1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
4 */
5
6 #include "mdp5_kms.h"
7 #include "mdp5_ctl.h"
8
9 /*
10 * CTL - MDP Control Pool Manager
11 *
12 * Controls are shared between all display interfaces.
13 *
14 * They are intended to be used for data path configuration.
15 * The top level register programming describes the complete data path for
16 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
17 *
18 * Hardware capabilities determine the number of concurrent data paths
19 *
20 * In certain use cases (high-resolution dual pipe), one single CTL can be
21 * shared across multiple CRTCs.
22 */
23
24 #define CTL_STAT_BUSY 0x1
25 #define CTL_STAT_BOOKED 0x2
26
27 struct mdp5_ctl {
28 struct mdp5_ctl_manager *ctlm;
29
30 u32 id;
31
32 /* CTL status bitmask */
33 u32 status;
34
35 bool encoder_enabled;
36
37 /* pending flush_mask bits */
38 u32 flush_mask;
39
40 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
41 spinlock_t hw_lock;
42 u32 reg_offset;
43
44 /* when do CTL registers need to be flushed? (mask of trigger bits) */
45 u32 pending_ctl_trigger;
46
47 bool cursor_on;
48
49 /* True if the current CTL has FLUSH bits pending for single FLUSH. */
50 bool flush_pending;
51
52 struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
53 };
54
55 struct mdp5_ctl_manager {
56 struct drm_device *dev;
57
58 /* number of CTL / Layer Mixers in this hw config: */
59 u32 nlm;
60 u32 nctl;
61
62 /* to filter out non-present bits in the current hardware config */
63 u32 flush_hw_mask;
64
65 /* status for single FLUSH */
66 bool single_flush_supported;
67 u32 single_flush_pending_mask;
68
69 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
70 spinlock_t pool_lock;
71 struct mdp5_ctl ctls[MAX_CTL];
72 };
73
74 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)75 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
76 {
77 struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
78
79 return to_mdp5_kms(to_mdp_kms(priv->kms));
80 }
81
82 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)83 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
84 {
85 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
86
87 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
88 mdp5_write(mdp5_kms, reg, data);
89 }
90
91 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)92 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
93 {
94 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
95
96 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
97 return mdp5_read(mdp5_kms, reg);
98 }
99
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)100 static void set_display_intf(struct mdp5_kms *mdp5_kms,
101 struct mdp5_interface *intf)
102 {
103 unsigned long flags;
104 u32 intf_sel;
105
106 spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
107 intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
108
109 switch (intf->num) {
110 case 0:
111 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
112 intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
113 break;
114 case 1:
115 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
116 intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
117 break;
118 case 2:
119 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
120 intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
121 break;
122 case 3:
123 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
124 intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
125 break;
126 default:
127 BUG();
128 break;
129 }
130
131 mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
132 spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
133 }
134
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)135 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
136 {
137 unsigned long flags;
138 struct mdp5_interface *intf = pipeline->intf;
139 u32 ctl_op = 0;
140
141 if (!mdp5_cfg_intf_is_virtual(intf->type))
142 ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
143
144 switch (intf->type) {
145 case INTF_DSI:
146 if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
147 ctl_op |= MDP5_CTL_OP_CMD_MODE;
148 break;
149
150 case INTF_WB:
151 if (intf->mode == MDP5_INTF_WB_MODE_LINE)
152 ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
153 break;
154
155 default:
156 break;
157 }
158
159 if (pipeline->r_mixer)
160 ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
161 MDP5_CTL_OP_PACK_3D(1);
162
163 spin_lock_irqsave(&ctl->hw_lock, flags);
164 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
165 spin_unlock_irqrestore(&ctl->hw_lock, flags);
166 }
167
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)168 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
169 {
170 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
171 struct mdp5_interface *intf = pipeline->intf;
172
173 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
174 if (!mdp5_cfg_intf_is_virtual(intf->type))
175 set_display_intf(mdp5_kms, intf);
176
177 set_ctl_op(ctl, pipeline);
178
179 return 0;
180 }
181
start_signal_needed(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline)182 static bool start_signal_needed(struct mdp5_ctl *ctl,
183 struct mdp5_pipeline *pipeline)
184 {
185 struct mdp5_interface *intf = pipeline->intf;
186
187 if (!ctl->encoder_enabled)
188 return false;
189
190 switch (intf->type) {
191 case INTF_WB:
192 return true;
193 case INTF_DSI:
194 return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
195 default:
196 return false;
197 }
198 }
199
200 /*
201 * send_start_signal() - Overlay Processor Start Signal
202 *
203 * For a given control operation (display pipeline), a START signal needs to be
204 * executed in order to kick off operation and activate all layers.
