• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/iova.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/msidef.h>
39 #include <asm/proto.h>
40 #include <asm/iommu.h>
41 #include <asm/gart.h>
42 #include <asm/dma.h>
43 
44 #include "amd_iommu.h"
45 #include "../irq_remapping.h"
46 
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48 
49 #define LOOP_TIMEOUT	100000
50 
51 /* IO virtual address start page frame number */
52 #define IOVA_START_PFN		(1)
53 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
54 
55 /* Reserved IOVA ranges */
56 #define MSI_RANGE_START		(0xfee00000)
57 #define MSI_RANGE_END		(0xfeefffff)
58 #define HT_RANGE_START		(0xfd00000000ULL)
59 #define HT_RANGE_END		(0xffffffffffULL)
60 
61 /*
62  * This bitmap is used to advertise the page sizes our hardware support
63  * to the IOMMU core, which will then use this information to split
64  * physically contiguous memory regions it is mapping into page sizes
65  * that we support.
66  *
67  * 512GB Pages are not supported due to a hardware bug
68  */
69 #define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
70 
71 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
72 
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
74 
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
77 
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
81 
82 /*
83  * Domain for untranslated devices - only allocated
84  * if iommu=pt passed on kernel cmd line.
85  */
86 const struct iommu_ops amd_iommu_ops;
87 
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
90 
91 /*
92  * general struct to manage commands send to an IOMMU
93  */
94 struct iommu_cmd {
95 	u32 data[4];
96 };
97 
98 struct kmem_cache *amd_iommu_irq_cache;
99 
100 static void update_domain(struct protection_domain *domain);
101 static void detach_device(struct device *dev);
102 static void update_and_flush_device_table(struct protection_domain *domain,
103 					  struct domain_pgtable *pgtable);
104 
105 /****************************************************************************
106  *
107  * Helper functions
108  *
109  ****************************************************************************/
110 
get_pci_device_id(struct device * dev)111 static inline u16 get_pci_device_id(struct device *dev)
112 {
113 	struct pci_dev *pdev = to_pci_dev(dev);
114 
115 	return pci_dev_id(pdev);
116 }
117 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)118 static inline int get_acpihid_device_id(struct device *dev,
119 					struct acpihid_map_entry **entry)
120 {
121 	struct acpi_device *adev = ACPI_COMPANION(dev);
122 	struct acpihid_map_entry *p;
123 
124 	if (!adev)
125 		return -ENODEV;
126 
127 	list_for_each_entry(p, &acpihid_map, list) {
128 		if (acpi_dev_hid_uid_match(adev, p->hid,
129 					   p->uid[0] ? p->uid : NULL)) {
130 			if (entry)
131 				*entry = p;
132 			return p->devid;
133 		}
134 	}
135 	return -EINVAL;
136 }
137 
get_device_id(struct device * dev)138 static inline int get_device_id(struct device *dev)
139 {
140 	int devid;
141 
142 	if (dev_is_pci(dev))
143 		devid = get_pci_device_id(dev);
144 	else
145 		devid = get_acpihid_device_id(dev, NULL);
146 
147 	return devid;
148 }
149 
to_pdomain(struct iommu_domain * dom)150 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
151 {
152 	return container_of(dom, struct protection_domain, domain);
153 }
154 
amd_iommu_domain_get_pgtable(struct protection_domain * domain,struct domain_pgtable * pgtable)155 static void amd_iommu_domain_get_pgtable(struct protection_domain *domain,
156 					 struct domain_pgtable *pgtable)
157 {
158 	u64 pt_root = atomic64_read(&domain->pt_root);
159 
160 	pgtable->root = (u64 *)(pt_root & PAGE_MASK);
161 	pgtable->mode = pt_root & 7; /* lowest 3 bits encode pgtable mode */
162 }
163 
amd_iommu_domain_set_pt_root(struct protection_domain * domain,u64 root)164 static void amd_iommu_domain_set_pt_root(struct protection_domain *domain, u64 root)
165 {
166 	atomic64_set(&domain->pt_root, root);
167 }
168 
amd_iommu_domain_clr_pt_root(struct protection_domain * domain)169 static void amd_iommu_domain_clr_pt_root(struct protection_domain *domain)
170 {
171 	amd_iommu_domain_set_pt_root(domain, 0);
172 }
173 
amd_iommu_domain_set_pgtable(struct protection_domain * domain,u64 * root,int mode)174 static void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
175 					 u64 *root, int mode)
176 {
177 	u64 pt_root;
178 
179 	/* lowest 3 bits encode pgtable mode */
180 	pt_root = mode & 7;
181 	pt_root |= (u64)root;
182 
183 	amd_iommu_domain_set_pt_root(domain, pt_root);
184 }
185 
alloc_dev_data(u16 devid)186 static struct iommu_dev_data *alloc_dev_data(u16 devid)
187 {
188 	struct iommu_dev_data *dev_data;
189 
190 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 	if (!dev_data)
192 		return NULL;
193 
194 	spin_lock_init(&dev_data->lock);
195 	dev_data->devid = devid;
196 	ratelimit_default_init(&dev_data->rs);
197 
198 	llist_add(&dev_data->dev_data_list, &dev_data_list);
199 	return dev_data;
200 }
201 
search_dev_data(u16 devid)202 static struct iommu_dev_data *search_dev_data(u16 devid)
203 {
204 	struct iommu_dev_data *dev_data;
205 	struct llist_node *node;
206 
207 	if (llist_empty(&dev_data_list))
208 		return NULL;
209 
210 	node = dev_data_list.first;
211 	llist_for_each_entry(dev_data, node, dev_data_list) {
212 		if (dev_data->devid == devid)
213 			return dev_data;
214 	}
215 
216 	return NULL;
217 }
218 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)219 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
220 {
221 	u16 devid = pci_dev_id(pdev);
222 
223 	if (devid == alias)
224 		return 0;
225 
226 	amd_iommu_rlookup_table[alias] =
227 		amd_iommu_rlookup_table[devid];
228 	memcpy(amd_iommu_dev_table[alias].data,
229 	       amd_iommu_dev_table[devid].data,
230 	       sizeof(amd_iommu_dev_table[alias].data));
231 
232 	return 0;
233 }
234 
clone_aliases(struct pci_dev * pdev)235 static void clone_aliases(struct pci_dev *pdev)
236 {
237 	if (!pdev)
238 		return;
239 
240 	/*
241 	 * The IVRS alias stored in the alias table may not be
242 	 * part of the PCI DMA aliases if it's bus differs
243 	 * from the original device.
244 	 */
245 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
246 
247 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
248 }
249 
setup_aliases(struct device * dev)250 static struct pci_dev *setup_aliases(struct device *dev)
251 {
252 	struct pci_dev *pdev = to_pci_dev(dev);
253 	u16 ivrs_alias;
254 
255 	/* For ACPI HID devices, there are no aliases */
256 	if (!dev_is_pci(dev))
257 		return NULL;
258 
259 	/*
260 	 * Add the IVRS alias to the pci aliases if it is on the same
261 	 * bus. The IVRS table may know about a quirk that we don't.
262 	 */
263 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
264 	if (ivrs_alias != pci_dev_id(pdev) &&
265 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
266 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
267 
268 	clone_aliases(pdev);
269 
270 	return pdev;
271 }
272 
find_dev_data(u16 devid)273 static struct iommu_dev_data *find_dev_data(u16 devid)
274 {
275 	struct iommu_dev_data *dev_data;
276 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
277 
278 	dev_data = search_dev_data(devid);
279 
280 	if (dev_data == NULL) {
281 		dev_data = alloc_dev_data(devid);
282 		if (!dev_data)
283 			return NULL;
284 
285 		if (translation_pre_enabled(iommu))
286 			dev_data->defer_attach = true;
287 	}
288 
289 	return dev_data;
290 }
291 
292 /*
293 * Find or create an IOMMU group for a acpihid device.
294 */
acpihid_device_group(struct device * dev)295 static struct iommu_group *acpihid_device_group(struct device *dev)
296 {
297 	struct acpihid_map_entry *p, *entry = NULL;
298 	int devid;
299 
300 	devid = get_acpihid_device_id(dev, &entry);
301 	if (devid < 0)
302 		return ERR_PTR(devid);
303 
304 	list_for_each_entry(p, &acpihid_map, list) {
305 		if ((devid == p->devid) && p->group)
306 			entry->group = p->group;
307 	}
308 
309 	if (!entry->group)
310 		entry->group = generic_device_group(dev);
311 	else
312 		iommu_group_ref_get(entry->group);
313 
314 	return entry->group;
315 }
316 
pci_iommuv2_capable(struct pci_dev * pdev)317 static bool pci_iommuv2_capable(struct pci_dev *pdev)
318 {
319 	static const int caps[] = {
320 		PCI_EXT_CAP_ID_PRI,
321 		PCI_EXT_CAP_ID_PASID,
322 	};
323 	int i, pos;
324 
325 	if (!pci_ats_supported(pdev))
326 		return false;
327 
328 	for (i = 0; i < 2; ++i) {
329 		pos = pci_find_ext_capability(pdev, caps[i]);
330 		if (pos == 0)
331 			return false;
332 	}
333 
334 	return true;
335 }
336 
pdev_pri_erratum(struct pci_dev * pdev,u32 erratum)337 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
338 {
339 	struct iommu_dev_data *dev_data;
340 
341 	dev_data = dev_iommu_priv_get(&pdev->dev);
342 
343 	return dev_data->errata & (1 << erratum) ? true : false;
344 }
345 
346 /*
347  * This function checks if the driver got a valid device from the caller to
348  * avoid dereferencing invalid pointers.
349  */
check_device(struct device * dev)350 static bool check_device(struct device *dev)
351 {
352 	int devid;
353 
354 	if (!dev)
355 		return false;
356 
357 	devid = get_device_id(dev);
358 	if (devid < 0)
359 		return false;
360 
361 	/* Out of our scope? */
362 	if (devid > amd_iommu_last_bdf)
363 		return false;
364 
365 	if (amd_iommu_rlookup_table[devid] == NULL)
366 		return false;
367 
368 	return true;
369 }
370 
iommu_init_device(struct device * dev)371 static int iommu_init_device(struct device *dev)
372 {
373 	struct iommu_dev_data *dev_data;
374 	int devid;
375 
376 	if (dev_iommu_priv_get(dev))
377 		return 0;
378 
379 	devid = get_device_id(dev);
380 	if (devid < 0)
381 		return devid;
382 
383 	dev_data = find_dev_data(devid);
384 	if (!dev_data)
385 		return -ENOMEM;
386 
387 	dev_data->pdev = setup_aliases(dev);
388 
389 	/*
390 	 * By default we use passthrough mode for IOMMUv2 capable device.
391 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
392 	 * invalid address), we ignore the capability for the device so
393 	 * it'll be forced to go into translation mode.
394 	 */
395 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
396 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
397 		struct amd_iommu *iommu;
398 
399 		iommu = amd_iommu_rlookup_table[dev_data->devid];
400 		dev_data->iommu_v2 = iommu->is_iommu_v2;
401 	}
402 
403 	dev_iommu_priv_set(dev, dev_data);
404 
405 	return 0;
406 }
407 
iommu_ignore_device(struct device * dev)408 static void iommu_ignore_device(struct device *dev)
409 {
410 	int devid;
411 
412 	devid = get_device_id(dev);
413 	if (devid < 0)
414 		return;
415 
416 	amd_iommu_rlookup_table[devid] = NULL;
417 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
418 
419 	setup_aliases(dev);
420 }
421 
amd_iommu_uninit_device(struct device * dev)422 static void amd_iommu_uninit_device(struct device *dev)
423 {
424 	struct iommu_dev_data *dev_data;
425 
426 	dev_data = dev_iommu_priv_get(dev);
427 	if (!dev_data)
428 		return;
429 
430 	if (dev_data->domain)
431 		detach_device(dev);
432 
433 	dev_iommu_priv_set(dev, NULL);
434 
435 	/*
436 	 * We keep dev_data around for unplugged devices and reuse it when the
437 	 * device is re-plugged - not doing so would introduce a ton of races.
