• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
4  */
5 
6 #include "mdp5_kms.h"
7 #include "mdp5_ctl.h"
8 
9 /*
10  * CTL - MDP Control Pool Manager
11  *
12  * Controls are shared between all display interfaces.
13  *
14  * They are intended to be used for data path configuration.
15  * The top level register programming describes the complete data path for
16  * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
17  *
18  * Hardware capabilities determine the number of concurrent data paths
19  *
20  * In certain use cases (high-resolution dual pipe), one single CTL can be
21  * shared across multiple CRTCs.
22  */
23 
24 #define CTL_STAT_BUSY		0x1
25 #define CTL_STAT_BOOKED	0x2
26 
27 struct mdp5_ctl {
28 	struct mdp5_ctl_manager *ctlm;
29 
30 	u32 id;
31 
32 	/* CTL status bitmask */
33 	u32 status;
34 
35 	bool encoder_enabled;
36 
37 	/* pending flush_mask bits */
38 	u32 flush_mask;
39 
40 	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
41 	spinlock_t hw_lock;
42 	u32 reg_offset;
43 
44 	/* when do CTL registers need to be flushed? (mask of trigger bits) */
45 	u32 pending_ctl_trigger;
46 
47 	bool cursor_on;
48 
49 	/* True if the current CTL has FLUSH bits pending for single FLUSH. */
50 	bool flush_pending;
51 
52 	struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
53 };
54 
55 struct mdp5_ctl_manager {
56 	struct drm_device *dev;
57 
58 	/* number of CTL / Layer Mixers in this hw config: */
59 	u32 nlm;
60 	u32 nctl;
61 
62 	/* to filter out non-present bits in the current hardware config */
63 	u32 flush_hw_mask;
64 
65 	/* status for single FLUSH */
66 	bool single_flush_supported;
67 	u32 single_flush_pending_mask;
68 
69 	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
70 	spinlock_t pool_lock;
71 	struct mdp5_ctl ctls[MAX_CTL];
72 };
73 
74 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)75 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
76 {
77 	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
78 
79 	return to_mdp5_kms(to_mdp_kms(priv->kms));
80 }
81 
82 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)83 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
84 {
85 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
86 
87 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
88 	mdp5_write(mdp5_kms, reg, data);
89 }
90 
91 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)92 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
93 {
94 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
95 
96 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
97 	return mdp5_read(mdp5_kms, reg);
98 }
99 
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)100 static void set_display_intf(struct mdp5_kms *mdp5_kms,
101 		struct mdp5_interface *intf)
102 {
103 	unsigned long flags;
104 	u32 intf_sel;
105 
106 	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
107 	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
108 
109 	switch (intf->num) {
110 	case 0:
111 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
112 		intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
113 		break;
114 	case 1:
115 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
116 		intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
117 		break;
118 	case 2:
119 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
120 		intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
121 		break;
122 	case 3:
123 		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
124 		intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
125 		break;
126 	default:
127 		BUG();
128 		break;
129 	}
130 
131 	mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
132 	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
133 }
134 
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)135 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
136 {
137 	unsigned long flags;
138 	struct mdp5_interface *intf = pipeline->intf;
139 	u32 ctl_op = 0;
140 
141 	if (!mdp5_cfg_intf_is_virtual(intf->type))
142 		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
143 
144 	switch (intf->type) {
145 	case INTF_DSI:
146 		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
147 			ctl_op |= MDP5_CTL_OP_CMD_MODE;
148 		break;
149 
150 	case INTF_WB:
151 		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
152 			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
153 		break;
154 
155 	default:
156 		break;
157 	}
158 
159 	if (pipeline->r_mixer)
160 		ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
161 			  MDP5_CTL_OP_PACK_3D(1);
162 
163 	spin_lock_irqsave(&ctl->hw_lock, flags);
164 	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
165 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
166 }
167 
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)168 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
169 {
170 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
171 	struct mdp5_interface *intf = pipeline->intf;
172 
173 	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
174 	if (!mdp5_cfg_intf_is_virtual(intf->type))
175 		set_display_intf(mdp5_kms, intf);
176 
177 	set_ctl_op(ctl, pipeline);
178 
179 	return 0;
180 }
181 
start_signal_needed(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)182 static bool start_signal_needed(struct mdp5_ctl *ctl,
183 				struct mdp5_pipeline *pipeline)
184 {
185 	struct mdp5_interface *intf = pipeline->intf;
186 
187 	if (!ctl->encoder_enabled)
188 		return false;
189 
190 	switch (intf->type) {
191 	case INTF_WB:
192 		return true;
193 	case INTF_DSI:
194 		return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
195 	default:
196 		return false;
197 	}
198 }
199 
200 /*
201  * send_start_signal() - Overlay Processor Start Signal
202  *
203  * For a given control operation (display pipeline), a START signal needs to be
204  * executed in order to kick off operation and activate all layers.
