• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 enum ipmi_panic_event_op {
53 	IPMI_SEND_PANIC_EVENT_NONE,
54 	IPMI_SEND_PANIC_EVENT,
55 	IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64 
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66 
panic_op_write_handler(const char * val,const struct kernel_param * kp)67 static int panic_op_write_handler(const char *val,
68 				  const struct kernel_param *kp)
69 {
70 	char valcp[16];
71 	char *s;
72 
73 	strncpy(valcp, val, 15);
74 	valcp[15] = '\0';
75 
76 	s = strstrip(valcp);
77 
78 	if (strcmp(s, "none") == 0)
79 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 	else if (strcmp(s, "event") == 0)
81 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 	else if (strcmp(s, "string") == 0)
83 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 	else
85 		return -EINVAL;
86 
87 	return 0;
88 }
89 
panic_op_read_handler(char * buffer,const struct kernel_param * kp)90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 	switch (ipmi_send_panic_event) {
93 	case IPMI_SEND_PANIC_EVENT_NONE:
94 		strcpy(buffer, "none\n");
95 		break;
96 
97 	case IPMI_SEND_PANIC_EVENT:
98 		strcpy(buffer, "event\n");
99 		break;
100 
101 	case IPMI_SEND_PANIC_EVENT_STRING:
102 		strcpy(buffer, "string\n");
103 		break;
104 
105 	default:
106 		strcpy(buffer, "???\n");
107 		break;
108 	}
109 
110 	return strlen(buffer);
111 }
112 
113 static const struct kernel_param_ops panic_op_ops = {
114 	.set = panic_op_write_handler,
115 	.get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119 
120 
121 #define MAX_EVENTS_IN_QUEUE	25
122 
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128 
129 /*
130  * Don't let a message sit in a queue forever, always time it with at lest
131  * the max message timer.  This is in milliseconds.
132  */
133 #define MAX_MSG_TIMEOUT		60000
134 
135 /*
136  * Timeout times below are in milliseconds, and are done off a 1
137  * second timer.  So setting the value to 1000 would mean anything
138  * between 0 and 1000ms.  So really the only reasonable minimum
139  * setting it 2000ms, which is between 1 and 2 seconds.
140  */
141 
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 		 "The time (milliseconds) between retry sends");
147 
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 		 "The time (milliseconds) between retry sends in maintenance mode");
153 
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 		 "The time (milliseconds) between retry sends in maintenance mode");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	/* Free must run in process context for RCU cleanup. */
203 	struct work_struct remove_work;
204 };
205 
206 static struct workqueue_struct *remove_work_wq;
207 
acquire_ipmi_user(struct ipmi_user * user,int * index)208 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
209 	__acquires(user->release_barrier)
210 {
211 	struct ipmi_user *ruser;
212 
213 	*index = srcu_read_lock(&user->release_barrier);
214 	ruser = srcu_dereference(user->self, &user->release_barrier);
215 	if (!ruser)
216 		srcu_read_unlock(&user->release_barrier, *index);
217 	return ruser;
218 }
219 
release_ipmi_user(struct ipmi_user * user,int index)220 static void release_ipmi_user(struct ipmi_user *user, int index)
221 {
222 	srcu_read_unlock(&user->release_barrier, index);
223 }
224 
225 struct cmd_rcvr {
226 	struct list_head link;
227 
228 	struct ipmi_user *user;
229 	unsigned char netfn;
230 	unsigned char cmd;
231 	unsigned int  chans;
232 
233 	/*
234 	 * This is used to form a linked lised during mass deletion.
235 	 * Since this is in an RCU list, we cannot use the link above
236 	 * or change any data until the RCU period completes.  So we
237 	 * use this next variable during mass deletion so we can have
238 	 * a list and don't have to wait and restart the search on
239 	 * every individual deletion of a command.
240 	 */
241 	struct cmd_rcvr *next;
242 };
243 
244 struct seq_table {
245 	unsigned int         inuse : 1;
246 	unsigned int         broadcast : 1;
247 
248 	unsigned long        timeout;
249 	unsigned long        orig_timeout;
250 	unsigned int         retries_left;
251 
252 	/*
253 	 * To verify on an incoming send message response that this is
254 	 * the message that the response is for, we keep a sequence id
255 	 * and increment it every time we send a message.
256 	 */
257 	long                 seqid;
258 
259 	/*
260 	 * This is held so we can properly respond to the message on a
261 	 * timeout, and it is used to hold the temporary data for
262 	 * retransmission, too.
263 	 */
264 	struct ipmi_recv_msg *recv_msg;
265 };
266 
267 /*
268  * Store the information in a msgid (long) to allow us to find a
269  * sequence table entry from the msgid.
270  */
271 #define STORE_SEQ_IN_MSGID(seq, seqid) \
272 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
273 
274 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
275 	do {								\
276 		seq = (((msgid) >> 26) & 0x3f);				\
277 		seqid = ((msgid) & 0x3ffffff);				\
278 	} while (0)
279 
280 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
281 
282 #define IPMI_MAX_CHANNELS       16
283 struct ipmi_channel {
284 	unsigned char medium;
285 	unsigned char protocol;
286 };
287 
288 struct ipmi_channel_set {
289 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
290 };
291 
292 struct ipmi_my_addrinfo {
293 	/*
294 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
295 	 * but may be changed by the user.
296 	 */
297 	unsigned char address;
298 
299 	/*
300 	 * My LUN.  This should generally stay the SMS LUN, but just in
301 	 * case...
302 	 */
303 	unsigned char lun;
304 };
305 
306 /*
307  * Note that the product id, manufacturer id, guid, and device id are
308  * immutable in this structure, so dyn_mutex is not required for
309  * accessing those.  If those change on a BMC, a new BMC is allocated.
310  */
311 struct bmc_device {
312 	struct platform_device pdev;
313 	struct list_head       intfs; /* Interfaces on this BMC. */
314 	struct ipmi_device_id  id;
315 	struct ipmi_device_id  fetch_id;
316 	int                    dyn_id_set;
317 	unsigned long          dyn_id_expiry;
318 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
319 	guid_t                 guid;
320 	guid_t                 fetch_guid;
321 	int                    dyn_guid_set;
322 	struct kref	       usecount;
323 	struct work_struct     remove_work;
324 	unsigned char	       cc; /* completion code */
325 };
326 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
327 
328 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
329 			     struct ipmi_device_id *id,
330 			     bool *guid_set, guid_t *guid);
331 
332 /*
333  * Various statistics for IPMI, these index stats[] in the ipmi_smi
334  * structure.
335  */
336 enum ipmi_stat_indexes {
337 	/* Commands we got from the user that were invalid. */
338 	IPMI_STAT_sent_invalid_commands = 0,
339 
340 	/* Commands we sent to the MC. */
341 	IPMI_STAT_sent_local_commands,
342 
343 	/* Responses from the MC that were delivered to a user. */
344 	IPMI_STAT_handled_local_responses,
345 
346 	/* Responses from the MC that were not delivered to a user. */
347 	IPMI_STAT_unhandled_local_responses,
348 
349 	/* Commands we sent out to the IPMB bus. */
350 	IPMI_STAT_sent_ipmb_commands,
351 
352 	/* Commands sent on the IPMB that had errors on the SEND CMD */
353 	IPMI_STAT_sent_ipmb_command_errs,
354 
355 	/* Each retransmit increments this count. */
356 	IPMI_STAT_retransmitted_ipmb_commands,
357 
358 	/*
359 	 * When a message times out (runs out of retransmits) this is
360 	 * incremented.
361 	 */
362 	IPMI_STAT_timed_out_ipmb_commands,
363 
364 	/*
365 	 * This is like above, but for broadcasts.  Broadcasts are
366 	 * *not* included in the above count (they are expected to
367 	 * time out).
368 	 */
369 	IPMI_STAT_timed_out_ipmb_broadcasts,
370 
371 	/* Responses I have sent to the IPMB bus. */
372 	IPMI_STAT_sent_ipmb_responses,
373 
374 	/* The response was delivered to the user. */
375 	IPMI_STAT_handled_ipmb_responses,
376 
377 	/* The response had invalid data in it. */
378 	IPMI_STAT_invalid_ipmb_responses,
379 
380 	/* The response didn't have anyone waiting for it. */
381 	IPMI_STAT_unhandled_ipmb_responses,
382 
383 	/* Commands we sent out to the IPMB bus. */
384 	IPMI_STAT_sent_lan_commands,
385 
386 	/* Commands sent on the IPMB that had errors on the SEND CMD */
387 	IPMI_STAT_sent_lan_command_errs,
388 
389 	/* Each retransmit increments this count. */
390 	IPMI_STAT_retransmitted_lan_commands,
391 
392 	/*
393 	 * When a message times out (runs out of retransmits) this is
394 	 * incremented.
395 	 */
396 	IPMI_STAT_timed_out_lan_commands,
397 
398 	/* Responses I have sent to the IPMB bus. */
399 	IPMI_STAT_sent_lan_responses,
400 
401 	/* The response was delivered to the user. */
402 	IPMI_STAT_handled_lan_responses,
403 
404 	/* The response had invalid data in it. */
405 	IPMI_STAT_invalid_lan_responses,
406 
407 	/* The response didn't have anyone waiting for it. */
408 	IPMI_STAT_unhandled_lan_responses,
409 
410 	/* The command was delivered to the user. */
411 	IPMI_STAT_handled_commands,
412 
413 	/* The command had invalid data in it. */
414 	IPMI_STAT_invalid_commands,
415 
416 	/* The command didn't have anyone waiting for it. */
417 	IPMI_STAT_unhandled_commands,
418 
419 	/* Invalid data in an event. */
420 	IPMI_STAT_invalid_events,
421 
422 	/* Events that were received with the proper format. */
423 	IPMI_STAT_events,
424 
425 	/* Retransmissions on IPMB that failed. */
426 	IPMI_STAT_dropped_rexmit_ipmb_commands,
427 
428 	/* Retransmissions on LAN that failed. */
429 	IPMI_STAT_dropped_rexmit_lan_commands,
430 
431 	/* This *must* remain last, add new values above this. */
432 	IPMI_NUM_STATS
433 };
434 
435 
436 #define IPMI_IPMB_NUM_SEQ	64
437 struct ipmi_smi {
438 	struct module *owner;
439 
440 	/* What interface number are we? */
441 	int intf_num;
442 
443 	struct kref refcount;
444 
445 	/* Set when the interface is being unregistered. */
446 	bool in_shutdown;
447 
448 	/* Used for a list of interfaces. */
449 	struct list_head link;
450 
451 	/*
452 	 * The list of upper layers that are using me.  seq_lock write
453 	 * protects this.  Read protection is with srcu.
454 	 */
455 	struct list_head users;
456 	struct srcu_struct users_srcu;
457 
458 	/* Used for wake ups at startup. */
459 	wait_queue_head_t waitq;
460 
461 	/*
462 	 * Prevents the interface from being unregistered when the
463 	 * interface is used by being looked up through the BMC
464 	 * structure.
465 	 */
466 	struct mutex bmc_reg_mutex;
467 
468 	struct bmc_device tmp_bmc;
469 	struct bmc_device *bmc;
470 	bool bmc_registered;
471 	struct list_head bmc_link;
472 	char *my_dev_name;
473 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
474 	struct work_struct bmc_reg_work;
475 
476 	const struct ipmi_smi_handlers *handlers;
477 	void                     *send_info;
478 
479 	/* Driver-model device for the system interface. */
480 	struct device          *si_dev;
481 
482 	/*
483 	 * A table of sequence numbers for this interface.  We use the
484 	 * sequence numbers for IPMB messages that go out of the
485 	 * interface to match them up with their responses.  A routine
486 	 * is called periodically to time the items in this list.
487 	 */
488 	spinlock_t       seq_lock;
489 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
490 	int curr_seq;
491 
492 	/*
493 	 * Messages queued for delivery.  If delivery fails (out of memory
494 	 * for instance), They will stay in here to be processed later in a
495 	 * periodic timer interrupt.  The tasklet is for handling received
496 	 * messages directly from the handler.
497 	 */
498 	spinlock_t       waiting_rcv_msgs_lock;
499 	struct list_head waiting_rcv_msgs;
500 	atomic_t	 watchdog_pretimeouts_to_deliver;
501 	struct tasklet_struct recv_tasklet;
502 
503 	spinlock_t             xmit_msgs_lock;
504 	struct list_head       xmit_msgs;
505 	struct ipmi_smi_msg    *curr_msg;
506 	struct list_head       hp_xmit_msgs;
507 
508 	/*
509 	 * The list of command receivers that are registered for commands
510 	 * on this interface.
511 	 */
512 	struct mutex     cmd_rcvrs_mutex;
513 	struct list_head cmd_rcvrs;
514 
515 	/*
516 	 * Events that were queues because no one was there to receive
517 	 * them.
518 	 */
519 	spinlock_t       events_lock; /* For dealing with event stuff. */
520 	struct list_head waiting_events;
521 	unsigned int     waiting_events_count; /* How many events in queue? */
522 	char             delivering_events;
523 	char             event_msg_printed;
524 
525 	/* How many users are waiting for events? */
526 	atomic_t         event_waiters;
527 	unsigned int     ticks_to_req_ev;
528 
529 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
530 
531 	/* How many users are waiting for commands? */
532 	unsigned int     command_waiters;
533 
534 	/* How many users are waiting for watchdogs? */
535 	unsigned int     watchdog_waiters;
536 
537 	/* How many users are waiting for message responses? */
538 	unsigned int     response_waiters;
539 
540 	/*
541 	 * Tells what the lower layer has last been asked to watch for,
542 	 * messages and/or watchdogs.  Protected by watch_lock.
543 	 */
544 	unsigned int     last_watch_mask;
545 
546 	/*
547 	 * The event receiver for my BMC, only really used at panic
548 	 * shutdown as a place to store this.
549 	 */
550 	unsigned char event_receiver;
551 	unsigned char event_receiver_lun;
552 	unsigned char local_sel_device;
553 	unsigned char local_event_generator;
554 
555 	/* For handling of maintenance mode. */
556 	int maintenance_mode;
557 	bool maintenance_mode_enable;
558 	int auto_maintenance_timeout;
559 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
560 
561 	/*
562 	 * If we are doing maintenance on something on IPMB, extend
563 	 * the timeout time to avoid timeouts writing firmware and
564 	 * such.
565 	 */
566 	int ipmb_maintenance_mode_timeout;
567 
568 	/*
569 	 * A cheap hack, if this is non-null and a message to an
570 	 * interface comes in with a NULL user, call this routine with
571 	 * it.  Note that the message will still be freed by the
572 	 * caller.  This only works on the system interface.
573 	 *
574 	 * Protected by bmc_reg_mutex.
575 	 */
576 	void (*null_user_handler)(struct ipmi_smi *intf,
577 				  struct ipmi_recv_msg *msg);
578 
579 	/*
580 	 * When we are scanning the channels for an SMI, this will
581 	 * tell which channel we are scanning.
582 	 */
583 	int curr_channel;
584 
585 	/* Channel information */
586 	struct ipmi_channel_set *channel_list;
587 	unsigned int curr_working_cset; /* First index into the following. */
588 	struct ipmi_channel_set wchannels[2];
589 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
590 	bool channels_ready;
591 
592 	atomic_t stats[IPMI_NUM_STATS];
593 
594 	/*
595 	 * run_to_completion duplicate of smb_info, smi_info
596 	 * and ipmi_serial_info structures. Used to decrease numbers of
597 	 * parameters passed by "low" level IPMI code.
598 	 */
599 	int run_to_completion;
600 };
601 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
602 
603 static void __get_guid(struct ipmi_smi *intf);
604 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
605 static int __ipmi_bmc_register(struct ipmi_smi *intf,
606 			       struct ipmi_device_id *id,
607 			       bool guid_set, guid_t *guid, int intf_num);
608 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
609 
610 
611 /**
612  * The driver model view of the IPMI messaging driver.
613  */
614 static struct platform_driver ipmidriver = {
615 	.driver = {
616 		.name = "ipmi",
617 		.bus = &platform_bus_type
618 	}
619 };
620 /*
621  * This mutex keeps us from adding the same BMC twice.
622  */
623 static DEFINE_MUTEX(ipmidriver_mutex);
624 
625 static LIST_HEAD(ipmi_interfaces);
626 static DEFINE_MUTEX(ipmi_interfaces_mutex);
627 #define ipmi_interfaces_mutex_held() \
628 	lockdep_is_held(&ipmi_interfaces_mutex)
629 static struct srcu_struct ipmi_interfaces_srcu;
630 
631 /*
632  * List of watchers that want to know when smi's are added and deleted.
633  */
634 static LIST_HEAD(smi_watchers);
635 static DEFINE_MUTEX(smi_watchers_mutex);
636 
637 #define ipmi_inc_stat(intf, stat) \
638 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
639 #define ipmi_get_stat(intf, stat) \
640 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
641 
642 static const char * const addr_src_to_str[] = {
643 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
644 	"device-tree", "platform"
645 };
646 
ipmi_addr_src_to_str(enum ipmi_addr_src src)647 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
648 {
649 	if (src >= SI_LAST)
650 		src = 0; /* Invalid */
651 	return addr_src_to_str[src];
652 }
653 EXPORT_SYMBOL(ipmi_addr_src_to_str);
654 
is_lan_addr(struct ipmi_addr * addr)655 static int is_lan_addr(struct ipmi_addr *addr)
656 {
657 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
658 }
659 
is_ipmb_addr(struct ipmi_addr * addr)660 static int is_ipmb_addr(struct ipmi_addr *addr)
661 {
662 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
663 }
664 
is_ipmb_bcast_addr(struct ipmi_addr * addr)665 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
666 {
667 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
668 }
669 
free_recv_msg_list(struct list_head * q)670 static void free_recv_msg_list(struct list_head *q)
671 {
672 	struct ipmi_recv_msg *msg, *msg2;
673 
674 	list_for_each_entry_safe(msg, msg2, q, link) {
675 		list_del(&msg->link);
676 		ipmi_free_recv_msg(msg);
677 	}
678 }
679 
free_smi_msg_list(struct list_head * q)680 static void free_smi_msg_list(struct list_head *q)
681 {
682 	struct ipmi_smi_msg *msg, *msg2;
683 
684 	list_for_each_entry_safe(msg, msg2, q, link) {
685 		list_del(&msg->link);
686 		ipmi_free_smi_msg(msg);
687 	}
688 }
689 
clean_up_interface_data(struct ipmi_smi * intf)690 static void clean_up_interface_data(struct ipmi_smi *intf)
691 {
692 	int              i;
693 	struct cmd_rcvr  *rcvr, *rcvr2;
694 	struct list_head list;
695 
696 	tasklet_kill(&intf->recv_tasklet);
697 
698 	free_smi_msg_list(&intf->waiting_rcv_msgs);
699 	free_recv_msg_list(&intf->waiting_events);
700 
701 	/*
702 	 * Wholesale remove all the entries from the list in the
703 	 * interface and wait for RCU to know that none are in use.
704 	 */
705 	mutex_lock(&intf->cmd_rcvrs_mutex);
706 	INIT_LIST_HEAD(&list);
707 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
708 	mutex_unlock(&intf->cmd_rcvrs_mutex);
709 
710 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
711 		kfree(rcvr);
712 
713 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
714 		if ((intf->seq_table[i].inuse)
715 					&& (intf->seq_table[i].recv_msg))
716 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
717 	}
718 }
719 
intf_free(struct kref * ref)720 static void intf_free(struct kref *ref)
721 {
722 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
723 
724 	clean_up_interface_data(intf);
725 	kfree(intf);
726 }
727 
728 struct watcher_entry {
729 	int              intf_num;
730 	struct ipmi_smi  *intf;
731 	struct list_head link;
732 };
733 
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)734 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
735 {
736 	struct ipmi_smi *intf;
737 	int index, rv;
738 
739 	/*
740 	 * Make sure the driver is actually initialized, this handles
741 	 * problems with initialization order.