438 	 */
439 }
440 
441 /*
442  * Helper function to get the first pte of a large mapping
443  */
first_pte_l7(u64 * pte,unsigned long * page_size,unsigned long * count)444 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
445 			 unsigned long *count)
446 {
447 	unsigned long pte_mask, pg_size, cnt;
448 	u64 *fpte;
449 
450 	pg_size  = PTE_PAGE_SIZE(*pte);
451 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
452 	pte_mask = ~((cnt << 3) - 1);
453 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
454 
455 	if (page_size)
456 		*page_size = pg_size;
457 
458 	if (count)
459 		*count = cnt;
460 
461 	return fpte;
462 }
463 
464 /****************************************************************************
465  *
466  * Interrupt handling functions
467  *
468  ****************************************************************************/
469 
dump_dte_entry(u16 devid)470 static void dump_dte_entry(u16 devid)
471 {
472 	int i;
473 
474 	for (i = 0; i < 4; ++i)
475 		pr_err("DTE[%d]: %016llx\n", i,
476 			amd_iommu_dev_table[devid].data[i]);
477 }
478 
dump_command(unsigned long phys_addr)479 static void dump_command(unsigned long phys_addr)
480 {
481 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
482 	int i;
483 
484 	for (i = 0; i < 4; ++i)
485 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
486 }
487 
amd_iommu_report_rmp_hw_error(volatile u32 * event)488 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
489 {
490 	struct iommu_dev_data *dev_data = NULL;
491 	int devid, vmg_tag, flags;
492 	struct pci_dev *pdev;
493 	u64 spa;
494 
495 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
496 	vmg_tag = (event[1]) & 0xFFFF;
497 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
498 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
499 
500 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
501 					   devid & 0xff);
502 	if (pdev)
503 		dev_data = dev_iommu_priv_get(&pdev->dev);
504 
505 	if (dev_data && __ratelimit(&dev_data->rs)) {
506 		pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
507 			vmg_tag, spa, flags);
508 	} else {
509 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
510 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
511 			vmg_tag, spa, flags);
512 	}
513 
514 	if (pdev)
515 		pci_dev_put(pdev);
516 }
517 
amd_iommu_report_rmp_fault(volatile u32 * event)518 static void amd_iommu_report_rmp_fault(volatile u32 *event)
519 {
520 	struct iommu_dev_data *dev_data = NULL;
521 	int devid, flags_rmp, vmg_tag, flags;
522 	struct pci_dev *pdev;
523 	u64 gpa;
524 
525 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
526 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
527 	vmg_tag   = (event[1]) & 0xFFFF;
528 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
529 	gpa       = ((u64)event[3] << 32) | event[2];
530 
531 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
532 					   devid & 0xff);
533 	if (pdev)
534 		dev_data = dev_iommu_priv_get(&pdev->dev);
535 
536 	if (dev_data && __ratelimit(&dev_data->rs)) {
537 		pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
538 			vmg_tag, gpa, flags_rmp, flags);
539 	} else {
540 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
541 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
542 			vmg_tag, gpa, flags_rmp, flags);
543 	}
544 
545 	if (pdev)
546 		pci_dev_put(pdev);
547 }
548 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)549 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
550 					u64 address, int flags)
551 {
552 	struct iommu_dev_data *dev_data = NULL;
553 	struct pci_dev *pdev;
554 
555 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
556 					   devid & 0xff);
557 	if (pdev)
558 		dev_data = dev_iommu_priv_get(&pdev->dev);
559 
560 	if (dev_data && __ratelimit(&dev_data->rs)) {
561 		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
562 			domain_id, address, flags);
563 	} else if (printk_ratelimit()) {
564 		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
565 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
566 			domain_id, address, flags);
567 	}
568 
569 	if (pdev)
570 		pci_dev_put(pdev);
571 }
572 
iommu_print_event(struct amd_iommu * iommu,void * __evt)573 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
574 {
575 	struct device *dev = iommu->iommu.dev;
576 	int type, devid, flags, tag;
577 	volatile u32 *event = __evt;
578 	int count = 0;
579 	u64 address;
580 	u32 pasid;
581 
582 retry:
583 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
584 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
585 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
586 		  (event[1] & EVENT_DOMID_MASK_LO);
587 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
588 	address = (u64)(((u64)event[3]) << 32) | event[2];
589 
590 	if (type == 0) {
591 		/* Did we hit the erratum? */
592 		if (++count == LOOP_TIMEOUT) {
593 			pr_err("No event written to event log\n");
594 			return;
595 		}
596 		udelay(1);
597 		goto retry;
598 	}
599 
600 	if (type == EVENT_TYPE_IO_FAULT) {
601 		amd_iommu_report_page_fault(devid, pasid, address, flags);
602 		return;
603 	}
604 
605 	switch (type) {
606 	case EVENT_TYPE_ILL_DEV:
607 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
608 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
609 			pasid, address, flags);
610 		dump_dte_entry(devid);
611 		break;
612 	case EVENT_TYPE_DEV_TAB_ERR:
613 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
614 			"address=0x%llx flags=0x%04x]\n",
615 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 			address, flags);
617 		break;
618 	case EVENT_TYPE_PAGE_TAB_ERR:
619 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
620 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 			pasid, address, flags);
622 		break;
623 	case EVENT_TYPE_ILL_CMD:
624 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
625 		dump_command(address);
626 		break;
627 	case EVENT_TYPE_CMD_HARD_ERR:
628 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
629 			address, flags);
630 		break;
631 	case EVENT_TYPE_IOTLB_INV_TO:
632 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
633 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 			address);
635 		break;
636 	case EVENT_TYPE_INV_DEV_REQ:
637 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
638 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
639 			pasid, address, flags);
640 		break;
641 	case EVENT_TYPE_RMP_FAULT:
642 		amd_iommu_report_rmp_fault(event);
643 		break;
644 	case EVENT_TYPE_RMP_HW_ERR:
645 		amd_iommu_report_rmp_hw_error(event);
646 		break;
647 	case EVENT_TYPE_INV_PPR_REQ:
648 		pasid = PPR_PASID(*((u64 *)__evt));
649 		tag = event[1] & 0x03FF;
650 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
651 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
652 			pasid, address, flags, tag);
653 		break;
654 	default:
655 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
656 			event[0], event[1], event[2], event[3]);
657 	}
658 
659 	memset(__evt, 0, 4 * sizeof(u32));
660 }
661 
iommu_poll_events(struct amd_iommu * iommu)662 static void iommu_poll_events(struct amd_iommu *iommu)
663 {
664 	u32 head, tail;
665 
666 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
667 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
668 
669 	while (head != tail) {
670 		iommu_print_event(iommu, iommu->evt_buf + head);
671 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
672 	}
673 
674 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
675 }
676 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)677 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
678 {
679 	struct amd_iommu_fault fault;
680 
681 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
682 		pr_err_ratelimited("Unknown PPR request received\n");
683 		return;
684 	}
685 
686 	fault.address   = raw[1];
687 	fault.pasid     = PPR_PASID(raw[0]);
688 	fault.device_id = PPR_DEVID(raw[0]);
689 	fault.tag       = PPR_TAG(raw[0]);
690 	fault.flags     = PPR_FLAGS(raw[0]);
691 
692 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
693 }
694 
iommu_poll_ppr_log(struct amd_iommu * iommu)695 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
696 {
697 	u32 head, tail;
698 
699 	if (iommu->ppr_log == NULL)
700 		return;
701 
702 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
704 
705 	while (head != tail) {
706 		volatile u64 *raw;
707 		u64 entry[2];
708 		int i;
709 
710 		raw = (u64 *)(iommu->ppr_log + head);
711 
712 		/*
713 		 * Hardware bug: Interrupt may arrive before the entry is
714 		 * written to memory. If this happens we need to wait for the
715 		 * entry to arrive.
716 		 */
717 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
718 			if (PPR_REQ_TYPE(raw[0]) != 0)
719 				break;
720 			udelay(1);
721 		}
722 
723 		/* Avoid memcpy function-call overhead */
724 		entry[0] = raw[0];
725 		entry[1] = raw[1];
726 
727 		/*
728 		 * To detect the hardware bug we need to clear the entry
729 		 * back to zero.
730 		 */
731 		raw[0] = raw[1] = 0UL;
732 
733 		/* Update head pointer of hardware ring-buffer */
734 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
735 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
736 
737 		/* Handle PPR entry */
738 		iommu_handle_ppr_entry(iommu, entry);
739 
740 		/* Refresh ring-buffer information */
741 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
742 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
743 	}
744 }
745 
746 #ifdef CONFIG_IRQ_REMAP
747 static int (*iommu_ga_log_notifier)(u32);
748 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))749 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
750 {
751 	iommu_ga_log_notifier = notifier;
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
756 
iommu_poll_ga_log(struct amd_iommu * iommu)757 static void iommu_poll_ga_log(struct amd_iommu *iommu)
758 {
759 	u32 head, tail, cnt = 0;
760 
761 	if (iommu->ga_log == NULL)
762 		return;
763 
764 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
765 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
766 
767 	while (head != tail) {
768 		volatile u64 *raw;
769 		u64 log_entry;
770 
771 		raw = (u64 *)(iommu->ga_log + head);
772 		cnt++;
773 
774 		/* Avoid memcpy function-call overhead */
775 		log_entry = *raw;
776 
777 		/* Update head pointer of hardware ring-buffer */
778 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
779 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
780 
781 		/* Handle GA entry */
782 		switch (GA_REQ_TYPE(log_entry)) {
783 		case GA_GUEST_NR:
784 			if (!iommu_ga_log_notifier)
785 				break;
786 
787 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
788 				 __func__, GA_DEVID(log_entry),
789 				 GA_TAG(log_entry));
790 
791 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
792 				pr_err("GA log notifier failed.\n");
793 			break;
794 		default:
795 			break;
796 		}
797 	}
798 }
799 
800 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)801 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
802 {
803 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
804 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
805 		return;
806 
807 	dev_set_msi_domain(dev, iommu->msi_domain);
808 }
809 
810 #else /* CONFIG_IRQ_REMAP */
811 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)812 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
813 #endif /* !CONFIG_IRQ_REMAP */
814 
815 #define AMD_IOMMU_INT_MASK	\
816 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
817 	 MMIO_STATUS_EVT_INT_MASK | \
818 	 MMIO_STATUS_PPR_INT_MASK | \
819 	 MMIO_STATUS_GALOG_INT_MASK)
820 
amd_iommu_int_thread(int irq,void * data)821 irqreturn_t amd_iommu_int_thread(int irq, void *data)
822 {
823 	struct amd_iommu *iommu = (struct amd_iommu *) data;
824 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
825 
826 	while (status & AMD_IOMMU_INT_MASK) {
827 		/* Enable interrupt sources again */
828 		writel(AMD_IOMMU_INT_MASK,
829 			iommu->mmio_base + MMIO_STATUS_OFFSET);
830 
831 		if (status & MMIO_STATUS_EVT_INT_MASK) {
832 			pr_devel("Processing IOMMU Event Log\n");
833 			iommu_poll_events(iommu);
834 		}
835 
836 		if (status & MMIO_STATUS_PPR_INT_MASK) {
837 			pr_devel("Processing IOMMU PPR Log\n");
838 			iommu_poll_ppr_log(iommu);
839 		}
840 
841 #ifdef CONFIG_IRQ_REMAP
842 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
843 			pr_devel("Processing IOMMU GA Log\n");
844 			iommu_poll_ga_log(iommu);
845 		}
846 #endif
847 
848 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
849 			pr_info_ratelimited("IOMMU event log overflow\n");
850 			amd_iommu_restart_event_logging(iommu);
851 		}
852 
853 		/*
854 		 * Hardware bug: ERBT1312
855 		 * When re-enabling interrupt (by writing 1
856 		 * to clear the bit), the hardware might also try to set
857 		 * the interrupt bit in the event status register.
858 		 * In this scenario, the bit will be set, and disable
859 		 * subsequent interrupts.
860 		 *
861 		 * Workaround: The IOMMU driver should read back the
862 		 * status register and check if the interrupt bits are cleared.
863 		 * If not, driver will need to go through the interrupt handler
864 		 * again and re-clear the bits
865 		 */
866 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
867 	}
868 	return IRQ_HANDLED;
869 }
870 
amd_iommu_int_handler(int irq,void * data)871 irqreturn_t amd_iommu_int_handler(int irq, void *data)
872 {
873 	return IRQ_WAKE_THREAD;
874 }
875 
876 /****************************************************************************
877  *
878  * IOMMU command queuing functions
879  *
880  ****************************************************************************/
881 
wait_on_sem(struct amd_iommu * iommu,u64 data)882 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
883 {
884 	int i = 0;
885 
886 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
887 		udelay(1);
888 		i += 1;
889 	}
890 
891 	if (i == LOOP_TIMEOUT) {
892 		pr_alert("Completion-Wait loop timed out\n");
893 		return -EIO;
894 	}
895 
896 	return 0;
897 }
898 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)899 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
900 			       struct iommu_cmd *cmd)
901 {
902 	u8 *target;
903 	u32 tail;
904 
905 	/* Copy command to buffer */
906 	tail = iommu->cmd_buf_tail;
907 	target = iommu->cmd_buf + tail;
908 	memcpy(target, cmd, sizeof(*cmd));
909 
910 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
911 	iommu->cmd_buf_tail = tail;
912 
913 	/* Tell the IOMMU about it */
914 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
915 }
916 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)917 static void build_completion_wait(struct iommu_cmd *cmd,
918 				  struct amd_iommu *iommu,
919 				  u64 data)
920 {
921 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
922 
923 	memset(cmd, 0, sizeof(*cmd));
924 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
925 	cmd->data[1] = upper_32_bits(paddr);
926 	cmd->data[2] = lower_32_bits(data);
927 	cmd->data[3] = upper_32_bits(data);
928 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
929 }
930 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)931 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
932 {
933 	memset(cmd, 0, sizeof(*cmd));
934 	cmd->data[0] = devid;
935 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
936 }
937 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)938 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
939 				  size_t size, u16 domid, int pde)
940 {
941 	u64 pages;
942 	bool s;
943 
944 	pages = iommu_num_pages(address, size, PAGE_SIZE);
945 	s     = false;
946 
947 	if (pages > 1) {
948 		/*
949 		 * If we have to flush more than one page, flush all
950 		 * TLB entries for this domain
951 		 */
952 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
953 		s = true;
954 	}
955 
956 	address &= PAGE_MASK;
957 
958 	memset(cmd, 0, sizeof(*cmd));
959 	cmd->data[1] |= domid;
960 	cmd->data[2]  = lower_32_bits(address);
961 	cmd->data[3]  = upper_32_bits(address);
962 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
963 	if (s) /* size bit - we flush more than one 4kb page */
964 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
965 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
966 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
967 }
968 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)969 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
970 				  u64 address, size_t size)
971 {
972 	u64 pages;
973 	bool s;
974 
975 	pages = iommu_num_pages(address, size, PAGE_SIZE);
976 	s     = false;
977 
978 	if (pages > 1) {
979 		/*
980 		 * If we have to flush more than one page, flush all
981 		 * TLB entries for this domain
982 		 */
983 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
984 		s = true;
985 	}
986 
987 	address &= PAGE_MASK;
988 
989 	memset(cmd, 0, sizeof(*cmd));
990 	cmd->data[0]  = devid;
991 	cmd->data[0] |= (qdep & 0xff) << 24;
992 	cmd->data[1]  = devid;
993 	cmd->data[2]  = lower_32_bits(address);
994 	cmd->data[3]  = upper_32_bits(address);
995 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
996 	if (s)
997 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
998 }
999 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)1000 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1001 				  u64 address, bool size)
1002 {
1003 	memset(cmd, 0, sizeof(*cmd));
1004 
1005 	address &= ~(0xfffULL);
1006 
1007 	cmd->data[0]  = pasid;
1008 	cmd->data[1]  = domid;
1009 	cmd->data[2]  = lower_32_bits(address);
1010 	cmd->data[3]  = upper_32_bits(address);
1011 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1012 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1013 	if (size)
1014 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1015 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1016 }
1017 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)1018 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1019 				  int qdep, u64 address, bool size)
1020 {
1021 	memset(cmd, 0, sizeof(*cmd));
1022 
1023 	address &= ~(0xfffULL);
1024 
1025 	cmd->data[0]  = devid;
1026 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1027 	cmd->data[0] |= (qdep  & 0xff) << 24;
1028 	cmd->data[1]  = devid;
1029 	cmd->data[1] |= (pasid & 0xff) << 16;
1030 	cmd->data[2]  = lower_32_bits(address);
1031 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1032 	cmd->data[3]  = upper_32_bits(address);
1033 	if (size)
1034 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1035 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1036 }
1037 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)1038 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1039 			       int status, int tag, bool gn)
1040 {
1041 	memset(cmd, 0, sizeof(*cmd));
1042 
1043 	cmd->data[0]  = devid;
1044 	if (gn) {
1045 		cmd->data[1]  = pasid;
1046 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1047 	}
1048 	cmd->data[3]  = tag & 0x1ff;
1049 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1050 
1051 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1052 }
1053 
build_inv_all(struct iommu_cmd * cmd)1054 static void build_inv_all(struct iommu_cmd *cmd)
1055 {
1056 	memset(cmd, 0, sizeof(*cmd));
1057 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1058 }
1059 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1060 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1061 {
1062 	memset(cmd, 0, sizeof(*cmd));
1063 	cmd->data[0] = devid;
1064 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1065 }
1066 
1067 /*
1068  * Writes the command to the IOMMUs command buffer and informs the
1069  * hardware about the new command.
1070  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1071 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1072 				      struct iommu_cmd *cmd,
1073 				      bool sync)
1074 {
1075 	unsigned int count = 0;
1076 	u32 left, next_tail;
1077 
1078 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1079 again:
1080 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1081 
1082 	if (left <= 0x20) {
1083 		/* Skip udelay() the first time around */
1084 		if (count++) {
1085 			if (count == LOOP_TIMEOUT) {
1086 				pr_err("Command buffer timeout\n");
1087 				return -EIO;
1088 			}
1089 
1090 			udelay(1);
1091 		}
1092 
1093 		/* Update head and recheck remaining space */
1094 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1095 					    MMIO_CMD_HEAD_OFFSET);
1096 
1097 		goto again;
1098 	}
1099 
1100 	copy_cmd_to_buffer(iommu, cmd);
1101 
1102 	/* Do we need to make sure all commands are processed? */
1103 	iommu->need_sync = sync;
1104 
1105 	return 0;
1106 }
1107 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1108 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1109 				    struct iommu_cmd *cmd,
1110 				    bool sync)
1111 {
1112 	unsigned long flags;
1113 	int ret;
1114 
1115 	raw_spin_lock_irqsave(&iommu->lock, flags);
1116 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1117 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1118 
1119 	return ret;
1120 }
1121 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1122 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1123 {
1124 	return iommu_queue_command_sync(iommu, cmd, true);
1125 }
1126 
1127 /*
1128  * This function queues a completion wait command into the command
1129  * buffer of an IOMMU
1130  */
iommu_completion_wait(struct amd_iommu * iommu)1131 static int iommu_completion_wait(struct amd_iommu *iommu)
1132 {
1133 	struct iommu_cmd cmd;
1134 	unsigned long flags;
1135 	int ret;
1136 	u64 data;
1137 
1138 	if (!iommu->need_sync)
1139 		return 0;
1140 
1141 	raw_spin_lock_irqsave(&iommu->lock, flags);
1142 
1143 	data = ++iommu->cmd_sem_val;
1144 	build_completion_wait(&cmd, iommu, data);
1145 
1146 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1147 	if (ret)
1148 		goto out_unlock;
1149 
1150 	ret = wait_on_sem(iommu, data);
1151 
1152 out_unlock:
1153 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1154 
1155 	return ret;
1156 }
1157 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1158 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1159 {
1160 	struct iommu_cmd cmd;
1161 
1162 	build_inv_dte(&cmd, devid);
1163 
1164 	return iommu_queue_command(iommu, &cmd);
1165 }
1166 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1167 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1168 {
1169 	u32 devid;
1170 
1171 	for (devid = 0; devid <= 0xffff; ++devid)
1172 		iommu_flush_dte(iommu, devid);
1173 
1174 	iommu_completion_wait(iommu);
1175 }
1176 
1177 /*
1178  * This function uses heavy locking and may disable irqs for some time. But
1179  * this is no issue because it is only called during resume.
