1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70 #include <trace/hooks/mm.h>
71
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76
77 /* Active memory cgroup to use from an interrupt context */
78 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79
80 /* Socket memory accounting disabled? */
81 static bool cgroup_memory_nosocket;
82
83 /* Kernel memory accounting disabled? */
84 static bool cgroup_memory_nokmem;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 bool cgroup_memory_noswap __read_mostly;
89 #else
90 #define cgroup_memory_noswap 1
91 #endif
92
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101 }
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105
106 /*
107 * Cgroups above their limits are maintained in a RB-Tree, independent of
108 * their hierarchy representation
109 */
110
111 struct mem_cgroup_tree_per_node {
112 struct rb_root rb_root;
113 struct rb_node *rb_rightmost;
114 spinlock_t lock;
115 };
116
117 struct mem_cgroup_tree {
118 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 };
120
121 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122
123 /* for OOM */
124 struct mem_cgroup_eventfd_list {
125 struct list_head list;
126 struct eventfd_ctx *eventfd;
127 };
128
129 /*
130 * cgroup_event represents events which userspace want to receive.
131 */
132 struct mem_cgroup_event {
133 /*
134 * memcg which the event belongs to.
135 */
136 struct mem_cgroup *memcg;
137 /*
138 * eventfd to signal userspace about the event.
139 */
140 struct eventfd_ctx *eventfd;
141 /*
142 * Each of these stored in a list by the cgroup.
143 */
144 struct list_head list;
145 /*
146 * register_event() callback will be used to add new userspace
147 * waiter for changes related to this event. Use eventfd_signal()
148 * on eventfd to send notification to userspace.
149 */
150 int (*register_event)(struct mem_cgroup *memcg,
151 struct eventfd_ctx *eventfd, const char *args);
152 /*
153 * unregister_event() callback will be called when userspace closes
154 * the eventfd or on cgroup removing. This callback must be set,
155 * if you want provide notification functionality.
156 */
157 void (*unregister_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd);
159 /*
160 * All fields below needed to unregister event when
161 * userspace closes eventfd.
162 */
163 poll_table pt;
164 wait_queue_head_t *wqh;
165 wait_queue_entry_t wait;
166 struct work_struct remove;
167 };
168
169 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171
172 /* Stuffs for move charges at task migration. */
173 /*
174 * Types of charges to be moved.
175 */
176 #define MOVE_ANON 0x1U
177 #define MOVE_FILE 0x2U
178 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
179
180 /* "mc" and its members are protected by cgroup_mutex */
181 static struct move_charge_struct {
182 spinlock_t lock; /* for from, to */
183 struct mm_struct *mm;
184 struct mem_cgroup *from;
185 struct mem_cgroup *to;
186 unsigned long flags;
187 unsigned long precharge;
188 unsigned long moved_charge;
189 unsigned long moved_swap;
190 struct task_struct *moving_task; /* a task moving charges */
191 wait_queue_head_t waitq; /* a waitq for other context */
192 } mc = {
193 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195 };
196
197 /*
198 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199 * limit reclaim to prevent infinite loops, if they ever occur.
200 */
201 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
202 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203
204 /* for encoding cft->private value on file */
205 enum res_type {
206 _MEM,
207 _MEMSWAP,
208 _OOM_TYPE,
209 _KMEM,
210 _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val) ((val) & 0xffff)
216 /* Used for OOM nofiier */
217 #define OOM_CONTROL (0)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_css(struct vmpressure * vmpr)248 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249 {
250 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
obj_cgroup_release(struct percpu_ref * ref)256 static void obj_cgroup_release(struct percpu_ref *ref)
257 {
258 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259 struct mem_cgroup *memcg;
260 unsigned int nr_bytes;
261 unsigned int nr_pages;
262 unsigned long flags;
263
264 /*
265 * At this point all allocated objects are freed, and
266 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268 *
269 * The following sequence can lead to it:
270 * 1) CPU0: objcg == stock->cached_objcg
271 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272 * PAGE_SIZE bytes are charged
273 * 3) CPU1: a process from another memcg is allocating something,
274 * the stock if flushed,
275 * objcg->nr_charged_bytes = PAGE_SIZE - 92
276 * 5) CPU0: we do release this object,
277 * 92 bytes are added to stock->nr_bytes
278 * 6) CPU0: stock is flushed,
279 * 92 bytes are added to objcg->nr_charged_bytes
280 *
281 * In the result, nr_charged_bytes == PAGE_SIZE.
282 * This page will be uncharged in obj_cgroup_release().
283 */
284 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286 nr_pages = nr_bytes >> PAGE_SHIFT;
287
288 spin_lock_irqsave(&objcg_lock, flags);
289 memcg = obj_cgroup_memcg(objcg);
290 if (nr_pages)
291 __memcg_kmem_uncharge(memcg, nr_pages);
292 list_del(&objcg->list);
293 mem_cgroup_put(memcg);
294 spin_unlock_irqrestore(&objcg_lock, flags);
295
296 percpu_ref_exit(ref);
297 kfree_rcu(objcg, rcu);
298 }
299
obj_cgroup_alloc(void)300 static struct obj_cgroup *obj_cgroup_alloc(void)
301 {
302 struct obj_cgroup *objcg;
303 int ret;
304
305 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306 if (!objcg)
307 return NULL;
308
309 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310 GFP_KERNEL);
311 if (ret) {
312 kfree(objcg);
313 return NULL;
314 }
315 INIT_LIST_HEAD(&objcg->list);
316 return objcg;
317 }
318
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)319 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320 struct mem_cgroup *parent)
321 {
322 struct obj_cgroup *objcg, *iter;
323
324 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325
326 spin_lock_irq(&objcg_lock);
327
328 /* Move active objcg to the parent's list */
329 xchg(&objcg->memcg, parent);
330 css_get(&parent->css);
331 list_add(&objcg->list, &parent->objcg_list);
332
333 /* Move already reparented objcgs to the parent's list */
334 list_for_each_entry(iter, &memcg->objcg_list, list) {
335 css_get(&parent->css);
336 xchg(&iter->memcg, parent);
337 css_put(&memcg->css);
338 }
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * This will be used as a shrinker list's index.
348 * The main reason for not using cgroup id for this:
349 * this works better in sparse environments, where we have a lot of memcgs,
350 * but only a few kmem-limited. Or also, if we have, for instance, 200
351 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
352 * 200 entry array for that.
353 *
354 * The current size of the caches array is stored in memcg_nr_cache_ids. It
355 * will double each time we have to increase it.
356 */
357 static DEFINE_IDA(memcg_cache_ida);
358 int memcg_nr_cache_ids;
359
360 /* Protects memcg_nr_cache_ids */
361 static DECLARE_RWSEM(memcg_cache_ids_sem);
362
memcg_get_cache_ids(void)363 void memcg_get_cache_ids(void)
364 {
365 down_read(&memcg_cache_ids_sem);
366 }
367
memcg_put_cache_ids(void)368 void memcg_put_cache_ids(void)
369 {
370 up_read(&memcg_cache_ids_sem);
371 }
372
373 /*
374 * MIN_SIZE is different than 1, because we would like to avoid going through
375 * the alloc/free process all the time. In a small machine, 4 kmem-limited
376 * cgroups is a reasonable guess. In the future, it could be a parameter or
377 * tunable, but that is strictly not necessary.
378 *
379 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380 * this constant directly from cgroup, but it is understandable that this is
381 * better kept as an internal representation in cgroup.c. In any case, the
382 * cgrp_id space is not getting any smaller, and we don't have to necessarily
383 * increase ours as well if it increases.
384 */
385 #define MEMCG_CACHES_MIN_SIZE 4
386 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387
388 /*
389 * A lot of the calls to the cache allocation functions are expected to be
390 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391 * conditional to this static branch, we'll have to allow modules that does
392 * kmem_cache_alloc and the such to see this symbol as well
393 */
394 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395 EXPORT_SYMBOL(memcg_kmem_enabled_key);
396 #endif
397
398 static int memcg_shrinker_map_size;
399 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400
memcg_free_shrinker_map_rcu(struct rcu_head * head)401 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402 {
403 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404 }
405
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)406 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407 int size, int old_size)
408 {
409 struct memcg_shrinker_map *new, *old;
410 int nid;
411
412 lockdep_assert_held(&memcg_shrinker_map_mutex);
413
414 for_each_node(nid) {
415 old = rcu_dereference_protected(
416 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417 /* Not yet online memcg */
418 if (!old)
419 return 0;
420
421 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422 if (!new)
423 return -ENOMEM;
424
425 /* Set all old bits, clear all new bits */
426 memset(new->map, (int)0xff, old_size);
427 memset((void *)new->map + old_size, 0, size - old_size);
428
429 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431 }
432
433 return 0;
434 }
435
memcg_free_shrinker_maps(struct mem_cgroup * memcg)436 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup_per_node *pn;
439 struct memcg_shrinker_map *map;
440 int nid;
441
442 if (mem_cgroup_is_root(memcg))
443 return;
444
445 for_each_node(nid) {
446 pn = mem_cgroup_nodeinfo(memcg, nid);
447 map = rcu_dereference_protected(pn->shrinker_map, true);
448 if (map)
449 kvfree(map);
450 rcu_assign_pointer(pn->shrinker_map, NULL);
451 }
452 }
453
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)454 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455 {
456 struct memcg_shrinker_map *map;
457 int nid, size, ret = 0;
458
459 if (mem_cgroup_is_root(memcg))
460 return 0;
461
462 mutex_lock(&memcg_shrinker_map_mutex);
463 size = memcg_shrinker_map_size;
464 for_each_node(nid) {
465 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466 if (!map) {
467 memcg_free_shrinker_maps(memcg);
468 ret = -ENOMEM;
469 break;
470 }
471 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472 }
473 mutex_unlock(&memcg_shrinker_map_mutex);
474
475 return ret;
476 }
477
memcg_expand_shrinker_maps(int new_id)478 int memcg_expand_shrinker_maps(int new_id)
479 {
480 int size, old_size, ret = 0;
481 struct mem_cgroup *memcg;
482
483 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484 old_size = memcg_shrinker_map_size;
485 if (size <= old_size)
486 return 0;
487
488 mutex_lock(&memcg_shrinker_map_mutex);
489 if (!root_mem_cgroup)
490 goto unlock;
491
492 for_each_mem_cgroup(memcg) {
493 if (mem_cgroup_is_root(memcg))
494 continue;
495 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496 if (ret) {
497 mem_cgroup_iter_break(NULL, memcg);
498 goto unlock;
499 }
500 }
501 unlock:
502 if (!ret)
503 memcg_shrinker_map_size = size;
504 mutex_unlock(&memcg_shrinker_map_mutex);
505 return ret;
506 }
507
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)508 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509 {
510 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511 struct memcg_shrinker_map *map;
512
513 rcu_read_lock();
514 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515 /* Pairs with smp mb in shrink_slab() */
516 smp_mb__before_atomic();
517 set_bit(shrinker_id, map->map);
518 rcu_read_unlock();
519 }
520 }
521
522 /**
523 * mem_cgroup_css_from_page - css of the memcg associated with a page
524 * @page: page of interest
525 *
526 * If memcg is bound to the default hierarchy, css of the memcg associated
527 * with @page is returned. The returned css remains associated with @page
528 * until it is released.
529 *
530 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531 * is returned.
532 */
mem_cgroup_css_from_page(struct page * page)533 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534 {
535 struct mem_cgroup *memcg;
536
537 memcg = page->mem_cgroup;
538
539 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540 memcg = root_mem_cgroup;
541
542 return &memcg->css;
543 }
544
545 /**
546 * page_cgroup_ino - return inode number of the memcg a page is charged to
547 * @page: the page
548 *
549 * Look up the closest online ancestor of the memory cgroup @page is charged to
550 * and return its inode number or 0 if @page is not charged to any cgroup. It
551 * is safe to call this function without holding a reference to @page.
552 *
553 * Note, this function is inherently racy, because there is nothing to prevent
554 * the cgroup inode from getting torn down and potentially reallocated a moment
555 * after page_cgroup_ino() returns, so it only should be used by callers that
556 * do not care (such as procfs interfaces).
557 */
page_cgroup_ino(struct page * page)558 ino_t page_cgroup_ino(struct page *page)
559 {
560 struct mem_cgroup *memcg;
561 unsigned long ino = 0;
562
563 rcu_read_lock();
564 memcg = page->mem_cgroup;
565
566 /*
567 * The lowest bit set means that memcg isn't a valid
568 * memcg pointer, but a obj_cgroups pointer.
569 * In this case the page is shared and doesn't belong
570 * to any specific memory cgroup.
571 */
572 if ((unsigned long) memcg & 0x1UL)
573 memcg = NULL;
574
575 while (memcg && !(memcg->css.flags & CSS_ONLINE))
576 memcg = parent_mem_cgroup(memcg);
577 if (memcg)
578 ino = cgroup_ino(memcg->css.cgroup);
579 rcu_read_unlock();
580 return ino;
581 }
582
583 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)584 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585 {
586 int nid = page_to_nid(page);
587
588 return memcg->nodeinfo[nid];
589 }
590
591 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)592 soft_limit_tree_node(int nid)
593 {
594 return soft_limit_tree.rb_tree_per_node[nid];
595 }
596
597 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)598 soft_limit_tree_from_page(struct page *page)
599 {
600 int nid = page_to_nid(page);
601
602 return soft_limit_tree.rb_tree_per_node[nid];
603 }
604
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)605 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606 struct mem_cgroup_tree_per_node *mctz,
607 unsigned long new_usage_in_excess)
608 {
609 struct rb_node **p = &mctz->rb_root.rb_node;
610 struct rb_node *parent = NULL;
611 struct mem_cgroup_per_node *mz_node;
612 bool rightmost = true;
613
614 if (mz->on_tree)
615 return;
616
617 mz->usage_in_excess = new_usage_in_excess;
618 if (!mz->usage_in_excess)
619 return;
620 while (*p) {
621 parent = *p;
622 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623 tree_node);
624 if (mz->usage_in_excess < mz_node->usage_in_excess) {
625 p = &(*p)->rb_left;
626 rightmost = false;
627 }
628
629 /*
630 * We can't avoid mem cgroups that are over their soft
631 * limit by the same amount
632 */
633 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634 p = &(*p)->rb_right;
635 }
636
637 if (rightmost)
638 mctz->rb_rightmost = &mz->tree_node;
639
640 rb_link_node(&mz->tree_node, parent, p);
641 rb_insert_color(&mz->tree_node, &mctz->rb_root);
642 mz->on_tree = true;
643 }
644
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)645 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646 struct mem_cgroup_tree_per_node *mctz)
647 {
648 if (!mz->on_tree)
649 return;
650
651 if (&mz->tree_node == mctz->rb_rightmost)
652 mctz->rb_rightmost = rb_prev(&mz->tree_node);
653
654 rb_erase(&mz->tree_node, &mctz->rb_root);
655 mz->on_tree = false;
656 }
657
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)658 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659 struct mem_cgroup_tree_per_node *mctz)
660 {
661 unsigned long flags;
662
663 spin_lock_irqsave(&mctz->lock, flags);
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 spin_unlock_irqrestore(&mctz->lock, flags);
666 }
667
soft_limit_excess(struct mem_cgroup * memcg)668 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669 {
670 unsigned long nr_pages = page_counter_read(&memcg->memory);
671 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
672 unsigned long excess = 0;
673
674 if (nr_pages > soft_limit)
675 excess = nr_pages - soft_limit;
676
677 return excess;
678 }
679
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)680 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
681 {
682 unsigned long excess;
683 struct mem_cgroup_per_node *mz;
684 struct mem_cgroup_tree_per_node *mctz;
685
686 mctz = soft_limit_tree_from_page(page);
687 if (!mctz)
688 return;
689 /*
690 * Necessary to update all ancestors when hierarchy is used.
691 * because their event counter is not touched.
692 */
693 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
694 mz = mem_cgroup_page_nodeinfo(memcg, page);
695 excess = soft_limit_excess(memcg);
696 /*
697 * We have to update the tree if mz is on RB-tree or
698 * mem is over its softlimit.
699 */
700 if (excess || mz->on_tree) {
701 unsigned long flags;
702
703 spin_lock_irqsave(&mctz->lock, flags);
704 /* if on-tree, remove it */
705 if (mz->on_tree)
706 __mem_cgroup_remove_exceeded(mz, mctz);
707 /*
708 * Insert again. mz->usage_in_excess will be updated.
709 * If excess is 0, no tree ops.
710 */
711 __mem_cgroup_insert_exceeded(mz, mctz, excess);
712 spin_unlock_irqrestore(&mctz->lock, flags);
713 }
714 }
715 }
716
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)717 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
718 {
719 struct mem_cgroup_tree_per_node *mctz;
720 struct mem_cgroup_per_node *mz;
721 int nid;
722
723 for_each_node(nid) {
724 mz = mem_cgroup_nodeinfo(memcg, nid);
725 mctz = soft_limit_tree_node(nid);
726 if (mctz)
727 mem_cgroup_remove_exceeded(mz, mctz);
728 }
729 }
730
731 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)732 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
733 {
734 struct mem_cgroup_per_node *mz;
735
736 retry:
737 mz = NULL;
738 if (!mctz->rb_rightmost)
739 goto done; /* Nothing to reclaim from */
740
741 mz = rb_entry(mctz->rb_rightmost,
742 struct mem_cgroup_per_node, tree_node);
743 /*
744 * Remove the node now but someone else can add it back,
745 * we will to add it back at the end of reclaim to its correct
746 * position in the tree.
747 */
748 __mem_cgroup_remove_exceeded(mz, mctz);
749 if (!soft_limit_excess(mz->memcg) ||
750 !css_tryget(&mz->memcg->css))
751 goto retry;
752 done:
753 return mz;
754 }
755
756 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)757 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
758 {
759 struct mem_cgroup_per_node *mz;
760
761 spin_lock_irq(&mctz->lock);
762 mz = __mem_cgroup_largest_soft_limit_node(mctz);
763 spin_unlock_irq(&mctz->lock);
764 return mz;
765 }
766
767 /**
768 * __mod_memcg_state - update cgroup memory statistics
769 * @memcg: the memory cgroup
770 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
771 * @val: delta to add to the counter, can be negative
772 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)773 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
774 {
775 long x, threshold = MEMCG_CHARGE_BATCH;
776
777 if (mem_cgroup_disabled())
778 return;
779
780 if (memcg_stat_item_in_bytes(idx))
781 threshold <<= PAGE_SHIFT;
782
783 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
784 if (unlikely(abs(x) > threshold)) {
785 struct mem_cgroup *mi;
786
787 /*
788 * Batch local counters to keep them in sync with
789 * the hierarchical ones.
790 */
791 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
792 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
793 atomic_long_add(x, &mi->vmstats[idx]);
794 x = 0;
795 }
796 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
797 }
798
799 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)800 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
801 {
802 struct mem_cgroup *parent;
803
804 parent = parent_mem_cgroup(pn->memcg);
805 if (!parent)
806 return NULL;
807 return mem_cgroup_nodeinfo(parent, nid);
808 }
809
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)810 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
811 int val)
812 {
813 struct mem_cgroup_per_node *pn;
814 struct mem_cgroup *memcg;
815 long x, threshold = MEMCG_CHARGE_BATCH;
816
817 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
818 memcg = pn->memcg;
819
820 /* Update memcg */
821 __mod_memcg_state(memcg, idx, val);
822
823 /* Update lruvec */
824 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
825
826 if (vmstat_item_in_bytes(idx))
827 threshold <<= PAGE_SHIFT;
828
829 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
830 if (unlikely(abs(x) > threshold)) {
831 pg_data_t *pgdat = lruvec_pgdat(lruvec);
832 struct mem_cgroup_per_node *pi;
833
834 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
835 atomic_long_add(x, &pi->lruvec_stat[idx]);
836 x = 0;
837 }
838 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
839 }
840
841 /**
842 * __mod_lruvec_state - update lruvec memory statistics
843 * @lruvec: the lruvec
844 * @idx: the stat item
845 * @val: delta to add to the counter, can be negative
846 *
847 * The lruvec is the intersection of the NUMA node and a cgroup. This
848 * function updates the all three counters that are affected by a
849 * change of state at this level: per-node, per-cgroup, per-lruvec.
850 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)851 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
852 int val)
853 {
854 /* Update node */
855 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
856
857 /* Update memcg and lruvec */
858 if (!mem_cgroup_disabled())
859 __mod_memcg_lruvec_state(lruvec, idx, val);
860 }
861
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)862 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
863 {
864 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
865 struct mem_cgroup *memcg;
866 struct lruvec *lruvec;
867
868 rcu_read_lock();
869 memcg = mem_cgroup_from_obj(p);
870
871 /*
872 * Untracked pages have no memcg, no lruvec. Update only the
873 * node. If we reparent the slab objects to the root memcg,
874 * when we free the slab object, we need to update the per-memcg
875 * vmstats to keep it correct for the root memcg.
876 */
877 if (!memcg) {
878 __mod_node_page_state(pgdat, idx, val);
879 } else {
880 lruvec = mem_cgroup_lruvec(memcg, pgdat);
881 __mod_lruvec_state(lruvec, idx, val);
882 }
883 rcu_read_unlock();
884 }
885
mod_memcg_obj_state(void * p,int idx,int val)886 void mod_memcg_obj_state(void *p, int idx, int val)
887 {
888 struct mem_cgroup *memcg;
889
890 rcu_read_lock();
891 memcg = mem_cgroup_from_obj(p);
892 if (memcg)
893 mod_memcg_state(memcg, idx, val);
894 rcu_read_unlock();
895 }
896
897 /**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)903 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905 {
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
913 struct mem_cgroup *mi;
914
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925 }
926
memcg_events(struct mem_cgroup * memcg,int event)927 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
928 {
929 return atomic_long_read(&memcg->vmevents[event]);
930 }
931
memcg_events_local(struct mem_cgroup * memcg,int event)932 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933 {
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
940 }
941
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 struct page *page,
944 int nr_pages)
945 {
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
948 __count_memcg_events(memcg, PGPGIN, 1);
949 else {
950 __count_memcg_events(memcg, PGPGOUT, 1);
951 nr_pages = -nr_pages; /* for event */
952 }
953
954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
955 }
956
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)957 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
959 {
960 unsigned long val, next;
961
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
964 /* from time_after() in jiffies.h */
965 if ((long)(next - val) < 0) {
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
973 default:
974 break;
975 }
976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
977 return true;
978 }
979 return false;
980 }
981
982 /*
983 * Check events in order.
984 *
985 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)986 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
987 {
988 /* threshold event is triggered in finer grain than soft limit */
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
991 bool do_softlimit;
992
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
995 mem_cgroup_threshold(memcg);
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
998 }
999 }
1000
mem_cgroup_from_task(struct task_struct * p)1001 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1002 {
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1012 }
1013 EXPORT_SYMBOL(mem_cgroup_from_task);
1014
1015 /**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1023 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1024 {
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
1029
1030 rcu_read_lock();
1031 do {
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
1038 memcg = root_mem_cgroup;
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
1044 } while (!css_tryget(&memcg->css));
1045 rcu_read_unlock();
1046 return memcg;
1047 }
1048 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
1050 /**
1051 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1052 * @page: page from which memcg should be extracted.
1053 *
1054 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1055 * root_mem_cgroup is returned.
1056 */
get_mem_cgroup_from_page(struct page * page)1057 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1058 {
1059 struct mem_cgroup *memcg = page->mem_cgroup;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 rcu_read_lock();
1065 /* Page should not get uncharged and freed memcg under us. */
1066 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1067 memcg = root_mem_cgroup;
1068 rcu_read_unlock();
1069 return memcg;
1070 }
1071 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1072
active_memcg(void)1073 static __always_inline struct mem_cgroup *active_memcg(void)
1074 {
1075 if (in_interrupt())
1076 return this_cpu_read(int_active_memcg);
1077 else
1078 return current->active_memcg;
1079 }
1080
get_active_memcg(void)1081 static __always_inline struct mem_cgroup *get_active_memcg(void)
1082 {
1083 struct mem_cgroup *memcg;
1084
1085 rcu_read_lock();
1086 memcg = active_memcg();
1087 /* remote memcg must hold a ref. */
1088 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1089 memcg = root_mem_cgroup;
1090 rcu_read_unlock();
1091
1092 return memcg;
1093 }
1094
memcg_kmem_bypass(void)1095 static __always_inline bool memcg_kmem_bypass(void)
1096 {
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1099 return false;
1100
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 return true;
1104
1105 return false;
1106 }
1107
1108 /**
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1110 */
get_mem_cgroup_from_current(void)1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112 {
1113 if (memcg_kmem_bypass())
1114 return NULL;
1115
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1118
1119 return get_mem_cgroup_from_mm(current->mm);
1120 }
1121
1122 /**
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127 *
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1130 *
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1134 *
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1137 * same node.
