1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 u16 offset);
33 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 IXGBE_MVALS_INIT(8259X)
38 };
39
40 /**
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 * control
43 * @hw: pointer to hardware structure
44 *
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
48 **/
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw * hw)49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 bool supported = false;
52 ixgbe_link_speed speed;
53 bool link_up;
54
55 switch (hw->phy.media_type) {
56 case ixgbe_media_type_fiber:
57 /* flow control autoneg black list */
58 switch (hw->device_id) {
59 case IXGBE_DEV_ID_X550EM_A_SFP:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 supported = false;
62 break;
63 default:
64 hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 /* if link is down, assume supported */
66 if (link_up)
67 supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 else
69 supported = true;
70 }
71
72 break;
73 case ixgbe_media_type_backplane:
74 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 supported = false;
76 else
77 supported = true;
78 break;
79 case ixgbe_media_type_copper:
80 /* only some copper devices support flow control autoneg */
81 switch (hw->device_id) {
82 case IXGBE_DEV_ID_82599_T3_LOM:
83 case IXGBE_DEV_ID_X540T:
84 case IXGBE_DEV_ID_X540T1:
85 case IXGBE_DEV_ID_X550T:
86 case IXGBE_DEV_ID_X550T1:
87 case IXGBE_DEV_ID_X550EM_X_10G_T:
88 case IXGBE_DEV_ID_X550EM_A_10G_T:
89 case IXGBE_DEV_ID_X550EM_A_1G_T:
90 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 supported = true;
92 break;
93 default:
94 break;
95 }
96 default:
97 break;
98 }
99
100 if (!supported)
101 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
102 hw->device_id);
103
104 return supported;
105 }
106
107 /**
108 * ixgbe_setup_fc_generic - Set up flow control
109 * @hw: pointer to hardware structure
110 *
111 * Called at init time to set up flow control.
112 **/
ixgbe_setup_fc_generic(struct ixgbe_hw * hw)113 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
114 {
115 s32 ret_val = 0;
116 u32 reg = 0, reg_bp = 0;
117 u16 reg_cu = 0;
118 bool locked = false;
119
120 /*
121 * Validate the requested mode. Strict IEEE mode does not allow
122 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
123 */
124 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
125 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
126 return -EINVAL;
127 }
128
129 /*
130 * 10gig parts do not have a word in the EEPROM to determine the
131 * default flow control setting, so we explicitly set it to full.
132 */
133 if (hw->fc.requested_mode == ixgbe_fc_default)
134 hw->fc.requested_mode = ixgbe_fc_full;
135
136 /*
137 * Set up the 1G and 10G flow control advertisement registers so the
138 * HW will be able to do fc autoneg once the cable is plugged in. If
139 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 */
141 switch (hw->phy.media_type) {
142 case ixgbe_media_type_backplane:
143 /* some MAC's need RMW protection on AUTOC */
144 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
145 if (ret_val)
146 return ret_val;
147
148 fallthrough; /* only backplane uses autoc */
149 case ixgbe_media_type_fiber:
150 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
151
152 break;
153 case ixgbe_media_type_copper:
154 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
155 MDIO_MMD_AN, ®_cu);
156 break;
157 default:
158 break;
159 }
160
161 /*
162 * The possible values of fc.requested_mode are:
163 * 0: Flow control is completely disabled
164 * 1: Rx flow control is enabled (we can receive pause frames,
165 * but not send pause frames).
166 * 2: Tx flow control is enabled (we can send pause frames but
167 * we do not support receiving pause frames).
168 * 3: Both Rx and Tx flow control (symmetric) are enabled.
169 * other: Invalid.
170 */
171 switch (hw->fc.requested_mode) {
172 case ixgbe_fc_none:
173 /* Flow control completely disabled by software override. */
174 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
175 if (hw->phy.media_type == ixgbe_media_type_backplane)
176 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
177 IXGBE_AUTOC_ASM_PAUSE);
178 else if (hw->phy.media_type == ixgbe_media_type_copper)
179 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
180 break;
181 case ixgbe_fc_tx_pause:
182 /*
183 * Tx Flow control is enabled, and Rx Flow control is
184 * disabled by software override.
185 */
186 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
187 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
188 if (hw->phy.media_type == ixgbe_media_type_backplane) {
189 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
190 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
191 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
192 reg_cu |= IXGBE_TAF_ASM_PAUSE;
193 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
194 }
195 break;
196 case ixgbe_fc_rx_pause:
197 /*
198 * Rx Flow control is enabled and Tx Flow control is
199 * disabled by software override. Since there really
200 * isn't a way to advertise that we are capable of RX
201 * Pause ONLY, we will advertise that we support both
202 * symmetric and asymmetric Rx PAUSE, as such we fall
203 * through to the fc_full statement. Later, we will
204 * disable the adapter's ability to send PAUSE frames.
205 */
206 case ixgbe_fc_full:
207 /* Flow control (both Rx and Tx) is enabled by SW override. */
208 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
209 if (hw->phy.media_type == ixgbe_media_type_backplane)
210 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
211 IXGBE_AUTOC_ASM_PAUSE;
212 else if (hw->phy.media_type == ixgbe_media_type_copper)
213 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
214 break;
215 default:
216 hw_dbg(hw, "Flow control param set incorrectly\n");
217 return -EIO;
218 }
219
220 if (hw->mac.type != ixgbe_mac_X540) {
221 /*
222 * Enable auto-negotiation between the MAC & PHY;
223 * the MAC will advertise clause 37 flow control.
224 */
225 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
226 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
227
228 /* Disable AN timeout */
229 if (hw->fc.strict_ieee)
230 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
231
232 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
233 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
234 }
235
236 /*
237 * AUTOC restart handles negotiation of 1G and 10G on backplane
238 * and copper. There is no need to set the PCS1GCTL register.
239 *
240 */
241 if (hw->phy.media_type == ixgbe_media_type_backplane) {
242 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
243 * LESM is on, likewise reset_pipeline requries the lock as
244 * it also writes AUTOC.
245 */
246 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
247 if (ret_val)
248 return ret_val;
249
250 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
251 ixgbe_device_supports_autoneg_fc(hw)) {
252 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
253 MDIO_MMD_AN, reg_cu);
254 }
255
256 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
257 return ret_val;
258 }
259
260 /**
261 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
262 * @hw: pointer to hardware structure
263 *
264 * Starts the hardware by filling the bus info structure and media type, clears
265 * all on chip counters, initializes receive address registers, multicast
266 * table, VLAN filter table, calls routine to set up link and flow control
267 * settings, and leaves transmit and receive units disabled and uninitialized
268 **/
ixgbe_start_hw_generic(struct ixgbe_hw * hw)269 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
270 {
271 s32 ret_val;
272 u32 ctrl_ext;
273 u16 device_caps;
274
275 /* Set the media type */
276 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
277
278 /* Identify the PHY */
279 hw->phy.ops.identify(hw);
280
281 /* Clear the VLAN filter table */
282 hw->mac.ops.clear_vfta(hw);
283
284 /* Clear statistics registers */
285 hw->mac.ops.clear_hw_cntrs(hw);
286
287 /* Set No Snoop Disable */
288 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
289 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
290 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
291 IXGBE_WRITE_FLUSH(hw);
292
293 /* Setup flow control if method for doing so */
294 if (hw->mac.ops.setup_fc) {
295 ret_val = hw->mac.ops.setup_fc(hw);
296 if (ret_val)
297 return ret_val;
298 }
299
300 /* Cashe bit indicating need for crosstalk fix */
301 switch (hw->mac.type) {
302 case ixgbe_mac_82599EB:
303 case ixgbe_mac_X550EM_x:
304 case ixgbe_mac_x550em_a:
305 hw->mac.ops.get_device_caps(hw, &device_caps);
306 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
307 hw->need_crosstalk_fix = false;
308 else
309 hw->need_crosstalk_fix = true;
310 break;
311 default:
312 hw->need_crosstalk_fix = false;
313 break;
314 }
315
316 /* Clear adapter stopped flag */
317 hw->adapter_stopped = false;
318
319 return 0;
320 }
321
322 /**
323 * ixgbe_start_hw_gen2 - Init sequence for common device family
324 * @hw: pointer to hw structure
325 *
326 * Performs the init sequence common to the second generation
327 * of 10 GbE devices.
328 * Devices in the second generation:
329 * 82599
330 * X540
331 **/
ixgbe_start_hw_gen2(struct ixgbe_hw * hw)332 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
333 {
334 u32 i;
335
336 /* Clear the rate limiters */
337 for (i = 0; i < hw->mac.max_tx_queues; i++) {
338 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
339 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
340 }
341 IXGBE_WRITE_FLUSH(hw);
342
343 return 0;
344 }
345
346 /**
347 * ixgbe_init_hw_generic - Generic hardware initialization
348 * @hw: pointer to hardware structure
349 *
350 * Initialize the hardware by resetting the hardware, filling the bus info
351 * structure and media type, clears all on chip counters, initializes receive
352 * address registers, multicast table, VLAN filter table, calls routine to set
353 * up link and flow control settings, and leaves transmit and receive units
354 * disabled and uninitialized
355 **/
ixgbe_init_hw_generic(struct ixgbe_hw * hw)356 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
357 {
358 s32 status;
359
360 /* Reset the hardware */
361 status = hw->mac.ops.reset_hw(hw);
362
363 if (status == 0) {
364 /* Start the HW */
365 status = hw->mac.ops.start_hw(hw);
366 }
367
368 /* Initialize the LED link active for LED blink support */
369 if (hw->mac.ops.init_led_link_act)
370 hw->mac.ops.init_led_link_act(hw);
371
372 return status;
373 }
374
375 /**
376 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
377 * @hw: pointer to hardware structure
378 *
379 * Clears all hardware statistics counters by reading them from the hardware
380 * Statistics counters are clear on read.
381 **/
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw * hw)382 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
383 {
384 u16 i = 0;
385
386 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
387 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
388 IXGBE_READ_REG(hw, IXGBE_ERRBC);
389 IXGBE_READ_REG(hw, IXGBE_MSPDC);
390 for (i = 0; i < 8; i++)
391 IXGBE_READ_REG(hw, IXGBE_MPC(i));
392
393 IXGBE_READ_REG(hw, IXGBE_MLFC);
394 IXGBE_READ_REG(hw, IXGBE_MRFC);
395 IXGBE_READ_REG(hw, IXGBE_RLEC);
396 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
397 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
398 if (hw->mac.type >= ixgbe_mac_82599EB) {
399 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
400 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
401 } else {
402 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
403 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
404 }
405
406 for (i = 0; i < 8; i++) {
407 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
408 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
409 if (hw->mac.type >= ixgbe_mac_82599EB) {
410 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
411 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
412 } else {
413 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
414 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
415 }
416 }
417 if (hw->mac.type >= ixgbe_mac_82599EB)
418 for (i = 0; i < 8; i++)
419 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
420 IXGBE_READ_REG(hw, IXGBE_PRC64);
421 IXGBE_READ_REG(hw, IXGBE_PRC127);
422 IXGBE_READ_REG(hw, IXGBE_PRC255);
423 IXGBE_READ_REG(hw, IXGBE_PRC511);
424 IXGBE_READ_REG(hw, IXGBE_PRC1023);
425 IXGBE_READ_REG(hw, IXGBE_PRC1522);
426 IXGBE_READ_REG(hw, IXGBE_GPRC);
427 IXGBE_READ_REG(hw, IXGBE_BPRC);
428 IXGBE_READ_REG(hw, IXGBE_MPRC);
429 IXGBE_READ_REG(hw, IXGBE_GPTC);
430 IXGBE_READ_REG(hw, IXGBE_GORCL);
431 IXGBE_READ_REG(hw, IXGBE_GORCH);
432 IXGBE_READ_REG(hw, IXGBE_GOTCL);
433 IXGBE_READ_REG(hw, IXGBE_GOTCH);
434 if (hw->mac.type == ixgbe_mac_82598EB)
435 for (i = 0; i < 8; i++)
436 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
437 IXGBE_READ_REG(hw, IXGBE_RUC);
438 IXGBE_READ_REG(hw, IXGBE_RFC);
439 IXGBE_READ_REG(hw, IXGBE_ROC);
440 IXGBE_READ_REG(hw, IXGBE_RJC);
441 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
442 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
443 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
444 IXGBE_READ_REG(hw, IXGBE_TORL);
445 IXGBE_READ_REG(hw, IXGBE_TORH);
446 IXGBE_READ_REG(hw, IXGBE_TPR);
447 IXGBE_READ_REG(hw, IXGBE_TPT);
448 IXGBE_READ_REG(hw, IXGBE_PTC64);
449 IXGBE_READ_REG(hw, IXGBE_PTC127);
450 IXGBE_READ_REG(hw, IXGBE_PTC255);
451 IXGBE_READ_REG(hw, IXGBE_PTC511);
452 IXGBE_READ_REG(hw, IXGBE_PTC1023);
453 IXGBE_READ_REG(hw, IXGBE_PTC1522);
454 IXGBE_READ_REG(hw, IXGBE_MPTC);
455 IXGBE_READ_REG(hw, IXGBE_BPTC);
456 for (i = 0; i < 16; i++) {
457 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
458 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
459 if (hw->mac.type >= ixgbe_mac_82599EB) {
460 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
461 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
462 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
463 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
464 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
465 } else {
466 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
467 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
468 }
469 }
470
471 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
472 if (hw->phy.id == 0)
473 hw->phy.ops.identify(hw);
474 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
475 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
476 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
477 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
478 }
479
480 return 0;
481 }
482
483 /**
484 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
485 * @hw: pointer to hardware structure
486 * @pba_num: stores the part number string from the EEPROM
487 * @pba_num_size: part number string buffer length
488 *
489 * Reads the part number string from the EEPROM.
