• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
jbd2_descriptor_blocks_per_trans(journal_t * journal)68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 	int tags_per_block;
72 
73 	/* Subtract UUID */
74 	tag_space -= 16;
75 	if (jbd2_journal_has_csum_v2or3(journal))
76 		tag_space -= sizeof(struct jbd2_journal_block_tail);
77 	/* Commit code leaves a slack space of 16 bytes at the end of block */
78 	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 	/*
80 	 * Revoke descriptors are accounted separately so we need to reserve
81 	 * space for commit block and normal transaction descriptor blocks.
82 	 */
83 	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 				tags_per_block);
85 }
86 
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *	The journal MUST be locked.  We don't perform atomic mallocs on the
97  *	new transaction	and we can't block without protecting against other
98  *	processes trying to touch the journal while it is in transition.
99  *
100  */
101 
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)102 static void jbd2_get_transaction(journal_t *journal,
103 				transaction_t *transaction)
104 {
105 	transaction->t_journal = journal;
106 	transaction->t_state = T_RUNNING;
107 	transaction->t_start_time = ktime_get();
108 	transaction->t_tid = journal->j_transaction_sequence++;
109 	transaction->t_expires = jiffies + journal->j_commit_interval;
110 	spin_lock_init(&transaction->t_handle_lock);
111 	atomic_set(&transaction->t_updates, 0);
112 	atomic_set(&transaction->t_outstanding_credits,
113 		   jbd2_descriptor_blocks_per_trans(journal) +
114 		   atomic_read(&journal->j_reserved_credits));
115 	atomic_set(&transaction->t_outstanding_revokes, 0);
116 	atomic_set(&transaction->t_handle_count, 0);
117 	INIT_LIST_HEAD(&transaction->t_inode_list);
118 	INIT_LIST_HEAD(&transaction->t_private_list);
119 
120 	/* Set up the commit timer for the new transaction. */
121 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122 	add_timer(&journal->j_commit_timer);
123 
124 	J_ASSERT(journal->j_running_transaction == NULL);
125 	journal->j_running_transaction = transaction;
126 	transaction->t_max_wait = 0;
127 	transaction->t_start = jiffies;
128 	transaction->t_requested = 0;
129 }
130 
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138 
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)149 static inline void update_t_max_wait(transaction_t *transaction,
150 				     unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153 	if (jbd2_journal_enable_debug &&
154 	    time_after(transaction->t_start, ts)) {
155 		ts = jbd2_time_diff(ts, transaction->t_start);
156 		spin_lock(&transaction->t_handle_lock);
157 		if (ts > transaction->t_max_wait)
158 			transaction->t_max_wait = ts;
159 		spin_unlock(&transaction->t_handle_lock);
160 	}
161 #endif
162 }
163 
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
wait_transaction_locked(journal_t * journal)169 static void wait_transaction_locked(journal_t *journal)
170 	__releases(journal->j_state_lock)
171 {
172 	DEFINE_WAIT(wait);
173 	int need_to_start;
174 	tid_t tid = journal->j_running_transaction->t_tid;
175 
176 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
177 			TASK_UNINTERRUPTIBLE);
178 	need_to_start = !tid_geq(journal->j_commit_request, tid);
179 	read_unlock(&journal->j_state_lock);
180 	if (need_to_start)
181 		jbd2_log_start_commit(journal, tid);
182 	jbd2_might_wait_for_commit(journal);
183 	schedule();
184 	finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186 
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
wait_transaction_switching(journal_t * journal)192 static void wait_transaction_switching(journal_t *journal)
193 	__releases(journal->j_state_lock)
194 {
195 	DEFINE_WAIT(wait);
196 
197 	if (WARN_ON(!journal->j_running_transaction ||
198 		    journal->j_running_transaction->t_state != T_SWITCH)) {
199 		read_unlock(&journal->j_state_lock);
200 		return;
201 	}
202 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
203 			TASK_UNINTERRUPTIBLE);
204 	read_unlock(&journal->j_state_lock);
205 	/*
206 	 * We don't call jbd2_might_wait_for_commit() here as there's no
207 	 * waiting for outstanding handles happening anymore in T_SWITCH state
208 	 * and handling of reserved handles actually relies on that for
209 	 * correctness.
210 	 */
211 	schedule();
212 	finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214 
sub_reserved_credits(journal_t * journal,int blocks)215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217 	atomic_sub(blocks, &journal->j_reserved_credits);
218 	wake_up(&journal->j_wait_reserved);
219 }
220 
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)227 static int add_transaction_credits(journal_t *journal, int blocks,
228 				   int rsv_blocks)
229 {
230 	transaction_t *t = journal->j_running_transaction;
231 	int needed;
232 	int total = blocks + rsv_blocks;
233 
234 	/*
235 	 * If the current transaction is locked down for commit, wait
236 	 * for the lock to be released.
237 	 */
238 	if (t->t_state != T_RUNNING) {
239 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
240 		wait_transaction_locked(journal);
241 		return 1;
242 	}
243 
244 	/*
245 	 * If there is not enough space left in the log to write all
246 	 * potential buffers requested by this operation, we need to
247 	 * stall pending a log checkpoint to free some more log space.
248 	 */
249 	needed = atomic_add_return(total, &t->t_outstanding_credits);
250 	if (needed > journal->j_max_transaction_buffers) {
251 		/*
252 		 * If the current transaction is already too large,
253 		 * then start to commit it: we can then go back and
254 		 * attach this handle to a new transaction.
255 		 */
256 		atomic_sub(total, &t->t_outstanding_credits);
257 
258 		/*
259 		 * Is the number of reserved credits in the current transaction too
260 		 * big to fit this handle? Wait until reserved credits are freed.
261 		 */
262 		if (atomic_read(&journal->j_reserved_credits) + total >
263 		    journal->j_max_transaction_buffers) {
264 			read_unlock(&journal->j_state_lock);
265 			jbd2_might_wait_for_commit(journal);
266 			wait_event(journal->j_wait_reserved,
267 				   atomic_read(&journal->j_reserved_credits) + total <=
268 				   journal->j_max_transaction_buffers);
269 			return 1;
270 		}
271 
272 		wait_transaction_locked(journal);
273 		return 1;
274 	}
275 
276 	/*
277 	 * The commit code assumes that it can get enough log space
278 	 * without forcing a checkpoint.  This is *critical* for
279 	 * correctness: a checkpoint of a buffer which is also
280 	 * associated with a committing transaction creates a deadlock,
281 	 * so commit simply cannot force through checkpoints.
282 	 *
283 	 * We must therefore ensure the necessary space in the journal
284 	 * *before* starting to dirty potentially checkpointed buffers
285 	 * in the new transaction.
286 	 */
287 	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288 		atomic_sub(total, &t->t_outstanding_credits);
289 		read_unlock(&journal->j_state_lock);
290 		jbd2_might_wait_for_commit(journal);
291 		write_lock(&journal->j_state_lock);
292 		if (jbd2_log_space_left(journal) <
293 					journal->j_max_transaction_buffers)
294 			__jbd2_log_wait_for_space(journal);
295 		write_unlock(&journal->j_state_lock);
296 		return 1;
297 	}
298 
299 	/* No reservation? We are done... */
300 	if (!rsv_blocks)
301 		return 0;
302 
303 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304 	/* We allow at most half of a transaction to be reserved */
305 	if (needed > journal->j_max_transaction_buffers / 2) {
306 		sub_reserved_credits(journal, rsv_blocks);
307 		atomic_sub(total, &t->t_outstanding_credits);
308 		read_unlock(&journal->j_state_lock);
309 		jbd2_might_wait_for_commit(journal);
310 		wait_event(journal->j_wait_reserved,
311 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
312 			 <= journal->j_max_transaction_buffers / 2);
313 		return 1;
314 	}
315 	return 0;
316 }
317 
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)325 static int start_this_handle(journal_t *journal, handle_t *handle,
326 			     gfp_t gfp_mask)
327 {
328 	transaction_t	*transaction, *new_transaction = NULL;
329 	int		blocks = handle->h_total_credits;
330 	int		rsv_blocks = 0;
331 	unsigned long ts = jiffies;
332 
333 	if (handle->h_rsv_handle)
334 		rsv_blocks = handle->h_rsv_handle->h_total_credits;
335 
336 	/*
337 	 * Limit the number of reserved credits to 1/2 of maximum transaction
338 	 * size and limit the number of total credits to not exceed maximum
339 	 * transaction size per operation.
340 	 */
341 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343 		printk(KERN_ERR "JBD2: %s wants too many credits "
344 		       "credits:%d rsv_credits:%d max:%d\n",
345 		       current->comm, blocks, rsv_blocks,
346 		       journal->j_max_transaction_buffers);
347 		WARN_ON(1);
348 		return -ENOSPC;
349 	}
350 
351 alloc_transaction:
352 	/*
353 	 * This check is racy but it is just an optimization of allocating new
354 	 * transaction early if there are high chances we'll need it. If we
355 	 * guess wrong, we'll retry or free unused transaction.
356 	 */
357 	if (!data_race(journal->j_running_transaction)) {
358 		/*
359 		 * If __GFP_FS is not present, then we may be being called from
360 		 * inside the fs writeback layer, so we MUST NOT fail.
361 		 */
362 		if ((gfp_mask & __GFP_FS) == 0)
363 			gfp_mask |= __GFP_NOFAIL;
364 		new_transaction = kmem_cache_zalloc(transaction_cache,
365 						    gfp_mask);
366 		if (!new_transaction)
367 			return -ENOMEM;
368 	}
369 
370 	jbd_debug(3, "New handle %p going live.\n", handle);
371 
372 	/*
373 	 * We need to hold j_state_lock until t_updates has been incremented,
374 	 * for proper journal barrier handling
375 	 */
376 repeat:
377 	read_lock(&journal->j_state_lock);
378 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379 	if (is_journal_aborted(journal) ||
380 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381 		read_unlock(&journal->j_state_lock);
382 		jbd2_journal_free_transaction(new_transaction);
383 		return -EROFS;
384 	}
385 
386 	/*
387 	 * Wait on the journal's transaction barrier if necessary. Specifically
388 	 * we allow reserved handles to proceed because otherwise commit could
389 	 * deadlock on page writeback not being able to complete.
390 	 */
391 	if (!handle->h_reserved && journal->j_barrier_count) {
392 		read_unlock(&journal->j_state_lock);
393 		wait_event(journal->j_wait_transaction_locked,
394 				journal->j_barrier_count == 0);
395 		goto repeat;
396 	}
397 
398 	if (!journal->j_running_transaction) {
399 		read_unlock(&journal->j_state_lock);
400 		if (!new_transaction)
401 			goto alloc_transaction;
402 		write_lock(&journal->j_state_lock);
403 		if (!journal->j_running_transaction &&
404 		    (handle->h_reserved || !journal->j_barrier_count)) {
405 			jbd2_get_transaction(journal, new_transaction);
406 			new_transaction = NULL;
407 		}
408 		write_unlock(&journal->j_state_lock);
409 		goto repeat;
410 	}
411 
412 	transaction = journal->j_running_transaction;
413 
414 	if (!handle->h_reserved) {
415 		/* We may have dropped j_state_lock - restart in that case */
416 		if (add_transaction_credits(journal, blocks, rsv_blocks))
417 			goto repeat;
418 	} else {
419 		/*
420 		 * We have handle reserved so we are allowed to join T_LOCKED
421 		 * transaction and we don't have to check for transaction size
422 		 * and journal space. But we still have to wait while running
423 		 * transaction is being switched to a committing one as it
424 		 * won't wait for any handles anymore.
425 		 */
426 		if (transaction->t_state == T_SWITCH) {
427 			wait_transaction_switching(journal);
428 			goto repeat;
429 		}
430 		sub_reserved_credits(journal, blocks);
431 		handle->h_reserved = 0;
432 	}
433 
434 	/* OK, account for the buffers that this operation expects to
435 	 * use and add the handle to the running transaction.