1138 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 struct mem_cgroup *prev,
1141 struct mem_cgroup_reclaim_cookie *reclaim)
1142 {
1143 struct mem_cgroup_reclaim_iter *iter;
1144 struct cgroup_subsys_state *css = NULL;
1145 struct mem_cgroup *memcg = NULL;
1146 struct mem_cgroup *pos = NULL;
1147
1148 if (mem_cgroup_disabled())
1149 return NULL;
1150
1151 if (!root)
1152 root = root_mem_cgroup;
1153
1154 if (prev && !reclaim)
1155 pos = prev;
1156
1157 if (!root->use_hierarchy && root != root_mem_cgroup) {
1158 if (prev)
1159 goto out;
1160 return root;
1161 }
1162
1163 rcu_read_lock();
1164
1165 if (reclaim) {
1166 struct mem_cgroup_per_node *mz;
1167
1168 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1169 iter = &mz->iter;
1170
1171 if (prev && reclaim->generation != iter->generation)
1172 goto out_unlock;
1173
1174 while (1) {
1175 pos = READ_ONCE(iter->position);
1176 if (!pos || css_tryget(&pos->css))
1177 break;
1178 /*
1179 * css reference reached zero, so iter->position will
1180 * be cleared by ->css_released. However, we should not
1181 * rely on this happening soon, because ->css_released
1182 * is called from a work queue, and by busy-waiting we
1183 * might block it. So we clear iter->position right
1184 * away.
1185 */
1186 (void)cmpxchg(&iter->position, pos, NULL);
1187 }
1188 }
1189
1190 if (pos)
1191 css = &pos->css;
1192
1193 for (;;) {
1194 css = css_next_descendant_pre(css, &root->css);
1195 if (!css) {
1196 /*
1197 * Reclaimers share the hierarchy walk, and a
1198 * new one might jump in right at the end of
1199 * the hierarchy - make sure they see at least
1200 * one group and restart from the beginning.
1201 */
1202 if (!prev)
1203 continue;
1204 break;
1205 }
1206
1207 /*
1208 * Verify the css and acquire a reference. The root
1209 * is provided by the caller, so we know it's alive
1210 * and kicking, and don't take an extra reference.
1211 */
1212 memcg = mem_cgroup_from_css(css);
1213
1214 if (css == &root->css)
1215 break;
1216
1217 if (css_tryget(css))
1218 break;
1219
1220 memcg = NULL;
1221 }
1222
1223 if (reclaim) {
1224 /*
1225 * The position could have already been updated by a competing
1226 * thread, so check that the value hasn't changed since we read
1227 * it to avoid reclaiming from the same cgroup twice.
1228 */
1229 (void)cmpxchg(&iter->position, pos, memcg);
1230
1231 if (pos)
1232 css_put(&pos->css);
1233
1234 if (!memcg)
1235 iter->generation++;
1236 else if (!prev)
1237 reclaim->generation = iter->generation;
1238 }
1239
1240 out_unlock:
1241 rcu_read_unlock();
1242 out:
1243 if (prev && prev != root)
1244 css_put(&prev->css);
1245
1246 return memcg;
1247 }
1248
1249 /**
1250 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1251 * @root: hierarchy root
1252 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1253 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1254 void mem_cgroup_iter_break(struct mem_cgroup *root,
1255 struct mem_cgroup *prev)
1256 {
1257 if (!root)
1258 root = root_mem_cgroup;
1259 if (prev && prev != root)
1260 css_put(&prev->css);
1261 }
1262
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1263 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1264 struct mem_cgroup *dead_memcg)
1265 {
1266 struct mem_cgroup_reclaim_iter *iter;
1267 struct mem_cgroup_per_node *mz;
1268 int nid;
1269
1270 for_each_node(nid) {
1271 mz = mem_cgroup_nodeinfo(from, nid);
1272 iter = &mz->iter;
1273 cmpxchg(&iter->position, dead_memcg, NULL);
1274 }
1275 }
1276
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1277 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1278 {
1279 struct mem_cgroup *memcg = dead_memcg;
1280 struct mem_cgroup *last;
1281
1282 do {
1283 __invalidate_reclaim_iterators(memcg, dead_memcg);
1284 last = memcg;
1285 } while ((memcg = parent_mem_cgroup(memcg)));
1286
1287 /*
1288 * When cgruop1 non-hierarchy mode is used,
1289 * parent_mem_cgroup() does not walk all the way up to the
1290 * cgroup root (root_mem_cgroup). So we have to handle
1291 * dead_memcg from cgroup root separately.
1292 */
1293 if (last != root_mem_cgroup)
1294 __invalidate_reclaim_iterators(root_mem_cgroup,
1295 dead_memcg);
1296 }
1297
1298 /**
1299 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1300 * @memcg: hierarchy root
1301 * @fn: function to call for each task
1302 * @arg: argument passed to @fn
1303 *
1304 * This function iterates over tasks attached to @memcg or to any of its
1305 * descendants and calls @fn for each task. If @fn returns a non-zero
1306 * value, the function breaks the iteration loop and returns the value.
1307 * Otherwise, it will iterate over all tasks and return 0.
1308 *
1309 * This function must not be called for the root memory cgroup.
1310 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1311 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1312 int (*fn)(struct task_struct *, void *), void *arg)
1313 {
1314 struct mem_cgroup *iter;
1315 int ret = 0;
1316
1317 BUG_ON(memcg == root_mem_cgroup);
1318
1319 for_each_mem_cgroup_tree(iter, memcg) {
1320 struct css_task_iter it;
1321 struct task_struct *task;
1322
1323 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1324 while (!ret && (task = css_task_iter_next(&it)))
1325 ret = fn(task, arg);
1326 css_task_iter_end(&it);
1327 if (ret) {
1328 mem_cgroup_iter_break(memcg, iter);
1329 break;
1330 }
1331 }
1332 return ret;
1333 }
1334
1335 /**
1336 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1337 * @page: the page
1338 * @pgdat: pgdat of the page
1339 *
1340 * This function relies on page->mem_cgroup being stable - see the
1341 * access rules in commit_charge().
1342 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1343 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1344 {
1345 struct mem_cgroup_per_node *mz;
1346 struct mem_cgroup *memcg;
1347 struct lruvec *lruvec;
1348
1349 if (mem_cgroup_disabled()) {
1350 lruvec = &pgdat->__lruvec;
1351 goto out;
1352 }
1353
1354 memcg = page->mem_cgroup;
1355 /*
1356 * Swapcache readahead pages are added to the LRU - and
1357 * possibly migrated - before they are charged.
1358 */
1359 if (!memcg)
1360 memcg = root_mem_cgroup;
1361
1362 mz = mem_cgroup_page_nodeinfo(memcg, page);
1363 lruvec = &mz->lruvec;
1364 out:
1365 /*
1366 * Since a node can be onlined after the mem_cgroup was created,
1367 * we have to be prepared to initialize lruvec->zone here;
1368 * and if offlined then reonlined, we need to reinitialize it.
1369 */
1370 if (unlikely(lruvec->pgdat != pgdat))
1371 lruvec->pgdat = pgdat;
1372 return lruvec;
1373 }
1374
1375 /**
1376 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1377 * @lruvec: mem_cgroup per zone lru vector
1378 * @lru: index of lru list the page is sitting on
1379 * @zid: zone id of the accounted pages
1380 * @nr_pages: positive when adding or negative when removing
1381 *
1382 * This function must be called under lru_lock, just before a page is added
1383 * to or just after a page is removed from an lru list (that ordering being
1384 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1385 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1386 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1387 int zid, int nr_pages)
1388 {
1389 struct mem_cgroup_per_node *mz;
1390 unsigned long *lru_size;
1391 long size;
1392
1393 if (mem_cgroup_disabled())
1394 return;
1395
1396 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1397 lru_size = &mz->lru_zone_size[zid][lru];
1398
1399 if (nr_pages < 0)
1400 *lru_size += nr_pages;
1401
1402 size = *lru_size;
1403 if (WARN_ONCE(size < 0,
1404 "%s(%p, %d, %d): lru_size %ld\n",
1405 __func__, lruvec, lru, nr_pages, size)) {
1406 VM_BUG_ON(1);
1407 *lru_size = 0;
1408 }
1409
1410 if (nr_pages > 0)
1411 *lru_size += nr_pages;
1412 }
1413
1414 /**
1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1416 * @memcg: the memory cgroup
1417 *
1418 * Returns the maximum amount of memory @mem can be charged with, in
1419 * pages.
1420 */
mem_cgroup_margin(struct mem_cgroup * memcg)1421 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1422 {
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
1426
1427 count = page_counter_read(&memcg->memory);
1428 limit = READ_ONCE(memcg->memory.max);
1429 if (count < limit)
1430 margin = limit - count;
1431
1432 if (do_memsw_account()) {
1433 count = page_counter_read(&memcg->memsw);
1434 limit = READ_ONCE(memcg->memsw.max);
1435 if (count < limit)
1436 margin = min(margin, limit - count);
1437 else
1438 margin = 0;
1439 }
1440
1441 return margin;
1442 }
1443
1444 /*
1445 * A routine for checking "mem" is under move_account() or not.
1446 *
1447 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1448 * moving cgroups. This is for waiting at high-memory pressure
1449 * caused by "move".
1450 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1451 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1452 {
1453 struct mem_cgroup *from;
1454 struct mem_cgroup *to;
1455 bool ret = false;
1456 /*
1457 * Unlike task_move routines, we access mc.to, mc.from not under
1458 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1459 */
1460 spin_lock(&mc.lock);
1461 from = mc.from;
1462 to = mc.to;
1463 if (!from)
1464 goto unlock;
1465
1466 ret = mem_cgroup_is_descendant(from, memcg) ||
1467 mem_cgroup_is_descendant(to, memcg);
1468 unlock:
1469 spin_unlock(&mc.lock);
1470 return ret;
1471 }
1472
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1473 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1474 {
1475 if (mc.moving_task && current != mc.moving_task) {
1476 if (mem_cgroup_under_move(memcg)) {
1477 DEFINE_WAIT(wait);
1478 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1479 /* moving charge context might have finished. */
1480 if (mc.moving_task)
1481 schedule();
1482 finish_wait(&mc.waitq, &wait);
1483 return true;
1484 }
1485 }
1486 return false;
1487 }
1488
1489 struct memory_stat {
1490 const char *name;
1491 unsigned int ratio;
1492 unsigned int idx;
1493 };
1494
1495 static struct memory_stat memory_stats[] = {
1496 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1497 { "file", PAGE_SIZE, NR_FILE_PAGES },
1498 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1499 { "percpu", 1, MEMCG_PERCPU_B },
1500 { "sock", PAGE_SIZE, MEMCG_SOCK },
1501 { "shmem", PAGE_SIZE, NR_SHMEM },
1502 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1503 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1504 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1506 /*
1507 * The ratio will be initialized in memory_stats_init(). Because
1508 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1509 * constant(e.g. powerpc).
1510 */
1511 { "anon_thp", 0, NR_ANON_THPS },
1512 #endif
1513 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1514 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1515 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1516 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1517 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1518
1519 /*
1520 * Note: The slab_reclaimable and slab_unreclaimable must be
1521 * together and slab_reclaimable must be in front.
1522 */
1523 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1524 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1525
1526 /* The memory events */
1527 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1528 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1529 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1530 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1531 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1532 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1533 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1534 };
1535
memory_stats_init(void)1536 static int __init memory_stats_init(void)
1537 {
1538 int i;
1539
1540 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1542 if (memory_stats[i].idx == NR_ANON_THPS)
1543 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1544 #endif
1545 VM_BUG_ON(!memory_stats[i].ratio);
1546 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1547 }
1548
1549 return 0;
1550 }
1551 pure_initcall(memory_stats_init);
1552
memory_stat_format(struct mem_cgroup * memcg)1553 static char *memory_stat_format(struct mem_cgroup *memcg)
1554 {
1555 struct seq_buf s;
1556 int i;
1557
1558 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1559 if (!s.buffer)
1560 return NULL;
1561
1562 /*
1563 * Provide statistics on the state of the memory subsystem as
1564 * well as cumulative event counters that show past behavior.
1565 *
1566 * This list is ordered following a combination of these gradients:
1567 * 1) generic big picture -> specifics and details
1568 * 2) reflecting userspace activity -> reflecting kernel heuristics
1569 *
1570 * Current memory state:
1571 */
1572
1573 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1574 u64 size;
1575
1576 size = memcg_page_state(memcg, memory_stats[i].idx);
1577 size *= memory_stats[i].ratio;
1578 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1579
1580 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1581 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1582 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1583 seq_buf_printf(&s, "slab %llu\n", size);
1584 }
1585 }
1586
1587 /* Accumulated memory events */
1588
1589 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1590 memcg_events(memcg, PGFAULT));
1591 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1592 memcg_events(memcg, PGMAJFAULT));
1593 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1594 memcg_events(memcg, PGREFILL));
1595 seq_buf_printf(&s, "pgscan %lu\n",
1596 memcg_events(memcg, PGSCAN_KSWAPD) +
1597 memcg_events(memcg, PGSCAN_DIRECT));
1598 seq_buf_printf(&s, "pgsteal %lu\n",
1599 memcg_events(memcg, PGSTEAL_KSWAPD) +
1600 memcg_events(memcg, PGSTEAL_DIRECT));
1601 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1602 memcg_events(memcg, PGACTIVATE));
1603 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1604 memcg_events(memcg, PGDEACTIVATE));
1605 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1606 memcg_events(memcg, PGLAZYFREE));
1607 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1608 memcg_events(memcg, PGLAZYFREED));
1609
1610 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1611 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1612 memcg_events(memcg, THP_FAULT_ALLOC));
1613 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1614 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1615 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1616
1617 /* The above should easily fit into one page */
1618 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1619
1620 return s.buffer;
1621 }
1622
1623 #define K(x) ((x) << (PAGE_SHIFT-10))
1624 /**
1625 * mem_cgroup_print_oom_context: Print OOM information relevant to
1626 * memory controller.
1627 * @memcg: The memory cgroup that went over limit
1628 * @p: Task that is going to be killed
1629 *
1630 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1631 * enabled
1632 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1633 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1634 {
1635 rcu_read_lock();
1636
1637 if (memcg) {
1638 pr_cont(",oom_memcg=");
1639 pr_cont_cgroup_path(memcg->css.cgroup);
1640 } else
1641 pr_cont(",global_oom");
1642 if (p) {
1643 pr_cont(",task_memcg=");
1644 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1645 }
1646 rcu_read_unlock();
1647 }
1648
1649 /**
1650 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1651 * memory controller.
1652 * @memcg: The memory cgroup that went over limit
1653 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1654 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1655 {
1656 char *buf;
1657
1658 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1659 K((u64)page_counter_read(&memcg->memory)),
1660 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1661 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1662 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1663 K((u64)page_counter_read(&memcg->swap)),
1664 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1665 else {
1666 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1667 K((u64)page_counter_read(&memcg->memsw)),
1668 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1669 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->kmem)),
1671 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1672 }
1673
1674 pr_info("Memory cgroup stats for ");
1675 pr_cont_cgroup_path(memcg->css.cgroup);
1676 pr_cont(":");
1677 buf = memory_stat_format(memcg);
1678 if (!buf)
1679 return;
1680 pr_info("%s", buf);
1681 kfree(buf);
1682 }
1683
1684 /*
1685 * Return the memory (and swap, if configured) limit for a memcg.
1686 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1687 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1688 {
1689 unsigned long max = READ_ONCE(memcg->memory.max);
1690
1691 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1692 if (mem_cgroup_swappiness(memcg))
1693 max += min(READ_ONCE(memcg->swap.max),
1694 (unsigned long)total_swap_pages);
1695 } else { /* v1 */
1696 if (mem_cgroup_swappiness(memcg)) {
1697 /* Calculate swap excess capacity from memsw limit */
1698 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1699
1700 max += min(swap, (unsigned long)total_swap_pages);
1701 }
1702 }
1703 return max;
1704 }
1705
mem_cgroup_size(struct mem_cgroup * memcg)1706 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1707 {
1708 return page_counter_read(&memcg->memory);
1709 }
1710
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1711 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1712 int order)
1713 {
1714 struct oom_control oc = {
1715 .zonelist = NULL,
1716 .nodemask = NULL,
1717 .memcg = memcg,
1718 .gfp_mask = gfp_mask,
1719 .order = order,
1720 };
1721 bool ret = true;
1722
1723 if (mutex_lock_killable(&oom_lock))
1724 return true;
1725
1726 if (mem_cgroup_margin(memcg) >= (1 << order))
1727 goto unlock;
1728
1729 /*
1730 * A few threads which were not waiting at mutex_lock_killable() can
1731 * fail to bail out. Therefore, check again after holding oom_lock.
1732 */
1733 ret = task_is_dying() || out_of_memory(&oc);
1734
1735 unlock:
1736 mutex_unlock(&oom_lock);
1737 return ret;
1738 }
1739
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1740 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1741 pg_data_t *pgdat,
1742 gfp_t gfp_mask,
1743 unsigned long *total_scanned)
1744 {
1745 struct mem_cgroup *victim = NULL;
1746 int total = 0;
1747 int loop = 0;
1748 unsigned long excess;
1749 unsigned long nr_scanned;
1750 struct mem_cgroup_reclaim_cookie reclaim = {
1751 .pgdat = pgdat,
1752 };
1753
1754 excess = soft_limit_excess(root_memcg);
1755
1756 while (1) {
1757 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1758 if (!victim) {
1759 loop++;
1760 if (loop >= 2) {
1761 /*
1762 * If we have not been able to reclaim
1763 * anything, it might because there are
1764 * no reclaimable pages under this hierarchy
1765 */
1766 if (!total)
1767 break;
1768 /*
1769 * We want to do more targeted reclaim.
1770 * excess >> 2 is not to excessive so as to
1771 * reclaim too much, nor too less that we keep
1772 * coming back to reclaim from this cgroup
1773 */
1774 if (total >= (excess >> 2) ||
1775 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1776 break;
1777 }
1778 continue;
1779 }
1780 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1781 pgdat, &nr_scanned);
1782 *total_scanned += nr_scanned;
1783 if (!soft_limit_excess(root_memcg))
1784 break;
1785 }
1786 mem_cgroup_iter_break(root_memcg, victim);
1787 return total;
1788 }
1789
1790 #ifdef CONFIG_LOCKDEP
1791 static struct lockdep_map memcg_oom_lock_dep_map = {
1792 .name = "memcg_oom_lock",
1793 };
1794 #endif
1795
1796 static DEFINE_SPINLOCK(memcg_oom_lock);
1797
1798 /*
1799 * Check OOM-Killer is already running under our hierarchy.
1800 * If someone is running, return false.
1801 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1802 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1803 {
1804 struct mem_cgroup *iter, *failed = NULL;
1805
1806 spin_lock(&memcg_oom_lock);
1807
1808 for_each_mem_cgroup_tree(iter, memcg) {
1809 if (iter->oom_lock) {
1810 /*
1811 * this subtree of our hierarchy is already locked
1812 * so we cannot give a lock.
1813 */
1814 failed = iter;
1815 mem_cgroup_iter_break(memcg, iter);
1816 break;
1817 } else
1818 iter->oom_lock = true;
1819 }
1820
1821 if (failed) {
1822 /*
1823 * OK, we failed to lock the whole subtree so we have
1824 * to clean up what we set up to the failing subtree
1825 */
1826 for_each_mem_cgroup_tree(iter, memcg) {
1827 if (iter == failed) {
1828 mem_cgroup_iter_break(memcg, iter);
1829 break;
1830 }
1831 iter->oom_lock = false;
1832 }
1833 } else
1834 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1835
1836 spin_unlock(&memcg_oom_lock);
1837
1838 return !failed;
1839 }
1840
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1841 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1842 {
1843 struct mem_cgroup *iter;
1844
1845 spin_lock(&memcg_oom_lock);
1846 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1847 for_each_mem_cgroup_tree(iter, memcg)
1848 iter->oom_lock = false;
1849 spin_unlock(&memcg_oom_lock);
1850 }
1851
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1852 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1853 {
1854 struct mem_cgroup *iter;
1855
1856 spin_lock(&memcg_oom_lock);
1857 for_each_mem_cgroup_tree(iter, memcg)
1858 iter->under_oom++;
1859 spin_unlock(&memcg_oom_lock);
1860 }
1861
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1862 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1863 {
1864 struct mem_cgroup *iter;
1865
1866 /*
1867 * Be careful about under_oom underflows becase a child memcg
1868 * could have been added after mem_cgroup_mark_under_oom.
1869 */
1870 spin_lock(&memcg_oom_lock);
1871 for_each_mem_cgroup_tree(iter, memcg)
1872 if (iter->under_oom > 0)
1873 iter->under_oom--;
1874 spin_unlock(&memcg_oom_lock);
1875 }
1876
1877 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1878
1879 struct oom_wait_info {
1880 struct mem_cgroup *memcg;
1881 wait_queue_entry_t wait;
1882 };
1883
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1884 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1885 unsigned mode, int sync, void *arg)
1886 {
1887 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1888 struct mem_cgroup *oom_wait_memcg;
1889 struct oom_wait_info *oom_wait_info;
1890
1891 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1892 oom_wait_memcg = oom_wait_info->memcg;
1893
1894 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1895 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1896 return 0;
1897 return autoremove_wake_function(wait, mode, sync, arg);
1898 }
1899
memcg_oom_recover(struct mem_cgroup * memcg)1900 static void memcg_oom_recover(struct mem_cgroup *memcg)
1901 {
1902 /*
1903 * For the following lockless ->under_oom test, the only required
1904 * guarantee is that it must see the state asserted by an OOM when
1905 * this function is called as a result of userland actions
1906 * triggered by the notification of the OOM. This is trivially
1907 * achieved by invoking mem_cgroup_mark_under_oom() before
1908 * triggering notification.
1909 */
1910 if (memcg && memcg->under_oom)
1911 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1912 }
1913
1914 enum oom_status {
1915 OOM_SUCCESS,
1916 OOM_FAILED,
1917 OOM_ASYNC,
1918 OOM_SKIPPED
1919 };
1920
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1921 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1922 {
1923 enum oom_status ret;
1924 bool locked;
1925
1926 if (order > PAGE_ALLOC_COSTLY_ORDER)
1927 return OOM_SKIPPED;
1928
1929 memcg_memory_event(memcg, MEMCG_OOM);
1930
1931 /*
1932 * We are in the middle of the charge context here, so we
1933 * don't want to block when potentially sitting on a callstack
1934 * that holds all kinds of filesystem and mm locks.
1935 *
1936 * cgroup1 allows disabling the OOM killer and waiting for outside
1937 * handling until the charge can succeed; remember the context and put
1938 * the task to sleep at the end of the page fault when all locks are
1939 * released.
1940 *
1941 * On the other hand, in-kernel OOM killer allows for an async victim
1942 * memory reclaim (oom_reaper) and that means that we are not solely
1943 * relying on the oom victim to make a forward progress and we can
1944 * invoke the oom killer here.
1945 *
1946 * Please note that mem_cgroup_out_of_memory might fail to find a
1947 * victim and then we have to bail out from the charge path.
1948 */
1949 if (memcg->oom_kill_disable) {
1950 if (!current->in_user_fault)
1951 return OOM_SKIPPED;
1952 css_get(&memcg->css);
1953 current->memcg_in_oom = memcg;
1954 current->memcg_oom_gfp_mask = mask;
1955 current->memcg_oom_order = order;
1956
1957 return OOM_ASYNC;
1958 }
1959
1960 mem_cgroup_mark_under_oom(memcg);
1961
1962 locked = mem_cgroup_oom_trylock(memcg);
1963
1964 if (locked)
1965 mem_cgroup_oom_notify(memcg);
1966
1967 mem_cgroup_unmark_under_oom(memcg);
1968 if (mem_cgroup_out_of_memory(memcg, mask, order))
1969 ret = OOM_SUCCESS;
1970 else
1971 ret = OOM_FAILED;
1972
1973 if (locked)
1974 mem_cgroup_oom_unlock(memcg);
1975
1976 return ret;
1977 }
1978
1979 /**
1980 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1981 * @handle: actually kill/wait or just clean up the OOM state
1982 *
1983 * This has to be called at the end of a page fault if the memcg OOM
1984 * handler was enabled.