742 	 */
743 	rv = ipmi_init_msghandler();
744 	if (rv)
745 		return rv;
746 
747 	mutex_lock(&smi_watchers_mutex);
748 
749 	list_add(&watcher->link, &smi_watchers);
750 
751 	index = srcu_read_lock(&ipmi_interfaces_srcu);
752 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
753 		int intf_num = READ_ONCE(intf->intf_num);
754 
755 		if (intf_num == -1)
756 			continue;
757 		watcher->new_smi(intf_num, intf->si_dev);
758 	}
759 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
760 
761 	mutex_unlock(&smi_watchers_mutex);
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL(ipmi_smi_watcher_register);
766 
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)767 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
768 {
769 	mutex_lock(&smi_watchers_mutex);
770 	list_del(&watcher->link);
771 	mutex_unlock(&smi_watchers_mutex);
772 	return 0;
773 }
774 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
775 
776 /*
777  * Must be called with smi_watchers_mutex held.
778  */
779 static void
call_smi_watchers(int i,struct device * dev)780 call_smi_watchers(int i, struct device *dev)
781 {
782 	struct ipmi_smi_watcher *w;
783 
784 	mutex_lock(&smi_watchers_mutex);
785 	list_for_each_entry(w, &smi_watchers, link) {
786 		if (try_module_get(w->owner)) {
787 			w->new_smi(i, dev);
788 			module_put(w->owner);
789 		}
790 	}
791 	mutex_unlock(&smi_watchers_mutex);
792 }
793 
794 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)795 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
796 {
797 	if (addr1->addr_type != addr2->addr_type)
798 		return 0;
799 
800 	if (addr1->channel != addr2->channel)
801 		return 0;
802 
803 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
804 		struct ipmi_system_interface_addr *smi_addr1
805 		    = (struct ipmi_system_interface_addr *) addr1;
806 		struct ipmi_system_interface_addr *smi_addr2
807 		    = (struct ipmi_system_interface_addr *) addr2;
808 		return (smi_addr1->lun == smi_addr2->lun);
809 	}
810 
811 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
812 		struct ipmi_ipmb_addr *ipmb_addr1
813 		    = (struct ipmi_ipmb_addr *) addr1;
814 		struct ipmi_ipmb_addr *ipmb_addr2
815 		    = (struct ipmi_ipmb_addr *) addr2;
816 
817 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
818 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
819 	}
820 
821 	if (is_lan_addr(addr1)) {
822 		struct ipmi_lan_addr *lan_addr1
823 			= (struct ipmi_lan_addr *) addr1;
824 		struct ipmi_lan_addr *lan_addr2
825 		    = (struct ipmi_lan_addr *) addr2;
826 
827 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
828 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
829 			&& (lan_addr1->session_handle
830 			    == lan_addr2->session_handle)
831 			&& (lan_addr1->lun == lan_addr2->lun));
832 	}
833 
834 	return 1;
835 }
836 
ipmi_validate_addr(struct ipmi_addr * addr,int len)837 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
838 {
839 	if (len < sizeof(struct ipmi_system_interface_addr))
840 		return -EINVAL;
841 
842 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
843 		if (addr->channel != IPMI_BMC_CHANNEL)
844 			return -EINVAL;
845 		return 0;
846 	}
847 
848 	if ((addr->channel == IPMI_BMC_CHANNEL)
849 	    || (addr->channel >= IPMI_MAX_CHANNELS)
850 	    || (addr->channel < 0))
851 		return -EINVAL;
852 
853 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
854 		if (len < sizeof(struct ipmi_ipmb_addr))
855 			return -EINVAL;
856 		return 0;
857 	}
858 
859 	if (is_lan_addr(addr)) {
860 		if (len < sizeof(struct ipmi_lan_addr))
861 			return -EINVAL;
862 		return 0;
863 	}
864 
865 	return -EINVAL;
866 }
867 EXPORT_SYMBOL(ipmi_validate_addr);
868 
ipmi_addr_length(int addr_type)869 unsigned int ipmi_addr_length(int addr_type)
870 {
871 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
872 		return sizeof(struct ipmi_system_interface_addr);
873 
874 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
875 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
876 		return sizeof(struct ipmi_ipmb_addr);
877 
878 	if (addr_type == IPMI_LAN_ADDR_TYPE)
879 		return sizeof(struct ipmi_lan_addr);
880 
881 	return 0;
882 }
883 EXPORT_SYMBOL(ipmi_addr_length);
884 
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)885 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
886 {
887 	int rv = 0;
888 
889 	if (!msg->user) {
890 		/* Special handling for NULL users. */
891 		if (intf->null_user_handler) {
892 			intf->null_user_handler(intf, msg);
893 		} else {
894 			/* No handler, so give up. */
895 			rv = -EINVAL;
896 		}
897 		ipmi_free_recv_msg(msg);
898 	} else if (oops_in_progress) {
899 		/*
900 		 * If we are running in the panic context, calling the
901 		 * receive handler doesn't much meaning and has a deadlock
902 		 * risk.  At this moment, simply skip it in that case.
903 		 */
904 		ipmi_free_recv_msg(msg);
905 	} else {
906 		int index;
907 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
908 
909 		if (user) {
910 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
911 			release_ipmi_user(user, index);
912 		} else {
913 			/* User went away, give up. */
914 			ipmi_free_recv_msg(msg);
915 			rv = -EINVAL;
916 		}
917 	}
918 
919 	return rv;
920 }
921 
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)922 static void deliver_local_response(struct ipmi_smi *intf,
923 				   struct ipmi_recv_msg *msg)
924 {
925 	if (deliver_response(intf, msg))
926 		ipmi_inc_stat(intf, unhandled_local_responses);
927 	else
928 		ipmi_inc_stat(intf, handled_local_responses);
929 }
930 
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)931 static void deliver_err_response(struct ipmi_smi *intf,
932 				 struct ipmi_recv_msg *msg, int err)
933 {
934 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
935 	msg->msg_data[0] = err;
936 	msg->msg.netfn |= 1; /* Convert to a response. */
937 	msg->msg.data_len = 1;
938 	msg->msg.data = msg->msg_data;
939 	deliver_local_response(intf, msg);
940 }
941 
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)942 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
943 {
944 	unsigned long iflags;
945 
946 	if (!intf->handlers->set_need_watch)
947 		return;
948 
949 	spin_lock_irqsave(&intf->watch_lock, iflags);
950 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
951 		intf->response_waiters++;
952 
953 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
954 		intf->watchdog_waiters++;
955 
956 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
957 		intf->command_waiters++;
958 
959 	if ((intf->last_watch_mask & flags) != flags) {
960 		intf->last_watch_mask |= flags;
961 		intf->handlers->set_need_watch(intf->send_info,
962 					       intf->last_watch_mask);
963 	}
964 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
965 }
966 
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)967 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
968 {
969 	unsigned long iflags;
970 
971 	if (!intf->handlers->set_need_watch)
972 		return;
973 
974 	spin_lock_irqsave(&intf->watch_lock, iflags);
975 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
976 		intf->response_waiters--;
977 
978 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
979 		intf->watchdog_waiters--;
980 
981 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
982 		intf->command_waiters--;
983 
984 	flags = 0;
985 	if (intf->response_waiters)
986 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
987 	if (intf->watchdog_waiters)
988 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
989 	if (intf->command_waiters)
990 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
991 
992 	if (intf->last_watch_mask != flags) {
993 		intf->last_watch_mask = flags;
994 		intf->handlers->set_need_watch(intf->send_info,
995 					       intf->last_watch_mask);
996 	}
997 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
998 }
999 
1000 /*
1001  * Find the next sequence number not being used and add the given
1002  * message with the given timeout to the sequence table.  This must be
1003  * called with the interface's seq_lock held.
1004  */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1005 static int intf_next_seq(struct ipmi_smi      *intf,
1006 			 struct ipmi_recv_msg *recv_msg,
1007 			 unsigned long        timeout,
1008 			 int                  retries,
1009 			 int                  broadcast,
1010 			 unsigned char        *seq,
1011 			 long                 *seqid)
1012 {
1013 	int          rv = 0;
1014 	unsigned int i;
1015 
1016 	if (timeout == 0)
1017 		timeout = default_retry_ms;
1018 	if (retries < 0)
1019 		retries = default_max_retries;
1020 
1021 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1022 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1023 		if (!intf->seq_table[i].inuse)
1024 			break;
1025 	}
1026 
1027 	if (!intf->seq_table[i].inuse) {
1028 		intf->seq_table[i].recv_msg = recv_msg;
1029 
1030 		/*
1031 		 * Start with the maximum timeout, when the send response
1032 		 * comes in we will start the real timer.
1033 		 */
1034 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1035 		intf->seq_table[i].orig_timeout = timeout;
1036 		intf->seq_table[i].retries_left = retries;
1037 		intf->seq_table[i].broadcast = broadcast;
1038 		intf->seq_table[i].inuse = 1;
1039 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1040 		*seq = i;
1041 		*seqid = intf->seq_table[i].seqid;
1042 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1043 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1044 		need_waiter(intf);
1045 	} else {
1046 		rv = -EAGAIN;
1047 	}
1048 
1049 	return rv;
1050 }
1051 
1052 /*
1053  * Return the receive message for the given sequence number and
1054  * release the sequence number so it can be reused.  Some other data
1055  * is passed in to be sure the message matches up correctly (to help
1056  * guard against message coming in after their timeout and the
1057  * sequence number being reused).
1058  */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1059 static int intf_find_seq(struct ipmi_smi      *intf,
1060 			 unsigned char        seq,
1061 			 short                channel,
1062 			 unsigned char        cmd,
1063 			 unsigned char        netfn,
1064 			 struct ipmi_addr     *addr,
1065 			 struct ipmi_recv_msg **recv_msg)
1066 {
1067 	int           rv = -ENODEV;
1068 	unsigned long flags;
1069 
1070 	if (seq >= IPMI_IPMB_NUM_SEQ)
1071 		return -EINVAL;
1072 
1073 	spin_lock_irqsave(&intf->seq_lock, flags);
1074 	if (intf->seq_table[seq].inuse) {
1075 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1076 
1077 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1078 				&& (msg->msg.netfn == netfn)
1079 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1080 			*recv_msg = msg;
1081 			intf->seq_table[seq].inuse = 0;
1082 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1083 			rv = 0;
1084 		}
1085 	}
1086 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1087 
1088 	return rv;
1089 }
1090 
1091 
1092 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1093 static int intf_start_seq_timer(struct ipmi_smi *intf,
1094 				long       msgid)
1095 {
1096 	int           rv = -ENODEV;
1097 	unsigned long flags;
1098 	unsigned char seq;
1099 	unsigned long seqid;
1100 
1101 
1102 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1103 
1104 	spin_lock_irqsave(&intf->seq_lock, flags);
1105 	/*
1106 	 * We do this verification because the user can be deleted
1107 	 * while a message is outstanding.
1108 	 */
1109 	if ((intf->seq_table[seq].inuse)
1110 				&& (intf->seq_table[seq].seqid == seqid)) {
1111 		struct seq_table *ent = &intf->seq_table[seq];
1112 		ent->timeout = ent->orig_timeout;
1113 		rv = 0;
1114 	}
1115 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1116 
1117 	return rv;
1118 }
1119 
1120 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1121 static int intf_err_seq(struct ipmi_smi *intf,
1122 			long         msgid,
1123 			unsigned int err)
1124 {
1125 	int                  rv = -ENODEV;
1126 	unsigned long        flags;
1127 	unsigned char        seq;
1128 	unsigned long        seqid;
1129 	struct ipmi_recv_msg *msg = NULL;
1130 
1131 
1132 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1133 
1134 	spin_lock_irqsave(&intf->seq_lock, flags);
1135 	/*
1136 	 * We do this verification because the user can be deleted
1137 	 * while a message is outstanding.
1138 	 */
1139 	if ((intf->seq_table[seq].inuse)
1140 				&& (intf->seq_table[seq].seqid == seqid)) {
1141 		struct seq_table *ent = &intf->seq_table[seq];
1142 
1143 		ent->inuse = 0;
1144 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1145 		msg = ent->recv_msg;
1146 		rv = 0;
1147 	}
1148 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1149 
1150 	if (msg)
1151 		deliver_err_response(intf, msg, err);
1152 
1153 	return rv;
1154 }
1155 
free_user_work(struct work_struct * work)1156 static void free_user_work(struct work_struct *work)
1157 {
1158 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1159 					      remove_work);
1160 
1161 	cleanup_srcu_struct(&user->release_barrier);
1162 	vfree(user);
1163 }
1164 
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1165 int ipmi_create_user(unsigned int          if_num,
1166 		     const struct ipmi_user_hndl *handler,
1167 		     void                  *handler_data,
1168 		     struct ipmi_user      **user)
1169 {
1170 	unsigned long flags;
1171 	struct ipmi_user *new_user;
1172 	int           rv, index;
1173 	struct ipmi_smi *intf;
1174 
1175 	/*
1176 	 * There is no module usecount here, because it's not
1177 	 * required.  Since this can only be used by and called from
1178 	 * other modules, they will implicitly use this module, and
1179 	 * thus this can't be removed unless the other modules are
1180 	 * removed.
1181 	 */
1182 
1183 	if (handler == NULL)
1184 		return -EINVAL;
1185 
1186 	/*
1187 	 * Make sure the driver is actually initialized, this handles
1188 	 * problems with initialization order.
1189 	 */
1190 	rv = ipmi_init_msghandler();
1191 	if (rv)
1192 		return rv;
1193 
1194 	new_user = vzalloc(sizeof(*new_user));
1195 	if (!new_user)
1196 		return -ENOMEM;
1197 
1198 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1199 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1200 		if (intf->intf_num == if_num)
1201 			goto found;
1202 	}
1203 	/* Not found, return an error */
1204 	rv = -EINVAL;
1205 	goto out_kfree;
1206 
1207  found:
1208 	INIT_WORK(&new_user->remove_work, free_user_work);
1209 
1210 	rv = init_srcu_struct(&new_user->release_barrier);
1211 	if (rv)
1212 		goto out_kfree;
1213 
1214 	if (!try_module_get(intf->owner)) {
1215 		rv = -ENODEV;
1216 		goto out_kfree;
1217 	}
1218 
1219 	/* Note that each existing user holds a refcount to the interface. */
1220 	kref_get(&intf->refcount);
1221 
1222 	kref_init(&new_user->refcount);
1223 	new_user->handler = handler;
1224 	new_user->handler_data = handler_data;
1225 	new_user->intf = intf;
1226 	new_user->gets_events = false;
1227 
1228 	rcu_assign_pointer(new_user->self, new_user);
1229 	spin_lock_irqsave(&intf->seq_lock, flags);
1230 	list_add_rcu(&new_user->link, &intf->users);
1231 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1232 	if (handler->ipmi_watchdog_pretimeout)
1233 		/* User wants pretimeouts, so make sure to watch for them. */
1234 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1235 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1236 	*user = new_user;
1237 	return 0;
1238 
1239 out_kfree:
1240 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1241 	vfree(new_user);
1242 	return rv;
1243 }
1244 EXPORT_SYMBOL(ipmi_create_user);
1245 
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1246 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1247 {
1248 	int rv, index;
1249 	struct ipmi_smi *intf;
1250 
1251 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1252 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1253 		if (intf->intf_num == if_num)
1254 			goto found;
1255 	}
1256 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1257 
1258 	/* Not found, return an error */
1259 	return -EINVAL;
1260 
1261 found:
1262 	if (!intf->handlers->get_smi_info)
1263 		rv = -ENOTTY;
1264 	else
1265 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1266 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1267 
1268 	return rv;
1269 }
1270 EXPORT_SYMBOL(ipmi_get_smi_info);
1271 
free_user(struct kref * ref)1272 static void free_user(struct kref *ref)
1273 {
1274 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1275 
1276 	/* SRCU cleanup must happen in task context. */
1277 	queue_work(remove_work_wq, &user->remove_work);
1278 }
1279 
_ipmi_destroy_user(struct ipmi_user * user)1280 static void _ipmi_destroy_user(struct ipmi_user *user)
1281 {
1282 	struct ipmi_smi  *intf = user->intf;
1283 	int              i;
1284 	unsigned long    flags;
1285 	struct cmd_rcvr  *rcvr;
1286 	struct cmd_rcvr  *rcvrs = NULL;
1287 	struct module    *owner;
1288 
1289 	if (!acquire_ipmi_user(user, &i)) {
1290 		/*
1291 		 * The user has already been cleaned up, just make sure
1292 		 * nothing is using it and return.
1293 		 */
1294 		synchronize_srcu(&user->release_barrier);
1295 		return;
1296 	}
1297 
1298 	rcu_assign_pointer(user->self, NULL);
1299 	release_ipmi_user(user, i);
1300 
1301 	synchronize_srcu(&user->release_barrier);
1302 
1303 	if (user->handler->shutdown)
1304 		user->handler->shutdown(user->handler_data);
1305 
1306 	if (user->handler->ipmi_watchdog_pretimeout)
1307 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1308 
1309 	if (user->gets_events)
1310 		atomic_dec(&intf->event_waiters);
1311 
1312 	/* Remove the user from the interface's sequence table. */
1313 	spin_lock_irqsave(&intf->seq_lock, flags);
1314 	list_del_rcu(&user->link);
1315 
1316 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1317 		if (intf->seq_table[i].inuse
1318 		    && (intf->seq_table[i].recv_msg->user == user)) {
1319 			intf->seq_table[i].inuse = 0;
1320 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1321 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1322 		}
1323 	}
1324 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1325 
1326 	/*
1327 	 * Remove the user from the command receiver's table.  First
1328 	 * we build a list of everything (not using the standard link,
1329 	 * since other things may be using it till we do
1330 	 * synchronize_srcu()) then free everything in that list.