205  * e.g.: DSI command mode, Writeback
206  */
send_start_signal(struct mdp5_ctl * ctl)207 static void send_start_signal(struct mdp5_ctl *ctl)
208 {
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&ctl->hw_lock, flags);
212 	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
213 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
214 }
215 
216 /**
217  * mdp5_ctl_set_encoder_state() - set the encoder state
218  *
219  * @enable: true, when encoder is ready for data streaming; false, otherwise.
220  *
221  * Note:
222  * This encoder state is needed to trigger START signal (data path kickoff).
223  */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,bool enabled)224 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
225 			       struct mdp5_pipeline *pipeline,
226 			       bool enabled)
227 {
228 	struct mdp5_interface *intf = pipeline->intf;
229 
230 	if (WARN_ON(!ctl))
231 		return -EINVAL;
232 
233 	ctl->encoder_enabled = enabled;
234 	DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
235 
236 	if (start_signal_needed(ctl, pipeline)) {
237 		send_start_signal(ctl);
238 	}
239 
240 	return 0;
241 }
242 
243 /*
244  * Note:
245  * CTL registers need to be flushed after calling this function
246  * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
247  */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,int cursor_id,bool enable)248 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
249 			int cursor_id, bool enable)
250 {
251 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
252 	unsigned long flags;
253 	u32 blend_cfg;
254 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
255 
256 	if (WARN_ON(!mixer)) {
257 		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
258 			ctl->id);
259 		return -EINVAL;
260 	}
261 
262 	if (pipeline->r_mixer) {
263 		DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
264 		return -EINVAL;
265 	}
266 
267 	spin_lock_irqsave(&ctl->hw_lock, flags);
268 
269 	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
270 
271 	if (enable)
272 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
273 	else
274 		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
275 
276 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
277 	ctl->cursor_on = enable;
278 
279 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
280 
281 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
282 
283 	return 0;
284 }
285 
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)286 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
287 		enum mdp_mixer_stage_id stage)
288 {
289 	switch (pipe) {
290 	case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
291 	case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
292 	case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
293 	case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
294 	case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
295 	case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
296 	case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
297 	case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
298 	case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
299 	case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
300 	case SSPP_CURSOR0:
301 	case SSPP_CURSOR1:
302 	default:	return 0;
303 	}
304 }
305 
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)306 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
307 		enum mdp_mixer_stage_id stage)
308 {
309 	if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
310 		return 0;
311 
312 	switch (pipe) {
313 	case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
314 	case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
315 	case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
316 	case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
317 	case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
318 	case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
319 	case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
320 	case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
321 	case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
322 	case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
323 	case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
324 	case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
325 	default:	return 0;
326 	}
327 }
328 
mdp5_ctl_reset_blend_regs(struct mdp5_ctl * ctl)329 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
330 {
331 	unsigned long flags;
332 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
333 	int i;
334 
335 	spin_lock_irqsave(&ctl->hw_lock, flags);
336 
337 	for (i = 0; i < ctl_mgr->nlm; i++) {
338 		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
339 		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
340 	}
341 
342 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