1985 *
1986 * Memcg supports userspace OOM handling where failed allocations must
1987 * sleep on a waitqueue until the userspace task resolves the
1988 * situation. Sleeping directly in the charge context with all kinds
1989 * of locks held is not a good idea, instead we remember an OOM state
1990 * in the task and mem_cgroup_oom_synchronize() has to be called at
1991 * the end of the page fault to complete the OOM handling.
1992 *
1993 * Returns %true if an ongoing memcg OOM situation was detected and
1994 * completed, %false otherwise.
1995 */
mem_cgroup_oom_synchronize(bool handle)1996 bool mem_cgroup_oom_synchronize(bool handle)
1997 {
1998 struct mem_cgroup *memcg = current->memcg_in_oom;
1999 struct oom_wait_info owait;
2000 bool locked;
2001
2002 /* OOM is global, do not handle */
2003 if (!memcg)
2004 return false;
2005
2006 if (!handle)
2007 goto cleanup;
2008
2009 owait.memcg = memcg;
2010 owait.wait.flags = 0;
2011 owait.wait.func = memcg_oom_wake_function;
2012 owait.wait.private = current;
2013 INIT_LIST_HEAD(&owait.wait.entry);
2014
2015 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2016 mem_cgroup_mark_under_oom(memcg);
2017
2018 locked = mem_cgroup_oom_trylock(memcg);
2019
2020 if (locked)
2021 mem_cgroup_oom_notify(memcg);
2022
2023 if (locked && !memcg->oom_kill_disable) {
2024 mem_cgroup_unmark_under_oom(memcg);
2025 finish_wait(&memcg_oom_waitq, &owait.wait);
2026 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2027 current->memcg_oom_order);
2028 } else {
2029 schedule();
2030 mem_cgroup_unmark_under_oom(memcg);
2031 finish_wait(&memcg_oom_waitq, &owait.wait);
2032 }
2033
2034 if (locked) {
2035 mem_cgroup_oom_unlock(memcg);
2036 /*
2037 * There is no guarantee that an OOM-lock contender
2038 * sees the wakeups triggered by the OOM kill
2039 * uncharges. Wake any sleepers explicitely.
2040 */
2041 memcg_oom_recover(memcg);
2042 }
2043 cleanup:
2044 current->memcg_in_oom = NULL;
2045 css_put(&memcg->css);
2046 return true;
2047 }
2048
2049 /**
2050 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2051 * @victim: task to be killed by the OOM killer
2052 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2053 *
2054 * Returns a pointer to a memory cgroup, which has to be cleaned up
2055 * by killing all belonging OOM-killable tasks.
2056 *
2057 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2058 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2059 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2060 struct mem_cgroup *oom_domain)
2061 {
2062 struct mem_cgroup *oom_group = NULL;
2063 struct mem_cgroup *memcg;
2064
2065 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2066 return NULL;
2067
2068 if (!oom_domain)
2069 oom_domain = root_mem_cgroup;
2070
2071 rcu_read_lock();
2072
2073 memcg = mem_cgroup_from_task(victim);
2074 if (memcg == root_mem_cgroup)
2075 goto out;
2076
2077 /*
2078 * If the victim task has been asynchronously moved to a different
2079 * memory cgroup, we might end up killing tasks outside oom_domain.
2080 * In this case it's better to ignore memory.group.oom.
2081 */
2082 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2083 goto out;
2084
2085 /*
2086 * Traverse the memory cgroup hierarchy from the victim task's
2087 * cgroup up to the OOMing cgroup (or root) to find the
2088 * highest-level memory cgroup with oom.group set.
2089 */
2090 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2091 if (memcg->oom_group)
2092 oom_group = memcg;
2093
2094 if (memcg == oom_domain)
2095 break;
2096 }
2097
2098 if (oom_group)
2099 css_get(&oom_group->css);
2100 out:
2101 rcu_read_unlock();
2102
2103 return oom_group;
2104 }
2105
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2106 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2107 {
2108 pr_info("Tasks in ");
2109 pr_cont_cgroup_path(memcg->css.cgroup);
2110 pr_cont(" are going to be killed due to memory.oom.group set\n");
2111 }
2112
2113 /**
2114 * lock_page_memcg - lock a page->mem_cgroup binding
2115 * @page: the page
2116 *
2117 * This function protects unlocked LRU pages from being moved to
2118 * another cgroup.
2119 *
2120 * It ensures lifetime of the returned memcg. Caller is responsible
2121 * for the lifetime of the page; __unlock_page_memcg() is available
2122 * when @page might get freed inside the locked section.
2123 */
lock_page_memcg(struct page * page)2124 struct mem_cgroup *lock_page_memcg(struct page *page)
2125 {
2126 struct page *head = compound_head(page); /* rmap on tail pages */
2127 struct mem_cgroup *memcg;
2128 unsigned long flags;
2129
2130 /*
2131 * The RCU lock is held throughout the transaction. The fast
2132 * path can get away without acquiring the memcg->move_lock
2133 * because page moving starts with an RCU grace period.
2134 *
2135 * The RCU lock also protects the memcg from being freed when
2136 * the page state that is going to change is the only thing
2137 * preventing the page itself from being freed. E.g. writeback
2138 * doesn't hold a page reference and relies on PG_writeback to
2139 * keep off truncation, migration and so forth.
2140 */
2141 rcu_read_lock();
2142
2143 if (mem_cgroup_disabled())
2144 return NULL;
2145 again:
2146 memcg = head->mem_cgroup;
2147 if (unlikely(!memcg))
2148 return NULL;
2149
2150 if (atomic_read(&memcg->moving_account) <= 0)
2151 return memcg;
2152
2153 spin_lock_irqsave(&memcg->move_lock, flags);
2154 if (memcg != head->mem_cgroup) {
2155 spin_unlock_irqrestore(&memcg->move_lock, flags);
2156 goto again;
2157 }
2158
2159 /*
2160 * When charge migration first begins, we can have locked and
2161 * unlocked page stat updates happening concurrently. Track
2162 * the task who has the lock for unlock_page_memcg().
2163 */
2164 memcg->move_lock_task = current;
2165 memcg->move_lock_flags = flags;
2166
2167 return memcg;
2168 }
2169 EXPORT_SYMBOL(lock_page_memcg);
2170
2171 /**
2172 * __unlock_page_memcg - unlock and unpin a memcg
2173 * @memcg: the memcg
2174 *
2175 * Unlock and unpin a memcg returned by lock_page_memcg().
2176 */
__unlock_page_memcg(struct mem_cgroup * memcg)2177 void __unlock_page_memcg(struct mem_cgroup *memcg)
2178 {
2179 if (memcg && memcg->move_lock_task == current) {
2180 unsigned long flags = memcg->move_lock_flags;
2181
2182 memcg->move_lock_task = NULL;
2183 memcg->move_lock_flags = 0;
2184
2185 spin_unlock_irqrestore(&memcg->move_lock, flags);
2186 }
2187
2188 rcu_read_unlock();
2189 }
2190
2191 /**
2192 * unlock_page_memcg - unlock a page->mem_cgroup binding
2193 * @page: the page
2194 */
unlock_page_memcg(struct page * page)2195 void unlock_page_memcg(struct page *page)
2196 {
2197 struct page *head = compound_head(page);
2198
2199 __unlock_page_memcg(head->mem_cgroup);
2200 }
2201 EXPORT_SYMBOL(unlock_page_memcg);
2202
2203 struct memcg_stock_pcp {
2204 struct mem_cgroup *cached; /* this never be root cgroup */
2205 unsigned int nr_pages;
2206
2207 #ifdef CONFIG_MEMCG_KMEM
2208 struct obj_cgroup *cached_objcg;
2209 unsigned int nr_bytes;
2210 #endif
2211
2212 struct work_struct work;
2213 unsigned long flags;
2214 #define FLUSHING_CACHED_CHARGE 0
2215 };
2216 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2217 static DEFINE_MUTEX(percpu_charge_mutex);
2218
2219 #ifdef CONFIG_MEMCG_KMEM
2220 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2221 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2222 struct mem_cgroup *root_memcg);
2223
2224 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2225 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2226 {
2227 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2228 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2229 struct mem_cgroup *root_memcg)
2230 {
2231 return false;
2232 }
2233 #endif
2234
2235 /**
2236 * consume_stock: Try to consume stocked charge on this cpu.
2237 * @memcg: memcg to consume from.
2238 * @nr_pages: how many pages to charge.
2239 *
2240 * The charges will only happen if @memcg matches the current cpu's memcg
2241 * stock, and at least @nr_pages are available in that stock. Failure to
2242 * service an allocation will refill the stock.
2243 *
2244 * returns true if successful, false otherwise.
2245 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2246 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2247 {
2248 struct memcg_stock_pcp *stock;
2249 unsigned long flags;
2250 bool ret = false;
2251
2252 if (nr_pages > MEMCG_CHARGE_BATCH)
2253 return ret;
2254
2255 local_irq_save(flags);
2256
2257 stock = this_cpu_ptr(&memcg_stock);
2258 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2259 stock->nr_pages -= nr_pages;
2260 ret = true;
2261 }
2262
2263 local_irq_restore(flags);
2264
2265 return ret;
2266 }
2267
2268 /*
2269 * Returns stocks cached in percpu and reset cached information.
2270 */
drain_stock(struct memcg_stock_pcp * stock)2271 static void drain_stock(struct memcg_stock_pcp *stock)
2272 {
2273 struct mem_cgroup *old = stock->cached;
2274
2275 if (!old)
2276 return;
2277
2278 if (stock->nr_pages) {
2279 page_counter_uncharge(&old->memory, stock->nr_pages);
2280 if (do_memsw_account())
2281 page_counter_uncharge(&old->memsw, stock->nr_pages);
2282 stock->nr_pages = 0;
2283 }
2284
2285 css_put(&old->css);
2286 stock->cached = NULL;
2287 }
2288
drain_local_stock(struct work_struct * dummy)2289 static void drain_local_stock(struct work_struct *dummy)
2290 {
2291 struct memcg_stock_pcp *stock;
2292 unsigned long flags;
2293
2294 /*
2295 * The only protection from memory hotplug vs. drain_stock races is
2296 * that we always operate on local CPU stock here with IRQ disabled
2297 */
2298 local_irq_save(flags);
2299
2300 stock = this_cpu_ptr(&memcg_stock);
2301 drain_obj_stock(stock);
2302 drain_stock(stock);
2303 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2304
2305 local_irq_restore(flags);
2306 }
2307
2308 /*
2309 * Cache charges(val) to local per_cpu area.
2310 * This will be consumed by consume_stock() function, later.
2311 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2312 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2313 {
2314 struct memcg_stock_pcp *stock;
2315 unsigned long flags;
2316
2317 local_irq_save(flags);
2318
2319 stock = this_cpu_ptr(&memcg_stock);
2320 if (stock->cached != memcg) { /* reset if necessary */
2321 drain_stock(stock);
2322 css_get(&memcg->css);
2323 stock->cached = memcg;
2324 }
2325 stock->nr_pages += nr_pages;
2326
2327 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2328 drain_stock(stock);
2329
2330 local_irq_restore(flags);
2331 }
2332
2333 /*
2334 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2335 * of the hierarchy under it.
2336 */
drain_all_stock(struct mem_cgroup * root_memcg)2337 static void drain_all_stock(struct mem_cgroup *root_memcg)
2338 {
2339 int cpu, curcpu;
2340
2341 /* If someone's already draining, avoid adding running more workers. */
2342 if (!mutex_trylock(&percpu_charge_mutex))
2343 return;
2344 /*
2345 * Notify other cpus that system-wide "drain" is running
2346 * We do not care about races with the cpu hotplug because cpu down
2347 * as well as workers from this path always operate on the local
2348 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2349 */
2350 curcpu = get_cpu();
2351 for_each_online_cpu(cpu) {
2352 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353 struct mem_cgroup *memcg;
2354 bool flush = false;
2355
2356 rcu_read_lock();
2357 memcg = stock->cached;
2358 if (memcg && stock->nr_pages &&
2359 mem_cgroup_is_descendant(memcg, root_memcg))
2360 flush = true;
2361 if (obj_stock_flush_required(stock, root_memcg))
2362 flush = true;
2363 rcu_read_unlock();
2364
2365 if (flush &&
2366 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367 if (cpu == curcpu)
2368 drain_local_stock(&stock->work);
2369 else
2370 schedule_work_on(cpu, &stock->work);
2371 }
2372 }
2373 put_cpu();
2374 mutex_unlock(&percpu_charge_mutex);
2375 }
2376
memcg_hotplug_cpu_dead(unsigned int cpu)2377 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378 {
2379 struct memcg_stock_pcp *stock;
2380 struct mem_cgroup *memcg, *mi;
2381
2382 stock = &per_cpu(memcg_stock, cpu);
2383 drain_stock(stock);
2384
2385 for_each_mem_cgroup(memcg) {
2386 int i;
2387
2388 for (i = 0; i < MEMCG_NR_STAT; i++) {
2389 int nid;
2390 long x;
2391
2392 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2393 if (x)
2394 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2395 atomic_long_add(x, &memcg->vmstats[i]);
2396
2397 if (i >= NR_VM_NODE_STAT_ITEMS)
2398 continue;
2399
2400 for_each_node(nid) {
2401 struct mem_cgroup_per_node *pn;
2402
2403 pn = mem_cgroup_nodeinfo(memcg, nid);
2404 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2405 if (x)
2406 do {
2407 atomic_long_add(x, &pn->lruvec_stat[i]);
2408 } while ((pn = parent_nodeinfo(pn, nid)));
2409 }
2410 }
2411
2412 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2413 long x;
2414
2415 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2416 if (x)
2417 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2418 atomic_long_add(x, &memcg->vmevents[i]);
2419 }
2420 }
2421
2422 return 0;
2423 }
2424
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2425 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2426 unsigned int nr_pages,
2427 gfp_t gfp_mask)
2428 {
2429 unsigned long nr_reclaimed = 0;
2430
2431 do {
2432 unsigned long pflags;
2433
2434 if (page_counter_read(&memcg->memory) <=
2435 READ_ONCE(memcg->memory.high))
2436 continue;
2437
2438 memcg_memory_event(memcg, MEMCG_HIGH);
2439
2440 psi_memstall_enter(&pflags);
2441 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2442 gfp_mask, true);
2443 psi_memstall_leave(&pflags);
2444 } while ((memcg = parent_mem_cgroup(memcg)) &&
2445 !mem_cgroup_is_root(memcg));
2446
2447 return nr_reclaimed;
2448 }
2449
high_work_func(struct work_struct * work)2450 static void high_work_func(struct work_struct *work)
2451 {
2452 struct mem_cgroup *memcg;
2453
2454 memcg = container_of(work, struct mem_cgroup, high_work);
2455 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2456 }
2457
2458 /*
2459 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2460 * enough to still cause a significant slowdown in most cases, while still
2461 * allowing diagnostics and tracing to proceed without becoming stuck.
2462 */
2463 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2464
2465 /*
2466 * When calculating the delay, we use these either side of the exponentiation to
2467 * maintain precision and scale to a reasonable number of jiffies (see the table
2468 * below.
2469 *
2470 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2471 * overage ratio to a delay.
2472 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2473 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2474 * to produce a reasonable delay curve.
2475 *
2476 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2477 * reasonable delay curve compared to precision-adjusted overage, not
2478 * penalising heavily at first, but still making sure that growth beyond the
2479 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2480 * example, with a high of 100 megabytes:
2481 *
2482 * +-------+------------------------+
2483 * | usage | time to allocate in ms |
2484 * +-------+------------------------+
2485 * | 100M | 0 |
2486 * | 101M | 6 |
2487 * | 102M | 25 |
2488 * | 103M | 57 |
2489 * | 104M | 102 |
2490 * | 105M | 159 |
2491 * | 106M | 230 |
2492 * | 107M | 313 |
2493 * | 108M | 409 |
2494 * | 109M | 518 |
2495 * | 110M | 639 |
2496 * | 111M | 774 |
2497 * | 112M | 921 |
2498 * | 113M | 1081 |
2499 * | 114M | 1254 |
2500 * | 115M | 1439 |
2501 * | 116M | 1638 |
2502 * | 117M | 1849 |
2503 * | 118M | 2000 |
2504 * | 119M | 2000 |
2505 * | 120M | 2000 |
2506 * +-------+------------------------+
2507 */
2508 #define MEMCG_DELAY_PRECISION_SHIFT 20
2509 #define MEMCG_DELAY_SCALING_SHIFT 14
2510
calculate_overage(unsigned long usage,unsigned long high)2511 static u64 calculate_overage(unsigned long usage, unsigned long high)
2512 {
2513 u64 overage;
2514
2515 if (usage <= high)
2516 return 0;
2517
2518 /*
2519 * Prevent division by 0 in overage calculation by acting as if
2520 * it was a threshold of 1 page
2521 */
2522 high = max(high, 1UL);
2523
2524 overage = usage - high;
2525 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2526 return div64_u64(overage, high);
2527 }
2528
mem_find_max_overage(struct mem_cgroup * memcg)2529 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2530 {
2531 u64 overage, max_overage = 0;
2532
2533 do {
2534 overage = calculate_overage(page_counter_read(&memcg->memory),
2535 READ_ONCE(memcg->memory.high));
2536 max_overage = max(overage, max_overage);
2537 } while ((memcg = parent_mem_cgroup(memcg)) &&
2538 !mem_cgroup_is_root(memcg));
2539
2540 return max_overage;
2541 }
2542
swap_find_max_overage(struct mem_cgroup * memcg)2543 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2544 {
2545 u64 overage, max_overage = 0;
2546
2547 do {
2548 overage = calculate_overage(page_counter_read(&memcg->swap),
2549 READ_ONCE(memcg->swap.high));
2550 if (overage)
2551 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2552 max_overage = max(overage, max_overage);
2553 } while ((memcg = parent_mem_cgroup(memcg)) &&
2554 !mem_cgroup_is_root(memcg));
2555
2556 return max_overage;
2557 }
2558
2559 /*
2560 * Get the number of jiffies that we should penalise a mischievous cgroup which
2561 * is exceeding its memory.high by checking both it and its ancestors.
2562 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2563 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2564 unsigned int nr_pages,
2565 u64 max_overage)
2566 {
2567 unsigned long penalty_jiffies;
2568
2569 if (!max_overage)
2570 return 0;
2571
2572 /*
2573 * We use overage compared to memory.high to calculate the number of
2574 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2575 * fairly lenient on small overages, and increasingly harsh when the
2576 * memcg in question makes it clear that it has no intention of stopping
2577 * its crazy behaviour, so we exponentially increase the delay based on
2578 * overage amount.
2579 */
2580 penalty_jiffies = max_overage * max_overage * HZ;
2581 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2582 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2583
2584 /*
2585 * Factor in the task's own contribution to the overage, such that four
2586 * N-sized allocations are throttled approximately the same as one
2587 * 4N-sized allocation.
2588 *
2589 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2590 * larger the current charge patch is than that.
2591 */
2592 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2593 }
2594
2595 /*
2596 * Scheduled by try_charge() to be executed from the userland return path
2597 * and reclaims memory over the high limit.
2598 */
mem_cgroup_handle_over_high(void)2599 void mem_cgroup_handle_over_high(void)
2600 {
2601 unsigned long penalty_jiffies;
2602 unsigned long pflags;
2603 unsigned long nr_reclaimed;
2604 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2605 int nr_retries = MAX_RECLAIM_RETRIES;
2606 struct mem_cgroup *memcg;
2607 bool in_retry = false;
2608
2609 if (likely(!nr_pages))
2610 return;
2611
2612 memcg = get_mem_cgroup_from_mm(current->mm);
2613 current->memcg_nr_pages_over_high = 0;
2614
2615 retry_reclaim:
2616 /*
2617 * The allocating task should reclaim at least the batch size, but for
2618 * subsequent retries we only want to do what's necessary to prevent oom
2619 * or breaching resource isolation.
2620 *
2621 * This is distinct from memory.max or page allocator behaviour because
2622 * memory.high is currently batched, whereas memory.max and the page
2623 * allocator run every time an allocation is made.
2624 */
2625 nr_reclaimed = reclaim_high(memcg,
2626 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2627 GFP_KERNEL);
2628
2629 /*
2630 * memory.high is breached and reclaim is unable to keep up. Throttle
2631 * allocators proactively to slow down excessive growth.
2632 */
2633 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2634 mem_find_max_overage(memcg));
2635
2636 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2637 swap_find_max_overage(memcg));
2638
2639 /*
2640 * Clamp the max delay per usermode return so as to still keep the
2641 * application moving forwards and also permit diagnostics, albeit
2642 * extremely slowly.
2643 */
2644 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2645
2646 /*
2647 * Don't sleep if the amount of jiffies this memcg owes us is so low
2648 * that it's not even worth doing, in an attempt to be nice to those who
2649 * go only a small amount over their memory.high value and maybe haven't
2650 * been aggressively reclaimed enough yet.
2651 */
2652 if (penalty_jiffies <= HZ / 100)
2653 goto out;
2654
2655 /*
2656 * If reclaim is making forward progress but we're still over
2657 * memory.high, we want to encourage that rather than doing allocator
2658 * throttling.
2659 */
2660 if (nr_reclaimed || nr_retries--) {
2661 in_retry = true;
2662 goto retry_reclaim;
2663 }
2664
2665 /*
2666 * If we exit early, we're guaranteed to die (since
2667 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2668 * need to account for any ill-begotten jiffies to pay them off later.
2669 */
2670 psi_memstall_enter(&pflags);
2671 schedule_timeout_killable(penalty_jiffies);
2672 psi_memstall_leave(&pflags);
2673
2674 out:
2675 css_put(&memcg->css);
2676 }
2677
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2678 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2679 unsigned int nr_pages)
2680 {
2681 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2682 int nr_retries = MAX_RECLAIM_RETRIES;
2683 struct mem_cgroup *mem_over_limit;
2684 struct page_counter *counter;
2685 enum oom_status oom_status;
2686 unsigned long nr_reclaimed;
2687 bool passed_oom = false;
2688 bool may_swap = true;
2689 bool drained = false;
2690 unsigned long pflags;
2691
2692 if (mem_cgroup_is_root(memcg))
2693 return 0;
2694 retry:
2695 if (consume_stock(memcg, nr_pages))
2696 return 0;
2697
2698 if (!do_memsw_account() ||
2699 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2700 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2701 goto done_restock;
2702 if (do_memsw_account())
2703 page_counter_uncharge(&memcg->memsw, batch);
2704 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2705 } else {
2706 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2707 may_swap = false;
2708 }
2709
2710 if (batch > nr_pages) {
2711 batch = nr_pages;
2712 goto retry;
2713 }
2714
2715 /*
2716 * Memcg doesn't have a dedicated reserve for atomic
2717 * allocations. But like the global atomic pool, we need to
2718 * put the burden of reclaim on regular allocation requests
2719 * and let these go through as privileged allocations.
2720 */
2721 if (gfp_mask & __GFP_ATOMIC)
2722 goto force;
2723
2724 /*
2725 * Prevent unbounded recursion when reclaim operations need to
2726 * allocate memory. This might exceed the limits temporarily,
2727 * but we prefer facilitating memory reclaim and getting back
2728 * under the limit over triggering OOM kills in these cases.
2729 */
2730 if (unlikely(current->flags & PF_MEMALLOC))
2731 goto force;
2732
2733 if (unlikely(task_in_memcg_oom(current)))
2734 goto nomem;
2735
2736 if (!gfpflags_allow_blocking(gfp_mask))
2737 goto nomem;
2738
2739 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2740
2741 psi_memstall_enter(&pflags);
2742 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2743 gfp_mask, may_swap);
2744 psi_memstall_leave(&pflags);
2745
2746 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2747 goto retry;
2748
2749 if (!drained) {
2750 drain_all_stock(mem_over_limit);
2751 drained = true;
2752 goto retry;
2753 }
2754
2755 if (gfp_mask & __GFP_NORETRY)
2756 goto nomem;
2757 /*
2758 * Even though the limit is exceeded at this point, reclaim
2759 * may have been able to free some pages. Retry the charge
2760 * before killing the task.