490 **/
ixgbe_read_pba_string_generic(struct ixgbe_hw * hw,u8 * pba_num,u32 pba_num_size)491 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
492 u32 pba_num_size)
493 {
494 s32 ret_val;
495 u16 data;
496 u16 pba_ptr;
497 u16 offset;
498 u16 length;
499
500 if (pba_num == NULL) {
501 hw_dbg(hw, "PBA string buffer was null\n");
502 return -EINVAL;
503 }
504
505 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
506 if (ret_val) {
507 hw_dbg(hw, "NVM Read Error\n");
508 return ret_val;
509 }
510
511 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
512 if (ret_val) {
513 hw_dbg(hw, "NVM Read Error\n");
514 return ret_val;
515 }
516
517 /*
518 * if data is not ptr guard the PBA must be in legacy format which
519 * means pba_ptr is actually our second data word for the PBA number
520 * and we can decode it into an ascii string
521 */
522 if (data != IXGBE_PBANUM_PTR_GUARD) {
523 hw_dbg(hw, "NVM PBA number is not stored as string\n");
524
525 /* we will need 11 characters to store the PBA */
526 if (pba_num_size < 11) {
527 hw_dbg(hw, "PBA string buffer too small\n");
528 return -ENOSPC;
529 }
530
531 /* extract hex string from data and pba_ptr */
532 pba_num[0] = (data >> 12) & 0xF;
533 pba_num[1] = (data >> 8) & 0xF;
534 pba_num[2] = (data >> 4) & 0xF;
535 pba_num[3] = data & 0xF;
536 pba_num[4] = (pba_ptr >> 12) & 0xF;
537 pba_num[5] = (pba_ptr >> 8) & 0xF;
538 pba_num[6] = '-';
539 pba_num[7] = 0;
540 pba_num[8] = (pba_ptr >> 4) & 0xF;
541 pba_num[9] = pba_ptr & 0xF;
542
543 /* put a null character on the end of our string */
544 pba_num[10] = '\0';
545
546 /* switch all the data but the '-' to hex char */
547 for (offset = 0; offset < 10; offset++) {
548 if (pba_num[offset] < 0xA)
549 pba_num[offset] += '0';
550 else if (pba_num[offset] < 0x10)
551 pba_num[offset] += 'A' - 0xA;
552 }
553
554 return 0;
555 }
556
557 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
558 if (ret_val) {
559 hw_dbg(hw, "NVM Read Error\n");
560 return ret_val;
561 }
562
563 if (length == 0xFFFF || length == 0) {
564 hw_dbg(hw, "NVM PBA number section invalid length\n");
565 return -EIO;
566 }
567
568 /* check if pba_num buffer is big enough */
569 if (pba_num_size < (((u32)length * 2) - 1)) {
570 hw_dbg(hw, "PBA string buffer too small\n");
571 return -ENOSPC;
572 }
573
574 /* trim pba length from start of string */
575 pba_ptr++;
576 length--;
577
578 for (offset = 0; offset < length; offset++) {
579 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
580 if (ret_val) {
581 hw_dbg(hw, "NVM Read Error\n");
582 return ret_val;
583 }
584 pba_num[offset * 2] = (u8)(data >> 8);
585 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
586 }
587 pba_num[offset * 2] = '\0';
588
589 return 0;
590 }
591
592 /**
593 * ixgbe_get_mac_addr_generic - Generic get MAC address
594 * @hw: pointer to hardware structure
595 * @mac_addr: Adapter MAC address
596 *
597 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
598 * A reset of the adapter must be performed prior to calling this function
599 * in order for the MAC address to have been loaded from the EEPROM into RAR0
600 **/
ixgbe_get_mac_addr_generic(struct ixgbe_hw * hw,u8 * mac_addr)601 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
602 {
603 u32 rar_high;
604 u32 rar_low;
605 u16 i;
606
607 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
608 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
609
610 for (i = 0; i < 4; i++)
611 mac_addr[i] = (u8)(rar_low >> (i*8));
612
613 for (i = 0; i < 2; i++)
614 mac_addr[i+4] = (u8)(rar_high >> (i*8));
615
616 return 0;
617 }
618
ixgbe_convert_bus_width(u16 link_status)619 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
620 {
621 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
622 case IXGBE_PCI_LINK_WIDTH_1:
623 return ixgbe_bus_width_pcie_x1;
624 case IXGBE_PCI_LINK_WIDTH_2:
625 return ixgbe_bus_width_pcie_x2;
626 case IXGBE_PCI_LINK_WIDTH_4:
627 return ixgbe_bus_width_pcie_x4;
628 case IXGBE_PCI_LINK_WIDTH_8:
629 return ixgbe_bus_width_pcie_x8;
630 default:
631 return ixgbe_bus_width_unknown;
632 }
633 }
634
ixgbe_convert_bus_speed(u16 link_status)635 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
636 {
637 switch (link_status & IXGBE_PCI_LINK_SPEED) {
638 case IXGBE_PCI_LINK_SPEED_2500:
639 return ixgbe_bus_speed_2500;
640 case IXGBE_PCI_LINK_SPEED_5000:
641 return ixgbe_bus_speed_5000;
642 case IXGBE_PCI_LINK_SPEED_8000:
643 return ixgbe_bus_speed_8000;
644 default:
645 return ixgbe_bus_speed_unknown;
646 }
647 }
648
649 /**
650 * ixgbe_get_bus_info_generic - Generic set PCI bus info
651 * @hw: pointer to hardware structure
652 *
653 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
654 **/
ixgbe_get_bus_info_generic(struct ixgbe_hw * hw)655 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
656 {
657 u16 link_status;
658
659 hw->bus.type = ixgbe_bus_type_pci_express;
660
661 /* Get the negotiated link width and speed from PCI config space */
662 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
663
664 hw->bus.width = ixgbe_convert_bus_width(link_status);
665 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
666
667 hw->mac.ops.set_lan_id(hw);
668
669 return 0;
670 }
671
672 /**
673 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
674 * @hw: pointer to the HW structure
675 *
676 * Determines the LAN function id by reading memory-mapped registers
677 * and swaps the port value if requested.
678 **/
ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw * hw)679 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
680 {
681 struct ixgbe_bus_info *bus = &hw->bus;
682 u16 ee_ctrl_4;
683 u32 reg;
684
685 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
686 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
687 bus->lan_id = bus->func;
688
689 /* check for a port swap */
690 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
691 if (reg & IXGBE_FACTPS_LFS)
692 bus->func ^= 0x1;
693
694 /* Get MAC instance from EEPROM for configuring CS4227 */
695 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
696 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
697 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
698 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
699 }
700 }
701
702 /**
703 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
704 * @hw: pointer to hardware structure
705 *
706 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
707 * disables transmit and receive units. The adapter_stopped flag is used by
708 * the shared code and drivers to determine if the adapter is in a stopped
709 * state and should not touch the hardware.
710 **/
ixgbe_stop_adapter_generic(struct ixgbe_hw * hw)711 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
712 {
713 u32 reg_val;
714 u16 i;
715
716 /*
717 * Set the adapter_stopped flag so other driver functions stop touching
718 * the hardware
719 */
720 hw->adapter_stopped = true;
721
722 /* Disable the receive unit */
723 hw->mac.ops.disable_rx(hw);
724
725 /* Clear interrupt mask to stop interrupts from being generated */
726 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
727
728 /* Clear any pending interrupts, flush previous writes */
729 IXGBE_READ_REG(hw, IXGBE_EICR);
730
731 /* Disable the transmit unit. Each queue must be disabled. */
732 for (i = 0; i < hw->mac.max_tx_queues; i++)
733 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
734
735 /* Disable the receive unit by stopping each queue */
736 for (i = 0; i < hw->mac.max_rx_queues; i++) {
737 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
738 reg_val &= ~IXGBE_RXDCTL_ENABLE;
739 reg_val |= IXGBE_RXDCTL_SWFLSH;
740 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
741 }
742
743 /* flush all queues disables */
744 IXGBE_WRITE_FLUSH(hw);
745 usleep_range(1000, 2000);
746
747 /*
748 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
749 * access and verify no pending requests
750 */
751 return ixgbe_disable_pcie_primary(hw);
752 }
753
754 /**
755 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
756 * @hw: pointer to hardware structure
757 *
758 * Store the index for the link active LED. This will be used to support
759 * blinking the LED.
760 **/
ixgbe_init_led_link_act_generic(struct ixgbe_hw * hw)761 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
762 {
763 struct ixgbe_mac_info *mac = &hw->mac;
764 u32 led_reg, led_mode;
765 u16 i;
766
767 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
768
769 /* Get LED link active from the LEDCTL register */
770 for (i = 0; i < 4; i++) {
771 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
772
773 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
774 IXGBE_LED_LINK_ACTIVE) {
775 mac->led_link_act = i;
776 return 0;
777 }
778 }
779
780 /* If LEDCTL register does not have the LED link active set, then use
781 * known MAC defaults.
782 */
783 switch (hw->mac.type) {
784 case ixgbe_mac_x550em_a:
785 mac->led_link_act = 0;
786 break;
787 case ixgbe_mac_X550EM_x:
788 mac->led_link_act = 1;
789 break;
790 default:
791 mac->led_link_act = 2;
792 }
793
794 return 0;
795 }
796
797 /**
798 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
799 * @hw: pointer to hardware structure
800 * @index: led number to turn on
801 **/
ixgbe_led_on_generic(struct ixgbe_hw * hw,u32 index)802 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
803 {
804 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
805
806 if (index > 3)
807 return -EINVAL;
808
809 /* To turn on the LED, set mode to ON. */
810 led_reg &= ~IXGBE_LED_MODE_MASK(index);
811 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
812 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
813 IXGBE_WRITE_FLUSH(hw);
814
815 return 0;
816 }
817
818 /**
819 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
820 * @hw: pointer to hardware structure
821 * @index: led number to turn off
822 **/
ixgbe_led_off_generic(struct ixgbe_hw * hw,u32 index)823 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
824 {
825 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
826
827 if (index > 3)
828 return -EINVAL;
829
830 /* To turn off the LED, set mode to OFF. */
831 led_reg &= ~IXGBE_LED_MODE_MASK(index);
832 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
833 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
834 IXGBE_WRITE_FLUSH(hw);
835
836 return 0;
837 }
838
839 /**
840 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
841 * @hw: pointer to hardware structure
842 *
843 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
844 * ixgbe_hw struct in order to set up EEPROM access.
845 **/
ixgbe_init_eeprom_params_generic(struct ixgbe_hw * hw)846 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
847 {
848 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
849 u32 eec;
850 u16 eeprom_size;
851
852 if (eeprom->type == ixgbe_eeprom_uninitialized) {
853 eeprom->type = ixgbe_eeprom_none;
854 /* Set default semaphore delay to 10ms which is a well
855 * tested value */
856 eeprom->semaphore_delay = 10;
857 /* Clear EEPROM page size, it will be initialized as needed */
858 eeprom->word_page_size = 0;
859
860 /*
861 * Check for EEPROM present first.
862 * If not present leave as none
863 */
864 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
865 if (eec & IXGBE_EEC_PRES) {
866 eeprom->type = ixgbe_eeprom_spi;
867
868 /*
869 * SPI EEPROM is assumed here. This code would need to
870 * change if a future EEPROM is not SPI.
871 */
872 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
873 IXGBE_EEC_SIZE_SHIFT);
874 eeprom->word_size = BIT(eeprom_size +
875 IXGBE_EEPROM_WORD_SIZE_SHIFT);
876 }
877
878 if (eec & IXGBE_EEC_ADDR_SIZE)
879 eeprom->address_bits = 16;
880 else
881 eeprom->address_bits = 8;
882 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883 eeprom->type, eeprom->word_size, eeprom->address_bits);
884 }
885
886 return 0;
887 }
888
889 /**
890 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891 * @hw: pointer to hardware structure
892 * @offset: offset within the EEPROM to write
893 * @words: number of words
894 * @data: 16 bit word(s) to write to EEPROM
895 *
896 * Reads 16 bit word(s) from EEPROM through bit-bang method
897 **/
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)898 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
899 u16 words, u16 *data)
900 {
901 s32 status;
902 u16 i, count;
903
904 hw->eeprom.ops.init_params(hw);
905
906 if (words == 0 || (offset + words > hw->eeprom.word_size))
907 return -EINVAL;
908
909 /*
910 * The EEPROM page size cannot be queried from the chip. We do lazy
911 * initialization. It is worth to do that when we write large buffer.
912 */
913 if ((hw->eeprom.word_page_size == 0) &&
914 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
915 ixgbe_detect_eeprom_page_size_generic(hw, offset);
916
917 /*
918 * We cannot hold synchronization semaphores for too long
919 * to avoid other entity starvation. However it is more efficient
920 * to read in bursts than synchronizing access for each word.
921 */
922 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
923 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
924 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
925 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
926 count, &data[i]);
927
928 if (status != 0)
929 break;
930 }
931
932 return status;
933 }
934
935 /**
936 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
937 * @hw: pointer to hardware structure
938 * @offset: offset within the EEPROM to be written to
939 * @words: number of word(s)
940 * @data: 16 bit word(s) to be written to the EEPROM
941 *
942 * If ixgbe_eeprom_update_checksum is not called after this function, the
943 * EEPROM will most likely contain an invalid checksum.
944 **/
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)945 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
946 u16 words, u16 *data)
947 {
948 s32 status;
949 u16 word;
950 u16 page_size;
951 u16 i;
952 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
953
954 /* Prepare the EEPROM for writing */
955 status = ixgbe_acquire_eeprom(hw);
956 if (status)
957 return status;
958
959 if (ixgbe_ready_eeprom(hw) != 0) {
960 ixgbe_release_eeprom(hw);
961 return -EIO;
962 }
963
964 for (i = 0; i < words; i++) {
965 ixgbe_standby_eeprom(hw);
966
967 /* Send the WRITE ENABLE command (8 bit opcode) */
968 ixgbe_shift_out_eeprom_bits(hw,
969 IXGBE_EEPROM_WREN_OPCODE_SPI,
970 IXGBE_EEPROM_OPCODE_BITS);
971
972 ixgbe_standby_eeprom(hw);
973
974 /* Some SPI eeproms use the 8th address bit embedded
975 * in the opcode
976 */
977 if ((hw->eeprom.address_bits == 8) &&
978 ((offset + i) >= 128))
979 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
980
981 /* Send the Write command (8-bit opcode + addr) */
982 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
983 IXGBE_EEPROM_OPCODE_BITS);
984 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
985 hw->eeprom.address_bits);
986
987 page_size = hw->eeprom.word_page_size;
988
989 /* Send the data in burst via SPI */
990 do {
991 word = data[i];
992 word = (word >> 8) | (word << 8);
993 ixgbe_shift_out_eeprom_bits(hw, word, 16);
994
995 if (page_size == 0)
996 break;
997
998 /* do not wrap around page */
999 if (((offset + i) & (page_size - 1)) ==
1000 (page_size - 1))
1001 break;
1002 } while (++i < words);
1003
1004 ixgbe_standby_eeprom(hw);
1005 usleep_range(10000, 20000);
1006 }
1007 /* Done with writing - release the EEPROM */
1008 ixgbe_release_eeprom(hw);
1009
1010 return 0;
1011 }
1012
1013 /**
1014 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 * @hw: pointer to hardware structure
1016 * @offset: offset within the EEPROM to be written to
1017 * @data: 16 bit word to be written to the EEPROM
1018 *
1019 * If ixgbe_eeprom_update_checksum is not called after this function, the
1020 * EEPROM will most likely contain an invalid checksum.
1021 **/
ixgbe_write_eeprom_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1022 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023 {
1024 hw->eeprom.ops.init_params(hw);
1025
1026 if (offset >= hw->eeprom.word_size)
1027 return -EINVAL;
1028
1029 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1030 }
1031
1032 /**
1033 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 * @hw: pointer to hardware structure
1035 * @offset: offset within the EEPROM to be read
1036 * @words: number of word(s)
1037 * @data: read 16 bit words(s) from EEPROM
1038 *
1039 * Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1041 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042 u16 words, u16 *data)
1043 {
1044 s32 status;
1045 u16 i, count;
1046
1047 hw->eeprom.ops.init_params(hw);
1048
1049 if (words == 0 || (offset + words > hw->eeprom.word_size))
1050 return -EINVAL;
1051
1052 /*
1053 * We cannot hold synchronization semaphores for too long
1054 * to avoid other entity starvation. However it is more efficient
1055 * to read in bursts than synchronizing access for each word.