436 	 */
437 	update_t_max_wait(transaction, ts);
438 	handle->h_transaction = transaction;
439 	handle->h_requested_credits = blocks;
440 	handle->h_revoke_credits_requested = handle->h_revoke_credits;
441 	handle->h_start_jiffies = jiffies;
442 	atomic_inc(&transaction->t_updates);
443 	atomic_inc(&transaction->t_handle_count);
444 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445 		  handle, blocks,
446 		  atomic_read(&transaction->t_outstanding_credits),
447 		  jbd2_log_space_left(journal));
448 	read_unlock(&journal->j_state_lock);
449 	current->journal_info = handle;
450 
451 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452 	jbd2_journal_free_transaction(new_transaction);
453 	/*
454 	 * Ensure that no allocations done while the transaction is open are
455 	 * going to recurse back to the fs layer.
456 	 */
457 	handle->saved_alloc_context = memalloc_nofs_save();
458 	return 0;
459 }
460 
461 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)462 static handle_t *new_handle(int nblocks)
463 {
464 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465 	if (!handle)
466 		return NULL;
467 	handle->h_total_credits = nblocks;
468 	handle->h_ref = 1;
469 
470 	return handle;
471 }
472 
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,int revoke_records,gfp_t gfp_mask,unsigned int type,unsigned int line_no)473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474 			      int revoke_records, gfp_t gfp_mask,
475 			      unsigned int type, unsigned int line_no)
476 {
477 	handle_t *handle = journal_current_handle();
478 	int err;
479 
480 	if (!journal)
481 		return ERR_PTR(-EROFS);
482 
483 	if (handle) {
484 		J_ASSERT(handle->h_transaction->t_journal == journal);
485 		handle->h_ref++;
486 		return handle;
487 	}
488 
489 	nblocks += DIV_ROUND_UP(revoke_records,
490 				journal->j_revoke_records_per_block);
491 	handle = new_handle(nblocks);
492 	if (!handle)
493 		return ERR_PTR(-ENOMEM);
494 	if (rsv_blocks) {
495 		handle_t *rsv_handle;
496 
497 		rsv_handle = new_handle(rsv_blocks);
498 		if (!rsv_handle) {
499 			jbd2_free_handle(handle);
500 			return ERR_PTR(-ENOMEM);
501 		}
502 		rsv_handle->h_reserved = 1;
503 		rsv_handle->h_journal = journal;
504 		handle->h_rsv_handle = rsv_handle;
505 	}
506 	handle->h_revoke_credits = revoke_records;
507 
508 	err = start_this_handle(journal, handle, gfp_mask);
509 	if (err < 0) {
510 		if (handle->h_rsv_handle)
511 			jbd2_free_handle(handle->h_rsv_handle);
512 		jbd2_free_handle(handle);
513 		return ERR_PTR(err);
514 	}
515 	handle->h_type = type;
516 	handle->h_line_no = line_no;
517 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518 				handle->h_transaction->t_tid, type,
519 				line_no, nblocks);
520 
521 	return handle;
522 }
523 EXPORT_SYMBOL(jbd2__journal_start);
524 
525 
526 /**
527  * jbd2_journal_start() - Obtain a new handle.
528  * @journal: Journal to start transaction on.
529  * @nblocks: number of block buffer we might modify
530  *
531  * We make sure that the transaction can guarantee at least nblocks of
532  * modified buffers in the log.  We block until the log can guarantee
533  * that much space. Additionally, if rsv_blocks > 0, we also create another
534  * handle with rsv_blocks reserved blocks in the journal. This handle is
535  * stored in h_rsv_handle. It is not attached to any particular transaction
536  * and thus doesn't block transaction commit. If the caller uses this reserved
537  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538  * on the parent handle will dispose the reserved one. Reserved handle has to
539  * be converted to a normal handle using jbd2_journal_start_reserved() before
540  * it can be used.
541  *
542  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543  * on failure.
544  */
jbd2_journal_start(journal_t * journal,int nblocks)545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546 {
547 	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548 }
549 EXPORT_SYMBOL(jbd2_journal_start);
550 
__jbd2_journal_unreserve_handle(handle_t * handle,transaction_t * t)551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552 {
553 	journal_t *journal = handle->h_journal;
554 
555 	WARN_ON(!handle->h_reserved);
556 	sub_reserved_credits(journal, handle->h_total_credits);
557 	if (t)
558 		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559 }
560 
jbd2_journal_free_reserved(handle_t * handle)561 void jbd2_journal_free_reserved(handle_t *handle)
562 {
563 	journal_t *journal = handle->h_journal;
564 
565 	/* Get j_state_lock to pin running transaction if it exists */
566 	read_lock(&journal->j_state_lock);
567 	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568 	read_unlock(&journal->j_state_lock);
569 	jbd2_free_handle(handle);
570 }
571 EXPORT_SYMBOL(jbd2_journal_free_reserved);
572 
573 /**
574  * jbd2_journal_start_reserved() - start reserved handle
575  * @handle: handle to start
576  * @type: for handle statistics
577  * @line_no: for handle statistics
578  *
579  * Start handle that has been previously reserved with jbd2_journal_reserve().
580  * This attaches @handle to the running transaction (or creates one if there's
581  * not transaction running). Unlike jbd2_journal_start() this function cannot
582  * block on journal commit, checkpointing, or similar stuff. It can block on
583  * memory allocation or frozen journal though.
584  *
585  * Return 0 on success, non-zero on error - handle is freed in that case.
586  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588 				unsigned int line_no)
589 {
590 	journal_t *journal = handle->h_journal;
591 	int ret = -EIO;
592 
593 	if (WARN_ON(!handle->h_reserved)) {
594 		/* Someone passed in normal handle? Just stop it. */
595 		jbd2_journal_stop(handle);
596 		return ret;
597 	}
598 	/*
599 	 * Usefulness of mixing of reserved and unreserved handles is
600 	 * questionable. So far nobody seems to need it so just error out.
601 	 */
602 	if (WARN_ON(current->journal_info)) {
603 		jbd2_journal_free_reserved(handle);
604 		return ret;
605 	}
606 
607 	handle->h_journal = NULL;
608 	/*
609 	 * GFP_NOFS is here because callers are likely from writeback or
610 	 * similarly constrained call sites
611 	 */
612 	ret = start_this_handle(journal, handle, GFP_NOFS);
613 	if (ret < 0) {
614 		handle->h_journal = journal;
615 		jbd2_journal_free_reserved(handle);
616 		return ret;
617 	}
618 	handle->h_type = type;
619 	handle->h_line_no = line_no;
620 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621 				handle->h_transaction->t_tid, type,
622 				line_no, handle->h_total_credits);
623 	return 0;
624 }
625 EXPORT_SYMBOL(jbd2_journal_start_reserved);
626 
627 /**
628  * jbd2_journal_extend() - extend buffer credits.
629  * @handle:  handle to 'extend'
630  * @nblocks: nr blocks to try to extend by.
631  * @revoke_records: number of revoke records to try to extend by.
632  *
633  * Some transactions, such as large extends and truncates, can be done
634  * atomically all at once or in several stages.  The operation requests
635  * a credit for a number of buffer modifications in advance, but can
636  * extend its credit if it needs more.
637  *
638  * jbd2_journal_extend tries to give the running handle more buffer credits.
639  * It does not guarantee that allocation - this is a best-effort only.
640  * The calling process MUST be able to deal cleanly with a failure to
641  * extend here.
642  *
643  * Return 0 on success, non-zero on failure.
644  *
645  * return code < 0 implies an error
646  * return code > 0 implies normal transaction-full status.
647  */
jbd2_journal_extend(handle_t * handle,int nblocks,int revoke_records)648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649 {
650 	transaction_t *transaction = handle->h_transaction;
651 	journal_t *journal;
652 	int result;
653 	int wanted;
654 
655 	if (is_handle_aborted(handle))
656 		return -EROFS;
657 	journal = transaction->t_journal;
658 
659 	result = 1;
660 
661 	read_lock(&journal->j_state_lock);
662 
663 	/* Don't extend a locked-down transaction! */
664 	if (transaction->t_state != T_RUNNING) {
665 		jbd_debug(3, "denied handle %p %d blocks: "
666 			  "transaction not running\n", handle, nblocks);
667 		goto error_out;
668 	}
669 
670 	nblocks += DIV_ROUND_UP(
671 			handle->h_revoke_credits_requested + revoke_records,
672 			journal->j_revoke_records_per_block) -
673 		DIV_ROUND_UP(
674 			handle->h_revoke_credits_requested,
675 			journal->j_revoke_records_per_block);
676 	spin_lock(&transaction->t_handle_lock);
677 	wanted = atomic_add_return(nblocks,
678 				   &transaction->t_outstanding_credits);
679 
680 	if (wanted > journal->j_max_transaction_buffers) {
681 		jbd_debug(3, "denied handle %p %d blocks: "
682 			  "transaction too large\n", handle, nblocks);
683 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
684 		goto unlock;
685 	}
686 
687 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688 				 transaction->t_tid,
689 				 handle->h_type, handle->h_line_no,
690 				 handle->h_total_credits,
691 				 nblocks);
692 
693 	handle->h_total_credits += nblocks;
694 	handle->h_requested_credits += nblocks;
695 	handle->h_revoke_credits += revoke_records;
696 	handle->h_revoke_credits_requested += revoke_records;
697 	result = 0;
698 
699 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700 unlock:
701 	spin_unlock(&transaction->t_handle_lock);
702 error_out:
703 	read_unlock(&journal->j_state_lock);
704 	return result;
705 }
706 
stop_this_handle(handle_t * handle)707 static void stop_this_handle(handle_t *handle)
708 {
709 	transaction_t *transaction = handle->h_transaction;
710 	journal_t *journal = transaction->t_journal;
711 	int revokes;
712 
713 	J_ASSERT(journal_current_handle() == handle);
714 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715 	current->journal_info = NULL;
716 	/*
717 	 * Subtract necessary revoke descriptor blocks from handle credits. We
718 	 * take care to account only for revoke descriptor blocks the
719 	 * transaction will really need as large sequences of transactions with
720 	 * small numbers of revokes are relatively common.
721 	 */
722 	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723 	if (revokes) {
724 		int t_revokes, revoke_descriptors;
725 		int rr_per_blk = journal->j_revoke_records_per_block;
726 
727 		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728 				> handle->h_total_credits);
729 		t_revokes = atomic_add_return(revokes,
730 				&transaction->t_outstanding_revokes);
731 		revoke_descriptors =
732 			DIV_ROUND_UP(t_revokes, rr_per_blk) -
733 			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734 		handle->h_total_credits -= revoke_descriptors;
735 	}
736 	atomic_sub(handle->h_total_credits,
737 		   &transaction->t_outstanding_credits);
738 	if (handle->h_rsv_handle)
739 		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740 						transaction);
741 	if (atomic_dec_and_test(&transaction->t_updates))
742 		wake_up(&journal->j_wait_updates);
743 
744 	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745 	/*
746 	 * Scope of the GFP_NOFS context is over here and so we can restore the
747 	 * original alloc context.
748 	 */
749 	memalloc_nofs_restore(handle->saved_alloc_context);
750 }
751 
752 /**
753  * jbd2__journal_restart() - restart a handle .
754  * @handle:  handle to restart
755  * @nblocks: nr credits requested
756  * @revoke_records: number of revoke record credits requested
757  * @gfp_mask: memory allocation flags (for start_this_handle)
758  *
759  * Restart a handle for a multi-transaction filesystem
760  * operation.
761  *
762  * If the jbd2_journal_extend() call above fails to grant new buffer credits
763  * to a running handle, a call to jbd2_journal_restart will commit the
764  * handle's transaction so far and reattach the handle to a new
765  * transaction capable of guaranteeing the requested number of
766  * credits. We preserve reserved handle if there's any attached to the
767  * passed in handle.
768  */
jbd2__journal_restart(handle_t * handle,int nblocks,int revoke_records,gfp_t gfp_mask)769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770 			  gfp_t gfp_mask)
771 {
772 	transaction_t *transaction = handle->h_transaction;
773 	journal_t *journal;
774 	tid_t		tid;
775 	int		need_to_start;
776 	int		ret;
777 
778 	/* If we've had an abort of any type, don't even think about
779 	 * actually doing the restart! */
780 	if (is_handle_aborted(handle))
781 		return 0;
782 	journal = transaction->t_journal;
783 	tid = transaction->t_tid;
784 
785 	/*
786 	 * First unlink the handle from its current transaction, and start the
787 	 * commit on that.