1180  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1181 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1182 {
1183 	u32 dom_id;
1184 
1185 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1186 		struct iommu_cmd cmd;
1187 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1188 				      dom_id, 1);
1189 		iommu_queue_command(iommu, &cmd);
1190 	}
1191 
1192 	iommu_completion_wait(iommu);
1193 }
1194 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1195 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1196 {
1197 	struct iommu_cmd cmd;
1198 
1199 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1200 			      dom_id, 1);
1201 	iommu_queue_command(iommu, &cmd);
1202 
1203 	iommu_completion_wait(iommu);
1204 }
1205 
amd_iommu_flush_all(struct amd_iommu * iommu)1206 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1207 {
1208 	struct iommu_cmd cmd;
1209 
1210 	build_inv_all(&cmd);
1211 
1212 	iommu_queue_command(iommu, &cmd);
1213 	iommu_completion_wait(iommu);
1214 }
1215 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1216 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1217 {
1218 	struct iommu_cmd cmd;
1219 
1220 	build_inv_irt(&cmd, devid);
1221 
1222 	iommu_queue_command(iommu, &cmd);
1223 }
1224 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1225 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1226 {
1227 	u32 devid;
1228 
1229 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1230 		iommu_flush_irt(iommu, devid);
1231 
1232 	iommu_completion_wait(iommu);
1233 }
1234 
iommu_flush_all_caches(struct amd_iommu * iommu)1235 void iommu_flush_all_caches(struct amd_iommu *iommu)
1236 {
1237 	if (iommu_feature(iommu, FEATURE_IA)) {
1238 		amd_iommu_flush_all(iommu);
1239 	} else {
1240 		amd_iommu_flush_dte_all(iommu);
1241 		amd_iommu_flush_irt_all(iommu);
1242 		amd_iommu_flush_tlb_all(iommu);
1243 	}
1244 }
1245 
1246 /*
1247  * Command send function for flushing on-device TLB
1248  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1249 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1250 			      u64 address, size_t size)
1251 {
1252 	struct amd_iommu *iommu;
1253 	struct iommu_cmd cmd;
1254 	int qdep;
1255 
1256 	qdep     = dev_data->ats.qdep;
1257 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1258 
1259 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1260 
1261 	return iommu_queue_command(iommu, &cmd);
1262 }
1263 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1264 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1265 {
1266 	struct amd_iommu *iommu = data;
1267 
1268 	return iommu_flush_dte(iommu, alias);
1269 }
1270 
1271 /*
1272  * Command send function for invalidating a device table entry
1273  */
device_flush_dte(struct iommu_dev_data * dev_data)1274 static int device_flush_dte(struct iommu_dev_data *dev_data)
1275 {
1276 	struct amd_iommu *iommu;
1277 	u16 alias;
1278 	int ret;
1279 
1280 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1281 
1282 	if (dev_data->pdev)
1283 		ret = pci_for_each_dma_alias(dev_data->pdev,
1284 					     device_flush_dte_alias, iommu);
1285 	else
1286 		ret = iommu_flush_dte(iommu, dev_data->devid);
1287 	if (ret)
1288 		return ret;
1289 
1290 	alias = amd_iommu_alias_table[dev_data->devid];
1291 	if (alias != dev_data->devid) {
1292 		ret = iommu_flush_dte(iommu, alias);
1293 		if (ret)
1294 			return ret;
1295 	}
1296 
1297 	if (dev_data->ats.enabled)
1298 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1299 
1300 	return ret;
1301 }
1302 
1303 /*
1304  * TLB invalidation function which is called from the mapping functions.
1305  * It invalidates a single PTE if the range to flush is within a single
1306  * page. Otherwise it flushes the whole TLB of the IOMMU.
1307  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1308 static void __domain_flush_pages(struct protection_domain *domain,
1309 				 u64 address, size_t size, int pde)
1310 {
1311 	struct iommu_dev_data *dev_data;
1312 	struct iommu_cmd cmd;
1313 	int ret = 0, i;
1314 
1315 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1316 
1317 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1318 		if (!domain->dev_iommu[i])
1319 			continue;
1320 
1321 		/*
1322 		 * Devices of this domain are behind this IOMMU
1323 		 * We need a TLB flush
1324 		 */
1325 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1326 	}
1327 
1328 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1329 
1330 		if (!dev_data->ats.enabled)
1331 			continue;
1332 
1333 		ret |= device_flush_iotlb(dev_data, address, size);
1334 	}
1335 
1336 	WARN_ON(ret);
1337 }
1338 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1339 static void domain_flush_pages(struct protection_domain *domain,
1340 			       u64 address, size_t size)
1341 {
1342 	__domain_flush_pages(domain, address, size, 0);
1343 }
1344 
1345 /* Flush the whole IO/TLB for a given protection domain - including PDE */
domain_flush_tlb_pde(struct protection_domain * domain)1346 static void domain_flush_tlb_pde(struct protection_domain *domain)
1347 {
1348 	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1349 }
1350 
domain_flush_complete(struct protection_domain * domain)1351 static void domain_flush_complete(struct protection_domain *domain)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1356 		if (domain && !domain->dev_iommu[i])
1357 			continue;
1358 
1359 		/*
1360 		 * Devices of this domain are behind this IOMMU
1361 		 * We need to wait for completion of all commands.
1362 		 */
1363 		iommu_completion_wait(amd_iommus[i]);
1364 	}
1365 }
1366 
1367 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1368 static void domain_flush_np_cache(struct protection_domain *domain,
1369 		dma_addr_t iova, size_t size)
1370 {
1371 	if (unlikely(amd_iommu_np_cache)) {
1372 		unsigned long flags;
1373 
1374 		spin_lock_irqsave(&domain->lock, flags);
1375 		domain_flush_pages(domain, iova, size);
1376 		domain_flush_complete(domain);
1377 		spin_unlock_irqrestore(&domain->lock, flags);
1378 	}
1379 }
1380 
1381 
1382 /*
1383  * This function flushes the DTEs for all devices in domain
1384  */
domain_flush_devices(struct protection_domain * domain)1385 static void domain_flush_devices(struct protection_domain *domain)
1386 {
1387 	struct iommu_dev_data *dev_data;
1388 
1389 	list_for_each_entry(dev_data, &domain->dev_list, list)
1390 		device_flush_dte(dev_data);
1391 }
1392 
1393 /****************************************************************************
1394  *
1395  * The functions below are used the create the page table mappings for
1396  * unity mapped regions.
1397  *
1398  ****************************************************************************/
1399 
free_page_list(struct page * freelist)1400 static void free_page_list(struct page *freelist)
1401 {
1402 	while (freelist != NULL) {
1403 		unsigned long p = (unsigned long)page_address(freelist);
1404 		freelist = freelist->freelist;
1405 		free_page(p);
1406 	}
1407 }
1408 
free_pt_page(unsigned long pt,struct page * freelist)1409 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1410 {
1411 	struct page *p = virt_to_page((void *)pt);
1412 
1413 	p->freelist = freelist;
1414 
1415 	return p;
1416 }
1417 
1418 #define DEFINE_FREE_PT_FN(LVL, FN)						\
1419 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
1420 {										\
1421 	unsigned long p;							\
1422 	u64 *pt;								\
1423 	int i;									\
1424 										\
1425 	pt = (u64 *)__pt;							\
1426 										\
1427 	for (i = 0; i < 512; ++i) {						\
1428 		/* PTE present? */						\
1429 		if (!IOMMU_PTE_PRESENT(pt[i]))					\
1430 			continue;						\
1431 										\
1432 		/* Large PTE? */						\
1433 		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
1434 		    PM_PTE_LEVEL(pt[i]) == 7)					\
1435 			continue;						\
1436 										\
1437 		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
1438 		freelist = FN(p, freelist);					\
1439 	}									\
1440 										\
1441 	return free_pt_page((unsigned long)pt, freelist);			\
1442 }
1443 
DEFINE_FREE_PT_FN(l2,free_pt_page)1444 DEFINE_FREE_PT_FN(l2, free_pt_page)
1445 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1446 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1447 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1448 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1449 
1450 static struct page *free_sub_pt(unsigned long root, int mode,
1451 				struct page *freelist)
1452 {
1453 	switch (mode) {
1454 	case PAGE_MODE_NONE:
1455 	case PAGE_MODE_7_LEVEL:
1456 		break;
1457 	case PAGE_MODE_1_LEVEL:
1458 		freelist = free_pt_page(root, freelist);
1459 		break;
1460 	case PAGE_MODE_2_LEVEL:
1461 		freelist = free_pt_l2(root, freelist);
1462 		break;
1463 	case PAGE_MODE_3_LEVEL:
1464 		freelist = free_pt_l3(root, freelist);
1465 		break;
1466 	case PAGE_MODE_4_LEVEL:
1467 		freelist = free_pt_l4(root, freelist);
1468 		break;
1469 	case PAGE_MODE_5_LEVEL:
1470 		freelist = free_pt_l5(root, freelist);
1471 		break;
1472 	case PAGE_MODE_6_LEVEL:
1473 		freelist = free_pt_l6(root, freelist);
1474 		break;
1475 	default:
1476 		BUG();
1477 	}
1478 
1479 	return freelist;
1480 }
1481 
free_pagetable(struct domain_pgtable * pgtable)1482 static void free_pagetable(struct domain_pgtable *pgtable)
1483 {
1484 	struct page *freelist = NULL;
1485 	unsigned long root;
1486 
1487 	if (pgtable->mode == PAGE_MODE_NONE)
1488 		return;
1489 
1490 	BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
1491 	       pgtable->mode > PAGE_MODE_6_LEVEL);
1492 
1493 	root = (unsigned long)pgtable->root;
1494 	freelist = free_sub_pt(root, pgtable->mode, freelist);
1495 
1496 	free_page_list(freelist);
1497 }
1498 
1499 /*
1500  * This function is used to add another level to an IO page table. Adding
1501  * another level increases the size of the address space by 9 bits to a size up
1502  * to 64 bits.
1503  */
increase_address_space(struct protection_domain * domain,unsigned long address,gfp_t gfp)1504 static bool increase_address_space(struct protection_domain *domain,
1505 				   unsigned long address,
1506 				   gfp_t gfp)
1507 {
1508 	struct domain_pgtable pgtable;
1509 	unsigned long flags;
1510 	bool ret = true;
1511 	u64 *pte;
1512 
1513 	pte = (void *)get_zeroed_page(gfp);
1514 	if (!pte)
1515 		return false;
1516 
1517 	spin_lock_irqsave(&domain->lock, flags);
1518 
1519 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1520 
1521 	if (address <= PM_LEVEL_SIZE(pgtable.mode))
1522 		goto out;
1523 
1524 	ret = false;
1525 	if (WARN_ON_ONCE(pgtable.mode == PAGE_MODE_6_LEVEL))
1526 		goto out;
1527 
1528 	*pte = PM_LEVEL_PDE(pgtable.mode, iommu_virt_to_phys(pgtable.root));
1529 
1530 	pgtable.root  = pte;
1531 	pgtable.mode += 1;
1532 	update_and_flush_device_table(domain, &pgtable);
1533 	domain_flush_complete(domain);
1534 
1535 	/*
1536 	 * Device Table needs to be updated and flushed before the new root can
1537 	 * be published.
1538 	 */
1539 	amd_iommu_domain_set_pgtable(domain, pte, pgtable.mode);
1540 
1541 	pte = NULL;
1542 	ret = true;
1543 
1544 out:
1545 	spin_unlock_irqrestore(&domain->lock, flags);
1546 	free_page((unsigned long)pte);
1547 
1548 	return ret;
1549 }
1550 
alloc_pte(struct protection_domain * domain,unsigned long address,unsigned long page_size,u64 ** pte_page,gfp_t gfp,bool * updated)1551 static u64 *alloc_pte(struct protection_domain *domain,
1552 		      unsigned long address,
1553 		      unsigned long page_size,
1554 		      u64 **pte_page,
1555 		      gfp_t gfp,
1556 		      bool *updated)
1557 {
1558 	struct domain_pgtable pgtable;
1559 	int level, end_lvl;
1560 	u64 *pte, *page;
1561 
1562 	BUG_ON(!is_power_of_2(page_size));
1563 
1564 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1565 
1566 	while (address > PM_LEVEL_SIZE(pgtable.mode)) {
1567 		/*
1568 		 * Return an error if there is no memory to update the
1569 		 * page-table.
1570 		 */
1571 		if (!increase_address_space(domain, address, gfp))
1572 			return NULL;
1573 
1574 		/* Read new values to check if update was successful */
1575 		amd_iommu_domain_get_pgtable(domain, &pgtable);
1576 	}
1577 
1578 
1579 	level   = pgtable.mode - 1;
1580 	pte     = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1581 	address = PAGE_SIZE_ALIGN(address, page_size);
1582 	end_lvl = PAGE_SIZE_LEVEL(page_size);
1583 
1584 	while (level > end_lvl) {
1585 		u64 __pte, __npte;
1586 		int pte_level;
1587 
1588 		__pte     = *pte;
1589 		pte_level = PM_PTE_LEVEL(__pte);
1590 
1591 		/*
1592 		 * If we replace a series of large PTEs, we need
1593 		 * to tear down all of them.
1594 		 */
1595 		if (IOMMU_PTE_PRESENT(__pte) &&
1596 		    pte_level == PAGE_MODE_7_LEVEL) {
1597 			unsigned long count, i;
1598 			u64 *lpte;
1599 
1600 			lpte = first_pte_l7(pte, NULL, &count);
1601 
1602 			/*
1603 			 * Unmap the replicated PTEs that still match the
1604 			 * original large mapping
1605 			 */
1606 			for (i = 0; i < count; ++i)
1607 				cmpxchg64(&lpte[i], __pte, 0ULL);
1608 
1609 			*updated = true;
1610 			continue;
1611 		}
1612 
1613 		if (!IOMMU_PTE_PRESENT(__pte) ||
1614 		    pte_level == PAGE_MODE_NONE) {
1615 			page = (u64 *)get_zeroed_page(gfp);
1616 
1617 			if (!page)
1618 				return NULL;
1619 
1620 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1621 
1622 			/* pte could have been changed somewhere. */
1623 			if (cmpxchg64(pte, __pte, __npte) != __pte)
1624 				free_page((unsigned long)page);
1625 			else if (IOMMU_PTE_PRESENT(__pte))
1626 				*updated = true;
1627 
1628 			continue;
1629 		}
1630 
1631 		/* No level skipping support yet */
1632 		if (pte_level != level)
1633 			return NULL;
1634 
1635 		level -= 1;
1636 
1637 		pte = IOMMU_PTE_PAGE(__pte);
1638 
1639 		if (pte_page && level == end_lvl)
1640 			*pte_page = pte;
1641 
1642 		pte = &pte[PM_LEVEL_INDEX(level, address)];
1643 	}
1644 
1645 	return pte;
1646 }
1647 
1648 /*
1649  * This function checks if there is a PTE for a given dma address. If
1650  * there is one, it returns the pointer to it.