1056 */
1057 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062 count, &data[i]);
1063
1064 if (status)
1065 return status;
1066 }
1067
1068 return 0;
1069 }
1070
1071 /**
1072 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 * @hw: pointer to hardware structure
1074 * @offset: offset within the EEPROM to be read
1075 * @words: number of word(s)
1076 * @data: read 16 bit word(s) from EEPROM
1077 *
1078 * Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1080 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081 u16 words, u16 *data)
1082 {
1083 s32 status;
1084 u16 word_in;
1085 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1086 u16 i;
1087
1088 /* Prepare the EEPROM for reading */
1089 status = ixgbe_acquire_eeprom(hw);
1090 if (status)
1091 return status;
1092
1093 if (ixgbe_ready_eeprom(hw) != 0) {
1094 ixgbe_release_eeprom(hw);
1095 return -EIO;
1096 }
1097
1098 for (i = 0; i < words; i++) {
1099 ixgbe_standby_eeprom(hw);
1100 /* Some SPI eeproms use the 8th address bit embedded
1101 * in the opcode
1102 */
1103 if ((hw->eeprom.address_bits == 8) &&
1104 ((offset + i) >= 128))
1105 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107 /* Send the READ command (opcode + addr) */
1108 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109 IXGBE_EEPROM_OPCODE_BITS);
1110 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111 hw->eeprom.address_bits);
1112
1113 /* Read the data. */
1114 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115 data[i] = (word_in >> 8) | (word_in << 8);
1116 }
1117
1118 /* End this read operation */
1119 ixgbe_release_eeprom(hw);
1120
1121 return 0;
1122 }
1123
1124 /**
1125 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 * @hw: pointer to hardware structure
1127 * @offset: offset within the EEPROM to be read
1128 * @data: read 16 bit value from EEPROM
1129 *
1130 * Reads 16 bit value from EEPROM through bit-bang method
1131 **/
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1132 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133 u16 *data)
1134 {
1135 hw->eeprom.ops.init_params(hw);
1136
1137 if (offset >= hw->eeprom.word_size)
1138 return -EINVAL;
1139
1140 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1141 }
1142
1143 /**
1144 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 * @hw: pointer to hardware structure
1146 * @offset: offset of word in the EEPROM to read
1147 * @words: number of word(s)
1148 * @data: 16 bit word(s) from the EEPROM
1149 *
1150 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1152 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153 u16 words, u16 *data)
1154 {
1155 u32 eerd;
1156 s32 status;
1157 u32 i;
1158
1159 hw->eeprom.ops.init_params(hw);
1160
1161 if (words == 0 || offset >= hw->eeprom.word_size)
1162 return -EINVAL;
1163
1164 for (i = 0; i < words; i++) {
1165 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166 IXGBE_EEPROM_RW_REG_START;
1167
1168 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171 if (status == 0) {
1172 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173 IXGBE_EEPROM_RW_REG_DATA);
1174 } else {
1175 hw_dbg(hw, "Eeprom read timed out\n");
1176 return status;
1177 }
1178 }
1179
1180 return 0;
1181 }
1182
1183 /**
1184 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 * @hw: pointer to hardware structure
1186 * @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 * Discover EEPROM page size by writing marching data at given offset.
1189 * This function is called only when we are writing a new large buffer
1190 * at given offset so the data would be overwritten anyway.
1191 **/
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw * hw,u16 offset)1192 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193 u16 offset)
1194 {
1195 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196 s32 status;
1197 u16 i;
1198
1199 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200 data[i] = i;
1201
1202 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205 hw->eeprom.word_page_size = 0;
1206 if (status)
1207 return status;
1208
1209 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210 if (status)
1211 return status;
1212
1213 /*
1214 * When writing in burst more than the actual page size
1215 * EEPROM address wraps around current page.
1216 */
1217 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220 hw->eeprom.word_page_size);
1221 return 0;
1222 }
1223
1224 /**
1225 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 * @hw: pointer to hardware structure
1227 * @offset: offset of word in the EEPROM to read
1228 * @data: word read from the EEPROM
1229 *
1230 * Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
ixgbe_read_eerd_generic(struct ixgbe_hw * hw,u16 offset,u16 * data)1232 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233 {
1234 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235 }
1236
1237 /**
1238 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 * @hw: pointer to hardware structure
1240 * @offset: offset of word in the EEPROM to write
1241 * @words: number of words
1242 * @data: word(s) write to the EEPROM
1243 *
1244 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw * hw,u16 offset,u16 words,u16 * data)1246 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247 u16 words, u16 *data)
1248 {
1249 u32 eewr;
1250 s32 status;
1251 u16 i;
1252
1253 hw->eeprom.ops.init_params(hw);
1254
1255 if (words == 0 || offset >= hw->eeprom.word_size)
1256 return -EINVAL;
1257
1258 for (i = 0; i < words; i++) {
1259 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261 IXGBE_EEPROM_RW_REG_START;
1262
1263 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264 if (status) {
1265 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266 return status;
1267 }
1268
1269 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272 if (status) {
1273 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274 return status;
1275 }
1276 }
1277
1278 return 0;
1279 }
1280
1281 /**
1282 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 * @hw: pointer to hardware structure
1284 * @offset: offset of word in the EEPROM to write
1285 * @data: word write to the EEPROM
1286 *
1287 * Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
ixgbe_write_eewr_generic(struct ixgbe_hw * hw,u16 offset,u16 data)1289 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290 {
1291 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292 }
1293
1294 /**
1295 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 * @hw: pointer to hardware structure
1297 * @ee_reg: EEPROM flag for polling
1298 *
1299 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 * read or write is done respectively.
1301 **/
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw * hw,u32 ee_reg)1302 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303 {
1304 u32 i;
1305 u32 reg;
1306
1307 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308 if (ee_reg == IXGBE_NVM_POLL_READ)
1309 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310 else
1311 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314 return 0;
1315 }
1316 udelay(5);
1317 }
1318 return -EIO;
1319 }
1320
1321 /**
1322 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 * @hw: pointer to hardware structure
1324 *
1325 * Prepares EEPROM for access using bit-bang method. This function should
1326 * be called before issuing a command to the EEPROM.
1327 **/
ixgbe_acquire_eeprom(struct ixgbe_hw * hw)1328 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329 {
1330 u32 eec;
1331 u32 i;
1332
1333 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334 return -EBUSY;
1335
1336 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1337
1338 /* Request EEPROM Access */
1339 eec |= IXGBE_EEC_REQ;
1340 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1341
1342 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344 if (eec & IXGBE_EEC_GNT)
1345 break;
1346 udelay(5);
1347 }
1348
1349 /* Release if grant not acquired */
1350 if (!(eec & IXGBE_EEC_GNT)) {
1351 eec &= ~IXGBE_EEC_REQ;
1352 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356 return -EIO;
1357 }
1358
1359 /* Setup EEPROM for Read/Write */
1360 /* Clear CS and SK */
1361 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363 IXGBE_WRITE_FLUSH(hw);
1364 udelay(1);
1365 return 0;
1366 }
1367
1368 /**
1369 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 * @hw: pointer to hardware structure
1371 *
1372 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
ixgbe_get_eeprom_semaphore(struct ixgbe_hw * hw)1374 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375 {
1376 u32 timeout = 2000;
1377 u32 i;
1378 u32 swsm;
1379
1380 /* Get SMBI software semaphore between device drivers first */
1381 for (i = 0; i < timeout; i++) {
1382 /*
1383 * If the SMBI bit is 0 when we read it, then the bit will be
1384 * set and we have the semaphore
1385 */
1386 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387 if (!(swsm & IXGBE_SWSM_SMBI))
1388 break;
1389 usleep_range(50, 100);
1390 }
1391
1392 if (i == timeout) {
1393 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394 /* this release is particularly important because our attempts
1395 * above to get the semaphore may have succeeded, and if there
1396 * was a timeout, we should unconditionally clear the semaphore
1397 * bits to free the driver to make progress
1398 */
1399 ixgbe_release_eeprom_semaphore(hw);
1400
1401 usleep_range(50, 100);
1402 /* one last try
1403 * If the SMBI bit is 0 when we read it, then the bit will be
1404 * set and we have the semaphore
1405 */
1406 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407 if (swsm & IXGBE_SWSM_SMBI) {
1408 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409 return -EIO;
1410 }
1411 }
1412
1413 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1414 for (i = 0; i < timeout; i++) {
1415 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1416
1417 /* Set the SW EEPROM semaphore bit to request access */
1418 swsm |= IXGBE_SWSM_SWESMBI;
1419 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421 /* If we set the bit successfully then we got the
1422 * semaphore.
1423 */
1424 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 if (swsm & IXGBE_SWSM_SWESMBI)
1426 break;
1427
1428 usleep_range(50, 100);
1429 }
1430
1431 /* Release semaphores and return error if SW EEPROM semaphore
1432 * was not granted because we don't have access to the EEPROM
1433 */
1434 if (i >= timeout) {
1435 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436 ixgbe_release_eeprom_semaphore(hw);
1437 return -EIO;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /**
1444 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 * @hw: pointer to hardware structure
1446 *
1447 * This function clears hardware semaphore bits.
1448 **/
ixgbe_release_eeprom_semaphore(struct ixgbe_hw * hw)1449 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450 {
1451 u32 swsm;
1452
1453 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458 IXGBE_WRITE_FLUSH(hw);
1459 }
1460
1461 /**
1462 * ixgbe_ready_eeprom - Polls for EEPROM ready
1463 * @hw: pointer to hardware structure
1464 **/
ixgbe_ready_eeprom(struct ixgbe_hw * hw)1465 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466 {
1467 u16 i;
1468 u8 spi_stat_reg;
1469
1470 /*
1471 * Read "Status Register" repeatedly until the LSB is cleared. The
1472 * EEPROM will signal that the command has been completed by clearing
1473 * bit 0 of the internal status register. If it's not cleared within
1474 * 5 milliseconds, then error out.
1475 */
1476 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478 IXGBE_EEPROM_OPCODE_BITS);
1479 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481 break;
1482
1483 udelay(5);
1484 ixgbe_standby_eeprom(hw);
1485 }
1486
1487 /*
1488 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489 * devices (and only 0-5mSec on 5V devices)
1490 */
1491 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492 hw_dbg(hw, "SPI EEPROM Status error\n");
1493 return -EIO;
1494 }
1495
1496 return 0;
1497 }
1498
1499 /**
1500 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 * @hw: pointer to hardware structure
1502 **/
ixgbe_standby_eeprom(struct ixgbe_hw * hw)1503 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504 {
1505 u32 eec;
1506
1507 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509 /* Toggle CS to flush commands */
1510 eec |= IXGBE_EEC_CS;
1511 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 IXGBE_WRITE_FLUSH(hw);
1513 udelay(1);
1514 eec &= ~IXGBE_EEC_CS;
1515 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516 IXGBE_WRITE_FLUSH(hw);
1517 udelay(1);
1518 }
1519
1520 /**
1521 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 * @hw: pointer to hardware structure
1523 * @data: data to send to the EEPROM
1524 * @count: number of bits to shift out
1525 **/
ixgbe_shift_out_eeprom_bits(struct ixgbe_hw * hw,u16 data,u16 count)1526 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527 u16 count)
1528 {
1529 u32 eec;
1530 u32 mask;
1531 u32 i;
1532
1533 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535 /*
1536 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537 * one bit at a time. Determine the starting bit based on count
1538 */
1539 mask = BIT(count - 1);
1540
1541 for (i = 0; i < count; i++) {
1542 /*
1543 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544 * "1", and then raising and then lowering the clock (the SK
1545 * bit controls the clock input to the EEPROM). A "0" is
1546 * shifted out to the EEPROM by setting "DI" to "0" and then
1547 * raising and then lowering the clock.
1548 */
1549 if (data & mask)
1550 eec |= IXGBE_EEC_DI;
1551 else
1552 eec &= ~IXGBE_EEC_DI;
1553
1554 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555 IXGBE_WRITE_FLUSH(hw);
1556
1557 udelay(1);
1558
1559 ixgbe_raise_eeprom_clk(hw, &eec);
1560 ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562 /*
1563 * Shift mask to signify next bit of data to shift in to the
1564 * EEPROM
1565 */
1566 mask = mask >> 1;
1567 }
1568
1569 /* We leave the "DI" bit set to "0" when we leave this routine. */
1570 eec &= ~IXGBE_EEC_DI;
1571 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572 IXGBE_WRITE_FLUSH(hw);
1573 }
1574
1575 /**
1576 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 * @hw: pointer to hardware structure
1578 * @count: number of bits to shift
1579 **/
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw * hw,u16 count)1580 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581 {
1582 u32 eec;
1583 u32 i;
1584 u16 data = 0;
1585
1586 /*
1587 * In order to read a register from the EEPROM, we need to shift
1588 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589 * the clock input to the EEPROM (setting the SK bit), and then reading
1590 * the value of the "DO" bit. During this "shifting in" process the
1591 * "DI" bit should always be clear.
1592 */
1593 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597 for (i = 0; i < count; i++) {
1598 data = data << 1;
1599 ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603 eec &= ~(IXGBE_EEC_DI);
1604 if (eec & IXGBE_EEC_DO)
1605 data |= 1;
1606
1607 ixgbe_lower_eeprom_clk(hw, &eec);
1608 }
1609
1610 return data;
1611 }
1612
1613 /**
1614 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 * @hw: pointer to hardware structure
1616 * @eec: EEC register's current value
1617 **/
ixgbe_raise_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1618 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619 {
1620 /*
1621 * Raise the clock input to the EEPROM
1622 * (setting the SK bit), then delay
1623 */
1624 *eec = *eec | IXGBE_EEC_SK;
1625 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626 IXGBE_WRITE_FLUSH(hw);
1627 udelay(1);
1628 }
1629
1630 /**
1631 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 * @hw: pointer to hardware structure
1633 * @eec: EEC's current value
1634 **/
ixgbe_lower_eeprom_clk(struct ixgbe_hw * hw,u32 * eec)1635 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636 {
1637 /*
1638 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639 * delay
1640 */
1641 *eec = *eec & ~IXGBE_EEC_SK;
1642 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643 IXGBE_WRITE_FLUSH(hw);
1644 udelay(1);
1645 }
1646
1647 /**
1648 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 * @hw: pointer to hardware structure
1650 **/
ixgbe_release_eeprom(struct ixgbe_hw * hw)1651 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652 {
1653 u32 eec;
1654
1655 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657 eec |= IXGBE_EEC_CS; /* Pull CS high */
1658 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661 IXGBE_WRITE_FLUSH(hw);
1662
1663 udelay(1);
1664
1665 /* Stop requesting EEPROM access */
1666 eec &= ~IXGBE_EEC_REQ;
1667 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671 /*
1672 * Delay before attempt to obtain semaphore again to allow FW
1673 * access. semaphore_delay is in ms we need us for usleep_range
1674 */
1675 usleep_range(hw->eeprom.semaphore_delay * 1000,
1676 hw->eeprom.semaphore_delay * 2000);
1677 }
1678
1679 /**
1680 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 * @hw: pointer to hardware structure
1682 **/
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw * hw)1683 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684 {
1685 u16 i;
1686 u16 j;
1687 u16 checksum = 0;
1688 u16 length = 0;
1689 u16 pointer = 0;
1690 u16 word = 0;
1691
1692 /* Include 0x0-0x3F in the checksum */
1693 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694 if (hw->eeprom.ops.read(hw, i, &word)) {
1695 hw_dbg(hw, "EEPROM read failed\n");
1696 break;
1697 }
1698 checksum += word;
1699 }
1700
1701 /* Include all data from pointers except for the fw pointer */
1702 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704 hw_dbg(hw, "EEPROM read failed\n");
1705 return -EIO;
1706 }
1707
1708 /* If the pointer seems invalid */
1709 if (pointer == 0xFFFF || pointer == 0)
1710 continue;
1711
1712 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713 hw_dbg(hw, "EEPROM read failed\n");
1714 return -EIO;
1715 }
1716
1717 if (length == 0xFFFF || length == 0)
1718 continue;
1719
1720 for (j = pointer + 1; j <= pointer + length; j++) {
1721 if (hw->eeprom.ops.read(hw, j, &word)) {
1722 hw_dbg(hw, "EEPROM read failed\n");
1723 return -EIO;
1724 }
1725 checksum += word;
1726 }
1727 }
1728
1729 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731 return (s32)checksum;
1732 }
1733
1734 /**
1735 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 * @hw: pointer to hardware structure
1737 * @checksum_val: calculated checksum
1738 *
1739 * Performs checksum calculation and validates the EEPROM checksum. If the
1740 * caller does not need checksum_val, the value can be NULL.
