1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)68 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
69 {
70 if (hugepage_or_freepage) {
71 /*
72 * Doing this check for free pages is also fine since dissolve_free_huge_page
73 * returns 0 for non-hugetlb pages as well.
74 */
75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
76 /*
77 * We could fail to take off the target page from buddy
78 * for example due to racy page allocaiton, but that's
79 * acceptable because soft-offlined page is not broken
80 * and if someone really want to use it, they should
81 * take it.
82 */
83 return false;
84 }
85
86 SetPageHWPoison(page);
87 if (release)
88 put_page(page);
89 page_ref_inc(page);
90 num_poisoned_pages_inc();
91
92 return true;
93 }
94
95 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
96
97 u32 hwpoison_filter_enable = 0;
98 u32 hwpoison_filter_dev_major = ~0U;
99 u32 hwpoison_filter_dev_minor = ~0U;
100 u64 hwpoison_filter_flags_mask;
101 u64 hwpoison_filter_flags_value;
102 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
103 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
104 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
105 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
106 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
107
hwpoison_filter_dev(struct page * p)108 static int hwpoison_filter_dev(struct page *p)
109 {
110 struct address_space *mapping;
111 dev_t dev;
112
113 if (hwpoison_filter_dev_major == ~0U &&
114 hwpoison_filter_dev_minor == ~0U)
115 return 0;
116
117 /*
118 * page_mapping() does not accept slab pages.
119 */
120 if (PageSlab(p))
121 return -EINVAL;
122
123 mapping = page_mapping(p);
124 if (mapping == NULL || mapping->host == NULL)
125 return -EINVAL;
126
127 dev = mapping->host->i_sb->s_dev;
128 if (hwpoison_filter_dev_major != ~0U &&
129 hwpoison_filter_dev_major != MAJOR(dev))
130 return -EINVAL;
131 if (hwpoison_filter_dev_minor != ~0U &&
132 hwpoison_filter_dev_minor != MINOR(dev))
133 return -EINVAL;
134
135 return 0;
136 }
137
hwpoison_filter_flags(struct page * p)138 static int hwpoison_filter_flags(struct page *p)
139 {
140 if (!hwpoison_filter_flags_mask)
141 return 0;
142
143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
144 hwpoison_filter_flags_value)
145 return 0;
146 else
147 return -EINVAL;
148 }
149
150 /*
151 * This allows stress tests to limit test scope to a collection of tasks
152 * by putting them under some memcg. This prevents killing unrelated/important
153 * processes such as /sbin/init. Note that the target task may share clean
154 * pages with init (eg. libc text), which is harmless. If the target task
155 * share _dirty_ pages with another task B, the test scheme must make sure B
156 * is also included in the memcg. At last, due to race conditions this filter
157 * can only guarantee that the page either belongs to the memcg tasks, or is
158 * a freed page.
159 */
160 #ifdef CONFIG_MEMCG
161 u64 hwpoison_filter_memcg;
162 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)163 static int hwpoison_filter_task(struct page *p)
164 {
165 if (!hwpoison_filter_memcg)
166 return 0;
167
168 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
169 return -EINVAL;
170
171 return 0;
172 }
173 #else
hwpoison_filter_task(struct page * p)174 static int hwpoison_filter_task(struct page *p) { return 0; }
175 #endif
176
hwpoison_filter(struct page * p)177 int hwpoison_filter(struct page *p)
178 {
179 if (!hwpoison_filter_enable)
180 return 0;
181
182 if (hwpoison_filter_dev(p))
183 return -EINVAL;
184
185 if (hwpoison_filter_flags(p))
186 return -EINVAL;
187
188 if (hwpoison_filter_task(p))
189 return -EINVAL;
190
191 return 0;
192 }
193 #else
hwpoison_filter(struct page * p)194 int hwpoison_filter(struct page *p)
195 {
196 return 0;
197 }
198 #endif
199
200 EXPORT_SYMBOL_GPL(hwpoison_filter);
201
202 /*
203 * Kill all processes that have a poisoned page mapped and then isolate
204 * the page.
205 *
206 * General strategy:
207 * Find all processes having the page mapped and kill them.
208 * But we keep a page reference around so that the page is not
209 * actually freed yet.
210 * Then stash the page away
211 *
212 * There's no convenient way to get back to mapped processes
213 * from the VMAs. So do a brute-force search over all
214 * running processes.
215 *
216 * Remember that machine checks are not common (or rather
217 * if they are common you have other problems), so this shouldn't
218 * be a performance issue.
219 *
220 * Also there are some races possible while we get from the
221 * error detection to actually handle it.
222 */
223
224 struct to_kill {
225 struct list_head nd;
226 struct task_struct *tsk;
227 unsigned long addr;
228 short size_shift;
229 };
230
231 /*
232 * Send all the processes who have the page mapped a signal.
233 * ``action optional'' if they are not immediately affected by the error
234 * ``action required'' if error happened in current execution context
235 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)236 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
237 {
238 struct task_struct *t = tk->tsk;
239 short addr_lsb = tk->size_shift;
240 int ret = 0;
241
242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
243 pfn, t->comm, t->pid);
244
245 if (flags & MF_ACTION_REQUIRED) {
246 WARN_ON_ONCE(t != current);
247 ret = force_sig_mceerr(BUS_MCEERR_AR,
248 (void __user *)tk->addr, addr_lsb);
249 } else {
250 /*
251 * Don't use force here, it's convenient if the signal
252 * can be temporarily blocked.
253 * This could cause a loop when the user sets SIGBUS
254 * to SIG_IGN, but hopefully no one will do that?
255 */
256 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
257 addr_lsb, t); /* synchronous? */
258 }
259 if (ret < 0)
260 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
261 t->comm, t->pid, ret);
262 return ret;
263 }
264
265 /*
266 * When a unknown page type is encountered drain as many buffers as possible
267 * in the hope to turn the page into a LRU or free page, which we can handle.
268 */
shake_page(struct page * p,int access)269 void shake_page(struct page *p, int access)
270 {
271 if (PageHuge(p))
272 return;
273
274 if (!PageSlab(p)) {
275 lru_add_drain_all();
276 if (PageLRU(p))
277 return;
278 drain_all_pages(page_zone(p));
279 if (PageLRU(p) || is_free_buddy_page(p))
280 return;
281 }
282
283 /*
284 * Only call shrink_node_slabs here (which would also shrink
285 * other caches) if access is not potentially fatal.