1331 	 */
1332 	mutex_lock(&intf->cmd_rcvrs_mutex);
1333 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1334 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1335 		if (rcvr->user == user) {
1336 			list_del_rcu(&rcvr->link);
1337 			rcvr->next = rcvrs;
1338 			rcvrs = rcvr;
1339 		}
1340 	}
1341 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1342 	synchronize_rcu();
1343 	while (rcvrs) {
1344 		rcvr = rcvrs;
1345 		rcvrs = rcvr->next;
1346 		kfree(rcvr);
1347 	}
1348 
1349 	owner = intf->owner;
1350 	kref_put(&intf->refcount, intf_free);
1351 	module_put(owner);
1352 }
1353 
ipmi_destroy_user(struct ipmi_user * user)1354 int ipmi_destroy_user(struct ipmi_user *user)
1355 {
1356 	_ipmi_destroy_user(user);
1357 
1358 	kref_put(&user->refcount, free_user);
1359 
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL(ipmi_destroy_user);
1363 
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1364 int ipmi_get_version(struct ipmi_user *user,
1365 		     unsigned char *major,
1366 		     unsigned char *minor)
1367 {
1368 	struct ipmi_device_id id;
1369 	int rv, index;
1370 
1371 	user = acquire_ipmi_user(user, &index);
1372 	if (!user)
1373 		return -ENODEV;
1374 
1375 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1376 	if (!rv) {
1377 		*major = ipmi_version_major(&id);
1378 		*minor = ipmi_version_minor(&id);
1379 	}
1380 	release_ipmi_user(user, index);
1381 
1382 	return rv;
1383 }
1384 EXPORT_SYMBOL(ipmi_get_version);
1385 
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1386 int ipmi_set_my_address(struct ipmi_user *user,
1387 			unsigned int  channel,
1388 			unsigned char address)
1389 {
1390 	int index, rv = 0;
1391 
1392 	user = acquire_ipmi_user(user, &index);
1393 	if (!user)
1394 		return -ENODEV;
1395 
1396 	if (channel >= IPMI_MAX_CHANNELS) {
1397 		rv = -EINVAL;
1398 	} else {
1399 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1400 		user->intf->addrinfo[channel].address = address;
1401 	}
1402 	release_ipmi_user(user, index);
1403 
1404 	return rv;
1405 }
1406 EXPORT_SYMBOL(ipmi_set_my_address);
1407 
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1408 int ipmi_get_my_address(struct ipmi_user *user,
1409 			unsigned int  channel,
1410 			unsigned char *address)
1411 {
1412 	int index, rv = 0;
1413 
1414 	user = acquire_ipmi_user(user, &index);
1415 	if (!user)
1416 		return -ENODEV;
1417 
1418 	if (channel >= IPMI_MAX_CHANNELS) {
1419 		rv = -EINVAL;
1420 	} else {
1421 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1422 		*address = user->intf->addrinfo[channel].address;
1423 	}
1424 	release_ipmi_user(user, index);
1425 
1426 	return rv;
1427 }
1428 EXPORT_SYMBOL(ipmi_get_my_address);
1429 
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1430 int ipmi_set_my_LUN(struct ipmi_user *user,
1431 		    unsigned int  channel,
1432 		    unsigned char LUN)
1433 {
1434 	int index, rv = 0;
1435 
1436 	user = acquire_ipmi_user(user, &index);
1437 	if (!user)
1438 		return -ENODEV;
1439 
1440 	if (channel >= IPMI_MAX_CHANNELS) {
1441 		rv = -EINVAL;
1442 	} else {
1443 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1444 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1445 	}
1446 	release_ipmi_user(user, index);
1447 
1448 	return rv;
1449 }
1450 EXPORT_SYMBOL(ipmi_set_my_LUN);
1451 
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1452 int ipmi_get_my_LUN(struct ipmi_user *user,
1453 		    unsigned int  channel,
1454 		    unsigned char *address)
1455 {
1456 	int index, rv = 0;
1457 
1458 	user = acquire_ipmi_user(user, &index);
1459 	if (!user)
1460 		return -ENODEV;
1461 
1462 	if (channel >= IPMI_MAX_CHANNELS) {
1463 		rv = -EINVAL;
1464 	} else {
1465 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1466 		*address = user->intf->addrinfo[channel].lun;
1467 	}
1468 	release_ipmi_user(user, index);
1469 
1470 	return rv;
1471 }
1472 EXPORT_SYMBOL(ipmi_get_my_LUN);
1473 
ipmi_get_maintenance_mode(struct ipmi_user * user)1474 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1475 {
1476 	int mode, index;
1477 	unsigned long flags;
1478 
1479 	user = acquire_ipmi_user(user, &index);
1480 	if (!user)
1481 		return -ENODEV;
1482 
1483 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1484 	mode = user->intf->maintenance_mode;
1485 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1486 	release_ipmi_user(user, index);
1487 
1488 	return mode;
1489 }
1490 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1491 
maintenance_mode_update(struct ipmi_smi * intf)1492 static void maintenance_mode_update(struct ipmi_smi *intf)
1493 {
1494 	if (intf->handlers->set_maintenance_mode)
1495 		intf->handlers->set_maintenance_mode(
1496 			intf->send_info, intf->maintenance_mode_enable);
1497 }
1498 
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1499 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1500 {
1501 	int rv = 0, index;
1502 	unsigned long flags;
1503 	struct ipmi_smi *intf = user->intf;
1504 
1505 	user = acquire_ipmi_user(user, &index);
1506 	if (!user)
1507 		return -ENODEV;
1508 
1509 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1510 	if (intf->maintenance_mode != mode) {
1511 		switch (mode) {
1512 		case IPMI_MAINTENANCE_MODE_AUTO:
1513 			intf->maintenance_mode_enable
1514 				= (intf->auto_maintenance_timeout > 0);
1515 			break;
1516 
1517 		case IPMI_MAINTENANCE_MODE_OFF:
1518 			intf->maintenance_mode_enable = false;
1519 			break;
1520 
1521 		case IPMI_MAINTENANCE_MODE_ON:
1522 			intf->maintenance_mode_enable = true;
1523 			break;
1524 
1525 		default:
1526 			rv = -EINVAL;
1527 			goto out_unlock;
1528 		}
1529 		intf->maintenance_mode = mode;
1530 
1531 		maintenance_mode_update(intf);
1532 	}
1533  out_unlock:
1534 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1535 	release_ipmi_user(user, index);
1536 
1537 	return rv;
1538 }
1539 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1540 
ipmi_set_gets_events(struct ipmi_user * user,bool val)1541 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1542 {
1543 	unsigned long        flags;
1544 	struct ipmi_smi      *intf = user->intf;
1545 	struct ipmi_recv_msg *msg, *msg2;
1546 	struct list_head     msgs;
1547 	int index;
1548 
1549 	user = acquire_ipmi_user(user, &index);
1550 	if (!user)
1551 		return -ENODEV;
1552 
1553 	INIT_LIST_HEAD(&msgs);
1554 
1555 	spin_lock_irqsave(&intf->events_lock, flags);
1556 	if (user->gets_events == val)
1557 		goto out;
1558 
1559 	user->gets_events = val;
1560 
1561 	if (val) {
1562 		if (atomic_inc_return(&intf->event_waiters) == 1)
1563 			need_waiter(intf);
1564 	} else {
1565 		atomic_dec(&intf->event_waiters);
1566 	}
1567 
1568 	if (intf->delivering_events)
1569 		/*
1570 		 * Another thread is delivering events for this, so
1571 		 * let it handle any new events.
1572 		 */
1573 		goto out;
1574 
1575 	/* Deliver any queued events. */
1576 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1577 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1578 			list_move_tail(&msg->link, &msgs);
1579 		intf->waiting_events_count = 0;
1580 		if (intf->event_msg_printed) {
1581 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1582 			intf->event_msg_printed = 0;
1583 		}
1584 
1585 		intf->delivering_events = 1;
1586 		spin_unlock_irqrestore(&intf->events_lock, flags);
1587 
1588 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1589 			msg->user = user;
1590 			kref_get(&user->refcount);
1591 			deliver_local_response(intf, msg);
1592 		}
1593 
1594 		spin_lock_irqsave(&intf->events_lock, flags);
1595 		intf->delivering_events = 0;
1596 	}
1597 
1598  out:
1599 	spin_unlock_irqrestore(&intf->events_lock, flags);
1600 	release_ipmi_user(user, index);
1601 
1602 	return 0;
1603 }
1604 EXPORT_SYMBOL(ipmi_set_gets_events);
1605 
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1606 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1607 				      unsigned char netfn,
1608 				      unsigned char cmd,
1609 				      unsigned char chan)
1610 {
1611 	struct cmd_rcvr *rcvr;
1612 
1613 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1614 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1615 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1616 					&& (rcvr->chans & (1 << chan)))
1617 			return rcvr;
1618 	}
1619 	return NULL;
1620 }
1621 
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1622 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1623 				 unsigned char netfn,
1624 				 unsigned char cmd,
1625 				 unsigned int  chans)
1626 {
1627 	struct cmd_rcvr *rcvr;
1628 
1629 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1630 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1631 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1632 					&& (rcvr->chans & chans))
1633 			return 0;
1634 	}
1635 	return 1;
1636 }
1637 
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1638 int ipmi_register_for_cmd(struct ipmi_user *user,
1639 			  unsigned char netfn,
1640 			  unsigned char cmd,
1641 			  unsigned int  chans)
1642 {
1643 	struct ipmi_smi *intf = user->intf;
1644 	struct cmd_rcvr *rcvr;
1645 	int rv = 0, index;
1646 
1647 	user = acquire_ipmi_user(user, &index);
1648 	if (!user)
1649 		return -ENODEV;
1650 
1651 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1652 	if (!rcvr) {
1653 		rv = -ENOMEM;
1654 		goto out_release;
1655 	}
1656 	rcvr->cmd = cmd;
1657 	rcvr->netfn = netfn;
1658 	rcvr->chans = chans;
1659 	rcvr->user = user;
1660 
1661 	mutex_lock(&intf->cmd_rcvrs_mutex);
1662 	/* Make sure the command/netfn is not already registered. */
1663 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1664 		rv = -EBUSY;
1665 		goto out_unlock;
1666 	}
1667 
1668 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1669 
1670 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1671 
1672 out_unlock:
1673 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1674 	if (rv)
1675 		kfree(rcvr);
1676 out_release:
1677 	release_ipmi_user(user, index);
1678 
1679 	return rv;
1680 }
1681 EXPORT_SYMBOL(ipmi_register_for_cmd);
1682 
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1683 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1684 			    unsigned char netfn,
1685 			    unsigned char cmd,
1686 			    unsigned int  chans)
1687 {
1688 	struct ipmi_smi *intf = user->intf;
1689 	struct cmd_rcvr *rcvr;
1690 	struct cmd_rcvr *rcvrs = NULL;
1691 	int i, rv = -ENOENT, index;
1692 
1693 	user = acquire_ipmi_user(user, &index);
1694 	if (!user)
1695 		return -ENODEV;
1696 
1697 	mutex_lock(&intf->cmd_rcvrs_mutex);
1698 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1699 		if (((1 << i) & chans) == 0)
1700 			continue;
1701 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1702 		if (rcvr == NULL)
1703 			continue;
1704 		if (rcvr->user == user) {
1705 			rv = 0;
1706 			rcvr->chans &= ~chans;
1707 			if (rcvr->chans == 0) {
1708 				list_del_rcu(&rcvr->link);
1709 				rcvr->next = rcvrs;
1710 				rcvrs = rcvr;
1711 			}
1712 		}
1713 	}
1714 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1715 	synchronize_rcu();
1716 	release_ipmi_user(user, index);
1717 	while (rcvrs) {
1718 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1719 		rcvr = rcvrs;
1720 		rcvrs = rcvr->next;
1721 		kfree(rcvr);
1722 	}
1723 
1724 	return rv;
1725 }
1726 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1727 
1728 static unsigned char
ipmb_checksum(unsigned char * data,int size)1729 ipmb_checksum(unsigned char *data, int size)
1730 {
1731 	unsigned char csum = 0;
1732 
1733 	for (; size > 0; size--, data++)
1734 		csum += *data;
1735 
1736 	return -csum;
1737 }
1738 
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1739 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1740 				   struct kernel_ipmi_msg *msg,
1741 				   struct ipmi_ipmb_addr *ipmb_addr,
1742 				   long                  msgid,
1743 				   unsigned char         ipmb_seq,
1744 				   int                   broadcast,
1745 				   unsigned char         source_address,
1746 				   unsigned char         source_lun)
1747 {
1748 	int i = broadcast;
1749 
1750 	/* Format the IPMB header data. */
1751 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1752 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1753 	smi_msg->data[2] = ipmb_addr->channel;
1754 	if (broadcast)
1755 		smi_msg->data[3] = 0;
1756 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1757 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1758 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1759 	smi_msg->data[i+6] = source_address;
1760 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1761 	smi_msg->data[i+8] = msg->cmd;
1762 
1763 	/* Now tack on the data to the message. */
1764 	if (msg->data_len > 0)
1765 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1766 	smi_msg->data_size = msg->data_len + 9;
1767 
1768 	/* Now calculate the checksum and tack it on. */
1769 	smi_msg->data[i+smi_msg->data_size]
1770 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1771 
1772 	/*
1773 	 * Add on the checksum size and the offset from the
1774 	 * broadcast.
1775 	 */
1776 	smi_msg->data_size += 1 + i;
1777 
1778 	smi_msg->msgid = msgid;
1779 }
1780 
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1781 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1782 				  struct kernel_ipmi_msg *msg,
1783 				  struct ipmi_lan_addr  *lan_addr,
1784 				  long                  msgid,
1785 				  unsigned char         ipmb_seq,
1786 				  unsigned char         source_lun)
1787 {
1788 	/* Format the IPMB header data. */
1789 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1790 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1791 	smi_msg->data[2] = lan_addr->channel;
1792 	smi_msg->data[3] = lan_addr->session_handle;
1793 	smi_msg->data[4] = lan_addr->remote_SWID;
1794 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1795 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1796 	smi_msg->data[7] = lan_addr->local_SWID;
1797 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1798 	smi_msg->data[9] = msg->cmd;
1799 
1800 	/* Now tack on the data to the message. */
1801 	if (msg->data_len > 0)
1802 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1803 	smi_msg->data_size = msg->data_len + 10;
1804 
1805 	/* Now calculate the checksum and tack it on. */
1806 	smi_msg->data[smi_msg->data_size]
1807 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1808 
1809 	/*
1810 	 * Add on the checksum size and the offset from the
1811 	 * broadcast.
1812 	 */
1813 	smi_msg->data_size += 1;
1814 
1815 	smi_msg->msgid = msgid;
1816 }
1817 
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1818 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1819 					     struct ipmi_smi_msg *smi_msg,
1820 					     int priority)
1821 {
1822 	if (intf->curr_msg) {
1823 		if (priority > 0)
1824 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1825 		else
1826 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1827 		smi_msg = NULL;
1828 	} else {
1829 		intf->curr_msg = smi_msg;
1830 	}
1831 
1832 	return smi_msg;
1833 }
1834 
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1835 static void smi_send(struct ipmi_smi *intf,
1836 		     const struct ipmi_smi_handlers *handlers,
1837 		     struct ipmi_smi_msg *smi_msg, int priority)
1838 {
1839 	int run_to_completion = intf->run_to_completion;
1840 	unsigned long flags = 0;
1841 
1842 	if (!run_to_completion)
1843 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1844 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1845 
1846 	if (!run_to_completion)
1847 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1848 
1849 	if (smi_msg)
1850 		handlers->sender(intf->send_info, smi_msg);
1851 }
1852 
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1853 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1854 {
1855 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1856 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1857 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1858 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1859 }
1860 
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1861 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1862 			      struct ipmi_addr       *addr,
1863 			      long                   msgid,
1864 			      struct kernel_ipmi_msg *msg,
1865 			      struct ipmi_smi_msg    *smi_msg,
1866 			      struct ipmi_recv_msg   *recv_msg,
1867 			      int                    retries,
1868 			      unsigned int           retry_time_ms)
1869 {
1870 	struct ipmi_system_interface_addr *smi_addr;
1871 
1872 	if (msg->netfn & 1)
1873 		/* Responses are not allowed to the SMI. */
1874 		return -EINVAL;
1875 
1876 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1877 	if (smi_addr->lun > 3) {
1878 		ipmi_inc_stat(intf, sent_invalid_commands);
1879 		return -EINVAL;
1880 	}
1881 
1882 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1883 
1884 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1885 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1886 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1887 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1888 		/*
1889 		 * We don't let the user do these, since we manage
1890 		 * the sequence numbers.
1891 		 */
1892 		ipmi_inc_stat(intf, sent_invalid_commands);
1893 		return -EINVAL;
1894 	}
1895 
1896 	if (is_maintenance_mode_cmd(msg)) {
1897 		unsigned long flags;
1898 
1899 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1900 		intf->auto_maintenance_timeout
1901 			= maintenance_mode_timeout_ms;
1902 		if (!intf->maintenance_mode
1903 		    && !intf->maintenance_mode_enable) {
1904 			intf->maintenance_mode_enable = true;
1905 			maintenance_mode_update(intf);
1906 		}
1907 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1908 				       flags);
1909 	}
1910 
1911 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1912 		ipmi_inc_stat(intf, sent_invalid_commands);
1913 		return -EMSGSIZE;
1914 	}
1915 
1916 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1917 	smi_msg->data[1] = msg->cmd;
1918 	smi_msg->msgid = msgid;
1919 	smi_msg->user_data = recv_msg;
1920 	if (msg->data_len > 0)
1921 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1922 	smi_msg->data_size = msg->data_len + 2;
1923 	ipmi_inc_stat(intf, sent_local_commands);
1924 
1925 	return 0;
1926 }
1927 
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1928 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1929 			   struct ipmi_addr       *addr,
1930 			   long                   msgid,
1931 			   struct kernel_ipmi_msg *msg,
1932 			   struct ipmi_smi_msg    *smi_msg,
1933 			   struct ipmi_recv_msg   *recv_msg,
1934 			   unsigned char          source_address,
1935 			   unsigned char          source_lun,
1936 			   int                    retries,
1937 			   unsigned int           retry_time_ms)
1938 {
1939 	struct ipmi_ipmb_addr *ipmb_addr;
1940 	unsigned char ipmb_seq;
1941 	long seqid;
1942 	int broadcast = 0;
1943 	struct ipmi_channel *chans;
1944 	int rv = 0;
1945 
1946 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1947 		ipmi_inc_stat(intf, sent_invalid_commands);
1948 		return -EINVAL;
1949 	}
1950 
1951 	chans = READ_ONCE(intf->channel_list)->c;
1952 
1953 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1954 		ipmi_inc_stat(intf, sent_invalid_commands);
1955 		return -EINVAL;
1956 	}
1957 
1958 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1959 		/*
1960 		 * Broadcasts add a zero at the beginning of the
1961 		 * message, but otherwise is the same as an IPMB
1962 		 * address.
1963 		 */
1964 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1965 		broadcast = 1;
1966 		retries = 0; /* Don't retry broadcasts. */
1967 	}
1968 
1969 	/*
1970 	 * 9 for the header and 1 for the checksum, plus
1971 	 * possibly one for the broadcast.
1972 	 */
1973 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1974 		ipmi_inc_stat(intf, sent_invalid_commands);
1975 		return -EMSGSIZE;
1976 	}
1977 
1978 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1979 	if (ipmb_addr->lun > 3) {
1980 		ipmi_inc_stat(intf, sent_invalid_commands);
1981 		return -EINVAL;
1982 	}
1983 
1984 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1985 
1986 	if (recv_msg->msg.netfn & 0x1) {
1987 		/*
1988 		 * It's a response, so use the user's sequence
1989 		 * from msgid.
1990 		 */
1991 		ipmi_inc_stat(intf, sent_ipmb_responses);
1992 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1993 				msgid, broadcast,
1994 				source_address, source_lun);
1995 
1996 		/*
1997 		 * Save the receive message so we can use it
1998 		 * to deliver the response.
1999 		 */
2000 		smi_msg->user_data = recv_msg;
2001 	} else {
2002 		/* It's a command, so get a sequence for it. */
2003 		unsigned long flags;
2004 
2005 		spin_lock_irqsave(&intf->seq_lock, flags);
2006 
2007 		if (is_maintenance_mode_cmd(msg))
2008 			intf->ipmb_maintenance_mode_timeout =
2009 				maintenance_mode_timeout_ms;
2010 
2011 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2012 			/* Different default in maintenance mode */
2013 			retry_time_ms = default_maintenance_retry_ms;
2014 
2015 		/*
2016 		 * Create a sequence number with a 1 second
2017 		 * timeout and 4 retries.
2018 		 */
2019 		rv = intf_next_seq(intf,
2020 				   recv_msg,
2021 				   retry_time_ms,
2022 				   retries,
2023 				   broadcast,
2024 				   &ipmb_seq,
2025 				   &seqid);
2026 		if (rv)
2027 			/*
2028 			 * We have used up all the sequence numbers,
2029 			 * probably, so abort.
2030 			 */
2031 			goto out_err;
2032 
2033 		ipmi_inc_stat(intf, sent_ipmb_commands);
2034 
2035 		/*
2036 		 * Store the sequence number in the message,
2037 		 * so that when the send message response
2038 		 * comes back we can start the timer.
2039 		 */
2040 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2041 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2042 				ipmb_seq, broadcast,
2043 				source_address, source_lun);
2044 
2045 		/*
2046 		 * Copy the message into the recv message data, so we
2047 		 * can retransmit it later if necessary.
2048 		 */
2049 		memcpy(recv_msg->msg_data, smi_msg->data,
2050 		       smi_msg->data_size);
2051 		recv_msg->msg.data = recv_msg->msg_data;
2052 		recv_msg->msg.data_len = smi_msg->data_size;
2053 
2054 		/*
2055 		 * We don't unlock until here, because we need
2056 		 * to copy the completed message into the
2057 		 * recv_msg before we release the lock.
2058 		 * Otherwise, race conditions may bite us.  I
2059 		 * know that's pretty paranoid, but I prefer
2060 		 * to be correct.