1651  */
fetch_pte(struct protection_domain * domain,unsigned long address,unsigned long * page_size)1652 static u64 *fetch_pte(struct protection_domain *domain,
1653 		      unsigned long address,
1654 		      unsigned long *page_size)
1655 {
1656 	struct domain_pgtable pgtable;
1657 	int level;
1658 	u64 *pte;
1659 
1660 	*page_size = 0;
1661 
1662 	amd_iommu_domain_get_pgtable(domain, &pgtable);
1663 
1664 	if (address > PM_LEVEL_SIZE(pgtable.mode))
1665 		return NULL;
1666 
1667 	level	   =  pgtable.mode - 1;
1668 	pte	   = &pgtable.root[PM_LEVEL_INDEX(level, address)];
1669 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1670 
1671 	while (level > 0) {
1672 
1673 		/* Not Present */
1674 		if (!IOMMU_PTE_PRESENT(*pte))
1675 			return NULL;
1676 
1677 		/* Large PTE */
1678 		if (PM_PTE_LEVEL(*pte) == 7 ||
1679 		    PM_PTE_LEVEL(*pte) == 0)
1680 			break;
1681 
1682 		/* No level skipping support yet */
1683 		if (PM_PTE_LEVEL(*pte) != level)
1684 			return NULL;
1685 
1686 		level -= 1;
1687 
1688 		/* Walk to the next level */
1689 		pte	   = IOMMU_PTE_PAGE(*pte);
1690 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
1691 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
1692 	}
1693 
1694 	/*
1695 	 * If we have a series of large PTEs, make
1696 	 * sure to return a pointer to the first one.
1697 	 */
1698 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1699 		pte = first_pte_l7(pte, page_size, NULL);
1700 
1701 	return pte;
1702 }
1703 
free_clear_pte(u64 * pte,u64 pteval,struct page * freelist)1704 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1705 {
1706 	unsigned long pt;
1707 	int mode;
1708 
1709 	while (cmpxchg64(pte, pteval, 0) != pteval) {
1710 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1711 		pteval = *pte;
1712 	}
1713 
1714 	if (!IOMMU_PTE_PRESENT(pteval))
1715 		return freelist;
1716 
1717 	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
1718 	mode = IOMMU_PTE_MODE(pteval);
1719 
1720 	return free_sub_pt(pt, mode, freelist);
1721 }
1722 
1723 /*
1724  * Generic mapping functions. It maps a physical address into a DMA
1725  * address space. It allocates the page table pages if necessary.
1726  * In the future it can be extended to a generic mapping function
1727  * supporting all features of AMD IOMMU page tables like level skipping
1728  * and full 64 bit address spaces.
1729  */
iommu_map_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long phys_addr,unsigned long page_size,int prot,gfp_t gfp)1730 static int iommu_map_page(struct protection_domain *dom,
1731 			  unsigned long bus_addr,
1732 			  unsigned long phys_addr,
1733 			  unsigned long page_size,
1734 			  int prot,
1735 			  gfp_t gfp)
1736 {
1737 	struct page *freelist = NULL;
1738 	bool updated = false;
1739 	u64 __pte, *pte;
1740 	int ret, i, count;
1741 
1742 	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1743 	BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1744 
1745 	ret = -EINVAL;
1746 	if (!(prot & IOMMU_PROT_MASK))
1747 		goto out;
1748 
1749 	count = PAGE_SIZE_PTE_COUNT(page_size);
1750 	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1751 
1752 	ret = -ENOMEM;
1753 	if (!pte)
1754 		goto out;
1755 
1756 	for (i = 0; i < count; ++i)
1757 		freelist = free_clear_pte(&pte[i], pte[i], freelist);
1758 
1759 	if (freelist != NULL)
1760 		updated = true;
1761 
1762 	if (count > 1) {
1763 		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1764 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1765 	} else
1766 		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1767 
1768 	if (prot & IOMMU_PROT_IR)
1769 		__pte |= IOMMU_PTE_IR;
1770 	if (prot & IOMMU_PROT_IW)
1771 		__pte |= IOMMU_PTE_IW;
1772 
1773 	for (i = 0; i < count; ++i)
1774 		pte[i] = __pte;
1775 
1776 	ret = 0;
1777 
1778 out:
1779 	if (updated) {
1780 		unsigned long flags;
1781 
1782 		spin_lock_irqsave(&dom->lock, flags);
1783 		/*
1784 		 * Flush domain TLB(s) and wait for completion. Any Device-Table
1785 		 * Updates and flushing already happened in
1786 		 * increase_address_space().
1787 		 */
1788 		domain_flush_tlb_pde(dom);
1789 		domain_flush_complete(dom);
1790 		spin_unlock_irqrestore(&dom->lock, flags);
1791 	}
1792 
1793 	/* Everything flushed out, free pages now */
1794 	free_page_list(freelist);
1795 
1796 	return ret;
1797 }
1798 
iommu_unmap_page(struct protection_domain * dom,unsigned long bus_addr,unsigned long page_size)1799 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1800 				      unsigned long bus_addr,
1801 				      unsigned long page_size)
1802 {
1803 	unsigned long long unmapped;
1804 	unsigned long unmap_size;
1805 	u64 *pte;
1806 
1807 	BUG_ON(!is_power_of_2(page_size));
1808 
1809 	unmapped = 0;
1810 
1811 	while (unmapped < page_size) {
1812 
1813 		pte = fetch_pte(dom, bus_addr, &unmap_size);
1814 
1815 		if (pte) {
1816 			int i, count;
1817 
1818 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1819 			for (i = 0; i < count; i++)
1820 				pte[i] = 0ULL;
1821 		}
1822 
1823 		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1824 		unmapped += unmap_size;
1825 	}
1826 
1827 	BUG_ON(unmapped && !is_power_of_2(unmapped));
1828 
1829 	return unmapped;
1830 }
1831 
1832 /****************************************************************************
1833  *
1834  * The next functions belong to the domain allocation. A domain is
1835  * allocated for every IOMMU as the default domain. If device isolation
1836  * is enabled, every device get its own domain. The most important thing
1837  * about domains is the page table mapping the DMA address space they
1838  * contain.
1839  *
1840  ****************************************************************************/
1841 
domain_id_alloc(void)1842 static u16 domain_id_alloc(void)
1843 {
1844 	int id;
1845 
1846 	spin_lock(&pd_bitmap_lock);
1847 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1848 	BUG_ON(id == 0);
1849 	if (id > 0 && id < MAX_DOMAIN_ID)
1850 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1851 	else
1852 		id = 0;
1853 	spin_unlock(&pd_bitmap_lock);
1854 
1855 	return id;
1856 }
1857 
domain_id_free(int id)1858 static void domain_id_free(int id)
1859 {
1860 	spin_lock(&pd_bitmap_lock);
1861 	if (id > 0 && id < MAX_DOMAIN_ID)
1862 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1863 	spin_unlock(&pd_bitmap_lock);
1864 }
1865 
free_gcr3_tbl_level1(u64 * tbl)1866 static void free_gcr3_tbl_level1(u64 *tbl)
1867 {
1868 	u64 *ptr;
1869 	int i;
1870 
1871 	for (i = 0; i < 512; ++i) {
1872 		if (!(tbl[i] & GCR3_VALID))
1873 			continue;
1874 
1875 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1876 
1877 		free_page((unsigned long)ptr);
1878 	}
1879 }
1880 
free_gcr3_tbl_level2(u64 * tbl)1881 static void free_gcr3_tbl_level2(u64 *tbl)
1882 {
1883 	u64 *ptr;
1884 	int i;
1885 
1886 	for (i = 0; i < 512; ++i) {
1887 		if (!(tbl[i] & GCR3_VALID))
1888 			continue;
1889 
1890 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1891 
1892 		free_gcr3_tbl_level1(ptr);
1893 	}
1894 }
1895 
free_gcr3_table(struct protection_domain * domain)1896 static void free_gcr3_table(struct protection_domain *domain)
1897 {
1898 	if (domain->glx == 2)
1899 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1900 	else if (domain->glx == 1)
1901 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1902 	else
1903 		BUG_ON(domain->glx != 0);
1904 
1905 	free_page((unsigned long)domain->gcr3_tbl);
1906 }
1907 
set_dte_entry(u16 devid,struct protection_domain * domain,struct domain_pgtable * pgtable,bool ats,bool ppr)1908 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1909 			  struct domain_pgtable *pgtable,
1910 			  bool ats, bool ppr)
1911 {
1912 	u64 pte_root = 0;
1913 	u64 flags = 0;
1914 	u32 old_domid;
1915 
1916 	if (pgtable->mode != PAGE_MODE_NONE)
1917 		pte_root = iommu_virt_to_phys(pgtable->root);
1918 
1919 	pte_root |= (pgtable->mode & DEV_ENTRY_MODE_MASK)
1920 		    << DEV_ENTRY_MODE_SHIFT;
1921 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1922 
1923 	flags = amd_iommu_dev_table[devid].data[1];
1924 
1925 	if (ats)
1926 		flags |= DTE_FLAG_IOTLB;
1927 
1928 	if (ppr) {
1929 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1930 
1931 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1932 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1933 	}
1934 
1935 	if (domain->flags & PD_IOMMUV2_MASK) {
1936 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1937 		u64 glx  = domain->glx;
1938 		u64 tmp;
1939 
1940 		pte_root |= DTE_FLAG_GV;
1941 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1942 
1943 		/* First mask out possible old values for GCR3 table */
1944 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1945 		flags    &= ~tmp;
1946 
1947 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1948 		flags    &= ~tmp;
1949 
1950 		/* Encode GCR3 table into DTE */
1951 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1952 		pte_root |= tmp;
1953 
1954 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1955 		flags    |= tmp;
1956 
1957 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1958 		flags    |= tmp;
1959 	}
1960 
1961 	flags &= ~DEV_DOMID_MASK;
1962 	flags |= domain->id;
1963 
1964 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1965 	amd_iommu_dev_table[devid].data[1]  = flags;
1966 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1967 
1968 	/*
1969 	 * A kdump kernel might be replacing a domain ID that was copied from
1970 	 * the previous kernel--if so, it needs to flush the translation cache
1971 	 * entries for the old domain ID that is being overwritten
1972 	 */
1973 	if (old_domid) {
1974 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1975 
1976 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1977 	}
1978 }
1979 
clear_dte_entry(u16 devid)1980 static void clear_dte_entry(u16 devid)
1981 {
1982 	/* remove entry from the device table seen by the hardware */
1983 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1984 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1985 
1986 	amd_iommu_apply_erratum_63(devid);
1987 }
1988 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1989 static void do_attach(struct iommu_dev_data *dev_data,
1990 		      struct protection_domain *domain)
1991 {
1992 	struct domain_pgtable pgtable;
1993 	struct amd_iommu *iommu;
1994 	bool ats;
1995 
1996 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1997 	ats   = dev_data->ats.enabled;
1998 
1999 	/* Update data structures */
2000 	dev_data->domain = domain;
2001 	list_add(&dev_data->list, &domain->dev_list);
2002 
2003 	/* Do reference counting */
2004 	domain->dev_iommu[iommu->index] += 1;
2005 	domain->dev_cnt                 += 1;
2006 
2007 	/* Update device table */
2008 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2009 	set_dte_entry(dev_data->devid, domain, &pgtable,
2010 		      ats, dev_data->iommu_v2);
2011 	clone_aliases(dev_data->pdev);
2012 
2013 	device_flush_dte(dev_data);
2014 }
2015 
do_detach(struct iommu_dev_data * dev_data)2016 static void do_detach(struct iommu_dev_data *dev_data)
2017 {
2018 	struct protection_domain *domain = dev_data->domain;
2019 	struct amd_iommu *iommu;
2020 
2021 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2022 
2023 	/* Update data structures */
2024 	dev_data->domain = NULL;
2025 	list_del(&dev_data->list);
2026 	clear_dte_entry(dev_data->devid);
2027 	clone_aliases(dev_data->pdev);
2028 
2029 	/* Flush the DTE entry */
2030 	device_flush_dte(dev_data);
2031 
2032 	/* Flush IOTLB */
2033 	domain_flush_tlb_pde(domain);
2034 
2035 	/* Wait for the flushes to finish */
2036 	domain_flush_complete(domain);
2037 
2038 	/* decrease reference counters - needs to happen after the flushes */
2039 	domain->dev_iommu[iommu->index] -= 1;
2040 	domain->dev_cnt                 -= 1;
2041 }
2042 
pdev_iommuv2_disable(struct pci_dev * pdev)2043 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2044 {
2045 	pci_disable_ats(pdev);
2046 	pci_disable_pri(pdev);
2047 	pci_disable_pasid(pdev);
2048 }
2049 
2050 /* FIXME: Change generic reset-function to do the same */
pri_reset_while_enabled(struct pci_dev * pdev)2051 static int pri_reset_while_enabled(struct pci_dev *pdev)
2052 {
2053 	u16 control;
2054 	int pos;
2055 
2056 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2057 	if (!pos)
2058 		return -EINVAL;
2059 
2060 	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2061 	control |= PCI_PRI_CTRL_RESET;
2062 	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2063 
2064 	return 0;
2065 }
2066 
pdev_iommuv2_enable(struct pci_dev * pdev)2067 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2068 {
2069 	bool reset_enable;
2070 	int reqs, ret;
2071 
2072 	/* FIXME: Hardcode number of outstanding requests for now */
2073 	reqs = 32;
2074 	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2075 		reqs = 1;
2076 	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2077 
2078 	/* Only allow access to user-accessible pages */
2079 	ret = pci_enable_pasid(pdev, 0);
2080 	if (ret)
2081 		goto out_err;
2082 
2083 	/* First reset the PRI state of the device */
2084 	ret = pci_reset_pri(pdev);
2085 	if (ret)
2086 		goto out_err;
2087 
2088 	/* Enable PRI */
2089 	ret = pci_enable_pri(pdev, reqs);
2090 	if (ret)
2091 		goto out_err;
2092 
2093 	if (reset_enable) {
2094 		ret = pri_reset_while_enabled(pdev);
2095 		if (ret)
2096 			goto out_err;
2097 	}
2098 
2099 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
2100 	if (ret)
2101 		goto out_err;
2102 
2103 	return 0;
2104 
2105 out_err:
2106 	pci_disable_pri(pdev);
2107 	pci_disable_pasid(pdev);
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * If a device is not yet associated with a domain, this function makes the
2114  * device visible in the domain
2115  */
attach_device(struct device * dev,struct protection_domain * domain)2116 static int attach_device(struct device *dev,
2117 			 struct protection_domain *domain)
2118 {
2119 	struct iommu_dev_data *dev_data;
2120 	struct pci_dev *pdev;
2121 	unsigned long flags;
2122 	int ret;
2123 
2124 	spin_lock_irqsave(&domain->lock, flags);
2125 
2126 	dev_data = dev_iommu_priv_get(dev);
2127 
2128 	spin_lock(&dev_data->lock);
2129 
2130 	ret = -EBUSY;
2131 	if (dev_data->domain != NULL)
2132 		goto out;
2133 
2134 	if (!dev_is_pci(dev))
2135 		goto skip_ats_check;
2136 
2137 	pdev = to_pci_dev(dev);
2138 	if (domain->flags & PD_IOMMUV2_MASK) {
2139 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
2140 
2141 		ret = -EINVAL;
2142 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
2143 			goto out;
2144 
2145 		if (dev_data->iommu_v2) {
2146 			if (pdev_iommuv2_enable(pdev) != 0)
2147 				goto out;
2148 
2149 			dev_data->ats.enabled = true;
2150 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2151 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
2152 		}
2153 	} else if (amd_iommu_iotlb_sup &&
2154 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2155 		dev_data->ats.enabled = true;
2156 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2157 	}
2158 
2159 skip_ats_check:
2160 	ret = 0;
2161 
2162 	do_attach(dev_data, domain);
2163 
2164 	/*
2165 	 * We might boot into a crash-kernel here. The crashed kernel
2166 	 * left the caches in the IOMMU dirty. So we have to flush
2167 	 * here to evict all dirty stuff.