788 	 */
789 	jbd_debug(2, "restarting handle %p\n", handle);
790 	stop_this_handle(handle);
791 	handle->h_transaction = NULL;
792 
793 	/*
794 	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795  	 * get rid of pointless j_state_lock traffic like this.
796 	 */
797 	read_lock(&journal->j_state_lock);
798 	need_to_start = !tid_geq(journal->j_commit_request, tid);
799 	read_unlock(&journal->j_state_lock);
800 	if (need_to_start)
801 		jbd2_log_start_commit(journal, tid);
802 	handle->h_total_credits = nblocks +
803 		DIV_ROUND_UP(revoke_records,
804 			     journal->j_revoke_records_per_block);
805 	handle->h_revoke_credits = revoke_records;
806 	ret = start_this_handle(journal, handle, gfp_mask);
807 	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808 				 ret ? 0 : handle->h_transaction->t_tid,
809 				 handle->h_type, handle->h_line_no,
810 				 handle->h_total_credits);
811 	return ret;
812 }
813 EXPORT_SYMBOL(jbd2__journal_restart);
814 
815 
jbd2_journal_restart(handle_t * handle,int nblocks)816 int jbd2_journal_restart(handle_t *handle, int nblocks)
817 {
818 	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819 }
820 EXPORT_SYMBOL(jbd2_journal_restart);
821 
822 /**
823  * jbd2_journal_lock_updates () - establish a transaction barrier.
824  * @journal:  Journal to establish a barrier on.
825  *
826  * This locks out any further updates from being started, and blocks
827  * until all existing updates have completed, returning only once the
828  * journal is in a quiescent state with no updates running.
829  *
830  * The journal lock should not be held on entry.
831  */
jbd2_journal_lock_updates(journal_t * journal)832 void jbd2_journal_lock_updates(journal_t *journal)
833 {
834 	DEFINE_WAIT(wait);
835 
836 	jbd2_might_wait_for_commit(journal);
837 
838 	write_lock(&journal->j_state_lock);
839 	++journal->j_barrier_count;
840 
841 	/* Wait until there are no reserved handles */
842 	if (atomic_read(&journal->j_reserved_credits)) {
843 		write_unlock(&journal->j_state_lock);
844 		wait_event(journal->j_wait_reserved,
845 			   atomic_read(&journal->j_reserved_credits) == 0);
846 		write_lock(&journal->j_state_lock);
847 	}
848 
849 	/* Wait until there are no running updates */
850 	while (1) {
851 		transaction_t *transaction = journal->j_running_transaction;
852 
853 		if (!transaction)
854 			break;
855 
856 		spin_lock(&transaction->t_handle_lock);
857 		prepare_to_wait(&journal->j_wait_updates, &wait,
858 				TASK_UNINTERRUPTIBLE);
859 		if (!atomic_read(&transaction->t_updates)) {
860 			spin_unlock(&transaction->t_handle_lock);
861 			finish_wait(&journal->j_wait_updates, &wait);
862 			break;
863 		}
864 		spin_unlock(&transaction->t_handle_lock);
865 		write_unlock(&journal->j_state_lock);
866 		schedule();
867 		finish_wait(&journal->j_wait_updates, &wait);
868 		write_lock(&journal->j_state_lock);
869 	}
870 	write_unlock(&journal->j_state_lock);
871 
872 	/*
873 	 * We have now established a barrier against other normal updates, but
874 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
875 	 * to make sure that we serialise special journal-locked operations
876 	 * too.
877 	 */
878 	mutex_lock(&journal->j_barrier);
879 }
880 
881 /**
882  * jbd2_journal_unlock_updates () - release barrier
883  * @journal:  Journal to release the barrier on.
884  *
885  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886  *
887  * Should be called without the journal lock held.
888  */
jbd2_journal_unlock_updates(journal_t * journal)889 void jbd2_journal_unlock_updates (journal_t *journal)
890 {
891 	J_ASSERT(journal->j_barrier_count != 0);
892 
893 	mutex_unlock(&journal->j_barrier);
894 	write_lock(&journal->j_state_lock);
895 	--journal->j_barrier_count;
896 	write_unlock(&journal->j_state_lock);
897 	wake_up_all(&journal->j_wait_transaction_locked);
898 }
899 
warn_dirty_buffer(struct buffer_head * bh)900 static void warn_dirty_buffer(struct buffer_head *bh)
901 {
902 	printk(KERN_WARNING
903 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904 	       "There's a risk of filesystem corruption in case of system "
905 	       "crash.\n",
906 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
907 }
908 
909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)910 static void jbd2_freeze_jh_data(struct journal_head *jh)
911 {
912 	struct page *page;
913 	int offset;
914 	char *source;
915 	struct buffer_head *bh = jh2bh(jh);
916 
917 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918 	page = bh->b_page;
919 	offset = offset_in_page(bh->b_data);
920 	source = kmap_atomic(page);
921 	/* Fire data frozen trigger just before we copy the data */
922 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924 	kunmap_atomic(source);
925 
926 	/*
927 	 * Now that the frozen data is saved off, we need to store any matching
928 	 * triggers.
929 	 */
930 	jh->b_frozen_triggers = jh->b_triggers;
931 }
932 
933 /*
934  * If the buffer is already part of the current transaction, then there
935  * is nothing we need to do.  If it is already part of a prior
936  * transaction which we are still committing to disk, then we need to
937  * make sure that we do not overwrite the old copy: we do copy-out to
938  * preserve the copy going to disk.  We also account the buffer against
939  * the handle's metadata buffer credits (unless the buffer is already
940  * part of the transaction, that is).
941  *
942  */
943 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)944 do_get_write_access(handle_t *handle, struct journal_head *jh,
945 			int force_copy)
946 {
947 	struct buffer_head *bh;
948 	transaction_t *transaction = handle->h_transaction;
949 	journal_t *journal;
950 	int error;
951 	char *frozen_buffer = NULL;
952 	unsigned long start_lock, time_lock;
953 
954 	journal = transaction->t_journal;
955 
956 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957 
958 	JBUFFER_TRACE(jh, "entry");
959 repeat:
960 	bh = jh2bh(jh);
961 
962 	/* @@@ Need to check for errors here at some point. */
963 
964  	start_lock = jiffies;
965 	lock_buffer(bh);
966 	spin_lock(&jh->b_state_lock);
967 
968 	/* If it takes too long to lock the buffer, trace it */
969 	time_lock = jbd2_time_diff(start_lock, jiffies);
970 	if (time_lock > HZ/10)
971 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972 			jiffies_to_msecs(time_lock));
973 
974 	/* We now hold the buffer lock so it is safe to query the buffer
975 	 * state.  Is the buffer dirty?
976 	 *
977 	 * If so, there are two possibilities.  The buffer may be
978 	 * non-journaled, and undergoing a quite legitimate writeback.
979 	 * Otherwise, it is journaled, and we don't expect dirty buffers
980 	 * in that state (the buffers should be marked JBD_Dirty
981 	 * instead.)  So either the IO is being done under our own
982 	 * control and this is a bug, or it's a third party IO such as
983 	 * dump(8) (which may leave the buffer scheduled for read ---
984 	 * ie. locked but not dirty) or tune2fs (which may actually have
985 	 * the buffer dirtied, ugh.)  */
986 
987 	if (buffer_dirty(bh) && jh->b_transaction) {
988 		warn_dirty_buffer(bh);
989 		/*
990 		 * We need to clean the dirty flag and we must do it under the
991 		 * buffer lock to be sure we don't race with running write-out.
992 		 */
993 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
994 		clear_buffer_dirty(bh);
995 		/*
996 		 * The buffer is going to be added to BJ_Reserved list now and
997 		 * nothing guarantees jbd2_journal_dirty_metadata() will be
998 		 * ever called for it. So we need to set jbddirty bit here to
999 		 * make sure the buffer is dirtied and written out when the
1000 		 * journaling machinery is done with it.
1001 		 */
1002 		set_buffer_jbddirty(bh);
1003 	}
1004 
1005 	error = -EROFS;
1006 	if (is_handle_aborted(handle)) {
1007 		spin_unlock(&jh->b_state_lock);
1008 		unlock_buffer(bh);
1009 		goto out;
1010 	}
1011 	error = 0;
1012 
1013 	/*
1014 	 * The buffer is already part of this transaction if b_transaction or
1015 	 * b_next_transaction points to it
1016 	 */
1017 	if (jh->b_transaction == transaction ||
1018 	    jh->b_next_transaction == transaction) {
1019 		unlock_buffer(bh);
1020 		goto done;
1021 	}
1022 
1023 	/*
1024 	 * this is the first time this transaction is touching this buffer,
1025 	 * reset the modified flag
1026 	 */
1027 	jh->b_modified = 0;
1028 
1029 	/*
1030 	 * If the buffer is not journaled right now, we need to make sure it
1031 	 * doesn't get written to disk before the caller actually commits the
1032 	 * new data
1033 	 */
1034 	if (!jh->b_transaction) {
1035 		JBUFFER_TRACE(jh, "no transaction");
1036 		J_ASSERT_JH(jh, !jh->b_next_transaction);
1037 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1038 		/*
1039 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1040 		 * visible before attaching it to the running transaction.
1041 		 * Paired with barrier in jbd2_write_access_granted()
1042 		 */
1043 		smp_wmb();
1044 		spin_lock(&journal->j_list_lock);
1045 		if (test_clear_buffer_dirty(bh)) {
1046 			/*
1047 			 * Execute buffer dirty clearing and jh->b_transaction
1048 			 * assignment under journal->j_list_lock locked to
1049 			 * prevent bh being removed from checkpoint list if
1050 			 * the buffer is in an intermediate state (not dirty
1051 			 * and jh->b_transaction is NULL).
1052 			 */
1053 			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1054 			set_buffer_jbddirty(bh);
1055 		}
1056 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1057 		spin_unlock(&journal->j_list_lock);
1058 		unlock_buffer(bh);
1059 		goto done;
1060 	}
1061 	unlock_buffer(bh);
1062 
1063 	/*
1064 	 * If there is already a copy-out version of this buffer, then we don't
1065 	 * need to make another one
1066 	 */
1067 	if (jh->b_frozen_data) {
1068 		JBUFFER_TRACE(jh, "has frozen data");
1069 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1070 		goto attach_next;
1071 	}
1072 
1073 	JBUFFER_TRACE(jh, "owned by older transaction");
1074 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1075 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1076 
1077 	/*
1078 	 * There is one case we have to be very careful about.  If the
1079 	 * committing transaction is currently writing this buffer out to disk
1080 	 * and has NOT made a copy-out, then we cannot modify the buffer
1081 	 * contents at all right now.  The essence of copy-out is that it is
1082 	 * the extra copy, not the primary copy, which gets journaled.  If the
1083 	 * primary copy is already going to disk then we cannot do copy-out
1084 	 * here.
1085 	 */
1086 	if (buffer_shadow(bh)) {
1087 		JBUFFER_TRACE(jh, "on shadow: sleep");
1088 		spin_unlock(&jh->b_state_lock);
1089 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1090 		goto repeat;
1091 	}
1092 
1093 	/*
1094 	 * Only do the copy if the currently-owning transaction still needs it.
1095 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1096 	 * past that stage (here we use the fact that BH_Shadow is set under
1097 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1098 	 * point we know the buffer doesn't have BH_Shadow set).
1099 	 *
1100 	 * Subtle point, though: if this is a get_undo_access, then we will be
1101 	 * relying on the frozen_data to contain the new value of the
1102 	 * committed_data record after the transaction, so we HAVE to force the
1103 	 * frozen_data copy in that case.