1741 **/
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw * hw,u16 * checksum_val)1742 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743 u16 *checksum_val)
1744 {
1745 s32 status;
1746 u16 checksum;
1747 u16 read_checksum = 0;
1748
1749 /*
1750 * Read the first word from the EEPROM. If this times out or fails, do
1751 * not continue or we could be in for a very long wait while every
1752 * EEPROM read fails
1753 */
1754 status = hw->eeprom.ops.read(hw, 0, &checksum);
1755 if (status) {
1756 hw_dbg(hw, "EEPROM read failed\n");
1757 return status;
1758 }
1759
1760 status = hw->eeprom.ops.calc_checksum(hw);
1761 if (status < 0)
1762 return status;
1763
1764 checksum = (u16)(status & 0xffff);
1765
1766 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767 if (status) {
1768 hw_dbg(hw, "EEPROM read failed\n");
1769 return status;
1770 }
1771
1772 /* Verify read checksum from EEPROM is the same as
1773 * calculated checksum
1774 */
1775 if (read_checksum != checksum)
1776 status = -EIO;
1777
1778 /* If the user cares, return the calculated checksum */
1779 if (checksum_val)
1780 *checksum_val = checksum;
1781
1782 return status;
1783 }
1784
1785 /**
1786 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 * @hw: pointer to hardware structure
1788 **/
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw * hw)1789 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790 {
1791 s32 status;
1792 u16 checksum;
1793
1794 /*
1795 * Read the first word from the EEPROM. If this times out or fails, do
1796 * not continue or we could be in for a very long wait while every
1797 * EEPROM read fails
1798 */
1799 status = hw->eeprom.ops.read(hw, 0, &checksum);
1800 if (status) {
1801 hw_dbg(hw, "EEPROM read failed\n");
1802 return status;
1803 }
1804
1805 status = hw->eeprom.ops.calc_checksum(hw);
1806 if (status < 0)
1807 return status;
1808
1809 checksum = (u16)(status & 0xffff);
1810
1811 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812
1813 return status;
1814 }
1815
1816 /**
1817 * ixgbe_set_rar_generic - Set Rx address register
1818 * @hw: pointer to hardware structure
1819 * @index: Receive address register to write
1820 * @addr: Address to put into receive address register
1821 * @vmdq: VMDq "set" or "pool" index
1822 * @enable_addr: set flag that address is active
1823 *
1824 * Puts an ethernet address into a receive address register.
1825 **/
ixgbe_set_rar_generic(struct ixgbe_hw * hw,u32 index,u8 * addr,u32 vmdq,u32 enable_addr)1826 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827 u32 enable_addr)
1828 {
1829 u32 rar_low, rar_high;
1830 u32 rar_entries = hw->mac.num_rar_entries;
1831
1832 /* Make sure we are using a valid rar index range */
1833 if (index >= rar_entries) {
1834 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835 return -EINVAL;
1836 }
1837
1838 /* setup VMDq pool selection before this RAR gets enabled */
1839 hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841 /*
1842 * HW expects these in little endian so we reverse the byte
1843 * order from network order (big endian) to little endian
1844 */
1845 rar_low = ((u32)addr[0] |
1846 ((u32)addr[1] << 8) |
1847 ((u32)addr[2] << 16) |
1848 ((u32)addr[3] << 24));
1849 /*
1850 * Some parts put the VMDq setting in the extra RAH bits,
1851 * so save everything except the lower 16 bits that hold part
1852 * of the address and the address valid bit.
1853 */
1854 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858 if (enable_addr != 0)
1859 rar_high |= IXGBE_RAH_AV;
1860
1861 /* Record lower 32 bits of MAC address and then make
1862 * sure that write is flushed to hardware before writing
1863 * the upper 16 bits and setting the valid bit.
1864 */
1865 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866 IXGBE_WRITE_FLUSH(hw);
1867 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869 return 0;
1870 }
1871
1872 /**
1873 * ixgbe_clear_rar_generic - Remove Rx address register
1874 * @hw: pointer to hardware structure
1875 * @index: Receive address register to write
1876 *
1877 * Clears an ethernet address from a receive address register.
1878 **/
ixgbe_clear_rar_generic(struct ixgbe_hw * hw,u32 index)1879 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880 {
1881 u32 rar_high;
1882 u32 rar_entries = hw->mac.num_rar_entries;
1883
1884 /* Make sure we are using a valid rar index range */
1885 if (index >= rar_entries) {
1886 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887 return -EINVAL;
1888 }
1889
1890 /*
1891 * Some parts put the VMDq setting in the extra RAH bits,
1892 * so save everything except the lower 16 bits that hold part
1893 * of the address and the address valid bit.
1894 */
1895 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898 /* Clear the address valid bit and upper 16 bits of the address
1899 * before clearing the lower bits. This way we aren't updating
1900 * a live filter.
1901 */
1902 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903 IXGBE_WRITE_FLUSH(hw);
1904 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1905
1906 /* clear VMDq pool/queue selection for this RAR */
1907 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909 return 0;
1910 }
1911
1912 /**
1913 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 * @hw: pointer to hardware structure
1915 *
1916 * Places the MAC address in receive address register 0 and clears the rest
1917 * of the receive address registers. Clears the multicast table. Assumes
1918 * the receiver is in reset when the routine is called.
1919 **/
ixgbe_init_rx_addrs_generic(struct ixgbe_hw * hw)1920 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921 {
1922 u32 i;
1923 u32 rar_entries = hw->mac.num_rar_entries;
1924
1925 /*
1926 * If the current mac address is valid, assume it is a software override
1927 * to the permanent address.
1928 * Otherwise, use the permanent address from the eeprom.
1929 */
1930 if (!is_valid_ether_addr(hw->mac.addr)) {
1931 /* Get the MAC address from the RAR0 for later reference */
1932 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935 } else {
1936 /* Setup the receive address. */
1937 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941 }
1942
1943 /* clear VMDq pool/queue selection for RAR 0 */
1944 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
1946 hw->addr_ctrl.overflow_promisc = 0;
1947
1948 hw->addr_ctrl.rar_used_count = 1;
1949
1950 /* Zero out the other receive addresses. */
1951 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952 for (i = 1; i < rar_entries; i++) {
1953 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955 }
1956
1957 /* Clear the MTA */
1958 hw->addr_ctrl.mta_in_use = 0;
1959 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961 hw_dbg(hw, " Clearing MTA\n");
1962 for (i = 0; i < hw->mac.mcft_size; i++)
1963 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965 if (hw->mac.ops.init_uta_tables)
1966 hw->mac.ops.init_uta_tables(hw);
1967
1968 return 0;
1969 }
1970
1971 /**
1972 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 * @hw: pointer to hardware structure
1974 * @mc_addr: the multicast address
1975 *
1976 * Extracts the 12 bits, from a multicast address, to determine which
1977 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 * incoming rx multicast addresses, to determine the bit-vector to check in
1979 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 * to mc_filter_type.
1982 **/
ixgbe_mta_vector(struct ixgbe_hw * hw,u8 * mc_addr)1983 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984 {
1985 u32 vector = 0;
1986
1987 switch (hw->mac.mc_filter_type) {
1988 case 0: /* use bits [47:36] of the address */
1989 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990 break;
1991 case 1: /* use bits [46:35] of the address */
1992 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993 break;
1994 case 2: /* use bits [45:34] of the address */
1995 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996 break;
1997 case 3: /* use bits [43:32] of the address */
1998 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999 break;
2000 default: /* Invalid mc_filter_type */
2001 hw_dbg(hw, "MC filter type param set incorrectly\n");
2002 break;
2003 }
2004
2005 /* vector can only be 12-bits or boundary will be exceeded */
2006 vector &= 0xFFF;
2007 return vector;
2008 }
2009
2010 /**
2011 * ixgbe_set_mta - Set bit-vector in multicast table
2012 * @hw: pointer to hardware structure
2013 * @mc_addr: Multicast address
2014 *
2015 * Sets the bit-vector in the multicast table.
2016 **/
ixgbe_set_mta(struct ixgbe_hw * hw,u8 * mc_addr)2017 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018 {
2019 u32 vector;
2020 u32 vector_bit;
2021 u32 vector_reg;
2022
2023 hw->addr_ctrl.mta_in_use++;
2024
2025 vector = ixgbe_mta_vector(hw, mc_addr);
2026 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028 /*
2029 * The MTA is a register array of 128 32-bit registers. It is treated
2030 * like an array of 4096 bits. We want to set bit
2031 * BitArray[vector_value]. So we figure out what register the bit is
2032 * in, read it, OR in the new bit, then write back the new value. The
2033 * register is determined by the upper 7 bits of the vector value and
2034 * the bit within that register are determined by the lower 5 bits of
2035 * the value.
2036 */
2037 vector_reg = (vector >> 5) & 0x7F;
2038 vector_bit = vector & 0x1F;
2039 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040 }
2041
2042 /**
2043 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 * @hw: pointer to hardware structure
2045 * @netdev: pointer to net device structure
2046 *
2047 * The given list replaces any existing list. Clears the MC addrs from receive
2048 * address registers and the multicast table. Uses unused receive address
2049 * registers for the first multicast addresses, and hashes the rest into the
2050 * multicast table.
2051 **/
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw * hw,struct net_device * netdev)2052 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053 struct net_device *netdev)
2054 {
2055 struct netdev_hw_addr *ha;
2056 u32 i;
2057
2058 /*
2059 * Set the new number of MC addresses that we are being requested to
2060 * use.
2061 */
2062 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063 hw->addr_ctrl.mta_in_use = 0;
2064
2065 /* Clear mta_shadow */
2066 hw_dbg(hw, " Clearing MTA\n");
2067 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069 /* Update mta shadow */
2070 netdev_for_each_mc_addr(ha, netdev) {
2071 hw_dbg(hw, " Adding the multicast addresses:\n");
2072 ixgbe_set_mta(hw, ha->addr);
2073 }
2074
2075 /* Enable mta */
2076 for (i = 0; i < hw->mac.mcft_size; i++)
2077 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078 hw->mac.mta_shadow[i]);
2079
2080 if (hw->addr_ctrl.mta_in_use > 0)
2081 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085 return 0;
2086 }
2087
2088 /**
2089 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 * @hw: pointer to hardware structure
2091 *
2092 * Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
ixgbe_enable_mc_generic(struct ixgbe_hw * hw)2094 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095 {
2096 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098 if (a->mta_in_use > 0)
2099 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100 hw->mac.mc_filter_type);
2101
2102 return 0;
2103 }
2104
2105 /**
2106 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 * @hw: pointer to hardware structure
2108 *
2109 * Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
ixgbe_disable_mc_generic(struct ixgbe_hw * hw)2111 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112 {
2113 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115 if (a->mta_in_use > 0)
2116 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118 return 0;
2119 }
2120
2121 /**
2122 * ixgbe_fc_enable_generic - Enable flow control
2123 * @hw: pointer to hardware structure
2124 *
2125 * Enable flow control according to the current settings.
2126 **/
ixgbe_fc_enable_generic(struct ixgbe_hw * hw)2127 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128 {
2129 u32 mflcn_reg, fccfg_reg;
2130 u32 reg;
2131 u32 fcrtl, fcrth;
2132 int i;
2133
2134 /* Validate the water mark configuration. */
2135 if (!hw->fc.pause_time)
2136 return -EINVAL;
2137
2138 /* Low water mark of zero causes XOFF floods */
2139 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141 hw->fc.high_water[i]) {
2142 if (!hw->fc.low_water[i] ||
2143 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144 hw_dbg(hw, "Invalid water mark configuration\n");
2145 return -EINVAL;
2146 }
2147 }
2148 }
2149
2150 /* Negotiate the fc mode to use */
2151 hw->mac.ops.fc_autoneg(hw);
2152
2153 /* Disable any previous flow control settings */
2154 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160 /*
2161 * The possible values of fc.current_mode are:
2162 * 0: Flow control is completely disabled
2163 * 1: Rx flow control is enabled (we can receive pause frames,
2164 * but not send pause frames).
2165 * 2: Tx flow control is enabled (we can send pause frames but
2166 * we do not support receiving pause frames).
2167 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168 * other: Invalid.
2169 */
2170 switch (hw->fc.current_mode) {
2171 case ixgbe_fc_none:
2172 /*
2173 * Flow control is disabled by software override or autoneg.
2174 * The code below will actually disable it in the HW.
2175 */
2176 break;
2177 case ixgbe_fc_rx_pause:
2178 /*
2179 * Rx Flow control is enabled and Tx Flow control is
2180 * disabled by software override. Since there really
2181 * isn't a way to advertise that we are capable of RX
2182 * Pause ONLY, we will advertise that we support both
2183 * symmetric and asymmetric Rx PAUSE. Later, we will
2184 * disable the adapter's ability to send PAUSE frames.
2185 */
2186 mflcn_reg |= IXGBE_MFLCN_RFCE;
2187 break;
2188 case ixgbe_fc_tx_pause:
2189 /*
2190 * Tx Flow control is enabled, and Rx Flow control is
2191 * disabled by software override.