286 */
287 if (access)
288 drop_slab_node(page_to_nid(p));
289 }
290 EXPORT_SYMBOL_GPL(shake_page);
291
dev_pagemap_mapping_shift(struct page * page,struct vm_area_struct * vma)292 static unsigned long dev_pagemap_mapping_shift(struct page *page,
293 struct vm_area_struct *vma)
294 {
295 unsigned long address = vma_address(page, vma);
296 pgd_t *pgd;
297 p4d_t *p4d;
298 pud_t *pud;
299 pmd_t *pmd;
300 pte_t *pte;
301
302 pgd = pgd_offset(vma->vm_mm, address);
303 if (!pgd_present(*pgd))
304 return 0;
305 p4d = p4d_offset(pgd, address);
306 if (!p4d_present(*p4d))
307 return 0;
308 pud = pud_offset(p4d, address);
309 if (!pud_present(*pud))
310 return 0;
311 if (pud_devmap(*pud))
312 return PUD_SHIFT;
313 pmd = pmd_offset(pud, address);
314 if (!pmd_present(*pmd))
315 return 0;
316 if (pmd_devmap(*pmd))
317 return PMD_SHIFT;
318 pte = pte_offset_map(pmd, address);
319 if (!pte_present(*pte))
320 return 0;
321 if (pte_devmap(*pte))
322 return PAGE_SHIFT;
323 return 0;
324 }
325
326 /*
327 * Failure handling: if we can't find or can't kill a process there's
328 * not much we can do. We just print a message and ignore otherwise.
329 */
330
331 /*
332 * Schedule a process for later kill.
333 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
334 */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)335 static void add_to_kill(struct task_struct *tsk, struct page *p,
336 struct vm_area_struct *vma,
337 struct list_head *to_kill)
338 {
339 struct to_kill *tk;
340
341 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
342 if (!tk) {
343 pr_err("Memory failure: Out of memory while machine check handling\n");
344 return;
345 }
346
347 tk->addr = page_address_in_vma(p, vma);
348 if (is_zone_device_page(p))
349 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
350 else
351 tk->size_shift = page_shift(compound_head(p));
352
353 /*
354 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
355 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
356 * so "tk->size_shift == 0" effectively checks no mapping on
357 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
358 * to a process' address space, it's possible not all N VMAs
359 * contain mappings for the page, but at least one VMA does.
360 * Only deliver SIGBUS with payload derived from the VMA that
361 * has a mapping for the page.
362 */
363 if (tk->addr == -EFAULT) {
364 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
365 page_to_pfn(p), tsk->comm);
366 } else if (tk->size_shift == 0) {
367 kfree(tk);
368 return;
369 }
370
371 get_task_struct(tsk);
372 tk->tsk = tsk;
373 list_add_tail(&tk->nd, to_kill);
374 }
375
376 /*
377 * Kill the processes that have been collected earlier.
378 *
379 * Only do anything when DOIT is set, otherwise just free the list
380 * (this is used for clean pages which do not need killing)
381 * Also when FAIL is set do a force kill because something went
382 * wrong earlier.
383 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)384 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
385 unsigned long pfn, int flags)
386 {
387 struct to_kill *tk, *next;
388
389 list_for_each_entry_safe (tk, next, to_kill, nd) {
390 if (forcekill) {
391 /*
392 * In case something went wrong with munmapping
393 * make sure the process doesn't catch the
394 * signal and then access the memory. Just kill it.
395 */
396 if (fail || tk->addr == -EFAULT) {
397 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
398 pfn, tk->tsk->comm, tk->tsk->pid);
399 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
400 tk->tsk, PIDTYPE_PID);
401 }
402
403 /*
404 * In theory the process could have mapped
405 * something else on the address in-between. We could
406 * check for that, but we need to tell the
407 * process anyways.
408 */
409 else if (kill_proc(tk, pfn, flags) < 0)
410 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
411 pfn, tk->tsk->comm, tk->tsk->pid);
412 }
413 put_task_struct(tk->tsk);
414 kfree(tk);
415 }
416 }
417
418 /*
419 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
420 * on behalf of the thread group. Return task_struct of the (first found)
421 * dedicated thread if found, and return NULL otherwise.
422 *
423 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
424 * have to call rcu_read_lock/unlock() in this function.
425 */
find_early_kill_thread(struct task_struct * tsk)426 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
427 {
428 struct task_struct *t;
429
430 for_each_thread(tsk, t) {
431 if (t->flags & PF_MCE_PROCESS) {
432 if (t->flags & PF_MCE_EARLY)
433 return t;
434 } else {
435 if (sysctl_memory_failure_early_kill)
436 return t;
437 }
438 }
439 return NULL;
440 }
441
442 /*
443 * Determine whether a given process is "early kill" process which expects
444 * to be signaled when some page under the process is hwpoisoned.
445 * Return task_struct of the dedicated thread (main thread unless explicitly
446 * specified) if the process is "early kill," and otherwise returns NULL.
447 *
448 * Note that the above is true for Action Optional case, but not for Action
449 * Required case where SIGBUS should sent only to the current thread.
450 */
task_early_kill(struct task_struct * tsk,int force_early)451 static struct task_struct *task_early_kill(struct task_struct *tsk,
452 int force_early)
453 {
454 if (!tsk->mm)
455 return NULL;
456 if (force_early) {
457 /*
458 * Comparing ->mm here because current task might represent
459 * a subthread, while tsk always points to the main thread.
460 */
461 if (tsk->mm == current->mm)
462 return current;
463 else
464 return NULL;
465 }
466 return find_early_kill_thread(tsk);
467 }
468
469 /*
470 * Collect processes when the error hit an anonymous page.
471 */
collect_procs_anon(struct page * page,struct list_head * to_kill,int force_early)472 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
473 int force_early)
474 {
475 struct vm_area_struct *vma;
476 struct task_struct *tsk;
477 struct anon_vma *av;
478 pgoff_t pgoff;
479
480 av = page_lock_anon_vma_read(page, NULL);
481 if (av == NULL) /* Not actually mapped anymore */
482 return;
483
484 pgoff = page_to_pgoff(page);
485 read_lock(&tasklist_lock);
486 for_each_process (tsk) {
487 struct anon_vma_chain *vmac;
488 struct task_struct *t = task_early_kill(tsk, force_early);
489
490 if (!t)
491 continue;
492 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
493 pgoff, pgoff) {
494 vma = vmac->vma;
495 if (!page_mapped_in_vma(page, vma))
496 continue;
497 if (vma->vm_mm == t->mm)
498 add_to_kill(t, page, vma, to_kill);
499 }
500 }
501 read_unlock(&tasklist_lock);
502 page_unlock_anon_vma_read(av);
503 }
504
505 /*
506 * Collect processes when the error hit a file mapped page.
507 */
collect_procs_file(struct page * page,struct list_head * to_kill,int force_early)508 static void collect_procs_file(struct page *page, struct list_head *to_kill,
509 int force_early)
510 {
511 struct vm_area_struct *vma;
512 struct task_struct *tsk;
513 struct address_space *mapping = page->mapping;
514 pgoff_t pgoff;
515
516 i_mmap_lock_read(mapping);
517 read_lock(&tasklist_lock);
518 pgoff = page_to_pgoff(page);
519 for_each_process(tsk) {
520 struct task_struct *t = task_early_kill(tsk, force_early);
521
522 if (!t)
523 continue;
524 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
525 pgoff) {
526 /*
527 * Send early kill signal to tasks where a vma covers
528 * the page but the corrupted page is not necessarily
529 * mapped it in its pte.
530 * Assume applications who requested early kill want
531 * to be informed of all such data corruptions.