2761 *
2762 * Only for regular pages, though: huge pages are rather
2763 * unlikely to succeed so close to the limit, and we fall back
2764 * to regular pages anyway in case of failure.
2765 */
2766 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2767 goto retry;
2768 /*
2769 * At task move, charge accounts can be doubly counted. So, it's
2770 * better to wait until the end of task_move if something is going on.
2771 */
2772 if (mem_cgroup_wait_acct_move(mem_over_limit))
2773 goto retry;
2774
2775 if (nr_retries--)
2776 goto retry;
2777
2778 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2779 goto nomem;
2780
2781 if (gfp_mask & __GFP_NOFAIL)
2782 goto force;
2783
2784 /* Avoid endless loop for tasks bypassed by the oom killer */
2785 if (passed_oom && task_is_dying())
2786 goto nomem;
2787
2788 /*
2789 * keep retrying as long as the memcg oom killer is able to make
2790 * a forward progress or bypass the charge if the oom killer
2791 * couldn't make any progress.
2792 */
2793 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2794 get_order(nr_pages * PAGE_SIZE));
2795 if (oom_status == OOM_SUCCESS) {
2796 passed_oom = true;
2797 nr_retries = MAX_RECLAIM_RETRIES;
2798 goto retry;
2799 }
2800 nomem:
2801 if (!(gfp_mask & __GFP_NOFAIL))
2802 return -ENOMEM;
2803 force:
2804 /*
2805 * The allocation either can't fail or will lead to more memory
2806 * being freed very soon. Allow memory usage go over the limit
2807 * temporarily by force charging it.
2808 */
2809 page_counter_charge(&memcg->memory, nr_pages);
2810 if (do_memsw_account())
2811 page_counter_charge(&memcg->memsw, nr_pages);
2812
2813 return 0;
2814
2815 done_restock:
2816 if (batch > nr_pages)
2817 refill_stock(memcg, batch - nr_pages);
2818
2819 /*
2820 * If the hierarchy is above the normal consumption range, schedule
2821 * reclaim on returning to userland. We can perform reclaim here
2822 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2823 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2824 * not recorded as it most likely matches current's and won't
2825 * change in the meantime. As high limit is checked again before
2826 * reclaim, the cost of mismatch is negligible.
2827 */
2828 do {
2829 bool mem_high, swap_high;
2830
2831 mem_high = page_counter_read(&memcg->memory) >
2832 READ_ONCE(memcg->memory.high);
2833 swap_high = page_counter_read(&memcg->swap) >
2834 READ_ONCE(memcg->swap.high);
2835
2836 /* Don't bother a random interrupted task */
2837 if (in_interrupt()) {
2838 if (mem_high) {
2839 schedule_work(&memcg->high_work);
2840 break;
2841 }
2842 continue;
2843 }
2844
2845 if (mem_high || swap_high) {
2846 /*
2847 * The allocating tasks in this cgroup will need to do
2848 * reclaim or be throttled to prevent further growth
2849 * of the memory or swap footprints.
2850 *
2851 * Target some best-effort fairness between the tasks,
2852 * and distribute reclaim work and delay penalties
2853 * based on how much each task is actually allocating.
2854 */
2855 current->memcg_nr_pages_over_high += batch;
2856 set_notify_resume(current);
2857 break;
2858 }
2859 } while ((memcg = parent_mem_cgroup(memcg)));
2860
2861 return 0;
2862 }
2863
2864 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2865 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2866 {
2867 if (mem_cgroup_is_root(memcg))
2868 return;
2869
2870 page_counter_uncharge(&memcg->memory, nr_pages);
2871 if (do_memsw_account())
2872 page_counter_uncharge(&memcg->memsw, nr_pages);
2873 }
2874 #endif
2875
commit_charge(struct page * page,struct mem_cgroup * memcg)2876 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2877 {
2878 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2879 /*
2880 * Any of the following ensures page->mem_cgroup stability:
2881 *
2882 * - the page lock
2883 * - LRU isolation
2884 * - lock_page_memcg()
2885 * - exclusive reference
2886 * - mem_cgroup_trylock_pages()
2887 */
2888 page->mem_cgroup = memcg;
2889 }
2890
2891 #ifdef CONFIG_MEMCG_KMEM
2892 /*
2893 * The allocated objcg pointers array is not accounted directly.
2894 * Moreover, it should not come from DMA buffer and is not readily
2895 * reclaimable. So those GFP bits should be masked off.
2896 */
2897 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2898 __GFP_ACCOUNT | __GFP_NOFAIL)
2899
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2900 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2901 gfp_t gfp)
2902 {
2903 unsigned int objects = objs_per_slab_page(s, page);
2904 void *vec;
2905
2906 gfp &= ~OBJCGS_CLEAR_MASK;
2907 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2908 page_to_nid(page));
2909 if (!vec)
2910 return -ENOMEM;
2911
2912 if (cmpxchg(&page->obj_cgroups, NULL,
2913 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2914 kfree(vec);
2915 else
2916 kmemleak_not_leak(vec);
2917
2918 return 0;
2919 }
2920
2921 /*
2922 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2923 *
2924 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2925 * cgroup_mutex, etc.
2926 */
mem_cgroup_from_obj(void * p)2927 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2928 {
2929 struct page *page;
2930
2931 if (mem_cgroup_disabled())
2932 return NULL;
2933
2934 page = virt_to_head_page(p);
2935
2936 /*
2937 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2938 * or a pointer to obj_cgroup vector. In the latter case the lowest
2939 * bit of the pointer is set.
2940 * The page->mem_cgroup pointer can be asynchronously changed
2941 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2942 * from a valid memcg pointer to objcg vector or back.
2943 */
2944 if (!page->mem_cgroup)
2945 return NULL;
2946
2947 /*
2948 * Slab objects are accounted individually, not per-page.
2949 * Memcg membership data for each individual object is saved in
2950 * the page->obj_cgroups.
2951 */
2952 if (page_has_obj_cgroups(page)) {
2953 struct obj_cgroup *objcg;
2954 unsigned int off;
2955
2956 off = obj_to_index(page->slab_cache, page, p);
2957 objcg = page_obj_cgroups(page)[off];
2958 if (objcg)
2959 return obj_cgroup_memcg(objcg);
2960
2961 return NULL;
2962 }
2963
2964 /* All other pages use page->mem_cgroup */
2965 return page->mem_cgroup;
2966 }
2967
get_obj_cgroup_from_current(void)2968 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2969 {
2970 struct obj_cgroup *objcg = NULL;
2971 struct mem_cgroup *memcg;
2972
2973 if (memcg_kmem_bypass())
2974 return NULL;
2975
2976 rcu_read_lock();
2977 if (unlikely(active_memcg()))
2978 memcg = active_memcg();
2979 else
2980 memcg = mem_cgroup_from_task(current);
2981
2982 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2983 objcg = rcu_dereference(memcg->objcg);
2984 if (objcg && obj_cgroup_tryget(objcg))
2985 break;
2986 objcg = NULL;
2987 }
2988 rcu_read_unlock();
2989
2990 return objcg;
2991 }
2992
memcg_alloc_cache_id(void)2993 static int memcg_alloc_cache_id(void)
2994 {
2995 int id, size;
2996 int err;
2997
2998 id = ida_simple_get(&memcg_cache_ida,
2999 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3000 if (id < 0)
3001 return id;
3002
3003 if (id < memcg_nr_cache_ids)
3004 return id;
3005
3006 /*
3007 * There's no space for the new id in memcg_caches arrays,
3008 * so we have to grow them.
3009 */
3010 down_write(&memcg_cache_ids_sem);
3011
3012 size = 2 * (id + 1);
3013 if (size < MEMCG_CACHES_MIN_SIZE)
3014 size = MEMCG_CACHES_MIN_SIZE;
3015 else if (size > MEMCG_CACHES_MAX_SIZE)
3016 size = MEMCG_CACHES_MAX_SIZE;
3017
3018 err = memcg_update_all_list_lrus(size);
3019 if (!err)
3020 memcg_nr_cache_ids = size;
3021
3022 up_write(&memcg_cache_ids_sem);
3023
3024 if (err) {
3025 ida_simple_remove(&memcg_cache_ida, id);
3026 return err;
3027 }
3028 return id;
3029 }
3030
memcg_free_cache_id(int id)3031 static void memcg_free_cache_id(int id)
3032 {
3033 ida_simple_remove(&memcg_cache_ida, id);
3034 }
3035
3036 /**
3037 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3038 * @memcg: memory cgroup to charge
3039 * @gfp: reclaim mode
3040 * @nr_pages: number of pages to charge
3041 *
3042 * Returns 0 on success, an error code on failure.
3043 */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3044 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3045 unsigned int nr_pages)
3046 {
3047 struct page_counter *counter;
3048 int ret;
3049
3050 ret = try_charge(memcg, gfp, nr_pages);
3051 if (ret)
3052 return ret;
3053
3054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3055 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3056
3057 /*
3058 * Enforce __GFP_NOFAIL allocation because callers are not
3059 * prepared to see failures and likely do not have any failure
3060 * handling code.
3061 */
3062 if (gfp & __GFP_NOFAIL) {
3063 page_counter_charge(&memcg->kmem, nr_pages);
3064 return 0;
3065 }
3066 cancel_charge(memcg, nr_pages);
3067 return -ENOMEM;
3068 }
3069 return 0;
3070 }
3071
3072 /**
3073 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3074 * @memcg: memcg to uncharge
3075 * @nr_pages: number of pages to uncharge
3076 */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3077 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3078 {
3079 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3080 page_counter_uncharge(&memcg->kmem, nr_pages);
3081
3082 refill_stock(memcg, nr_pages);
3083 }
3084
3085 /**
3086 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3087 * @page: page to charge
3088 * @gfp: reclaim mode
3089 * @order: allocation order
3090 *
3091 * Returns 0 on success, an error code on failure.
3092 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3093 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3094 {
3095 struct mem_cgroup *memcg;
3096 int ret = 0;
3097
3098 memcg = get_mem_cgroup_from_current();
3099 if (memcg && !mem_cgroup_is_root(memcg)) {
3100 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3101 if (!ret) {
3102 page->mem_cgroup = memcg;
3103 __SetPageKmemcg(page);
3104 return 0;
3105 }
3106 css_put(&memcg->css);
3107 }
3108 return ret;
3109 }
3110
3111 /**
3112 * __memcg_kmem_uncharge_page: uncharge a kmem page
3113 * @page: page to uncharge
3114 * @order: allocation order
3115 */
__memcg_kmem_uncharge_page(struct page * page,int order)3116 void __memcg_kmem_uncharge_page(struct page *page, int order)
3117 {
3118 struct mem_cgroup *memcg = page->mem_cgroup;
3119 unsigned int nr_pages = 1 << order;
3120
3121 if (!memcg)
3122 return;
3123
3124 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3125 __memcg_kmem_uncharge(memcg, nr_pages);
3126 page->mem_cgroup = NULL;
3127 css_put(&memcg->css);
3128
3129 /* slab pages do not have PageKmemcg flag set */
3130 if (PageKmemcg(page))
3131 __ClearPageKmemcg(page);
3132 }
3133
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3134 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3135 {
3136 struct memcg_stock_pcp *stock;
3137 unsigned long flags;
3138 bool ret = false;
3139
3140 local_irq_save(flags);
3141
3142 stock = this_cpu_ptr(&memcg_stock);
3143 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3144 stock->nr_bytes -= nr_bytes;
3145 ret = true;
3146 }
3147
3148 local_irq_restore(flags);
3149
3150 return ret;
3151 }
3152
drain_obj_stock(struct memcg_stock_pcp * stock)3153 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3154 {
3155 struct obj_cgroup *old = stock->cached_objcg;
3156
3157 if (!old)
3158 return;
3159
3160 if (stock->nr_bytes) {
3161 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3162 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3163
3164 if (nr_pages) {
3165 struct mem_cgroup *memcg;
3166
3167 rcu_read_lock();
3168 retry:
3169 memcg = obj_cgroup_memcg(old);
3170 if (unlikely(!css_tryget(&memcg->css)))
3171 goto retry;
3172 rcu_read_unlock();
3173
3174 __memcg_kmem_uncharge(memcg, nr_pages);
3175 css_put(&memcg->css);
3176 }
3177
3178 /*
3179 * The leftover is flushed to the centralized per-memcg value.
3180 * On the next attempt to refill obj stock it will be moved
3181 * to a per-cpu stock (probably, on an other CPU), see
3182 * refill_obj_stock().
3183 *
3184 * How often it's flushed is a trade-off between the memory
3185 * limit enforcement accuracy and potential CPU contention,
3186 * so it might be changed in the future.
3187 */
3188 atomic_add(nr_bytes, &old->nr_charged_bytes);
3189 stock->nr_bytes = 0;
3190 }
3191
3192 obj_cgroup_put(old);
3193 stock->cached_objcg = NULL;
3194 }
3195
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3196 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3197 struct mem_cgroup *root_memcg)
3198 {
3199 struct mem_cgroup *memcg;
3200
3201 if (stock->cached_objcg) {
3202 memcg = obj_cgroup_memcg(stock->cached_objcg);
3203 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3204 return true;
3205 }
3206
3207 return false;
3208 }
3209
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3210 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3211 {
3212 struct memcg_stock_pcp *stock;
3213 unsigned long flags;
3214
3215 local_irq_save(flags);
3216
3217 stock = this_cpu_ptr(&memcg_stock);
3218 if (stock->cached_objcg != objcg) { /* reset if necessary */
3219 drain_obj_stock(stock);
3220 obj_cgroup_get(objcg);
3221 stock->cached_objcg = objcg;
3222 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3223 }
3224 stock->nr_bytes += nr_bytes;
3225
3226 if (stock->nr_bytes > PAGE_SIZE)
3227 drain_obj_stock(stock);
3228
3229 local_irq_restore(flags);
3230 }
3231
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3232 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3233 {
3234 struct mem_cgroup *memcg;
3235 unsigned int nr_pages, nr_bytes;
3236 int ret;
3237
3238 if (consume_obj_stock(objcg, size))
3239 return 0;
3240
3241 /*
3242 * In theory, memcg->nr_charged_bytes can have enough
3243 * pre-charged bytes to satisfy the allocation. However,
3244 * flushing memcg->nr_charged_bytes requires two atomic
3245 * operations, and memcg->nr_charged_bytes can't be big,
3246 * so it's better to ignore it and try grab some new pages.
3247 * memcg->nr_charged_bytes will be flushed in
3248 * refill_obj_stock(), called from this function or
3249 * independently later.
3250 */
3251 rcu_read_lock();
3252 retry:
3253 memcg = obj_cgroup_memcg(objcg);
3254 if (unlikely(!css_tryget(&memcg->css)))
3255 goto retry;
3256 rcu_read_unlock();
3257
3258 nr_pages = size >> PAGE_SHIFT;
3259 nr_bytes = size & (PAGE_SIZE - 1);
3260
3261 if (nr_bytes)
3262 nr_pages += 1;
3263
3264 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3265 if (!ret && nr_bytes)
3266 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3267
3268 css_put(&memcg->css);
3269 return ret;
3270 }
3271
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3272 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3273 {
3274 refill_obj_stock(objcg, size);
3275 }
3276
3277 #endif /* CONFIG_MEMCG_KMEM */
3278
3279 /*
3280 * Because head->mem_cgroup is not set on tails, set it now.
3281 */
split_page_memcg(struct page * head,unsigned int nr)3282 void split_page_memcg(struct page *head, unsigned int nr)
3283 {
3284 struct mem_cgroup *memcg = head->mem_cgroup;
3285 int kmemcg = PageKmemcg(head);
3286 int i;
3287
3288 if (mem_cgroup_disabled() || !memcg)
3289 return;
3290
3291 for (i = 1; i < nr; i++) {
3292 head[i].mem_cgroup = memcg;
3293 if (kmemcg)
3294 __SetPageKmemcg(head + i);
3295 }
3296 css_get_many(&memcg->css, nr - 1);
3297 }
3298
3299 #ifdef CONFIG_MEMCG_SWAP
3300 /**
3301 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3302 * @entry: swap entry to be moved
3303 * @from: mem_cgroup which the entry is moved from
3304 * @to: mem_cgroup which the entry is moved to
3305 *
3306 * It succeeds only when the swap_cgroup's record for this entry is the same
3307 * as the mem_cgroup's id of @from.
3308 *
3309 * Returns 0 on success, -EINVAL on failure.
3310 *
3311 * The caller must have charged to @to, IOW, called page_counter_charge() about
3312 * both res and memsw, and called css_get().
3313 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3314 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3315 struct mem_cgroup *from, struct mem_cgroup *to)
3316 {
3317 unsigned short old_id, new_id;
3318
3319 old_id = mem_cgroup_id(from);
3320 new_id = mem_cgroup_id(to);
3321
3322 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3323 mod_memcg_state(from, MEMCG_SWAP, -1);
3324 mod_memcg_state(to, MEMCG_SWAP, 1);
3325 return 0;
3326 }
3327 return -EINVAL;
3328 }
3329 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3330 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3331 struct mem_cgroup *from, struct mem_cgroup *to)
3332 {
3333 return -EINVAL;
3334 }
3335 #endif
3336
3337 static DEFINE_MUTEX(memcg_max_mutex);
3338
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3339 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3340 unsigned long max, bool memsw)
3341 {
3342 bool enlarge = false;
3343 bool drained = false;
3344 int ret;
3345 bool limits_invariant;
3346 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3347
3348 do {
3349 if (signal_pending(current)) {
3350 ret = -EINTR;
3351 break;
3352 }
3353
3354 mutex_lock(&memcg_max_mutex);
3355 /*
3356 * Make sure that the new limit (memsw or memory limit) doesn't
3357 * break our basic invariant rule memory.max <= memsw.max.
3358 */
3359 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3360 max <= memcg->memsw.max;
3361 if (!limits_invariant) {
3362 mutex_unlock(&memcg_max_mutex);
3363 ret = -EINVAL;
3364 break;
3365 }
3366 if (max > counter->max)
3367 enlarge = true;
3368 ret = page_counter_set_max(counter, max);
3369 mutex_unlock(&memcg_max_mutex);
3370
3371 if (!ret)
3372 break;
3373
3374 if (!drained) {
3375 drain_all_stock(memcg);
3376 drained = true;
3377 continue;
3378 }
3379
3380 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3381 GFP_KERNEL, !memsw)) {
3382 ret = -EBUSY;
3383 break;
3384 }
3385 } while (true);
3386
3387 if (!ret && enlarge)
3388 memcg_oom_recover(memcg);
3389
3390 return ret;
3391 }
3392
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3393 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3394 gfp_t gfp_mask,
3395 unsigned long *total_scanned)
3396 {
3397 unsigned long nr_reclaimed = 0;
3398 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3399 unsigned long reclaimed;
3400 int loop = 0;
3401 struct mem_cgroup_tree_per_node *mctz;
3402 unsigned long excess;
3403 unsigned long nr_scanned;
3404
3405 if (order > 0)
3406 return 0;
3407
3408 mctz = soft_limit_tree_node(pgdat->node_id);
3409
3410 /*
3411 * Do not even bother to check the largest node if the root
3412 * is empty. Do it lockless to prevent lock bouncing. Races
3413 * are acceptable as soft limit is best effort anyway.
3414 */
3415 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3416 return 0;
3417
3418 /*
3419 * This loop can run a while, specially if mem_cgroup's continuously
3420 * keep exceeding their soft limit and putting the system under
3421 * pressure
3422 */
3423 do {
3424 if (next_mz)
3425 mz = next_mz;
3426 else
3427 mz = mem_cgroup_largest_soft_limit_node(mctz);
3428 if (!mz)
3429 break;
3430
3431 nr_scanned = 0;
3432 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3433 gfp_mask, &nr_scanned);
3434 nr_reclaimed += reclaimed;
3435 *total_scanned += nr_scanned;
3436 spin_lock_irq(&mctz->lock);
3437 __mem_cgroup_remove_exceeded(mz, mctz);
3438
3439 /*
3440 * If we failed to reclaim anything from this memory cgroup
3441 * it is time to move on to the next cgroup
3442 */
3443 next_mz = NULL;
3444 if (!reclaimed)
3445 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3446
3447 excess = soft_limit_excess(mz->memcg);
3448 /*
3449 * One school of thought says that we should not add
3450 * back the node to the tree if reclaim returns 0.
3451 * But our reclaim could return 0, simply because due
3452 * to priority we are exposing a smaller subset of
3453 * memory to reclaim from. Consider this as a longer
3454 * term TODO.
3455 */
3456 /* If excess == 0, no tree ops */
3457 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3458 spin_unlock_irq(&mctz->lock);
3459 css_put(&mz->memcg->css);
3460 loop++;
3461 /*
3462 * Could not reclaim anything and there are no more
3463 * mem cgroups to try or we seem to be looping without
3464 * reclaiming anything.
3465 */
3466 if (!nr_reclaimed &&
3467 (next_mz == NULL ||
3468 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3469 break;
3470 } while (!nr_reclaimed);
3471 if (next_mz)
3472 css_put(&next_mz->memcg->css);
3473 return nr_reclaimed;
3474 }
3475
3476 /*
3477 * Test whether @memcg has children, dead or alive. Note that this
3478 * function doesn't care whether @memcg has use_hierarchy enabled and
3479 * returns %true if there are child csses according to the cgroup
3480 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3481 */
memcg_has_children(struct mem_cgroup * memcg)3482 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3483 {
3484 bool ret;
3485
3486 rcu_read_lock();
3487 ret = css_next_child(NULL, &memcg->css);
3488 rcu_read_unlock();
3489 return ret;
3490 }
3491
3492 /*
3493 * Reclaims as many pages from the given memcg as possible.
3494 *
3495 * Caller is responsible for holding css reference for memcg.
3496 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3497 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3498 {
3499 int nr_retries = MAX_RECLAIM_RETRIES;
3500
3501 /* we call try-to-free pages for make this cgroup empty */
3502 lru_add_drain_all();
3503
3504 drain_all_stock(memcg);
3505
3506 /* try to free all pages in this cgroup */
3507 while (nr_retries && page_counter_read(&memcg->memory)) {
3508 int progress;
3509
3510 if (signal_pending(current))
3511 return -EINTR;
3512
3513 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3514 GFP_KERNEL, true);
3515 if (!progress) {
3516 nr_retries--;
3517 /* maybe some writeback is necessary */
3518 congestion_wait(BLK_RW_ASYNC, HZ/10);
3519 }
3520
3521 }
3522
3523 return 0;
3524 }
3525
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3526 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3527 char *buf, size_t nbytes,
3528 loff_t off)
3529 {
3530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3531
3532 if (mem_cgroup_is_root(memcg))
3533 return -EINVAL;
3534 return mem_cgroup_force_empty(memcg) ?: nbytes;
3535 }
3536
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3537 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3538 struct cftype *cft)
3539 {
3540 return mem_cgroup_from_css(css)->use_hierarchy;
3541 }
3542
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3543 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3544 struct cftype *cft, u64 val)
3545 {
3546 int retval = 0;
3547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3548 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3549
3550 if (memcg->use_hierarchy == val)
3551 return 0;
3552
3553 /*
3554 * If parent's use_hierarchy is set, we can't make any modifications
3555 * in the child subtrees. If it is unset, then the change can
3556 * occur, provided the current cgroup has no children.
3557 *
3558 * For the root cgroup, parent_mem is NULL, we allow value to be
3559 * set if there are no children.