1104 	 */
1105 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1106 		JBUFFER_TRACE(jh, "generate frozen data");
1107 		if (!frozen_buffer) {
1108 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1109 			spin_unlock(&jh->b_state_lock);
1110 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1111 						   GFP_NOFS | __GFP_NOFAIL);
1112 			goto repeat;
1113 		}
1114 		jh->b_frozen_data = frozen_buffer;
1115 		frozen_buffer = NULL;
1116 		jbd2_freeze_jh_data(jh);
1117 	}
1118 attach_next:
1119 	/*
1120 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1121 	 * before attaching it to the running transaction. Paired with barrier
1122 	 * in jbd2_write_access_granted()
1123 	 */
1124 	smp_wmb();
1125 	jh->b_next_transaction = transaction;
1126 
1127 done:
1128 	spin_unlock(&jh->b_state_lock);
1129 
1130 	/*
1131 	 * If we are about to journal a buffer, then any revoke pending on it is
1132 	 * no longer valid
1133 	 */
1134 	jbd2_journal_cancel_revoke(handle, jh);
1135 
1136 out:
1137 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1138 		jbd2_free(frozen_buffer, bh->b_size);
1139 
1140 	JBUFFER_TRACE(jh, "exit");
1141 	return error;
1142 }
1143 
1144 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1145 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1146 							bool undo)
1147 {
1148 	struct journal_head *jh;
1149 	bool ret = false;
1150 
1151 	/* Dirty buffers require special handling... */
1152 	if (buffer_dirty(bh))
1153 		return false;
1154 
1155 	/*
1156 	 * RCU protects us from dereferencing freed pages. So the checks we do
1157 	 * are guaranteed not to oops. However the jh slab object can get freed
1158 	 * & reallocated while we work with it. So we have to be careful. When
1159 	 * we see jh attached to the running transaction, we know it must stay
1160 	 * so until the transaction is committed. Thus jh won't be freed and
1161 	 * will be attached to the same bh while we run.  However it can
1162 	 * happen jh gets freed, reallocated, and attached to the transaction
1163 	 * just after we get pointer to it from bh. So we have to be careful
1164 	 * and recheck jh still belongs to our bh before we return success.
1165 	 */
1166 	rcu_read_lock();
1167 	if (!buffer_jbd(bh))
1168 		goto out;
1169 	/* This should be bh2jh() but that doesn't work with inline functions */
1170 	jh = READ_ONCE(bh->b_private);
1171 	if (!jh)
1172 		goto out;
1173 	/* For undo access buffer must have data copied */
1174 	if (undo && !jh->b_committed_data)
1175 		goto out;
1176 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1177 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1178 		goto out;
1179 	/*
1180 	 * There are two reasons for the barrier here:
1181 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1182 	 * detect when jh went through free, realloc, attach to transaction
1183 	 * while we were checking. Paired with implicit barrier in that path.
1184 	 * 2) So that access to bh done after jbd2_write_access_granted()
1185 	 * doesn't get reordered and see inconsistent state of concurrent
1186 	 * do_get_write_access().
1187 	 */
1188 	smp_mb();
1189 	if (unlikely(jh->b_bh != bh))
1190 		goto out;
1191 	ret = true;
1192 out:
1193 	rcu_read_unlock();
1194 	return ret;
1195 }
1196 
1197 /**
1198  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1199  *				     for metadata (not data) update.
1200  * @handle: transaction to add buffer modifications to
1201  * @bh:     bh to be used for metadata writes
1202  *
1203  * Returns: error code or 0 on success.
1204  *
1205  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1206  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1207  */
1208 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1209 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1210 {
1211 	struct journal_head *jh;
1212 	int rc;
1213 
1214 	if (is_handle_aborted(handle))
1215 		return -EROFS;
1216 
1217 	if (jbd2_write_access_granted(handle, bh, false))
1218 		return 0;
1219 
1220 	jh = jbd2_journal_add_journal_head(bh);
1221 	/* We do not want to get caught playing with fields which the
1222 	 * log thread also manipulates.  Make sure that the buffer
1223 	 * completes any outstanding IO before proceeding. */
1224 	rc = do_get_write_access(handle, jh, 0);
1225 	jbd2_journal_put_journal_head(jh);
1226 	return rc;
1227 }
1228 
1229 
1230 /*
1231  * When the user wants to journal a newly created buffer_head
1232  * (ie. getblk() returned a new buffer and we are going to populate it
1233  * manually rather than reading off disk), then we need to keep the
1234  * buffer_head locked until it has been completely filled with new
1235  * data.  In this case, we should be able to make the assertion that
1236  * the bh is not already part of an existing transaction.
1237  *
1238  * The buffer should already be locked by the caller by this point.
1239  * There is no lock ranking violation: it was a newly created,
1240  * unlocked buffer beforehand. */
1241 
1242 /**
1243  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1244  * @handle: transaction to new buffer to
1245  * @bh: new buffer.
1246  *
1247  * Call this if you create a new bh.
1248  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1249 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1250 {
1251 	transaction_t *transaction = handle->h_transaction;
1252 	journal_t *journal;
1253 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1254 	int err;
1255 
1256 	jbd_debug(5, "journal_head %p\n", jh);
1257 	err = -EROFS;
1258 	if (is_handle_aborted(handle))
1259 		goto out;
1260 	journal = transaction->t_journal;
1261 	err = 0;
1262 
1263 	JBUFFER_TRACE(jh, "entry");
1264 	/*
1265 	 * The buffer may already belong to this transaction due to pre-zeroing
1266 	 * in the filesystem's new_block code.  It may also be on the previous,
1267 	 * committing transaction's lists, but it HAS to be in Forget state in
1268 	 * that case: the transaction must have deleted the buffer for it to be
1269 	 * reused here.
1270 	 */
1271 	spin_lock(&jh->b_state_lock);
1272 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1273 		jh->b_transaction == NULL ||
1274 		(jh->b_transaction == journal->j_committing_transaction &&
1275 			  jh->b_jlist == BJ_Forget)));
1276 
1277 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1278 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1279 
1280 	if (jh->b_transaction == NULL) {
1281 		/*
1282 		 * Previous jbd2_journal_forget() could have left the buffer
1283 		 * with jbddirty bit set because it was being committed. When
1284 		 * the commit finished, we've filed the buffer for
1285 		 * checkpointing and marked it dirty. Now we are reallocating
1286 		 * the buffer so the transaction freeing it must have
1287 		 * committed and so it's safe to clear the dirty bit.
1288 		 */
1289 		clear_buffer_dirty(jh2bh(jh));
1290 		/* first access by this transaction */
1291 		jh->b_modified = 0;
1292 
1293 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1294 		spin_lock(&journal->j_list_lock);
1295 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1296 		spin_unlock(&journal->j_list_lock);
1297 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1298 		/* first access by this transaction */
1299 		jh->b_modified = 0;
1300 
1301 		JBUFFER_TRACE(jh, "set next transaction");
1302 		spin_lock(&journal->j_list_lock);
1303 		jh->b_next_transaction = transaction;
1304 		spin_unlock(&journal->j_list_lock);
1305 	}
1306 	spin_unlock(&jh->b_state_lock);
1307 
1308 	/*
1309 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1310 	 * blocks which contain freed but then revoked metadata.  We need
1311 	 * to cancel the revoke in case we end up freeing it yet again
1312 	 * and the reallocating as data - this would cause a second revoke,
1313 	 * which hits an assertion error.
1314 	 */
1315 	JBUFFER_TRACE(jh, "cancelling revoke");
1316 	jbd2_journal_cancel_revoke(handle, jh);
1317 out:
1318 	jbd2_journal_put_journal_head(jh);
1319 	return err;
1320 }
1321 
1322 /**
1323  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1324  *     non-rewindable consequences
1325  * @handle: transaction
1326  * @bh: buffer to undo
1327  *
1328  * Sometimes there is a need to distinguish between metadata which has
1329  * been committed to disk and that which has not.  The ext3fs code uses
1330  * this for freeing and allocating space, we have to make sure that we
1331  * do not reuse freed space until the deallocation has been committed,
1332  * since if we overwrote that space we would make the delete
1333  * un-rewindable in case of a crash.
1334  *
1335  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1336  * buffer for parts of non-rewindable operations such as delete
1337  * operations on the bitmaps.  The journaling code must keep a copy of
1338  * the buffer's contents prior to the undo_access call until such time
1339  * as we know that the buffer has definitely been committed to disk.
1340  *
1341  * We never need to know which transaction the committed data is part
1342  * of, buffers touched here are guaranteed to be dirtied later and so
1343  * will be committed to a new transaction in due course, at which point
1344  * we can discard the old committed data pointer.
1345  *
1346  * Returns error number or 0 on success.
1347  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1348 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1349 {
1350 	int err;
1351 	struct journal_head *jh;
1352 	char *committed_data = NULL;
1353 
1354 	if (is_handle_aborted(handle))
1355 		return -EROFS;
1356 
1357 	if (jbd2_write_access_granted(handle, bh, true))
1358 		return 0;
1359 
1360 	jh = jbd2_journal_add_journal_head(bh);
1361 	JBUFFER_TRACE(jh, "entry");
1362 
1363 	/*
1364 	 * Do this first --- it can drop the journal lock, so we want to
1365 	 * make sure that obtaining the committed_data is done
1366 	 * atomically wrt. completion of any outstanding commits.
1367 	 */
1368 	err = do_get_write_access(handle, jh, 1);
1369 	if (err)
1370 		goto out;
1371 
1372 repeat:
1373 	if (!jh->b_committed_data)
1374 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1375 					    GFP_NOFS|__GFP_NOFAIL);
1376 
1377 	spin_lock(&jh->b_state_lock);
1378 	if (!jh->b_committed_data) {
1379 		/* Copy out the current buffer contents into the
1380 		 * preserved, committed copy. */
1381 		JBUFFER_TRACE(jh, "generate b_committed data");
1382 		if (!committed_data) {
1383 			spin_unlock(&jh->b_state_lock);
1384 			goto repeat;
1385 		}
1386 
1387 		jh->b_committed_data = committed_data;
1388 		committed_data = NULL;
1389 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1390 	}
1391 	spin_unlock(&jh->b_state_lock);
1392 out:
1393 	jbd2_journal_put_journal_head(jh);
1394 	if (unlikely(committed_data))
1395 		jbd2_free(committed_data, bh->b_size);
1396 	return err;
1397 }
1398 
1399 /**
1400  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1401  * @bh: buffer to trigger on
1402  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1403  *
1404  * Set any triggers on this journal_head.  This is always safe, because
1405  * triggers for a committing buffer will be saved off, and triggers for
1406  * a running transaction will match the buffer in that transaction.
1407  *
1408  * Call with NULL to clear the triggers.
1409  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1410 void jbd2_journal_set_triggers(struct buffer_head *bh,
1411 			       struct jbd2_buffer_trigger_type *type)
1412 {
1413 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1414 
1415 	if (WARN_ON(!jh))
1416 		return;
1417 	jh->b_triggers = type;
1418 	jbd2_journal_put_journal_head(jh);
1419 }
1420 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1421 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1422 				struct jbd2_buffer_trigger_type *triggers)
1423 {
1424 	struct buffer_head *bh = jh2bh(jh);
1425 
1426 	if (!triggers || !triggers->t_frozen)
1427 		return;
1428 
1429 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1430 }
1431 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1432 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1433 			       struct jbd2_buffer_trigger_type *triggers)
1434 {
1435 	if (!triggers || !triggers->t_abort)
1436 		return;
1437 
1438 	triggers->t_abort(triggers, jh2bh(jh));
1439 }
1440 
1441 /**
1442  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1443  * @handle: transaction to add buffer to.
1444  * @bh: buffer to mark
1445  *
1446  * mark dirty metadata which needs to be journaled as part of the current
1447  * transaction.
1448  *
1449  * The buffer must have previously had jbd2_journal_get_write_access()
1450  * called so that it has a valid journal_head attached to the buffer
1451  * head.
1452  *
1453  * The buffer is placed on the transaction's metadata list and is marked
1454  * as belonging to the transaction.
1455  *
1456  * Returns error number or 0 on success.