2061 		 */
2062 out_err:
2063 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2064 	}
2065 
2066 	return rv;
2067 }
2068 
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2069 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2070 			  struct ipmi_addr       *addr,
2071 			  long                   msgid,
2072 			  struct kernel_ipmi_msg *msg,
2073 			  struct ipmi_smi_msg    *smi_msg,
2074 			  struct ipmi_recv_msg   *recv_msg,
2075 			  unsigned char          source_lun,
2076 			  int                    retries,
2077 			  unsigned int           retry_time_ms)
2078 {
2079 	struct ipmi_lan_addr  *lan_addr;
2080 	unsigned char ipmb_seq;
2081 	long seqid;
2082 	struct ipmi_channel *chans;
2083 	int rv = 0;
2084 
2085 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2086 		ipmi_inc_stat(intf, sent_invalid_commands);
2087 		return -EINVAL;
2088 	}
2089 
2090 	chans = READ_ONCE(intf->channel_list)->c;
2091 
2092 	if ((chans[addr->channel].medium
2093 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2094 			&& (chans[addr->channel].medium
2095 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2096 		ipmi_inc_stat(intf, sent_invalid_commands);
2097 		return -EINVAL;
2098 	}
2099 
2100 	/* 11 for the header and 1 for the checksum. */
2101 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2102 		ipmi_inc_stat(intf, sent_invalid_commands);
2103 		return -EMSGSIZE;
2104 	}
2105 
2106 	lan_addr = (struct ipmi_lan_addr *) addr;
2107 	if (lan_addr->lun > 3) {
2108 		ipmi_inc_stat(intf, sent_invalid_commands);
2109 		return -EINVAL;
2110 	}
2111 
2112 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2113 
2114 	if (recv_msg->msg.netfn & 0x1) {
2115 		/*
2116 		 * It's a response, so use the user's sequence
2117 		 * from msgid.
2118 		 */
2119 		ipmi_inc_stat(intf, sent_lan_responses);
2120 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2121 			       msgid, source_lun);
2122 
2123 		/*
2124 		 * Save the receive message so we can use it
2125 		 * to deliver the response.
2126 		 */
2127 		smi_msg->user_data = recv_msg;
2128 	} else {
2129 		/* It's a command, so get a sequence for it. */
2130 		unsigned long flags;
2131 
2132 		spin_lock_irqsave(&intf->seq_lock, flags);
2133 
2134 		/*
2135 		 * Create a sequence number with a 1 second
2136 		 * timeout and 4 retries.
2137 		 */
2138 		rv = intf_next_seq(intf,
2139 				   recv_msg,
2140 				   retry_time_ms,
2141 				   retries,
2142 				   0,
2143 				   &ipmb_seq,
2144 				   &seqid);
2145 		if (rv)
2146 			/*
2147 			 * We have used up all the sequence numbers,
2148 			 * probably, so abort.
2149 			 */
2150 			goto out_err;
2151 
2152 		ipmi_inc_stat(intf, sent_lan_commands);
2153 
2154 		/*
2155 		 * Store the sequence number in the message,
2156 		 * so that when the send message response
2157 		 * comes back we can start the timer.
2158 		 */
2159 		format_lan_msg(smi_msg, msg, lan_addr,
2160 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2161 			       ipmb_seq, source_lun);
2162 
2163 		/*
2164 		 * Copy the message into the recv message data, so we
2165 		 * can retransmit it later if necessary.
2166 		 */
2167 		memcpy(recv_msg->msg_data, smi_msg->data,
2168 		       smi_msg->data_size);
2169 		recv_msg->msg.data = recv_msg->msg_data;
2170 		recv_msg->msg.data_len = smi_msg->data_size;
2171 
2172 		/*
2173 		 * We don't unlock until here, because we need
2174 		 * to copy the completed message into the
2175 		 * recv_msg before we release the lock.
2176 		 * Otherwise, race conditions may bite us.  I
2177 		 * know that's pretty paranoid, but I prefer
2178 		 * to be correct.
2179 		 */
2180 out_err:
2181 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2182 	}
2183 
2184 	return rv;
2185 }
2186 
2187 /*
2188  * Separate from ipmi_request so that the user does not have to be
2189  * supplied in certain circumstances (mainly at panic time).  If
2190  * messages are supplied, they will be freed, even if an error
2191  * occurs.
2192  */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2193 static int i_ipmi_request(struct ipmi_user     *user,
2194 			  struct ipmi_smi      *intf,
2195 			  struct ipmi_addr     *addr,
2196 			  long                 msgid,
2197 			  struct kernel_ipmi_msg *msg,
2198 			  void                 *user_msg_data,
2199 			  void                 *supplied_smi,
2200 			  struct ipmi_recv_msg *supplied_recv,
2201 			  int                  priority,
2202 			  unsigned char        source_address,
2203 			  unsigned char        source_lun,
2204 			  int                  retries,
2205 			  unsigned int         retry_time_ms)
2206 {
2207 	struct ipmi_smi_msg *smi_msg;
2208 	struct ipmi_recv_msg *recv_msg;
2209 	int rv = 0;
2210 
2211 	if (supplied_recv)
2212 		recv_msg = supplied_recv;
2213 	else {
2214 		recv_msg = ipmi_alloc_recv_msg();
2215 		if (recv_msg == NULL) {
2216 			rv = -ENOMEM;
2217 			goto out;
2218 		}
2219 	}
2220 	recv_msg->user_msg_data = user_msg_data;
2221 
2222 	if (supplied_smi)
2223 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2224 	else {
2225 		smi_msg = ipmi_alloc_smi_msg();
2226 		if (smi_msg == NULL) {
2227 			if (!supplied_recv)
2228 				ipmi_free_recv_msg(recv_msg);
2229 			rv = -ENOMEM;
2230 			goto out;
2231 		}
2232 	}
2233 
2234 	rcu_read_lock();
2235 	if (intf->in_shutdown) {
2236 		rv = -ENODEV;
2237 		goto out_err;
2238 	}
2239 
2240 	recv_msg->user = user;
2241 	if (user)
2242 		/* The put happens when the message is freed. */
2243 		kref_get(&user->refcount);
2244 	recv_msg->msgid = msgid;
2245 	/*
2246 	 * Store the message to send in the receive message so timeout
2247 	 * responses can get the proper response data.
2248 	 */
2249 	recv_msg->msg = *msg;
2250 
2251 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2252 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2253 					recv_msg, retries, retry_time_ms);
2254 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2255 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2256 				     source_address, source_lun,
2257 				     retries, retry_time_ms);
2258 	} else if (is_lan_addr(addr)) {
2259 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2260 				    source_lun, retries, retry_time_ms);
2261 	} else {
2262 	    /* Unknown address type. */
2263 		ipmi_inc_stat(intf, sent_invalid_commands);
2264 		rv = -EINVAL;
2265 	}
2266 
2267 	if (rv) {
2268 out_err:
2269 		ipmi_free_smi_msg(smi_msg);
2270 		ipmi_free_recv_msg(recv_msg);
2271 	} else {
2272 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2273 
2274 		smi_send(intf, intf->handlers, smi_msg, priority);
2275 	}
2276 	rcu_read_unlock();
2277 
2278 out:
2279 	return rv;
2280 }
2281 
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2282 static int check_addr(struct ipmi_smi  *intf,
2283 		      struct ipmi_addr *addr,
2284 		      unsigned char    *saddr,
2285 		      unsigned char    *lun)
2286 {
2287 	if (addr->channel >= IPMI_MAX_CHANNELS)
2288 		return -EINVAL;
2289 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2290 	*lun = intf->addrinfo[addr->channel].lun;
2291 	*saddr = intf->addrinfo[addr->channel].address;
2292 	return 0;
2293 }
2294 
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2295 int ipmi_request_settime(struct ipmi_user *user,
2296 			 struct ipmi_addr *addr,
2297 			 long             msgid,
2298 			 struct kernel_ipmi_msg  *msg,
2299 			 void             *user_msg_data,
2300 			 int              priority,
2301 			 int              retries,
2302 			 unsigned int     retry_time_ms)
2303 {
2304 	unsigned char saddr = 0, lun = 0;
2305 	int rv, index;
2306 
2307 	if (!user)
2308 		return -EINVAL;
2309 
2310 	user = acquire_ipmi_user(user, &index);
2311 	if (!user)
2312 		return -ENODEV;
2313 
2314 	rv = check_addr(user->intf, addr, &saddr, &lun);
2315 	if (!rv)
2316 		rv = i_ipmi_request(user,
2317 				    user->intf,
2318 				    addr,
2319 				    msgid,
2320 				    msg,
2321 				    user_msg_data,
2322 				    NULL, NULL,
2323 				    priority,
2324 				    saddr,
2325 				    lun,
2326 				    retries,
2327 				    retry_time_ms);
2328 
2329 	release_ipmi_user(user, index);
2330 	return rv;
2331 }
2332 EXPORT_SYMBOL(ipmi_request_settime);
2333 
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2334 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2335 			     struct ipmi_addr     *addr,
2336 			     long                 msgid,
2337 			     struct kernel_ipmi_msg *msg,
2338 			     void                 *user_msg_data,
2339 			     void                 *supplied_smi,
2340 			     struct ipmi_recv_msg *supplied_recv,
2341 			     int                  priority)
2342 {
2343 	unsigned char saddr = 0, lun = 0;
2344 	int rv, index;
2345 
2346 	if (!user)
2347 		return -EINVAL;
2348 
2349 	user = acquire_ipmi_user(user, &index);
2350 	if (!user)
2351 		return -ENODEV;
2352 
2353 	rv = check_addr(user->intf, addr, &saddr, &lun);
2354 	if (!rv)
2355 		rv = i_ipmi_request(user,
2356 				    user->intf,
2357 				    addr,
2358 				    msgid,
2359 				    msg,
2360 				    user_msg_data,
2361 				    supplied_smi,
2362 				    supplied_recv,
2363 				    priority,
2364 				    saddr,
2365 				    lun,
2366 				    -1, 0);
2367 
2368 	release_ipmi_user(user, index);
2369 	return rv;
2370 }
2371 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2372 
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2373 static void bmc_device_id_handler(struct ipmi_smi *intf,
2374 				  struct ipmi_recv_msg *msg)
2375 {
2376 	int rv;
2377 
2378 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2379 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2380 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2381 		dev_warn(intf->si_dev,
2382 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2383 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2384 		return;
2385 	}
2386 
2387 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2388 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2389 	if (rv) {
2390 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2391 		/* record completion code when error */
2392 		intf->bmc->cc = msg->msg.data[0];
2393 		intf->bmc->dyn_id_set = 0;
2394 	} else {
2395 		/*
2396 		 * Make sure the id data is available before setting
2397 		 * dyn_id_set.
2398 		 */
2399 		smp_wmb();
2400 		intf->bmc->dyn_id_set = 1;
2401 	}
2402 
2403 	wake_up(&intf->waitq);
2404 }
2405 
2406 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2407 send_get_device_id_cmd(struct ipmi_smi *intf)
2408 {
2409 	struct ipmi_system_interface_addr si;
2410 	struct kernel_ipmi_msg msg;
2411 
2412 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2413 	si.channel = IPMI_BMC_CHANNEL;
2414 	si.lun = 0;
2415 
2416 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2417 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2418 	msg.data = NULL;
2419 	msg.data_len = 0;
2420 
2421 	return i_ipmi_request(NULL,
2422 			      intf,
2423 			      (struct ipmi_addr *) &si,
2424 			      0,
2425 			      &msg,
2426 			      intf,
2427 			      NULL,
2428 			      NULL,
2429 			      0,
2430 			      intf->addrinfo[0].address,
2431 			      intf->addrinfo[0].lun,
2432 			      -1, 0);
2433 }
2434 
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2435 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2436 {
2437 	int rv;
2438 	unsigned int retry_count = 0;
2439 
2440 	intf->null_user_handler = bmc_device_id_handler;
2441 
2442 retry:
2443 	bmc->cc = 0;
2444 	bmc->dyn_id_set = 2;
2445 
2446 	rv = send_get_device_id_cmd(intf);
2447 	if (rv)
2448 		goto out_reset_handler;
2449 
2450 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2451 
2452 	if (!bmc->dyn_id_set) {
2453 		if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2454 		     || bmc->cc ==  IPMI_DEVICE_IN_INIT_ERR
2455 		     || bmc->cc ==  IPMI_NOT_IN_MY_STATE_ERR)
2456 		     && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2457 			msleep(500);
2458 			dev_warn(intf->si_dev,
2459 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2460 			    bmc->cc);
2461 			goto retry;
2462 		}
2463 
2464 		rv = -EIO; /* Something went wrong in the fetch. */
2465 	}
2466 
2467 	/* dyn_id_set makes the id data available. */
2468 	smp_rmb();
2469 
2470 out_reset_handler:
2471 	intf->null_user_handler = NULL;
2472 
2473 	return rv;
2474 }
2475 
2476 /*
2477  * Fetch the device id for the bmc/interface.  You must pass in either
2478  * bmc or intf, this code will get the other one.  If the data has
2479  * been recently fetched, this will just use the cached data.  Otherwise
2480  * it will run a new fetch.
2481  *
2482  * Except for the first time this is called (in ipmi_add_smi()),
2483  * this will always return good data;
2484  */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2485 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2486 			       struct ipmi_device_id *id,
2487 			       bool *guid_set, guid_t *guid, int intf_num)
2488 {
2489 	int rv = 0;
2490 	int prev_dyn_id_set, prev_guid_set;
2491 	bool intf_set = intf != NULL;
2492 
2493 	if (!intf) {
2494 		mutex_lock(&bmc->dyn_mutex);
2495 retry_bmc_lock:
2496 		if (list_empty(&bmc->intfs)) {
2497 			mutex_unlock(&bmc->dyn_mutex);
2498 			return -ENOENT;
2499 		}
2500 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2501 					bmc_link);
2502 		kref_get(&intf->refcount);
2503 		mutex_unlock(&bmc->dyn_mutex);
2504 		mutex_lock(&intf->bmc_reg_mutex);
2505 		mutex_lock(&bmc->dyn_mutex);
2506 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2507 					     bmc_link)) {
2508 			mutex_unlock(&intf->bmc_reg_mutex);
2509 			kref_put(&intf->refcount, intf_free);
2510 			goto retry_bmc_lock;
2511 		}
2512 	} else {
2513 		mutex_lock(&intf->bmc_reg_mutex);
2514 		bmc = intf->bmc;
2515 		mutex_lock(&bmc->dyn_mutex);
2516 		kref_get(&intf->refcount);
2517 	}
2518 
2519 	/* If we have a valid and current ID, just return that. */
2520 	if (intf->in_bmc_register ||
2521 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2522 		goto out_noprocessing;
2523 
2524 	prev_guid_set = bmc->dyn_guid_set;
2525 	__get_guid(intf);
2526 
2527 	prev_dyn_id_set = bmc->dyn_id_set;
2528 	rv = __get_device_id(intf, bmc);
2529 	if (rv)
2530 		goto out;
2531 
2532 	/*
2533 	 * The guid, device id, manufacturer id, and product id should
2534 	 * not change on a BMC.  If it does we have to do some dancing.
2535 	 */
2536 	if (!intf->bmc_registered
2537 	    || (!prev_guid_set && bmc->dyn_guid_set)
2538 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2539 	    || (prev_guid_set && bmc->dyn_guid_set
2540 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2541 	    || bmc->id.device_id != bmc->fetch_id.device_id
2542 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2543 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2544 		struct ipmi_device_id id = bmc->fetch_id;
2545 		int guid_set = bmc->dyn_guid_set;
2546 		guid_t guid;
2547 
2548 		guid = bmc->fetch_guid;
2549 		mutex_unlock(&bmc->dyn_mutex);
2550 
2551 		__ipmi_bmc_unregister(intf);
2552 		/* Fill in the temporary BMC for good measure. */
2553 		intf->bmc->id = id;
2554 		intf->bmc->dyn_guid_set = guid_set;
2555 		intf->bmc->guid = guid;
2556 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2557 			need_waiter(intf); /* Retry later on an error. */
2558 		else
2559 			__scan_channels(intf, &id);
2560 
2561 
2562 		if (!intf_set) {
2563 			/*
2564 			 * We weren't given the interface on the
2565 			 * command line, so restart the operation on
2566 			 * the next interface for the BMC.
2567 			 */
2568 			mutex_unlock(&intf->bmc_reg_mutex);
2569 			mutex_lock(&bmc->dyn_mutex);
2570 			goto retry_bmc_lock;
2571 		}
2572 
2573 		/* We have a new BMC, set it up. */
2574 		bmc = intf->bmc;
2575 		mutex_lock(&bmc->dyn_mutex);
2576 		goto out_noprocessing;
2577 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2578 		/* Version info changes, scan the channels again. */
2579 		__scan_channels(intf, &bmc->fetch_id);
2580 
2581 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2582 
2583 out:
2584 	if (rv && prev_dyn_id_set) {
2585 		rv = 0; /* Ignore failures if we have previous data. */
2586 		bmc->dyn_id_set = prev_dyn_id_set;
2587 	}
2588 	if (!rv) {
2589 		bmc->id = bmc->fetch_id;
2590 		if (bmc->dyn_guid_set)
2591 			bmc->guid = bmc->fetch_guid;
2592 		else if (prev_guid_set)
2593 			/*
2594 			 * The guid used to be valid and it failed to fetch,
2595 			 * just use the cached value.
