,u16 * addr,u8 * data,u32 count,u32 op,u32 id)288 static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
289 u32 count, u32 op, u32 id)
290 {
291 int nc;
292 u32 offset = 0;
293 int err;
294 u8 cbuf[IPC_WWBUF_SIZE];
295 u32 *wbuf = (u32 *)&cbuf;
296
297 memset(cbuf, 0, sizeof(cbuf));
298
299 mutex_lock(&ipclock);
300 scu = intel_scu_ipc_get(scu);
301 if (IS_ERR(scu)) {
302 mutex_unlock(&ipclock);
303 return PTR_ERR(scu);
304 }
305
306 for (nc = 0; nc < count; nc++, offset += 2) {
307 cbuf[offset] = addr[nc];
308 cbuf[offset + 1] = addr[nc] >> 8;
309 }
310
311 if (id == IPC_CMD_PCNTRL_R) {
312 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
313 ipc_data_writel(scu, wbuf[nc], offset);
314 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
315 } else if (id == IPC_CMD_PCNTRL_W) {
316 for (nc = 0; nc < count; nc++, offset += 1)
317 cbuf[offset] = data[nc];
318 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
319 ipc_data_writel(scu, wbuf[nc], offset);
320 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
321 } else if (id == IPC_CMD_PCNTRL_M) {
322 cbuf[offset] = data[0];
323 cbuf[offset + 1] = data[1];
324 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
325 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
326 }
327
328 err = intel_scu_ipc_check_status(scu);
329 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
330 /* Workaround: values are read as 0 without memcpy_fromio */
331 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
332 for (nc = 0; nc < count; nc++)
333 data[nc] = ipc_data_readb(scu, nc);
334 }
335 mutex_unlock(&ipclock);
336 return err;
337 }
338
339 /**
340 * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
341 * @scu: Optional SCU IPC instance
342 * @addr: Register on SCU
343 * @data: Return pointer for read byte
344 *
345 * Read a single register. Returns %0 on success or an error code. All
346 * locking between SCU accesses is handled for the caller.
347 *
348 * This function may sleep.
349 */
intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev * scu,u16 addr,u8 * data)350 int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
351 {
352 return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
353 }
354 EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
355
356 /**
357 * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
358 * @scu: Optional SCU IPC instance
359 * @addr: Register on SCU
360 * @data: Byte to write
361 *
362 * Write a single register. Returns %0 on success or an error code. All
363 * locking between SCU accesses is handled for the caller.
364 *
365 * This function may sleep.
366 */
intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev * scu,u16 addr,u8 data)367 int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
368 {
369 return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
370 }
371 EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
372
373 /**
374 * intel_scu_ipc_dev_readv() - Read a set of registers
375 * @scu: Optional SCU IPC instance
376 * @addr: Register list
377 * @data: Bytes to return
378 * @len: Length of array
379 *
380 * Read registers. Returns %0 on success or an error code. All locking
381 * between SCU accesses is handled for the caller.
382 *
383 * The largest array length permitted by the hardware is 5 items.
384 *
385 * This function may sleep.
386 */
intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev * scu,u16 * addr,u8 * data,size_t len)387 int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
388 size_t len)
389 {
390 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
391 }
392 EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
393
394 /**
395 * intel_scu_ipc_dev_writev() - Write a set of registers
396 * @scu: Optional SCU IPC instance
397 * @addr: Register list
398 * @data: Bytes to write
399 * @len: Length of array
400 *
401 * Write registers. Returns %0 on success or an error code. All locking
402 * between SCU accesses is handled for the caller.
403 *
404 * The largest array length permitted by the hardware is 5 items.
405 *
406 * This function may sleep.
407 */
intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev * scu,u16 * addr,u8 * data,size_t len)408 int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
409 size_t len)
410 {
411 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
412 }
413 EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
414
415 /**
416 * intel_scu_ipc_dev_update() - Update a register
417 * @scu: Optional SCU IPC instance
418 * @addr: Register address
419 * @data: Bits to update
420 * @mask: Mask of bits to update
421 *
422 * Read-modify-write power control unit register. The first data argument
423 * must be register value and second is mask value mask is a bitmap that
424 * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
425 * modify this bit. returns %0 on success or an error code.
426 *
427 * This function may sleep. Locking between SCU accesses is handled
428 * for the caller.