532 */
533 if (vma->vm_mm == t->mm)
534 add_to_kill(t, page, vma, to_kill);
535 }
536 }
537 read_unlock(&tasklist_lock);
538 i_mmap_unlock_read(mapping);
539 }
540
541 /*
542 * Collect the processes who have the corrupted page mapped to kill.
543 */
collect_procs(struct page * page,struct list_head * tokill,int force_early)544 static void collect_procs(struct page *page, struct list_head *tokill,
545 int force_early)
546 {
547 if (!page->mapping)
548 return;
549
550 if (PageAnon(page))
551 collect_procs_anon(page, tokill, force_early);
552 else
553 collect_procs_file(page, tokill, force_early);
554 }
555
556 static const char *action_name[] = {
557 [MF_IGNORED] = "Ignored",
558 [MF_FAILED] = "Failed",
559 [MF_DELAYED] = "Delayed",
560 [MF_RECOVERED] = "Recovered",
561 };
562
563 static const char * const action_page_types[] = {
564 [MF_MSG_KERNEL] = "reserved kernel page",
565 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
566 [MF_MSG_SLAB] = "kernel slab page",
567 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
568 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
569 [MF_MSG_HUGE] = "huge page",
570 [MF_MSG_FREE_HUGE] = "free huge page",
571 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
572 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
573 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
574 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
575 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
576 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
577 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
578 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
579 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
580 [MF_MSG_CLEAN_LRU] = "clean LRU page",
581 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
582 [MF_MSG_BUDDY] = "free buddy page",
583 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
584 [MF_MSG_DAX] = "dax page",
585 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
586 [MF_MSG_UNKNOWN] = "unknown page",
587 };
588
589 /*
590 * XXX: It is possible that a page is isolated from LRU cache,
591 * and then kept in swap cache or failed to remove from page cache.
592 * The page count will stop it from being freed by unpoison.
593 * Stress tests should be aware of this memory leak problem.
594 */
delete_from_lru_cache(struct page * p)595 static int delete_from_lru_cache(struct page *p)
596 {
597 if (!isolate_lru_page(p)) {
598 /*
599 * Clear sensible page flags, so that the buddy system won't
600 * complain when the page is unpoison-and-freed.
601 */
602 ClearPageActive(p);
603 ClearPageUnevictable(p);
604
605 /*
606 * Poisoned page might never drop its ref count to 0 so we have
607 * to uncharge it manually from its memcg.
608 */
609 mem_cgroup_uncharge(p);
610
611 /*
612 * drop the page count elevated by isolate_lru_page()
613 */
614 put_page(p);
615 return 0;
616 }
617 return -EIO;
618 }
619
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)620 static int truncate_error_page(struct page *p, unsigned long pfn,
621 struct address_space *mapping)
622 {
623 int ret = MF_FAILED;
624
625 if (mapping->a_ops->error_remove_page) {
626 int err = mapping->a_ops->error_remove_page(mapping, p);
627
628 if (err != 0) {
629 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
630 pfn, err);
631 } else if (page_has_private(p) &&
632 !try_to_release_page(p, GFP_NOIO)) {
633 pr_info("Memory failure: %#lx: failed to release buffers\n",
634 pfn);
635 } else {
636 ret = MF_RECOVERED;
637 }
638 } else {
639 /*
640 * If the file system doesn't support it just invalidate
641 * This fails on dirty or anything with private pages
642 */
643 if (invalidate_inode_page(p))
644 ret = MF_RECOVERED;
645 else
646 pr_info("Memory failure: %#lx: Failed to invalidate\n",
647 pfn);
648 }
649
650 return ret;
651 }
652
653 /*
654 * Error hit kernel page.
655 * Do nothing, try to be lucky and not touch this instead. For a few cases we
656 * could be more sophisticated.
657 */
me_kernel(struct page * p,unsigned long pfn)658 static int me_kernel(struct page *p, unsigned long pfn)
659 {
660 return MF_IGNORED;
661 }
662
663 /*
664 * Page in unknown state. Do nothing.
665 */
me_unknown(struct page * p,unsigned long pfn)666 static int me_unknown(struct page *p, unsigned long pfn)
667 {
668 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
669 return MF_FAILED;
670 }
671
672 /*
673 * Clean (or cleaned) page cache page.
674 */
me_pagecache_clean(struct page * p,unsigned long pfn)675 static int me_pagecache_clean(struct page *p, unsigned long pfn)
676 {
677 struct address_space *mapping;
678
679 delete_from_lru_cache(p);
680
681 /*
682 * For anonymous pages we're done the only reference left
683 * should be the one m_f() holds.
684 */
685 if (PageAnon(p))
686 return MF_RECOVERED;
687
688 /*
689 * Now truncate the page in the page cache. This is really
690 * more like a "temporary hole punch"
691 * Don't do this for block devices when someone else
692 * has a reference, because it could be file system metadata
693 * and that's not safe to truncate.
694 */
695 mapping = page_mapping(p);
696 if (!mapping) {
697 /*
698 * Page has been teared down in the meanwhile
699 */
700 return MF_FAILED;
701 }
702
703 /*
704 * Truncation is a bit tricky. Enable it per file system for now.
705 *
706 * Open: to take i_mutex or not for this? Right now we don't.
707 */
708 return truncate_error_page(p, pfn, mapping);
709 }
710
711 /*
712 * Dirty pagecache page
713 * Issues: when the error hit a hole page the error is not properly
714 * propagated.
715 */
me_pagecache_dirty(struct page * p,unsigned long pfn)716 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
717 {
718 struct address_space *mapping = page_mapping(p);
719
720 SetPageError(p);
721 /* TBD: print more information about the file. */
722 if (mapping) {
723 /*
724 * IO error will be reported by write(), fsync(), etc.
725 * who check the mapping.
726 * This way the application knows that something went
727 * wrong with its dirty file data.
728 *
729 * There's one open issue:
730 *
731 * The EIO will be only reported on the next IO
732 * operation and then cleared through the IO map.
733 * Normally Linux has two mechanisms to pass IO error
734 * first through the AS_EIO flag in the address space
735 * and then through the PageError flag in the page.
736 * Since we drop pages on memory failure handling the
737 * only mechanism open to use is through AS_AIO.
738 *
739 * This has the disadvantage that it gets cleared on
740 * the first operation that returns an error, while
741 * the PageError bit is more sticky and only cleared
742 * when the page is reread or dropped. If an
743 * application assumes it will always get error on
744 * fsync, but does other operations on the fd before
745 * and the page is dropped between then the error
746 * will not be properly reported.
747 *
748 * This can already happen even without hwpoisoned
749 * pages: first on metadata IO errors (which only
750 * report through AS_EIO) or when the page is dropped
751 * at the wrong time.
752 *
753 * So right now we assume that the application DTRT on
754 * the first EIO, but we're not worse than other parts
755 * of the kernel.
756 */
757 mapping_set_error(mapping, -EIO);
758 }
759
760 return me_pagecache_clean(p, pfn);
761 }
762
763 /*
764 * Clean and dirty swap cache.