2596 			 */
2597 			bmc->dyn_guid_set = prev_guid_set;
2598 	}
2599 out_noprocessing:
2600 	if (!rv) {
2601 		if (id)
2602 			*id = bmc->id;
2603 
2604 		if (guid_set)
2605 			*guid_set = bmc->dyn_guid_set;
2606 
2607 		if (guid && bmc->dyn_guid_set)
2608 			*guid =  bmc->guid;
2609 	}
2610 
2611 	mutex_unlock(&bmc->dyn_mutex);
2612 	mutex_unlock(&intf->bmc_reg_mutex);
2613 
2614 	kref_put(&intf->refcount, intf_free);
2615 	return rv;
2616 }
2617 
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2618 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2619 			     struct ipmi_device_id *id,
2620 			     bool *guid_set, guid_t *guid)
2621 {
2622 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2623 }
2624 
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2625 static ssize_t device_id_show(struct device *dev,
2626 			      struct device_attribute *attr,
2627 			      char *buf)
2628 {
2629 	struct bmc_device *bmc = to_bmc_device(dev);
2630 	struct ipmi_device_id id;
2631 	int rv;
2632 
2633 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2634 	if (rv)
2635 		return rv;
2636 
2637 	return snprintf(buf, 10, "%u\n", id.device_id);
2638 }
2639 static DEVICE_ATTR_RO(device_id);
2640 
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2641 static ssize_t provides_device_sdrs_show(struct device *dev,
2642 					 struct device_attribute *attr,
2643 					 char *buf)
2644 {
2645 	struct bmc_device *bmc = to_bmc_device(dev);
2646 	struct ipmi_device_id id;
2647 	int rv;
2648 
2649 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2650 	if (rv)
2651 		return rv;
2652 
2653 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2654 }
2655 static DEVICE_ATTR_RO(provides_device_sdrs);
2656 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2657 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2658 			     char *buf)
2659 {
2660 	struct bmc_device *bmc = to_bmc_device(dev);
2661 	struct ipmi_device_id id;
2662 	int rv;
2663 
2664 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2665 	if (rv)
2666 		return rv;
2667 
2668 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2669 }
2670 static DEVICE_ATTR_RO(revision);
2671 
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2672 static ssize_t firmware_revision_show(struct device *dev,
2673 				      struct device_attribute *attr,
2674 				      char *buf)
2675 {
2676 	struct bmc_device *bmc = to_bmc_device(dev);
2677 	struct ipmi_device_id id;
2678 	int rv;
2679 
2680 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2681 	if (rv)
2682 		return rv;
2683 
2684 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2685 			id.firmware_revision_2);
2686 }
2687 static DEVICE_ATTR_RO(firmware_revision);
2688 
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2689 static ssize_t ipmi_version_show(struct device *dev,
2690 				 struct device_attribute *attr,
2691 				 char *buf)
2692 {
2693 	struct bmc_device *bmc = to_bmc_device(dev);
2694 	struct ipmi_device_id id;
2695 	int rv;
2696 
2697 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2698 	if (rv)
2699 		return rv;
2700 
2701 	return snprintf(buf, 20, "%u.%u\n",
2702 			ipmi_version_major(&id),
2703 			ipmi_version_minor(&id));
2704 }
2705 static DEVICE_ATTR_RO(ipmi_version);
2706 
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2707 static ssize_t add_dev_support_show(struct device *dev,
2708 				    struct device_attribute *attr,
2709 				    char *buf)
2710 {
2711 	struct bmc_device *bmc = to_bmc_device(dev);
2712 	struct ipmi_device_id id;
2713 	int rv;
2714 
2715 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2716 	if (rv)
2717 		return rv;
2718 
2719 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2720 }
2721 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2722 		   NULL);
2723 
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2724 static ssize_t manufacturer_id_show(struct device *dev,
2725 				    struct device_attribute *attr,
2726 				    char *buf)
2727 {
2728 	struct bmc_device *bmc = to_bmc_device(dev);
2729 	struct ipmi_device_id id;
2730 	int rv;
2731 
2732 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2733 	if (rv)
2734 		return rv;
2735 
2736 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2737 }
2738 static DEVICE_ATTR_RO(manufacturer_id);
2739 
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2740 static ssize_t product_id_show(struct device *dev,
2741 			       struct device_attribute *attr,
2742 			       char *buf)
2743 {
2744 	struct bmc_device *bmc = to_bmc_device(dev);
2745 	struct ipmi_device_id id;
2746 	int rv;
2747 
2748 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2749 	if (rv)
2750 		return rv;
2751 
2752 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2753 }
2754 static DEVICE_ATTR_RO(product_id);
2755 
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2756 static ssize_t aux_firmware_rev_show(struct device *dev,
2757 				     struct device_attribute *attr,
2758 				     char *buf)
2759 {
2760 	struct bmc_device *bmc = to_bmc_device(dev);
2761 	struct ipmi_device_id id;
2762 	int rv;
2763 
2764 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2765 	if (rv)
2766 		return rv;
2767 
2768 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2769 			id.aux_firmware_revision[3],
2770 			id.aux_firmware_revision[2],
2771 			id.aux_firmware_revision[1],
2772 			id.aux_firmware_revision[0]);
2773 }
2774 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2775 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2776 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2777 			 char *buf)
2778 {
2779 	struct bmc_device *bmc = to_bmc_device(dev);
2780 	bool guid_set;
2781 	guid_t guid;
2782 	int rv;
2783 
2784 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2785 	if (rv)
2786 		return rv;
2787 	if (!guid_set)
2788 		return -ENOENT;
2789 
2790 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2791 }
2792 static DEVICE_ATTR_RO(guid);
2793 
2794 static struct attribute *bmc_dev_attrs[] = {
2795 	&dev_attr_device_id.attr,
2796 	&dev_attr_provides_device_sdrs.attr,
2797 	&dev_attr_revision.attr,
2798 	&dev_attr_firmware_revision.attr,
2799 	&dev_attr_ipmi_version.attr,
2800 	&dev_attr_additional_device_support.attr,
2801 	&dev_attr_manufacturer_id.attr,
2802 	&dev_attr_product_id.attr,
2803 	&dev_attr_aux_firmware_revision.attr,
2804 	&dev_attr_guid.attr,
2805 	NULL
2806 };
2807 
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2808 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2809 				       struct attribute *attr, int idx)
2810 {
2811 	struct device *dev = kobj_to_dev(kobj);
2812 	struct bmc_device *bmc = to_bmc_device(dev);
2813 	umode_t mode = attr->mode;
2814 	int rv;
2815 
2816 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2817 		struct ipmi_device_id id;
2818 
2819 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2820 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2821 	}
2822 	if (attr == &dev_attr_guid.attr) {
2823 		bool guid_set;
2824 
2825 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2826 		return (!rv && guid_set) ? mode : 0;
2827 	}
2828 	return mode;
2829 }
2830 
2831 static const struct attribute_group bmc_dev_attr_group = {
2832 	.attrs		= bmc_dev_attrs,
2833 	.is_visible	= bmc_dev_attr_is_visible,
2834 };
2835 
2836 static const struct attribute_group *bmc_dev_attr_groups[] = {
2837 	&bmc_dev_attr_group,
2838 	NULL
2839 };
2840 
2841 static const struct device_type bmc_device_type = {
2842 	.groups		= bmc_dev_attr_groups,
2843 };
2844 
__find_bmc_guid(struct device * dev,const void * data)2845 static int __find_bmc_guid(struct device *dev, const void *data)
2846 {
2847 	const guid_t *guid = data;
2848 	struct bmc_device *bmc;
2849 	int rv;
2850 
2851 	if (dev->type != &bmc_device_type)
2852 		return 0;
2853 
2854 	bmc = to_bmc_device(dev);
2855 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2856 	if (rv)
2857 		rv = kref_get_unless_zero(&bmc->usecount);
2858 	return rv;
2859 }
2860 
2861 /*
2862  * Returns with the bmc's usecount incremented, if it is non-NULL.
2863  */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2864 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2865 					     guid_t *guid)
2866 {
2867 	struct device *dev;
2868 	struct bmc_device *bmc = NULL;
2869 
2870 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2871 	if (dev) {
2872 		bmc = to_bmc_device(dev);
2873 		put_device(dev);
2874 	}
2875 	return bmc;
2876 }
2877 
2878 struct prod_dev_id {
2879 	unsigned int  product_id;
2880 	unsigned char device_id;
2881 };
2882 
__find_bmc_prod_dev_id(struct device * dev,const void * data)2883 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2884 {
2885 	const struct prod_dev_id *cid = data;
2886 	struct bmc_device *bmc;
2887 	int rv;
2888 
2889 	if (dev->type != &bmc_device_type)
2890 		return 0;
2891 
2892 	bmc = to_bmc_device(dev);
2893 	rv = (bmc->id.product_id == cid->product_id
2894 	      && bmc->id.device_id == cid->device_id);
2895 	if (rv)
2896 		rv = kref_get_unless_zero(&bmc->usecount);
2897 	return rv;
2898 }
2899 
2900 /*
2901  * Returns with the bmc's usecount incremented, if it is non-NULL.
2902  */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2903 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2904 	struct device_driver *drv,
2905 	unsigned int product_id, unsigned char device_id)
2906 {
2907 	struct prod_dev_id id = {
2908 		.product_id = product_id,
2909 		.device_id = device_id,
2910 	};
2911 	struct device *dev;
2912 	struct bmc_device *bmc = NULL;
2913 
2914 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2915 	if (dev) {
2916 		bmc = to_bmc_device(dev);
2917 		put_device(dev);
2918 	}
2919 	return bmc;
2920 }
2921 
2922 static DEFINE_IDA(ipmi_bmc_ida);
2923 
2924 static void
release_bmc_device(struct device * dev)2925 release_bmc_device(struct device *dev)
2926 {
2927 	kfree(to_bmc_device(dev));
2928 }
2929 
cleanup_bmc_work(struct work_struct * work)2930 static void cleanup_bmc_work(struct work_struct *work)
2931 {
2932 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2933 					      remove_work);
2934 	int id = bmc->pdev.id; /* Unregister overwrites id */
2935 
2936 	platform_device_unregister(&bmc->pdev);
2937 	ida_simple_remove(&ipmi_bmc_ida, id);
2938 }
2939 
2940 static void
cleanup_bmc_device(struct kref * ref)2941 cleanup_bmc_device(struct kref *ref)
2942 {
2943 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2944 
2945 	/*
2946 	 * Remove the platform device in a work queue to avoid issues
2947 	 * with removing the device attributes while reading a device
2948 	 * attribute.
2949 	 */
2950 	queue_work(remove_work_wq, &bmc->remove_work);
2951 }
2952 
2953 /*
2954  * Must be called with intf->bmc_reg_mutex held.
2955  */
__ipmi_bmc_unregister(struct ipmi_smi * intf)2956 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2957 {
2958 	struct bmc_device *bmc = intf->bmc;
2959 
2960 	if (!intf->bmc_registered)
2961 		return;
2962 
2963 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2964 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2965 	kfree(intf->my_dev_name);
2966 	intf->my_dev_name = NULL;
2967 
2968 	mutex_lock(&bmc->dyn_mutex);
2969 	list_del(&intf->bmc_link);
2970 	mutex_unlock(&bmc->dyn_mutex);
2971 	intf->bmc = &intf->tmp_bmc;
2972 	kref_put(&bmc->usecount, cleanup_bmc_device);
2973 	intf->bmc_registered = false;
2974 }
2975 
ipmi_bmc_unregister(struct ipmi_smi * intf)2976 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2977 {
2978 	mutex_lock(&intf->bmc_reg_mutex);
2979 	__ipmi_bmc_unregister(intf);
2980 	mutex_unlock(&intf->bmc_reg_mutex);
2981 }
2982 
2983 /*
2984  * Must be called with intf->bmc_reg_mutex held.
2985  */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)2986 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2987 			       struct ipmi_device_id *id,
2988 			       bool guid_set, guid_t *guid, int intf_num)
2989 {
2990 	int               rv;
2991 	struct bmc_device *bmc;
2992 	struct bmc_device *old_bmc;
2993 
2994 	/*
2995 	 * platform_device_register() can cause bmc_reg_mutex to
2996 	 * be claimed because of the is_visible functions of
2997 	 * the attributes.  Eliminate possible recursion and
2998 	 * release the lock.
2999 	 */
3000 	intf->in_bmc_register = true;
3001 	mutex_unlock(&intf->bmc_reg_mutex);
3002 
3003 	/*
3004 	 * Try to find if there is an bmc_device struct
3005 	 * representing the interfaced BMC already
3006 	 */
3007 	mutex_lock(&ipmidriver_mutex);
3008 	if (guid_set)
3009 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3010 	else
3011 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3012 						    id->product_id,
3013 						    id->device_id);
3014 
3015 	/*
3016 	 * If there is already an bmc_device, free the new one,
3017 	 * otherwise register the new BMC device
3018 	 */
3019 	if (old_bmc) {
3020 		bmc = old_bmc;
3021 		/*
3022 		 * Note: old_bmc already has usecount incremented by
3023 		 * the BMC find functions.
3024 		 */
3025 		intf->bmc = old_bmc;
3026 		mutex_lock(&bmc->dyn_mutex);
3027 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3028 		mutex_unlock(&bmc->dyn_mutex);
3029 
3030 		dev_info(intf->si_dev,
3031 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3032 			 bmc->id.manufacturer_id,
3033 			 bmc->id.product_id,
3034 			 bmc->id.device_id);
3035 	} else {
3036 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3037 		if (!bmc) {
3038 			rv = -ENOMEM;
3039 			goto out;
3040 		}
3041 		INIT_LIST_HEAD(&bmc->intfs);
3042 		mutex_init(&bmc->dyn_mutex);
3043 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3044 
3045 		bmc->id = *id;
3046 		bmc->dyn_id_set = 1;
3047 		bmc->dyn_guid_set = guid_set;
3048 		bmc->guid = *guid;
3049 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3050 
3051 		bmc->pdev.name = "ipmi_bmc";
3052 
3053 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3054 		if (rv < 0) {
3055 			kfree(bmc);
3056 			goto out;
3057 		}
3058 
3059 		bmc->pdev.dev.driver = &ipmidriver.driver;
3060 		bmc->pdev.id = rv;
3061 		bmc->pdev.dev.release = release_bmc_device;
3062 		bmc->pdev.dev.type = &bmc_device_type;
3063 		kref_init(&bmc->usecount);
3064 
3065 		intf->bmc = bmc;
3066 		mutex_lock(&bmc->dyn_mutex);
3067 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3068 		mutex_unlock(&bmc->dyn_mutex);
3069 
3070 		rv = platform_device_register(&bmc->pdev);
3071 		if (rv) {
3072 			dev_err(intf->si_dev,
3073 				"Unable to register bmc device: %d\n",
3074 				rv);
3075 			goto out_list_del;
3076 		}
3077 
3078 		dev_info(intf->si_dev,
3079 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3080 			 bmc->id.manufacturer_id,
3081 			 bmc->id.product_id,
3082 			 bmc->id.device_id);
3083 	}
3084 
3085 	/*
3086 	 * create symlink from system interface device to bmc device
3087 	 * and back.
3088 	 */
3089 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3090 	if (rv) {
3091 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3092 		goto out_put_bmc;
3093 	}
3094 
3095 	if (intf_num == -1)
3096 		intf_num = intf->intf_num;
3097 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3098 	if (!intf->my_dev_name) {
3099 		rv = -ENOMEM;
3100 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3101 			rv);
3102 		goto out_unlink1;
3103 	}
3104 
3105 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3106 			       intf->my_dev_name);
3107 	if (rv) {
3108 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3109 			rv);
3110 		goto out_free_my_dev_name;
3111 	}
3112 
3113 	intf->bmc_registered = true;
3114 
3115 out:
3116 	mutex_unlock(&ipmidriver_mutex);
3117 	mutex_lock(&intf->bmc_reg_mutex);
3118 	intf->in_bmc_register = false;
3119 	return rv;
3120 
3121 
3122 out_free_my_dev_name:
3123 	kfree(intf->my_dev_name);
3124 	intf->my_dev_name = NULL;
3125 
3126 out_unlink1:
3127 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3128 
3129 out_put_bmc:
3130 	mutex_lock(&bmc->dyn_mutex);
3131 	list_del(&intf->bmc_link);
3132 	mutex_unlock(&bmc->dyn_mutex);
3133 	intf->bmc = &intf->tmp_bmc;
3134 	kref_put(&bmc->usecount, cleanup_bmc_device);
3135 	goto out;
3136 
3137 out_list_del:
3138 	mutex_lock(&bmc->dyn_mutex);
3139 	list_del(&intf->bmc_link);
3140 	mutex_unlock(&bmc->dyn_mutex);
3141 	intf->bmc = &intf->tmp_bmc;
3142 	put_device(&bmc->pdev.dev);
3143 	goto out;
3144 }
3145 
3146 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3147 send_guid_cmd(struct ipmi_smi *intf, int chan)
3148 {
3149 	struct kernel_ipmi_msg            msg;
3150 	struct ipmi_system_interface_addr si;
3151 
3152 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3153 	si.channel = IPMI_BMC_CHANNEL;
3154 	si.lun = 0;
3155 
3156 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3157 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3158 	msg.data = NULL;
3159 	msg.data_len = 0;
3160 	return i_ipmi_request(NULL,
3161 			      intf,
3162 			      (struct ipmi_addr *) &si,
3163 			      0,
3164 			      &msg,
3165 			      intf,
3166 			      NULL,
3167 			      NULL,
3168 			      0,
3169 			      intf->addrinfo[0].address,
3170 			      intf->addrinfo[0].lun,
3171 			      -1, 0);
3172 }
3173 
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3174 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3175 {
3176 	struct bmc_device *bmc = intf->bmc;
3177 
3178 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3179 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3180 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3181 		/* Not for me */
3182 		return;
3183 
3184 	if (msg->msg.data[0] != 0) {
3185 		/* Error from getting the GUID, the BMC doesn't have one. */
3186 		bmc->dyn_guid_set = 0;
3187 		goto out;
3188 	}
3189 
3190 	if (msg->msg.data_len < UUID_SIZE + 1) {
3191 		bmc->dyn_guid_set = 0;
3192 		dev_warn(intf->si_dev,
3193 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3194 			 msg->msg.data_len, UUID_SIZE + 1);
3195 		goto out;
3196 	}
3197 
3198 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3199 	/*
3200 	 * Make sure the guid data is available before setting
3201 	 * dyn_guid_set.
3202 	 */
3203 	smp_wmb();
3204 	bmc->dyn_guid_set = 1;
3205  out:
3206 	wake_up(&intf->waitq);
3207 }
3208 
__get_guid(struct ipmi_smi * intf)3209 static void __get_guid(struct ipmi_smi *intf)
3210 {
3211 	int rv;
3212 	struct bmc_device *bmc = intf->bmc;
3213 
3214 	bmc->dyn_guid_set = 2;
3215 	intf->null_user_handler = guid_handler;
3216 	rv = send_guid_cmd(intf, 0);
3217 	if (rv)
3218 		/* Send failed, no GUID available. */
3219 		bmc->dyn_guid_set = 0;
3220 	else
3221 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3222 
3223 	/* dyn_guid_set makes the guid data available. */
3224 	smp_rmb();
3225 
3226 	intf->null_user_handler = NULL;
3227 }
3228 
3229 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3230 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3231 {
3232 	struct kernel_ipmi_msg            msg;
3233 	unsigned char                     data[1];
3234 	struct ipmi_system_interface_addr si;
3235 
3236 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3237 	si.channel = IPMI_BMC_CHANNEL;
3238 	si.lun = 0;
3239 
3240 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3241 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3242 	msg.data = data;
3243 	msg.data_len = 1;
3244 	data[0] = chan;
3245 	return i_ipmi_request(NULL,
3246 			      intf,
3247 			      (struct ipmi_addr *) &si,
3248 			      0,
3249 			      &msg,
3250 			      intf,
3251 			      NULL,
3252 			      NULL,
3253 			      0,
3254 			      intf->addrinfo[0].address,
3255 			      intf->addrinfo[0].lun,
3256 			      -1, 0);
3257 }
3258 
3259 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3260 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3261 {
3262 	int rv = 0;
3263 	int ch;
3264 	unsigned int set = intf->curr_working_cset;
3265 	struct ipmi_channel *chans;
3266 
3267 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3268 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3269 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3270 		/* It's the one we want */
3271 		if (msg->msg.data[0] != 0) {
3272 			/* Got an error from the channel, just go on. */
3273 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3274 				/*
3275 				 * If the MC does not support this
3276 				 * command, that is legal.  We just
3277 				 * assume it has one IPMB at channel
3278 				 * zero.
3279 				 */
3280 				intf->wchannels[set].c[0].medium
3281 					= IPMI_CHANNEL_MEDIUM_IPMB;
3282 				intf->wchannels[set].c[0].protocol
3283 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3284 
3285 				intf->channel_list = intf->wchannels + set;
3286 				intf->channels_ready = true;
3287 				wake_up(&intf->waitq);
3288 				goto out;
3289 			}
3290 			goto next_channel;
3291 		}
3292 		if (msg->msg.data_len < 4) {
3293 			/* Message not big enough, just go on. */
3294 			goto next_channel;
3295 		}
3296 		ch = intf->curr_channel;
3297 		chans = intf->wchannels[set].c;
3298 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3299 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3300 
3301  next_channel:
3302 		intf->curr_channel++;
3303 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3304 			intf->channel_list = intf->wchannels + set;
3305 			intf->channels_ready = true;
3306 			wake_up(&intf->waitq);
3307 		} else {
3308 			intf->channel_list = intf->wchannels + set;
3309 			intf->channels_ready = true;
3310 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3311 		}
3312 
3313 		if (rv) {
3314 			/* Got an error somehow, just give up. */
3315 			dev_warn(intf->si_dev,
3316 				 "Error sending channel information for channel %d: %d\n",
3317 				 intf->curr_channel, rv);
3318 
3319 			intf->channel_list = intf->wchannels + set;
3320 			intf->channels_ready = true;
3321 			wake_up(&intf->waitq);
3322 		}
3323 	}
3324  out:
3325 	return;
3326 }
3327 
3328 /*
3329  * Must be holding intf->bmc_reg_mutex to call this.
3330  */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3331 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3332 {
3333 	int rv;
3334 
3335 	if (ipmi_version_major(id) > 1
3336 			|| (ipmi_version_major(id) == 1
3337 			    && ipmi_version_minor(id) >= 5)) {
3338 		unsigned int set;
3339 
3340 		/*
3341 		 * Start scanning the channels to see what is
3342 		 * available.
3343 		 */
3344 		set = !intf->curr_working_cset;
3345 		intf->curr_working_cset = set;
3346 		memset(&intf->wchannels[set], 0,
3347 		       sizeof(struct ipmi_channel_set));
3348 
3349 		intf->null_user_handler = channel_handler;
3350 		intf->curr_channel = 0;
3351 		rv = send_channel_info_cmd(intf, 0);
3352 		if (rv) {
3353 			dev_warn(intf->si_dev,
3354 				 "Error sending channel information for channel 0, %d\n",
3355 				 rv);
3356 			intf->null_user_handler = NULL;
3357 			return -EIO;
3358 		}
3359 
3360 		/* Wait for the channel info to be read. */
3361 		wait_event(intf->waitq, intf->channels_ready);
3362 		intf->null_user_handler = NULL;
3363 	} else {
3364 		unsigned int set = intf->curr_working_cset;
3365 
3366 		/* Assume a single IPMB channel at zero. */
3367 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3368 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3369 		intf->channel_list = intf->wchannels + set;
3370 		intf->channels_ready = true;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
ipmi_poll(struct ipmi_smi * intf)3376 static void ipmi_poll(struct ipmi_smi *intf)
3377 {
3378 	if (intf->handlers->poll)
3379 		intf->handlers->poll(intf->send_info);
3380 	/* In case something came in */
3381 	handle_new_recv_msgs(intf);
3382 }
3383 
ipmi_poll_interface(struct ipmi_user * user)3384 void ipmi_poll_interface(struct ipmi_user *user)
3385 {
3386 	ipmi_poll(user->intf);
3387 }
3388 EXPORT_SYMBOL(ipmi_poll_interface);
3389 
redo_bmc_reg(struct work_struct * work)3390 static void redo_bmc_reg(struct work_struct *work)
3391 {
3392 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3393 					     bmc_reg_work);
3394 
3395 	if (!intf->in_shutdown)
3396 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3397 
3398 	kref_put(&intf->refcount, intf_free);
3399 }
3400 
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3401 int ipmi_add_smi(struct module         *owner,
3402 		 const struct ipmi_smi_handlers *handlers,
3403 		 void		       *send_info,
3404 		 struct device         *si_dev,
3405 		 unsigned char         slave_addr)
3406 {
3407 	int              i, j;
3408 	int              rv;
3409 	struct ipmi_smi *intf, *tintf;
3410 	struct list_head *link;
3411 	struct ipmi_device_id id;
3412 
3413 	/*
3414 	 * Make sure the driver is actually initialized, this handles
3415 	 * problems with initialization order.