429 */
intel_scu_ipc_dev_update(struct intel_scu_ipc_dev * scu,u16 addr,u8 data,u8 mask)430 int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
431 u8 mask)
432 {
433 u8 tmp[2] = { data, mask };
434 return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
435 }
436 EXPORT_SYMBOL(intel_scu_ipc_dev_update);
437
438 /**
439 * intel_scu_ipc_dev_simple_command() - Send a simple command
440 * @scu: Optional SCU IPC instance
441 * @cmd: Command
442 * @sub: Sub type
443 *
444 * Issue a simple command to the SCU. Do not use this interface if you must
445 * then access data as any data values may be overwritten by another SCU
446 * access by the time this function returns.
447 *
448 * This function may sleep. Locking for SCU accesses is handled for the
449 * caller.
450 */
intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev * scu,int cmd,int sub)451 int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
452 int sub)
453 {
454 u32 cmdval;
455 int err;
456
457 mutex_lock(&ipclock);
458 scu = intel_scu_ipc_get(scu);
459 if (IS_ERR(scu)) {
460 mutex_unlock(&ipclock);
461 return PTR_ERR(scu);
462 }
463
464 cmdval = sub << 12 | cmd;
465 ipc_command(scu, cmdval);
466 err = intel_scu_ipc_check_status(scu);
467 mutex_unlock(&ipclock);
468 if (err)
469 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
470 return err;
471 }
472 EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
473
474 /**
475 * intel_scu_ipc_command_with_size() - Command with data
476 * @scu: Optional SCU IPC instance
477 * @cmd: Command
478 * @sub: Sub type
479 * @in: Input data
480 * @inlen: Input length in bytes
481 * @size: Input size written to the IPC command register in whatever
482 * units (dword, byte) the particular firmware requires. Normally
483 * should be the same as @inlen.
484 * @out: Output data
485 * @outlen: Output length in bytes
486 *
487 * Issue a command to the SCU which involves data transfers. Do the
488 * data copies under the lock but leave it for the caller to interpret.
489 */
intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev * scu,int cmd,int sub,const void * in,size_t inlen,size_t size,void * out,size_t outlen)490 int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
491 int sub, const void *in, size_t inlen,
492 size_t size, void *out, size_t outlen)
493 {
494 size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
495 size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
496 u32 cmdval, inbuf[4] = {};
497 int i, err;
498
499 if (inbuflen > 4 || outbuflen > 4)
500 return -EINVAL;
501
502 mutex_lock(&ipclock);
503 scu = intel_scu_ipc_get(scu);
504 if (IS_ERR(scu)) {
505 mutex_unlock(&ipclock);
506 return PTR_ERR(scu);
507 }
508
509 memcpy(inbuf, in, inlen);
510 for (i = 0; i < inbuflen; i++)
511 ipc_data_writel(scu, inbuf[i], 4 * i);
512
513 cmdval = (size << 16) | (sub << 12) | cmd;
514 ipc_command(scu, cmdval);
515 err = intel_scu_ipc_check_status(scu);
516
517 if (!err) {
518 u32 outbuf[4] = {};
519
520 for (i = 0; i < outbuflen; i++)
521 outbuf[i] = ipc_data_readl(scu, 4 * i);
522
523 memcpy(out, outbuf, outlen);
524 }
525
526 mutex_unlock(&ipclock);
527 if (err)
528 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
529 return err;
530 }
531 EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
532
533 /*
534 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
535 * When ioc bit is set to 1, caller api must wait for interrupt handler called
536 * which in turn unlocks the caller api. Currently this is not used
537 *
538 * This is edge triggered so we need take no action to clear anything
539 */
ioc(int irq,void * dev_id)540 static irqreturn_t ioc(int irq, void *dev_id)
541 {
542 struct intel_scu_ipc_dev *scu = dev_id;
543 int status = ipc_read_status(scu);
544
545 writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
546 complete(&scu->cmd_complete);
547
548 return IRQ_HANDLED;
549 }
550
intel_scu_ipc_release(struct device * dev)551 static void intel_scu_ipc_release(struct device *dev)
552 {
553 struct intel_scu_ipc_dev *scu;
554
555 scu = container_of(dev, struct intel_scu_ipc_dev, dev);
556 if (scu->irq > 0)
557 free_irq(scu->irq, scu);
558 iounmap(scu->ipc_base);
559 release_mem_region(scu->mem.start, resource_size(&scu->mem));
560 kfree(scu);
561 }
562
563 /**
564 * __intel_scu_ipc_register() - Register SCU IPC device
565 * @parent: Parent device
566 * @scu_data: Data used to configure SCU IPC
567 * @owner: Module registering the SCU IPC device
568 *
569 * Call this function to register SCU IPC mechanism under @parent.
570 * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
571 * failure. The caller may use the returned instance if it needs to do
572 * SCU IPC calls itself.