765 *
766 * Dirty swap cache page is tricky to handle. The page could live both in page
767 * cache and swap cache(ie. page is freshly swapped in). So it could be
768 * referenced concurrently by 2 types of PTEs:
769 * normal PTEs and swap PTEs. We try to handle them consistently by calling
770 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
771 * and then
772 * - clear dirty bit to prevent IO
773 * - remove from LRU
774 * - but keep in the swap cache, so that when we return to it on
775 * a later page fault, we know the application is accessing
776 * corrupted data and shall be killed (we installed simple
777 * interception code in do_swap_page to catch it).
778 *
779 * Clean swap cache pages can be directly isolated. A later page fault will
780 * bring in the known good data from disk.
781 */
me_swapcache_dirty(struct page * p,unsigned long pfn)782 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
783 {
784 ClearPageDirty(p);
785 /* Trigger EIO in shmem: */
786 ClearPageUptodate(p);
787
788 if (!delete_from_lru_cache(p))
789 return MF_DELAYED;
790 else
791 return MF_FAILED;
792 }
793
me_swapcache_clean(struct page * p,unsigned long pfn)794 static int me_swapcache_clean(struct page *p, unsigned long pfn)
795 {
796 delete_from_swap_cache(p);
797
798 if (!delete_from_lru_cache(p))
799 return MF_RECOVERED;
800 else
801 return MF_FAILED;
802 }
803
804 /*
805 * Huge pages. Needs work.
806 * Issues:
807 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
808 * To narrow down kill region to one page, we need to break up pmd.
809 */
me_huge_page(struct page * p,unsigned long pfn)810 static int me_huge_page(struct page *p, unsigned long pfn)
811 {
812 int res = 0;
813 struct page *hpage = compound_head(p);
814 struct address_space *mapping;
815
816 if (!PageHuge(hpage))
817 return MF_DELAYED;
818
819 mapping = page_mapping(hpage);
820 if (mapping) {
821 res = truncate_error_page(hpage, pfn, mapping);
822 } else {
823 unlock_page(hpage);
824 /*
825 * migration entry prevents later access on error anonymous
826 * hugepage, so we can free and dissolve it into buddy to
827 * save healthy subpages.
828 */
829 if (PageAnon(hpage))
830 put_page(hpage);
831 dissolve_free_huge_page(p);
832 res = MF_RECOVERED;
833 lock_page(hpage);
834 }
835
836 return res;
837 }
838
839 /*
840 * Various page states we can handle.
841 *
842 * A page state is defined by its current page->flags bits.
843 * The table matches them in order and calls the right handler.
844 *
845 * This is quite tricky because we can access page at any time
846 * in its live cycle, so all accesses have to be extremely careful.
847 *
848 * This is not complete. More states could be added.
849 * For any missing state don't attempt recovery.
850 */
851
852 #define dirty (1UL << PG_dirty)
853 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
854 #define unevict (1UL << PG_unevictable)
855 #define mlock (1UL << PG_mlocked)
856 #define lru (1UL << PG_lru)
857 #define head (1UL << PG_head)
858 #define slab (1UL << PG_slab)
859 #define reserved (1UL << PG_reserved)
860
861 static struct page_state {
862 unsigned long mask;
863 unsigned long res;
864 enum mf_action_page_type type;
865 int (*action)(struct page *p, unsigned long pfn);
866 } error_states[] = {
867 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
868 /*
869 * free pages are specially detected outside this table:
870 * PG_buddy pages only make a small fraction of all free pages.
871 */
872
873 /*
874 * Could in theory check if slab page is free or if we can drop
875 * currently unused objects without touching them. But just
876 * treat it as standard kernel for now.
877 */
878 { slab, slab, MF_MSG_SLAB, me_kernel },
879
880 { head, head, MF_MSG_HUGE, me_huge_page },
881
882 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
883 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
884
885 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
886 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
887
888 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
889 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
890
891 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
892 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
893
894 /*
895 * Catchall entry: must be at end.
896 */
897 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
898 };
899
900 #undef dirty
901 #undef sc
902 #undef unevict
903 #undef mlock
904 #undef lru
905 #undef head
906 #undef slab
907 #undef reserved
908
909 /*
910 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
911 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
912 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)913 static void action_result(unsigned long pfn, enum mf_action_page_type type,
914 enum mf_result result)
915 {
916 trace_memory_failure_event(pfn, type, result);
917
918 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
919 pfn, action_page_types[type], action_name[result]);
920 }
921
page_action(struct page_state * ps,struct page * p,unsigned long pfn)922 static int page_action(struct page_state *ps, struct page *p,
923 unsigned long pfn)
924 {
925 int result;
926 int count;
927
928 result = ps->action(p, pfn);
929
930 count = page_count(p) - 1;
931 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
932 count--;
933 if (count > 0) {
934 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
935 pfn, action_page_types[ps->type], count);
936 result = MF_FAILED;
937 }
938 action_result(pfn, ps->type, result);
939
940 /* Could do more checks here if page looks ok */
941 /*
942 * Could adjust zone counters here to correct for the missing page.
943 */
944
945 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
946 }
947
948 /**
949 * get_hwpoison_page() - Get refcount for memory error handling:
950 * @page: raw error page (hit by memory error)
951 *
952 * Return: return 0 if failed to grab the refcount, otherwise true (some
953 * non-zero value.)
954 */
get_hwpoison_page(struct page * page)955 static int get_hwpoison_page(struct page *page)
956 {
957 struct page *head = compound_head(page);
958
959 if (!PageHuge(head) && PageTransHuge(head)) {
960 /*
961 * Non anonymous thp exists only in allocation/free time. We
962 * can't handle such a case correctly, so let's give it up.
963 * This should be better than triggering BUG_ON when kernel
964 * tries to touch the "partially handled" page.
965 */
966 if (!PageAnon(head)) {
967 pr_err("Memory failure: %#lx: non anonymous thp\n",
968 page_to_pfn(page));
969 return 0;
970 }
971 }
972
973 if (get_page_unless_zero(head)) {
974 if (head == compound_head(page))
975 return 1;
976
977 pr_info("Memory failure: %#lx cannot catch tail\n",
978 page_to_pfn(page));
979 put_page(head);
980 }
981
982 return 0;
983 }
984
985 /*
986 * Do all that is necessary to remove user space mappings. Unmap
987 * the pages and send SIGBUS to the processes if the data was dirty.
988 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page ** hpagep)989 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
990 int flags, struct page **hpagep)
991 {
992 enum ttu_flags ttu = TTU_IGNORE_MLOCK;
993 struct address_space *mapping;
994 LIST_HEAD(tokill);
995 bool unmap_success = true;
996 int kill = 1, forcekill;
997 struct page *hpage = *hpagep;
998 bool mlocked = PageMlocked(hpage);
999
1000 /*
1001 * Here we are interested only in user-mapped pages, so skip any
1002 * other types of pages.
1003 */
1004 if (PageReserved(p) || PageSlab(p))
1005 return true;
1006 if (!(PageLRU(hpage) || PageHuge(p)))
1007 return true;
1008
1009 /*
1010 * This check implies we don't kill processes if their pages
1011 * are in the swap cache early. Those are always late kills.