3560 */
3561 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3562 (val == 1 || val == 0)) {
3563 if (!memcg_has_children(memcg))
3564 memcg->use_hierarchy = val;
3565 else
3566 retval = -EBUSY;
3567 } else
3568 retval = -EINVAL;
3569
3570 return retval;
3571 }
3572
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3573 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3574 {
3575 unsigned long val;
3576
3577 if (mem_cgroup_is_root(memcg)) {
3578 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579 memcg_page_state(memcg, NR_ANON_MAPPED);
3580 if (swap)
3581 val += memcg_page_state(memcg, MEMCG_SWAP);
3582 } else {
3583 if (!swap)
3584 val = page_counter_read(&memcg->memory);
3585 else
3586 val = page_counter_read(&memcg->memsw);
3587 }
3588 return val;
3589 }
3590
3591 enum {
3592 RES_USAGE,
3593 RES_LIMIT,
3594 RES_MAX_USAGE,
3595 RES_FAILCNT,
3596 RES_SOFT_LIMIT,
3597 };
3598
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3599 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3600 struct cftype *cft)
3601 {
3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 struct page_counter *counter;
3604
3605 switch (MEMFILE_TYPE(cft->private)) {
3606 case _MEM:
3607 counter = &memcg->memory;
3608 break;
3609 case _MEMSWAP:
3610 counter = &memcg->memsw;
3611 break;
3612 case _KMEM:
3613 counter = &memcg->kmem;
3614 break;
3615 case _TCP:
3616 counter = &memcg->tcpmem;
3617 break;
3618 default:
3619 BUG();
3620 }
3621
3622 switch (MEMFILE_ATTR(cft->private)) {
3623 case RES_USAGE:
3624 if (counter == &memcg->memory)
3625 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626 if (counter == &memcg->memsw)
3627 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 return (u64)page_counter_read(counter) * PAGE_SIZE;
3629 case RES_LIMIT:
3630 return (u64)counter->max * PAGE_SIZE;
3631 case RES_MAX_USAGE:
3632 return (u64)counter->watermark * PAGE_SIZE;
3633 case RES_FAILCNT:
3634 return counter->failcnt;
3635 case RES_SOFT_LIMIT:
3636 return (u64)memcg->soft_limit * PAGE_SIZE;
3637 default:
3638 BUG();
3639 }
3640 }
3641
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3642 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3643 {
3644 unsigned long stat[MEMCG_NR_STAT] = {0};
3645 struct mem_cgroup *mi;
3646 int node, cpu, i;
3647
3648 for_each_online_cpu(cpu)
3649 for (i = 0; i < MEMCG_NR_STAT; i++)
3650 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3651
3652 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3653 for (i = 0; i < MEMCG_NR_STAT; i++)
3654 atomic_long_add(stat[i], &mi->vmstats[i]);
3655
3656 for_each_node(node) {
3657 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3658 struct mem_cgroup_per_node *pi;
3659
3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 stat[i] = 0;
3662
3663 for_each_online_cpu(cpu)
3664 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3665 stat[i] += per_cpu(
3666 pn->lruvec_stat_cpu->count[i], cpu);
3667
3668 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3669 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3670 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3671 }
3672 }
3673
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3674 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3675 {
3676 unsigned long events[NR_VM_EVENT_ITEMS];
3677 struct mem_cgroup *mi;
3678 int cpu, i;
3679
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3681 events[i] = 0;
3682
3683 for_each_online_cpu(cpu)
3684 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3685 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3686 cpu);
3687
3688 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3689 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3690 atomic_long_add(events[i], &mi->vmevents[i]);
3691 }
3692
3693 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3694 static int memcg_online_kmem(struct mem_cgroup *memcg)
3695 {
3696 struct obj_cgroup *objcg;
3697 int memcg_id;
3698
3699 if (cgroup_memory_nokmem)
3700 return 0;
3701
3702 BUG_ON(memcg->kmemcg_id >= 0);
3703 BUG_ON(memcg->kmem_state);
3704
3705 memcg_id = memcg_alloc_cache_id();
3706 if (memcg_id < 0)
3707 return memcg_id;
3708
3709 objcg = obj_cgroup_alloc();
3710 if (!objcg) {
3711 memcg_free_cache_id(memcg_id);
3712 return -ENOMEM;
3713 }
3714 objcg->memcg = memcg;
3715 rcu_assign_pointer(memcg->objcg, objcg);
3716
3717 static_branch_enable(&memcg_kmem_enabled_key);
3718
3719 /*
3720 * A memory cgroup is considered kmem-online as soon as it gets
3721 * kmemcg_id. Setting the id after enabling static branching will
3722 * guarantee no one starts accounting before all call sites are
3723 * patched.
3724 */
3725 memcg->kmemcg_id = memcg_id;
3726 memcg->kmem_state = KMEM_ONLINE;
3727
3728 return 0;
3729 }
3730
memcg_offline_kmem(struct mem_cgroup * memcg)3731 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3732 {
3733 struct cgroup_subsys_state *css;
3734 struct mem_cgroup *parent, *child;
3735 int kmemcg_id;
3736
3737 if (memcg->kmem_state != KMEM_ONLINE)
3738 return;
3739
3740 memcg->kmem_state = KMEM_ALLOCATED;
3741
3742 parent = parent_mem_cgroup(memcg);
3743 if (!parent)
3744 parent = root_mem_cgroup;
3745
3746 memcg_reparent_objcgs(memcg, parent);
3747
3748 kmemcg_id = memcg->kmemcg_id;
3749 BUG_ON(kmemcg_id < 0);
3750
3751 /*
3752 * Change kmemcg_id of this cgroup and all its descendants to the
3753 * parent's id, and then move all entries from this cgroup's list_lrus
3754 * to ones of the parent. After we have finished, all list_lrus
3755 * corresponding to this cgroup are guaranteed to remain empty. The
3756 * ordering is imposed by list_lru_node->lock taken by
3757 * memcg_drain_all_list_lrus().
3758 */
3759 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3760 css_for_each_descendant_pre(css, &memcg->css) {
3761 child = mem_cgroup_from_css(css);
3762 BUG_ON(child->kmemcg_id != kmemcg_id);
3763 child->kmemcg_id = parent->kmemcg_id;
3764 if (!memcg->use_hierarchy)
3765 break;
3766 }
3767 rcu_read_unlock();
3768
3769 memcg_drain_all_list_lrus(kmemcg_id, parent);
3770
3771 memcg_free_cache_id(kmemcg_id);
3772 }
3773
memcg_free_kmem(struct mem_cgroup * memcg)3774 static void memcg_free_kmem(struct mem_cgroup *memcg)
3775 {
3776 /* css_alloc() failed, offlining didn't happen */
3777 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3778 memcg_offline_kmem(memcg);
3779 }
3780 #else
memcg_online_kmem(struct mem_cgroup * memcg)3781 static int memcg_online_kmem(struct mem_cgroup *memcg)
3782 {
3783 return 0;
3784 }
memcg_offline_kmem(struct mem_cgroup * memcg)3785 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3786 {
3787 }
memcg_free_kmem(struct mem_cgroup * memcg)3788 static void memcg_free_kmem(struct mem_cgroup *memcg)
3789 {
3790 }
3791 #endif /* CONFIG_MEMCG_KMEM */
3792
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3793 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3794 unsigned long max)
3795 {
3796 int ret;
3797
3798 mutex_lock(&memcg_max_mutex);
3799 ret = page_counter_set_max(&memcg->kmem, max);
3800 mutex_unlock(&memcg_max_mutex);
3801 return ret;
3802 }
3803
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3804 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3805 {
3806 int ret;
3807
3808 mutex_lock(&memcg_max_mutex);
3809
3810 ret = page_counter_set_max(&memcg->tcpmem, max);
3811 if (ret)
3812 goto out;
3813
3814 if (!memcg->tcpmem_active) {
3815 /*
3816 * The active flag needs to be written after the static_key
3817 * update. This is what guarantees that the socket activation
3818 * function is the last one to run. See mem_cgroup_sk_alloc()
3819 * for details, and note that we don't mark any socket as
3820 * belonging to this memcg until that flag is up.
3821 *
3822 * We need to do this, because static_keys will span multiple
3823 * sites, but we can't control their order. If we mark a socket
3824 * as accounted, but the accounting functions are not patched in
3825 * yet, we'll lose accounting.
3826 *
3827 * We never race with the readers in mem_cgroup_sk_alloc(),
3828 * because when this value change, the code to process it is not
3829 * patched in yet.
3830 */
3831 static_branch_inc(&memcg_sockets_enabled_key);
3832 memcg->tcpmem_active = true;
3833 }
3834 out:
3835 mutex_unlock(&memcg_max_mutex);
3836 return ret;
3837 }
3838
3839 /*
3840 * The user of this function is...
3841 * RES_LIMIT.
3842 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3843 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3844 char *buf, size_t nbytes, loff_t off)
3845 {
3846 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3847 unsigned long nr_pages;
3848 int ret;
3849
3850 buf = strstrip(buf);
3851 ret = page_counter_memparse(buf, "-1", &nr_pages);
3852 if (ret)
3853 return ret;
3854
3855 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3856 case RES_LIMIT:
3857 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3858 ret = -EINVAL;
3859 break;
3860 }
3861 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3862 case _MEM:
3863 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3864 break;
3865 case _MEMSWAP:
3866 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3867 break;
3868 case _KMEM:
3869 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3870 "Please report your usecase to linux-mm@kvack.org if you "
3871 "depend on this functionality.\n");
3872 ret = memcg_update_kmem_max(memcg, nr_pages);
3873 break;
3874 case _TCP:
3875 ret = memcg_update_tcp_max(memcg, nr_pages);
3876 break;
3877 }
3878 break;
3879 case RES_SOFT_LIMIT:
3880 memcg->soft_limit = nr_pages;
3881 ret = 0;
3882 break;
3883 }
3884 return ret ?: nbytes;
3885 }
3886
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3887 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3888 size_t nbytes, loff_t off)
3889 {
3890 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3891 struct page_counter *counter;
3892
3893 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3894 case _MEM:
3895 counter = &memcg->memory;
3896 break;
3897 case _MEMSWAP:
3898 counter = &memcg->memsw;
3899 break;
3900 case _KMEM:
3901 counter = &memcg->kmem;
3902 break;
3903 case _TCP:
3904 counter = &memcg->tcpmem;
3905 break;
3906 default:
3907 BUG();
3908 }
3909
3910 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3911 case RES_MAX_USAGE:
3912 page_counter_reset_watermark(counter);
3913 break;
3914 case RES_FAILCNT:
3915 counter->failcnt = 0;
3916 break;
3917 default:
3918 BUG();
3919 }
3920
3921 return nbytes;
3922 }
3923
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3924 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3925 struct cftype *cft)
3926 {
3927 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3928 }
3929
3930 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3931 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3932 struct cftype *cft, u64 val)
3933 {
3934 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3935
3936 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3937 "Please report your usecase to linux-mm@kvack.org if you "
3938 "depend on this functionality.\n");
3939
3940 if (val & ~MOVE_MASK)
3941 return -EINVAL;
3942
3943 /*
3944 * No kind of locking is needed in here, because ->can_attach() will
3945 * check this value once in the beginning of the process, and then carry
3946 * on with stale data. This means that changes to this value will only
3947 * affect task migrations starting after the change.
3948 */
3949 memcg->move_charge_at_immigrate = val;
3950 return 0;
3951 }
3952 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3953 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3954 struct cftype *cft, u64 val)
3955 {
3956 return -ENOSYS;
3957 }
3958 #endif
3959
3960 #ifdef CONFIG_NUMA
3961
3962 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3963 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3964 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3965
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3966 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3967 int nid, unsigned int lru_mask, bool tree)
3968 {
3969 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3970 unsigned long nr = 0;
3971 enum lru_list lru;
3972
3973 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3974
3975 for_each_lru(lru) {
3976 if (!(BIT(lru) & lru_mask))
3977 continue;
3978 if (tree)
3979 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3980 else
3981 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3982 }
3983 return nr;
3984 }
3985
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3986 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3987 unsigned int lru_mask,
3988 bool tree)
3989 {
3990 unsigned long nr = 0;
3991 enum lru_list lru;
3992
3993 for_each_lru(lru) {
3994 if (!(BIT(lru) & lru_mask))
3995 continue;
3996 if (tree)
3997 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3998 else
3999 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4000 }
4001 return nr;
4002 }
4003
memcg_numa_stat_show(struct seq_file * m,void * v)4004 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4005 {
4006 struct numa_stat {
4007 const char *name;
4008 unsigned int lru_mask;
4009 };
4010
4011 static const struct numa_stat stats[] = {
4012 { "total", LRU_ALL },
4013 { "file", LRU_ALL_FILE },
4014 { "anon", LRU_ALL_ANON },
4015 { "unevictable", BIT(LRU_UNEVICTABLE) },
4016 };
4017 const struct numa_stat *stat;
4018 int nid;
4019 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4020
4021 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4022 seq_printf(m, "%s=%lu", stat->name,
4023 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4024 false));
4025 for_each_node_state(nid, N_MEMORY)
4026 seq_printf(m, " N%d=%lu", nid,
4027 mem_cgroup_node_nr_lru_pages(memcg, nid,
4028 stat->lru_mask, false));
4029 seq_putc(m, '\n');
4030 }
4031
4032 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4033
4034 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4035 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4036 true));
4037 for_each_node_state(nid, N_MEMORY)
4038 seq_printf(m, " N%d=%lu", nid,
4039 mem_cgroup_node_nr_lru_pages(memcg, nid,
4040 stat->lru_mask, true));
4041 seq_putc(m, '\n');
4042 }
4043
4044 return 0;
4045 }
4046 #endif /* CONFIG_NUMA */
4047
4048 static const unsigned int memcg1_stats[] = {
4049 NR_FILE_PAGES,
4050 NR_ANON_MAPPED,
4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 NR_ANON_THPS,
4053 #endif
4054 NR_SHMEM,
4055 NR_FILE_MAPPED,
4056 NR_FILE_DIRTY,
4057 NR_WRITEBACK,
4058 MEMCG_SWAP,
4059 };
4060
4061 static const char *const memcg1_stat_names[] = {
4062 "cache",
4063 "rss",
4064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4065 "rss_huge",
4066 #endif
4067 "shmem",
4068 "mapped_file",
4069 "dirty",
4070 "writeback",
4071 "swap",
4072 };
4073
4074 /* Universal VM events cgroup1 shows, original sort order */
4075 static const unsigned int memcg1_events[] = {
4076 PGPGIN,
4077 PGPGOUT,
4078 PGFAULT,
4079 PGMAJFAULT,
4080 };
4081
memcg_stat_show(struct seq_file * m,void * v)4082 static int memcg_stat_show(struct seq_file *m, void *v)
4083 {
4084 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4085 unsigned long memory, memsw;
4086 struct mem_cgroup *mi;
4087 unsigned int i;
4088
4089 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4090
4091 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4092 unsigned long nr;
4093
4094 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4095 continue;
4096 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4098 if (memcg1_stats[i] == NR_ANON_THPS)
4099 nr *= HPAGE_PMD_NR;
4100 #endif
4101 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4102 }
4103
4104 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4105 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4106 memcg_events_local(memcg, memcg1_events[i]));
4107
4108 for (i = 0; i < NR_LRU_LISTS; i++)
4109 seq_printf(m, "%s %lu\n", lru_list_name(i),
4110 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4111 PAGE_SIZE);
4112
4113 /* Hierarchical information */
4114 memory = memsw = PAGE_COUNTER_MAX;
4115 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4116 memory = min(memory, READ_ONCE(mi->memory.max));
4117 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4118 }
4119 seq_printf(m, "hierarchical_memory_limit %llu\n",
4120 (u64)memory * PAGE_SIZE);
4121 if (do_memsw_account())
4122 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4123 (u64)memsw * PAGE_SIZE);
4124
4125 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4126 unsigned long nr;
4127
4128 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4129 continue;
4130 nr = memcg_page_state(memcg, memcg1_stats[i]);
4131 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4132 if (memcg1_stats[i] == NR_ANON_THPS)
4133 nr *= HPAGE_PMD_NR;
4134 #endif
4135 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4136 (u64)nr * PAGE_SIZE);
4137 }
4138
4139 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4140 seq_printf(m, "total_%s %llu\n",
4141 vm_event_name(memcg1_events[i]),
4142 (u64)memcg_events(memcg, memcg1_events[i]));
4143
4144 for (i = 0; i < NR_LRU_LISTS; i++)
4145 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4146 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4147 PAGE_SIZE);
4148
4149 #ifdef CONFIG_DEBUG_VM
4150 {
4151 pg_data_t *pgdat;
4152 struct mem_cgroup_per_node *mz;
4153 unsigned long anon_cost = 0;
4154 unsigned long file_cost = 0;
4155
4156 for_each_online_pgdat(pgdat) {
4157 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4158
4159 anon_cost += mz->lruvec.anon_cost;
4160 file_cost += mz->lruvec.file_cost;
4161 }
4162 seq_printf(m, "anon_cost %lu\n", anon_cost);
4163 seq_printf(m, "file_cost %lu\n", file_cost);
4164 }
4165 #endif
4166
4167 return 0;
4168 }
4169
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4170 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4171 struct cftype *cft)
4172 {
4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4174
4175 return mem_cgroup_swappiness(memcg);
4176 }
4177
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4178 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4179 struct cftype *cft, u64 val)
4180 {
4181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4182
4183 if (val > 200)
4184 return -EINVAL;
4185
4186 if (css->parent)
4187 memcg->swappiness = val;
4188 else
4189 vm_swappiness = val;
4190
4191 return 0;
4192 }
4193
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4194 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4195 {
4196 struct mem_cgroup_threshold_ary *t;
4197 unsigned long usage;
4198 int i;
4199
4200 rcu_read_lock();
4201 if (!swap)
4202 t = rcu_dereference(memcg->thresholds.primary);
4203 else
4204 t = rcu_dereference(memcg->memsw_thresholds.primary);
4205
4206 if (!t)
4207 goto unlock;
4208
4209 usage = mem_cgroup_usage(memcg, swap);
4210
4211 /*
4212 * current_threshold points to threshold just below or equal to usage.
4213 * If it's not true, a threshold was crossed after last
4214 * call of __mem_cgroup_threshold().
4215 */
4216 i = t->current_threshold;
4217
4218 /*
4219 * Iterate backward over array of thresholds starting from
4220 * current_threshold and check if a threshold is crossed.
4221 * If none of thresholds below usage is crossed, we read
4222 * only one element of the array here.
4223 */
4224 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4225 eventfd_signal(t->entries[i].eventfd, 1);
4226
4227 /* i = current_threshold + 1 */
4228 i++;
4229
4230 /*
4231 * Iterate forward over array of thresholds starting from
4232 * current_threshold+1 and check if a threshold is crossed.
4233 * If none of thresholds above usage is crossed, we read
4234 * only one element of the array here.
4235 */
4236 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4237 eventfd_signal(t->entries[i].eventfd, 1);
4238
4239 /* Update current_threshold */
4240 t->current_threshold = i - 1;
4241 unlock:
4242 rcu_read_unlock();
4243 }
4244
mem_cgroup_threshold(struct mem_cgroup * memcg)4245 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4246 {
4247 while (memcg) {
4248 __mem_cgroup_threshold(memcg, false);
4249 if (do_memsw_account())
4250 __mem_cgroup_threshold(memcg, true);
4251
4252 memcg = parent_mem_cgroup(memcg);
4253 }
4254 }
4255
compare_thresholds(const void * a,const void * b)4256 static int compare_thresholds(const void *a, const void *b)
4257 {
4258 const struct mem_cgroup_threshold *_a = a;
4259 const struct mem_cgroup_threshold *_b = b;
4260
4261 if (_a->threshold > _b->threshold)
4262 return 1;
4263
4264 if (_a->threshold < _b->threshold)
4265 return -1;
4266
4267 return 0;
4268 }
4269
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4270 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4271 {
4272 struct mem_cgroup_eventfd_list *ev;
4273
4274 spin_lock(&memcg_oom_lock);
4275
4276 list_for_each_entry(ev, &memcg->oom_notify, list)
4277 eventfd_signal(ev->eventfd, 1);
4278
4279 spin_unlock(&memcg_oom_lock);
4280 return 0;
4281 }
4282
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4283 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4284 {
4285 struct mem_cgroup *iter;
4286
4287 for_each_mem_cgroup_tree(iter, memcg)
4288 mem_cgroup_oom_notify_cb(iter);
4289 }
4290
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4291 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4292 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4293 {
4294 struct mem_cgroup_thresholds *thresholds;
4295 struct mem_cgroup_threshold_ary *new;
4296 unsigned long threshold;
4297 unsigned long usage;
4298 int i, size, ret;
4299
4300 ret = page_counter_memparse(args, "-1", &threshold);
4301 if (ret)
4302 return ret;
4303
4304 mutex_lock(&memcg->thresholds_lock);
4305
4306 if (type == _MEM) {
4307 thresholds = &memcg->thresholds;
4308 usage = mem_cgroup_usage(memcg, false);
4309 } else if (type == _MEMSWAP) {
4310 thresholds = &memcg->memsw_thresholds;
4311 usage = mem_cgroup_usage(memcg, true);
4312 } else
4313 BUG();
4314
4315 /* Check if a threshold crossed before adding a new one */
4316 if (thresholds->primary)
4317 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4318
4319 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4320
4321 /* Allocate memory for new array of thresholds */
4322 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4323 if (!new) {
4324 ret = -ENOMEM;
4325 goto unlock;
4326 }
4327 new->size = size;
4328
4329 /* Copy thresholds (if any) to new array */
4330 if (thresholds->primary)
4331 memcpy(new->entries, thresholds->primary->entries,
4332 flex_array_size(new, entries, size - 1));
4333
4334 /* Add new threshold */
4335 new->entries[size - 1].eventfd = eventfd;
4336 new->entries[size - 1].threshold = threshold;
4337
4338 /* Sort thresholds. Registering of new threshold isn't time-critical */
4339 sort(new->entries, size, sizeof(*new->entries),
4340 compare_thresholds, NULL);
4341
4342 /* Find current threshold */
4343 new->current_threshold = -1;
4344 for (i = 0; i < size; i++) {
4345 if (new->entries[i].threshold <= usage) {
4346 /*
4347 * new->current_threshold will not be used until
4348 * rcu_assign_pointer(), so it's safe to increment
4349 * it here.
4350 */
4351 ++new->current_threshold;
4352 } else
4353 break;
4354 }
4355
4356 /* Free old spare buffer and save old primary buffer as spare */
4357 kfree(thresholds->spare);
4358 thresholds->spare = thresholds->primary;
4359
4360 rcu_assign_pointer(thresholds->primary, new);
4361
4362 /* To be sure that nobody uses thresholds */
4363 synchronize_rcu();
4364
4365 unlock:
4366 mutex_unlock(&memcg->thresholds_lock);
4367
4368 return ret;
4369 }
4370
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4371 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4372 struct eventfd_ctx *eventfd, const char *args)
4373 {
4374 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4375 }
4376
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4377 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378 struct eventfd_ctx *eventfd, const char *args)
4379 {
4380 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4381 }
4382
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4383 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4384 struct eventfd_ctx *eventfd, enum res_type type)
4385 {
4386 struct mem_cgroup_thresholds *thresholds;
4387 struct mem_cgroup_threshold_ary *new;
4388 unsigned long usage;
4389 int i, j, size, entries;
4390
4391 mutex_lock(&memcg->thresholds_lock);
4392
4393 if (type == _MEM) {
4394 thresholds = &memcg->thresholds;
4395 usage = mem_cgroup_usage(memcg, false);
4396 } else if (type == _MEMSWAP) {
4397 thresholds = &memcg->memsw_thresholds;
4398 usage = mem_cgroup_usage(memcg, true);
4399 } else
4400 BUG();
4401
4402 if (!thresholds->primary)
4403 goto unlock;
4404
4405 /* Check if a threshold crossed before removing */
4406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4407
4408 /* Calculate new number of threshold */
4409 size = entries = 0;
4410 for (i = 0; i < thresholds->primary->size; i++) {
4411 if (thresholds->primary->entries[i].eventfd != eventfd)
4412 size++;
4413 else
4414 entries++;
4415 }
4416
4417 new = thresholds->spare;
4418
4419 /* If no items related to eventfd have been cleared, nothing to do */
4420 if (!entries)
4421 goto unlock;
4422
4423 /* Set thresholds array to NULL if we don't have thresholds */
4424 if (!size) {
4425 kfree(new);
4426 new = NULL;
4427 goto swap_buffers;
4428 }
4429
4430 new->size = size;
4431
4432 /* Copy thresholds and find current threshold */
4433 new->current_threshold = -1;
4434 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4435 if (thresholds->primary->entries[i].eventfd == eventfd)
4436 continue;
4437
4438 new->entries[j] = thresholds->primary->entries[i];
4439 if (new->entries[j].threshold <= usage) {
4440 /*
4441 * new->current_threshold will not be used
4442 * until rcu_assign_pointer(), so it's safe to increment
4443 * it here.