2192 */
2193 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194 break;
2195 case ixgbe_fc_full:
2196 /* Flow control (both Rx and Tx) is enabled by SW override. */
2197 mflcn_reg |= IXGBE_MFLCN_RFCE;
2198 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199 break;
2200 default:
2201 hw_dbg(hw, "Flow control param set incorrectly\n");
2202 return -EIO;
2203 }
2204
2205 /* Set 802.3x based flow control settings. */
2206 mflcn_reg |= IXGBE_MFLCN_DPF;
2207 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
2210 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213 hw->fc.high_water[i]) {
2214 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217 } else {
2218 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219 /*
2220 * In order to prevent Tx hangs when the internal Tx
2221 * switch is enabled we must set the high water mark
2222 * to the Rx packet buffer size - 24KB. This allows
2223 * the Tx switch to function even under heavy Rx
2224 * workloads.
2225 */
2226 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227 }
2228
2229 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230 }
2231
2232 /* Configure pause time (2 TCs per register) */
2233 reg = hw->fc.pause_time * 0x00010001U;
2234 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239 return 0;
2240 }
2241
2242 /**
2243 * ixgbe_negotiate_fc - Negotiate flow control
2244 * @hw: pointer to hardware structure
2245 * @adv_reg: flow control advertised settings
2246 * @lp_reg: link partner's flow control settings
2247 * @adv_sym: symmetric pause bit in advertisement
2248 * @adv_asm: asymmetric pause bit in advertisement
2249 * @lp_sym: symmetric pause bit in link partner advertisement
2250 * @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 * Find the intersection between advertised settings and link partner's
2253 * advertised settings
2254 **/
ixgbe_negotiate_fc(struct ixgbe_hw * hw,u32 adv_reg,u32 lp_reg,u32 adv_sym,u32 adv_asm,u32 lp_sym,u32 lp_asm)2255 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257 {
2258 if ((!(adv_reg)) || (!(lp_reg)))
2259 return -EINVAL;
2260
2261 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262 /*
2263 * Now we need to check if the user selected Rx ONLY
2264 * of pause frames. In this case, we had to advertise
2265 * FULL flow control because we could not advertise RX
2266 * ONLY. Hence, we must now check to see if we need to
2267 * turn OFF the TRANSMISSION of PAUSE frames.
2268 */
2269 if (hw->fc.requested_mode == ixgbe_fc_full) {
2270 hw->fc.current_mode = ixgbe_fc_full;
2271 hw_dbg(hw, "Flow Control = FULL.\n");
2272 } else {
2273 hw->fc.current_mode = ixgbe_fc_rx_pause;
2274 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275 }
2276 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278 hw->fc.current_mode = ixgbe_fc_tx_pause;
2279 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282 hw->fc.current_mode = ixgbe_fc_rx_pause;
2283 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284 } else {
2285 hw->fc.current_mode = ixgbe_fc_none;
2286 hw_dbg(hw, "Flow Control = NONE.\n");
2287 }
2288 return 0;
2289 }
2290
2291 /**
2292 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 * @hw: pointer to hardware structure
2294 *
2295 * Enable flow control according on 1 gig fiber.
2296 **/
ixgbe_fc_autoneg_fiber(struct ixgbe_hw * hw)2297 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298 {
2299 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300 s32 ret_val;
2301
2302 /*
2303 * On multispeed fiber at 1g, bail out if
2304 * - link is up but AN did not complete, or if
2305 * - link is up and AN completed but timed out
2306 */
2307
2308 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311 return -EIO;
2312
2313 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318 IXGBE_PCS1GANA_ASM_PAUSE,
2319 IXGBE_PCS1GANA_SYM_PAUSE,
2320 IXGBE_PCS1GANA_ASM_PAUSE);
2321
2322 return ret_val;
2323 }
2324
2325 /**
2326 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 * @hw: pointer to hardware structure
2328 *
2329 * Enable flow control according to IEEE clause 37.
2330 **/
ixgbe_fc_autoneg_backplane(struct ixgbe_hw * hw)2331 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332 {
2333 u32 links2, anlp1_reg, autoc_reg, links;
2334 s32 ret_val;
2335
2336 /*
2337 * On backplane, bail out if
2338 * - backplane autoneg was not completed, or if
2339 * - we are 82599 and link partner is not AN enabled
2340 */
2341 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343 return -EIO;
2344
2345 if (hw->mac.type == ixgbe_mac_82599EB) {
2346 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348 return -EIO;
2349 }
2350 /*
2351 * Read the 10g AN autoc and LP ability registers and resolve
2352 * local flow control settings accordingly
2353 */
2354 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
2361 return ret_val;
2362 }
2363
2364 /**
2365 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 * @hw: pointer to hardware structure
2367 *
2368 * Enable flow control according to IEEE clause 37.
2369 **/
ixgbe_fc_autoneg_copper(struct ixgbe_hw * hw)2370 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371 {
2372 u16 technology_ability_reg = 0;
2373 u16 lp_technology_ability_reg = 0;
2374
2375 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376 MDIO_MMD_AN,
2377 &technology_ability_reg);
2378 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379 MDIO_MMD_AN,
2380 &lp_technology_ability_reg);
2381
2382 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383 (u32)lp_technology_ability_reg,
2384 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386 }
2387
2388 /**
2389 * ixgbe_fc_autoneg - Configure flow control
2390 * @hw: pointer to hardware structure
2391 *
2392 * Compares our advertised flow control capabilities to those advertised by
2393 * our link partner, and determines the proper flow control mode to use.
2394 **/
ixgbe_fc_autoneg(struct ixgbe_hw * hw)2395 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396 {
2397 ixgbe_link_speed speed;
2398 s32 ret_val = -EIO;
2399 bool link_up;
2400
2401 /*
2402 * AN should have completed when the cable was plugged in.
2403 * Look for reasons to bail out. Bail out if:
2404 * - FC autoneg is disabled, or if
2405 * - link is not up.
2406 *
2407 * Since we're being called from an LSC, link is already known to be up.
2408 * So use link_up_wait_to_complete=false.
2409 */
2410 if (hw->fc.disable_fc_autoneg)
2411 goto out;
2412
2413 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414 if (!link_up)
2415 goto out;
2416
2417 switch (hw->phy.media_type) {
2418 /* Autoneg flow control on fiber adapters */
2419 case ixgbe_media_type_fiber:
2420 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421 ret_val = ixgbe_fc_autoneg_fiber(hw);
2422 break;
2423
2424 /* Autoneg flow control on backplane adapters */
2425 case ixgbe_media_type_backplane:
2426 ret_val = ixgbe_fc_autoneg_backplane(hw);
2427 break;
2428
2429 /* Autoneg flow control on copper adapters */
2430 case ixgbe_media_type_copper:
2431 if (ixgbe_device_supports_autoneg_fc(hw))
2432 ret_val = ixgbe_fc_autoneg_copper(hw);
2433 break;
2434
2435 default:
2436 break;
2437 }
2438
2439 out:
2440 if (ret_val == 0) {
2441 hw->fc.fc_was_autonegged = true;
2442 } else {
2443 hw->fc.fc_was_autonegged = false;
2444 hw->fc.current_mode = hw->fc.requested_mode;
2445 }
2446 }
2447
2448 /**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 * Add 10% to specified maximum and return the number of times to poll for
2455 * completion timeout, in units of 100 microsec. Never return less than
2456 * 800 = 80 millisec.
2457 **/
ixgbe_pcie_timeout_poll(struct ixgbe_hw * hw)2458 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459 {
2460 s16 devctl2;
2461 u32 pollcnt;
2462
2463 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466 switch (devctl2) {
2467 case IXGBE_PCIDEVCTRL2_65_130ms:
2468 pollcnt = 1300; /* 130 millisec */
2469 break;
2470 case IXGBE_PCIDEVCTRL2_260_520ms:
2471 pollcnt = 5200; /* 520 millisec */
2472 break;
2473 case IXGBE_PCIDEVCTRL2_1_2s:
2474 pollcnt = 20000; /* 2 sec */
2475 break;
2476 case IXGBE_PCIDEVCTRL2_4_8s:
2477 pollcnt = 80000; /* 8 sec */
2478 break;
2479 case IXGBE_PCIDEVCTRL2_17_34s:
2480 pollcnt = 34000; /* 34 sec */
2481 break;
2482 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2483 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2484 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2485 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2486 default:
2487 pollcnt = 800; /* 80 millisec minimum */
2488 break;
2489 }
2490
2491 /* add 10% to spec maximum */
2492 return (pollcnt * 11) / 10;
2493 }
2494
2495 /**
2496 * ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 * @hw: pointer to hardware structure
2498 *
2499 * Disables PCI-Express primary access and verifies there are no pending
2500 * requests. -EALREADY is returned if primary disable
2501 * bit hasn't caused the primary requests to be disabled, else 0
2502 * is returned signifying primary requests disabled.
2503 **/
ixgbe_disable_pcie_primary(struct ixgbe_hw * hw)2504 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505 {
2506 u32 i, poll;
2507 u16 value;
2508
2509 /* Always set this bit to ensure any future transactions are blocked */
2510 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512 /* Poll for bit to read as set */
2513 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515 break;
2516 usleep_range(100, 120);
2517 }
2518 if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520 goto gio_disable_fail;
2521 }
2522
2523 /* Exit if primary requests are blocked */
2524 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525 ixgbe_removed(hw->hw_addr))
2526 return 0;
2527
2528 /* Poll for primary request bit to clear */
2529 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530 udelay(100);
2531 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532 return 0;
2533 }
2534
2535 /*
2536 * Two consecutive resets are required via CTRL.RST per datasheet
2537 * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine
2538 * of this need. The first reset prevents new primary requests from
2539 * being issued by our device. We then must wait 1usec or more for any
2540 * remaining completions from the PCIe bus to trickle in, and then reset
2541 * again to clear out any effects they may have had on our device.
2542 */
2543 hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544 gio_disable_fail:
2545 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547 if (hw->mac.type >= ixgbe_mac_X550)
2548 return 0;
2549
2550 /*
2551 * Before proceeding, make sure that the PCIe block does not have
2552 * transactions pending.
2553 */
2554 poll = ixgbe_pcie_timeout_poll(hw);
2555 for (i = 0; i < poll; i++) {
2556 udelay(100);
2557 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558 if (ixgbe_removed(hw->hw_addr))
2559 return 0;
2560 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561 return 0;
2562 }
2563
2564 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565 return -EALREADY;
2566 }
2567
2568 /**
2569 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 * @hw: pointer to hardware structure
2571 * @mask: Mask to specify which semaphore to acquire
2572 *
2573 * Acquires the SWFW semaphore through the GSSR register for the specified
2574 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
ixgbe_acquire_swfw_sync(struct ixgbe_hw * hw,u32 mask)2576 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577 {
2578 u32 gssr = 0;
2579 u32 swmask = mask;
2580 u32 fwmask = mask << 5;
2581 u32 timeout = 200;
2582 u32 i;
2583
2584 for (i = 0; i < timeout; i++) {
2585 /*
2586 * SW NVM semaphore bit is used for access to all
2587 * SW_FW_SYNC bits (not just NVM)
2588 */
2589 if (ixgbe_get_eeprom_semaphore(hw))
2590 return -EBUSY;
2591
2592 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593 if (!(gssr & (fwmask | swmask))) {
2594 gssr |= swmask;
2595 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596 ixgbe_release_eeprom_semaphore(hw);
2597 return 0;
2598 } else {
2599 /* Resource is currently in use by FW or SW */
2600 ixgbe_release_eeprom_semaphore(hw);
2601 usleep_range(5000, 10000);
2602 }
2603 }
2604
2605 /* If time expired clear the bits holding the lock and retry */
2606 if (gssr & (fwmask | swmask))
2607 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609 usleep_range(5000, 10000);
2610 return -EBUSY;
2611 }
2612
2613 /**
2614 * ixgbe_release_swfw_sync - Release SWFW semaphore
2615 * @hw: pointer to hardware structure
2616 * @mask: Mask to specify which semaphore to release
2617 *
2618 * Releases the SWFW semaphore through the GSSR register for the specified
2619 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
ixgbe_release_swfw_sync(struct ixgbe_hw * hw,u32 mask)2621 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622 {
2623 u32 gssr;
2624 u32 swmask = mask;
2625
2626 ixgbe_get_eeprom_semaphore(hw);
2627
2628 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629 gssr &= ~swmask;
2630 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632 ixgbe_release_eeprom_semaphore(hw);
2633 }
2634
2635 /**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2640 * true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
prot_autoc_read_generic(struct ixgbe_hw * hw,bool * locked,u32 * reg_val)2644 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645 {
2646 *locked = false;
2647 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648 return 0;
2649 }
2650
2651 /**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 * previous read.
2657 **/
prot_autoc_write_generic(struct ixgbe_hw * hw,u32 reg_val,bool locked)2658 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659 {
2660 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661 return 0;
2662 }
2663
2664 /**
2665 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 * @hw: pointer to hardware structure
2667 *
2668 * Stops the receive data path and waits for the HW to internally
2669 * empty the Rx security block.
2670 **/
ixgbe_disable_rx_buff_generic(struct ixgbe_hw * hw)2671 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672 {
2673 #define IXGBE_MAX_SECRX_POLL 40
2674 int i;
2675 int secrxreg;
2676
2677 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683 break;
2684 else
2685 /* Use interrupt-safe sleep just in case */
2686 udelay(1000);
2687 }
2688
2689 /* For informational purposes only */
2690 if (i >= IXGBE_MAX_SECRX_POLL)
2691 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2692
2693 return 0;
2694
2695 }
2696
2697 /**
2698 * ixgbe_enable_rx_buff - Enables the receive data path
2699 * @hw: pointer to hardware structure
2700 *
2701 * Enables the receive data path
2702 **/
ixgbe_enable_rx_buff_generic(struct ixgbe_hw * hw)2703 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704 {
2705 u32 secrxreg;
2706
2707 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710 IXGBE_WRITE_FLUSH(hw);
2711
2712 return 0;
2713 }
2714
2715 /**
2716 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 * @hw: pointer to hardware structure
2718 * @regval: register value to write to RXCTRL
2719 *
2720 * Enables the Rx DMA unit
2721 **/
ixgbe_enable_rx_dma_generic(struct ixgbe_hw * hw,u32 regval)2722 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723 {
2724 if (regval & IXGBE_RXCTRL_RXEN)
2725 hw->mac.ops.enable_rx(hw);
2726 else
2727 hw->mac.ops.disable_rx(hw);
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * ixgbe_blink_led_start_generic - Blink LED based on index.
2734 * @hw: pointer to hardware structure
2735 * @index: led number to blink
2736 **/
ixgbe_blink_led_start_generic(struct ixgbe_hw * hw,u32 index)2737 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738 {
2739 ixgbe_link_speed speed = 0;
2740 bool link_up = false;
2741 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2742 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2743 bool locked = false;
2744 s32 ret_val;
2745
2746 if (index > 3)
2747 return -EINVAL;
2748
2749 /*
2750 * Link must be up to auto-blink the LEDs;
2751 * Force it if link is down.