2168 	 */
2169 	domain_flush_tlb_pde(domain);
2170 
2171 	domain_flush_complete(domain);
2172 
2173 out:
2174 	spin_unlock(&dev_data->lock);
2175 
2176 	spin_unlock_irqrestore(&domain->lock, flags);
2177 
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Removes a device from a protection domain (with devtable_lock held)
2183  */
detach_device(struct device * dev)2184 static void detach_device(struct device *dev)
2185 {
2186 	struct protection_domain *domain;
2187 	struct iommu_dev_data *dev_data;
2188 	unsigned long flags;
2189 
2190 	dev_data = dev_iommu_priv_get(dev);
2191 	domain   = dev_data->domain;
2192 
2193 	spin_lock_irqsave(&domain->lock, flags);
2194 
2195 	spin_lock(&dev_data->lock);
2196 
2197 	/*
2198 	 * First check if the device is still attached. It might already
2199 	 * be detached from its domain because the generic
2200 	 * iommu_detach_group code detached it and we try again here in
2201 	 * our alias handling.
2202 	 */
2203 	if (WARN_ON(!dev_data->domain))
2204 		goto out;
2205 
2206 	do_detach(dev_data);
2207 
2208 	if (!dev_is_pci(dev))
2209 		goto out;
2210 
2211 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2212 		pdev_iommuv2_disable(to_pci_dev(dev));
2213 	else if (dev_data->ats.enabled)
2214 		pci_disable_ats(to_pci_dev(dev));
2215 
2216 	dev_data->ats.enabled = false;
2217 
2218 out:
2219 	spin_unlock(&dev_data->lock);
2220 
2221 	spin_unlock_irqrestore(&domain->lock, flags);
2222 }
2223 
amd_iommu_probe_device(struct device * dev)2224 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2225 {
2226 	struct iommu_device *iommu_dev;
2227 	struct amd_iommu *iommu;
2228 	int ret, devid;
2229 
2230 	if (!check_device(dev))
2231 		return ERR_PTR(-ENODEV);
2232 
2233 	devid = get_device_id(dev);
2234 	if (devid < 0)
2235 		return ERR_PTR(devid);
2236 
2237 	iommu = amd_iommu_rlookup_table[devid];
2238 
2239 	if (dev_iommu_priv_get(dev))
2240 		return &iommu->iommu;
2241 
2242 	ret = iommu_init_device(dev);
2243 	if (ret) {
2244 		if (ret != -ENOTSUPP)
2245 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2246 		iommu_dev = ERR_PTR(ret);
2247 		iommu_ignore_device(dev);
2248 	} else {
2249 		amd_iommu_set_pci_msi_domain(dev, iommu);
2250 		iommu_dev = &iommu->iommu;
2251 	}
2252 
2253 	iommu_completion_wait(iommu);
2254 
2255 	return iommu_dev;
2256 }
2257 
amd_iommu_probe_finalize(struct device * dev)2258 static void amd_iommu_probe_finalize(struct device *dev)
2259 {
2260 	struct iommu_domain *domain;
2261 
2262 	/* Domains are initialized for this device - have a look what we ended up with */
2263 	domain = iommu_get_domain_for_dev(dev);
2264 	if (domain->type == IOMMU_DOMAIN_DMA)
2265 		iommu_setup_dma_ops(dev, IOVA_START_PFN << PAGE_SHIFT, 0);
2266 }
2267 
amd_iommu_release_device(struct device * dev)2268 static void amd_iommu_release_device(struct device *dev)
2269 {
2270 	int devid = get_device_id(dev);
2271 	struct amd_iommu *iommu;
2272 
2273 	if (!check_device(dev))
2274 		return;
2275 
2276 	iommu = amd_iommu_rlookup_table[devid];
2277 
2278 	amd_iommu_uninit_device(dev);
2279 	iommu_completion_wait(iommu);
2280 }
2281 
amd_iommu_device_group(struct device * dev)2282 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2283 {
2284 	if (dev_is_pci(dev))
2285 		return pci_device_group(dev);
2286 
2287 	return acpihid_device_group(dev);
2288 }
2289 
amd_iommu_domain_get_attr(struct iommu_domain * domain,enum iommu_attr attr,void * data)2290 static int amd_iommu_domain_get_attr(struct iommu_domain *domain,
2291 		enum iommu_attr attr, void *data)
2292 {
2293 	switch (domain->type) {
2294 	case IOMMU_DOMAIN_UNMANAGED:
2295 		return -ENODEV;
2296 	case IOMMU_DOMAIN_DMA:
2297 		switch (attr) {
2298 		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
2299 			*(int *)data = !amd_iommu_unmap_flush;
2300 			return 0;
2301 		default:
2302 			return -ENODEV;
2303 		}
2304 		break;
2305 	default:
2306 		return -EINVAL;
2307 	}
2308 }
2309 
2310 /*****************************************************************************
2311  *
2312  * The next functions belong to the dma_ops mapping/unmapping code.
2313  *
2314  *****************************************************************************/
2315 
update_device_table(struct protection_domain * domain,struct domain_pgtable * pgtable)2316 static void update_device_table(struct protection_domain *domain,
2317 				struct domain_pgtable *pgtable)
2318 {
2319 	struct iommu_dev_data *dev_data;
2320 
2321 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2322 		set_dte_entry(dev_data->devid, domain, pgtable,
2323 			      dev_data->ats.enabled, dev_data->iommu_v2);
2324 		clone_aliases(dev_data->pdev);
2325 	}
2326 }
2327 
update_and_flush_device_table(struct protection_domain * domain,struct domain_pgtable * pgtable)2328 static void update_and_flush_device_table(struct protection_domain *domain,
2329 					  struct domain_pgtable *pgtable)
2330 {
2331 	update_device_table(domain, pgtable);
2332 	domain_flush_devices(domain);
2333 }
2334 
update_domain(struct protection_domain * domain)2335 static void update_domain(struct protection_domain *domain)
2336 {
2337 	struct domain_pgtable pgtable;
2338 
2339 	/* Update device table */
2340 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2341 	update_and_flush_device_table(domain, &pgtable);
2342 
2343 	/* Flush domain TLB(s) and wait for completion */
2344 	domain_flush_tlb_pde(domain);
2345 	domain_flush_complete(domain);
2346 }
2347 
amd_iommu_init_api(void)2348 int __init amd_iommu_init_api(void)
2349 {
2350 	int ret, err = 0;
2351 
2352 	ret = iova_cache_get();
2353 	if (ret)
2354 		return ret;
2355 
2356 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2357 	if (err)
2358 		return err;
2359 #ifdef CONFIG_ARM_AMBA
2360 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2361 	if (err)
2362 		return err;
2363 #endif
2364 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2365 	if (err)
2366 		return err;
2367 
2368 	return 0;
2369 }
2370 
amd_iommu_init_dma_ops(void)2371 int __init amd_iommu_init_dma_ops(void)
2372 {
2373 	swiotlb        = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2374 
2375 	if (amd_iommu_unmap_flush)
2376 		pr_info("IO/TLB flush on unmap enabled\n");
2377 	else
2378 		pr_info("Lazy IO/TLB flushing enabled\n");
2379 
2380 	return 0;
2381 
2382 }
2383 
2384 /*****************************************************************************
2385  *
2386  * The following functions belong to the exported interface of AMD IOMMU
2387  *
2388  * This interface allows access to lower level functions of the IOMMU
2389  * like protection domain handling and assignement of devices to domains
2390  * which is not possible with the dma_ops interface.
2391  *
2392  *****************************************************************************/
2393 
cleanup_domain(struct protection_domain * domain)2394 static void cleanup_domain(struct protection_domain *domain)
2395 {
2396 	struct iommu_dev_data *entry;
2397 	unsigned long flags;
2398 
2399 	spin_lock_irqsave(&domain->lock, flags);
2400 
2401 	while (!list_empty(&domain->dev_list)) {
2402 		entry = list_first_entry(&domain->dev_list,
2403 					 struct iommu_dev_data, list);
2404 		BUG_ON(!entry->domain);
2405 		do_detach(entry);
2406 	}
2407 
2408 	spin_unlock_irqrestore(&domain->lock, flags);
2409 }
2410 
protection_domain_free(struct protection_domain * domain)2411 static void protection_domain_free(struct protection_domain *domain)
2412 {
2413 	struct domain_pgtable pgtable;
2414 
2415 	if (!domain)
2416 		return;
2417 
2418 	if (domain->id)
2419 		domain_id_free(domain->id);
2420 
2421 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2422 	amd_iommu_domain_clr_pt_root(domain);
2423 	free_pagetable(&pgtable);
2424 
2425 	kfree(domain);
2426 }
2427 
protection_domain_init(struct protection_domain * domain,int mode)2428 static int protection_domain_init(struct protection_domain *domain, int mode)
2429 {
2430 	u64 *pt_root = NULL;
2431 
2432 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2433 
2434 	spin_lock_init(&domain->lock);
2435 	domain->id = domain_id_alloc();
2436 	if (!domain->id)
2437 		return -ENOMEM;
2438 	INIT_LIST_HEAD(&domain->dev_list);
2439 
2440 	if (mode != PAGE_MODE_NONE) {
2441 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2442 		if (!pt_root)
2443 			return -ENOMEM;
2444 	}
2445 
2446 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2447 
2448 	return 0;
2449 }
2450 
protection_domain_alloc(int mode)2451 static struct protection_domain *protection_domain_alloc(int mode)
2452 {
2453 	struct protection_domain *domain;
2454 
2455 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2456 	if (!domain)
2457 		return NULL;
2458 
2459 	if (protection_domain_init(domain, mode))
2460 		goto out_err;
2461 
2462 	return domain;
2463 
2464 out_err:
2465 	kfree(domain);
2466 
2467 	return NULL;
2468 }
2469 
amd_iommu_domain_alloc(unsigned type)2470 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2471 {
2472 	struct protection_domain *domain;
2473 	int mode = DEFAULT_PGTABLE_LEVEL;
2474 
2475 	if (type == IOMMU_DOMAIN_IDENTITY)
2476 		mode = PAGE_MODE_NONE;
2477 
2478 	domain = protection_domain_alloc(mode);
2479 	if (!domain)
2480 		return NULL;
2481 
2482 	domain->domain.geometry.aperture_start = 0;
2483 	domain->domain.geometry.aperture_end   = ~0ULL;
2484 	domain->domain.geometry.force_aperture = true;
2485 
2486 	if (type == IOMMU_DOMAIN_DMA &&
2487 	    iommu_get_dma_cookie(&domain->domain) == -ENOMEM)
2488 		goto free_domain;
2489 
2490 	return &domain->domain;
2491 
2492 free_domain:
2493 	protection_domain_free(domain);
2494 
2495 	return NULL;
2496 }
2497 
amd_iommu_domain_free(struct iommu_domain * dom)2498 static void amd_iommu_domain_free(struct iommu_domain *dom)
2499 {
2500 	struct protection_domain *domain;
2501 
2502 	domain = to_pdomain(dom);
2503 
2504 	if (domain->dev_cnt > 0)
2505 		cleanup_domain(domain);
2506 
2507 	BUG_ON(domain->dev_cnt != 0);
2508 
2509 	if (!dom)
2510 		return;
2511 
2512 	if (dom->type == IOMMU_DOMAIN_DMA)
2513 		iommu_put_dma_cookie(&domain->domain);
2514 
2515 	if (domain->flags & PD_IOMMUV2_MASK)
2516 		free_gcr3_table(domain);
2517 
2518 	protection_domain_free(domain);
2519 }
2520 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2521 static void amd_iommu_detach_device(struct iommu_domain *dom,
2522 				    struct device *dev)
2523 {
2524 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2525 	struct amd_iommu *iommu;
2526 	int devid;
2527 
2528 	if (!check_device(dev))
2529 		return;
2530 
2531 	devid = get_device_id(dev);
2532 	if (devid < 0)
2533 		return;
2534 
2535 	if (dev_data->domain != NULL)
2536 		detach_device(dev);
2537 
2538 	iommu = amd_iommu_rlookup_table[devid];
2539 	if (!iommu)
2540 		return;
2541 
2542 #ifdef CONFIG_IRQ_REMAP
2543 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2544 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2545 		dev_data->use_vapic = 0;
2546 #endif
2547 
2548 	iommu_completion_wait(iommu);
2549 }
2550 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2551 static int amd_iommu_attach_device(struct iommu_domain *dom,
2552 				   struct device *dev)
2553 {
2554 	struct protection_domain *domain = to_pdomain(dom);
2555 	struct iommu_dev_data *dev_data;
2556 	struct amd_iommu *iommu;
2557 	int ret;
2558 
2559 	if (!check_device(dev))
2560 		return -EINVAL;
2561 
2562 	dev_data = dev_iommu_priv_get(dev);
2563 	dev_data->defer_attach = false;
2564 
2565 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2566 	if (!iommu)
2567 		return -EINVAL;
2568 
2569 	if (dev_data->domain)
2570 		detach_device(dev);
2571 
2572 	ret = attach_device(dev, domain);
2573 
2574 #ifdef CONFIG_IRQ_REMAP
2575 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2576 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2577 			dev_data->use_vapic = 1;
2578 		else
2579 			dev_data->use_vapic = 0;
2580 	}
2581 #endif
2582 
2583 	iommu_completion_wait(iommu);
2584 
2585 	return ret;
2586 }
2587 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot,gfp_t gfp)2588 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2589 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2590 			 gfp_t gfp)
2591 {
2592 	struct protection_domain *domain = to_pdomain(dom);
2593 	struct domain_pgtable pgtable;
2594 	int prot = 0;
2595 	int ret;
2596 
2597 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2598 	if (pgtable.mode == PAGE_MODE_NONE)
2599 		return -EINVAL;
2600 
2601 	if (iommu_prot & IOMMU_READ)
2602 		prot |= IOMMU_PROT_IR;
2603 	if (iommu_prot & IOMMU_WRITE)
2604 		prot |= IOMMU_PROT_IW;
2605 
2606 	ret = iommu_map_page(domain, iova, paddr, page_size, prot, gfp);
2607 
2608 	domain_flush_np_cache(domain, iova, page_size);
2609 
2610 	return ret;
2611 }
2612 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)2613 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2614 			      size_t page_size,
2615 			      struct iommu_iotlb_gather *gather)
2616 {
2617 	struct protection_domain *domain = to_pdomain(dom);
2618 	struct domain_pgtable pgtable;
2619 
2620 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2621 	if (pgtable.mode == PAGE_MODE_NONE)
2622 		return 0;
2623 
2624 	return iommu_unmap_page(domain, iova, page_size);
2625 }
2626 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2627 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2628 					  dma_addr_t iova)
2629 {
2630 	struct protection_domain *domain = to_pdomain(dom);
2631 	unsigned long offset_mask, pte_pgsize;
2632 	struct domain_pgtable pgtable;
2633 	u64 *pte, __pte;
2634 
2635 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2636 	if (pgtable.mode == PAGE_MODE_NONE)
2637 		return iova;
2638 
2639 	pte = fetch_pte(domain, iova, &pte_pgsize);
2640 
2641 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2642 		return 0;
2643 
2644 	offset_mask = pte_pgsize - 1;
2645 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
2646 
2647 	return (__pte & ~offset_mask) | (iova & offset_mask);
2648 }
2649 
amd_iommu_capable(enum iommu_cap cap)2650 static bool amd_iommu_capable(enum iommu_cap cap)
2651 {
2652 	switch (cap) {
2653 	case IOMMU_CAP_CACHE_COHERENCY:
2654 		return true;
2655 	case IOMMU_CAP_INTR_REMAP:
2656 		return (irq_remapping_enabled == 1);
2657 	case IOMMU_CAP_NOEXEC:
2658 		return false;
2659 	default:
2660 		break;
2661 	}
2662 
2663 	return false;
2664 }
2665 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2666 static void amd_iommu_get_resv_regions(struct device *dev,
2667 				       struct list_head *head)
2668 {
2669 	struct iommu_resv_region *region;
2670 	struct unity_map_entry *entry;
2671 	int devid;
2672 
2673 	devid = get_device_id(dev);
2674 	if (devid < 0)
2675 		return;
2676 
2677 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2678 		int type, prot = 0;
2679 		size_t length;
2680 
2681 		if (devid < entry->devid_start || devid > entry->devid_end)
2682 			continue;
2683 
2684 		type   = IOMMU_RESV_DIRECT;
2685 		length = entry->address_end - entry->address_start;
2686 		if (entry->prot & IOMMU_PROT_IR)
2687 			prot |= IOMMU_READ;
2688 		if (entry->prot & IOMMU_PROT_IW)
2689 			prot |= IOMMU_WRITE;
2690 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2691 			/* Exclusion range */
2692 			type = IOMMU_RESV_RESERVED;
2693 
2694 		region = iommu_alloc_resv_region(entry->address_start,
2695 						 length, prot, type);
2696 		if (!region) {
2697 			dev_err(dev, "Out of memory allocating dm-regions\n");
2698 			return;
2699 		}
2700 		list_add_tail(&region->list, head);
2701 	}
2702 
2703 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2704 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2705 					 0, IOMMU_RESV_MSI);
2706 	if (!region)
2707 		return;
2708 	list_add_tail(&region->list, head);
2709 
2710 	region = iommu_alloc_resv_region(HT_RANGE_START,
2711 					 HT_RANGE_END - HT_RANGE_START + 1,
2712 					 0, IOMMU_RESV_RESERVED);
2713 	if (!region)
2714 		return;
2715 	list_add_tail(&region->list, head);
2716 }
2717 
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)2718 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2719 				  struct device *dev)
2720 {
2721 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2722 
2723 	return dev_data->defer_attach;
2724 }
2725 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2726 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2727 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2728 {
2729 	struct protection_domain *dom = to_pdomain(domain);
2730 	unsigned long flags;
2731 
2732 	spin_lock_irqsave(&dom->lock, flags);
2733 	domain_flush_tlb_pde(dom);
2734 	domain_flush_complete(dom);
2735 	spin_unlock_irqrestore(&dom->lock, flags);
2736 }
2737 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2738 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2739 				 struct iommu_iotlb_gather *gather)
2740 {
2741 	amd_iommu_flush_iotlb_all(domain);
2742 }
2743 
amd_iommu_def_domain_type(struct device * dev)2744 static int amd_iommu_def_domain_type(struct device *dev)
2745 {
2746 	struct iommu_dev_data *dev_data;
2747 
2748 	dev_data = dev_iommu_priv_get(dev);
2749 	if (!dev_data)
2750 		return 0;
2751 
2752 	/*
2753 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2754 	 * active, because some of those devices (AMD GPUs) don't have the
2755 	 * encryption bit in their DMA-mask and require remapping.