4444 */
4445 ++new->current_threshold;
4446 }
4447 j++;
4448 }
4449
4450 swap_buffers:
4451 /* Swap primary and spare array */
4452 thresholds->spare = thresholds->primary;
4453
4454 rcu_assign_pointer(thresholds->primary, new);
4455
4456 /* To be sure that nobody uses thresholds */
4457 synchronize_rcu();
4458
4459 /* If all events are unregistered, free the spare array */
4460 if (!new) {
4461 kfree(thresholds->spare);
4462 thresholds->spare = NULL;
4463 }
4464 unlock:
4465 mutex_unlock(&memcg->thresholds_lock);
4466 }
4467
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4468 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4469 struct eventfd_ctx *eventfd)
4470 {
4471 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4472 }
4473
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4474 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475 struct eventfd_ctx *eventfd)
4476 {
4477 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4478 }
4479
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4480 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd, const char *args)
4482 {
4483 struct mem_cgroup_eventfd_list *event;
4484
4485 event = kmalloc(sizeof(*event), GFP_KERNEL);
4486 if (!event)
4487 return -ENOMEM;
4488
4489 spin_lock(&memcg_oom_lock);
4490
4491 event->eventfd = eventfd;
4492 list_add(&event->list, &memcg->oom_notify);
4493
4494 /* already in OOM ? */
4495 if (memcg->under_oom)
4496 eventfd_signal(eventfd, 1);
4497 spin_unlock(&memcg_oom_lock);
4498
4499 return 0;
4500 }
4501
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4502 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4503 struct eventfd_ctx *eventfd)
4504 {
4505 struct mem_cgroup_eventfd_list *ev, *tmp;
4506
4507 spin_lock(&memcg_oom_lock);
4508
4509 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4510 if (ev->eventfd == eventfd) {
4511 list_del(&ev->list);
4512 kfree(ev);
4513 }
4514 }
4515
4516 spin_unlock(&memcg_oom_lock);
4517 }
4518
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4519 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4520 {
4521 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4522
4523 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4524 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4525 seq_printf(sf, "oom_kill %lu\n",
4526 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4527 return 0;
4528 }
4529
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4530 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4531 struct cftype *cft, u64 val)
4532 {
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4534
4535 /* cannot set to root cgroup and only 0 and 1 are allowed */
4536 if (!css->parent || !((val == 0) || (val == 1)))
4537 return -EINVAL;
4538
4539 memcg->oom_kill_disable = val;
4540 if (!val)
4541 memcg_oom_recover(memcg);
4542
4543 return 0;
4544 }
4545
4546 #ifdef CONFIG_CGROUP_WRITEBACK
4547
4548 #include <trace/events/writeback.h>
4549
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4550 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4551 {
4552 return wb_domain_init(&memcg->cgwb_domain, gfp);
4553 }
4554
memcg_wb_domain_exit(struct mem_cgroup * memcg)4555 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4556 {
4557 wb_domain_exit(&memcg->cgwb_domain);
4558 }
4559
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4560 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4561 {
4562 wb_domain_size_changed(&memcg->cgwb_domain);
4563 }
4564
mem_cgroup_wb_domain(struct bdi_writeback * wb)4565 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4568
4569 if (!memcg->css.parent)
4570 return NULL;
4571
4572 return &memcg->cgwb_domain;
4573 }
4574
4575 /*
4576 * idx can be of type enum memcg_stat_item or node_stat_item.
4577 * Keep in sync with memcg_exact_page().
4578 */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4579 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4580 {
4581 long x = atomic_long_read(&memcg->vmstats[idx]);
4582 int cpu;
4583
4584 for_each_online_cpu(cpu)
4585 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4586 if (x < 0)
4587 x = 0;
4588 return x;
4589 }
4590
4591 /**
4592 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4593 * @wb: bdi_writeback in question
4594 * @pfilepages: out parameter for number of file pages
4595 * @pheadroom: out parameter for number of allocatable pages according to memcg
4596 * @pdirty: out parameter for number of dirty pages
4597 * @pwriteback: out parameter for number of pages under writeback
4598 *
4599 * Determine the numbers of file, headroom, dirty, and writeback pages in
4600 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4601 * is a bit more involved.
4602 *
4603 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4604 * headroom is calculated as the lowest headroom of itself and the
4605 * ancestors. Note that this doesn't consider the actual amount of
4606 * available memory in the system. The caller should further cap
4607 * *@pheadroom accordingly.
4608 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4609 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4610 unsigned long *pheadroom, unsigned long *pdirty,
4611 unsigned long *pwriteback)
4612 {
4613 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4614 struct mem_cgroup *parent;
4615
4616 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4617
4618 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4619 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4620 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4621 *pheadroom = PAGE_COUNTER_MAX;
4622
4623 while ((parent = parent_mem_cgroup(memcg))) {
4624 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4625 READ_ONCE(memcg->memory.high));
4626 unsigned long used = page_counter_read(&memcg->memory);
4627
4628 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4629 memcg = parent;
4630 }
4631 }
4632
4633 /*
4634 * Foreign dirty flushing
4635 *
4636 * There's an inherent mismatch between memcg and writeback. The former
4637 * trackes ownership per-page while the latter per-inode. This was a
4638 * deliberate design decision because honoring per-page ownership in the
4639 * writeback path is complicated, may lead to higher CPU and IO overheads
4640 * and deemed unnecessary given that write-sharing an inode across
4641 * different cgroups isn't a common use-case.
4642 *
4643 * Combined with inode majority-writer ownership switching, this works well
4644 * enough in most cases but there are some pathological cases. For
4645 * example, let's say there are two cgroups A and B which keep writing to
4646 * different but confined parts of the same inode. B owns the inode and
4647 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4648 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4649 * triggering background writeback. A will be slowed down without a way to
4650 * make writeback of the dirty pages happen.
4651 *
4652 * Conditions like the above can lead to a cgroup getting repatedly and
4653 * severely throttled after making some progress after each
4654 * dirty_expire_interval while the underyling IO device is almost
4655 * completely idle.
4656 *
4657 * Solving this problem completely requires matching the ownership tracking
4658 * granularities between memcg and writeback in either direction. However,
4659 * the more egregious behaviors can be avoided by simply remembering the
4660 * most recent foreign dirtying events and initiating remote flushes on
4661 * them when local writeback isn't enough to keep the memory clean enough.
4662 *
4663 * The following two functions implement such mechanism. When a foreign
4664 * page - a page whose memcg and writeback ownerships don't match - is
4665 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4666 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4667 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4668 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4669 * foreign bdi_writebacks which haven't expired. Both the numbers of
4670 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4671 * limited to MEMCG_CGWB_FRN_CNT.
4672 *
4673 * The mechanism only remembers IDs and doesn't hold any object references.
4674 * As being wrong occasionally doesn't matter, updates and accesses to the
4675 * records are lockless and racy.
4676 */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4677 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4678 struct bdi_writeback *wb)
4679 {
4680 struct mem_cgroup *memcg = page->mem_cgroup;
4681 struct memcg_cgwb_frn *frn;
4682 u64 now = get_jiffies_64();
4683 u64 oldest_at = now;
4684 int oldest = -1;
4685 int i;
4686
4687 trace_track_foreign_dirty(page, wb);
4688
4689 /*
4690 * Pick the slot to use. If there is already a slot for @wb, keep
4691 * using it. If not replace the oldest one which isn't being
4692 * written out.
4693 */
4694 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4695 frn = &memcg->cgwb_frn[i];
4696 if (frn->bdi_id == wb->bdi->id &&
4697 frn->memcg_id == wb->memcg_css->id)
4698 break;
4699 if (time_before64(frn->at, oldest_at) &&
4700 atomic_read(&frn->done.cnt) == 1) {
4701 oldest = i;
4702 oldest_at = frn->at;
4703 }
4704 }
4705
4706 if (i < MEMCG_CGWB_FRN_CNT) {
4707 /*
4708 * Re-using an existing one. Update timestamp lazily to
4709 * avoid making the cacheline hot. We want them to be
4710 * reasonably up-to-date and significantly shorter than
4711 * dirty_expire_interval as that's what expires the record.
4712 * Use the shorter of 1s and dirty_expire_interval / 8.
4713 */
4714 unsigned long update_intv =
4715 min_t(unsigned long, HZ,
4716 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4717
4718 if (time_before64(frn->at, now - update_intv))
4719 frn->at = now;
4720 } else if (oldest >= 0) {
4721 /* replace the oldest free one */
4722 frn = &memcg->cgwb_frn[oldest];
4723 frn->bdi_id = wb->bdi->id;
4724 frn->memcg_id = wb->memcg_css->id;
4725 frn->at = now;
4726 }
4727 }
4728
4729 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4730 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4731 {
4732 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4733 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4734 u64 now = jiffies_64;
4735 int i;
4736
4737 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4738 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4739
4740 /*
4741 * If the record is older than dirty_expire_interval,
4742 * writeback on it has already started. No need to kick it
4743 * off again. Also, don't start a new one if there's
4744 * already one in flight.
4745 */
4746 if (time_after64(frn->at, now - intv) &&
4747 atomic_read(&frn->done.cnt) == 1) {
4748 frn->at = 0;
4749 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4750 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4751 WB_REASON_FOREIGN_FLUSH,
4752 &frn->done);
4753 }
4754 }
4755 }
4756
4757 #else /* CONFIG_CGROUP_WRITEBACK */
4758
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4759 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4760 {
4761 return 0;
4762 }
4763
memcg_wb_domain_exit(struct mem_cgroup * memcg)4764 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4765 {
4766 }
4767
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4768 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4769 {
4770 }
4771
4772 #endif /* CONFIG_CGROUP_WRITEBACK */
4773
4774 /*
4775 * DO NOT USE IN NEW FILES.
4776 *
4777 * "cgroup.event_control" implementation.
4778 *
4779 * This is way over-engineered. It tries to support fully configurable
4780 * events for each user. Such level of flexibility is completely
4781 * unnecessary especially in the light of the planned unified hierarchy.
4782 *
4783 * Please deprecate this and replace with something simpler if at all
4784 * possible.
4785 */
4786
4787 /*
4788 * Unregister event and free resources.
4789 *
4790 * Gets called from workqueue.
4791 */
memcg_event_remove(struct work_struct * work)4792 static void memcg_event_remove(struct work_struct *work)
4793 {
4794 struct mem_cgroup_event *event =
4795 container_of(work, struct mem_cgroup_event, remove);
4796 struct mem_cgroup *memcg = event->memcg;
4797
4798 remove_wait_queue(event->wqh, &event->wait);
4799
4800 event->unregister_event(memcg, event->eventfd);
4801
4802 /* Notify userspace the event is going away. */
4803 eventfd_signal(event->eventfd, 1);
4804
4805 eventfd_ctx_put(event->eventfd);
4806 kfree(event);
4807 css_put(&memcg->css);
4808 }
4809
4810 /*
4811 * Gets called on EPOLLHUP on eventfd when user closes it.
4812 *
4813 * Called with wqh->lock held and interrupts disabled.
4814 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4815 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4816 int sync, void *key)
4817 {
4818 struct mem_cgroup_event *event =
4819 container_of(wait, struct mem_cgroup_event, wait);
4820 struct mem_cgroup *memcg = event->memcg;
4821 __poll_t flags = key_to_poll(key);
4822
4823 if (flags & EPOLLHUP) {
4824 /*
4825 * If the event has been detached at cgroup removal, we
4826 * can simply return knowing the other side will cleanup
4827 * for us.
4828 *
4829 * We can't race against event freeing since the other
4830 * side will require wqh->lock via remove_wait_queue(),
4831 * which we hold.
4832 */
4833 spin_lock(&memcg->event_list_lock);
4834 if (!list_empty(&event->list)) {
4835 list_del_init(&event->list);
4836 /*
4837 * We are in atomic context, but cgroup_event_remove()
4838 * may sleep, so we have to call it in workqueue.
4839 */
4840 schedule_work(&event->remove);
4841 }
4842 spin_unlock(&memcg->event_list_lock);
4843 }
4844
4845 return 0;
4846 }
4847
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4848 static void memcg_event_ptable_queue_proc(struct file *file,
4849 wait_queue_head_t *wqh, poll_table *pt)
4850 {
4851 struct mem_cgroup_event *event =
4852 container_of(pt, struct mem_cgroup_event, pt);
4853
4854 event->wqh = wqh;
4855 add_wait_queue(wqh, &event->wait);
4856 }
4857
4858 /*
4859 * DO NOT USE IN NEW FILES.
4860 *
4861 * Parse input and register new cgroup event handler.
4862 *
4863 * Input must be in format '<event_fd> <control_fd> <args>'.
4864 * Interpretation of args is defined by control file implementation.
4865 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4866 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4867 char *buf, size_t nbytes, loff_t off)
4868 {
4869 struct cgroup_subsys_state *css = of_css(of);
4870 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4871 struct mem_cgroup_event *event;
4872 struct cgroup_subsys_state *cfile_css;
4873 unsigned int efd, cfd;
4874 struct fd efile;
4875 struct fd cfile;
4876 struct dentry *cdentry;
4877 const char *name;
4878 char *endp;
4879 int ret;
4880
4881 buf = strstrip(buf);
4882
4883 efd = simple_strtoul(buf, &endp, 10);
4884 if (*endp != ' ')
4885 return -EINVAL;
4886 buf = endp + 1;
4887
4888 cfd = simple_strtoul(buf, &endp, 10);
4889 if ((*endp != ' ') && (*endp != '\0'))
4890 return -EINVAL;
4891 buf = endp + 1;
4892
4893 event = kzalloc(sizeof(*event), GFP_KERNEL);
4894 if (!event)
4895 return -ENOMEM;
4896
4897 event->memcg = memcg;
4898 INIT_LIST_HEAD(&event->list);
4899 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4900 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4901 INIT_WORK(&event->remove, memcg_event_remove);
4902
4903 efile = fdget(efd);
4904 if (!efile.file) {
4905 ret = -EBADF;
4906 goto out_kfree;
4907 }
4908
4909 event->eventfd = eventfd_ctx_fileget(efile.file);
4910 if (IS_ERR(event->eventfd)) {
4911 ret = PTR_ERR(event->eventfd);
4912 goto out_put_efile;
4913 }
4914
4915 cfile = fdget(cfd);
4916 if (!cfile.file) {
4917 ret = -EBADF;
4918 goto out_put_eventfd;
4919 }
4920
4921 /* the process need read permission on control file */
4922 /* AV: shouldn't we check that it's been opened for read instead? */
4923 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4924 if (ret < 0)
4925 goto out_put_cfile;
4926
4927 /*
4928 * The control file must be a regular cgroup1 file. As a regular cgroup
4929 * file can't be renamed, it's safe to access its name afterwards.
4930 */
4931 cdentry = cfile.file->f_path.dentry;
4932 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4933 ret = -EINVAL;
4934 goto out_put_cfile;
4935 }
4936
4937 /*
4938 * Determine the event callbacks and set them in @event. This used
4939 * to be done via struct cftype but cgroup core no longer knows
4940 * about these events. The following is crude but the whole thing
4941 * is for compatibility anyway.
4942 *
4943 * DO NOT ADD NEW FILES.
4944 */
4945 name = cdentry->d_name.name;
4946
4947 if (!strcmp(name, "memory.usage_in_bytes")) {
4948 event->register_event = mem_cgroup_usage_register_event;
4949 event->unregister_event = mem_cgroup_usage_unregister_event;
4950 } else if (!strcmp(name, "memory.oom_control")) {
4951 event->register_event = mem_cgroup_oom_register_event;
4952 event->unregister_event = mem_cgroup_oom_unregister_event;
4953 } else if (!strcmp(name, "memory.pressure_level")) {
4954 event->register_event = vmpressure_register_event;
4955 event->unregister_event = vmpressure_unregister_event;
4956 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4957 event->register_event = memsw_cgroup_usage_register_event;
4958 event->unregister_event = memsw_cgroup_usage_unregister_event;
4959 } else {
4960 ret = -EINVAL;
4961 goto out_put_cfile;
4962 }
4963
4964 /*
4965 * Verify @cfile should belong to @css. Also, remaining events are
4966 * automatically removed on cgroup destruction but the removal is
4967 * asynchronous, so take an extra ref on @css.
4968 */
4969 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4970 &memory_cgrp_subsys);
4971 ret = -EINVAL;
4972 if (IS_ERR(cfile_css))
4973 goto out_put_cfile;
4974 if (cfile_css != css) {
4975 css_put(cfile_css);
4976 goto out_put_cfile;
4977 }
4978
4979 ret = event->register_event(memcg, event->eventfd, buf);
4980 if (ret)
4981 goto out_put_css;
4982
4983 vfs_poll(efile.file, &event->pt);
4984
4985 spin_lock(&memcg->event_list_lock);
4986 list_add(&event->list, &memcg->event_list);
4987 spin_unlock(&memcg->event_list_lock);
4988
4989 fdput(cfile);
4990 fdput(efile);
4991
4992 return nbytes;
4993
4994 out_put_css:
4995 css_put(css);
4996 out_put_cfile:
4997 fdput(cfile);
4998 out_put_eventfd:
4999 eventfd_ctx_put(event->eventfd);
5000 out_put_efile:
5001 fdput(efile);
5002 out_kfree:
5003 kfree(event);
5004
5005 return ret;
5006 }
5007
5008 static struct cftype mem_cgroup_legacy_files[] = {
5009 {
5010 .name = "usage_in_bytes",
5011 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 {
5015 .name = "max_usage_in_bytes",
5016 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5017 .write = mem_cgroup_reset,
5018 .read_u64 = mem_cgroup_read_u64,
5019 },
5020 {
5021 .name = "limit_in_bytes",
5022 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5023 .write = mem_cgroup_write,
5024 .read_u64 = mem_cgroup_read_u64,
5025 },
5026 {
5027 .name = "soft_limit_in_bytes",
5028 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5029 .write = mem_cgroup_write,
5030 .read_u64 = mem_cgroup_read_u64,
5031 },
5032 {
5033 .name = "failcnt",
5034 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5035 .write = mem_cgroup_reset,
5036 .read_u64 = mem_cgroup_read_u64,
5037 },
5038 {
5039 .name = "stat",
5040 .seq_show = memcg_stat_show,
5041 },
5042 {
5043 .name = "force_empty",
5044 .write = mem_cgroup_force_empty_write,
5045 },
5046 {
5047 .name = "use_hierarchy",
5048 .write_u64 = mem_cgroup_hierarchy_write,
5049 .read_u64 = mem_cgroup_hierarchy_read,
5050 },
5051 {
5052 .name = "cgroup.event_control", /* XXX: for compat */
5053 .write = memcg_write_event_control,
5054 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5055 },
5056 {
5057 .name = "swappiness",
5058 .read_u64 = mem_cgroup_swappiness_read,
5059 .write_u64 = mem_cgroup_swappiness_write,
5060 },
5061 {
5062 .name = "move_charge_at_immigrate",
5063 .read_u64 = mem_cgroup_move_charge_read,
5064 .write_u64 = mem_cgroup_move_charge_write,
5065 },
5066 {
5067 .name = "oom_control",
5068 .seq_show = mem_cgroup_oom_control_read,
5069 .write_u64 = mem_cgroup_oom_control_write,
5070 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5071 },
5072 {
5073 .name = "pressure_level",
5074 },
5075 #ifdef CONFIG_NUMA
5076 {
5077 .name = "numa_stat",
5078 .seq_show = memcg_numa_stat_show,
5079 },
5080 #endif
5081 {
5082 .name = "kmem.limit_in_bytes",
5083 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5084 .write = mem_cgroup_write,
5085 .read_u64 = mem_cgroup_read_u64,
5086 },
5087 {
5088 .name = "kmem.usage_in_bytes",
5089 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5090 .read_u64 = mem_cgroup_read_u64,
5091 },
5092 {
5093 .name = "kmem.failcnt",
5094 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5095 .write = mem_cgroup_reset,
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.max_usage_in_bytes",
5100 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 #if defined(CONFIG_MEMCG_KMEM) && \
5105 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5106 {
5107 .name = "kmem.slabinfo",
5108 .seq_show = memcg_slab_show,
5109 },
5110 #endif
5111 {
5112 .name = "kmem.tcp.limit_in_bytes",
5113 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5114 .write = mem_cgroup_write,
5115 .read_u64 = mem_cgroup_read_u64,
5116 },
5117 {
5118 .name = "kmem.tcp.usage_in_bytes",
5119 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5120 .read_u64 = mem_cgroup_read_u64,
5121 },
5122 {
5123 .name = "kmem.tcp.failcnt",
5124 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5125 .write = mem_cgroup_reset,
5126 .read_u64 = mem_cgroup_read_u64,
5127 },
5128 {
5129 .name = "kmem.tcp.max_usage_in_bytes",
5130 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5131 .write = mem_cgroup_reset,
5132 .read_u64 = mem_cgroup_read_u64,
5133 },
5134 { }, /* terminate */
5135 };
5136
5137 /*
5138 * Private memory cgroup IDR
5139 *
5140 * Swap-out records and page cache shadow entries need to store memcg
5141 * references in constrained space, so we maintain an ID space that is
5142 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5143 * memory-controlled cgroups to 64k.
5144 *
5145 * However, there usually are many references to the offline CSS after
5146 * the cgroup has been destroyed, such as page cache or reclaimable
5147 * slab objects, that don't need to hang on to the ID. We want to keep
5148 * those dead CSS from occupying IDs, or we might quickly exhaust the
5149 * relatively small ID space and prevent the creation of new cgroups
5150 * even when there are much fewer than 64k cgroups - possibly none.
5151 *
5152 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5153 * be freed and recycled when it's no longer needed, which is usually
5154 * when the CSS is offlined.
5155 *
5156 * The only exception to that are records of swapped out tmpfs/shmem
5157 * pages that need to be attributed to live ancestors on swapin. But
5158 * those references are manageable from userspace.
5159 */
5160
5161 static DEFINE_IDR(mem_cgroup_idr);
5162
mem_cgroup_id_remove(struct mem_cgroup * memcg)5163 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5164 {
5165 if (memcg->id.id > 0) {
5166 trace_android_vh_mem_cgroup_id_remove(memcg);
5167 idr_remove(&mem_cgroup_idr, memcg->id.id);
5168 memcg->id.id = 0;
5169 }
5170 }
5171
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5172 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5173 unsigned int n)
5174 {
5175 refcount_add(n, &memcg->id.ref);
5176 }
5177
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5178 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5179 {
5180 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5181 mem_cgroup_id_remove(memcg);
5182
5183 /* Memcg ID pins CSS */
5184 css_put(&memcg->css);
5185 }
5186 }
5187
mem_cgroup_id_put(struct mem_cgroup * memcg)5188 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5189 {
5190 mem_cgroup_id_put_many(memcg, 1);
5191 }
5192
5193 /**
5194 * mem_cgroup_from_id - look up a memcg from a memcg id
5195 * @id: the memcg id to look up
5196 *
5197 * Caller must hold rcu_read_lock().
5198 */
mem_cgroup_from_id(unsigned short id)5199 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5200 {
5201 WARN_ON_ONCE(!rcu_read_lock_held());
5202 return idr_find(&mem_cgroup_idr, id);
5203 }
5204 EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
5205
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5206 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5207 {
5208 struct mem_cgroup_per_node *pn;
5209 int tmp = node;
5210 /*
5211 * This routine is called against possible nodes.
5212 * But it's BUG to call kmalloc() against offline node.
5213 *
5214 * TODO: this routine can waste much memory for nodes which will
5215 * never be onlined. It's better to use memory hotplug callback
5216 * function.