1012 */
1013 if (!page_mapped(p))
1014 return true;
1015
1016 if (PageKsm(p)) {
1017 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1018 return false;
1019 }
1020
1021 if (PageSwapCache(p)) {
1022 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1023 pfn);
1024 ttu |= TTU_IGNORE_HWPOISON;
1025 }
1026
1027 /*
1028 * Propagate the dirty bit from PTEs to struct page first, because we
1029 * need this to decide if we should kill or just drop the page.
1030 * XXX: the dirty test could be racy: set_page_dirty() may not always
1031 * be called inside page lock (it's recommended but not enforced).
1032 */
1033 mapping = page_mapping(hpage);
1034 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1035 mapping_can_writeback(mapping)) {
1036 if (page_mkclean(hpage)) {
1037 SetPageDirty(hpage);
1038 } else {
1039 kill = 0;
1040 ttu |= TTU_IGNORE_HWPOISON;
1041 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1042 pfn);
1043 }
1044 }
1045
1046 /*
1047 * First collect all the processes that have the page
1048 * mapped in dirty form. This has to be done before try_to_unmap,
1049 * because ttu takes the rmap data structures down.
1050 *
1051 * Error handling: We ignore errors here because
1052 * there's nothing that can be done.
1053 */
1054 if (kill)
1055 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1056
1057 if (!PageHuge(hpage)) {
1058 unmap_success = try_to_unmap(hpage, ttu);
1059 } else {
1060 if (!PageAnon(hpage)) {
1061 /*
1062 * For hugetlb pages in shared mappings, try_to_unmap
1063 * could potentially call huge_pmd_unshare. Because of
1064 * this, take semaphore in write mode here and set
1065 * TTU_RMAP_LOCKED to indicate we have taken the lock
1066 * at this higer level.
1067 */
1068 mapping = hugetlb_page_mapping_lock_write(hpage);
1069 if (mapping) {
1070 unmap_success = try_to_unmap(hpage,
1071 ttu|TTU_RMAP_LOCKED);
1072 i_mmap_unlock_write(mapping);
1073 } else {
1074 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1075 unmap_success = false;
1076 }
1077 } else {
1078 unmap_success = try_to_unmap(p, ttu);
1079 }
1080 }
1081 if (!unmap_success)
1082 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1083 pfn, page_mapcount(p));
1084
1085 /*
1086 * try_to_unmap() might put mlocked page in lru cache, so call
1087 * shake_page() again to ensure that it's flushed.
1088 */
1089 if (mlocked)
1090 shake_page(hpage, 0);
1091
1092 /*
1093 * Now that the dirty bit has been propagated to the
1094 * struct page and all unmaps done we can decide if
1095 * killing is needed or not. Only kill when the page
1096 * was dirty or the process is not restartable,
1097 * otherwise the tokill list is merely
1098 * freed. When there was a problem unmapping earlier
1099 * use a more force-full uncatchable kill to prevent
1100 * any accesses to the poisoned memory.
1101 */
1102 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1103 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1104
1105 return unmap_success;
1106 }
1107
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1108 static int identify_page_state(unsigned long pfn, struct page *p,
1109 unsigned long page_flags)
1110 {
1111 struct page_state *ps;
1112
1113 /*
1114 * The first check uses the current page flags which may not have any
1115 * relevant information. The second check with the saved page flags is
1116 * carried out only if the first check can't determine the page status.
1117 */
1118 for (ps = error_states;; ps++)
1119 if ((p->flags & ps->mask) == ps->res)
1120 break;
1121
1122 page_flags |= (p->flags & (1UL << PG_dirty));
1123
1124 if (!ps->mask)
1125 for (ps = error_states;; ps++)
1126 if ((page_flags & ps->mask) == ps->res)
1127 break;
1128 return page_action(ps, p, pfn);
1129 }
1130
try_to_split_thp_page(struct page * page,const char * msg)1131 static int try_to_split_thp_page(struct page *page, const char *msg)
1132 {
1133 lock_page(page);
1134 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1135 unsigned long pfn = page_to_pfn(page);
1136
1137 unlock_page(page);
1138 if (!PageAnon(page))
1139 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1140 else
1141 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1142 put_page(page);
1143 return -EBUSY;
1144 }
1145 unlock_page(page);
1146
1147 return 0;
1148 }
1149
memory_failure_hugetlb(unsigned long pfn,int flags)1150 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1151 {
1152 struct page *p = pfn_to_page(pfn);
1153 struct page *head = compound_head(p);
1154 int res;
1155 unsigned long page_flags;
1156
1157 if (TestSetPageHWPoison(head)) {
1158 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1159 pfn);
1160 return 0;
1161 }
1162
1163 num_poisoned_pages_inc();
1164
1165 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1166 /*
1167 * Check "filter hit" and "race with other subpage."
1168 */
1169 lock_page(head);
1170 if (PageHWPoison(head)) {
1171 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1172 || (p != head && TestSetPageHWPoison(head))) {
1173 num_poisoned_pages_dec();
1174 unlock_page(head);
1175 return 0;
1176 }
1177 }
1178 unlock_page(head);
1179 dissolve_free_huge_page(p);
1180 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1181 return 0;
1182 }
1183
1184 lock_page(head);
1185 page_flags = head->flags;
1186
1187 if (!PageHWPoison(head)) {
1188 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1189 num_poisoned_pages_dec();
1190 unlock_page(head);
1191 put_page(head);
1192 return 0;
1193 }
1194
1195 /*
1196 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1197 * simply disable it. In order to make it work properly, we need
1198 * make sure that:
1199 * - conversion of a pud that maps an error hugetlb into hwpoison
1200 * entry properly works, and
1201 * - other mm code walking over page table is aware of pud-aligned
1202 * hwpoison entries.
1203 */
1204 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1205 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1206 res = -EBUSY;
1207 goto out;
1208 }
1209
1210 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1211 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1212 res = -EBUSY;
1213 goto out;
1214 }
1215
1216 res = identify_page_state(pfn, p, page_flags);
1217 out:
1218 unlock_page(head);
1219 return res;
1220 }
1221
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)1222 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1223 struct dev_pagemap *pgmap)
1224 {
1225 struct page *page = pfn_to_page(pfn);
1226 const bool unmap_success = true;
1227 unsigned long size = 0;
1228 struct to_kill *tk;
1229 LIST_HEAD(tokill);
1230 int rc = -EBUSY;
1231 loff_t start;
1232 dax_entry_t cookie;
1233
1234 if (flags & MF_COUNT_INCREASED)
1235 /*
1236 * Drop the extra refcount in case we come from madvise().
1237 */
1238 put_page(page);
1239
1240 /* device metadata space is not recoverable */
1241 if (!pgmap_pfn_valid(pgmap, pfn)) {
1242 rc = -ENXIO;
1243 goto out;
1244 }
1245
1246 /*
1247 * Prevent the inode from being freed while we are interrogating
1248 * the address_space, typically this would be handled by
1249 * lock_page(), but dax pages do not use the page lock. This
1250 * also prevents changes to the mapping of this pfn until
1251 * poison signaling is complete.