3416 	 */
3417 	rv = ipmi_init_msghandler();
3418 	if (rv)
3419 		return rv;
3420 
3421 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3422 	if (!intf)
3423 		return -ENOMEM;
3424 
3425 	rv = init_srcu_struct(&intf->users_srcu);
3426 	if (rv) {
3427 		kfree(intf);
3428 		return rv;
3429 	}
3430 
3431 	intf->owner = owner;
3432 	intf->bmc = &intf->tmp_bmc;
3433 	INIT_LIST_HEAD(&intf->bmc->intfs);
3434 	mutex_init(&intf->bmc->dyn_mutex);
3435 	INIT_LIST_HEAD(&intf->bmc_link);
3436 	mutex_init(&intf->bmc_reg_mutex);
3437 	intf->intf_num = -1; /* Mark it invalid for now. */
3438 	kref_init(&intf->refcount);
3439 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3440 	intf->si_dev = si_dev;
3441 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3442 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3443 		intf->addrinfo[j].lun = 2;
3444 	}
3445 	if (slave_addr != 0)
3446 		intf->addrinfo[0].address = slave_addr;
3447 	INIT_LIST_HEAD(&intf->users);
3448 	intf->handlers = handlers;
3449 	intf->send_info = send_info;
3450 	spin_lock_init(&intf->seq_lock);
3451 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3452 		intf->seq_table[j].inuse = 0;
3453 		intf->seq_table[j].seqid = 0;
3454 	}
3455 	intf->curr_seq = 0;
3456 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3457 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3458 	tasklet_setup(&intf->recv_tasklet,
3459 		     smi_recv_tasklet);
3460 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3461 	spin_lock_init(&intf->xmit_msgs_lock);
3462 	INIT_LIST_HEAD(&intf->xmit_msgs);
3463 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3464 	spin_lock_init(&intf->events_lock);
3465 	spin_lock_init(&intf->watch_lock);
3466 	atomic_set(&intf->event_waiters, 0);
3467 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3468 	INIT_LIST_HEAD(&intf->waiting_events);
3469 	intf->waiting_events_count = 0;
3470 	mutex_init(&intf->cmd_rcvrs_mutex);
3471 	spin_lock_init(&intf->maintenance_mode_lock);
3472 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3473 	init_waitqueue_head(&intf->waitq);
3474 	for (i = 0; i < IPMI_NUM_STATS; i++)
3475 		atomic_set(&intf->stats[i], 0);
3476 
3477 	mutex_lock(&ipmi_interfaces_mutex);
3478 	/* Look for a hole in the numbers. */
3479 	i = 0;
3480 	link = &ipmi_interfaces;
3481 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3482 				ipmi_interfaces_mutex_held()) {
3483 		if (tintf->intf_num != i) {
3484 			link = &tintf->link;
3485 			break;
3486 		}
3487 		i++;
3488 	}
3489 	/* Add the new interface in numeric order. */
3490 	if (i == 0)
3491 		list_add_rcu(&intf->link, &ipmi_interfaces);
3492 	else
3493 		list_add_tail_rcu(&intf->link, link);
3494 
3495 	rv = handlers->start_processing(send_info, intf);
3496 	if (rv)
3497 		goto out_err;
3498 
3499 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3500 	if (rv) {
3501 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3502 		goto out_err_started;
3503 	}
3504 
3505 	mutex_lock(&intf->bmc_reg_mutex);
3506 	rv = __scan_channels(intf, &id);
3507 	mutex_unlock(&intf->bmc_reg_mutex);
3508 	if (rv)
3509 		goto out_err_bmc_reg;
3510 
3511 	/*
3512 	 * Keep memory order straight for RCU readers.  Make
3513 	 * sure everything else is committed to memory before
3514 	 * setting intf_num to mark the interface valid.
3515 	 */
3516 	smp_wmb();
3517 	intf->intf_num = i;
3518 	mutex_unlock(&ipmi_interfaces_mutex);
3519 
3520 	/* After this point the interface is legal to use. */
3521 	call_smi_watchers(i, intf->si_dev);
3522 
3523 	return 0;
3524 
3525  out_err_bmc_reg:
3526 	ipmi_bmc_unregister(intf);
3527  out_err_started:
3528 	if (intf->handlers->shutdown)
3529 		intf->handlers->shutdown(intf->send_info);
3530  out_err:
3531 	list_del_rcu(&intf->link);
3532 	mutex_unlock(&ipmi_interfaces_mutex);
3533 	synchronize_srcu(&ipmi_interfaces_srcu);
3534 	cleanup_srcu_struct(&intf->users_srcu);
3535 	kref_put(&intf->refcount, intf_free);
3536 
3537 	return rv;
3538 }
3539 EXPORT_SYMBOL(ipmi_add_smi);
3540 
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3541 static void deliver_smi_err_response(struct ipmi_smi *intf,
3542 				     struct ipmi_smi_msg *msg,
3543 				     unsigned char err)
3544 {
3545 	int rv;
3546 	msg->rsp[0] = msg->data[0] | 4;
3547 	msg->rsp[1] = msg->data[1];
3548 	msg->rsp[2] = err;
3549 	msg->rsp_size = 3;
3550 
3551 	/* This will never requeue, but it may ask us to free the message. */
3552 	rv = handle_one_recv_msg(intf, msg);
3553 	if (rv == 0)
3554 		ipmi_free_smi_msg(msg);
3555 }
3556 
cleanup_smi_msgs(struct ipmi_smi * intf)3557 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3558 {
3559 	int              i;
3560 	struct seq_table *ent;
3561 	struct ipmi_smi_msg *msg;
3562 	struct list_head *entry;
3563 	struct list_head tmplist;
3564 
3565 	/* Clear out our transmit queues and hold the messages. */
3566 	INIT_LIST_HEAD(&tmplist);
3567 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3568 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3569 
3570 	/* Current message first, to preserve order */
3571 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3572 		/* Wait for the message to clear out. */
3573 		schedule_timeout(1);
3574 	}
3575 
3576 	/* No need for locks, the interface is down. */
3577 
3578 	/*
3579 	 * Return errors for all pending messages in queue and in the
3580 	 * tables waiting for remote responses.
3581 	 */
3582 	while (!list_empty(&tmplist)) {
3583 		entry = tmplist.next;
3584 		list_del(entry);
3585 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3586 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3587 	}
3588 
3589 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3590 		ent = &intf->seq_table[i];
3591 		if (!ent->inuse)
3592 			continue;
3593 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3594 	}
3595 }
3596 
ipmi_unregister_smi(struct ipmi_smi * intf)3597 void ipmi_unregister_smi(struct ipmi_smi *intf)
3598 {
3599 	struct ipmi_smi_watcher *w;
3600 	int intf_num = intf->intf_num, index;
3601 
3602 	mutex_lock(&ipmi_interfaces_mutex);
3603 	intf->intf_num = -1;
3604 	intf->in_shutdown = true;
3605 	list_del_rcu(&intf->link);
3606 	mutex_unlock(&ipmi_interfaces_mutex);
3607 	synchronize_srcu(&ipmi_interfaces_srcu);
3608 
3609 	/* At this point no users can be added to the interface. */
3610 
3611 	/*
3612 	 * Call all the watcher interfaces to tell them that
3613 	 * an interface is going away.
3614 	 */
3615 	mutex_lock(&smi_watchers_mutex);
3616 	list_for_each_entry(w, &smi_watchers, link)
3617 		w->smi_gone(intf_num);
3618 	mutex_unlock(&smi_watchers_mutex);
3619 
3620 	index = srcu_read_lock(&intf->users_srcu);
3621 	while (!list_empty(&intf->users)) {
3622 		struct ipmi_user *user =
3623 			container_of(list_next_rcu(&intf->users),
3624 				     struct ipmi_user, link);
3625 
3626 		_ipmi_destroy_user(user);
3627 	}
3628 	srcu_read_unlock(&intf->users_srcu, index);
3629 
3630 	if (intf->handlers->shutdown)
3631 		intf->handlers->shutdown(intf->send_info);
3632 
3633 	cleanup_smi_msgs(intf);
3634 
3635 	ipmi_bmc_unregister(intf);
3636 
3637 	cleanup_srcu_struct(&intf->users_srcu);
3638 	kref_put(&intf->refcount, intf_free);
3639 }
3640 EXPORT_SYMBOL(ipmi_unregister_smi);
3641 
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3642 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3643 				   struct ipmi_smi_msg *msg)
3644 {
3645 	struct ipmi_ipmb_addr ipmb_addr;
3646 	struct ipmi_recv_msg  *recv_msg;
3647 
3648 	/*
3649 	 * This is 11, not 10, because the response must contain a
3650 	 * completion code.
3651 	 */
3652 	if (msg->rsp_size < 11) {
3653 		/* Message not big enough, just ignore it. */
3654 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3655 		return 0;
3656 	}
3657 
3658 	if (msg->rsp[2] != 0) {
3659 		/* An error getting the response, just ignore it. */
3660 		return 0;
3661 	}
3662 
3663 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3664 	ipmb_addr.slave_addr = msg->rsp[6];
3665 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3666 	ipmb_addr.lun = msg->rsp[7] & 3;
3667 
3668 	/*
3669 	 * It's a response from a remote entity.  Look up the sequence
3670 	 * number and handle the response.
3671 	 */
3672 	if (intf_find_seq(intf,
3673 			  msg->rsp[7] >> 2,
3674 			  msg->rsp[3] & 0x0f,
3675 			  msg->rsp[8],
3676 			  (msg->rsp[4] >> 2) & (~1),
3677 			  (struct ipmi_addr *) &ipmb_addr,
3678 			  &recv_msg)) {
3679 		/*
3680 		 * We were unable to find the sequence number,
3681 		 * so just nuke the message.
3682 		 */
3683 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3684 		return 0;
3685 	}
3686 
3687 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3688 	/*
3689 	 * The other fields matched, so no need to set them, except
3690 	 * for netfn, which needs to be the response that was
3691 	 * returned, not the request value.
3692 	 */
3693 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3694 	recv_msg->msg.data = recv_msg->msg_data;
3695 	recv_msg->msg.data_len = msg->rsp_size - 10;
3696 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3697 	if (deliver_response(intf, recv_msg))
3698 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3699 	else
3700 		ipmi_inc_stat(intf, handled_ipmb_responses);
3701 
3702 	return 0;
3703 }
3704 
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3705 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3706 				   struct ipmi_smi_msg *msg)
3707 {
3708 	struct cmd_rcvr          *rcvr;
3709 	int                      rv = 0;
3710 	unsigned char            netfn;
3711 	unsigned char            cmd;
3712 	unsigned char            chan;
3713 	struct ipmi_user         *user = NULL;
3714 	struct ipmi_ipmb_addr    *ipmb_addr;
3715 	struct ipmi_recv_msg     *recv_msg;
3716 
3717 	if (msg->rsp_size < 10) {
3718 		/* Message not big enough, just ignore it. */
3719 		ipmi_inc_stat(intf, invalid_commands);
3720 		return 0;
3721 	}
3722 
3723 	if (msg->rsp[2] != 0) {
3724 		/* An error getting the response, just ignore it. */
3725 		return 0;
3726 	}
3727 
3728 	netfn = msg->rsp[4] >> 2;
3729 	cmd = msg->rsp[8];
3730 	chan = msg->rsp[3] & 0xf;
3731 
3732 	rcu_read_lock();
3733 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3734 	if (rcvr) {
3735 		user = rcvr->user;
3736 		kref_get(&user->refcount);
3737 	} else
3738 		user = NULL;
3739 	rcu_read_unlock();
3740 
3741 	if (user == NULL) {
3742 		/* We didn't find a user, deliver an error response. */
3743 		ipmi_inc_stat(intf, unhandled_commands);
3744 
3745 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3746 		msg->data[1] = IPMI_SEND_MSG_CMD;
3747 		msg->data[2] = msg->rsp[3];
3748 		msg->data[3] = msg->rsp[6];
3749 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3750 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3751 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3752 		/* rqseq/lun */
3753 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3754 		msg->data[8] = msg->rsp[8]; /* cmd */
3755 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3756 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3757 		msg->data_size = 11;
3758 
3759 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3760 
3761 		rcu_read_lock();
3762 		if (!intf->in_shutdown) {
3763 			smi_send(intf, intf->handlers, msg, 0);
3764 			/*
3765 			 * We used the message, so return the value
3766 			 * that causes it to not be freed or
3767 			 * queued.
3768 			 */
3769 			rv = -1;
3770 		}
3771 		rcu_read_unlock();
3772 	} else {
3773 		recv_msg = ipmi_alloc_recv_msg();
3774 		if (!recv_msg) {
3775 			/*
3776 			 * We couldn't allocate memory for the
3777 			 * message, so requeue it for handling
3778 			 * later.
3779 			 */
3780 			rv = 1;
3781 			kref_put(&user->refcount, free_user);
3782 		} else {
3783 			/* Extract the source address from the data. */
3784 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3785 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3786 			ipmb_addr->slave_addr = msg->rsp[6];
3787 			ipmb_addr->lun = msg->rsp[7] & 3;
3788 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3789 
3790 			/*
3791 			 * Extract the rest of the message information
3792 			 * from the IPMB header.
3793 			 */
3794 			recv_msg->user = user;
3795 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3796 			recv_msg->msgid = msg->rsp[7] >> 2;
3797 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3798 			recv_msg->msg.cmd = msg->rsp[8];
3799 			recv_msg->msg.data = recv_msg->msg_data;
3800 
3801 			/*
3802 			 * We chop off 10, not 9 bytes because the checksum
3803 			 * at the end also needs to be removed.
3804 			 */
3805 			recv_msg->msg.data_len = msg->rsp_size - 10;
3806 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3807 			       msg->rsp_size - 10);
3808 			if (deliver_response(intf, recv_msg))
3809 				ipmi_inc_stat(intf, unhandled_commands);
3810 			else
3811 				ipmi_inc_stat(intf, handled_commands);
3812 		}
3813 	}
3814 
3815 	return rv;
3816 }
3817 
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3818 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3819 				  struct ipmi_smi_msg *msg)
3820 {
3821 	struct ipmi_lan_addr  lan_addr;
3822 	struct ipmi_recv_msg  *recv_msg;
3823 
3824 
3825 	/*
3826 	 * This is 13, not 12, because the response must contain a
3827 	 * completion code.
3828 	 */
3829 	if (msg->rsp_size < 13) {
3830 		/* Message not big enough, just ignore it. */
3831 		ipmi_inc_stat(intf, invalid_lan_responses);
3832 		return 0;
3833 	}
3834 
3835 	if (msg->rsp[2] != 0) {
3836 		/* An error getting the response, just ignore it. */
3837 		return 0;
3838 	}
3839 
3840 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3841 	lan_addr.session_handle = msg->rsp[4];
3842 	lan_addr.remote_SWID = msg->rsp[8];
3843 	lan_addr.local_SWID = msg->rsp[5];
3844 	lan_addr.channel = msg->rsp[3] & 0x0f;
3845 	lan_addr.privilege = msg->rsp[3] >> 4;
3846 	lan_addr.lun = msg->rsp[9] & 3;
3847 
3848 	/*
3849 	 * It's a response from a remote entity.  Look up the sequence
3850 	 * number and handle the response.
3851 	 */
3852 	if (intf_find_seq(intf,
3853 			  msg->rsp[9] >> 2,
3854 			  msg->rsp[3] & 0x0f,
3855 			  msg->rsp[10],
3856 			  (msg->rsp[6] >> 2) & (~1),
3857 			  (struct ipmi_addr *) &lan_addr,
3858 			  &recv_msg)) {
3859 		/*
3860 		 * We were unable to find the sequence number,
3861 		 * so just nuke the message.
3862 		 */
3863 		ipmi_inc_stat(intf, unhandled_lan_responses);
3864 		return 0;
3865 	}
3866 
3867 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3868 	/*
3869 	 * The other fields matched, so no need to set them, except
3870 	 * for netfn, which needs to be the response that was
3871 	 * returned, not the request value.
3872 	 */
3873 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3874 	recv_msg->msg.data = recv_msg->msg_data;
3875 	recv_msg->msg.data_len = msg->rsp_size - 12;
3876 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3877 	if (deliver_response(intf, recv_msg))
3878 		ipmi_inc_stat(intf, unhandled_lan_responses);
3879 	else
3880 		ipmi_inc_stat(intf, handled_lan_responses);
3881 
3882 	return 0;
3883 }
3884 
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3885 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3886 				  struct ipmi_smi_msg *msg)
3887 {
3888 	struct cmd_rcvr          *rcvr;
3889 	int                      rv = 0;
3890 	unsigned char            netfn;
3891 	unsigned char            cmd;
3892 	unsigned char            chan;
3893 	struct ipmi_user         *user = NULL;
3894 	struct ipmi_lan_addr     *lan_addr;
3895 	struct ipmi_recv_msg     *recv_msg;
3896 
3897 	if (msg->rsp_size < 12) {
3898 		/* Message not big enough, just ignore it. */
3899 		ipmi_inc_stat(intf, invalid_commands);
3900 		return 0;
3901 	}
3902 
3903 	if (msg->rsp[2] != 0) {
3904 		/* An error getting the response, just ignore it. */
3905 		return 0;
3906 	}
3907 
3908 	netfn = msg->rsp[6] >> 2;
3909 	cmd = msg->rsp[10];
3910 	chan = msg->rsp[3] & 0xf;
3911 
3912 	rcu_read_lock();
3913 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3914 	if (rcvr) {
3915 		user = rcvr->user;
3916 		kref_get(&user->refcount);
3917 	} else
3918 		user = NULL;
3919 	rcu_read_unlock();
3920 
3921 	if (user == NULL) {
3922 		/* We didn't find a user, just give up. */
3923 		ipmi_inc_stat(intf, unhandled_commands);
3924 
3925 		/*
3926 		 * Don't do anything with these messages, just allow
3927 		 * them to be freed.
3928 		 */
3929 		rv = 0;
3930 	} else {
3931 		recv_msg = ipmi_alloc_recv_msg();
3932 		if (!recv_msg) {
3933 			/*
3934 			 * We couldn't allocate memory for the
3935 			 * message, so requeue it for handling later.
3936 			 */
3937 			rv = 1;
3938 			kref_put(&user->refcount, free_user);
3939 		} else {
3940 			/* Extract the source address from the data. */
3941 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3942 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3943 			lan_addr->session_handle = msg->rsp[4];
3944 			lan_addr->remote_SWID = msg->rsp[8];
3945 			lan_addr->local_SWID = msg->rsp[5];
3946 			lan_addr->lun = msg->rsp[9] & 3;
3947 			lan_addr->channel = msg->rsp[3] & 0xf;
3948 			lan_addr->privilege = msg->rsp[3] >> 4;
3949 
3950 			/*
3951 			 * Extract the rest of the message information
3952 			 * from the IPMB header.
3953 			 */
3954 			recv_msg->user = user;
3955 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3956 			recv_msg->msgid = msg->rsp[9] >> 2;
3957 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3958 			recv_msg->msg.cmd = msg->rsp[10];
3959 			recv_msg->msg.data = recv_msg->msg_data;
3960 
3961 			/*
3962 			 * We chop off 12, not 11 bytes because the checksum
3963 			 * at the end also needs to be removed.