5217 */
5218 if (!node_state(node, N_NORMAL_MEMORY))
5219 tmp = -1;
5220 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5221 if (!pn)
5222 return 1;
5223
5224 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5225 GFP_KERNEL_ACCOUNT);
5226 if (!pn->lruvec_stat_local) {
5227 kfree(pn);
5228 return 1;
5229 }
5230
5231 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5232 GFP_KERNEL_ACCOUNT);
5233 if (!pn->lruvec_stat_cpu) {
5234 free_percpu(pn->lruvec_stat_local);
5235 kfree(pn);
5236 return 1;
5237 }
5238
5239 lruvec_init(&pn->lruvec);
5240 pn->usage_in_excess = 0;
5241 pn->on_tree = false;
5242 pn->memcg = memcg;
5243
5244 memcg->nodeinfo[node] = pn;
5245 return 0;
5246 }
5247
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5248 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5249 {
5250 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5251
5252 if (!pn)
5253 return;
5254
5255 free_percpu(pn->lruvec_stat_cpu);
5256 free_percpu(pn->lruvec_stat_local);
5257 kfree(pn);
5258 }
5259
__mem_cgroup_free(struct mem_cgroup * memcg)5260 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5261 {
5262 int node;
5263
5264 trace_android_vh_mem_cgroup_free(memcg);
5265 for_each_node(node)
5266 free_mem_cgroup_per_node_info(memcg, node);
5267 free_percpu(memcg->vmstats_percpu);
5268 free_percpu(memcg->vmstats_local);
5269 kfree(memcg);
5270 }
5271
mem_cgroup_free(struct mem_cgroup * memcg)5272 static void mem_cgroup_free(struct mem_cgroup *memcg)
5273 {
5274 lru_gen_exit_memcg(memcg);
5275 memcg_wb_domain_exit(memcg);
5276 /*
5277 * Flush percpu vmstats and vmevents to guarantee the value correctness
5278 * on parent's and all ancestor levels.
5279 */
5280 memcg_flush_percpu_vmstats(memcg);
5281 memcg_flush_percpu_vmevents(memcg);
5282 __mem_cgroup_free(memcg);
5283 }
5284
mem_cgroup_alloc(void)5285 static struct mem_cgroup *mem_cgroup_alloc(void)
5286 {
5287 struct mem_cgroup *memcg;
5288 unsigned int size;
5289 int node;
5290 int __maybe_unused i;
5291 long error = -ENOMEM;
5292
5293 size = sizeof(struct mem_cgroup);
5294 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5295
5296 memcg = kzalloc(size, GFP_KERNEL);
5297 if (!memcg)
5298 return ERR_PTR(error);
5299
5300 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5301 1, MEM_CGROUP_ID_MAX,
5302 GFP_KERNEL);
5303 if (memcg->id.id < 0) {
5304 error = memcg->id.id;
5305 goto fail;
5306 }
5307
5308 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5309 GFP_KERNEL_ACCOUNT);
5310 if (!memcg->vmstats_local)
5311 goto fail;
5312
5313 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5314 GFP_KERNEL_ACCOUNT);
5315 if (!memcg->vmstats_percpu)
5316 goto fail;
5317
5318 for_each_node(node)
5319 if (alloc_mem_cgroup_per_node_info(memcg, node))
5320 goto fail;
5321
5322 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5323 goto fail;
5324
5325 INIT_WORK(&memcg->high_work, high_work_func);
5326 INIT_LIST_HEAD(&memcg->oom_notify);
5327 mutex_init(&memcg->thresholds_lock);
5328 spin_lock_init(&memcg->move_lock);
5329 vmpressure_init(&memcg->vmpressure);
5330 INIT_LIST_HEAD(&memcg->event_list);
5331 spin_lock_init(&memcg->event_list_lock);
5332 memcg->socket_pressure = jiffies;
5333 #ifdef CONFIG_MEMCG_KMEM
5334 memcg->kmemcg_id = -1;
5335 INIT_LIST_HEAD(&memcg->objcg_list);
5336 #endif
5337 #ifdef CONFIG_CGROUP_WRITEBACK
5338 INIT_LIST_HEAD(&memcg->cgwb_list);
5339 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5340 memcg->cgwb_frn[i].done =
5341 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5342 #endif
5343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5344 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5345 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5346 memcg->deferred_split_queue.split_queue_len = 0;
5347 #endif
5348 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5349 lru_gen_init_memcg(memcg);
5350 trace_android_vh_mem_cgroup_alloc(memcg);
5351 return memcg;
5352 fail:
5353 mem_cgroup_id_remove(memcg);
5354 __mem_cgroup_free(memcg);
5355 return ERR_PTR(error);
5356 }
5357
5358 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5359 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5360 {
5361 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5362 struct mem_cgroup *memcg, *old_memcg;
5363 long error = -ENOMEM;
5364
5365 old_memcg = set_active_memcg(parent);
5366 memcg = mem_cgroup_alloc();
5367 set_active_memcg(old_memcg);
5368 if (IS_ERR(memcg))
5369 return ERR_CAST(memcg);
5370
5371 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5372 memcg->soft_limit = PAGE_COUNTER_MAX;
5373 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5374 if (parent) {
5375 memcg->swappiness = mem_cgroup_swappiness(parent);
5376 memcg->oom_kill_disable = parent->oom_kill_disable;
5377 }
5378 if (!parent) {
5379 page_counter_init(&memcg->memory, NULL);
5380 page_counter_init(&memcg->swap, NULL);
5381 page_counter_init(&memcg->kmem, NULL);
5382 page_counter_init(&memcg->tcpmem, NULL);
5383 } else if (parent->use_hierarchy) {
5384 memcg->use_hierarchy = true;
5385 page_counter_init(&memcg->memory, &parent->memory);
5386 page_counter_init(&memcg->swap, &parent->swap);
5387 page_counter_init(&memcg->kmem, &parent->kmem);
5388 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5389 } else {
5390 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5391 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5392 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5393 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5394 /*
5395 * Deeper hierachy with use_hierarchy == false doesn't make
5396 * much sense so let cgroup subsystem know about this
5397 * unfortunate state in our controller.
5398 */
5399 if (parent != root_mem_cgroup)
5400 memory_cgrp_subsys.broken_hierarchy = true;
5401 }
5402
5403 /* The following stuff does not apply to the root */
5404 if (!parent) {
5405 root_mem_cgroup = memcg;
5406 return &memcg->css;
5407 }
5408
5409 error = memcg_online_kmem(memcg);
5410 if (error)
5411 goto fail;
5412
5413 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5414 static_branch_inc(&memcg_sockets_enabled_key);
5415
5416 return &memcg->css;
5417 fail:
5418 mem_cgroup_id_remove(memcg);
5419 mem_cgroup_free(memcg);
5420 return ERR_PTR(error);
5421 }
5422
mem_cgroup_css_online(struct cgroup_subsys_state * css)5423 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5424 {
5425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426
5427 /*
5428 * A memcg must be visible for memcg_expand_shrinker_maps()
5429 * by the time the maps are allocated. So, we allocate maps
5430 * here, when for_each_mem_cgroup() can't skip it.
5431 */
5432 if (memcg_alloc_shrinker_maps(memcg)) {
5433 mem_cgroup_id_remove(memcg);
5434 return -ENOMEM;
5435 }
5436
5437 /* Online state pins memcg ID, memcg ID pins CSS */
5438 refcount_set(&memcg->id.ref, 1);
5439 css_get(css);
5440 trace_android_vh_mem_cgroup_css_online(css, memcg);
5441 return 0;
5442 }
5443
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5444 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5445 {
5446 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5447 struct mem_cgroup_event *event, *tmp;
5448
5449 trace_android_vh_mem_cgroup_css_offline(css, memcg);
5450 /*
5451 * Unregister events and notify userspace.
5452 * Notify userspace about cgroup removing only after rmdir of cgroup
5453 * directory to avoid race between userspace and kernelspace.
5454 */
5455 spin_lock(&memcg->event_list_lock);
5456 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5457 list_del_init(&event->list);
5458 schedule_work(&event->remove);
5459 }
5460 spin_unlock(&memcg->event_list_lock);
5461
5462 page_counter_set_min(&memcg->memory, 0);
5463 page_counter_set_low(&memcg->memory, 0);
5464
5465 memcg_offline_kmem(memcg);
5466 wb_memcg_offline(memcg);
5467
5468 drain_all_stock(memcg);
5469
5470 mem_cgroup_id_put(memcg);
5471 }
5472
mem_cgroup_css_released(struct cgroup_subsys_state * css)5473 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5474 {
5475 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5476
5477 invalidate_reclaim_iterators(memcg);
5478 }
5479
mem_cgroup_css_free(struct cgroup_subsys_state * css)5480 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5481 {
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 int __maybe_unused i;
5484
5485 #ifdef CONFIG_CGROUP_WRITEBACK
5486 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5487 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5488 #endif
5489 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5490 static_branch_dec(&memcg_sockets_enabled_key);
5491
5492 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5493 static_branch_dec(&memcg_sockets_enabled_key);
5494
5495 vmpressure_cleanup(&memcg->vmpressure);
5496 cancel_work_sync(&memcg->high_work);
5497 mem_cgroup_remove_from_trees(memcg);
5498 memcg_free_shrinker_maps(memcg);
5499 memcg_free_kmem(memcg);
5500 mem_cgroup_free(memcg);
5501 }
5502
5503 /**
5504 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5505 * @css: the target css
5506 *
5507 * Reset the states of the mem_cgroup associated with @css. This is
5508 * invoked when the userland requests disabling on the default hierarchy
5509 * but the memcg is pinned through dependency. The memcg should stop
5510 * applying policies and should revert to the vanilla state as it may be
5511 * made visible again.
5512 *
5513 * The current implementation only resets the essential configurations.
5514 * This needs to be expanded to cover all the visible parts.
5515 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5516 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5517 {
5518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5519
5520 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5521 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5522 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5523 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5524 page_counter_set_min(&memcg->memory, 0);
5525 page_counter_set_low(&memcg->memory, 0);
5526 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5527 memcg->soft_limit = PAGE_COUNTER_MAX;
5528 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5529 memcg_wb_domain_size_changed(memcg);
5530 }
5531
5532 #ifdef CONFIG_MMU
5533 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5534 static int mem_cgroup_do_precharge(unsigned long count)
5535 {
5536 int ret;
5537
5538 /* Try a single bulk charge without reclaim first, kswapd may wake */
5539 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5540 if (!ret) {
5541 mc.precharge += count;
5542 return ret;
5543 }
5544
5545 /* Try charges one by one with reclaim, but do not retry */
5546 while (count--) {
5547 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5548 if (ret)
5549 return ret;
5550 mc.precharge++;
5551 cond_resched();
5552 }
5553 return 0;
5554 }
5555
5556 union mc_target {
5557 struct page *page;
5558 swp_entry_t ent;
5559 };
5560
5561 enum mc_target_type {
5562 MC_TARGET_NONE = 0,
5563 MC_TARGET_PAGE,
5564 MC_TARGET_SWAP,
5565 MC_TARGET_DEVICE,
5566 };
5567
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5568 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5569 unsigned long addr, pte_t ptent)
5570 {
5571 struct page *page = vm_normal_page(vma, addr, ptent);
5572
5573 if (!page || !page_mapped(page))
5574 return NULL;
5575 if (PageAnon(page)) {
5576 if (!(mc.flags & MOVE_ANON))
5577 return NULL;
5578 } else {
5579 if (!(mc.flags & MOVE_FILE))
5580 return NULL;
5581 }
5582 if (!get_page_unless_zero(page))
5583 return NULL;
5584
5585 return page;
5586 }
5587
5588 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5589 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5590 pte_t ptent, swp_entry_t *entry)
5591 {
5592 struct page *page = NULL;
5593 swp_entry_t ent = pte_to_swp_entry(ptent);
5594
5595 if (!(mc.flags & MOVE_ANON))
5596 return NULL;
5597
5598 /*
5599 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5600 * a device and because they are not accessible by CPU they are store
5601 * as special swap entry in the CPU page table.
5602 */
5603 if (is_device_private_entry(ent)) {
5604 page = device_private_entry_to_page(ent);
5605 /*
5606 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5607 * a refcount of 1 when free (unlike normal page)
5608 */
5609 if (!page_ref_add_unless(page, 1, 1))
5610 return NULL;
5611 return page;
5612 }
5613
5614 if (non_swap_entry(ent))
5615 return NULL;
5616
5617 /*
5618 * Because lookup_swap_cache() updates some statistics counter,
5619 * we call find_get_page() with swapper_space directly.
5620 */
5621 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5622 entry->val = ent.val;
5623
5624 return page;
5625 }
5626 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5627 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5628 pte_t ptent, swp_entry_t *entry)
5629 {
5630 return NULL;
5631 }
5632 #endif
5633
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5634 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5635 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5636 {
5637 if (!vma->vm_file) /* anonymous vma */
5638 return NULL;
5639 if (!(mc.flags & MOVE_FILE))
5640 return NULL;
5641
5642 /* page is moved even if it's not RSS of this task(page-faulted). */
5643 /* shmem/tmpfs may report page out on swap: account for that too. */
5644 return find_get_incore_page(vma->vm_file->f_mapping,
5645 linear_page_index(vma, addr));
5646 }
5647
5648 /**
5649 * mem_cgroup_move_account - move account of the page
5650 * @page: the page
5651 * @compound: charge the page as compound or small page
5652 * @from: mem_cgroup which the page is moved from.
5653 * @to: mem_cgroup which the page is moved to. @from != @to.
5654 *
5655 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5656 *
5657 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5658 * from old cgroup.
5659 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5660 static int mem_cgroup_move_account(struct page *page,
5661 bool compound,
5662 struct mem_cgroup *from,
5663 struct mem_cgroup *to)
5664 {
5665 struct lruvec *from_vec, *to_vec;
5666 struct pglist_data *pgdat;
5667 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5668 int ret;
5669
5670 VM_BUG_ON(from == to);
5671 VM_BUG_ON_PAGE(PageLRU(page), page);
5672 VM_BUG_ON(compound && !PageTransHuge(page));
5673
5674 /*
5675 * Prevent mem_cgroup_migrate() from looking at
5676 * page->mem_cgroup of its source page while we change it.
5677 */
5678 ret = -EBUSY;
5679 if (!trylock_page(page))
5680 goto out;
5681
5682 ret = -EINVAL;
5683 if (page->mem_cgroup != from)
5684 goto out_unlock;
5685
5686 pgdat = page_pgdat(page);
5687 from_vec = mem_cgroup_lruvec(from, pgdat);
5688 to_vec = mem_cgroup_lruvec(to, pgdat);
5689
5690 lock_page_memcg(page);
5691
5692 if (PageAnon(page)) {
5693 if (page_mapped(page)) {
5694 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5695 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5696 if (PageTransHuge(page)) {
5697 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5698 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5699 }
5700
5701 }
5702 } else {
5703 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5704 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5705
5706 if (PageSwapBacked(page)) {
5707 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5708 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5709 }
5710
5711 if (page_mapped(page)) {
5712 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5713 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5714 }
5715
5716 if (PageDirty(page)) {
5717 struct address_space *mapping = page_mapping(page);
5718
5719 if (mapping_can_writeback(mapping)) {
5720 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5721 -nr_pages);
5722 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5723 nr_pages);
5724 }
5725 }
5726 }
5727
5728 if (PageWriteback(page)) {
5729 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5730 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5731 }
5732
5733 /*
5734 * All state has been migrated, let's switch to the new memcg.
5735 *
5736 * It is safe to change page->mem_cgroup here because the page
5737 * is referenced, charged, isolated, and locked: we can't race
5738 * with (un)charging, migration, LRU putback, or anything else
5739 * that would rely on a stable page->mem_cgroup.
5740 *
5741 * Note that lock_page_memcg is a memcg lock, not a page lock,
5742 * to save space. As soon as we switch page->mem_cgroup to a
5743 * new memcg that isn't locked, the above state can change
5744 * concurrently again. Make sure we're truly done with it.
5745 */
5746 smp_mb();
5747
5748 css_get(&to->css);
5749 css_put(&from->css);
5750
5751 page->mem_cgroup = to;
5752
5753 __unlock_page_memcg(from);
5754
5755 ret = 0;
5756
5757 local_irq_disable();
5758 mem_cgroup_charge_statistics(to, page, nr_pages);
5759 memcg_check_events(to, page);
5760 mem_cgroup_charge_statistics(from, page, -nr_pages);
5761 memcg_check_events(from, page);
5762 local_irq_enable();
5763 out_unlock:
5764 unlock_page(page);
5765 out:
5766 return ret;
5767 }
5768
5769 /**
5770 * get_mctgt_type - get target type of moving charge
5771 * @vma: the vma the pte to be checked belongs
5772 * @addr: the address corresponding to the pte to be checked
5773 * @ptent: the pte to be checked
5774 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5775 *
5776 * Returns
5777 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5778 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5779 * move charge. if @target is not NULL, the page is stored in target->page
5780 * with extra refcnt got(Callers should handle it).
5781 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5782 * target for charge migration. if @target is not NULL, the entry is stored
5783 * in target->ent.
5784 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5785 * (so ZONE_DEVICE page and thus not on the lru).
5786 * For now we such page is charge like a regular page would be as for all
5787 * intent and purposes it is just special memory taking the place of a
5788 * regular page.
5789 *
5790 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5791 *
5792 * Called with pte lock held.
5793 */
5794
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5795 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5796 unsigned long addr, pte_t ptent, union mc_target *target)
5797 {
5798 struct page *page = NULL;
5799 enum mc_target_type ret = MC_TARGET_NONE;
5800 swp_entry_t ent = { .val = 0 };
5801
5802 if (pte_present(ptent))
5803 page = mc_handle_present_pte(vma, addr, ptent);
5804 else if (is_swap_pte(ptent))
5805 page = mc_handle_swap_pte(vma, ptent, &ent);
5806 else if (pte_none(ptent))
5807 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5808
5809 if (!page && !ent.val)
5810 return ret;
5811 if (page) {
5812 /*
5813 * Do only loose check w/o serialization.
5814 * mem_cgroup_move_account() checks the page is valid or
5815 * not under LRU exclusion.
5816 */
5817 if (page->mem_cgroup == mc.from) {
5818 ret = MC_TARGET_PAGE;
5819 if (is_device_private_page(page))
5820 ret = MC_TARGET_DEVICE;
5821 if (target)
5822 target->page = page;
5823 }
5824 if (!ret || !target)
5825 put_page(page);
5826 }
5827 /*
5828 * There is a swap entry and a page doesn't exist or isn't charged.
5829 * But we cannot move a tail-page in a THP.
5830 */
5831 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5832 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5833 ret = MC_TARGET_SWAP;
5834 if (target)
5835 target->ent = ent;
5836 }
5837 return ret;
5838 }
5839
5840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5841 /*
5842 * We don't consider PMD mapped swapping or file mapped pages because THP does
5843 * not support them for now.
5844 * Caller should make sure that pmd_trans_huge(pmd) is true.
5845 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5846 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5847 unsigned long addr, pmd_t pmd, union mc_target *target)
5848 {
5849 struct page *page = NULL;
5850 enum mc_target_type ret = MC_TARGET_NONE;
5851
5852 if (unlikely(is_swap_pmd(pmd))) {
5853 VM_BUG_ON(thp_migration_supported() &&
5854 !is_pmd_migration_entry(pmd));
5855 return ret;
5856 }
5857 page = pmd_page(pmd);
5858 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5859 if (!(mc.flags & MOVE_ANON))
5860 return ret;
5861 if (page->mem_cgroup == mc.from) {
5862 ret = MC_TARGET_PAGE;
5863 if (target) {
5864 get_page(page);
5865 target->page = page;
5866 }
5867 }
5868 return ret;
5869 }
5870 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5871 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5872 unsigned long addr, pmd_t pmd, union mc_target *target)
5873 {
5874 return MC_TARGET_NONE;
5875 }
5876 #endif
5877
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5878 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5879 unsigned long addr, unsigned long end,
5880 struct mm_walk *walk)
5881 {
5882 struct vm_area_struct *vma = walk->vma;
5883 pte_t *pte;
5884 spinlock_t *ptl;
5885
5886 ptl = pmd_trans_huge_lock(pmd, vma);
5887 if (ptl) {
5888 /*
5889 * Note their can not be MC_TARGET_DEVICE for now as we do not
5890 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5891 * this might change.
5892 */
5893 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5894 mc.precharge += HPAGE_PMD_NR;
5895 spin_unlock(ptl);
5896 return 0;
5897 }
5898
5899 if (pmd_trans_unstable(pmd))
5900 return 0;
5901 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5902 for (; addr != end; pte++, addr += PAGE_SIZE)
5903 if (get_mctgt_type(vma, addr, *pte, NULL))
5904 mc.precharge++; /* increment precharge temporarily */
5905 pte_unmap_unlock(pte - 1, ptl);
5906 cond_resched();
5907
5908 return 0;
5909 }
5910
5911 static const struct mm_walk_ops precharge_walk_ops = {
5912 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5913 };
5914
mem_cgroup_count_precharge(struct mm_struct * mm)5915 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5916 {
5917 unsigned long precharge;
5918
5919 mmap_read_lock(mm);
5920 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5921 mmap_read_unlock(mm);
5922
5923 precharge = mc.precharge;
5924 mc.precharge = 0;
5925
5926 return precharge;
5927 }
5928
mem_cgroup_precharge_mc(struct mm_struct * mm)5929 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5930 {
5931 unsigned long precharge = mem_cgroup_count_precharge(mm);
5932
5933 VM_BUG_ON(mc.moving_task);
5934 mc.moving_task = current;
5935 return mem_cgroup_do_precharge(precharge);
5936 }
5937
5938 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5939 static void __mem_cgroup_clear_mc(void)
5940 {
5941 struct mem_cgroup *from = mc.from;
5942 struct mem_cgroup *to = mc.to;
5943
5944 /* we must uncharge all the leftover precharges from mc.to */
5945 if (mc.precharge) {
5946 cancel_charge(mc.to, mc.precharge);
5947 mc.precharge = 0;
5948 }
5949 /*
5950 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5951 * we must uncharge here.
5952 */
5953 if (mc.moved_charge) {
5954 cancel_charge(mc.from, mc.moved_charge);
5955 mc.moved_charge = 0;
5956 }
5957 /* we must fixup refcnts and charges */
5958 if (mc.moved_swap) {
5959 /* uncharge swap account from the old cgroup */
5960 if (!mem_cgroup_is_root(mc.from))
5961 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5962
5963 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5964
5965 /*
5966 * we charged both to->memory and to->memsw, so we
5967 * should uncharge to->memory.
5968 */
5969 if (!mem_cgroup_is_root(mc.to))
5970 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5971
5972 mc.moved_swap = 0;
5973 }
5974 memcg_oom_recover(from);
5975 memcg_oom_recover(to);
5976 wake_up_all(&mc.waitq);
5977 }
5978
mem_cgroup_clear_mc(void)5979 static void mem_cgroup_clear_mc(void)
5980 {
5981 struct mm_struct *mm = mc.mm;
5982
5983 /*
5984 * we must clear moving_task before waking up waiters at the end of
5985 * task migration.
5986 */
5987 mc.moving_task = NULL;
5988 __mem_cgroup_clear_mc();
5989 spin_lock(&mc.lock);
5990 mc.from = NULL;
5991 mc.to = NULL;
5992 mc.mm = NULL;
5993 spin_unlock(&mc.lock);
5994
5995 mmput(mm);
5996 }
5997
mem_cgroup_can_attach(struct cgroup_taskset * tset)5998 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5999 {
6000 struct cgroup_subsys_state *css;
6001 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6002 struct mem_cgroup *from;
6003 struct task_struct *leader, *p;
6004 struct mm_struct *mm;
6005 unsigned long move_flags;
6006 int ret = 0;
6007
6008 /* charge immigration isn't supported on the default hierarchy */
6009 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6010 return 0;
6011
6012 /*
6013 * Multi-process migrations only happen on the default hierarchy
6014 * where charge immigration is not used. Perform charge
6015 * immigration if @tset contains a leader and whine if there are
6016 * multiple.
6017 */
6018 p = NULL;
6019 cgroup_taskset_for_each_leader(leader, css, tset) {
6020 WARN_ON_ONCE(p);
6021 p = leader;
6022 memcg = mem_cgroup_from_css(css);
6023 }
6024 if (!p)
6025 return 0;
6026
6027 /*
6028 * We are now commited to this value whatever it is. Changes in this
6029 * tunable will only affect upcoming migrations, not the current one.
6030 * So we need to save it, and keep it going.