573 */
574 struct intel_scu_ipc_dev *
__intel_scu_ipc_register(struct device * parent,const struct intel_scu_ipc_data * scu_data,struct module * owner)575 __intel_scu_ipc_register(struct device *parent,
576 const struct intel_scu_ipc_data *scu_data,
577 struct module *owner)
578 {
579 int err;
580 struct intel_scu_ipc_dev *scu;
581 void __iomem *ipc_base;
582
583 mutex_lock(&ipclock);
584 /* We support only one IPC */
585 if (ipcdev) {
586 err = -EBUSY;
587 goto err_unlock;
588 }
589
590 scu = kzalloc(sizeof(*scu), GFP_KERNEL);
591 if (!scu) {
592 err = -ENOMEM;
593 goto err_unlock;
594 }
595
596 scu->owner = owner;
597 scu->dev.parent = parent;
598 scu->dev.class = &intel_scu_ipc_class;
599 scu->dev.release = intel_scu_ipc_release;
600
601 if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
602 "intel_scu_ipc")) {
603 err = -EBUSY;
604 goto err_free;
605 }
606
607 ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
608 if (!ipc_base) {
609 err = -ENOMEM;
610 goto err_release;
611 }
612
613 scu->ipc_base = ipc_base;
614 scu->mem = scu_data->mem;
615 scu->irq = scu_data->irq;
616 init_completion(&scu->cmd_complete);
617
618 if (scu->irq > 0) {
619 err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
620 if (err)
621 goto err_unmap;
622 }
623
624 /*
625 * After this point intel_scu_ipc_release() takes care of
626 * releasing the SCU IPC resources once refcount drops to zero.
627 */
628 dev_set_name(&scu->dev, "intel_scu_ipc");
629 err = device_register(&scu->dev);
630 if (err) {
631 put_device(&scu->dev);
632 goto err_unlock;
633 }
634
635 /* Assign device at last */
636 ipcdev = scu;
637 mutex_unlock(&ipclock);
638
639 return scu;
640
641 err_unmap:
642 iounmap(ipc_base);
643 err_release:
644 release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
645 err_free:
646 kfree(scu);
647 err_unlock:
648 mutex_unlock(&ipclock);
649
650 return ERR_PTR(err);
651 }
652 EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
653
654 /**
655 * intel_scu_ipc_unregister() - Unregister SCU IPC
656 * @scu: SCU IPC handle
657 *
658 * This unregisters the SCU IPC device and releases the acquired
659 * resources once the refcount goes to zero.
660 */
intel_scu_ipc_unregister(struct intel_scu_ipc_dev * scu)661 void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
662 {
663 mutex_lock(&ipclock);
664 if (!WARN_ON(!ipcdev)) {
665 ipcdev = NULL;
666 device_unregister(&scu->dev);
667 }
668 mutex_unlock(&ipclock);
669 }
670 EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
671
devm_intel_scu_ipc_unregister(struct device * dev,void * res)672 static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
673 {
674 struct intel_scu_ipc_devres *dr = res;
675 struct intel_scu_ipc_dev *scu = dr->scu;
676
677 intel_scu_ipc_unregister(scu);
678 }
679
680 /**
681 * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
682 * @parent: Parent device
683 * @scu_data: Data used to configure SCU IPC
684 * @owner: Module registering the SCU IPC device
685 *
686 * Call this function to register managed SCU IPC mechanism under
687 * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
688 * case of failure. The caller may use the returned instance if it needs
689 * to do SCU IPC calls itself.
690 */
691 struct intel_scu_ipc_dev *
__devm_intel_scu_ipc_register(struct device * parent,const struct intel_scu_ipc_data * scu_data,struct module * owner)692 __devm_intel_scu_ipc_register(struct device *parent,
693 const struct intel_scu_ipc_data *scu_data,
694 struct module *owner)
695 {
696 struct intel_scu_ipc_devres *dr;
697 struct intel_scu_ipc_dev *scu;
698
699 dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
700 if (!dr)
701 return NULL;
702
703 scu = __intel_scu_ipc_register(parent, scu_data, owner);
704 if (IS_ERR(scu)) {
705 devres_free(dr);
706 return scu;
707 }
708
709 dr->scu = scu;
710 devres_add(parent, dr);
711
712 return scu;
713 }
714 EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
715
intel_scu_ipc_init(void)716 static int __init intel_scu_ipc_init(void)
717 {
718 return class_register(&intel_scu_ipc_class);
719 }
720 subsys_initcall(intel_scu_ipc_init);
721
intel_scu_ipc_exit(void)722 static void __exit intel_scu_ipc_exit(void)
723 {
724 class_unregister(&intel_scu_ipc_class);
725 }
726 module_exit(intel_scu_ipc_exit);
727