1457  *
1458  * Special care needs to be taken if the buffer already belongs to the
1459  * current committing transaction (in which case we should have frozen
1460  * data present for that commit).  In that case, we don't relink the
1461  * buffer: that only gets done when the old transaction finally
1462  * completes its commit.
1463  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1464 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1465 {
1466 	transaction_t *transaction = handle->h_transaction;
1467 	journal_t *journal;
1468 	struct journal_head *jh;
1469 	int ret = 0;
1470 
1471 	if (!buffer_jbd(bh))
1472 		return -EUCLEAN;
1473 
1474 	/*
1475 	 * We don't grab jh reference here since the buffer must be part
1476 	 * of the running transaction.
1477 	 */
1478 	jh = bh2jh(bh);
1479 	jbd_debug(5, "journal_head %p\n", jh);
1480 	JBUFFER_TRACE(jh, "entry");
1481 
1482 	/*
1483 	 * This and the following assertions are unreliable since we may see jh
1484 	 * in inconsistent state unless we grab bh_state lock. But this is
1485 	 * crucial to catch bugs so let's do a reliable check until the
1486 	 * lockless handling is fully proven.
1487 	 */
1488 	if (data_race(jh->b_transaction != transaction &&
1489 	    jh->b_next_transaction != transaction)) {
1490 		spin_lock(&jh->b_state_lock);
1491 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1492 				jh->b_next_transaction == transaction);
1493 		spin_unlock(&jh->b_state_lock);
1494 	}
1495 	if (jh->b_modified == 1) {
1496 		/* If it's in our transaction it must be in BJ_Metadata list. */
1497 		if (data_race(jh->b_transaction == transaction &&
1498 		    jh->b_jlist != BJ_Metadata)) {
1499 			spin_lock(&jh->b_state_lock);
1500 			if (jh->b_transaction == transaction &&
1501 			    jh->b_jlist != BJ_Metadata)
1502 				pr_err("JBD2: assertion failure: h_type=%u "
1503 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1504 				       handle->h_type, handle->h_line_no,
1505 				       (unsigned long long) bh->b_blocknr,
1506 				       jh->b_jlist);
1507 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1508 					jh->b_jlist == BJ_Metadata);
1509 			spin_unlock(&jh->b_state_lock);
1510 		}
1511 		goto out;
1512 	}
1513 
1514 	journal = transaction->t_journal;
1515 	spin_lock(&jh->b_state_lock);
1516 
1517 	if (is_handle_aborted(handle)) {
1518 		/*
1519 		 * Check journal aborting with @jh->b_state_lock locked,
1520 		 * since 'jh->b_transaction' could be replaced with
1521 		 * 'jh->b_next_transaction' during old transaction
1522 		 * committing if journal aborted, which may fail
1523 		 * assertion on 'jh->b_frozen_data == NULL'.
1524 		 */
1525 		ret = -EROFS;
1526 		goto out_unlock_bh;
1527 	}
1528 
1529 	if (jh->b_modified == 0) {
1530 		/*
1531 		 * This buffer's got modified and becoming part
1532 		 * of the transaction. This needs to be done
1533 		 * once a transaction -bzzz
1534 		 */
1535 		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1536 			ret = -ENOSPC;
1537 			goto out_unlock_bh;
1538 		}
1539 		jh->b_modified = 1;
1540 		handle->h_total_credits--;
1541 	}
1542 
1543 	/*
1544 	 * fastpath, to avoid expensive locking.  If this buffer is already
1545 	 * on the running transaction's metadata list there is nothing to do.
1546 	 * Nobody can take it off again because there is a handle open.
1547 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1548 	 * result in this test being false, so we go in and take the locks.
1549 	 */
1550 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1551 		JBUFFER_TRACE(jh, "fastpath");
1552 		if (unlikely(jh->b_transaction !=
1553 			     journal->j_running_transaction)) {
1554 			printk(KERN_ERR "JBD2: %s: "
1555 			       "jh->b_transaction (%llu, %p, %u) != "
1556 			       "journal->j_running_transaction (%p, %u)\n",
1557 			       journal->j_devname,
1558 			       (unsigned long long) bh->b_blocknr,
1559 			       jh->b_transaction,
1560 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1561 			       journal->j_running_transaction,
1562 			       journal->j_running_transaction ?
1563 			       journal->j_running_transaction->t_tid : 0);
1564 			ret = -EINVAL;
1565 		}
1566 		goto out_unlock_bh;
1567 	}
1568 
1569 	set_buffer_jbddirty(bh);
1570 
1571 	/*
1572 	 * Metadata already on the current transaction list doesn't
1573 	 * need to be filed.  Metadata on another transaction's list must
1574 	 * be committing, and will be refiled once the commit completes:
1575 	 * leave it alone for now.
1576 	 */
1577 	if (jh->b_transaction != transaction) {
1578 		JBUFFER_TRACE(jh, "already on other transaction");
1579 		if (unlikely(((jh->b_transaction !=
1580 			       journal->j_committing_transaction)) ||
1581 			     (jh->b_next_transaction != transaction))) {
1582 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1583 			       "bad jh for block %llu: "
1584 			       "transaction (%p, %u), "
1585 			       "jh->b_transaction (%p, %u), "
1586 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1587 			       journal->j_devname,
1588 			       (unsigned long long) bh->b_blocknr,
1589 			       transaction, transaction->t_tid,
1590 			       jh->b_transaction,
1591 			       jh->b_transaction ?
1592 			       jh->b_transaction->t_tid : 0,
1593 			       jh->b_next_transaction,
1594 			       jh->b_next_transaction ?
1595 			       jh->b_next_transaction->t_tid : 0,
1596 			       jh->b_jlist);
1597 			WARN_ON(1);
1598 			ret = -EINVAL;
1599 		}
1600 		/* And this case is illegal: we can't reuse another
1601 		 * transaction's data buffer, ever. */
1602 		goto out_unlock_bh;
1603 	}
1604 
1605 	/* That test should have eliminated the following case: */
1606 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1607 
1608 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1609 	spin_lock(&journal->j_list_lock);
1610 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1611 	spin_unlock(&journal->j_list_lock);
1612 out_unlock_bh:
1613 	spin_unlock(&jh->b_state_lock);
1614 out:
1615 	JBUFFER_TRACE(jh, "exit");
1616 	return ret;
1617 }
1618 
1619 /**
1620  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1621  * @handle: transaction handle
1622  * @bh:     bh to 'forget'
1623  *
1624  * We can only do the bforget if there are no commits pending against the
1625  * buffer.  If the buffer is dirty in the current running transaction we
1626  * can safely unlink it.
1627  *
1628  * bh may not be a journalled buffer at all - it may be a non-JBD
1629  * buffer which came off the hashtable.  Check for this.
1630  *
1631  * Decrements bh->b_count by one.
1632  *
1633  * Allow this call even if the handle has aborted --- it may be part of
1634  * the caller's cleanup after an abort.
1635  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1636 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1637 {
1638 	transaction_t *transaction = handle->h_transaction;
1639 	journal_t *journal;
1640 	struct journal_head *jh;
1641 	int drop_reserve = 0;
1642 	int err = 0;
1643 	int was_modified = 0;
1644 
1645 	if (is_handle_aborted(handle))
1646 		return -EROFS;
1647 	journal = transaction->t_journal;
1648 
1649 	BUFFER_TRACE(bh, "entry");
1650 
1651 	jh = jbd2_journal_grab_journal_head(bh);
1652 	if (!jh) {
1653 		__bforget(bh);
1654 		return 0;
1655 	}
1656 
1657 	spin_lock(&jh->b_state_lock);
1658 
1659 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1660 	 * Don't do any jbd operations, and return an error. */
1661 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1662 			 "inconsistent data on disk")) {
1663 		err = -EIO;
1664 		goto drop;
1665 	}
1666 
1667 	/* keep track of whether or not this transaction modified us */
1668 	was_modified = jh->b_modified;
1669 
1670 	/*
1671 	 * The buffer's going from the transaction, we must drop
1672 	 * all references -bzzz
1673 	 */
1674 	jh->b_modified = 0;
1675 
1676 	if (jh->b_transaction == transaction) {
1677 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1678 
1679 		/* If we are forgetting a buffer which is already part
1680 		 * of this transaction, then we can just drop it from
1681 		 * the transaction immediately. */
1682 		clear_buffer_dirty(bh);
1683 		clear_buffer_jbddirty(bh);
1684 
1685 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1686 
1687 		/*
1688 		 * we only want to drop a reference if this transaction
1689 		 * modified the buffer
1690 		 */
1691 		if (was_modified)
1692 			drop_reserve = 1;
1693 
1694 		/*
1695 		 * We are no longer going to journal this buffer.
1696 		 * However, the commit of this transaction is still
1697 		 * important to the buffer: the delete that we are now
1698 		 * processing might obsolete an old log entry, so by
1699 		 * committing, we can satisfy the buffer's checkpoint.
1700 		 *
1701 		 * So, if we have a checkpoint on the buffer, we should
1702 		 * now refile the buffer on our BJ_Forget list so that
1703 		 * we know to remove the checkpoint after we commit.
1704 		 */
1705 
1706 		spin_lock(&journal->j_list_lock);
1707 		if (jh->b_cp_transaction) {
1708 			__jbd2_journal_temp_unlink_buffer(jh);
1709 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1710 		} else {
1711 			__jbd2_journal_unfile_buffer(jh);
1712 			jbd2_journal_put_journal_head(jh);
1713 		}
1714 		spin_unlock(&journal->j_list_lock);
1715 	} else if (jh->b_transaction) {
1716 		J_ASSERT_JH(jh, (jh->b_transaction ==
1717 				 journal->j_committing_transaction));
1718 		/* However, if the buffer is still owned by a prior
1719 		 * (committing) transaction, we can't drop it yet... */
1720 		JBUFFER_TRACE(jh, "belongs to older transaction");
1721 		/* ... but we CAN drop it from the new transaction through
1722 		 * marking the buffer as freed and set j_next_transaction to
1723 		 * the new transaction, so that not only the commit code
1724 		 * knows it should clear dirty bits when it is done with the
1725 		 * buffer, but also the buffer can be checkpointed only
1726 		 * after the new transaction commits. */
1727 
1728 		set_buffer_freed(bh);
1729 
1730 		if (!jh->b_next_transaction) {
1731 			spin_lock(&journal->j_list_lock);
1732 			jh->b_next_transaction = transaction;
1733 			spin_unlock(&journal->j_list_lock);
1734 		} else {
1735 			J_ASSERT(jh->b_next_transaction == transaction);
1736 
1737 			/*
1738 			 * only drop a reference if this transaction modified
1739 			 * the buffer
1740 			 */
1741 			if (was_modified)
1742 				drop_reserve = 1;
1743 		}
1744 	} else {
1745 		/*
1746 		 * Finally, if the buffer is not belongs to any
1747 		 * transaction, we can just drop it now if it has no
1748 		 * checkpoint.
1749 		 */
1750 		spin_lock(&journal->j_list_lock);
1751 		if (!jh->b_cp_transaction) {
1752 			JBUFFER_TRACE(jh, "belongs to none transaction");
1753 			spin_unlock(&journal->j_list_lock);
1754 			goto drop;
1755 		}
1756 
1757 		/*
1758 		 * Otherwise, if the buffer has been written to disk,
1759 		 * it is safe to remove the checkpoint and drop it.
1760 		 */
1761 		if (!buffer_dirty(bh)) {
1762 			__jbd2_journal_remove_checkpoint(jh);
1763 			spin_unlock(&journal->j_list_lock);
1764 			goto drop;
1765 		}
1766 
1767 		/*
1768 		 * The buffer is still not written to disk, we should
1769 		 * attach this buffer to current transaction so that the
1770 		 * buffer can be checkpointed only after the current
1771 		 * transaction commits.
1772 		 */
1773 		clear_buffer_dirty(bh);
1774 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1775 		spin_unlock(&journal->j_list_lock);
1776 	}
1777 drop:
1778 	__brelse(bh);
1779 	spin_unlock(&jh->b_state_lock);
1780 	jbd2_journal_put_journal_head(jh);
1781 	if (drop_reserve) {
1782 		/* no need to reserve log space for this block -bzzz */
1783 		handle->h_total_credits++;
1784 	}
1785 	return err;
1786 }
1787 
1788 /**
1789  * jbd2_journal_stop() - complete a transaction
1790  * @handle: transaction to complete.