2756 	 */
2757 	if (!mem_encrypt_active() && dev_data->iommu_v2)
2758 		return IOMMU_DOMAIN_IDENTITY;
2759 
2760 	return 0;
2761 }
2762 
2763 const struct iommu_ops amd_iommu_ops = {
2764 	.capable = amd_iommu_capable,
2765 	.domain_alloc = amd_iommu_domain_alloc,
2766 	.domain_free  = amd_iommu_domain_free,
2767 	.attach_dev = amd_iommu_attach_device,
2768 	.detach_dev = amd_iommu_detach_device,
2769 	.map = amd_iommu_map,
2770 	.unmap = amd_iommu_unmap,
2771 	.iova_to_phys = amd_iommu_iova_to_phys,
2772 	.probe_device = amd_iommu_probe_device,
2773 	.release_device = amd_iommu_release_device,
2774 	.probe_finalize = amd_iommu_probe_finalize,
2775 	.device_group = amd_iommu_device_group,
2776 	.domain_get_attr = amd_iommu_domain_get_attr,
2777 	.get_resv_regions = amd_iommu_get_resv_regions,
2778 	.put_resv_regions = generic_iommu_put_resv_regions,
2779 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2780 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2781 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2782 	.iotlb_sync = amd_iommu_iotlb_sync,
2783 	.def_domain_type = amd_iommu_def_domain_type,
2784 };
2785 
2786 /*****************************************************************************
2787  *
2788  * The next functions do a basic initialization of IOMMU for pass through
2789  * mode
2790  *
2791  * In passthrough mode the IOMMU is initialized and enabled but not used for
2792  * DMA-API translation.
2793  *
2794  *****************************************************************************/
2795 
2796 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2797 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2798 {
2799 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2800 }
2801 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2802 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2803 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2804 {
2805 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2806 }
2807 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2808 
amd_iommu_domain_direct_map(struct iommu_domain * dom)2809 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2810 {
2811 	struct protection_domain *domain = to_pdomain(dom);
2812 	struct domain_pgtable pgtable;
2813 	unsigned long flags;
2814 
2815 	spin_lock_irqsave(&domain->lock, flags);
2816 
2817 	/* First save pgtable configuration*/
2818 	amd_iommu_domain_get_pgtable(domain, &pgtable);
2819 
2820 	/* Remove page-table from domain */
2821 	amd_iommu_domain_clr_pt_root(domain);
2822 
2823 	/* Make changes visible to IOMMUs */
2824 	update_domain(domain);
2825 
2826 	/* Page-table is not visible to IOMMU anymore, so free it */
2827 	free_pagetable(&pgtable);
2828 
2829 	spin_unlock_irqrestore(&domain->lock, flags);
2830 }
2831 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2832 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2833 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2834 {
2835 	struct protection_domain *domain = to_pdomain(dom);
2836 	unsigned long flags;
2837 	int levels, ret;
2838 
2839 	if (pasids <= 0 || pasids > (PASID_MASK + 1))
2840 		return -EINVAL;
2841 
2842 	/* Number of GCR3 table levels required */
2843 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2844 		levels += 1;
2845 
2846 	if (levels > amd_iommu_max_glx_val)
2847 		return -EINVAL;
2848 
2849 	spin_lock_irqsave(&domain->lock, flags);
2850 
2851 	/*
2852 	 * Save us all sanity checks whether devices already in the
2853 	 * domain support IOMMUv2. Just force that the domain has no
2854 	 * devices attached when it is switched into IOMMUv2 mode.
2855 	 */
2856 	ret = -EBUSY;
2857 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2858 		goto out;
2859 
2860 	ret = -ENOMEM;
2861 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2862 	if (domain->gcr3_tbl == NULL)
2863 		goto out;
2864 
2865 	domain->glx      = levels;
2866 	domain->flags   |= PD_IOMMUV2_MASK;
2867 
2868 	update_domain(domain);
2869 
2870 	ret = 0;
2871 
2872 out:
2873 	spin_unlock_irqrestore(&domain->lock, flags);
2874 
2875 	return ret;
2876 }
2877 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2878 
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2879 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2880 			 u64 address, bool size)
2881 {
2882 	struct iommu_dev_data *dev_data;
2883 	struct iommu_cmd cmd;
2884 	int i, ret;
2885 
2886 	if (!(domain->flags & PD_IOMMUV2_MASK))
2887 		return -EINVAL;
2888 
2889 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2890 
2891 	/*
2892 	 * IOMMU TLB needs to be flushed before Device TLB to
2893 	 * prevent device TLB refill from IOMMU TLB
2894 	 */
2895 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2896 		if (domain->dev_iommu[i] == 0)
2897 			continue;
2898 
2899 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2900 		if (ret != 0)
2901 			goto out;
2902 	}
2903 
2904 	/* Wait until IOMMU TLB flushes are complete */
2905 	domain_flush_complete(domain);
2906 
2907 	/* Now flush device TLBs */
2908 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2909 		struct amd_iommu *iommu;
2910 		int qdep;
2911 
2912 		/*
2913 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2914 		 * domain.
2915 		 */
2916 		if (!dev_data->ats.enabled)
2917 			continue;
2918 
2919 		qdep  = dev_data->ats.qdep;
2920 		iommu = amd_iommu_rlookup_table[dev_data->devid];
2921 
2922 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2923 				      qdep, address, size);
2924 
2925 		ret = iommu_queue_command(iommu, &cmd);
2926 		if (ret != 0)
2927 			goto out;
2928 	}
2929 
2930 	/* Wait until all device TLBs are flushed */
2931 	domain_flush_complete(domain);
2932 
2933 	ret = 0;
2934 
2935 out:
2936 
2937 	return ret;
2938 }
2939 
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2940 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2941 				  u64 address)
2942 {
2943 	return __flush_pasid(domain, pasid, address, false);
2944 }
2945 
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2946 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2947 			 u64 address)
2948 {
2949 	struct protection_domain *domain = to_pdomain(dom);
2950 	unsigned long flags;
2951 	int ret;
2952 
2953 	spin_lock_irqsave(&domain->lock, flags);
2954 	ret = __amd_iommu_flush_page(domain, pasid, address);
2955 	spin_unlock_irqrestore(&domain->lock, flags);
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL(amd_iommu_flush_page);
2960 
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2961 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2962 {
2963 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2964 			     true);
2965 }
2966 
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2967 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2968 {
2969 	struct protection_domain *domain = to_pdomain(dom);
2970 	unsigned long flags;
2971 	int ret;
2972 
2973 	spin_lock_irqsave(&domain->lock, flags);
2974 	ret = __amd_iommu_flush_tlb(domain, pasid);
2975 	spin_unlock_irqrestore(&domain->lock, flags);
2976 
2977 	return ret;
2978 }
2979 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2980 
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2981 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2982 {
2983 	int index;
2984 	u64 *pte;
2985 
2986 	while (true) {
2987 
2988 		index = (pasid >> (9 * level)) & 0x1ff;
2989 		pte   = &root[index];
2990 
2991 		if (level == 0)
2992 			break;
2993 
2994 		if (!(*pte & GCR3_VALID)) {
2995 			if (!alloc)
2996 				return NULL;
2997 
2998 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2999 			if (root == NULL)
3000 				return NULL;
3001 
3002 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3003 		}
3004 
3005 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3006 
3007 		level -= 1;
3008 	}
3009 
3010 	return pte;
3011 }
3012 
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)3013 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
3014 		      unsigned long cr3)
3015 {
3016 	struct domain_pgtable pgtable;
3017 	u64 *pte;
3018 
3019 	amd_iommu_domain_get_pgtable(domain, &pgtable);
3020 	if (pgtable.mode != PAGE_MODE_NONE)
3021 		return -EINVAL;
3022 
3023 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3024 	if (pte == NULL)
3025 		return -ENOMEM;
3026 
3027 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3028 
3029 	return __amd_iommu_flush_tlb(domain, pasid);
3030 }
3031 
__clear_gcr3(struct protection_domain * domain,u32 pasid)3032 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
3033 {
3034 	struct domain_pgtable pgtable;
3035 	u64 *pte;
3036 
3037 	amd_iommu_domain_get_pgtable(domain, &pgtable);
3038 	if (pgtable.mode != PAGE_MODE_NONE)
3039 		return -EINVAL;
3040 
3041 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3042 	if (pte == NULL)
3043 		return 0;
3044 
3045 	*pte = 0;
3046 
3047 	return __amd_iommu_flush_tlb(domain, pasid);
3048 }
3049 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)3050 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
3051 			      unsigned long cr3)
3052 {
3053 	struct protection_domain *domain = to_pdomain(dom);
3054 	unsigned long flags;
3055 	int ret;
3056 
3057 	spin_lock_irqsave(&domain->lock, flags);
3058 	ret = __set_gcr3(domain, pasid, cr3);
3059 	spin_unlock_irqrestore(&domain->lock, flags);
3060 
3061 	return ret;
3062 }
3063 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3064 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)3065 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
3066 {
3067 	struct protection_domain *domain = to_pdomain(dom);
3068 	unsigned long flags;
3069 	int ret;
3070 
3071 	spin_lock_irqsave(&domain->lock, flags);
3072 	ret = __clear_gcr3(domain, pasid);
3073 	spin_unlock_irqrestore(&domain->lock, flags);
3074 
3075 	return ret;
3076 }
3077 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3078 
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)3079 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
3080 			   int status, int tag)
3081 {
3082 	struct iommu_dev_data *dev_data;
3083 	struct amd_iommu *iommu;
3084 	struct iommu_cmd cmd;
3085 
3086 	dev_data = dev_iommu_priv_get(&pdev->dev);
3087 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
3088 
3089 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3090 			   tag, dev_data->pri_tlp);
3091 
3092 	return iommu_queue_command(iommu, &cmd);
3093 }
3094 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3095 
amd_iommu_get_v2_domain(struct pci_dev * pdev)3096 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3097 {
3098 	struct protection_domain *pdomain;
3099 	struct iommu_dev_data *dev_data;
3100 	struct device *dev = &pdev->dev;
3101 	struct iommu_domain *io_domain;
3102 
3103 	if (!check_device(dev))
3104 		return NULL;
3105 
3106 	dev_data  = dev_iommu_priv_get(&pdev->dev);
3107 	pdomain   = dev_data->domain;
3108 	io_domain = iommu_get_domain_for_dev(dev);
3109 
3110 	if (pdomain == NULL && dev_data->defer_attach) {
3111 		dev_data->defer_attach = false;
3112 		pdomain = to_pdomain(io_domain);
3113 		attach_device(dev, pdomain);
3114 	}
3115 
3116 	if (pdomain == NULL)
3117 		return NULL;
3118 
3119 	if (io_domain->type != IOMMU_DOMAIN_DMA)
3120 		return NULL;
3121 
3122 	/* Only return IOMMUv2 domains */
3123 	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3124 		return NULL;
3125 
3126 	return &pdomain->domain;
3127 }
3128 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3129 
amd_iommu_enable_device_erratum(struct pci_dev * pdev,u32 erratum)3130 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3131 {
3132 	struct iommu_dev_data *dev_data;
3133 
3134 	if (!amd_iommu_v2_supported())
3135 		return;
3136 
3137 	dev_data = dev_iommu_priv_get(&pdev->dev);
3138 	dev_data->errata |= (1 << erratum);
3139 }
3140 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3141 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)3142 int amd_iommu_device_info(struct pci_dev *pdev,
3143                           struct amd_iommu_device_info *info)
3144 {
3145 	int max_pasids;
3146 	int pos;
3147 
3148 	if (pdev == NULL || info == NULL)
3149 		return -EINVAL;
3150 
3151 	if (!amd_iommu_v2_supported())
3152 		return -EINVAL;
3153 
3154 	memset(info, 0, sizeof(*info));
3155 
3156 	if (pci_ats_supported(pdev))
3157 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3158 
3159 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3160 	if (pos)
3161 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3162 
3163 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3164 	if (pos) {
3165 		int features;
3166 
3167 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3168 		max_pasids = min(max_pasids, (1 << 20));
3169 
3170 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3171 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3172 
3173 		features = pci_pasid_features(pdev);
3174 		if (features & PCI_PASID_CAP_EXEC)
3175 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3176 		if (features & PCI_PASID_CAP_PRIV)
3177 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3178 	}
3179 
3180 	return 0;
3181 }
3182 EXPORT_SYMBOL(amd_iommu_device_info);
3183 
3184 #ifdef CONFIG_IRQ_REMAP
3185 
3186 /*****************************************************************************
3187  *
3188  * Interrupt Remapping Implementation
3189  *
3190  *****************************************************************************/
3191 
3192 static struct irq_chip amd_ir_chip;
3193 static DEFINE_SPINLOCK(iommu_table_lock);
3194 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)3195 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3196 {
3197 	u64 dte;
3198 
3199 	dte	= amd_iommu_dev_table[devid].data[2];
3200 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3201 	dte	|= iommu_virt_to_phys(table->table);
3202 	dte	|= DTE_IRQ_REMAP_INTCTL;
3203 	dte	|= DTE_IRQ_TABLE_LEN;
3204 	dte	|= DTE_IRQ_REMAP_ENABLE;
3205 
3206 	amd_iommu_dev_table[devid].data[2] = dte;
3207 }
3208 
get_irq_table(u16 devid)3209 static struct irq_remap_table *get_irq_table(u16 devid)
3210 {
3211 	struct irq_remap_table *table;
3212 
3213 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3214 		      "%s: no iommu for devid %x\n", __func__, devid))
3215 		return NULL;
3216 
3217 	table = irq_lookup_table[devid];
3218 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3219 		return NULL;
3220 
3221 	return table;
3222 }
3223 
__alloc_irq_table(void)3224 static struct irq_remap_table *__alloc_irq_table(void)
3225 {
3226 	struct irq_remap_table *table;
3227 
3228 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3229 	if (!table)
3230 		return NULL;
3231 
3232 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3233 	if (!table->table) {
3234 		kfree(table);
3235 		return NULL;
3236 	}
3237 	raw_spin_lock_init(&table->lock);
3238 
3239 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3240 		memset(table->table, 0,
3241 		       MAX_IRQS_PER_TABLE * sizeof(u32));
3242 	else
3243 		memset(table->table, 0,
3244 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3245 	return table;
3246 }
3247 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3248 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3249 				  struct irq_remap_table *table)
3250 {
3251 	irq_lookup_table[devid] = table;
3252 	set_dte_irq_entry(devid, table);
3253 	iommu_flush_dte(iommu, devid);
3254 }
3255 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3256 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3257 				       void *data)