205 * e.g.: DSI command mode, Writeback
206 */
send_start_signal(struct mdp5_ctl * ctl)207 static void send_start_signal(struct mdp5_ctl *ctl)
208 {
209 unsigned long flags;
210
211 spin_lock_irqsave(&ctl->hw_lock, flags);
212 ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
213 spin_unlock_irqrestore(&ctl->hw_lock, flags);
214 }
215
216 /**
217 * mdp5_ctl_set_encoder_state() - set the encoder state
218 *
219 * @enable: true, when encoder is ready for data streaming; false, otherwise.
220 *
221 * Note:
222 * This encoder state is needed to trigger START signal (data path kickoff).
223 */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,bool enabled)224 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
225 struct mdp5_pipeline *pipeline,
226 bool enabled)
227 {
228 struct mdp5_interface *intf = pipeline->intf;
229
230 if (WARN_ON(!ctl))
231 return -EINVAL;
232
233 ctl->encoder_enabled = enabled;
234 DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
235
236 if (start_signal_needed(ctl, pipeline)) {
237 send_start_signal(ctl);
238 }
239
240 return 0;
241 }
242
243 /*
244 * Note:
245 * CTL registers need to be flushed after calling this function
246 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
247 */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,int cursor_id,bool enable)248 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
249 int cursor_id, bool enable)
250 {
251 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
252 unsigned long flags;
253 u32 blend_cfg;
254 struct mdp5_hw_mixer *mixer = pipeline->mixer;
255
256 if (WARN_ON(!mixer)) {
257 DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
258 ctl->id);
259 return -EINVAL;
260 }
261
262 if (pipeline->r_mixer) {
263 DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
264 return -EINVAL;
265 }
266
267 spin_lock_irqsave(&ctl->hw_lock, flags);
268
269 blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
270
271 if (enable)
272 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
273 else
274 blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
275
276 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
277 ctl->cursor_on = enable;
278
279 spin_unlock_irqrestore(&ctl->hw_lock, flags);
280
281 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
282
283 return 0;
284 }
285
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)286 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
287 enum mdp_mixer_stage_id stage)
288 {
289 switch (pipe) {
290 case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
291 case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
292 case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
293 case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
294 case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
295 case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
296 case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
297 case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
298 case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
299 case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
300 case SSPP_CURSOR0:
301 case SSPP_CURSOR1:
302 default: return 0;
303 }
304 }
305
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)306 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
307 enum mdp_mixer_stage_id stage)
308 {
309 if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
310 return 0;
311
312 switch (pipe) {
313 case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
314 case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
315 case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
316 case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
317 case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
318 case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
319 case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
320 case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
321 case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
322 case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
323 case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
324 case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
325 default: return 0;
326 }
327 }
328
mdp5_ctl_reset_blend_regs(struct mdp5_ctl * ctl)329 static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
330 {
331 unsigned long flags;
332 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
333 int i;
334
335 spin_lock_irqsave(&ctl->hw_lock, flags);
336
337 for (i = 0; i < ctl_mgr->nlm; i++) {
338 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
339 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
340 }
341
342 spin_unlock_irqrestore(&ctl->hw_lock, flags);
343 }
344
345 #define PIPE_LEFT 0
346 #define PIPE_RIGHT 1
mdp5_ctl_blend(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,enum mdp5_pipe stage[][MAX_PIPE_STAGE],enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],u32 stage_cnt,u32 ctl_blend_op_flags)347 int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
348 enum mdp5_pipe stage[][MAX_PIPE_STAGE],
349 enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
350 u32 stage_cnt, u32 ctl_blend_op_flags)
351 {
352 struct mdp5_hw_mixer *mixer = pipeline->mixer;
353 struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
354 unsigned long flags;
355 u32 blend_cfg = 0, blend_ext_cfg = 0;
356 u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
357 int i, start_stage;
358
359 mdp5_ctl_reset_blend_regs(ctl);
360
361 if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
362 start_stage = STAGE0;
363 blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
364 if (r_mixer)
365 r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
366 } else {
367 start_stage = STAGE_BASE;
368 }
369
370 for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
371 blend_cfg |=
372 mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
373 mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
374 blend_ext_cfg |=
375 mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
376 mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
377 if (r_mixer) {
378 r_blend_cfg |=
379 mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
380 mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
381 r_blend_ext_cfg |=
382 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
383 mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
384 }
385 }
386
387 spin_lock_irqsave(&ctl->hw_lock, flags);
388 if (ctl->cursor_on)
389 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
390
391 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
392 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
393 blend_ext_cfg);
394 if (r_mixer) {
395 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
396 r_blend_cfg);
397 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
398 r_blend_ext_cfg);
399 }
400 spin_unlock_irqrestore(&ctl->hw_lock, flags);
401
402 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
403 if (r_mixer)