1791  *
1792  * All done for a particular handle.
1793  *
1794  * There is not much action needed here.  We just return any remaining
1795  * buffer credits to the transaction and remove the handle.  The only
1796  * complication is that we need to start a commit operation if the
1797  * filesystem is marked for synchronous update.
1798  *
1799  * jbd2_journal_stop itself will not usually return an error, but it may
1800  * do so in unusual circumstances.  In particular, expect it to
1801  * return -EIO if a jbd2_journal_abort has been executed since the
1802  * transaction began.
1803  */
jbd2_journal_stop(handle_t * handle)1804 int jbd2_journal_stop(handle_t *handle)
1805 {
1806 	transaction_t *transaction = handle->h_transaction;
1807 	journal_t *journal;
1808 	int err = 0, wait_for_commit = 0;
1809 	tid_t tid;
1810 	pid_t pid;
1811 
1812 	if (--handle->h_ref > 0) {
1813 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1814 						 handle->h_ref);
1815 		if (is_handle_aborted(handle))
1816 			return -EIO;
1817 		return 0;
1818 	}
1819 	if (!transaction) {
1820 		/*
1821 		 * Handle is already detached from the transaction so there is
1822 		 * nothing to do other than free the handle.
1823 		 */
1824 		memalloc_nofs_restore(handle->saved_alloc_context);
1825 		goto free_and_exit;
1826 	}
1827 	journal = transaction->t_journal;
1828 	tid = transaction->t_tid;
1829 
1830 	if (is_handle_aborted(handle))
1831 		err = -EIO;
1832 
1833 	jbd_debug(4, "Handle %p going down\n", handle);
1834 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1835 				tid, handle->h_type, handle->h_line_no,
1836 				jiffies - handle->h_start_jiffies,
1837 				handle->h_sync, handle->h_requested_credits,
1838 				(handle->h_requested_credits -
1839 				 handle->h_total_credits));
1840 
1841 	/*
1842 	 * Implement synchronous transaction batching.  If the handle
1843 	 * was synchronous, don't force a commit immediately.  Let's
1844 	 * yield and let another thread piggyback onto this
1845 	 * transaction.  Keep doing that while new threads continue to
1846 	 * arrive.  It doesn't cost much - we're about to run a commit
1847 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1848 	 * operations by 30x or more...
1849 	 *
1850 	 * We try and optimize the sleep time against what the
1851 	 * underlying disk can do, instead of having a static sleep
1852 	 * time.  This is useful for the case where our storage is so
1853 	 * fast that it is more optimal to go ahead and force a flush
1854 	 * and wait for the transaction to be committed than it is to
1855 	 * wait for an arbitrary amount of time for new writers to
1856 	 * join the transaction.  We achieve this by measuring how
1857 	 * long it takes to commit a transaction, and compare it with
1858 	 * how long this transaction has been running, and if run time
1859 	 * < commit time then we sleep for the delta and commit.  This
1860 	 * greatly helps super fast disks that would see slowdowns as
1861 	 * more threads started doing fsyncs.
1862 	 *
1863 	 * But don't do this if this process was the most recent one
1864 	 * to perform a synchronous write.  We do this to detect the
1865 	 * case where a single process is doing a stream of sync
1866 	 * writes.  No point in waiting for joiners in that case.
1867 	 *
1868 	 * Setting max_batch_time to 0 disables this completely.
1869 	 */
1870 	pid = current->pid;
1871 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1872 	    journal->j_max_batch_time) {
1873 		u64 commit_time, trans_time;
1874 
1875 		journal->j_last_sync_writer = pid;
1876 
1877 		read_lock(&journal->j_state_lock);
1878 		commit_time = journal->j_average_commit_time;
1879 		read_unlock(&journal->j_state_lock);
1880 
1881 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1882 						   transaction->t_start_time));
1883 
1884 		commit_time = max_t(u64, commit_time,
1885 				    1000*journal->j_min_batch_time);
1886 		commit_time = min_t(u64, commit_time,
1887 				    1000*journal->j_max_batch_time);
1888 
1889 		if (trans_time < commit_time) {
1890 			ktime_t expires = ktime_add_ns(ktime_get(),
1891 						       commit_time);
1892 			set_current_state(TASK_UNINTERRUPTIBLE);
1893 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1894 		}
1895 	}
1896 
1897 	if (handle->h_sync)
1898 		transaction->t_synchronous_commit = 1;
1899 
1900 	/*
1901 	 * If the handle is marked SYNC, we need to set another commit
1902 	 * going!  We also want to force a commit if the transaction is too
1903 	 * old now.
1904 	 */
1905 	if (handle->h_sync ||
1906 	    time_after_eq(jiffies, transaction->t_expires)) {
1907 		/* Do this even for aborted journals: an abort still
1908 		 * completes the commit thread, it just doesn't write
1909 		 * anything to disk. */
1910 
1911 		jbd_debug(2, "transaction too old, requesting commit for "
1912 					"handle %p\n", handle);
1913 		/* This is non-blocking */
1914 		jbd2_log_start_commit(journal, tid);
1915 
1916 		/*
1917 		 * Special case: JBD2_SYNC synchronous updates require us
1918 		 * to wait for the commit to complete.
1919 		 */
1920 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1921 			wait_for_commit = 1;
1922 	}
1923 
1924 	/*
1925 	 * Once stop_this_handle() drops t_updates, the transaction could start
1926 	 * committing on us and eventually disappear.  So we must not
1927 	 * dereference transaction pointer again after calling
1928 	 * stop_this_handle().
1929 	 */
1930 	stop_this_handle(handle);
1931 
1932 	if (wait_for_commit)
1933 		err = jbd2_log_wait_commit(journal, tid);
1934 
1935 free_and_exit:
1936 	if (handle->h_rsv_handle)
1937 		jbd2_free_handle(handle->h_rsv_handle);
1938 	jbd2_free_handle(handle);
1939 	return err;
1940 }
1941 
1942 /*
1943  *
1944  * List management code snippets: various functions for manipulating the
1945  * transaction buffer lists.
1946  *
1947  */
1948 
1949 /*
1950  * Append a buffer to a transaction list, given the transaction's list head
1951  * pointer.
1952  *
1953  * j_list_lock is held.
1954  *
1955  * jh->b_state_lock is held.
1956  */
1957 
1958 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1959 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1960 {
1961 	if (!*list) {
1962 		jh->b_tnext = jh->b_tprev = jh;
1963 		*list = jh;
1964 	} else {
1965 		/* Insert at the tail of the list to preserve order */
1966 		struct journal_head *first = *list, *last = first->b_tprev;
1967 		jh->b_tprev = last;
1968 		jh->b_tnext = first;
1969 		last->b_tnext = first->b_tprev = jh;
1970 	}
1971 }
1972 
1973 /*
1974  * Remove a buffer from a transaction list, given the transaction's list
1975  * head pointer.
1976  *
1977  * Called with j_list_lock held, and the journal may not be locked.
1978  *
1979  * jh->b_state_lock is held.
1980  */
1981 
1982 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1983 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1984 {
1985 	if (*list == jh) {
1986 		*list = jh->b_tnext;
1987 		if (*list == jh)
1988 			*list = NULL;
1989 	}
1990 	jh->b_tprev->b_tnext = jh->b_tnext;
1991 	jh->b_tnext->b_tprev = jh->b_tprev;
1992 }
1993 
1994 /*
1995  * Remove a buffer from the appropriate transaction list.
1996  *
1997  * Note that this function can *change* the value of
1998  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1999  * t_reserved_list.  If the caller is holding onto a copy of one of these
2000  * pointers, it could go bad.  Generally the caller needs to re-read the
2001  * pointer from the transaction_t.
2002  *
2003  * Called under j_list_lock.
2004  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)2005 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2006 {
2007 	struct journal_head **list = NULL;
2008 	transaction_t *transaction;
2009 	struct buffer_head *bh = jh2bh(jh);
2010 
2011 	lockdep_assert_held(&jh->b_state_lock);
2012 	transaction = jh->b_transaction;
2013 	if (transaction)
2014 		assert_spin_locked(&transaction->t_journal->j_list_lock);
2015 
2016 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017 	if (jh->b_jlist != BJ_None)
2018 		J_ASSERT_JH(jh, transaction != NULL);
2019 
2020 	switch (jh->b_jlist) {
2021 	case BJ_None:
2022 		return;
2023 	case BJ_Metadata:
2024 		transaction->t_nr_buffers--;
2025 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2026 		list = &transaction->t_buffers;
2027 		break;
2028 	case BJ_Forget:
2029 		list = &transaction->t_forget;
2030 		break;
2031 	case BJ_Shadow:
2032 		list = &transaction->t_shadow_list;
2033 		break;
2034 	case BJ_Reserved:
2035 		list = &transaction->t_reserved_list;
2036 		break;
2037 	}
2038 
2039 	__blist_del_buffer(list, jh);
2040 	jh->b_jlist = BJ_None;
2041 	if (transaction && is_journal_aborted(transaction->t_journal))
2042 		clear_buffer_jbddirty(bh);
2043 	else if (test_clear_buffer_jbddirty(bh))
2044 		mark_buffer_dirty(bh);	/* Expose it to the VM */
2045 }
2046 
2047 /*
2048  * Remove buffer from all transactions. The caller is responsible for dropping
2049  * the jh reference that belonged to the transaction.
2050  *
2051  * Called with bh_state lock and j_list_lock
2052  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)2053 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2054 {
2055 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2056 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2057 
2058 	__jbd2_journal_temp_unlink_buffer(jh);
2059 	jh->b_transaction = NULL;
2060 }
2061 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2062 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2063 {
2064 	struct buffer_head *bh = jh2bh(jh);
2065 
2066 	/* Get reference so that buffer cannot be freed before we unlock it */
2067 	get_bh(bh);
2068 	spin_lock(&jh->b_state_lock);
2069 	spin_lock(&journal->j_list_lock);
2070 	__jbd2_journal_unfile_buffer(jh);
2071 	spin_unlock(&journal->j_list_lock);
2072 	spin_unlock(&jh->b_state_lock);
2073 	jbd2_journal_put_journal_head(jh);
2074 	__brelse(bh);
2075 }
2076 
2077 /*
2078  * Called from jbd2_journal_try_to_free_buffers().
2079  *
2080  * Called under jh->b_state_lock
2081  */
2082 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)2083 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2084 {
2085 	struct journal_head *jh;
2086 
2087 	jh = bh2jh(bh);
2088 
2089 	if (buffer_locked(bh) || buffer_dirty(bh))
2090 		goto out;
2091 
2092 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2093 		goto out;
2094 
2095 	spin_lock(&journal->j_list_lock);
2096 	if (jh->b_cp_transaction != NULL) {
2097 		/* written-back checkpointed metadata buffer */
2098 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2099 		__jbd2_journal_remove_checkpoint(jh);
2100 	}
2101 	spin_unlock(&journal->j_list_lock);
2102 out:
2103 	return;
2104 }
2105 
2106 /**
2107  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2108  * @journal: journal for operation
2109  * @page: to try and free
2110  *
2111  * For all the buffers on this page,
2112  * if they are fully written out ordered data, move them onto BUF_CLEAN
2113  * so try_to_free_buffers() can reap them.
2114  *
2115  * This function returns non-zero if we wish try_to_free_buffers()
2116  * to be called. We do this if the page is releasable by try_to_free_buffers().
2117  * We also do it if the page has locked or dirty buffers and the caller wants
2118  * us to perform sync or async writeout.
2119  *
2120  * This complicates JBD locking somewhat.  We aren't protected by the
2121  * BKL here.  We wish to remove the buffer from its committing or
2122  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2123  *
2124  * This may *change* the value of transaction_t->t_datalist, so anyone
2125  * who looks at t_datalist needs to lock against this function.
2126  *
2127  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2128  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2129  * will come out of the lock with the buffer dirty, which makes it
2130  * ineligible for release here.