2752 */
2753 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755 if (!link_up) {
2756 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757 if (ret_val)
2758 return ret_val;
2759
2760 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761 autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764 if (ret_val)
2765 return ret_val;
2766
2767 IXGBE_WRITE_FLUSH(hw);
2768
2769 usleep_range(10000, 20000);
2770 }
2771
2772 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773 led_reg |= IXGBE_LED_BLINK(index);
2774 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775 IXGBE_WRITE_FLUSH(hw);
2776
2777 return 0;
2778 }
2779
2780 /**
2781 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 * @hw: pointer to hardware structure
2783 * @index: led number to stop blinking
2784 **/
ixgbe_blink_led_stop_generic(struct ixgbe_hw * hw,u32 index)2785 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786 {
2787 u32 autoc_reg = 0;
2788 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2789 bool locked = false;
2790 s32 ret_val;
2791
2792 if (index > 3)
2793 return -EINVAL;
2794
2795 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796 if (ret_val)
2797 return ret_val;
2798
2799 autoc_reg &= ~IXGBE_AUTOC_FLU;
2800 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803 if (ret_val)
2804 return ret_val;
2805
2806 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807 led_reg &= ~IXGBE_LED_BLINK(index);
2808 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810 IXGBE_WRITE_FLUSH(hw);
2811
2812 return 0;
2813 }
2814
2815 /**
2816 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 * @hw: pointer to hardware structure
2818 * @san_mac_offset: SAN MAC address offset
2819 *
2820 * This function will read the EEPROM location for the SAN MAC address
2821 * pointer, and returns the value at that location. This is used in both
2822 * get and set mac_addr routines.
2823 **/
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw * hw,u16 * san_mac_offset)2824 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825 u16 *san_mac_offset)
2826 {
2827 s32 ret_val;
2828
2829 /*
2830 * First read the EEPROM pointer to see if the MAC addresses are
2831 * available.
2832 */
2833 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834 san_mac_offset);
2835 if (ret_val)
2836 hw_err(hw, "eeprom read at offset %d failed\n",
2837 IXGBE_SAN_MAC_ADDR_PTR);
2838
2839 return ret_val;
2840 }
2841
2842 /**
2843 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 * @hw: pointer to hardware structure
2845 * @san_mac_addr: SAN MAC address
2846 *
2847 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2848 * per-port, so set_lan_id() must be called before reading the addresses.
2849 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 * upon for non-SFP connections, so we must call it here.
2851 **/
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw * hw,u8 * san_mac_addr)2852 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853 {
2854 u16 san_mac_data, san_mac_offset;
2855 u8 i;
2856 s32 ret_val;
2857
2858 /*
2859 * First read the EEPROM pointer to see if the MAC addresses are
2860 * available. If they're not, no point in calling set_lan_id() here.
2861 */
2862 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864
2865 goto san_mac_addr_clr;
2866
2867 /* make sure we know which port we need to program */
2868 hw->mac.ops.set_lan_id(hw);
2869 /* apply the port offset to the address offset */
2870 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872 for (i = 0; i < 3; i++) {
2873 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874 &san_mac_data);
2875 if (ret_val) {
2876 hw_err(hw, "eeprom read at offset %d failed\n",
2877 san_mac_offset);
2878 goto san_mac_addr_clr;
2879 }
2880 san_mac_addr[i * 2] = (u8)(san_mac_data);
2881 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882 san_mac_offset++;
2883 }
2884 return 0;
2885
2886 san_mac_addr_clr:
2887 /* No addresses available in this EEPROM. It's not necessarily an
2888 * error though, so just wipe the local address and return.
2889 */
2890 for (i = 0; i < 6; i++)
2891 san_mac_addr[i] = 0xFF;
2892 return ret_val;
2893 }
2894
2895 /**
2896 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 * @hw: pointer to hardware structure
2898 *
2899 * Read PCIe configuration space, and get the MSI-X vector count from
2900 * the capabilities table.
2901 **/
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw * hw)2902 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903 {
2904 u16 msix_count;
2905 u16 max_msix_count;
2906 u16 pcie_offset;
2907
2908 switch (hw->mac.type) {
2909 case ixgbe_mac_82598EB:
2910 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912 break;
2913 case ixgbe_mac_82599EB:
2914 case ixgbe_mac_X540:
2915 case ixgbe_mac_X550:
2916 case ixgbe_mac_X550EM_x:
2917 case ixgbe_mac_x550em_a:
2918 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920 break;
2921 default:
2922 return 1;
2923 }
2924
2925 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926 if (ixgbe_removed(hw->hw_addr))
2927 msix_count = 0;
2928 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930 /* MSI-X count is zero-based in HW */
2931 msix_count++;
2932
2933 if (msix_count > max_msix_count)
2934 msix_count = max_msix_count;
2935
2936 return msix_count;
2937 }
2938
2939 /**
2940 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 * @hw: pointer to hardware struct
2942 * @rar: receive address register index to disassociate
2943 * @vmdq: VMDq pool index to remove from the rar
2944 **/
ixgbe_clear_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2945 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946 {
2947 u32 mpsar_lo, mpsar_hi;
2948 u32 rar_entries = hw->mac.num_rar_entries;
2949
2950 /* Make sure we are using a valid rar index range */
2951 if (rar >= rar_entries) {
2952 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953 return -EINVAL;
2954 }
2955
2956 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959 if (ixgbe_removed(hw->hw_addr))
2960 return 0;
2961
2962 if (!mpsar_lo && !mpsar_hi)
2963 return 0;
2964
2965 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966 if (mpsar_lo) {
2967 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968 mpsar_lo = 0;
2969 }
2970 if (mpsar_hi) {
2971 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972 mpsar_hi = 0;
2973 }
2974 } else if (vmdq < 32) {
2975 mpsar_lo &= ~BIT(vmdq);
2976 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977 } else {
2978 mpsar_hi &= ~BIT(vmdq - 32);
2979 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980 }
2981
2982 /* was that the last pool using this rar? */
2983 if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984 rar != 0 && rar != hw->mac.san_mac_rar_index)
2985 hw->mac.ops.clear_rar(hw, rar);
2986
2987 return 0;
2988 }
2989
2990 /**
2991 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 * @hw: pointer to hardware struct
2993 * @rar: receive address register index to associate with a VMDq index
2994 * @vmdq: VMDq pool index
2995 **/
ixgbe_set_vmdq_generic(struct ixgbe_hw * hw,u32 rar,u32 vmdq)2996 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997 {
2998 u32 mpsar;
2999 u32 rar_entries = hw->mac.num_rar_entries;
3000
3001 /* Make sure we are using a valid rar index range */
3002 if (rar >= rar_entries) {
3003 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004 return -EINVAL;
3005 }
3006
3007 if (vmdq < 32) {
3008 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009 mpsar |= BIT(vmdq);
3010 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011 } else {
3012 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013 mpsar |= BIT(vmdq - 32);
3014 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015 }
3016 return 0;
3017 }
3018
3019 /**
3020 * This function should only be involved in the IOV mode.
3021 * In IOV mode, Default pool is next pool after the number of
3022 * VFs advertized and not 0.
3023 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3024 *
3025 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3026 * @hw: pointer to hardware struct
3027 * @vmdq: VMDq pool index
3028 **/
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw * hw,u32 vmdq)3029 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030 {
3031 u32 rar = hw->mac.san_mac_rar_index;
3032
3033 if (vmdq < 32) {
3034 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036 } else {
3037 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039 }
3040
3041 return 0;
3042 }
3043
3044 /**
3045 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 * @hw: pointer to hardware structure
3047 **/
ixgbe_init_uta_tables_generic(struct ixgbe_hw * hw)3048 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049 {
3050 int i;
3051
3052 for (i = 0; i < 128; i++)
3053 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055 return 0;
3056 }
3057
3058 /**
3059 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 * @hw: pointer to hardware structure
3061 * @vlan: VLAN id to write to VLAN filter
3062 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 * vlanid not found
3064 *
3065 * return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
ixgbe_find_vlvf_slot(struct ixgbe_hw * hw,u32 vlan,bool vlvf_bypass)3068 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069 {
3070 s32 regindex, first_empty_slot;
3071 u32 bits;
3072
3073 /* short cut the special case */
3074 if (vlan == 0)
3075 return 0;
3076
3077 /* if vlvf_bypass is set we don't want to use an empty slot, we
3078 * will simply bypass the VLVF if there are no entries present in the
3079 * VLVF that contain our VLAN
3080 */
3081 first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083 /* add VLAN enable bit for comparison */
3084 vlan |= IXGBE_VLVF_VIEN;
3085
3086 /* Search for the vlan id in the VLVF entries. Save off the first empty
3087 * slot found along the way.
3088 *
3089 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090 */
3091 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093 if (bits == vlan)
3094 return regindex;
3095 if (!first_empty_slot && !bits)
3096 first_empty_slot = regindex;
3097 }
3098
3099 /* If we are here then we didn't find the VLAN. Return first empty
3100 * slot we found during our search, else error.
3101 */
3102 if (!first_empty_slot)
3103 hw_dbg(hw, "No space in VLVF.\n");
3104
3105 return first_empty_slot ? : -ENOSPC;
3106 }
3107
3108 /**
3109 * ixgbe_set_vfta_generic - Set VLAN filter table
3110 * @hw: pointer to hardware structure
3111 * @vlan: VLAN id to write to VLAN filter
3112 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 * Turn on/off specified VLAN in the VLAN filter table.
3117 **/
ixgbe_set_vfta_generic(struct ixgbe_hw * hw,u32 vlan,u32 vind,bool vlan_on,bool vlvf_bypass)3118 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119 bool vlan_on, bool vlvf_bypass)
3120 {
3121 u32 regidx, vfta_delta, vfta, bits;
3122 s32 vlvf_index;
3123
3124 if ((vlan > 4095) || (vind > 63))
3125 return -EINVAL;
3126
3127 /*
3128 * this is a 2 part operation - first the VFTA, then the
3129 * VLVF and VLVFB if VT Mode is set
3130 * We don't write the VFTA until we know the VLVF part succeeded.
3131 */
3132
3133 /* Part 1
3134 * The VFTA is a bitstring made up of 128 32-bit registers
3135 * that enable the particular VLAN id, much like the MTA:
3136 * bits[11-5]: which register
3137 * bits[4-0]: which bit in the register
3138 */
3139 regidx = vlan / 32;
3140 vfta_delta = BIT(vlan % 32);
3141 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143 /* vfta_delta represents the difference between the current value
3144 * of vfta and the value we want in the register. Since the diff
3145 * is an XOR mask we can just update vfta using an XOR.
3146 */
3147 vfta_delta &= vlan_on ? ~vfta : vfta;
3148 vfta ^= vfta_delta;
3149
3150 /* Part 2
3151 * If VT Mode is set
3152 * Either vlan_on
3153 * make sure the vlan is in VLVF
3154 * set the vind bit in the matching VLVFB
3155 * Or !vlan_on
3156 * clear the pool bit and possibly the vind
3157 */
3158 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159 goto vfta_update;
3160
3161 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162 if (vlvf_index < 0) {
3163 if (vlvf_bypass)
3164 goto vfta_update;
3165 return vlvf_index;
3166 }
3167
3168 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170 /* set the pool bit */
3171 bits |= BIT(vind % 32);
3172 if (vlan_on)
3173 goto vlvf_update;
3174
3175 /* clear the pool bit */
3176 bits ^= BIT(vind % 32);
3177
3178 if (!bits &&
3179 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180 /* Clear VFTA first, then disable VLVF. Otherwise
3181 * we run the risk of stray packets leaking into
3182 * the PF via the default pool
3183 */
3184 if (vfta_delta)
3185 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187 /* disable VLVF and clear remaining bit from pool */
3188 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3190
3191 return 0;
3192 }
3193
3194 /* If there are still bits set in the VLVFB registers
3195 * for the VLAN ID indicated we need to see if the
3196 * caller is requesting that we clear the VFTA entry bit.
3197 * If the caller has requested that we clear the VFTA
3198 * entry bit but there are still pools/VFs using this VLAN
3199 * ID entry then ignore the request. We're not worried
3200 * about the case where we're turning the VFTA VLAN ID
3201 * entry bit on, only when requested to turn it off as
3202 * there may be multiple pools and/or VFs using the
3203 * VLAN ID entry. In that case we cannot clear the
3204 * VFTA bit until all pools/VFs using that VLAN ID have also
3205 * been cleared. This will be indicated by "bits" being
3206 * zero.
3207 */
3208 vfta_delta = 0;
3209
3210 vlvf_update:
3211 /* record pool change and enable VLAN ID if not already enabled */
3212 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215 vfta_update:
3216 /* Update VFTA now that we are ready for traffic */
3217 if (vfta_delta)
3218 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220 return 0;
3221 }
3222
3223 /**
3224 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 * @hw: pointer to hardware structure
3226 *
3227 * Clears the VLAN filer table, and the VMDq index associated with the filter
3228 **/
ixgbe_clear_vfta_generic(struct ixgbe_hw * hw)3229 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230 {
3231 u32 offset;
3232
3233 for (offset = 0; offset < hw->mac.vft_size; offset++)
3234 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240 }
3241
3242 return 0;
3243 }
3244
3245 /**
3246 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 * @hw: pointer to hardware structure
3248 *
3249 * Contains the logic to identify if we need to verify link for the
3250 * crosstalk fix
3251 **/
ixgbe_need_crosstalk_fix(struct ixgbe_hw * hw)3252 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253 {
3254 /* Does FW say we need the fix */
3255 if (!hw->need_crosstalk_fix)
3256 return false;
3257
3258 /* Only consider SFP+ PHYs i.e. media type fiber */
3259 switch (hw->mac.ops.get_media_type(hw)) {
3260 case ixgbe_media_type_fiber:
3261 case ixgbe_media_type_fiber_qsfp:
3262 break;
3263 default:
3264 return false;
3265 }
3266
3267 return true;
3268 }
3269
3270 /**
3271 * ixgbe_check_mac_link_generic - Determine link and speed status
3272 * @hw: pointer to hardware structure
3273 * @speed: pointer to link speed
3274 * @link_up: true when link is up
3275 * @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 * Reads the links register to determine if link is up and the current speed
3278 **/
ixgbe_check_mac_link_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up,bool link_up_wait_to_complete)3279 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280 bool *link_up, bool link_up_wait_to_complete)
3281 {
3282 u32 links_reg, links_orig;
3283 u32 i;
3284
3285 /* If Crosstalk fix enabled do the sanity check of making sure
3286 * the SFP+ cage is full.