3964 			 */
3965 			recv_msg->msg.data_len = msg->rsp_size - 12;
3966 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3967 			       msg->rsp_size - 12);
3968 			if (deliver_response(intf, recv_msg))
3969 				ipmi_inc_stat(intf, unhandled_commands);
3970 			else
3971 				ipmi_inc_stat(intf, handled_commands);
3972 		}
3973 	}
3974 
3975 	return rv;
3976 }
3977 
3978 /*
3979  * This routine will handle "Get Message" command responses with
3980  * channels that use an OEM Medium. The message format belongs to
3981  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3982  * Chapter 22, sections 22.6 and 22.24 for more details.
3983  */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3984 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3985 				  struct ipmi_smi_msg *msg)
3986 {
3987 	struct cmd_rcvr       *rcvr;
3988 	int                   rv = 0;
3989 	unsigned char         netfn;
3990 	unsigned char         cmd;
3991 	unsigned char         chan;
3992 	struct ipmi_user *user = NULL;
3993 	struct ipmi_system_interface_addr *smi_addr;
3994 	struct ipmi_recv_msg  *recv_msg;
3995 
3996 	/*
3997 	 * We expect the OEM SW to perform error checking
3998 	 * so we just do some basic sanity checks
3999 	 */
4000 	if (msg->rsp_size < 4) {
4001 		/* Message not big enough, just ignore it. */
4002 		ipmi_inc_stat(intf, invalid_commands);
4003 		return 0;
4004 	}
4005 
4006 	if (msg->rsp[2] != 0) {
4007 		/* An error getting the response, just ignore it. */
4008 		return 0;
4009 	}
4010 
4011 	/*
4012 	 * This is an OEM Message so the OEM needs to know how
4013 	 * handle the message. We do no interpretation.
4014 	 */
4015 	netfn = msg->rsp[0] >> 2;
4016 	cmd = msg->rsp[1];
4017 	chan = msg->rsp[3] & 0xf;
4018 
4019 	rcu_read_lock();
4020 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4021 	if (rcvr) {
4022 		user = rcvr->user;
4023 		kref_get(&user->refcount);
4024 	} else
4025 		user = NULL;
4026 	rcu_read_unlock();
4027 
4028 	if (user == NULL) {
4029 		/* We didn't find a user, just give up. */
4030 		ipmi_inc_stat(intf, unhandled_commands);
4031 
4032 		/*
4033 		 * Don't do anything with these messages, just allow
4034 		 * them to be freed.
4035 		 */
4036 
4037 		rv = 0;
4038 	} else {
4039 		recv_msg = ipmi_alloc_recv_msg();
4040 		if (!recv_msg) {
4041 			/*
4042 			 * We couldn't allocate memory for the
4043 			 * message, so requeue it for handling
4044 			 * later.
4045 			 */
4046 			rv = 1;
4047 			kref_put(&user->refcount, free_user);
4048 		} else {
4049 			/*
4050 			 * OEM Messages are expected to be delivered via
4051 			 * the system interface to SMS software.  We might
4052 			 * need to visit this again depending on OEM
4053 			 * requirements
4054 			 */
4055 			smi_addr = ((struct ipmi_system_interface_addr *)
4056 				    &recv_msg->addr);
4057 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4058 			smi_addr->channel = IPMI_BMC_CHANNEL;
4059 			smi_addr->lun = msg->rsp[0] & 3;
4060 
4061 			recv_msg->user = user;
4062 			recv_msg->user_msg_data = NULL;
4063 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4064 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4065 			recv_msg->msg.cmd = msg->rsp[1];
4066 			recv_msg->msg.data = recv_msg->msg_data;
4067 
4068 			/*
4069 			 * The message starts at byte 4 which follows the
4070 			 * the Channel Byte in the "GET MESSAGE" command
4071 			 */
4072 			recv_msg->msg.data_len = msg->rsp_size - 4;
4073 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4074 			       msg->rsp_size - 4);
4075 			if (deliver_response(intf, recv_msg))
4076 				ipmi_inc_stat(intf, unhandled_commands);
4077 			else
4078 				ipmi_inc_stat(intf, handled_commands);
4079 		}
4080 	}
4081 
4082 	return rv;
4083 }
4084 
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4085 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4086 				     struct ipmi_smi_msg  *msg)
4087 {
4088 	struct ipmi_system_interface_addr *smi_addr;
4089 
4090 	recv_msg->msgid = 0;
4091 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4092 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4093 	smi_addr->channel = IPMI_BMC_CHANNEL;
4094 	smi_addr->lun = msg->rsp[0] & 3;
4095 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4096 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4097 	recv_msg->msg.cmd = msg->rsp[1];
4098 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4099 	recv_msg->msg.data = recv_msg->msg_data;
4100 	recv_msg->msg.data_len = msg->rsp_size - 3;
4101 }
4102 
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4103 static int handle_read_event_rsp(struct ipmi_smi *intf,
4104 				 struct ipmi_smi_msg *msg)
4105 {
4106 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4107 	struct list_head     msgs;
4108 	struct ipmi_user     *user;
4109 	int rv = 0, deliver_count = 0, index;
4110 	unsigned long        flags;
4111 
4112 	if (msg->rsp_size < 19) {
4113 		/* Message is too small to be an IPMB event. */
4114 		ipmi_inc_stat(intf, invalid_events);
4115 		return 0;
4116 	}
4117 
4118 	if (msg->rsp[2] != 0) {
4119 		/* An error getting the event, just ignore it. */
4120 		return 0;
4121 	}
4122 
4123 	INIT_LIST_HEAD(&msgs);
4124 
4125 	spin_lock_irqsave(&intf->events_lock, flags);
4126 
4127 	ipmi_inc_stat(intf, events);
4128 
4129 	/*
4130 	 * Allocate and fill in one message for every user that is
4131 	 * getting events.
4132 	 */
4133 	index = srcu_read_lock(&intf->users_srcu);
4134 	list_for_each_entry_rcu(user, &intf->users, link) {
4135 		if (!user->gets_events)
4136 			continue;
4137 
4138 		recv_msg = ipmi_alloc_recv_msg();
4139 		if (!recv_msg) {
4140 			rcu_read_unlock();
4141 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4142 						 link) {
4143 				list_del(&recv_msg->link);
4144 				ipmi_free_recv_msg(recv_msg);
4145 			}
4146 			/*
4147 			 * We couldn't allocate memory for the
4148 			 * message, so requeue it for handling
4149 			 * later.
4150 			 */
4151 			rv = 1;
4152 			goto out;
4153 		}
4154 
4155 		deliver_count++;
4156 
4157 		copy_event_into_recv_msg(recv_msg, msg);
4158 		recv_msg->user = user;
4159 		kref_get(&user->refcount);
4160 		list_add_tail(&recv_msg->link, &msgs);
4161 	}
4162 	srcu_read_unlock(&intf->users_srcu, index);
4163 
4164 	if (deliver_count) {
4165 		/* Now deliver all the messages. */
4166 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4167 			list_del(&recv_msg->link);
4168 			deliver_local_response(intf, recv_msg);
4169 		}
4170 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4171 		/*
4172 		 * No one to receive the message, put it in queue if there's
4173 		 * not already too many things in the queue.
4174 		 */
4175 		recv_msg = ipmi_alloc_recv_msg();
4176 		if (!recv_msg) {
4177 			/*
4178 			 * We couldn't allocate memory for the
4179 			 * message, so requeue it for handling
4180 			 * later.
4181 			 */
4182 			rv = 1;
4183 			goto out;
4184 		}
4185 
4186 		copy_event_into_recv_msg(recv_msg, msg);
4187 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4188 		intf->waiting_events_count++;
4189 	} else if (!intf->event_msg_printed) {
4190 		/*
4191 		 * There's too many things in the queue, discard this
4192 		 * message.
4193 		 */
4194 		dev_warn(intf->si_dev,
4195 			 "Event queue full, discarding incoming events\n");
4196 		intf->event_msg_printed = 1;
4197 	}
4198 
4199  out:
4200 	spin_unlock_irqrestore(&intf->events_lock, flags);
4201 
4202 	return rv;
4203 }
4204 
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4205 static int handle_bmc_rsp(struct ipmi_smi *intf,
4206 			  struct ipmi_smi_msg *msg)
4207 {
4208 	struct ipmi_recv_msg *recv_msg;
4209 	struct ipmi_system_interface_addr *smi_addr;
4210 
4211 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4212 	if (recv_msg == NULL) {
4213 		dev_warn(intf->si_dev,
4214 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4215 		return 0;
4216 	}
4217 
4218 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4219 	recv_msg->msgid = msg->msgid;
4220 	smi_addr = ((struct ipmi_system_interface_addr *)
4221 		    &recv_msg->addr);
4222 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4223 	smi_addr->channel = IPMI_BMC_CHANNEL;
4224 	smi_addr->lun = msg->rsp[0] & 3;
4225 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4226 	recv_msg->msg.cmd = msg->rsp[1];
4227 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4228 	recv_msg->msg.data = recv_msg->msg_data;
4229 	recv_msg->msg.data_len = msg->rsp_size - 2;
4230 	deliver_local_response(intf, recv_msg);
4231 
4232 	return 0;
4233 }
4234 
4235 /*
4236  * Handle a received message.  Return 1 if the message should be requeued,
4237  * 0 if the message should be freed, or -1 if the message should not
4238  * be freed or requeued.
4239  */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4240 static int handle_one_recv_msg(struct ipmi_smi *intf,
4241 			       struct ipmi_smi_msg *msg)
4242 {
4243 	int requeue;
4244 	int chan;
4245 
4246 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4247 
4248 	if ((msg->data_size >= 2)
4249 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4250 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4251 	    && (msg->user_data == NULL)) {
4252 
4253 		if (intf->in_shutdown)
4254 			goto free_msg;
4255 
4256 		/*
4257 		 * This is the local response to a command send, start
4258 		 * the timer for these.  The user_data will not be
4259 		 * NULL if this is a response send, and we will let
4260 		 * response sends just go through.
4261 		 */
4262 
4263 		/*
4264 		 * Check for errors, if we get certain errors (ones
4265 		 * that mean basically we can try again later), we
4266 		 * ignore them and start the timer.  Otherwise we
4267 		 * report the error immediately.
4268 		 */
4269 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4270 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4271 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4272 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4273 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4274 			int ch = msg->rsp[3] & 0xf;
4275 			struct ipmi_channel *chans;
4276 
4277 			/* Got an error sending the message, handle it. */
4278 
4279 			chans = READ_ONCE(intf->channel_list)->c;
4280 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4281 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4282 				ipmi_inc_stat(intf, sent_lan_command_errs);
4283 			else
4284 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4285 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4286 		} else
4287 			/* The message was sent, start the timer. */
4288 			intf_start_seq_timer(intf, msg->msgid);
4289 free_msg:
4290 		requeue = 0;
4291 		goto out;
4292 
4293 	} else if (msg->rsp_size < 2) {
4294 		/* Message is too small to be correct. */
4295 		dev_warn(intf->si_dev,
4296 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4297 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4298 
4299 		/* Generate an error response for the message. */
4300 		msg->rsp[0] = msg->data[0] | (1 << 2);
4301 		msg->rsp[1] = msg->data[1];
4302 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4303 		msg->rsp_size = 3;
4304 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4305 		   || (msg->rsp[1] != msg->data[1])) {
4306 		/*
4307 		 * The NetFN and Command in the response is not even
4308 		 * marginally correct.
4309 		 */
4310 		dev_warn(intf->si_dev,
4311 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4312 			 (msg->data[0] >> 2) | 1, msg->data[1],
4313 			 msg->rsp[0] >> 2, msg->rsp[1]);
4314 
4315 		/* Generate an error response for the message. */
4316 		msg->rsp[0] = msg->data[0] | (1 << 2);
4317 		msg->rsp[1] = msg->data[1];
4318 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4319 		msg->rsp_size = 3;
4320 	}
4321 
4322 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4323 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4324 	    && (msg->user_data != NULL)) {
4325 		/*
4326 		 * It's a response to a response we sent.  For this we
4327 		 * deliver a send message response to the user.
4328 		 */
4329 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4330 
4331 		requeue = 0;
4332 		if (msg->rsp_size < 2)
4333 			/* Message is too small to be correct. */
4334 			goto out;
4335 
4336 		chan = msg->data[2] & 0x0f;
4337 		if (chan >= IPMI_MAX_CHANNELS)
4338 			/* Invalid channel number */
4339 			goto out;
4340 
4341 		if (!recv_msg)
4342 			goto out;
4343 
4344 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4345 		recv_msg->msg.data = recv_msg->msg_data;
4346 		recv_msg->msg.data_len = 1;
4347 		recv_msg->msg_data[0] = msg->rsp[2];
4348 		deliver_local_response(intf, recv_msg);
4349 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4350 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4351 		struct ipmi_channel   *chans;
4352 
4353 		/* It's from the receive queue. */
4354 		chan = msg->rsp[3] & 0xf;
4355 		if (chan >= IPMI_MAX_CHANNELS) {
4356 			/* Invalid channel number */
4357 			requeue = 0;
4358 			goto out;
4359 		}
4360 
4361 		/*
4362 		 * We need to make sure the channels have been initialized.
4363 		 * The channel_handler routine will set the "curr_channel"
4364 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4365 		 * channels for this interface have been initialized.
4366 		 */
4367 		if (!intf->channels_ready) {
4368 			requeue = 0; /* Throw the message away */
4369 			goto out;
4370 		}
4371 
4372 		chans = READ_ONCE(intf->channel_list)->c;
4373 
4374 		switch (chans[chan].medium) {
4375 		case IPMI_CHANNEL_MEDIUM_IPMB:
4376 			if (msg->rsp[4] & 0x04) {
4377 				/*
4378 				 * It's a response, so find the
4379 				 * requesting message and send it up.
4380 				 */
4381 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4382 			} else {
4383 				/*
4384 				 * It's a command to the SMS from some other
4385 				 * entity.  Handle that.
4386 				 */
4387 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4388 			}
4389 			break;
4390 
4391 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4392 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4393 			if (msg->rsp[6] & 0x04) {
4394 				/*
4395 				 * It's a response, so find the
4396 				 * requesting message and send it up.
4397 				 */
4398 				requeue = handle_lan_get_msg_rsp(intf, msg);
4399 			} else {
4400 				/*
4401 				 * It's a command to the SMS from some other
4402 				 * entity.  Handle that.
4403 				 */
4404 				requeue = handle_lan_get_msg_cmd(intf, msg);
4405 			}
4406 			break;
4407 
4408 		default:
4409 			/* Check for OEM Channels.  Clients had better
4410 			   register for these commands. */
4411 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4412 			    && (chans[chan].medium
4413 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4414 				requeue = handle_oem_get_msg_cmd(intf, msg);
4415 			} else {
4416 				/*
4417 				 * We don't handle the channel type, so just
4418 				 * free the message.
4419 				 */
4420 				requeue = 0;
4421 			}
4422 		}
4423 
4424 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4425 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4426 		/* It's an asynchronous event. */
4427 		requeue = handle_read_event_rsp(intf, msg);
4428 	} else {
4429 		/* It's a response from the local BMC. */
4430 		requeue = handle_bmc_rsp(intf, msg);
4431 	}
4432 
4433  out:
4434 	return requeue;
4435 }
4436 
4437 /*
4438  * If there are messages in the queue or pretimeouts, handle them.
4439  */
handle_new_recv_msgs(struct ipmi_smi * intf)4440 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4441 {
4442 	struct ipmi_smi_msg  *smi_msg;
4443 	unsigned long        flags = 0;
4444 	int                  rv;
4445 	int                  run_to_completion = intf->run_to_completion;
4446 
4447 	/* See if any waiting messages need to be processed. */
4448 	if (!run_to_completion)
4449 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4450 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4451 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4452 				     struct ipmi_smi_msg, link);
4453 		list_del(&smi_msg->link);
4454 		if (!run_to_completion)
4455 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4456 					       flags);
4457 		rv = handle_one_recv_msg(intf, smi_msg);
4458 		if (!run_to_completion)
4459 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4460 		if (rv > 0) {
4461 			/*
4462 			 * To preserve message order, quit if we
4463 			 * can't handle a message.  Add the message
4464 			 * back at the head, this is safe because this
4465 			 * tasklet is the only thing that pulls the
4466 			 * messages.
4467 			 */
4468 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4469 			break;
4470 		} else {
4471 			if (rv == 0)
4472 				/* Message handled */
4473 				ipmi_free_smi_msg(smi_msg);
4474 			/* If rv < 0, fatal error, del but don't free. */
4475 		}
4476 	}
4477 	if (!run_to_completion)
4478 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4479 
4480 	/*
4481 	 * If the pretimout count is non-zero, decrement one from it and
4482 	 * deliver pretimeouts to all the users.
4483 	 */
4484 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4485 		struct ipmi_user *user;
4486 		int index;
4487 
4488 		index = srcu_read_lock(&intf->users_srcu);
4489 		list_for_each_entry_rcu(user, &intf->users, link) {
4490 			if (user->handler->ipmi_watchdog_pretimeout)
4491 				user->handler->ipmi_watchdog_pretimeout(
4492 					user->handler_data);
4493 		}
4494 		srcu_read_unlock(&intf->users_srcu, index);
4495 	}
4496 }
4497 
smi_recv_tasklet(struct tasklet_struct * t)4498 static void smi_recv_tasklet(struct tasklet_struct *t)
4499 {
4500 	unsigned long flags = 0; /* keep us warning-free. */
4501 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4502 	int run_to_completion = intf->run_to_completion;
4503 	struct ipmi_smi_msg *newmsg = NULL;
4504 
4505 	/*
4506 	 * Start the next message if available.
4507 	 *
4508 	 * Do this here, not in the actual receiver, because we may deadlock
4509 	 * because the lower layer is allowed to hold locks while calling
4510 	 * message delivery.
4511 	 */
4512 
4513 	rcu_read_lock();
4514 
4515 	if (!run_to_completion)
4516 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4517 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4518 		struct list_head *entry = NULL;
4519 
4520 		/* Pick the high priority queue first. */
4521 		if (!list_empty(&intf->hp_xmit_msgs))
4522 			entry = intf->hp_xmit_msgs.next;
4523 		else if (!list_empty(&intf->xmit_msgs))
4524 			entry = intf->xmit_msgs.next;
4525 
4526 		if (entry) {
4527 			list_del(entry);
4528 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4529 			intf->curr_msg = newmsg;
4530 		}
4531 	}
4532 
4533 	if (!run_to_completion)
4534 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4535 	if (newmsg)
4536 		intf->handlers->sender(intf->send_info, newmsg);
4537 
4538 	rcu_read_unlock();
4539 
4540 	handle_new_recv_msgs(intf);
4541 }
4542 
4543 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4544 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4545 			   struct ipmi_smi_msg *msg)
4546 {
4547 	unsigned long flags = 0; /* keep us warning-free. */
4548 	int run_to_completion = intf->run_to_completion;
4549 
4550 	/*
4551 	 * To preserve message order, we keep a queue and deliver from
4552 	 * a tasklet.
4553 	 */
4554 	if (!run_to_completion)
4555 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4556 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4557 	if (!run_to_completion)
4558 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4559 				       flags);
4560 
4561 	if (!run_to_completion)
4562 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4563 	/*
4564 	 * We can get an asynchronous event or receive message in addition
4565 	 * to commands we send.
4566 	 */
4567 	if (msg == intf->curr_msg)
4568 		intf->curr_msg = NULL;
4569 	if (!run_to_completion)
4570 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4571 
4572 	if (run_to_completion)
4573 		smi_recv_tasklet(&intf->recv_tasklet);
4574 	else
4575 		tasklet_schedule(&intf->recv_tasklet);
4576 }
4577 EXPORT_SYMBOL(ipmi_smi_msg_received);
4578 
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4579 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4580 {
4581 	if (intf->in_shutdown)
4582 		return;
4583 
4584 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4585 	tasklet_schedule(&intf->recv_tasklet);
4586 }
4587 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4588 
4589 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4590 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4591 		  unsigned char seq, long seqid)
4592 {
4593 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4594 	if (!smi_msg)
4595 		/*
4596 		 * If we can't allocate the message, then just return, we
4597 		 * get 4 retries, so this should be ok.