1252 */
1253 cookie = dax_lock_page(page);
1254 if (!cookie)
1255 goto out;
1256
1257 if (hwpoison_filter(page)) {
1258 rc = 0;
1259 goto unlock;
1260 }
1261
1262 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1263 /*
1264 * TODO: Handle HMM pages which may need coordination
1265 * with device-side memory.
1266 */
1267 goto unlock;
1268 }
1269
1270 /*
1271 * Use this flag as an indication that the dax page has been
1272 * remapped UC to prevent speculative consumption of poison.
1273 */
1274 SetPageHWPoison(page);
1275
1276 /*
1277 * Unlike System-RAM there is no possibility to swap in a
1278 * different physical page at a given virtual address, so all
1279 * userspace consumption of ZONE_DEVICE memory necessitates
1280 * SIGBUS (i.e. MF_MUST_KILL)
1281 */
1282 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1283 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1284
1285 list_for_each_entry(tk, &tokill, nd)
1286 if (tk->size_shift)
1287 size = max(size, 1UL << tk->size_shift);
1288 if (size) {
1289 /*
1290 * Unmap the largest mapping to avoid breaking up
1291 * device-dax mappings which are constant size. The
1292 * actual size of the mapping being torn down is
1293 * communicated in siginfo, see kill_proc()
1294 */
1295 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1296 unmap_mapping_range(page->mapping, start, size, 0);
1297 }
1298 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1299 rc = 0;
1300 unlock:
1301 dax_unlock_page(page, cookie);
1302 out:
1303 /* drop pgmap ref acquired in caller */
1304 put_dev_pagemap(pgmap);
1305 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1306 return rc;
1307 }
1308
1309 /**
1310 * memory_failure - Handle memory failure of a page.
1311 * @pfn: Page Number of the corrupted page
1312 * @flags: fine tune action taken
1313 *
1314 * This function is called by the low level machine check code
1315 * of an architecture when it detects hardware memory corruption
1316 * of a page. It tries its best to recover, which includes
1317 * dropping pages, killing processes etc.
1318 *
1319 * The function is primarily of use for corruptions that
1320 * happen outside the current execution context (e.g. when
1321 * detected by a background scrubber)
1322 *
1323 * Must run in process context (e.g. a work queue) with interrupts
1324 * enabled and no spinlocks hold.
1325 */
memory_failure(unsigned long pfn,int flags)1326 int memory_failure(unsigned long pfn, int flags)
1327 {
1328 struct page *p;
1329 struct page *hpage;
1330 struct page *orig_head;
1331 struct dev_pagemap *pgmap;
1332 int res;
1333 unsigned long page_flags;
1334
1335 if (!sysctl_memory_failure_recovery)
1336 panic("Memory failure on page %lx", pfn);
1337
1338 p = pfn_to_online_page(pfn);
1339 if (!p) {
1340 if (pfn_valid(pfn)) {
1341 pgmap = get_dev_pagemap(pfn, NULL);
1342 if (pgmap)
1343 return memory_failure_dev_pagemap(pfn, flags,
1344 pgmap);
1345 }
1346 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1347 pfn);
1348 return -ENXIO;
1349 }
1350
1351 if (PageHuge(p))
1352 return memory_failure_hugetlb(pfn, flags);
1353 if (TestSetPageHWPoison(p)) {
1354 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1355 pfn);
1356 return 0;
1357 }
1358
1359 orig_head = hpage = compound_head(p);
1360 num_poisoned_pages_inc();
1361
1362 /*
1363 * We need/can do nothing about count=0 pages.
1364 * 1) it's a free page, and therefore in safe hand:
1365 * prep_new_page() will be the gate keeper.
1366 * 2) it's part of a non-compound high order page.
1367 * Implies some kernel user: cannot stop them from
1368 * R/W the page; let's pray that the page has been
1369 * used and will be freed some time later.
1370 * In fact it's dangerous to directly bump up page count from 0,
1371 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1372 */
1373 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1374 if (is_free_buddy_page(p)) {
1375 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1376 return 0;
1377 } else {
1378 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1379 return -EBUSY;
1380 }
1381 }
1382
1383 if (PageTransHuge(hpage)) {
1384 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1385 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1386 return -EBUSY;
1387 }
1388 VM_BUG_ON_PAGE(!page_count(p), p);
1389 }
1390
1391 /*
1392 * We ignore non-LRU pages for good reasons.
1393 * - PG_locked is only well defined for LRU pages and a few others
1394 * - to avoid races with __SetPageLocked()
1395 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1396 * The check (unnecessarily) ignores LRU pages being isolated and
1397 * walked by the page reclaim code, however that's not a big loss.
1398 */
1399 shake_page(p, 0);
1400 /* shake_page could have turned it free. */
1401 if (!PageLRU(p) && is_free_buddy_page(p)) {
1402 if (flags & MF_COUNT_INCREASED)
1403 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1404 else
1405 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1406 return 0;
1407 }
1408
1409 lock_page(p);
1410
1411 /*
1412 * The page could have changed compound pages during the locking.
1413 * If this happens just bail out.
1414 */
1415 if (PageCompound(p) && compound_head(p) != orig_head) {
1416 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1417 res = -EBUSY;
1418 goto out;
1419 }
1420
1421 /*
1422 * We use page flags to determine what action should be taken, but
1423 * the flags can be modified by the error containment action. One
1424 * example is an mlocked page, where PG_mlocked is cleared by
1425 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1426 * correctly, we save a copy of the page flags at this time.
1427 */
1428 page_flags = p->flags;
1429
1430 /*
1431 * unpoison always clear PG_hwpoison inside page lock
1432 */
1433 if (!PageHWPoison(p)) {
1434 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1435 num_poisoned_pages_dec();
1436 unlock_page(p);
1437 put_page(p);
1438 return 0;
1439 }
1440 if (hwpoison_filter(p)) {
1441 if (TestClearPageHWPoison(p))
1442 num_poisoned_pages_dec();
1443 unlock_page(p);
1444 put_page(p);
1445 return 0;
1446 }
1447
1448 /*
1449 * __munlock_pagevec may clear a writeback page's LRU flag without
1450 * page_lock. We need wait writeback completion for this page or it
1451 * may trigger vfs BUG while evict inode.
1452 */
1453 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1454 goto identify_page_state;
1455
1456 /*
1457 * It's very difficult to mess with pages currently under IO
1458 * and in many cases impossible, so we just avoid it here.
1459 */
1460 wait_on_page_writeback(p);
1461
1462 /*
1463 * Now take care of user space mappings.
1464 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1465 */
1466 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1467 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1468 res = -EBUSY;
1469 goto out;
1470 }
1471
1472 /*
1473 * Torn down by someone else?