3287 */
3288 if (ixgbe_need_crosstalk_fix(hw)) {
3289 u32 sfp_cage_full;
3290
3291 switch (hw->mac.type) {
3292 case ixgbe_mac_82599EB:
3293 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3294 IXGBE_ESDP_SDP2;
3295 break;
3296 case ixgbe_mac_X550EM_x:
3297 case ixgbe_mac_x550em_a:
3298 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3299 IXGBE_ESDP_SDP0;
3300 break;
3301 default:
3302 /* sanity check - No SFP+ devices here */
3303 sfp_cage_full = false;
3304 break;
3305 }
3306
3307 if (!sfp_cage_full) {
3308 *link_up = false;
3309 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3310 return 0;
3311 }
3312 }
3313
3314 /* clear the old state */
3315 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3316
3317 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3318
3319 if (links_orig != links_reg) {
3320 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3321 links_orig, links_reg);
3322 }
3323
3324 if (link_up_wait_to_complete) {
3325 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3326 if (links_reg & IXGBE_LINKS_UP) {
3327 *link_up = true;
3328 break;
3329 } else {
3330 *link_up = false;
3331 }
3332 msleep(100);
3333 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3334 }
3335 } else {
3336 if (links_reg & IXGBE_LINKS_UP)
3337 *link_up = true;
3338 else
3339 *link_up = false;
3340 }
3341
3342 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3343 case IXGBE_LINKS_SPEED_10G_82599:
3344 if ((hw->mac.type >= ixgbe_mac_X550) &&
3345 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3346 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3347 else
3348 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3349 break;
3350 case IXGBE_LINKS_SPEED_1G_82599:
3351 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3352 break;
3353 case IXGBE_LINKS_SPEED_100_82599:
3354 if ((hw->mac.type >= ixgbe_mac_X550) &&
3355 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3356 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3357 else
3358 *speed = IXGBE_LINK_SPEED_100_FULL;
3359 break;
3360 case IXGBE_LINKS_SPEED_10_X550EM_A:
3361 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3362 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3363 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3364 *speed = IXGBE_LINK_SPEED_10_FULL;
3365 }
3366 break;
3367 default:
3368 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3369 }
3370
3371 return 0;
3372 }
3373
3374 /**
3375 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3376 * the EEPROM
3377 * @hw: pointer to hardware structure
3378 * @wwnn_prefix: the alternative WWNN prefix
3379 * @wwpn_prefix: the alternative WWPN prefix
3380 *
3381 * This function will read the EEPROM from the alternative SAN MAC address
3382 * block to check the support for the alternative WWNN/WWPN prefix support.
3383 **/
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw * hw,u16 * wwnn_prefix,u16 * wwpn_prefix)3384 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3385 u16 *wwpn_prefix)
3386 {
3387 u16 offset, caps;
3388 u16 alt_san_mac_blk_offset;
3389
3390 /* clear output first */
3391 *wwnn_prefix = 0xFFFF;
3392 *wwpn_prefix = 0xFFFF;
3393
3394 /* check if alternative SAN MAC is supported */
3395 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3396 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3397 goto wwn_prefix_err;
3398
3399 if ((alt_san_mac_blk_offset == 0) ||
3400 (alt_san_mac_blk_offset == 0xFFFF))
3401 return 0;
3402
3403 /* check capability in alternative san mac address block */
3404 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3405 if (hw->eeprom.ops.read(hw, offset, &caps))
3406 goto wwn_prefix_err;
3407 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3408 return 0;
3409
3410 /* get the corresponding prefix for WWNN/WWPN */
3411 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3412 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3413 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3414
3415 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3416 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3417 goto wwn_prefix_err;
3418
3419 return 0;
3420
3421 wwn_prefix_err:
3422 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3423 return 0;
3424 }
3425
3426 /**
3427 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3428 * @hw: pointer to hardware structure
3429 * @enable: enable or disable switch for MAC anti-spoofing
3430 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3431 *
3432 **/
ixgbe_set_mac_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3433 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3434 {
3435 int vf_target_reg = vf >> 3;
3436 int vf_target_shift = vf % 8;
3437 u32 pfvfspoof;
3438
3439 if (hw->mac.type == ixgbe_mac_82598EB)
3440 return;
3441
3442 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3443 if (enable)
3444 pfvfspoof |= BIT(vf_target_shift);
3445 else
3446 pfvfspoof &= ~BIT(vf_target_shift);
3447 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3448 }
3449
3450 /**
3451 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3452 * @hw: pointer to hardware structure
3453 * @enable: enable or disable switch for VLAN anti-spoofing
3454 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3455 *
3456 **/
ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw * hw,bool enable,int vf)3457 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3458 {
3459 int vf_target_reg = vf >> 3;
3460 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3461 u32 pfvfspoof;
3462
3463 if (hw->mac.type == ixgbe_mac_82598EB)
3464 return;
3465
3466 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3467 if (enable)
3468 pfvfspoof |= BIT(vf_target_shift);
3469 else
3470 pfvfspoof &= ~BIT(vf_target_shift);
3471 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3472 }
3473
3474 /**
3475 * ixgbe_get_device_caps_generic - Get additional device capabilities
3476 * @hw: pointer to hardware structure
3477 * @device_caps: the EEPROM word with the extra device capabilities
3478 *
3479 * This function will read the EEPROM location for the device capabilities,
3480 * and return the word through device_caps.
3481 **/
ixgbe_get_device_caps_generic(struct ixgbe_hw * hw,u16 * device_caps)3482 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3483 {
3484 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3485
3486 return 0;
3487 }
3488
3489 /**
3490 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3491 * @hw: pointer to hardware structure
3492 * @num_pb: number of packet buffers to allocate
3493 * @headroom: reserve n KB of headroom
3494 * @strategy: packet buffer allocation strategy
3495 **/
ixgbe_set_rxpba_generic(struct ixgbe_hw * hw,int num_pb,u32 headroom,int strategy)3496 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3497 int num_pb,
3498 u32 headroom,
3499 int strategy)
3500 {
3501 u32 pbsize = hw->mac.rx_pb_size;
3502 int i = 0;
3503 u32 rxpktsize, txpktsize, txpbthresh;
3504
3505 /* Reserve headroom */
3506 pbsize -= headroom;
3507
3508 if (!num_pb)
3509 num_pb = 1;
3510
3511 /* Divide remaining packet buffer space amongst the number
3512 * of packet buffers requested using supplied strategy.
3513 */
3514 switch (strategy) {
3515 case (PBA_STRATEGY_WEIGHTED):
3516 /* pba_80_48 strategy weight first half of packet buffer with
3517 * 5/8 of the packet buffer space.
3518 */
3519 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3520 pbsize -= rxpktsize * (num_pb / 2);
3521 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3522 for (; i < (num_pb / 2); i++)
3523 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3524 fallthrough; /* configure remaining packet buffers */
3525 case (PBA_STRATEGY_EQUAL):
3526 /* Divide the remaining Rx packet buffer evenly among the TCs */
3527 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3528 for (; i < num_pb; i++)
3529 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3530 break;
3531 default:
3532 break;
3533 }
3534
3535 /*
3536 * Setup Tx packet buffer and threshold equally for all TCs
3537 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3538 * 10 since the largest packet we support is just over 9K.
3539 */
3540 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3541 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3542 for (i = 0; i < num_pb; i++) {
3543 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3544 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3545 }
3546
3547 /* Clear unused TCs, if any, to zero buffer size*/
3548 for (; i < IXGBE_MAX_PB; i++) {
3549 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3550 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3551 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3552 }
3553 }
3554
3555 /**
3556 * ixgbe_calculate_checksum - Calculate checksum for buffer
3557 * @buffer: pointer to EEPROM
3558 * @length: size of EEPROM to calculate a checksum for
3559 *
3560 * Calculates the checksum for some buffer on a specified length. The
3561 * checksum calculated is returned.
3562 **/
ixgbe_calculate_checksum(u8 * buffer,u32 length)3563 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3564 {
3565 u32 i;
3566 u8 sum = 0;
3567
3568 if (!buffer)
3569 return 0;
3570
3571 for (i = 0; i < length; i++)
3572 sum += buffer[i];
3573
3574 return (u8) (0 - sum);
3575 }
3576
3577 /**
3578 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3579 * @hw: pointer to the HW structure
3580 * @buffer: command to write and where the return status will be placed
3581 * @length: length of buffer, must be multiple of 4 bytes
3582 * @timeout: time in ms to wait for command completion
3583 *
3584 * Communicates with the manageability block. On success return 0
3585 * else returns semaphore error when encountering an error acquiring
3586 * semaphore, -EINVAL when incorrect parameters passed or -EIO when
3587 * command fails.
3588 *
3589 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3590 * by the caller.
3591 **/
ixgbe_hic_unlocked(struct ixgbe_hw * hw,u32 * buffer,u32 length,u32 timeout)3592 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3593 u32 timeout)
3594 {
3595 u32 hicr, i, fwsts;
3596 u16 dword_len;
3597
3598 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3599 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3600 return -EINVAL;
3601 }
3602
3603 /* Set bit 9 of FWSTS clearing FW reset indication */
3604 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3605 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3606
3607 /* Check that the host interface is enabled. */
3608 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3609 if (!(hicr & IXGBE_HICR_EN)) {
3610 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3611 return -EIO;
3612 }
3613
3614 /* Calculate length in DWORDs. We must be DWORD aligned */
3615 if (length % sizeof(u32)) {
3616 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3617 return -EINVAL;
3618 }
3619
3620 dword_len = length >> 2;
3621
3622 /* The device driver writes the relevant command block
3623 * into the ram area.
3624 */
3625 for (i = 0; i < dword_len; i++)
3626 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3627 i, (__force u32)cpu_to_le32(buffer[i]));
3628
3629 /* Setting this bit tells the ARC that a new command is pending. */
3630 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3631
3632 for (i = 0; i < timeout; i++) {
3633 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3634 if (!(hicr & IXGBE_HICR_C))
3635 break;
3636 usleep_range(1000, 2000);
3637 }
3638
3639 /* Check command successful completion. */
3640 if ((timeout && i == timeout) ||
3641 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3642 return -EIO;
3643
3644 return 0;
3645 }
3646
3647 /**
3648 * ixgbe_host_interface_command - Issue command to manageability block
3649 * @hw: pointer to the HW structure
3650 * @buffer: contains the command to write and where the return status will
3651 * be placed
3652 * @length: length of buffer, must be multiple of 4 bytes
3653 * @timeout: time in ms to wait for command completion
3654 * @return_data: read and return data from the buffer (true) or not (false)
3655 * Needed because FW structures are big endian and decoding of
3656 * these fields can be 8 bit or 16 bit based on command. Decoding
3657 * is not easily understood without making a table of commands.
3658 * So we will leave this up to the caller to read back the data
3659 * in these cases.
3660 *
3661 * Communicates with the manageability block. On success return 0
3662 * else return -EIO or -EINVAL.
3663 **/
ixgbe_host_interface_command(struct ixgbe_hw * hw,void * buffer,u32 length,u32 timeout,bool return_data)3664 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3665 u32 length, u32 timeout,
3666 bool return_data)
3667 {
3668 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3669 union {
3670 struct ixgbe_hic_hdr hdr;
3671 u32 u32arr[1];
3672 } *bp = buffer;
3673 u16 buf_len, dword_len;
3674 s32 status;
3675 u32 bi;
3676
3677 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3678 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3679 return -EINVAL;
3680 }
3681 /* Take management host interface semaphore */
3682 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3683 if (status)
3684 return status;
3685
3686 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3687 if (status)
3688 goto rel_out;
3689
3690 if (!return_data)
3691 goto rel_out;
3692
3693 /* Calculate length in DWORDs */
3694 dword_len = hdr_size >> 2;
3695
3696 /* first pull in the header so we know the buffer length */
3697 for (bi = 0; bi < dword_len; bi++) {
3698 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3699 le32_to_cpus(&bp->u32arr[bi]);
3700 }
3701
3702 /* If there is any thing in data position pull it in */
3703 buf_len = bp->hdr.buf_len;
3704 if (!buf_len)
3705 goto rel_out;
3706
3707 if (length < round_up(buf_len, 4) + hdr_size) {
3708 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3709 status = -EIO;
3710 goto rel_out;
3711 }
3712
3713 /* Calculate length in DWORDs, add 3 for odd lengths */
3714 dword_len = (buf_len + 3) >> 2;
3715
3716 /* Pull in the rest of the buffer (bi is where we left off) */
3717 for (; bi <= dword_len; bi++) {
3718 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3719 le32_to_cpus(&bp->u32arr[bi]);
3720 }
3721
3722 rel_out:
3723 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3724
3725 return status;
3726 }
3727
3728 /**
3729 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3730 * @hw: pointer to the HW structure
3731 * @maj: driver version major number
3732 * @min: driver version minor number
3733 * @build: driver version build number
3734 * @sub: driver version sub build number
3735 * @len: length of driver_ver string
3736 * @driver_ver: driver string
3737 *
3738 * Sends driver version number to firmware through the manageability
3739 * block. On success return 0
3740 * else returns -EBUSY when encountering an error acquiring
3741 * semaphore or -EIO when command fails.
3742 **/
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw * hw,u8 maj,u8 min,u8 build,u8 sub,__always_unused u16 len,__always_unused const char * driver_ver)3743 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3744 u8 build, u8 sub, __always_unused u16 len,
3745 __always_unused const char *driver_ver)
3746 {
3747 struct ixgbe_hic_drv_info fw_cmd;
3748 int i;
3749 s32 ret_val;
3750
3751 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3752 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3753 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3754 fw_cmd.port_num = hw->bus.func;
3755 fw_cmd.ver_maj = maj;
3756 fw_cmd.ver_min = min;
3757 fw_cmd.ver_build = build;
3758 fw_cmd.ver_sub = sub;
3759 fw_cmd.hdr.checksum = 0;
3760 fw_cmd.pad = 0;
3761 fw_cmd.pad2 = 0;
3762 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3763 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3764
3765 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3766 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3767 sizeof(fw_cmd),
3768 IXGBE_HI_COMMAND_TIMEOUT,
3769 true);
3770 if (ret_val != 0)
3771 continue;
3772
3773 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3774 FW_CEM_RESP_STATUS_SUCCESS)
3775 ret_val = 0;
3776 else
3777 ret_val = -EIO;
3778
3779 break;
3780 }
3781
3782 return ret_val;
3783 }
3784
3785 /**
3786 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3787 * @hw: pointer to the hardware structure
3788 *
3789 * The 82599 and x540 MACs can experience issues if TX work is still pending
3790 * when a reset occurs. This function prevents this by flushing the PCIe
3791 * buffers on the system.
3792 **/
ixgbe_clear_tx_pending(struct ixgbe_hw * hw)3793 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3794 {
3795 u32 gcr_ext, hlreg0, i, poll;
3796 u16 value;
3797
3798 /*
3799 * If double reset is not requested then all transactions should
3800 * already be clear and as such there is no work to do
3801 */
3802 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3803 return;
3804
3805 /*
3806 * Set loopback enable to prevent any transmits from being sent
3807 * should the link come up. This assumes that the RXCTRL.RXEN bit
3808 * has already been cleared.
3809 */
3810 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3811 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3812
3813 /* wait for a last completion before clearing buffers */
3814 IXGBE_WRITE_FLUSH(hw);
3815 usleep_range(3000, 6000);
3816
3817 /* Before proceeding, make sure that the PCIe block does not have
3818 * transactions pending.