3258 {
3259 	struct irq_remap_table *table = data;
3260 
3261 	irq_lookup_table[alias] = table;
3262 	set_dte_irq_entry(alias, table);
3263 
3264 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3265 
3266 	return 0;
3267 }
3268 
alloc_irq_table(u16 devid,struct pci_dev * pdev)3269 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3270 {
3271 	struct irq_remap_table *table = NULL;
3272 	struct irq_remap_table *new_table = NULL;
3273 	struct amd_iommu *iommu;
3274 	unsigned long flags;
3275 	u16 alias;
3276 
3277 	spin_lock_irqsave(&iommu_table_lock, flags);
3278 
3279 	iommu = amd_iommu_rlookup_table[devid];
3280 	if (!iommu)
3281 		goto out_unlock;
3282 
3283 	table = irq_lookup_table[devid];
3284 	if (table)
3285 		goto out_unlock;
3286 
3287 	alias = amd_iommu_alias_table[devid];
3288 	table = irq_lookup_table[alias];
3289 	if (table) {
3290 		set_remap_table_entry(iommu, devid, table);
3291 		goto out_wait;
3292 	}
3293 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3294 
3295 	/* Nothing there yet, allocate new irq remapping table */
3296 	new_table = __alloc_irq_table();
3297 	if (!new_table)
3298 		return NULL;
3299 
3300 	spin_lock_irqsave(&iommu_table_lock, flags);
3301 
3302 	table = irq_lookup_table[devid];
3303 	if (table)
3304 		goto out_unlock;
3305 
3306 	table = irq_lookup_table[alias];
3307 	if (table) {
3308 		set_remap_table_entry(iommu, devid, table);
3309 		goto out_wait;
3310 	}
3311 
3312 	table = new_table;
3313 	new_table = NULL;
3314 
3315 	if (pdev)
3316 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3317 				       table);
3318 	else
3319 		set_remap_table_entry(iommu, devid, table);
3320 
3321 	if (devid != alias)
3322 		set_remap_table_entry(iommu, alias, table);
3323 
3324 out_wait:
3325 	iommu_completion_wait(iommu);
3326 
3327 out_unlock:
3328 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3329 
3330 	if (new_table) {
3331 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3332 		kfree(new_table);
3333 	}
3334 	return table;
3335 }
3336 
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)3337 static int alloc_irq_index(u16 devid, int count, bool align,
3338 			   struct pci_dev *pdev)
3339 {
3340 	struct irq_remap_table *table;
3341 	int index, c, alignment = 1;
3342 	unsigned long flags;
3343 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3344 
3345 	if (!iommu)
3346 		return -ENODEV;
3347 
3348 	table = alloc_irq_table(devid, pdev);
3349 	if (!table)
3350 		return -ENODEV;
3351 
3352 	if (align)
3353 		alignment = roundup_pow_of_two(count);
3354 
3355 	raw_spin_lock_irqsave(&table->lock, flags);
3356 
3357 	/* Scan table for free entries */
3358 	for (index = ALIGN(table->min_index, alignment), c = 0;
3359 	     index < MAX_IRQS_PER_TABLE;) {
3360 		if (!iommu->irte_ops->is_allocated(table, index)) {
3361 			c += 1;
3362 		} else {
3363 			c     = 0;
3364 			index = ALIGN(index + 1, alignment);
3365 			continue;
3366 		}
3367 
3368 		if (c == count)	{
3369 			for (; c != 0; --c)
3370 				iommu->irte_ops->set_allocated(table, index - c + 1);
3371 
3372 			index -= count - 1;
3373 			goto out;
3374 		}
3375 
3376 		index++;
3377 	}
3378 
3379 	index = -ENOSPC;
3380 
3381 out:
3382 	raw_spin_unlock_irqrestore(&table->lock, flags);
3383 
3384 	return index;
3385 }
3386 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)3387 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3388 			  struct amd_ir_data *data)
3389 {
3390 	bool ret;
3391 	struct irq_remap_table *table;
3392 	struct amd_iommu *iommu;
3393 	unsigned long flags;
3394 	struct irte_ga *entry;
3395 
3396 	iommu = amd_iommu_rlookup_table[devid];
3397 	if (iommu == NULL)
3398 		return -EINVAL;
3399 
3400 	table = get_irq_table(devid);
3401 	if (!table)
3402 		return -ENOMEM;
3403 
3404 	raw_spin_lock_irqsave(&table->lock, flags);
3405 
3406 	entry = (struct irte_ga *)table->table;
3407 	entry = &entry[index];
3408 
3409 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
3410 			     entry->lo.val, entry->hi.val,
3411 			     irte->lo.val, irte->hi.val);
3412 	/*
3413 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3414 	 * and it cannot be updated by the hardware or other processors
3415 	 * behind us, so the return value of cmpxchg16 should be the
3416 	 * same as the old value.
3417 	 */
3418 	WARN_ON(!ret);
3419 
3420 	if (data)
3421 		data->ref = entry;
3422 
3423 	raw_spin_unlock_irqrestore(&table->lock, flags);
3424 
3425 	iommu_flush_irt(iommu, devid);
3426 	iommu_completion_wait(iommu);
3427 
3428 	return 0;
3429 }
3430 
modify_irte(u16 devid,int index,union irte * irte)3431 static int modify_irte(u16 devid, int index, union irte *irte)
3432 {
3433 	struct irq_remap_table *table;
3434 	struct amd_iommu *iommu;
3435 	unsigned long flags;
3436 
3437 	iommu = amd_iommu_rlookup_table[devid];
3438 	if (iommu == NULL)
3439 		return -EINVAL;
3440 
3441 	table = get_irq_table(devid);
3442 	if (!table)
3443 		return -ENOMEM;
3444 
3445 	raw_spin_lock_irqsave(&table->lock, flags);
3446 	table->table[index] = irte->val;
3447 	raw_spin_unlock_irqrestore(&table->lock, flags);
3448 
3449 	iommu_flush_irt(iommu, devid);
3450 	iommu_completion_wait(iommu);
3451 
3452 	return 0;
3453 }
3454 
free_irte(u16 devid,int index)3455 static void free_irte(u16 devid, int index)
3456 {
3457 	struct irq_remap_table *table;
3458 	struct amd_iommu *iommu;
3459 	unsigned long flags;
3460 
3461 	iommu = amd_iommu_rlookup_table[devid];
3462 	if (iommu == NULL)
3463 		return;
3464 
3465 	table = get_irq_table(devid);
3466 	if (!table)
3467 		return;
3468 
3469 	raw_spin_lock_irqsave(&table->lock, flags);
3470 	iommu->irte_ops->clear_allocated(table, index);
3471 	raw_spin_unlock_irqrestore(&table->lock, flags);
3472 
3473 	iommu_flush_irt(iommu, devid);
3474 	iommu_completion_wait(iommu);
3475 }
3476 
irte_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3477 static void irte_prepare(void *entry,
3478 			 u32 delivery_mode, u32 dest_mode,
3479 			 u8 vector, u32 dest_apicid, int devid)
3480 {
3481 	union irte *irte = (union irte *) entry;
3482 
3483 	irte->val                = 0;
3484 	irte->fields.vector      = vector;
3485 	irte->fields.int_type    = delivery_mode;
3486 	irte->fields.destination = dest_apicid;
3487 	irte->fields.dm          = dest_mode;
3488 	irte->fields.valid       = 1;
3489 }
3490 
irte_ga_prepare(void * entry,u32 delivery_mode,u32 dest_mode,u8 vector,u32 dest_apicid,int devid)3491 static void irte_ga_prepare(void *entry,
3492 			    u32 delivery_mode, u32 dest_mode,
3493 			    u8 vector, u32 dest_apicid, int devid)
3494 {
3495 	struct irte_ga *irte = (struct irte_ga *) entry;
3496 
3497 	irte->lo.val                      = 0;
3498 	irte->hi.val                      = 0;
3499 	irte->lo.fields_remap.int_type    = delivery_mode;
3500 	irte->lo.fields_remap.dm          = dest_mode;
3501 	irte->hi.fields.vector            = vector;
3502 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3503 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3504 	irte->lo.fields_remap.valid       = 1;
3505 }
3506 
irte_activate(void * entry,u16 devid,u16 index)3507 static void irte_activate(void *entry, u16 devid, u16 index)
3508 {
3509 	union irte *irte = (union irte *) entry;
3510 
3511 	irte->fields.valid = 1;
3512 	modify_irte(devid, index, irte);
3513 }
3514 
irte_ga_activate(void * entry,u16 devid,u16 index)3515 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3516 {
3517 	struct irte_ga *irte = (struct irte_ga *) entry;
3518 
3519 	irte->lo.fields_remap.valid = 1;
3520 	modify_irte_ga(devid, index, irte, NULL);
3521 }
3522 
irte_deactivate(void * entry,u16 devid,u16 index)3523 static void irte_deactivate(void *entry, u16 devid, u16 index)
3524 {
3525 	union irte *irte = (union irte *) entry;
3526 
3527 	irte->fields.valid = 0;
3528 	modify_irte(devid, index, irte);
3529 }
3530 
irte_ga_deactivate(void * entry,u16 devid,u16 index)3531 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
3532 {
3533 	struct irte_ga *irte = (struct irte_ga *) entry;
3534 
3535 	irte->lo.fields_remap.valid = 0;
3536 	modify_irte_ga(devid, index, irte, NULL);
3537 }
3538 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3539 static void irte_set_affinity(void *entry, u16 devid, u16 index,
3540 			      u8 vector, u32 dest_apicid)
3541 {
3542 	union irte *irte = (union irte *) entry;
3543 
3544 	irte->fields.vector = vector;
3545 	irte->fields.destination = dest_apicid;
3546 	modify_irte(devid, index, irte);
3547 }
3548 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3549 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3550 				 u8 vector, u32 dest_apicid)
3551 {
3552 	struct irte_ga *irte = (struct irte_ga *) entry;
3553 
3554 	if (!irte->lo.fields_remap.guest_mode) {
3555 		irte->hi.fields.vector = vector;
3556 		irte->lo.fields_remap.destination =
3557 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3558 		irte->hi.fields.destination =
3559 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3560 		modify_irte_ga(devid, index, irte, NULL);
3561 	}
3562 }
3563 
3564 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3565 static void irte_set_allocated(struct irq_remap_table *table, int index)
3566 {
3567 	table->table[index] = IRTE_ALLOCATED;
3568 }
3569 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3570 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3571 {
3572 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3573 	struct irte_ga *irte = &ptr[index];
3574 
3575 	memset(&irte->lo.val, 0, sizeof(u64));
3576 	memset(&irte->hi.val, 0, sizeof(u64));
3577 	irte->hi.fields.vector = 0xff;
3578 }
3579 
irte_is_allocated(struct irq_remap_table * table,int index)3580 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3581 {
3582 	union irte *ptr = (union irte *)table->table;
3583 	union irte *irte = &ptr[index];
3584 
3585 	return irte->val != 0;
3586 }
3587 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3588 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3589 {
3590 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3591 	struct irte_ga *irte = &ptr[index];
3592 
3593 	return irte->hi.fields.vector != 0;
3594 }
3595 
irte_clear_allocated(struct irq_remap_table * table,int index)3596 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3597 {
3598 	table->table[index] = 0;
3599 }
3600 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3601 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3602 {
3603 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3604 	struct irte_ga *irte = &ptr[index];
3605 
3606 	memset(&irte->lo.val, 0, sizeof(u64));
3607 	memset(&irte->hi.val, 0, sizeof(u64));
3608 }
3609 
get_devid(struct irq_alloc_info * info)3610 static int get_devid(struct irq_alloc_info *info)
3611 {
3612 	switch (info->type) {
3613 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3614 	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3615 		return get_ioapic_devid(info->devid);
3616 	case X86_IRQ_ALLOC_TYPE_HPET:
3617 	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3618 		return get_hpet_devid(info->devid);
3619 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3620 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3621 		return get_device_id(msi_desc_to_dev(info->desc));
3622 	default:
3623 		WARN_ON_ONCE(1);
3624 		return -1;
3625 	}
3626 }
3627 
get_irq_domain_for_devid(struct irq_alloc_info * info,int devid)3628 static struct irq_domain *get_irq_domain_for_devid(struct irq_alloc_info *info,
3629 						   int devid)
3630 {
3631 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3632 
3633 	if (!iommu)
3634 		return NULL;
3635 
3636 	switch (info->type) {
3637 	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
3638 	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
3639 		return iommu->ir_domain;
3640 	default:
3641 		WARN_ON_ONCE(1);
3642 		return NULL;
3643 	}
3644 }
3645 
get_irq_domain(struct irq_alloc_info * info)3646 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3647 {
3648 	int devid;
3649 
3650 	if (!info)
3651 		return NULL;
3652 
3653 	devid = get_devid(info);
3654 	if (devid < 0)
3655 		return NULL;
3656 	return get_irq_domain_for_devid(info, devid);
3657 }
3658 
3659 struct irq_remap_ops amd_iommu_irq_ops = {
3660 	.prepare		= amd_iommu_prepare,
3661 	.enable			= amd_iommu_enable,
3662 	.disable		= amd_iommu_disable,
3663 	.reenable		= amd_iommu_reenable,
3664 	.enable_faulting	= amd_iommu_enable_faulting,
3665 	.get_irq_domain		= get_irq_domain,
3666 };
3667 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3668 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3669 				       struct irq_cfg *irq_cfg,
3670 				       struct irq_alloc_info *info,
3671 				       int devid, int index, int sub_handle)
3672 {
3673 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3674 	struct msi_msg *msg = &data->msi_entry;
3675 	struct IO_APIC_route_entry *entry;
3676 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3677 
3678 	if (!iommu)
3679 		return;
3680 
3681 	data->irq_2_irte.devid = devid;
3682 	data->irq_2_irte.index = index + sub_handle;
3683 	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
3684 				 apic->irq_dest_mode, irq_cfg->vector,
3685 				 irq_cfg->dest_apicid, devid);
3686 
3687 	switch (info->type) {
3688 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3689 		/* Setup IOAPIC entry */
3690 		entry = info->ioapic.entry;
3691 		info->ioapic.entry = NULL;
3692 		memset(entry, 0, sizeof(*entry));
3693 		entry->vector        = index;
3694 		entry->mask          = 0;
3695 		entry->trigger       = info->ioapic.trigger;
3696 		entry->polarity      = info->ioapic.polarity;
3697 		/* Mask level triggered irqs. */
3698 		if (info->ioapic.trigger)
3699 			entry->mask = 1;
3700 		break;
3701 
3702 	case X86_IRQ_ALLOC_TYPE_HPET:
3703 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3704 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3705 		msg->address_hi = MSI_ADDR_BASE_HI;
3706 		msg->address_lo = MSI_ADDR_BASE_LO;
3707 		msg->data = irte_info->index;
3708 		break;
3709 
3710 	default:
3711 		BUG_ON(1);
3712 		break;
3713 	}
3714 }
3715 
3716 struct amd_irte_ops irte_32_ops = {
3717 	.prepare = irte_prepare,
3718 	.activate = irte_activate,
3719 	.deactivate = irte_deactivate,
3720 	.set_affinity = irte_set_affinity,
3721 	.set_allocated = irte_set_allocated,
3722 	.is_allocated = irte_is_allocated,
3723 	.clear_allocated = irte_clear_allocated,
3724 };
3725 
3726 struct amd_irte_ops irte_128_ops = {
3727 	.prepare = irte_ga_prepare,
3728 	.activate = irte_ga_activate,
3729 	.deactivate = irte_ga_deactivate,
3730 	.set_affinity = irte_ga_set_affinity,
3731 	.set_allocated = irte_ga_set_allocated,
3732 	.is_allocated = irte_ga_is_allocated,
3733 	.clear_allocated = irte_ga_clear_allocated,
3734 };
3735 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3736 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3737 			       unsigned int nr_irqs, void *arg)
3738 {
3739 	struct irq_alloc_info *info = arg;
3740 	struct irq_data *irq_data;
3741 	struct amd_ir_data *data = NULL;
3742 	struct irq_cfg *cfg;
3743 	int i, ret, devid;
3744 	int index;
3745 
3746 	if (!info)
3747 		return -EINVAL;
3748 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3749 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3750 		return -EINVAL;
3751 
3752 	/*
3753 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3754 	 * to support multiple MSI interrupts.