2131  *
2132  * Who else is affected by this?  hmm...  Really the only contender
2133  * is do_get_write_access() - it could be looking at the buffer while
2134  * journal_try_to_free_buffer() is changing its state.  But that
2135  * cannot happen because we never reallocate freed data as metadata
2136  * while the data is part of a transaction.  Yes?
2137  *
2138  * Return 0 on failure, 1 on success
2139  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page)2140 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2141 {
2142 	struct buffer_head *head;
2143 	struct buffer_head *bh;
2144 	bool has_write_io_error = false;
2145 	int ret = 0;
2146 
2147 	J_ASSERT(PageLocked(page));
2148 
2149 	head = page_buffers(page);
2150 	bh = head;
2151 	do {
2152 		struct journal_head *jh;
2153 
2154 		/*
2155 		 * We take our own ref against the journal_head here to avoid
2156 		 * having to add tons of locking around each instance of
2157 		 * jbd2_journal_put_journal_head().
2158 		 */
2159 		jh = jbd2_journal_grab_journal_head(bh);
2160 		if (!jh)
2161 			continue;
2162 
2163 		spin_lock(&jh->b_state_lock);
2164 		__journal_try_to_free_buffer(journal, bh);
2165 		spin_unlock(&jh->b_state_lock);
2166 		jbd2_journal_put_journal_head(jh);
2167 		if (buffer_jbd(bh))
2168 			goto busy;
2169 
2170 		/*
2171 		 * If we free a metadata buffer which has been failed to
2172 		 * write out, the jbd2 checkpoint procedure will not detect
2173 		 * this failure and may lead to filesystem inconsistency
2174 		 * after cleanup journal tail.
2175 		 */
2176 		if (buffer_write_io_error(bh)) {
2177 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2178 			       (unsigned long long)bh->b_blocknr);
2179 			has_write_io_error = true;
2180 		}
2181 	} while ((bh = bh->b_this_page) != head);
2182 
2183 	ret = try_to_free_buffers(page);
2184 
2185 busy:
2186 	if (has_write_io_error)
2187 		jbd2_journal_abort(journal, -EIO);
2188 
2189 	return ret;
2190 }
2191 
2192 /*
2193  * This buffer is no longer needed.  If it is on an older transaction's
2194  * checkpoint list we need to record it on this transaction's forget list
2195  * to pin this buffer (and hence its checkpointing transaction) down until
2196  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2197  * release it.
2198  * Returns non-zero if JBD no longer has an interest in the buffer.
2199  *
2200  * Called under j_list_lock.
2201  *
2202  * Called under jh->b_state_lock.
2203  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2204 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2205 {
2206 	int may_free = 1;
2207 	struct buffer_head *bh = jh2bh(jh);
2208 
2209 	if (jh->b_cp_transaction) {
2210 		JBUFFER_TRACE(jh, "on running+cp transaction");
2211 		__jbd2_journal_temp_unlink_buffer(jh);
2212 		/*
2213 		 * We don't want to write the buffer anymore, clear the
2214 		 * bit so that we don't confuse checks in
2215 		 * __journal_file_buffer
2216 		 */
2217 		clear_buffer_dirty(bh);
2218 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2219 		may_free = 0;
2220 	} else {
2221 		JBUFFER_TRACE(jh, "on running transaction");
2222 		__jbd2_journal_unfile_buffer(jh);
2223 		jbd2_journal_put_journal_head(jh);
2224 	}
2225 	return may_free;
2226 }
2227 
2228 /*
2229  * jbd2_journal_invalidatepage
2230  *
2231  * This code is tricky.  It has a number of cases to deal with.
2232  *
2233  * There are two invariants which this code relies on:
2234  *
2235  * i_size must be updated on disk before we start calling invalidatepage on the
2236  * data.
2237  *
2238  *  This is done in ext3 by defining an ext3_setattr method which
2239  *  updates i_size before truncate gets going.  By maintaining this
2240  *  invariant, we can be sure that it is safe to throw away any buffers
2241  *  attached to the current transaction: once the transaction commits,
2242  *  we know that the data will not be needed.
2243  *
2244  *  Note however that we can *not* throw away data belonging to the
2245  *  previous, committing transaction!
2246  *
2247  * Any disk blocks which *are* part of the previous, committing
2248  * transaction (and which therefore cannot be discarded immediately) are
2249  * not going to be reused in the new running transaction
2250  *
2251  *  The bitmap committed_data images guarantee this: any block which is
2252  *  allocated in one transaction and removed in the next will be marked
2253  *  as in-use in the committed_data bitmap, so cannot be reused until
2254  *  the next transaction to delete the block commits.  This means that
2255  *  leaving committing buffers dirty is quite safe: the disk blocks
2256  *  cannot be reallocated to a different file and so buffer aliasing is
2257  *  not possible.
2258  *
2259  *
2260  * The above applies mainly to ordered data mode.  In writeback mode we
2261  * don't make guarantees about the order in which data hits disk --- in
2262  * particular we don't guarantee that new dirty data is flushed before
2263  * transaction commit --- so it is always safe just to discard data
2264  * immediately in that mode.  --sct
2265  */
2266 
2267 /*
2268  * The journal_unmap_buffer helper function returns zero if the buffer
2269  * concerned remains pinned as an anonymous buffer belonging to an older
2270  * transaction.
2271  *
2272  * We're outside-transaction here.  Either or both of j_running_transaction
2273  * and j_committing_transaction may be NULL.
2274  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2275 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2276 				int partial_page)
2277 {
2278 	transaction_t *transaction;
2279 	struct journal_head *jh;
2280 	int may_free = 1;
2281 
2282 	BUFFER_TRACE(bh, "entry");
2283 
2284 	/*
2285 	 * It is safe to proceed here without the j_list_lock because the
2286 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2287 	 * holding the page lock. --sct
2288 	 */
2289 
2290 	jh = jbd2_journal_grab_journal_head(bh);
2291 	if (!jh)
2292 		goto zap_buffer_unlocked;
2293 
2294 	/* OK, we have data buffer in journaled mode */
2295 	write_lock(&journal->j_state_lock);
2296 	spin_lock(&jh->b_state_lock);
2297 	spin_lock(&journal->j_list_lock);
2298 
2299 	/*
2300 	 * We cannot remove the buffer from checkpoint lists until the
2301 	 * transaction adding inode to orphan list (let's call it T)
2302 	 * is committed.  Otherwise if the transaction changing the
2303 	 * buffer would be cleaned from the journal before T is
2304 	 * committed, a crash will cause that the correct contents of
2305 	 * the buffer will be lost.  On the other hand we have to
2306 	 * clear the buffer dirty bit at latest at the moment when the
2307 	 * transaction marking the buffer as freed in the filesystem
2308 	 * structures is committed because from that moment on the
2309 	 * block can be reallocated and used by a different page.
2310 	 * Since the block hasn't been freed yet but the inode has
2311 	 * already been added to orphan list, it is safe for us to add
2312 	 * the buffer to BJ_Forget list of the newest transaction.
2313 	 *
2314 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2315 	 * because the buffer_head may be attached to the page straddling
2316 	 * i_size (can happen only when blocksize < pagesize) and thus the
2317 	 * buffer_head can be reused when the file is extended again. So we end
2318 	 * up keeping around invalidated buffers attached to transactions'
2319 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2320 	 * the transaction this buffer was modified in.
2321 	 */
2322 	transaction = jh->b_transaction;
2323 	if (transaction == NULL) {
2324 		/* First case: not on any transaction.  If it
2325 		 * has no checkpoint link, then we can zap it:
2326 		 * it's a writeback-mode buffer so we don't care
2327 		 * if it hits disk safely. */
2328 		if (!jh->b_cp_transaction) {
2329 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2330 			goto zap_buffer;
2331 		}
2332 
2333 		if (!buffer_dirty(bh)) {
2334 			/* bdflush has written it.  We can drop it now */
2335 			__jbd2_journal_remove_checkpoint(jh);
2336 			goto zap_buffer;
2337 		}
2338 
2339 		/* OK, it must be in the journal but still not
2340 		 * written fully to disk: it's metadata or
2341 		 * journaled data... */
2342 
2343 		if (journal->j_running_transaction) {
2344 			/* ... and once the current transaction has
2345 			 * committed, the buffer won't be needed any
2346 			 * longer. */
2347 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2348 			may_free = __dispose_buffer(jh,
2349 					journal->j_running_transaction);
2350 			goto zap_buffer;
2351 		} else {
2352 			/* There is no currently-running transaction. So the
2353 			 * orphan record which we wrote for this file must have
2354 			 * passed into commit.  We must attach this buffer to
2355 			 * the committing transaction, if it exists. */
2356 			if (journal->j_committing_transaction) {
2357 				JBUFFER_TRACE(jh, "give to committing trans");
2358 				may_free = __dispose_buffer(jh,
2359 					journal->j_committing_transaction);
2360 				goto zap_buffer;
2361 			} else {
2362 				/* The orphan record's transaction has
2363 				 * committed.  We can cleanse this buffer */
2364 				clear_buffer_jbddirty(bh);
2365 				__jbd2_journal_remove_checkpoint(jh);
2366 				goto zap_buffer;
2367 			}
2368 		}
2369 	} else if (transaction == journal->j_committing_transaction) {
2370 		JBUFFER_TRACE(jh, "on committing transaction");
2371 		/*
2372 		 * The buffer is committing, we simply cannot touch
2373 		 * it. If the page is straddling i_size we have to wait
2374 		 * for commit and try again.
2375 		 */
2376 		if (partial_page) {
2377 			spin_unlock(&journal->j_list_lock);
2378 			spin_unlock(&jh->b_state_lock);
2379 			write_unlock(&journal->j_state_lock);
2380 			jbd2_journal_put_journal_head(jh);
2381 			/* Already zapped buffer? Nothing to do... */
2382 			if (!bh->b_bdev)
2383 				return 0;
2384 			return -EBUSY;
2385 		}
2386 		/*
2387 		 * OK, buffer won't be reachable after truncate. We just clear
2388 		 * b_modified to not confuse transaction credit accounting, and
2389 		 * set j_next_transaction to the running transaction (if there
2390 		 * is one) and mark buffer as freed so that commit code knows
2391 		 * it should clear dirty bits when it is done with the buffer.
2392 		 */
2393 		set_buffer_freed(bh);
2394 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2395 			jh->b_next_transaction = journal->j_running_transaction;
2396 		jh->b_modified = 0;
2397 		spin_unlock(&journal->j_list_lock);
2398 		spin_unlock(&jh->b_state_lock);
2399 		write_unlock(&journal->j_state_lock);
2400 		jbd2_journal_put_journal_head(jh);
2401 		return 0;
2402 	} else {
2403 		/* Good, the buffer belongs to the running transaction.
2404 		 * We are writing our own transaction's data, not any
2405 		 * previous one's, so it is safe to throw it away
2406 		 * (remember that we expect the filesystem to have set
2407 		 * i_size already for this truncate so recovery will not
2408 		 * expose the disk blocks we are discarding here.) */
2409 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2410 		JBUFFER_TRACE(jh, "on running transaction");
2411 		may_free = __dispose_buffer(jh, transaction);
2412 	}
2413 
2414 zap_buffer:
2415 	/*
2416 	 * This is tricky. Although the buffer is truncated, it may be reused
2417 	 * if blocksize < pagesize and it is attached to the page straddling
2418 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2419 	 * running transaction, journal_get_write_access() won't clear
2420 	 * b_modified and credit accounting gets confused. So clear b_modified
2421 	 * here.
2422 	 */
2423 	jh->b_modified = 0;
2424 	spin_unlock(&journal->j_list_lock);
2425 	spin_unlock(&jh->b_state_lock);
2426 	write_unlock(&journal->j_state_lock);
2427 	jbd2_journal_put_journal_head(jh);
2428 zap_buffer_unlocked:
2429 	clear_buffer_dirty(bh);
2430 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2431 	clear_buffer_mapped(bh);
2432 	clear_buffer_req(bh);
2433 	clear_buffer_new(bh);
2434 	clear_buffer_delay(bh);
2435 	clear_buffer_unwritten(bh);
2436 	bh->b_bdev = NULL;
2437 	return may_free;
2438 }
2439 
2440 /**
2441  * jbd2_journal_invalidatepage()
2442  * @journal: journal to use for flush...