404 ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
405
406 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
407 blend_cfg, blend_ext_cfg);
408 if (r_mixer)
409 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
410 r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
411
412 return 0;
413 }
414
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)415 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
416 {
417 if (intf->type == INTF_WB)
418 return MDP5_CTL_FLUSH_WB;
419
420 switch (intf->num) {
421 case 0: return MDP5_CTL_FLUSH_TIMING_0;
422 case 1: return MDP5_CTL_FLUSH_TIMING_1;
423 case 2: return MDP5_CTL_FLUSH_TIMING_2;
424 case 3: return MDP5_CTL_FLUSH_TIMING_3;
425 default: return 0;
426 }
427 }
428
mdp_ctl_flush_mask_cursor(int cursor_id)429 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
430 {
431 switch (cursor_id) {
432 case 0: return MDP5_CTL_FLUSH_CURSOR_0;
433 case 1: return MDP5_CTL_FLUSH_CURSOR_1;
434 default: return 0;
435 }
436 }
437
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)438 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
439 {
440 switch (pipe) {
441 case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
442 case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
443 case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
444 case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
445 case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
446 case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
447 case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
448 case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
449 case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
450 case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
451 case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
452 case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
453 default: return 0;
454 }
455 }
456
mdp_ctl_flush_mask_lm(int lm)457 u32 mdp_ctl_flush_mask_lm(int lm)
458 {
459 switch (lm) {
460 case 0: return MDP5_CTL_FLUSH_LM0;
461 case 1: return MDP5_CTL_FLUSH_LM1;
462 case 2: return MDP5_CTL_FLUSH_LM2;
463 case 3: return MDP5_CTL_FLUSH_LM3;
464 case 4: return MDP5_CTL_FLUSH_LM4;
465 case 5: return MDP5_CTL_FLUSH_LM5;
466 default: return 0;
467 }
468 }
469
fix_sw_flush(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask)470 static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
471 u32 flush_mask)
472 {
473 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
474 u32 sw_mask = 0;
475 #define BIT_NEEDS_SW_FIX(bit) \
476 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
477
478 /* for some targets, cursor bit is the same as LM bit */
479 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
480 sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
481
482 return sw_mask;
483 }
484
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)485 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
486 u32 *flush_id)
487 {
488 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
489
490 if (ctl->pair) {
491 DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
492 ctl->flush_pending = true;
493 ctl_mgr->single_flush_pending_mask |= (*flush_mask);
494 *flush_mask = 0;
495
496 if (ctl->pair->flush_pending) {
497 *flush_id = min_t(u32, ctl->id, ctl->pair->id);
498 *flush_mask = ctl_mgr->single_flush_pending_mask;
499
500 ctl->flush_pending = false;
501 ctl->pair->flush_pending = false;
502 ctl_mgr->single_flush_pending_mask = 0;
503
504 DBG("Single FLUSH mask %x,ID %d", *flush_mask,
505 *flush_id);
506 }
507 }
508 }
509
510 /**
511 * mdp5_ctl_commit() - Register Flush
512 *
513 * The flush register is used to indicate several registers are all
514 * programmed, and are safe to update to the back copy of the double
515 * buffered registers.
516 *
517 * Some registers FLUSH bits are shared when the hardware does not have
518 * dedicated bits for them; handling these is the job of fix_sw_flush().
519 *
520 * CTL registers need to be flushed in some circumstances; if that is the
521 * case, some trigger bits will be present in both flush mask and
522 * ctl->pending_ctl_trigger.
523 *
524 * Return H/W flushed bit mask.
525 */
mdp5_ctl_commit(struct mdp5_ctl * ctl,struct mdp5_pipeline * pipeline,u32 flush_mask,bool start)526 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
527 struct mdp5_pipeline *pipeline,
528 u32 flush_mask, bool start)
529 {
530 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
531 unsigned long flags;
532 u32 flush_id = ctl->id;
533 u32 curr_ctl_flush_mask;
534
535 VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
536
537 if (ctl->pending_ctl_trigger & flush_mask) {
538 flush_mask |= MDP5_CTL_FLUSH_CTL;
539 ctl->pending_ctl_trigger = 0;
540 }
541
542 flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
543
544 flush_mask &= ctl_mgr->flush_hw_mask;
545
546 curr_ctl_flush_mask = flush_mask;
547
548 fix_for_single_flush(ctl, &flush_mask, &flush_id);
549
550 if (!start) {
551 ctl->flush_mask |= flush_mask;
552 return curr_ctl_flush_mask;
553 } else {
554 flush_mask |= ctl->flush_mask;
555 ctl->flush_mask = 0;
556 }
557
558 if (flush_mask) {
559 spin_lock_irqsave(&ctl->hw_lock, flags);
560 ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
561 spin_unlock_irqrestore(&ctl->hw_lock, flags);
562 }
563
564 if (start_signal_needed(ctl, pipeline)) {
565 send_start_signal(ctl);
566 }
567
568 return curr_ctl_flush_mask;
569 }
570
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)571 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
572 {
573 return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
574 }
575
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)576 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
577 {
578 return WARN_ON(!ctl) ? -EINVAL : ctl->id;
579 }
580
581 /*
582 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
583 */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)584 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
585 {
586 struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
587 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
588
589 /* do nothing silently if hw doesn't support */
590 if (!ctl_mgr->single_flush_supported)
591 return 0;
592
593 if (!enable) {
594 ctlx->pair = NULL;
595 ctly->pair = NULL;
596 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
597 return 0;
598 } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
599 DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
600 return -EINVAL;
601 } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
602 DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
603 return -EINVAL;
604 }
605
606 ctlx->pair = ctly;
607 ctly->pair = ctlx;
608
609 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
610 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
611
612 return 0;
613 }
614
615 /*
616 * mdp5_ctl_request() - CTL allocation
617 *
618 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
619 * If no CTL is available in preferred category, allocate from the other one.