4598 		 */
4599 		return NULL;
4600 
4601 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4602 	smi_msg->data_size = recv_msg->msg.data_len;
4603 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4604 
4605 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4606 
4607 	return smi_msg;
4608 }
4609 
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4610 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4611 			      struct list_head *timeouts,
4612 			      unsigned long timeout_period,
4613 			      int slot, unsigned long *flags,
4614 			      bool *need_timer)
4615 {
4616 	struct ipmi_recv_msg *msg;
4617 
4618 	if (intf->in_shutdown)
4619 		return;
4620 
4621 	if (!ent->inuse)
4622 		return;
4623 
4624 	if (timeout_period < ent->timeout) {
4625 		ent->timeout -= timeout_period;
4626 		*need_timer = true;
4627 		return;
4628 	}
4629 
4630 	if (ent->retries_left == 0) {
4631 		/* The message has used all its retries. */
4632 		ent->inuse = 0;
4633 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4634 		msg = ent->recv_msg;
4635 		list_add_tail(&msg->link, timeouts);
4636 		if (ent->broadcast)
4637 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4638 		else if (is_lan_addr(&ent->recv_msg->addr))
4639 			ipmi_inc_stat(intf, timed_out_lan_commands);
4640 		else
4641 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4642 	} else {
4643 		struct ipmi_smi_msg *smi_msg;
4644 		/* More retries, send again. */
4645 
4646 		*need_timer = true;
4647 
4648 		/*
4649 		 * Start with the max timer, set to normal timer after
4650 		 * the message is sent.
4651 		 */
4652 		ent->timeout = MAX_MSG_TIMEOUT;
4653 		ent->retries_left--;
4654 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4655 					    ent->seqid);
4656 		if (!smi_msg) {
4657 			if (is_lan_addr(&ent->recv_msg->addr))
4658 				ipmi_inc_stat(intf,
4659 					      dropped_rexmit_lan_commands);
4660 			else
4661 				ipmi_inc_stat(intf,
4662 					      dropped_rexmit_ipmb_commands);
4663 			return;
4664 		}
4665 
4666 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4667 
4668 		/*
4669 		 * Send the new message.  We send with a zero
4670 		 * priority.  It timed out, I doubt time is that
4671 		 * critical now, and high priority messages are really
4672 		 * only for messages to the local MC, which don't get
4673 		 * resent.
4674 		 */
4675 		if (intf->handlers) {
4676 			if (is_lan_addr(&ent->recv_msg->addr))
4677 				ipmi_inc_stat(intf,
4678 					      retransmitted_lan_commands);
4679 			else
4680 				ipmi_inc_stat(intf,
4681 					      retransmitted_ipmb_commands);
4682 
4683 			smi_send(intf, intf->handlers, smi_msg, 0);
4684 		} else
4685 			ipmi_free_smi_msg(smi_msg);
4686 
4687 		spin_lock_irqsave(&intf->seq_lock, *flags);
4688 	}
4689 }
4690 
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)4691 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4692 				 unsigned long timeout_period)
4693 {
4694 	struct list_head     timeouts;
4695 	struct ipmi_recv_msg *msg, *msg2;
4696 	unsigned long        flags;
4697 	int                  i;
4698 	bool                 need_timer = false;
4699 
4700 	if (!intf->bmc_registered) {
4701 		kref_get(&intf->refcount);
4702 		if (!schedule_work(&intf->bmc_reg_work)) {
4703 			kref_put(&intf->refcount, intf_free);
4704 			need_timer = true;
4705 		}
4706 	}
4707 
4708 	/*
4709 	 * Go through the seq table and find any messages that
4710 	 * have timed out, putting them in the timeouts
4711 	 * list.
4712 	 */
4713 	INIT_LIST_HEAD(&timeouts);
4714 	spin_lock_irqsave(&intf->seq_lock, flags);
4715 	if (intf->ipmb_maintenance_mode_timeout) {
4716 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4717 			intf->ipmb_maintenance_mode_timeout = 0;
4718 		else
4719 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4720 	}
4721 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4722 		check_msg_timeout(intf, &intf->seq_table[i],
4723 				  &timeouts, timeout_period, i,
4724 				  &flags, &need_timer);
4725 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4726 
4727 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4728 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4729 
4730 	/*
4731 	 * Maintenance mode handling.  Check the timeout
4732 	 * optimistically before we claim the lock.  It may
4733 	 * mean a timeout gets missed occasionally, but that
4734 	 * only means the timeout gets extended by one period
4735 	 * in that case.  No big deal, and it avoids the lock
4736 	 * most of the time.
4737 	 */
4738 	if (intf->auto_maintenance_timeout > 0) {
4739 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4740 		if (intf->auto_maintenance_timeout > 0) {
4741 			intf->auto_maintenance_timeout
4742 				-= timeout_period;
4743 			if (!intf->maintenance_mode
4744 			    && (intf->auto_maintenance_timeout <= 0)) {
4745 				intf->maintenance_mode_enable = false;
4746 				maintenance_mode_update(intf);
4747 			}
4748 		}
4749 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4750 				       flags);
4751 	}
4752 
4753 	tasklet_schedule(&intf->recv_tasklet);
4754 
4755 	return need_timer;
4756 }
4757 
ipmi_request_event(struct ipmi_smi * intf)4758 static void ipmi_request_event(struct ipmi_smi *intf)
4759 {
4760 	/* No event requests when in maintenance mode. */
4761 	if (intf->maintenance_mode_enable)
4762 		return;
4763 
4764 	if (!intf->in_shutdown)
4765 		intf->handlers->request_events(intf->send_info);
4766 }
4767 
4768 static struct timer_list ipmi_timer;
4769 
4770 static atomic_t stop_operation;
4771 
ipmi_timeout(struct timer_list * unused)4772 static void ipmi_timeout(struct timer_list *unused)
4773 {
4774 	struct ipmi_smi *intf;
4775 	bool need_timer = false;
4776 	int index;
4777 
4778 	if (atomic_read(&stop_operation))
4779 		return;
4780 
4781 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4782 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4783 		if (atomic_read(&intf->event_waiters)) {
4784 			intf->ticks_to_req_ev--;
4785 			if (intf->ticks_to_req_ev == 0) {
4786 				ipmi_request_event(intf);
4787 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4788 			}
4789 			need_timer = true;
4790 		}
4791 
4792 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4793 	}
4794 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4795 
4796 	if (need_timer)
4797 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4798 }
4799 
need_waiter(struct ipmi_smi * intf)4800 static void need_waiter(struct ipmi_smi *intf)
4801 {
4802 	/* Racy, but worst case we start the timer twice. */
4803 	if (!timer_pending(&ipmi_timer))
4804 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4805 }
4806 
4807 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4808 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4809 
free_smi_msg(struct ipmi_smi_msg * msg)4810 static void free_smi_msg(struct ipmi_smi_msg *msg)
4811 {
4812 	atomic_dec(&smi_msg_inuse_count);
4813 	/* Try to keep as much stuff out of the panic path as possible. */
4814 	if (!oops_in_progress)
4815 		kfree(msg);
4816 }
4817 
ipmi_alloc_smi_msg(void)4818 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4819 {
4820 	struct ipmi_smi_msg *rv;
4821 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4822 	if (rv) {
4823 		rv->done = free_smi_msg;
4824 		rv->user_data = NULL;
4825 		atomic_inc(&smi_msg_inuse_count);
4826 	}
4827 	return rv;
4828 }
4829 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4830 
free_recv_msg(struct ipmi_recv_msg * msg)4831 static void free_recv_msg(struct ipmi_recv_msg *msg)
4832 {
4833 	atomic_dec(&recv_msg_inuse_count);
4834 	/* Try to keep as much stuff out of the panic path as possible. */
4835 	if (!oops_in_progress)
4836 		kfree(msg);
4837 }
4838 
ipmi_alloc_recv_msg(void)4839 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4840 {
4841 	struct ipmi_recv_msg *rv;
4842 
4843 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4844 	if (rv) {
4845 		rv->user = NULL;
4846 		rv->done = free_recv_msg;
4847 		atomic_inc(&recv_msg_inuse_count);
4848 	}
4849 	return rv;
4850 }
4851 
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4852 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4853 {
4854 	if (msg->user && !oops_in_progress)
4855 		kref_put(&msg->user->refcount, free_user);
4856 	msg->done(msg);
4857 }
4858 EXPORT_SYMBOL(ipmi_free_recv_msg);
4859 
4860 static atomic_t panic_done_count = ATOMIC_INIT(0);
4861 
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4862 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4863 {
4864 	atomic_dec(&panic_done_count);
4865 }
4866 
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4867 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4868 {
4869 	atomic_dec(&panic_done_count);
4870 }
4871 
4872 /*
4873  * Inside a panic, send a message and wait for a response.
4874  */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4875 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4876 					struct ipmi_addr *addr,
4877 					struct kernel_ipmi_msg *msg)
4878 {
4879 	struct ipmi_smi_msg  smi_msg;
4880 	struct ipmi_recv_msg recv_msg;
4881 	int rv;
4882 
4883 	smi_msg.done = dummy_smi_done_handler;
4884 	recv_msg.done = dummy_recv_done_handler;
4885 	atomic_add(2, &panic_done_count);
4886 	rv = i_ipmi_request(NULL,
4887 			    intf,
4888 			    addr,
4889 			    0,
4890 			    msg,
4891 			    intf,
4892 			    &smi_msg,
4893 			    &recv_msg,
4894 			    0,
4895 			    intf->addrinfo[0].address,
4896 			    intf->addrinfo[0].lun,
4897 			    0, 1); /* Don't retry, and don't wait. */
4898 	if (rv)
4899 		atomic_sub(2, &panic_done_count);
4900 	else if (intf->handlers->flush_messages)
4901 		intf->handlers->flush_messages(intf->send_info);
4902 
4903 	while (atomic_read(&panic_done_count) != 0)
4904 		ipmi_poll(intf);
4905 }
4906 
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4907 static void event_receiver_fetcher(struct ipmi_smi *intf,
4908 				   struct ipmi_recv_msg *msg)
4909 {
4910 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4911 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4912 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4913 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4914 		/* A get event receiver command, save it. */
4915 		intf->event_receiver = msg->msg.data[1];
4916 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4917 	}
4918 }
4919 
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4920 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4921 {
4922 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4923 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4924 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4925 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4926 		/*
4927 		 * A get device id command, save if we are an event
4928 		 * receiver or generator.
4929 		 */
4930 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4931 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4932 	}
4933 }
4934 
send_panic_events(struct ipmi_smi * intf,char * str)4935 static void send_panic_events(struct ipmi_smi *intf, char *str)
4936 {
4937 	struct kernel_ipmi_msg msg;
4938 	unsigned char data[16];
4939 	struct ipmi_system_interface_addr *si;
4940 	struct ipmi_addr addr;
4941 	char *p = str;
4942 	struct ipmi_ipmb_addr *ipmb;
4943 	int j;
4944 
4945 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4946 		return;
4947 
4948 	si = (struct ipmi_system_interface_addr *) &addr;
4949 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4950 	si->channel = IPMI_BMC_CHANNEL;
4951 	si->lun = 0;
4952 
4953 	/* Fill in an event telling that we have failed. */
4954 	msg.netfn = 0x04; /* Sensor or Event. */
4955 	msg.cmd = 2; /* Platform event command. */
4956 	msg.data = data;
4957 	msg.data_len = 8;
4958 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4959 	data[1] = 0x03; /* This is for IPMI 1.0. */
4960 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4961 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4962 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4963 
4964 	/*
4965 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4966 	 * to make the panic events more useful.
4967 	 */
4968 	if (str) {
4969 		data[3] = str[0];
4970 		data[6] = str[1];
4971 		data[7] = str[2];
4972 	}
4973 
4974 	/* Send the event announcing the panic. */
4975 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4976 
4977 	/*
4978 	 * On every interface, dump a bunch of OEM event holding the
4979 	 * string.
4980 	 */
4981 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4982 		return;
4983 
4984 	/*
4985 	 * intf_num is used as an marker to tell if the
4986 	 * interface is valid.  Thus we need a read barrier to
4987 	 * make sure data fetched before checking intf_num
4988 	 * won't be used.
4989 	 */
4990 	smp_rmb();
4991 
4992 	/*
4993 	 * First job here is to figure out where to send the
4994 	 * OEM events.  There's no way in IPMI to send OEM
4995 	 * events using an event send command, so we have to
4996 	 * find the SEL to put them in and stick them in
4997 	 * there.
4998 	 */
4999 
5000 	/* Get capabilities from the get device id. */
5001 	intf->local_sel_device = 0;
5002 	intf->local_event_generator = 0;
5003 	intf->event_receiver = 0;
5004 
5005 	/* Request the device info from the local MC. */
5006 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5007 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5008 	msg.data = NULL;
5009 	msg.data_len = 0;
5010 	intf->null_user_handler = device_id_fetcher;
5011 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5012 
5013 	if (intf->local_event_generator) {
5014 		/* Request the event receiver from the local MC. */
5015 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5016 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5017 		msg.data = NULL;
5018 		msg.data_len = 0;
5019 		intf->null_user_handler = event_receiver_fetcher;
5020 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5021 	}
5022 	intf->null_user_handler = NULL;
5023 
5024 	/*
5025 	 * Validate the event receiver.  The low bit must not
5026 	 * be 1 (it must be a valid IPMB address), it cannot
5027 	 * be zero, and it must not be my address.
5028 	 */
5029 	if (((intf->event_receiver & 1) == 0)
5030 	    && (intf->event_receiver != 0)
5031 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5032 		/*
5033 		 * The event receiver is valid, send an IPMB
5034 		 * message.
5035 		 */
5036 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5037 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5038 		ipmb->channel = 0; /* FIXME - is this right? */
5039 		ipmb->lun = intf->event_receiver_lun;
5040 		ipmb->slave_addr = intf->event_receiver;
5041 	} else if (intf->local_sel_device) {
5042 		/*
5043 		 * The event receiver was not valid (or was
5044 		 * me), but I am an SEL device, just dump it
5045 		 * in my SEL.
5046 		 */
5047 		si = (struct ipmi_system_interface_addr *) &addr;
5048 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5049 		si->channel = IPMI_BMC_CHANNEL;
5050 		si->lun = 0;
5051 	} else
5052 		return; /* No where to send the event. */
5053 
5054 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5055 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5056 	msg.data = data;
5057 	msg.data_len = 16;
5058 
5059 	j = 0;
5060 	while (*p) {
5061 		int size = strlen(p);
5062 
5063 		if (size > 11)
5064 			size = 11;
5065 		data[0] = 0;
5066 		data[1] = 0;
5067 		data[2] = 0xf0; /* OEM event without timestamp. */
5068 		data[3] = intf->addrinfo[0].address;
5069 		data[4] = j++; /* sequence # */
5070 		/*
5071 		 * Always give 11 bytes, so strncpy will fill
5072 		 * it with zeroes for me.
5073 		 */
5074 		strncpy(data+5, p, 11);
5075 		p += size;
5076 
5077 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5078 	}
5079 }
5080 
5081 static int has_panicked;
5082 
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5083 static int panic_event(struct notifier_block *this,
5084 		       unsigned long         event,
5085 		       void                  *ptr)
5086 {
5087 	struct ipmi_smi *intf;
5088 	struct ipmi_user *user;
5089 
5090 	if (has_panicked)
5091 		return NOTIFY_DONE;
5092 	has_panicked = 1;
5093 
5094 	/* For every registered interface, set it to run to completion. */
5095 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5096 		if (!intf->handlers || intf->intf_num == -1)
5097 			/* Interface is not ready. */
5098 			continue;
5099 
5100 		if (!intf->handlers->poll)
5101 			continue;
5102 
5103 		/*
5104 		 * If we were interrupted while locking xmit_msgs_lock or
5105 		 * waiting_rcv_msgs_lock, the corresponding list may be
5106 		 * corrupted.  In this case, drop items on the list for
5107 		 * the safety.
5108 		 */
5109 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5110 			INIT_LIST_HEAD(&intf->xmit_msgs);
5111 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5112 		} else
5113 			spin_unlock(&intf->xmit_msgs_lock);
5114 
5115 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5116 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5117 		else
5118 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5119 
5120 		intf->run_to_completion = 1;
5121 		if (intf->handlers->set_run_to_completion)
5122 			intf->handlers->set_run_to_completion(intf->send_info,
5123 							      1);
5124 
5125 		list_for_each_entry_rcu(user, &intf->users, link) {
5126 			if (user->handler->ipmi_panic_handler)
5127 				user->handler->ipmi_panic_handler(
5128 					user->handler_data);
5129 		}
5130 
5131 		send_panic_events(intf, ptr);
5132 	}
5133 
5134 	return NOTIFY_DONE;
5135 }
5136 
5137 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5138 static int ipmi_register_driver(void)
5139 {
5140 	int rv;
5141 
5142 	if (drvregistered)
5143 		return 0;
5144 
5145 	rv = driver_register(&ipmidriver.driver);
5146 	if (rv)
5147 		pr_err("Could not register IPMI driver\n");
5148 	else
5149 		drvregistered = true;
5150 	return rv;
5151 }
5152 
5153 static struct notifier_block panic_block = {
5154 	.notifier_call	= panic_event,
5155 	.next		= NULL,
5156 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5157 };
5158 
ipmi_init_msghandler(void)5159 static int ipmi_init_msghandler(void)
5160 {
5161 	int rv;
5162 
5163 	mutex_lock(&ipmi_interfaces_mutex);
5164 	rv = ipmi_register_driver();
5165 	if (rv)
5166 		goto out;
5167 	if (initialized)
5168 		goto out;
5169 
5170 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5171 	if (rv)
5172 		goto out;
5173 
5174 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5175 	if (!remove_work_wq) {
5176 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5177 		rv = -ENOMEM;
5178 		goto out_wq;
5179 	}
5180 
5181 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5182 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5183 
5184 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5185 
5186 	initialized = true;
5187 
5188 out_wq:
5189 	if (rv)
5190 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5191 out:
5192 	mutex_unlock(&ipmi_interfaces_mutex);
5193 	return rv;
5194 }
5195 
ipmi_init_msghandler_mod(void)5196 static int __init ipmi_init_msghandler_mod(void)
5197 {
5198 	int rv;
5199 
5200 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5201 
5202 	mutex_lock(&ipmi_interfaces_mutex);
5203 	rv = ipmi_register_driver();
5204 	mutex_unlock(&ipmi_interfaces_mutex);
5205 
5206 	return rv;
5207 }
5208 
cleanup_ipmi(void)5209 static void __exit cleanup_ipmi(void)
5210 {
5211 	int count;
5212 
5213 	if (initialized) {
5214 		destroy_workqueue(remove_work_wq);
5215 
5216 		atomic_notifier_chain_unregister(&panic_notifier_list,
5217 						 &panic_block);
5218 
5219 		/*
5220 		 * This can't be called if any interfaces exist, so no worry
5221 		 * about shutting down the interfaces.
5222 		 */
5223 
5224 		/*
5225 		 * Tell the timer to stop, then wait for it to stop.  This
5226 		 * avoids problems with race conditions removing the timer
5227 		 * here.
5228 		 */
5229 		atomic_set(&stop_operation, 1);
5230 		del_timer_sync(&ipmi_timer);
5231 
5232 		initialized = false;
5233 
5234 		/* Check for buffer leaks. */
5235 		count = atomic_read(&smi_msg_inuse_count);
5236 		if (count != 0)
5237 			pr_warn("SMI message count %d at exit\n", count);
5238 		count = atomic_read(&recv_msg_inuse_count);
5239 		if (count != 0)
5240 			pr_warn("recv message count %d at exit\n", count);
5241 
5242 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5243 	}
5244 	if (drvregistered)
5245 		driver_unregister(&ipmidriver.driver);
5246 }
5247 module_exit(cleanup_ipmi);
5248 
5249 module_init(ipmi_init_msghandler_mod);
5250 MODULE_LICENSE("GPL");
5251 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5252 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5253 		   " interface.");
5254 MODULE_VERSION(IPMI_DRIVER_VERSION);
5255 MODULE_SOFTDEP("post: ipmi_devintf");
5256