1474 */
1475 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1476 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1477 res = -EBUSY;
1478 goto out;
1479 }
1480
1481 identify_page_state:
1482 res = identify_page_state(pfn, p, page_flags);
1483 out:
1484 unlock_page(p);
1485 return res;
1486 }
1487 EXPORT_SYMBOL_GPL(memory_failure);
1488
1489 #define MEMORY_FAILURE_FIFO_ORDER 4
1490 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1491
1492 struct memory_failure_entry {
1493 unsigned long pfn;
1494 int flags;
1495 };
1496
1497 struct memory_failure_cpu {
1498 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1499 MEMORY_FAILURE_FIFO_SIZE);
1500 spinlock_t lock;
1501 struct work_struct work;
1502 };
1503
1504 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1505
1506 /**
1507 * memory_failure_queue - Schedule handling memory failure of a page.
1508 * @pfn: Page Number of the corrupted page
1509 * @flags: Flags for memory failure handling
1510 *
1511 * This function is called by the low level hardware error handler
1512 * when it detects hardware memory corruption of a page. It schedules
1513 * the recovering of error page, including dropping pages, killing
1514 * processes etc.
1515 *
1516 * The function is primarily of use for corruptions that
1517 * happen outside the current execution context (e.g. when
1518 * detected by a background scrubber)
1519 *
1520 * Can run in IRQ context.
1521 */
memory_failure_queue(unsigned long pfn,int flags)1522 void memory_failure_queue(unsigned long pfn, int flags)
1523 {
1524 struct memory_failure_cpu *mf_cpu;
1525 unsigned long proc_flags;
1526 struct memory_failure_entry entry = {
1527 .pfn = pfn,
1528 .flags = flags,
1529 };
1530
1531 mf_cpu = &get_cpu_var(memory_failure_cpu);
1532 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1533 if (kfifo_put(&mf_cpu->fifo, entry))
1534 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1535 else
1536 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1537 pfn);
1538 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1539 put_cpu_var(memory_failure_cpu);
1540 }
1541 EXPORT_SYMBOL_GPL(memory_failure_queue);
1542
memory_failure_work_func(struct work_struct * work)1543 static void memory_failure_work_func(struct work_struct *work)
1544 {
1545 struct memory_failure_cpu *mf_cpu;
1546 struct memory_failure_entry entry = { 0, };
1547 unsigned long proc_flags;
1548 int gotten;
1549
1550 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1551 for (;;) {
1552 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1553 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1554 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1555 if (!gotten)
1556 break;
1557 if (entry.flags & MF_SOFT_OFFLINE)
1558 soft_offline_page(entry.pfn, entry.flags);
1559 else
1560 memory_failure(entry.pfn, entry.flags);
1561 }
1562 }
1563
1564 /*
1565 * Process memory_failure work queued on the specified CPU.
1566 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1567 */
memory_failure_queue_kick(int cpu)1568 void memory_failure_queue_kick(int cpu)
1569 {
1570 struct memory_failure_cpu *mf_cpu;
1571
1572 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1573 cancel_work_sync(&mf_cpu->work);
1574 memory_failure_work_func(&mf_cpu->work);
1575 }
1576
memory_failure_init(void)1577 static int __init memory_failure_init(void)
1578 {
1579 struct memory_failure_cpu *mf_cpu;
1580 int cpu;
1581
1582 for_each_possible_cpu(cpu) {
1583 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1584 spin_lock_init(&mf_cpu->lock);
1585 INIT_KFIFO(mf_cpu->fifo);
1586 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1587 }
1588
1589 return 0;
1590 }
1591 core_initcall(memory_failure_init);
1592
1593 #define unpoison_pr_info(fmt, pfn, rs) \
1594 ({ \
1595 if (__ratelimit(rs)) \
1596 pr_info(fmt, pfn); \
1597 })
1598
1599 /**
1600 * unpoison_memory - Unpoison a previously poisoned page
1601 * @pfn: Page number of the to be unpoisoned page
1602 *
1603 * Software-unpoison a page that has been poisoned by
1604 * memory_failure() earlier.
1605 *
1606 * This is only done on the software-level, so it only works
1607 * for linux injected failures, not real hardware failures
1608 *
1609 * Returns 0 for success, otherwise -errno.
1610 */
unpoison_memory(unsigned long pfn)1611 int unpoison_memory(unsigned long pfn)
1612 {
1613 struct page *page;
1614 struct page *p;
1615 int freeit = 0;
1616 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1617 DEFAULT_RATELIMIT_BURST);
1618
1619 if (!pfn_valid(pfn))
1620 return -ENXIO;
1621
1622 p = pfn_to_page(pfn);
1623 page = compound_head(p);
1624
1625 if (!PageHWPoison(p)) {
1626 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1627 pfn, &unpoison_rs);
1628 return 0;
1629 }
1630
1631 if (page_count(page) > 1) {
1632 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1633 pfn, &unpoison_rs);
1634 return 0;
1635 }
1636
1637 if (page_mapped(page)) {
1638 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1639 pfn, &unpoison_rs);
1640 return 0;
1641 }
1642
1643 if (page_mapping(page)) {
1644 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1645 pfn, &unpoison_rs);
1646 return 0;
1647 }
1648
1649 /*
1650 * unpoison_memory() can encounter thp only when the thp is being
1651 * worked by memory_failure() and the page lock is not held yet.
1652 * In such case, we yield to memory_failure() and make unpoison fail.
1653 */
1654 if (!PageHuge(page) && PageTransHuge(page)) {
1655 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1656 pfn, &unpoison_rs);
1657 return 0;
1658 }
1659
1660 if (!get_hwpoison_page(p)) {
1661 if (TestClearPageHWPoison(p))
1662 num_poisoned_pages_dec();
1663 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1664 pfn, &unpoison_rs);
1665 return 0;
1666 }
1667
1668 lock_page(page);
1669 /*
1670 * This test is racy because PG_hwpoison is set outside of page lock.
1671 * That's acceptable because that won't trigger kernel panic. Instead,
1672 * the PG_hwpoison page will be caught and isolated on the entrance to
1673 * the free buddy page pool.
1674 */
1675 if (TestClearPageHWPoison(page)) {
1676 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1677 pfn, &unpoison_rs);
1678 num_poisoned_pages_dec();
1679 freeit = 1;
1680 }
1681 unlock_page(page);
1682
1683 put_page(page);
1684 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1685 put_page(page);
1686
1687 return 0;
1688 }
1689 EXPORT_SYMBOL(unpoison_memory);
1690
1691 /*
1692 * Safely get reference count of an arbitrary page.
1693 * Returns 0 for a free page, 1 for an in-use page, -EIO for a page-type we
1694 * cannot handle and -EBUSY if we raced with an allocation.
1695 * We only incremented refcount in case the page was already in-use and it is
1696 * a known type we can handle.