343 }
344 
345 #define PIPE_LEFT	0
346 #define PIPE_RIGHT	1
mdp5_ctl_blend(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,enum mdp5_pipe stage[][MAX_PIPE_STAGE],enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],u32 stage_cnt,u32 ctl_blend_op_flags)347 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
348 		   enum mdp5_pipe stage[][MAX_PIPE_STAGE],
349 		   enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
350 		   u32 stage_cnt, u32 ctl_blend_op_flags)
351 {
352 	struct mdp5_hw_mixer *mixer = pipeline->mixer;
353 	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
354 	unsigned long flags;
355 	u32 blend_cfg = 0, blend_ext_cfg = 0;
356 	u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
357 	int i, start_stage;
358 
359 	mdp5_ctl_reset_blend_regs(ctl);
360 
361 	if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
362 		start_stage = STAGE0;
363 		blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
364 		if (r_mixer)
365 			r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
366 	} else {
367 		start_stage = STAGE_BASE;
368 	}
369 
370 	for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
371 		blend_cfg |=
372 			mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
373 			mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
374 		blend_ext_cfg |=
375 			mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
376 			mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
377 		if (r_mixer) {
378 			r_blend_cfg |=
379 				mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
380 				mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
381 			r_blend_ext_cfg |=
382 			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
383 			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
384 		}
385 	}
386 
387 	spin_lock_irqsave(&ctl->hw_lock, flags);
388 	if (ctl->cursor_on)
389 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
390 
391 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
392 	ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
393 		  blend_ext_cfg);
394 	if (r_mixer) {
395 		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
396 			  r_blend_cfg);
397 		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
398 			  r_blend_ext_cfg);
399 	}
400 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
401 
402 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
403 	if (r_mixer)
404 		ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
405 
406 	DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
407 		blend_cfg, blend_ext_cfg);
408 	if (r_mixer)
409 		DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
410 		    r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
411 
412 	return 0;
413 }
414 
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)415 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
416 {
417 	if (intf->type == INTF_WB)
418 		return MDP5_CTL_FLUSH_WB;
419 
420 	switch (intf->num) {
421 	case 0: return MDP5_CTL_FLUSH_TIMING_0;
422 	case 1: return MDP5_CTL_FLUSH_TIMING_1;
423 	case 2: return MDP5_CTL_FLUSH_TIMING_2;
424 	case 3: return MDP5_CTL_FLUSH_TIMING_3;
425 	default: return 0;
426 	}
427 }
428 
mdp_ctl_flush_mask_cursor(int cursor_id)429 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
430 {
431 	switch (cursor_id) {
432 	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
433 	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
434 	default: return 0;
435 	}
436 }
437 
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)438 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
439 {
440 	switch (pipe) {
441 	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
442 	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
443 	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
444 	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
445 	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
446 	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
447 	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
448 	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
449 	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
450 	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
451 	case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
452 	case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
453 	default:        return 0;
454 	}
455 }
456 
mdp_ctl_flush_mask_lm(int lm)457 u32 mdp_ctl_flush_mask_lm(int lm)
458 {
459 	switch (lm) {
460 	case 0:  return MDP5_CTL_FLUSH_LM0;
461 	case 1:  return MDP5_CTL_FLUSH_LM1;
462 	case 2:  return MDP5_CTL_FLUSH_LM2;
463 	case 3:  return MDP5_CTL_FLUSH_LM3;
464 	case 4:  return MDP5_CTL_FLUSH_LM4;
465 	case 5:  return MDP5_CTL_FLUSH_LM5;
466 	default: return 0;
467 	}
468 }
469 
fix_sw_flush(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)470 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