620 *
621 * @return fail if no CTL is available.
622 */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)623 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
624 int intf_num)
625 {
626 struct mdp5_ctl *ctl = NULL;
627 const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
628 u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
629 unsigned long flags;
630 int c;
631
632 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
633
634 /* search the preferred */
635 for (c = 0; c < ctl_mgr->nctl; c++)
636 if ((ctl_mgr->ctls[c].status & checkm) == match)
637 goto found;
638
639 dev_warn(ctl_mgr->dev->dev,
640 "fall back to the other CTL category for INTF %d!\n", intf_num);
641
642 match ^= CTL_STAT_BOOKED;
643 for (c = 0; c < ctl_mgr->nctl; c++)
644 if ((ctl_mgr->ctls[c].status & checkm) == match)
645 goto found;
646
647 DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
648 goto unlock;
649
650 found:
651 ctl = &ctl_mgr->ctls[c];
652 ctl->status |= CTL_STAT_BUSY;
653 ctl->pending_ctl_trigger = 0;
654 DBG("CTL %d allocated", ctl->id);
655
656 unlock:
657 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
658 return ctl;
659 }
660
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)661 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
662 {
663 unsigned long flags;
664 int c;
665
666 for (c = 0; c < ctl_mgr->nctl; c++) {
667 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
668
669 spin_lock_irqsave(&ctl->hw_lock, flags);
670 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
671 spin_unlock_irqrestore(&ctl->hw_lock, flags);
672 }
673 }
674
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)675 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
676 {
677 kfree(ctl_mgr);
678 }
679
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)680 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
681 void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
682 {
683 struct mdp5_ctl_manager *ctl_mgr;
684 const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
685 int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
686 unsigned dsi_cnt = 0;
687 const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
688 unsigned long flags;
689 int c, ret;
690
691 ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
692 if (!ctl_mgr) {
693 DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
694 ret = -ENOMEM;
695 goto fail;
696 }
697
698 if (WARN_ON(ctl_cfg->count > MAX_CTL)) {
699 DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
700 ctl_cfg->count);
701 ret = -ENOSPC;
702 goto fail;
703 }
704
705 /* initialize the CTL manager: */
706 ctl_mgr->dev = dev;
707 ctl_mgr->nlm = hw_cfg->lm.count;
708 ctl_mgr->nctl = ctl_cfg->count;
709 ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
710 spin_lock_init(&ctl_mgr->pool_lock);
711
712 /* initialize each CTL of the pool: */
713 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
714 for (c = 0; c < ctl_mgr->nctl; c++) {
715 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
716
717 if (WARN_ON(!ctl_cfg->base[c])) {
718 DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
719 ret = -EINVAL;
720 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
721 goto fail;
722 }
723 ctl->ctlm = ctl_mgr;
724 ctl->id = c;
725 ctl->reg_offset = ctl_cfg->base[c];
726 ctl->status = 0;
727 spin_lock_init(&ctl->hw_lock);
728 }
729
730 /*
731 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
732 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
733 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
734 * Single FLUSH is supported from hw rev v3.0.
735 */
736 for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
737 if (hw_cfg->intf.connect[c] == INTF_DSI)
738 dsi_cnt++;
739 if ((rev >= 3) && (dsi_cnt > 1)) {
740 ctl_mgr->single_flush_supported = true;
741 /* Reserve CTL0/1 for INTF1/2 */
742 ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
743 ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
744 }
745 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
746 DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
747
748 return ctl_mgr;
749
750 fail:
751 if (ctl_mgr)
752 mdp5_ctlm_destroy(ctl_mgr);
753
754 return ERR_PTR(ret);
755 }
756