3755 	 */
3756 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3757 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3758 
3759 	devid = get_devid(info);
3760 	if (devid < 0)
3761 		return -EINVAL;
3762 
3763 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3764 	if (ret < 0)
3765 		return ret;
3766 
3767 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3768 		struct irq_remap_table *table;
3769 		struct amd_iommu *iommu;
3770 
3771 		table = alloc_irq_table(devid, NULL);
3772 		if (table) {
3773 			if (!table->min_index) {
3774 				/*
3775 				 * Keep the first 32 indexes free for IOAPIC
3776 				 * interrupts.
3777 				 */
3778 				table->min_index = 32;
3779 				iommu = amd_iommu_rlookup_table[devid];
3780 				for (i = 0; i < 32; ++i)
3781 					iommu->irte_ops->set_allocated(table, i);
3782 			}
3783 			WARN_ON(table->min_index != 32);
3784 			index = info->ioapic.pin;
3785 		} else {
3786 			index = -ENOMEM;
3787 		}
3788 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3789 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3790 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3791 
3792 		index = alloc_irq_index(devid, nr_irqs, align,
3793 					msi_desc_to_pci_dev(info->desc));
3794 	} else {
3795 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
3796 	}
3797 
3798 	if (index < 0) {
3799 		pr_warn("Failed to allocate IRTE\n");
3800 		ret = index;
3801 		goto out_free_parent;
3802 	}
3803 
3804 	for (i = 0; i < nr_irqs; i++) {
3805 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3806 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3807 		if (!cfg) {
3808 			ret = -EINVAL;
3809 			goto out_free_data;
3810 		}
3811 
3812 		ret = -ENOMEM;
3813 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3814 		if (!data)
3815 			goto out_free_data;
3816 
3817 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3818 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3819 		else
3820 			data->entry = kzalloc(sizeof(struct irte_ga),
3821 						     GFP_KERNEL);
3822 		if (!data->entry) {
3823 			kfree(data);
3824 			goto out_free_data;
3825 		}
3826 
3827 		irq_data->hwirq = (devid << 16) + i;
3828 		irq_data->chip_data = data;
3829 		irq_data->chip = &amd_ir_chip;
3830 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3831 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3832 	}
3833 
3834 	return 0;
3835 
3836 out_free_data:
3837 	for (i--; i >= 0; i--) {
3838 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3839 		if (irq_data)
3840 			kfree(irq_data->chip_data);
3841 	}
3842 	for (i = 0; i < nr_irqs; i++)
3843 		free_irte(devid, index + i);
3844 out_free_parent:
3845 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3846 	return ret;
3847 }
3848 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3849 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3850 			       unsigned int nr_irqs)
3851 {
3852 	struct irq_2_irte *irte_info;
3853 	struct irq_data *irq_data;
3854 	struct amd_ir_data *data;
3855 	int i;
3856 
3857 	for (i = 0; i < nr_irqs; i++) {
3858 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3859 		if (irq_data && irq_data->chip_data) {
3860 			data = irq_data->chip_data;
3861 			irte_info = &data->irq_2_irte;
3862 			free_irte(irte_info->devid, irte_info->index);
3863 			kfree(data->entry);
3864 			kfree(data);
3865 		}
3866 	}
3867 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3868 }
3869 
3870 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3871 			       struct amd_ir_data *ir_data,
3872 			       struct irq_2_irte *irte_info,
3873 			       struct irq_cfg *cfg);
3874 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3875 static int irq_remapping_activate(struct irq_domain *domain,
3876 				  struct irq_data *irq_data, bool reserve)
3877 {
3878 	struct amd_ir_data *data = irq_data->chip_data;
3879 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3880 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3881 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3882 
3883 	if (!iommu)
3884 		return 0;
3885 
3886 	iommu->irte_ops->activate(data->entry, irte_info->devid,
3887 				  irte_info->index);
3888 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3889 	return 0;
3890 }
3891 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3892 static void irq_remapping_deactivate(struct irq_domain *domain,
3893 				     struct irq_data *irq_data)
3894 {
3895 	struct amd_ir_data *data = irq_data->chip_data;
3896 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3897 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3898 
3899 	if (iommu)
3900 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3901 					    irte_info->index);
3902 }
3903 
3904 static const struct irq_domain_ops amd_ir_domain_ops = {
3905 	.alloc = irq_remapping_alloc,
3906 	.free = irq_remapping_free,
3907 	.activate = irq_remapping_activate,
3908 	.deactivate = irq_remapping_deactivate,
3909 };
3910 
amd_iommu_activate_guest_mode(void * data)3911 int amd_iommu_activate_guest_mode(void *data)
3912 {
3913 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3914 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3915 	u64 valid;
3916 
3917 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3918 		return 0;
3919 
3920 	valid = entry->lo.fields_vapic.valid;
3921 
3922 	entry->lo.val = 0;
3923 	entry->hi.val = 0;
3924 
3925 	entry->lo.fields_vapic.valid       = valid;
3926 	entry->lo.fields_vapic.guest_mode  = 1;
3927 	entry->lo.fields_vapic.ga_log_intr = 1;
3928 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3929 	entry->hi.fields.vector            = ir_data->ga_vector;
3930 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3931 
3932 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3933 			      ir_data->irq_2_irte.index, entry, ir_data);
3934 }
3935 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3936 
amd_iommu_deactivate_guest_mode(void * data)3937 int amd_iommu_deactivate_guest_mode(void *data)
3938 {
3939 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3940 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3941 	struct irq_cfg *cfg = ir_data->cfg;
3942 	u64 valid;
3943 
3944 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3945 	    !entry || !entry->lo.fields_vapic.guest_mode)
3946 		return 0;
3947 
3948 	valid = entry->lo.fields_remap.valid;
3949 
3950 	entry->lo.val = 0;
3951 	entry->hi.val = 0;
3952 
3953 	entry->lo.fields_remap.valid       = valid;
3954 	entry->lo.fields_remap.dm          = apic->irq_dest_mode;
3955 	entry->lo.fields_remap.int_type    = apic->irq_delivery_mode;
3956 	entry->hi.fields.vector            = cfg->vector;
3957 	entry->lo.fields_remap.destination =
3958 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3959 	entry->hi.fields.destination =
3960 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3961 
3962 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3963 			      ir_data->irq_2_irte.index, entry, ir_data);
3964 }
3965 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3966 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3967 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3968 {
3969 	int ret;
3970 	struct amd_iommu *iommu;
3971 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3972 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3973 	struct amd_ir_data *ir_data = data->chip_data;
3974 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3975 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3976 
3977 	/* Note:
3978 	 * This device has never been set up for guest mode.
3979 	 * we should not modify the IRTE
3980 	 */
3981 	if (!dev_data || !dev_data->use_vapic)
3982 		return 0;
3983 
3984 	ir_data->cfg = irqd_cfg(data);
3985 	pi_data->ir_data = ir_data;
3986 
3987 	/* Note:
3988 	 * SVM tries to set up for VAPIC mode, but we are in
3989 	 * legacy mode. So, we force legacy mode instead.
3990 	 */
3991 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3992 		pr_debug("%s: Fall back to using intr legacy remap\n",
3993 			 __func__);
3994 		pi_data->is_guest_mode = false;
3995 	}
3996 
3997 	iommu = amd_iommu_rlookup_table[irte_info->devid];
3998 	if (iommu == NULL)
3999 		return -EINVAL;
4000 
4001 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4002 	if (pi_data->is_guest_mode) {
4003 		ir_data->ga_root_ptr = (pi_data->base >> 12);
4004 		ir_data->ga_vector = vcpu_pi_info->vector;
4005 		ir_data->ga_tag = pi_data->ga_tag;
4006 		ret = amd_iommu_activate_guest_mode(ir_data);
4007 		if (!ret)
4008 			ir_data->cached_ga_tag = pi_data->ga_tag;
4009 	} else {
4010 		ret = amd_iommu_deactivate_guest_mode(ir_data);
4011 
4012 		/*
4013 		 * This communicates the ga_tag back to the caller
4014 		 * so that it can do all the necessary clean up.
4015 		 */
4016 		if (!ret)
4017 			ir_data->cached_ga_tag = 0;
4018 	}
4019 
4020 	return ret;
4021 }
4022 
4023 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4024 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4025 			       struct amd_ir_data *ir_data,
4026 			       struct irq_2_irte *irte_info,
4027 			       struct irq_cfg *cfg)
4028 {
4029 
4030 	/*
4031 	 * Atomically updates the IRTE with the new destination, vector
4032 	 * and flushes the interrupt entry cache.
4033 	 */
4034 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4035 				      irte_info->index, cfg->vector,
4036 				      cfg->dest_apicid);
4037 }
4038 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4039 static int amd_ir_set_affinity(struct irq_data *data,
4040 			       const struct cpumask *mask, bool force)
4041 {
4042 	struct amd_ir_data *ir_data = data->chip_data;
4043 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4044 	struct irq_cfg *cfg = irqd_cfg(data);
4045 	struct irq_data *parent = data->parent_data;
4046 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4047 	int ret;
4048 
4049 	if (!iommu)
4050 		return -ENODEV;
4051 
4052 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4053 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4054 		return ret;
4055 
4056 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4057 	/*
4058 	 * After this point, all the interrupts will start arriving
4059 	 * at the new destination. So, time to cleanup the previous
4060 	 * vector allocation.
4061 	 */
4062 	send_cleanup_vector(cfg);
4063 
4064 	return IRQ_SET_MASK_OK_DONE;
4065 }
4066 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4067 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4068 {
4069 	struct amd_ir_data *ir_data = irq_data->chip_data;
4070 
4071 	*msg = ir_data->msi_entry;
4072 }
4073 
4074 static struct irq_chip amd_ir_chip = {
4075 	.name			= "AMD-IR",
4076 	.irq_ack		= apic_ack_irq,
4077 	.irq_set_affinity	= amd_ir_set_affinity,
4078 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4079 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4080 };
4081 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4082 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4083 {
4084 	struct fwnode_handle *fn;
4085 
4086 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4087 	if (!fn)
4088 		return -ENOMEM;
4089 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4090 	if (!iommu->ir_domain) {
4091 		irq_domain_free_fwnode(fn);
4092 		return -ENOMEM;
4093 	}
4094 
4095 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4096 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4097 							     "AMD-IR-MSI",
4098 							     iommu->index);
4099 	return 0;
4100 }
4101 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4102 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4103 {
4104 	unsigned long flags;
4105 	struct amd_iommu *iommu;
4106 	struct irq_remap_table *table;
4107 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4108 	int devid = ir_data->irq_2_irte.devid;
4109 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4110 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4111 
4112 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4113 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4114 		return 0;
4115 
4116 	iommu = amd_iommu_rlookup_table[devid];
4117 	if (!iommu)
4118 		return -ENODEV;
4119 
4120 	table = get_irq_table(devid);
4121 	if (!table)
4122 		return -ENODEV;
4123 
4124 	raw_spin_lock_irqsave(&table->lock, flags);
4125 
4126 	if (ref->lo.fields_vapic.guest_mode) {
4127 		if (cpu >= 0) {
4128 			ref->lo.fields_vapic.destination =
4129 						APICID_TO_IRTE_DEST_LO(cpu);
4130 			ref->hi.fields.destination =
4131 						APICID_TO_IRTE_DEST_HI(cpu);
4132 		}
4133 		ref->lo.fields_vapic.is_run = is_run;
4134 		barrier();
4135 	}
4136 
4137 	raw_spin_unlock_irqrestore(&table->lock, flags);
4138 
4139 	iommu_flush_irt(iommu, devid);
4140 	iommu_completion_wait(iommu);
4141 	return 0;
4142 }
4143 EXPORT_SYMBOL(amd_iommu_update_ga);
4144 #endif
4145