471 			u32 flush_mask)
472 {
473 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
474 	u32 sw_mask = 0;
475 #define BIT_NEEDS_SW_FIX(bit) \
476 	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
477 
478 	/* for some targets, cursor bit is the same as LM bit */
479 	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
480 		sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
481 
482 	return sw_mask;
483 }
484 
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)485 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
486 		u32 *flush_id)
487 {
488 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
489 
490 	if (ctl->pair) {
491 		DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
492 		ctl->flush_pending = true;
493 		ctl_mgr->single_flush_pending_mask |= (*flush_mask);
494 		*flush_mask = 0;
495 
496 		if (ctl->pair->flush_pending) {
497 			*flush_id = min_t(u32, ctl->id, ctl->pair->id);
498 			*flush_mask = ctl_mgr->single_flush_pending_mask;
499 
500 			ctl->flush_pending = false;
501 			ctl->pair->flush_pending = false;
502 			ctl_mgr->single_flush_pending_mask = 0;
503 
504 			DBG("Single FLUSH mask %x,ID %d", *flush_mask,
505 				*flush_id);
506 		}
507 	}
508 }
509 
510 /**
511  * mdp5_ctl_commit() - Register Flush
512  *
513  * The flush register is used to indicate several registers are all
514  * programmed, and are safe to update to the back copy of the double
515  * buffered registers.
516  *
517  * Some registers FLUSH bits are shared when the hardware does not have
518  * dedicated bits for them; handling these is the job of fix_sw_flush().
519  *
520  * CTL registers need to be flushed in some circumstances; if that is the
521  * case, some trigger bits will be present in both flush mask and
522  * ctl->pending_ctl_trigger.
523  *
524  * Return H/W flushed bit mask.
525  */
mdp5_ctl_commit(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask,bool start)526 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
527 		    struct mdp5_pipeline *pipeline,
528 		    u32 flush_mask, bool start)
529 {
530 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
531 	unsigned long flags;
532 	u32 flush_id = ctl->id;
533 	u32 curr_ctl_flush_mask;
534 
535 	VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
536 
537 	if (ctl->pending_ctl_trigger & flush_mask) {
538 		flush_mask |= MDP5_CTL_FLUSH_CTL;
539 		ctl->pending_ctl_trigger = 0;
540 	}
541 
542 	flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
543 
544 	flush_mask &= ctl_mgr->flush_hw_mask;
545 
546 	curr_ctl_flush_mask = flush_mask;
547 
548 	fix_for_single_flush(ctl, &flush_mask, &flush_id);
549 
550 	if (!start) {
551 		ctl->flush_mask |= flush_mask;
552 		return curr_ctl_flush_mask;
553 	} else {
554 		flush_mask |= ctl->flush_mask;
555 		ctl->flush_mask = 0;
556 	}
557 
558 	if (flush_mask) {
559 		spin_lock_irqsave(&ctl->hw_lock, flags);
560 		ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
561 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
562 	}
563 
564 	if (start_signal_needed(ctl, pipeline)) {
565 		send_start_signal(ctl);
566 	}
567 
568 	return curr_ctl_flush_mask;
569 }
570 
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)571 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
572 {
573 	return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
574 }
575 
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)576 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
577 {
578 	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
579 }
580 
581 /*
582  * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
583  */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)584 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
585 {
586 	struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
587 	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
588 
589 	/* do nothing silently if hw doesn't support */
590 	if (!ctl_mgr->single_flush_supported)
591 		return 0;
592 
593 	if (!enable) {
594 		ctlx->pair = NULL;
595 		ctly->pair = NULL;
596 		mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
597 		return 0;
598 	} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
599 		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
600 		return -EINVAL;
601 	} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
602 		DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
603 		return -EINVAL;
604 	}
605 
606 	ctlx->pair = ctly;
607 	ctly->pair = ctlx;
608 
609 	mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
610 		   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
611 
612 	return 0;
613 }
614 
615 /*
616  * mdp5_ctl_request() - CTL allocation
617  *
618  * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
619  * If no CTL is available in preferred category, allocate from the other one.