3819 */
3820 poll = ixgbe_pcie_timeout_poll(hw);
3821 for (i = 0; i < poll; i++) {
3822 usleep_range(100, 200);
3823 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3824 if (ixgbe_removed(hw->hw_addr))
3825 break;
3826 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3827 break;
3828 }
3829
3830 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3831 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3832 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3833 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3834
3835 /* Flush all writes and allow 20usec for all transactions to clear */
3836 IXGBE_WRITE_FLUSH(hw);
3837 udelay(20);
3838
3839 /* restore previous register values */
3840 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3841 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3842 }
3843
3844 static const u8 ixgbe_emc_temp_data[4] = {
3845 IXGBE_EMC_INTERNAL_DATA,
3846 IXGBE_EMC_DIODE1_DATA,
3847 IXGBE_EMC_DIODE2_DATA,
3848 IXGBE_EMC_DIODE3_DATA
3849 };
3850 static const u8 ixgbe_emc_therm_limit[4] = {
3851 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3852 IXGBE_EMC_DIODE1_THERM_LIMIT,
3853 IXGBE_EMC_DIODE2_THERM_LIMIT,
3854 IXGBE_EMC_DIODE3_THERM_LIMIT
3855 };
3856
3857 /**
3858 * ixgbe_get_ets_data - Extracts the ETS bit data
3859 * @hw: pointer to hardware structure
3860 * @ets_cfg: extected ETS data
3861 * @ets_offset: offset of ETS data
3862 *
3863 * Returns error code.
3864 **/
ixgbe_get_ets_data(struct ixgbe_hw * hw,u16 * ets_cfg,u16 * ets_offset)3865 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3866 u16 *ets_offset)
3867 {
3868 s32 status;
3869
3870 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3871 if (status)
3872 return status;
3873
3874 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3875 return -EOPNOTSUPP;
3876
3877 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3878 if (status)
3879 return status;
3880
3881 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3882 return -EOPNOTSUPP;
3883
3884 return 0;
3885 }
3886
3887 /**
3888 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3889 * @hw: pointer to hardware structure
3890 *
3891 * Returns the thermal sensor data structure
3892 **/
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw * hw)3893 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3894 {
3895 s32 status;
3896 u16 ets_offset;
3897 u16 ets_cfg;
3898 u16 ets_sensor;
3899 u8 num_sensors;
3900 u8 i;
3901 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3902
3903 /* Only support thermal sensors attached to physical port 0 */
3904 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3905 return -EOPNOTSUPP;
3906
3907 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3908 if (status)
3909 return status;
3910
3911 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3912 if (num_sensors > IXGBE_MAX_SENSORS)
3913 num_sensors = IXGBE_MAX_SENSORS;
3914
3915 for (i = 0; i < num_sensors; i++) {
3916 u8 sensor_index;
3917 u8 sensor_location;
3918
3919 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3920 &ets_sensor);
3921 if (status)
3922 return status;
3923
3924 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3925 IXGBE_ETS_DATA_INDEX_SHIFT);
3926 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3927 IXGBE_ETS_DATA_LOC_SHIFT);
3928
3929 if (sensor_location != 0) {
3930 status = hw->phy.ops.read_i2c_byte(hw,
3931 ixgbe_emc_temp_data[sensor_index],
3932 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3933 &data->sensor[i].temp);
3934 if (status)
3935 return status;
3936 }
3937 }
3938
3939 return 0;
3940 }
3941
3942 /**
3943 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3944 * @hw: pointer to hardware structure
3945 *
3946 * Inits the thermal sensor thresholds according to the NVM map
3947 * and save off the threshold and location values into mac.thermal_sensor_data
3948 **/
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw * hw)3949 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3950 {
3951 s32 status;
3952 u16 ets_offset;
3953 u16 ets_cfg;
3954 u16 ets_sensor;
3955 u8 low_thresh_delta;
3956 u8 num_sensors;
3957 u8 therm_limit;
3958 u8 i;
3959 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3960
3961 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3962
3963 /* Only support thermal sensors attached to physical port 0 */
3964 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3965 return -EOPNOTSUPP;
3966
3967 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3968 if (status)
3969 return status;
3970
3971 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3972 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3973 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3974 if (num_sensors > IXGBE_MAX_SENSORS)
3975 num_sensors = IXGBE_MAX_SENSORS;
3976
3977 for (i = 0; i < num_sensors; i++) {
3978 u8 sensor_index;
3979 u8 sensor_location;
3980
3981 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3982 hw_err(hw, "eeprom read at offset %d failed\n",
3983 ets_offset + 1 + i);
3984 continue;
3985 }
3986 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3987 IXGBE_ETS_DATA_INDEX_SHIFT);
3988 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3989 IXGBE_ETS_DATA_LOC_SHIFT);
3990 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3991
3992 hw->phy.ops.write_i2c_byte(hw,
3993 ixgbe_emc_therm_limit[sensor_index],
3994 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3995
3996 if (sensor_location == 0)
3997 continue;
3998
3999 data->sensor[i].location = sensor_location;
4000 data->sensor[i].caution_thresh = therm_limit;
4001 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4002 }
4003
4004 return 0;
4005 }
4006
4007 /**
4008 * ixgbe_get_orom_version - Return option ROM from EEPROM
4009 *
4010 * @hw: pointer to hardware structure
4011 * @nvm_ver: pointer to output structure
4012 *
4013 * if valid option ROM version, nvm_ver->or_valid set to true
4014 * else nvm_ver->or_valid is false.
4015 **/
ixgbe_get_orom_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4016 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4017 struct ixgbe_nvm_version *nvm_ver)
4018 {
4019 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4020
4021 nvm_ver->or_valid = false;
4022 /* Option Rom may or may not be present. Start with pointer */
4023 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4024
4025 /* make sure offset is valid */
4026 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4027 return;
4028
4029 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4030 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4031
4032 /* option rom exists and is valid */
4033 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4034 eeprom_cfg_blkl == NVM_VER_INVALID ||
4035 eeprom_cfg_blkh == NVM_VER_INVALID)
4036 return;
4037
4038 nvm_ver->or_valid = true;
4039 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4040 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4041 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4042 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4043 }
4044
4045 /**
4046 * ixgbe_get_oem_prod_version Etrack ID from EEPROM
4047 *
4048 * @hw: pointer to hardware structure
4049 * @nvm_ver: pointer to output structure
4050 *
4051 * if valid OEM product version, nvm_ver->oem_valid set to true
4052 * else nvm_ver->oem_valid is false.
4053 **/
ixgbe_get_oem_prod_version(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4054 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4055 struct ixgbe_nvm_version *nvm_ver)
4056 {
4057 u16 rel_num, prod_ver, mod_len, cap, offset;
4058
4059 nvm_ver->oem_valid = false;
4060 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4061
4062 /* Return is offset to OEM Product Version block is invalid */
4063 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4064 return;
4065
4066 /* Read product version block */
4067 hw->eeprom.ops.read(hw, offset, &mod_len);
4068 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4069
4070 /* Return if OEM product version block is invalid */
4071 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4072 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4073 return;
4074
4075 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4076 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4077
4078 /* Return if version is invalid */
4079 if ((rel_num | prod_ver) == 0x0 ||
4080 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4081 return;
4082
4083 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4084 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4085 nvm_ver->oem_release = rel_num;
4086 nvm_ver->oem_valid = true;
4087 }
4088
4089 /**
4090 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4091 *
4092 * @hw: pointer to hardware structure
4093 * @nvm_ver: pointer to output structure
4094 *
4095 * word read errors will return 0xFFFF
4096 **/
ixgbe_get_etk_id(struct ixgbe_hw * hw,struct ixgbe_nvm_version * nvm_ver)4097 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4098 struct ixgbe_nvm_version *nvm_ver)
4099 {
4100 u16 etk_id_l, etk_id_h;
4101
4102 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4103 etk_id_l = NVM_VER_INVALID;
4104 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4105 etk_id_h = NVM_VER_INVALID;
4106
4107 /* The word order for the version format is determined by high order
4108 * word bit 15.
4109 */
4110 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4111 nvm_ver->etk_id = etk_id_h;
4112 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4113 } else {
4114 nvm_ver->etk_id = etk_id_l;
4115 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4116 }
4117 }
4118
ixgbe_disable_rx_generic(struct ixgbe_hw * hw)4119 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4120 {
4121 u32 rxctrl;
4122
4123 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4124 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4125 if (hw->mac.type != ixgbe_mac_82598EB) {
4126 u32 pfdtxgswc;
4127
4128 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4129 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4130 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4131 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4132 hw->mac.set_lben = true;
4133 } else {
4134 hw->mac.set_lben = false;
4135 }
4136 }
4137 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4138 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4139 }
4140 }
4141
ixgbe_enable_rx_generic(struct ixgbe_hw * hw)4142 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4143 {
4144 u32 rxctrl;
4145
4146 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4147 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4148
4149 if (hw->mac.type != ixgbe_mac_82598EB) {
4150 if (hw->mac.set_lben) {
4151 u32 pfdtxgswc;
4152
4153 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4154 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4155 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4156 hw->mac.set_lben = false;
4157 }
4158 }
4159 }
4160
4161 /** ixgbe_mng_present - returns true when management capability is present
4162 * @hw: pointer to hardware structure
4163 **/
ixgbe_mng_present(struct ixgbe_hw * hw)4164 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4165 {
4166 u32 fwsm;
4167
4168 if (hw->mac.type < ixgbe_mac_82599EB)
4169 return false;
4170
4171 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4172
4173 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4174 }
4175
4176 /**
4177 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4178 * @hw: pointer to hardware structure
4179 * @speed: new link speed
4180 * @autoneg_wait_to_complete: true when waiting for completion is needed
4181 *
4182 * Set the link speed in the MAC and/or PHY register and restarts link.
4183 */
ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg_wait_to_complete)4184 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4185 ixgbe_link_speed speed,
4186 bool autoneg_wait_to_complete)
4187 {
4188 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4189 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4190 s32 status = 0;
4191 u32 speedcnt = 0;
4192 u32 i = 0;
4193 bool autoneg, link_up = false;
4194
4195 /* Mask off requested but non-supported speeds */
4196 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4197 if (status)
4198 return status;
4199
4200 speed &= link_speed;
4201
4202 /* Try each speed one by one, highest priority first. We do this in
4203 * software because 10Gb fiber doesn't support speed autonegotiation.
4204 */
4205 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4206 speedcnt++;
4207 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4208
4209 /* Set the module link speed */
4210 switch (hw->phy.media_type) {
4211 case ixgbe_media_type_fiber:
4212 hw->mac.ops.set_rate_select_speed(hw,
4213 IXGBE_LINK_SPEED_10GB_FULL);
4214 break;
4215 case ixgbe_media_type_fiber_qsfp:
4216 /* QSFP module automatically detects MAC link speed */
4217 break;
4218 default:
4219 hw_dbg(hw, "Unexpected media type\n");
4220 break;
4221 }
4222
4223 /* Allow module to change analog characteristics (1G->10G) */
4224 msleep(40);
4225
4226 status = hw->mac.ops.setup_mac_link(hw,
4227 IXGBE_LINK_SPEED_10GB_FULL,
4228 autoneg_wait_to_complete);
4229 if (status)
4230 return status;
4231
4232 /* Flap the Tx laser if it has not already been done */
4233 if (hw->mac.ops.flap_tx_laser)
4234 hw->mac.ops.flap_tx_laser(hw);
4235
4236 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4237 * Section 73.10.2, we may have to wait up to 500ms if KR is
4238 * attempted. 82599 uses the same timing for 10g SFI.
4239 */
4240 for (i = 0; i < 5; i++) {
4241 /* Wait for the link partner to also set speed */
4242 msleep(100);
4243
4244 /* If we have link, just jump out */
4245 status = hw->mac.ops.check_link(hw, &link_speed,
4246 &link_up, false);
4247 if (status)
4248 return status;
4249
4250 if (link_up)
4251 goto out;
4252 }
4253 }
4254
4255 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4256 speedcnt++;
4257 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4258 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4259
4260 /* Set the module link speed */
4261 switch (hw->phy.media_type) {
4262 case ixgbe_media_type_fiber:
4263 hw->mac.ops.set_rate_select_speed(hw,
4264 IXGBE_LINK_SPEED_1GB_FULL);
4265 break;
4266 case ixgbe_media_type_fiber_qsfp:
4267 /* QSFP module automatically detects link speed */
4268 break;
4269 default:
4270 hw_dbg(hw, "Unexpected media type\n");
4271 break;
4272 }
4273
4274 /* Allow module to change analog characteristics (10G->1G) */
4275 msleep(40);
4276
4277 status = hw->mac.ops.setup_mac_link(hw,
4278 IXGBE_LINK_SPEED_1GB_FULL,
4279 autoneg_wait_to_complete);
4280 if (status)
4281 return status;
4282
4283 /* Flap the Tx laser if it has not already been done */
4284 if (hw->mac.ops.flap_tx_laser)
4285 hw->mac.ops.flap_tx_laser(hw);
4286
4287 /* Wait for the link partner to also set speed */
4288 msleep(100);
4289
4290 /* If we have link, just jump out */
4291 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4292 false);
4293 if (status)
4294 return status;
4295
4296 if (link_up)
4297 goto out;
4298 }
4299
4300 /* We didn't get link. Configure back to the highest speed we tried,
4301 * (if there was more than one). We call ourselves back with just the
4302 * single highest speed that the user requested.
4303 */
4304 if (speedcnt > 1)
4305 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4306 highest_link_speed,
4307 autoneg_wait_to_complete);
4308
4309 out:
4310 /* Set autoneg_advertised value based on input link speed */
4311 hw->phy.autoneg_advertised = 0;
4312
4313 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4314 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4315
4316 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4317 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4318
4319 return status;
4320 }
4321
4322 /**
4323 * ixgbe_set_soft_rate_select_speed - Set module link speed
4324 * @hw: pointer to hardware structure
4325 * @speed: link speed to set
4326 *
4327 * Set module link speed via the soft rate select.
4328 */
ixgbe_set_soft_rate_select_speed(struct ixgbe_hw * hw,ixgbe_link_speed speed)4329 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4330 ixgbe_link_speed speed)
4331 {
4332 s32 status;
4333 u8 rs, eeprom_data;
4334
4335 switch (speed) {
4336 case IXGBE_LINK_SPEED_10GB_FULL:
4337 /* one bit mask same as setting on */
4338 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4339 break;
4340 case IXGBE_LINK_SPEED_1GB_FULL:
4341 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4342 break;
4343 default:
4344 hw_dbg(hw, "Invalid fixed module speed\n");
4345 return;
4346 }
4347
4348 /* Set RS0 */
4349 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4350 IXGBE_I2C_EEPROM_DEV_ADDR2,
4351 &eeprom_data);
4352 if (status) {
4353 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4354 return;
4355 }
4356
4357 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4358
4359 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4360 IXGBE_I2C_EEPROM_DEV_ADDR2,
4361 eeprom_data);
4362 if (status) {
4363 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4364 return;
4365 }
4366
4367 /* Set RS1 */
4368 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4369 IXGBE_I2C_EEPROM_DEV_ADDR2,
4370 &eeprom_data);
4371 if (status) {
4372 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4373 return;
4374 }
4375
4376 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4377
4378 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4379 IXGBE_I2C_EEPROM_DEV_ADDR2,
4380 eeprom_data);
4381 if (status) {
4382 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4383 return;
4384 }
4385 }
4386