1697 */
get_any_page(struct page * p,int flags)1698 static int get_any_page(struct page *p, int flags)
1699 {
1700 int ret = 0, pass = 0;
1701 bool count_increased = false;
1702
1703 if (flags & MF_COUNT_INCREASED)
1704 count_increased = true;
1705
1706 try_again:
1707 if (!count_increased && !get_hwpoison_page(p)) {
1708 if (page_count(p)) {
1709 /* We raced with an allocation, retry. */
1710 if (pass++ < 3)
1711 goto try_again;
1712 ret = -EBUSY;
1713 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1714 /* We raced with put_page, retry. */
1715 if (pass++ < 3)
1716 goto try_again;
1717 ret = -EIO;
1718 }
1719 } else {
1720 if (PageHuge(p) || PageLRU(p) || __PageMovable(p)) {
1721 ret = 1;
1722 } else {
1723 /*
1724 * A page we cannot handle. Check whether we can turn
1725 * it into something we can handle.
1726 */
1727 if (pass++ < 3) {
1728 put_page(p);
1729 shake_page(p, 1);
1730 count_increased = false;
1731 goto try_again;
1732 }
1733 put_page(p);
1734 ret = -EIO;
1735 }
1736 }
1737
1738 return ret;
1739 }
1740
isolate_page(struct page * page,struct list_head * pagelist)1741 static bool isolate_page(struct page *page, struct list_head *pagelist)
1742 {
1743 bool isolated = false;
1744 bool lru = PageLRU(page);
1745
1746 if (PageHuge(page)) {
1747 isolated = !isolate_hugetlb(page, pagelist);
1748 } else {
1749 if (lru)
1750 isolated = !isolate_lru_page(page);
1751 else
1752 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1753
1754 if (isolated)
1755 list_add(&page->lru, pagelist);
1756 }
1757
1758 if (isolated && lru)
1759 inc_node_page_state(page, NR_ISOLATED_ANON +
1760 page_is_file_lru(page));
1761
1762 /*
1763 * If we succeed to isolate the page, we grabbed another refcount on
1764 * the page, so we can safely drop the one we got from get_any_pages().
1765 * If we failed to isolate the page, it means that we cannot go further
1766 * and we will return an error, so drop the reference we got from
1767 * get_any_pages() as well.
1768 */
1769 put_page(page);
1770 return isolated;
1771 }
1772
1773 /*
1774 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
1775 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
1776 * If the page is mapped, it migrates the contents over.
1777 */
__soft_offline_page(struct page * page)1778 static int __soft_offline_page(struct page *page)
1779 {
1780 int ret = 0;
1781 unsigned long pfn = page_to_pfn(page);
1782 struct page *hpage = compound_head(page);
1783 char const *msg_page[] = {"page", "hugepage"};
1784 bool huge = PageHuge(page);
1785 LIST_HEAD(pagelist);
1786 struct migration_target_control mtc = {
1787 .nid = NUMA_NO_NODE,
1788 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1789 };
1790
1791 /*
1792 * Check PageHWPoison again inside page lock because PageHWPoison
1793 * is set by memory_failure() outside page lock. Note that
1794 * memory_failure() also double-checks PageHWPoison inside page lock,
1795 * so there's no race between soft_offline_page() and memory_failure().
1796 */
1797 lock_page(page);
1798 if (!PageHuge(page))
1799 wait_on_page_writeback(page);
1800 if (PageHWPoison(page)) {
1801 unlock_page(page);
1802 put_page(page);
1803 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1804 return 0;
1805 }
1806
1807 if (!PageHuge(page))
1808 /*
1809 * Try to invalidate first. This should work for
1810 * non dirty unmapped page cache pages.
1811 */
1812 ret = invalidate_inode_page(page);
1813 unlock_page(page);
1814
1815 /*
1816 * RED-PEN would be better to keep it isolated here, but we
1817 * would need to fix isolation locking first.
1818 */
1819 if (ret) {
1820 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1821 page_handle_poison(page, false, true);
1822 return 0;
1823 }
1824
1825 if (isolate_page(hpage, &pagelist)) {
1826 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
1827 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
1828 if (!ret) {
1829 bool release = !huge;
1830
1831 if (!page_handle_poison(page, huge, release))
1832 ret = -EBUSY;
1833 } else {
1834 if (!list_empty(&pagelist))
1835 putback_movable_pages(&pagelist);
1836
1837 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
1838 pfn, msg_page[huge], ret, page->flags, &page->flags);
1839 if (ret > 0)
1840 ret = -EBUSY;
1841 }
1842 } else {
1843 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
1844 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
1845 ret = -EBUSY;
1846 }
1847 return ret;
1848 }
1849
soft_offline_in_use_page(struct page * page)1850 static int soft_offline_in_use_page(struct page *page)
1851 {
1852 struct page *hpage = compound_head(page);
1853
1854 if (!PageHuge(page) && PageTransHuge(hpage))
1855 if (try_to_split_thp_page(page, "soft offline") < 0)
1856 return -EBUSY;
1857 return __soft_offline_page(page);
1858 }
1859
put_ref_page(struct page * page)1860 static void put_ref_page(struct page *page)
1861 {
1862 if (page)
1863 put_page(page);
1864 }
1865
1866 /**
1867 * soft_offline_page - Soft offline a page.
1868 * @pfn: pfn to soft-offline
1869 * @flags: flags. Same as memory_failure().
1870 *
1871 * Returns 0 on success, otherwise negated errno.
1872 *
1873 * Soft offline a page, by migration or invalidation,
1874 * without killing anything. This is for the case when
1875 * a page is not corrupted yet (so it's still valid to access),
1876 * but has had a number of corrected errors and is better taken
1877 * out.
1878 *
1879 * The actual policy on when to do that is maintained by
1880 * user space.
1881 *
1882 * This should never impact any application or cause data loss,
1883 * however it might take some time.
1884 *
1885 * This is not a 100% solution for all memory, but tries to be
1886 * ``good enough'' for the majority of memory.
1887 */
soft_offline_page(unsigned long pfn,int flags)1888 int soft_offline_page(unsigned long pfn, int flags)
1889 {
1890 int ret;
1891 bool try_again = true;
1892 struct page *page, *ref_page = NULL;
1893
1894 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
1895
1896 if (!pfn_valid(pfn))
1897 return -ENXIO;
1898 if (flags & MF_COUNT_INCREASED)
1899 ref_page = pfn_to_page(pfn);
1900
1901 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1902 page = pfn_to_online_page(pfn);
1903 if (!page) {
1904 put_ref_page(ref_page);
1905 return -EIO;
1906 }
1907
1908 if (PageHWPoison(page)) {
1909 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
1910 put_ref_page(ref_page);
1911 return 0;
1912 }
1913
1914 retry:
1915 get_online_mems();
1916 ret = get_any_page(page, flags);
1917 put_online_mems();
1918
1919 if (ret > 0) {
1920 ret = soft_offline_in_use_page(page);
1921 } else if (ret == 0) {
1922 if (!page_handle_poison(page, true, false)) {
1923 if (try_again) {
1924 try_again = false;
1925 flags &= ~MF_COUNT_INCREASED;
1926 goto retry;
1927 }
1928 ret = -EBUSY;
1929 }
1930 } else if (ret == -EIO) {
1931 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
1932 __func__, pfn, page->flags, &page->flags);
1933 }
1934
1935 return ret;
1936 }
1937