620  *
621  * @return fail if no CTL is available.
622  */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)623 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
624 		int intf_num)
625 {
626 	struct mdp5_ctl *ctl = NULL;
627 	const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
628 	u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
629 	unsigned long flags;
630 	int c;
631 
632 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
633 
634 	/* search the preferred */
635 	for (c = 0; c < ctl_mgr->nctl; c++)
636 		if ((ctl_mgr->ctls[c].status & checkm) == match)
637 			goto found;
638 
639 	dev_warn(ctl_mgr->dev->dev,
640 		"fall back to the other CTL category for INTF %d!\n", intf_num);
641 
642 	match ^= CTL_STAT_BOOKED;
643 	for (c = 0; c < ctl_mgr->nctl; c++)
644 		if ((ctl_mgr->ctls[c].status & checkm) == match)
645 			goto found;
646 
647 	DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
648 	goto unlock;
649 
650 found:
651 	ctl = &ctl_mgr->ctls[c];
652 	ctl->status |= CTL_STAT_BUSY;
653 	ctl->pending_ctl_trigger = 0;
654 	DBG("CTL %d allocated", ctl->id);
655 
656 unlock:
657 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
658 	return ctl;
659 }
660 
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)661 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
662 {
663 	unsigned long flags;
664 	int c;
665 
666 	for (c = 0; c < ctl_mgr->nctl; c++) {
667 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
668 
669 		spin_lock_irqsave(&ctl->hw_lock, flags);
670 		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
671 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
672 	}
673 }
674 
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)675 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
676 {
677 	kfree(ctl_mgr);
678 }
679 
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)680 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
681 		void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
682 {
683 	struct mdp5_ctl_manager *ctl_mgr;
684 	const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
685 	int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
686 	unsigned dsi_cnt = 0;
687 	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
688 	unsigned long flags;
689 	int c, ret;
690 
691 	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
692 	if (!ctl_mgr) {
693 		DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
694 		ret = -ENOMEM;
695 		goto fail;
696 	}
697 
698 	if (WARN_ON(ctl_cfg->count > MAX_CTL)) {
699 		DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
700 				ctl_cfg->count);
701 		ret = -ENOSPC;
702 		goto fail;
703 	}
704 
705 	/* initialize the CTL manager: */
706 	ctl_mgr->dev = dev;
707 	ctl_mgr->nlm = hw_cfg->lm.count;
708 	ctl_mgr->nctl = ctl_cfg->count;
709 	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
710 	spin_lock_init(&ctl_mgr->pool_lock);
711 
712 	/* initialize each CTL of the pool: */
713 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
714 	for (c = 0; c < ctl_mgr->nctl; c++) {
715 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
716 
717 		if (WARN_ON(!ctl_cfg->base[c])) {
718 			DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
719 			ret = -EINVAL;
720 			spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
721 			goto fail;
722 		}
723 		ctl->ctlm = ctl_mgr;
724 		ctl->id = c;
725 		ctl->reg_offset = ctl_cfg->base[c];
726 		ctl->status = 0;
727 		spin_lock_init(&ctl->hw_lock);
728 	}
729 
730 	/*
731 	 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
732 	 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
733 	 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
734 	 * Single FLUSH is supported from hw rev v3.0.
735 	 */
736 	for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
737 		if (hw_cfg->intf.connect[c] == INTF_DSI)
738 			dsi_cnt++;
739 	if ((rev >= 3) && (dsi_cnt > 1)) {
740 		ctl_mgr->single_flush_supported = true;
741 		/* Reserve CTL0/1 for INTF1/2 */
742 		ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
743 		ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
744 	}
745 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
746 	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
747 
748 	return ctl_mgr;
749 
750 fail:
751 	if (ctl_mgr)
752 		mdp5_ctlm_destroy(ctl_mgr);
753 
754 	return ERR_PTR(ret);
755 }
756