2443  * @page:    page to flush
2444  * @offset:  start of the range to invalidate
2445  * @length:  length of the range to invalidate
2446  *
2447  * Reap page buffers containing data after in the specified range in page.
2448  * Can return -EBUSY if buffers are part of the committing transaction and
2449  * the page is straddling i_size. Caller then has to wait for current commit
2450  * and try again.
2451  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2452 int jbd2_journal_invalidatepage(journal_t *journal,
2453 				struct page *page,
2454 				unsigned int offset,
2455 				unsigned int length)
2456 {
2457 	struct buffer_head *head, *bh, *next;
2458 	unsigned int stop = offset + length;
2459 	unsigned int curr_off = 0;
2460 	int partial_page = (offset || length < PAGE_SIZE);
2461 	int may_free = 1;
2462 	int ret = 0;
2463 
2464 	if (!PageLocked(page))
2465 		BUG();
2466 	if (!page_has_buffers(page))
2467 		return 0;
2468 
2469 	BUG_ON(stop > PAGE_SIZE || stop < length);
2470 
2471 	/* We will potentially be playing with lists other than just the
2472 	 * data lists (especially for journaled data mode), so be
2473 	 * cautious in our locking. */
2474 
2475 	head = bh = page_buffers(page);
2476 	do {
2477 		unsigned int next_off = curr_off + bh->b_size;
2478 		next = bh->b_this_page;
2479 
2480 		if (next_off > stop)
2481 			return 0;
2482 
2483 		if (offset <= curr_off) {
2484 			/* This block is wholly outside the truncation point */
2485 			lock_buffer(bh);
2486 			ret = journal_unmap_buffer(journal, bh, partial_page);
2487 			unlock_buffer(bh);
2488 			if (ret < 0)
2489 				return ret;
2490 			may_free &= ret;
2491 		}
2492 		curr_off = next_off;
2493 		bh = next;
2494 
2495 	} while (bh != head);
2496 
2497 	if (!partial_page) {
2498 		if (may_free && try_to_free_buffers(page))
2499 			J_ASSERT(!page_has_buffers(page));
2500 	}
2501 	return 0;
2502 }
2503 
2504 /*
2505  * File a buffer on the given transaction list.
2506  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2507 void __jbd2_journal_file_buffer(struct journal_head *jh,
2508 			transaction_t *transaction, int jlist)
2509 {
2510 	struct journal_head **list = NULL;
2511 	int was_dirty = 0;
2512 	struct buffer_head *bh = jh2bh(jh);
2513 
2514 	lockdep_assert_held(&jh->b_state_lock);
2515 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2516 
2517 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2518 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2519 				jh->b_transaction == NULL);
2520 
2521 	if (jh->b_transaction && jh->b_jlist == jlist)
2522 		return;
2523 
2524 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2525 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2526 		/*
2527 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2528 		 * instead of buffer_dirty. We should not see a dirty bit set
2529 		 * here because we clear it in do_get_write_access but e.g.
2530 		 * tune2fs can modify the sb and set the dirty bit at any time
2531 		 * so we try to gracefully handle that.
2532 		 */
2533 		if (buffer_dirty(bh))
2534 			warn_dirty_buffer(bh);
2535 		if (test_clear_buffer_dirty(bh) ||
2536 		    test_clear_buffer_jbddirty(bh))
2537 			was_dirty = 1;
2538 	}
2539 
2540 	if (jh->b_transaction)
2541 		__jbd2_journal_temp_unlink_buffer(jh);
2542 	else
2543 		jbd2_journal_grab_journal_head(bh);
2544 	jh->b_transaction = transaction;
2545 
2546 	switch (jlist) {
2547 	case BJ_None:
2548 		J_ASSERT_JH(jh, !jh->b_committed_data);
2549 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2550 		return;
2551 	case BJ_Metadata:
2552 		transaction->t_nr_buffers++;
2553 		list = &transaction->t_buffers;
2554 		break;
2555 	case BJ_Forget:
2556 		list = &transaction->t_forget;
2557 		break;
2558 	case BJ_Shadow:
2559 		list = &transaction->t_shadow_list;
2560 		break;
2561 	case BJ_Reserved:
2562 		list = &transaction->t_reserved_list;
2563 		break;
2564 	}
2565 
2566 	__blist_add_buffer(list, jh);
2567 	jh->b_jlist = jlist;
2568 
2569 	if (was_dirty)
2570 		set_buffer_jbddirty(bh);
2571 }
2572 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2573 void jbd2_journal_file_buffer(struct journal_head *jh,
2574 				transaction_t *transaction, int jlist)
2575 {
2576 	spin_lock(&jh->b_state_lock);
2577 	spin_lock(&transaction->t_journal->j_list_lock);
2578 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2579 	spin_unlock(&transaction->t_journal->j_list_lock);
2580 	spin_unlock(&jh->b_state_lock);
2581 }
2582 
2583 /*
2584  * Remove a buffer from its current buffer list in preparation for
2585  * dropping it from its current transaction entirely.  If the buffer has
2586  * already started to be used by a subsequent transaction, refile the
2587  * buffer on that transaction's metadata list.
2588  *
2589  * Called under j_list_lock
2590  * Called under jh->b_state_lock
2591  *
2592  * When this function returns true, there's no next transaction to refile to
2593  * and the caller has to drop jh reference through
2594  * jbd2_journal_put_journal_head().
2595  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2596 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2597 {
2598 	int was_dirty, jlist;
2599 	struct buffer_head *bh = jh2bh(jh);
2600 
2601 	lockdep_assert_held(&jh->b_state_lock);
2602 	if (jh->b_transaction)
2603 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2604 
2605 	/* If the buffer is now unused, just drop it. */
2606 	if (jh->b_next_transaction == NULL) {
2607 		__jbd2_journal_unfile_buffer(jh);
2608 		return true;
2609 	}
2610 
2611 	/*
2612 	 * It has been modified by a later transaction: add it to the new
2613 	 * transaction's metadata list.
2614 	 */
2615 
2616 	was_dirty = test_clear_buffer_jbddirty(bh);
2617 	__jbd2_journal_temp_unlink_buffer(jh);
2618 
2619 	/*
2620 	 * b_transaction must be set, otherwise the new b_transaction won't
2621 	 * be holding jh reference
2622 	 */
2623 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2624 
2625 	/*
2626 	 * We set b_transaction here because b_next_transaction will inherit
2627 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2628 	 * take a new one.
2629 	 */
2630 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2631 	WRITE_ONCE(jh->b_next_transaction, NULL);
2632 	if (buffer_freed(bh))
2633 		jlist = BJ_Forget;
2634 	else if (jh->b_modified)
2635 		jlist = BJ_Metadata;
2636 	else
2637 		jlist = BJ_Reserved;
2638 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2639 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2640 
2641 	if (was_dirty)
2642 		set_buffer_jbddirty(bh);
2643 	return false;
2644 }
2645 
2646 /*
2647  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2648  * bh reference so that we can safely unlock bh.
2649  *
2650  * The jh and bh may be freed by this call.
2651  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2652 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2653 {
2654 	bool drop;
2655 
2656 	spin_lock(&jh->b_state_lock);
2657 	spin_lock(&journal->j_list_lock);
2658 	drop = __jbd2_journal_refile_buffer(jh);
2659 	spin_unlock(&jh->b_state_lock);
2660 	spin_unlock(&journal->j_list_lock);
2661 	if (drop)
2662 		jbd2_journal_put_journal_head(jh);
2663 }
2664 
2665 /*
2666  * File inode in the inode list of the handle's transaction
2667  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2668 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2669 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2670 {
2671 	transaction_t *transaction = handle->h_transaction;
2672 	journal_t *journal;
2673 
2674 	if (is_handle_aborted(handle))
2675 		return -EROFS;
2676 	journal = transaction->t_journal;
2677 
2678 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2679 			transaction->t_tid);
2680 
2681 	spin_lock(&journal->j_list_lock);
2682 	jinode->i_flags |= flags;
2683 
2684 	if (jinode->i_dirty_end) {
2685 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2686 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2687 	} else {
2688 		jinode->i_dirty_start = start_byte;
2689 		jinode->i_dirty_end = end_byte;
2690 	}
2691 
2692 	/* Is inode already attached where we need it? */
2693 	if (jinode->i_transaction == transaction ||
2694 	    jinode->i_next_transaction == transaction)
2695 		goto done;
2696 
2697 	/*
2698 	 * We only ever set this variable to 1 so the test is safe. Since
2699 	 * t_need_data_flush is likely to be set, we do the test to save some
2700 	 * cacheline bouncing
2701 	 */
2702 	if (!transaction->t_need_data_flush)
2703 		transaction->t_need_data_flush = 1;
2704 	/* On some different transaction's list - should be
2705 	 * the committing one */
2706 	if (jinode->i_transaction) {
2707 		J_ASSERT(jinode->i_next_transaction == NULL);
2708 		J_ASSERT(jinode->i_transaction ==
2709 					journal->j_committing_transaction);
2710 		jinode->i_next_transaction = transaction;
2711 		goto done;
2712 	}
2713 	/* Not on any transaction list... */
2714 	J_ASSERT(!jinode->i_next_transaction);
2715 	jinode->i_transaction = transaction;
2716 	list_add(&jinode->i_list, &transaction->t_inode_list);
2717 done:
2718 	spin_unlock(&journal->j_list_lock);
2719 
2720 	return 0;
2721 }
2722 
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2723 int jbd2_journal_inode_ranged_write(handle_t *handle,
2724 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2725 {
2726 	return jbd2_journal_file_inode(handle, jinode,
2727 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2728 			start_byte + length - 1);
2729 }
2730 
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2731 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2732 		loff_t start_byte, loff_t length)
2733 {
2734 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2735 			start_byte, start_byte + length - 1);
2736 }
2737 
2738 /*
2739  * File truncate and transaction commit interact with each other in a
2740  * non-trivial way.  If a transaction writing data block A is
2741  * committing, we cannot discard the data by truncate until we have
2742  * written them.  Otherwise if we crashed after the transaction with
2743  * write has committed but before the transaction with truncate has
2744  * committed, we could see stale data in block A.  This function is a
2745  * helper to solve this problem.  It starts writeout of the truncated
2746  * part in case it is in the committing transaction.
2747  *
2748  * Filesystem code must call this function when inode is journaled in
2749  * ordered mode before truncation happens and after the inode has been
2750  * placed on orphan list with the new inode size. The second condition
2751  * avoids the race that someone writes new data and we start
2752  * committing the transaction after this function has been called but
2753  * before a transaction for truncate is started (and furthermore it
2754  * allows us to optimize the case where the addition to orphan list
2755  * happens in the same transaction as write --- we don't have to write
2756  * any data in such case).
2757  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2758 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2759 					struct jbd2_inode *jinode,
2760 					loff_t new_size)
2761 {
2762 	transaction_t *inode_trans, *commit_trans;
2763 	int ret = 0;
2764 
2765 	/* This is a quick check to avoid locking if not necessary */
2766 	if (!jinode->i_transaction)
2767 		goto out;
2768 	/* Locks are here just to force reading of recent values, it is
2769 	 * enough that the transaction was not committing before we started
2770 	 * a transaction adding the inode to orphan list */
2771 	read_lock(&journal->j_state_lock);
2772 	commit_trans = journal->j_committing_transaction;
2773 	read_unlock(&journal->j_state_lock);
2774 	spin_lock(&journal->j_list_lock);
2775 	inode_trans = jinode->i_transaction;
2776 	spin_unlock(&journal->j_list_lock);
2777 	if (inode_trans == commit_trans) {
2778 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2779 			new_size, LLONG_MAX);
2780 		if (ret)
2781 			jbd2_journal_abort(journal, ret);
2782 	}
2783 out:
2784 	return ret;
2785 }
2786