6031 */
6032 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6033 if (!move_flags)
6034 return 0;
6035
6036 from = mem_cgroup_from_task(p);
6037
6038 VM_BUG_ON(from == memcg);
6039
6040 mm = get_task_mm(p);
6041 if (!mm)
6042 return 0;
6043 /* We move charges only when we move a owner of the mm */
6044 if (mm->owner == p) {
6045 VM_BUG_ON(mc.from);
6046 VM_BUG_ON(mc.to);
6047 VM_BUG_ON(mc.precharge);
6048 VM_BUG_ON(mc.moved_charge);
6049 VM_BUG_ON(mc.moved_swap);
6050
6051 spin_lock(&mc.lock);
6052 mc.mm = mm;
6053 mc.from = from;
6054 mc.to = memcg;
6055 mc.flags = move_flags;
6056 spin_unlock(&mc.lock);
6057 /* We set mc.moving_task later */
6058
6059 ret = mem_cgroup_precharge_mc(mm);
6060 if (ret)
6061 mem_cgroup_clear_mc();
6062 } else {
6063 mmput(mm);
6064 }
6065 return ret;
6066 }
6067
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6068 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6069 {
6070 if (mc.to)
6071 mem_cgroup_clear_mc();
6072 }
6073
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6074 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6075 unsigned long addr, unsigned long end,
6076 struct mm_walk *walk)
6077 {
6078 int ret = 0;
6079 struct vm_area_struct *vma = walk->vma;
6080 pte_t *pte;
6081 spinlock_t *ptl;
6082 enum mc_target_type target_type;
6083 union mc_target target;
6084 struct page *page;
6085
6086 ptl = pmd_trans_huge_lock(pmd, vma);
6087 if (ptl) {
6088 if (mc.precharge < HPAGE_PMD_NR) {
6089 spin_unlock(ptl);
6090 return 0;
6091 }
6092 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6093 if (target_type == MC_TARGET_PAGE) {
6094 page = target.page;
6095 if (!isolate_lru_page(page)) {
6096 if (!mem_cgroup_move_account(page, true,
6097 mc.from, mc.to)) {
6098 mc.precharge -= HPAGE_PMD_NR;
6099 mc.moved_charge += HPAGE_PMD_NR;
6100 }
6101 putback_lru_page(page);
6102 }
6103 put_page(page);
6104 } else if (target_type == MC_TARGET_DEVICE) {
6105 page = target.page;
6106 if (!mem_cgroup_move_account(page, true,
6107 mc.from, mc.to)) {
6108 mc.precharge -= HPAGE_PMD_NR;
6109 mc.moved_charge += HPAGE_PMD_NR;
6110 }
6111 put_page(page);
6112 }
6113 spin_unlock(ptl);
6114 return 0;
6115 }
6116
6117 if (pmd_trans_unstable(pmd))
6118 return 0;
6119 retry:
6120 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6121 for (; addr != end; addr += PAGE_SIZE) {
6122 pte_t ptent = *(pte++);
6123 bool device = false;
6124 swp_entry_t ent;
6125
6126 if (!mc.precharge)
6127 break;
6128
6129 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6130 case MC_TARGET_DEVICE:
6131 device = true;
6132 fallthrough;
6133 case MC_TARGET_PAGE:
6134 page = target.page;
6135 /*
6136 * We can have a part of the split pmd here. Moving it
6137 * can be done but it would be too convoluted so simply
6138 * ignore such a partial THP and keep it in original
6139 * memcg. There should be somebody mapping the head.
6140 */
6141 if (PageTransCompound(page))
6142 goto put;
6143 if (!device && isolate_lru_page(page))
6144 goto put;
6145 if (!mem_cgroup_move_account(page, false,
6146 mc.from, mc.to)) {
6147 mc.precharge--;
6148 /* we uncharge from mc.from later. */
6149 mc.moved_charge++;
6150 }
6151 if (!device)
6152 putback_lru_page(page);
6153 put: /* get_mctgt_type() gets the page */
6154 put_page(page);
6155 break;
6156 case MC_TARGET_SWAP:
6157 ent = target.ent;
6158 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6159 mc.precharge--;
6160 mem_cgroup_id_get_many(mc.to, 1);
6161 /* we fixup other refcnts and charges later. */
6162 mc.moved_swap++;
6163 }
6164 break;
6165 default:
6166 break;
6167 }
6168 }
6169 pte_unmap_unlock(pte - 1, ptl);
6170 cond_resched();
6171
6172 if (addr != end) {
6173 /*
6174 * We have consumed all precharges we got in can_attach().
6175 * We try charge one by one, but don't do any additional
6176 * charges to mc.to if we have failed in charge once in attach()
6177 * phase.
6178 */
6179 ret = mem_cgroup_do_precharge(1);
6180 if (!ret)
6181 goto retry;
6182 }
6183
6184 return ret;
6185 }
6186
6187 static const struct mm_walk_ops charge_walk_ops = {
6188 .pmd_entry = mem_cgroup_move_charge_pte_range,
6189 };
6190
mem_cgroup_move_charge(void)6191 static void mem_cgroup_move_charge(void)
6192 {
6193 lru_add_drain_all();
6194 /*
6195 * Signal lock_page_memcg() to take the memcg's move_lock
6196 * while we're moving its pages to another memcg. Then wait
6197 * for already started RCU-only updates to finish.
6198 */
6199 atomic_inc(&mc.from->moving_account);
6200 synchronize_rcu();
6201 retry:
6202 if (unlikely(!mmap_read_trylock(mc.mm))) {
6203 /*
6204 * Someone who are holding the mmap_lock might be waiting in
6205 * waitq. So we cancel all extra charges, wake up all waiters,
6206 * and retry. Because we cancel precharges, we might not be able
6207 * to move enough charges, but moving charge is a best-effort
6208 * feature anyway, so it wouldn't be a big problem.
6209 */
6210 __mem_cgroup_clear_mc();
6211 cond_resched();
6212 goto retry;
6213 }
6214 /*
6215 * When we have consumed all precharges and failed in doing
6216 * additional charge, the page walk just aborts.
6217 */
6218 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6219 NULL);
6220
6221 mmap_read_unlock(mc.mm);
6222 atomic_dec(&mc.from->moving_account);
6223 }
6224
mem_cgroup_move_task(void)6225 static void mem_cgroup_move_task(void)
6226 {
6227 if (mc.to) {
6228 mem_cgroup_move_charge();
6229 mem_cgroup_clear_mc();
6230 }
6231 }
6232 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6233 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6234 {
6235 return 0;
6236 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6237 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6238 {
6239 }
mem_cgroup_move_task(void)6240 static void mem_cgroup_move_task(void)
6241 {
6242 }
6243 #endif
6244
6245 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6246 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6247 {
6248 struct task_struct *task;
6249 struct cgroup_subsys_state *css;
6250
6251 /* find the first leader if there is any */
6252 cgroup_taskset_for_each_leader(task, css, tset)
6253 break;
6254
6255 if (!task)
6256 return;
6257
6258 task_lock(task);
6259 if (task->mm && READ_ONCE(task->mm->owner) == task)
6260 lru_gen_migrate_mm(task->mm);
6261 task_unlock(task);
6262 }
6263 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6264 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6265 {
6266 }
6267 #endif /* CONFIG_LRU_GEN */
6268
6269 /*
6270 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6271 * to verify whether we're attached to the default hierarchy on each mount
6272 * attempt.
6273 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6274 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6275 {
6276 /*
6277 * use_hierarchy is forced on the default hierarchy. cgroup core
6278 * guarantees that @root doesn't have any children, so turning it
6279 * on for the root memcg is enough.
6280 */
6281 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6282 root_mem_cgroup->use_hierarchy = true;
6283 else
6284 root_mem_cgroup->use_hierarchy = false;
6285 }
6286
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6287 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6288 {
6289 if (value == PAGE_COUNTER_MAX)
6290 seq_puts(m, "max\n");
6291 else
6292 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6293
6294 return 0;
6295 }
6296
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6297 static u64 memory_current_read(struct cgroup_subsys_state *css,
6298 struct cftype *cft)
6299 {
6300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6301
6302 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6303 }
6304
memory_min_show(struct seq_file * m,void * v)6305 static int memory_min_show(struct seq_file *m, void *v)
6306 {
6307 return seq_puts_memcg_tunable(m,
6308 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6309 }
6310
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6311 static ssize_t memory_min_write(struct kernfs_open_file *of,
6312 char *buf, size_t nbytes, loff_t off)
6313 {
6314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6315 unsigned long min;
6316 int err;
6317
6318 buf = strstrip(buf);
6319 err = page_counter_memparse(buf, "max", &min);
6320 if (err)
6321 return err;
6322
6323 page_counter_set_min(&memcg->memory, min);
6324
6325 return nbytes;
6326 }
6327
memory_low_show(struct seq_file * m,void * v)6328 static int memory_low_show(struct seq_file *m, void *v)
6329 {
6330 return seq_puts_memcg_tunable(m,
6331 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6332 }
6333
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6334 static ssize_t memory_low_write(struct kernfs_open_file *of,
6335 char *buf, size_t nbytes, loff_t off)
6336 {
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6338 unsigned long low;
6339 int err;
6340
6341 buf = strstrip(buf);
6342 err = page_counter_memparse(buf, "max", &low);
6343 if (err)
6344 return err;
6345
6346 page_counter_set_low(&memcg->memory, low);
6347
6348 return nbytes;
6349 }
6350
memory_high_show(struct seq_file * m,void * v)6351 static int memory_high_show(struct seq_file *m, void *v)
6352 {
6353 return seq_puts_memcg_tunable(m,
6354 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6355 }
6356
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6357 static ssize_t memory_high_write(struct kernfs_open_file *of,
6358 char *buf, size_t nbytes, loff_t off)
6359 {
6360 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6361 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6362 bool drained = false;
6363 unsigned long high;
6364 int err;
6365
6366 buf = strstrip(buf);
6367 err = page_counter_memparse(buf, "max", &high);
6368 if (err)
6369 return err;
6370
6371 page_counter_set_high(&memcg->memory, high);
6372
6373 for (;;) {
6374 unsigned long nr_pages = page_counter_read(&memcg->memory);
6375 unsigned long reclaimed;
6376
6377 if (nr_pages <= high)
6378 break;
6379
6380 if (signal_pending(current))
6381 break;
6382
6383 if (!drained) {
6384 drain_all_stock(memcg);
6385 drained = true;
6386 continue;
6387 }
6388
6389 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6390 GFP_KERNEL, true);
6391
6392 if (!reclaimed && !nr_retries--)
6393 break;
6394 }
6395
6396 memcg_wb_domain_size_changed(memcg);
6397 return nbytes;
6398 }
6399
memory_max_show(struct seq_file * m,void * v)6400 static int memory_max_show(struct seq_file *m, void *v)
6401 {
6402 return seq_puts_memcg_tunable(m,
6403 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6404 }
6405
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6406 static ssize_t memory_max_write(struct kernfs_open_file *of,
6407 char *buf, size_t nbytes, loff_t off)
6408 {
6409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6410 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6411 bool drained = false;
6412 unsigned long max;
6413 int err;
6414
6415 buf = strstrip(buf);
6416 err = page_counter_memparse(buf, "max", &max);
6417 if (err)
6418 return err;
6419
6420 xchg(&memcg->memory.max, max);
6421
6422 for (;;) {
6423 unsigned long nr_pages = page_counter_read(&memcg->memory);
6424
6425 if (nr_pages <= max)
6426 break;
6427
6428 if (signal_pending(current))
6429 break;
6430
6431 if (!drained) {
6432 drain_all_stock(memcg);
6433 drained = true;
6434 continue;
6435 }
6436
6437 if (nr_reclaims) {
6438 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6439 GFP_KERNEL, true))
6440 nr_reclaims--;
6441 continue;
6442 }
6443
6444 memcg_memory_event(memcg, MEMCG_OOM);
6445 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6446 break;
6447 }
6448
6449 memcg_wb_domain_size_changed(memcg);
6450 return nbytes;
6451 }
6452
__memory_events_show(struct seq_file * m,atomic_long_t * events)6453 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6454 {
6455 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6456 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6457 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6458 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6459 seq_printf(m, "oom_kill %lu\n",
6460 atomic_long_read(&events[MEMCG_OOM_KILL]));
6461 }
6462
memory_events_show(struct seq_file * m,void * v)6463 static int memory_events_show(struct seq_file *m, void *v)
6464 {
6465 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6466
6467 __memory_events_show(m, memcg->memory_events);
6468 return 0;
6469 }
6470
memory_events_local_show(struct seq_file * m,void * v)6471 static int memory_events_local_show(struct seq_file *m, void *v)
6472 {
6473 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6474
6475 __memory_events_show(m, memcg->memory_events_local);
6476 return 0;
6477 }
6478
memory_stat_show(struct seq_file * m,void * v)6479 static int memory_stat_show(struct seq_file *m, void *v)
6480 {
6481 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6482 char *buf;
6483
6484 buf = memory_stat_format(memcg);
6485 if (!buf)
6486 return -ENOMEM;
6487 seq_puts(m, buf);
6488 kfree(buf);
6489 return 0;
6490 }
6491
6492 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6493 static int memory_numa_stat_show(struct seq_file *m, void *v)
6494 {
6495 int i;
6496 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6497
6498 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6499 int nid;
6500
6501 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6502 continue;
6503
6504 seq_printf(m, "%s", memory_stats[i].name);
6505 for_each_node_state(nid, N_MEMORY) {
6506 u64 size;
6507 struct lruvec *lruvec;
6508
6509 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6510 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6511 size *= memory_stats[i].ratio;
6512 seq_printf(m, " N%d=%llu", nid, size);
6513 }
6514 seq_putc(m, '\n');
6515 }
6516
6517 return 0;
6518 }
6519 #endif
6520
memory_oom_group_show(struct seq_file * m,void * v)6521 static int memory_oom_group_show(struct seq_file *m, void *v)
6522 {
6523 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6524
6525 seq_printf(m, "%d\n", memcg->oom_group);
6526
6527 return 0;
6528 }
6529
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6530 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6531 char *buf, size_t nbytes, loff_t off)
6532 {
6533 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6534 int ret, oom_group;
6535
6536 buf = strstrip(buf);
6537 if (!buf)
6538 return -EINVAL;
6539
6540 ret = kstrtoint(buf, 0, &oom_group);
6541 if (ret)
6542 return ret;
6543
6544 if (oom_group != 0 && oom_group != 1)
6545 return -EINVAL;
6546
6547 memcg->oom_group = oom_group;
6548
6549 return nbytes;
6550 }
6551
6552 static struct cftype memory_files[] = {
6553 {
6554 .name = "current",
6555 .flags = CFTYPE_NOT_ON_ROOT,
6556 .read_u64 = memory_current_read,
6557 },
6558 {
6559 .name = "min",
6560 .flags = CFTYPE_NOT_ON_ROOT,
6561 .seq_show = memory_min_show,
6562 .write = memory_min_write,
6563 },
6564 {
6565 .name = "low",
6566 .flags = CFTYPE_NOT_ON_ROOT,
6567 .seq_show = memory_low_show,
6568 .write = memory_low_write,
6569 },
6570 {
6571 .name = "high",
6572 .flags = CFTYPE_NOT_ON_ROOT,
6573 .seq_show = memory_high_show,
6574 .write = memory_high_write,
6575 },
6576 {
6577 .name = "max",
6578 .flags = CFTYPE_NOT_ON_ROOT,
6579 .seq_show = memory_max_show,
6580 .write = memory_max_write,
6581 },
6582 {
6583 .name = "events",
6584 .flags = CFTYPE_NOT_ON_ROOT,
6585 .file_offset = offsetof(struct mem_cgroup, events_file),
6586 .seq_show = memory_events_show,
6587 },
6588 {
6589 .name = "events.local",
6590 .flags = CFTYPE_NOT_ON_ROOT,
6591 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6592 .seq_show = memory_events_local_show,
6593 },
6594 {
6595 .name = "stat",
6596 .seq_show = memory_stat_show,
6597 },
6598 #ifdef CONFIG_NUMA
6599 {
6600 .name = "numa_stat",
6601 .seq_show = memory_numa_stat_show,
6602 },
6603 #endif
6604 {
6605 .name = "oom.group",
6606 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6607 .seq_show = memory_oom_group_show,
6608 .write = memory_oom_group_write,
6609 },
6610 { } /* terminate */
6611 };
6612
6613 struct cgroup_subsys memory_cgrp_subsys = {
6614 .css_alloc = mem_cgroup_css_alloc,
6615 .css_online = mem_cgroup_css_online,
6616 .css_offline = mem_cgroup_css_offline,
6617 .css_released = mem_cgroup_css_released,
6618 .css_free = mem_cgroup_css_free,
6619 .css_reset = mem_cgroup_css_reset,
6620 .can_attach = mem_cgroup_can_attach,
6621 .attach = mem_cgroup_attach,
6622 .cancel_attach = mem_cgroup_cancel_attach,
6623 .post_attach = mem_cgroup_move_task,
6624 .bind = mem_cgroup_bind,
6625 .dfl_cftypes = memory_files,
6626 .legacy_cftypes = mem_cgroup_legacy_files,
6627 .early_init = 0,
6628 };
6629
6630 /*
6631 * This function calculates an individual cgroup's effective
6632 * protection which is derived from its own memory.min/low, its
6633 * parent's and siblings' settings, as well as the actual memory
6634 * distribution in the tree.
6635 *
6636 * The following rules apply to the effective protection values:
6637 *
6638 * 1. At the first level of reclaim, effective protection is equal to
6639 * the declared protection in memory.min and memory.low.
6640 *
6641 * 2. To enable safe delegation of the protection configuration, at
6642 * subsequent levels the effective protection is capped to the
6643 * parent's effective protection.
6644 *
6645 * 3. To make complex and dynamic subtrees easier to configure, the
6646 * user is allowed to overcommit the declared protection at a given
6647 * level. If that is the case, the parent's effective protection is
6648 * distributed to the children in proportion to how much protection
6649 * they have declared and how much of it they are utilizing.
6650 *
6651 * This makes distribution proportional, but also work-conserving:
6652 * if one cgroup claims much more protection than it uses memory,
6653 * the unused remainder is available to its siblings.
6654 *
6655 * 4. Conversely, when the declared protection is undercommitted at a
6656 * given level, the distribution of the larger parental protection
6657 * budget is NOT proportional. A cgroup's protection from a sibling
6658 * is capped to its own memory.min/low setting.
6659 *
6660 * 5. However, to allow protecting recursive subtrees from each other
6661 * without having to declare each individual cgroup's fixed share
6662 * of the ancestor's claim to protection, any unutilized -
6663 * "floating" - protection from up the tree is distributed in
6664 * proportion to each cgroup's *usage*. This makes the protection
6665 * neutral wrt sibling cgroups and lets them compete freely over
6666 * the shared parental protection budget, but it protects the
6667 * subtree as a whole from neighboring subtrees.
6668 *
6669 * Note that 4. and 5. are not in conflict: 4. is about protecting
6670 * against immediate siblings whereas 5. is about protecting against
6671 * neighboring subtrees.
6672 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6673 static unsigned long effective_protection(unsigned long usage,
6674 unsigned long parent_usage,
6675 unsigned long setting,
6676 unsigned long parent_effective,
6677 unsigned long siblings_protected)
6678 {
6679 unsigned long protected;
6680 unsigned long ep;
6681
6682 protected = min(usage, setting);
6683 /*
6684 * If all cgroups at this level combined claim and use more
6685 * protection then what the parent affords them, distribute
6686 * shares in proportion to utilization.
6687 *
6688 * We are using actual utilization rather than the statically
6689 * claimed protection in order to be work-conserving: claimed
6690 * but unused protection is available to siblings that would
6691 * otherwise get a smaller chunk than what they claimed.
6692 */
6693 if (siblings_protected > parent_effective)
6694 return protected * parent_effective / siblings_protected;
6695
6696 /*
6697 * Ok, utilized protection of all children is within what the
6698 * parent affords them, so we know whatever this child claims
6699 * and utilizes is effectively protected.
6700 *
6701 * If there is unprotected usage beyond this value, reclaim
6702 * will apply pressure in proportion to that amount.
6703 *
6704 * If there is unutilized protection, the cgroup will be fully
6705 * shielded from reclaim, but we do return a smaller value for
6706 * protection than what the group could enjoy in theory. This
6707 * is okay. With the overcommit distribution above, effective
6708 * protection is always dependent on how memory is actually
6709 * consumed among the siblings anyway.
6710 */
6711 ep = protected;
6712
6713 /*
6714 * If the children aren't claiming (all of) the protection
6715 * afforded to them by the parent, distribute the remainder in
6716 * proportion to the (unprotected) memory of each cgroup. That
6717 * way, cgroups that aren't explicitly prioritized wrt each
6718 * other compete freely over the allowance, but they are
6719 * collectively protected from neighboring trees.
6720 *
6721 * We're using unprotected memory for the weight so that if
6722 * some cgroups DO claim explicit protection, we don't protect
6723 * the same bytes twice.
6724 *
6725 * Check both usage and parent_usage against the respective
6726 * protected values. One should imply the other, but they
6727 * aren't read atomically - make sure the division is sane.
6728 */
6729 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6730 return ep;
6731 if (parent_effective > siblings_protected &&
6732 parent_usage > siblings_protected &&
6733 usage > protected) {
6734 unsigned long unclaimed;
6735
6736 unclaimed = parent_effective - siblings_protected;
6737 unclaimed *= usage - protected;
6738 unclaimed /= parent_usage - siblings_protected;
6739
6740 ep += unclaimed;
6741 }
6742
6743 return ep;
6744 }
6745
6746 /**
6747 * mem_cgroup_protected - check if memory consumption is in the normal range
6748 * @root: the top ancestor of the sub-tree being checked
6749 * @memcg: the memory cgroup to check
6750 *
6751 * WARNING: This function is not stateless! It can only be used as part
6752 * of a top-down tree iteration, not for isolated queries.
6753 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6754 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6755 struct mem_cgroup *memcg)
6756 {
6757 unsigned long usage, parent_usage;
6758 struct mem_cgroup *parent;
6759
6760 if (mem_cgroup_disabled())
6761 return;
6762
6763 if (!root)
6764 root = root_mem_cgroup;
6765
6766 /*
6767 * Effective values of the reclaim targets are ignored so they
6768 * can be stale. Have a look at mem_cgroup_protection for more
6769 * details.
6770 * TODO: calculation should be more robust so that we do not need
6771 * that special casing.
6772 */
6773 if (memcg == root)
6774 return;
6775
6776 usage = page_counter_read(&memcg->memory);
6777 if (!usage)
6778 return;
6779
6780 parent = parent_mem_cgroup(memcg);
6781 /* No parent means a non-hierarchical mode on v1 memcg */
6782 if (!parent)
6783 return;
6784
6785 if (parent == root) {
6786 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6787 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6788 return;
6789 }
6790
6791 parent_usage = page_counter_read(&parent->memory);
6792
6793 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6794 READ_ONCE(memcg->memory.min),
6795 READ_ONCE(parent->memory.emin),
6796 atomic_long_read(&parent->memory.children_min_usage)));
6797
6798 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6799 READ_ONCE(memcg->memory.low),
6800 READ_ONCE(parent->memory.elow),
6801 atomic_long_read(&parent->memory.children_low_usage)));
6802 }
6803
6804 /**
6805 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6806 * @page: page to charge
6807 * @mm: mm context of the victim
6808 * @gfp_mask: reclaim mode
6809 *
6810 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6811 * pages according to @gfp_mask if necessary.
6812 *
6813 * Returns 0 on success. Otherwise, an error code is returned.
6814 */
__mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6815 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6816 gfp_t gfp_mask)
6817 {
6818 unsigned int nr_pages = thp_nr_pages(page);
6819 struct mem_cgroup *memcg = NULL;
6820 int ret = 0;
6821
6822 if (PageSwapCache(page)) {
6823 swp_entry_t ent = { .val = page_private(page), };
6824 unsigned short id;
6825
6826 /*
6827 * Every swap fault against a single page tries to charge the
6828 * page, bail as early as possible. shmem_unuse() encounters
6829 * already charged pages, too. page->mem_cgroup is protected
6830 * by the page lock, which serializes swap cache removal, which
6831 * in turn serializes uncharging.
6832 */
6833 VM_BUG_ON_PAGE(!PageLocked(page), page);
6834 if (compound_head(page)->mem_cgroup)
6835 goto out;
6836
6837 id = lookup_swap_cgroup_id(ent);
6838 rcu_read_lock();
6839 memcg = mem_cgroup_from_id(id);
6840 if (memcg && !css_tryget_online(&memcg->css))
6841 memcg = NULL;
6842 rcu_read_unlock();
6843 }
6844
6845 if (!memcg)
6846 memcg = get_mem_cgroup_from_mm(mm);
6847
6848 ret = try_charge(memcg, gfp_mask, nr_pages);
6849 if (ret)
6850 goto out_put;
6851
6852 css_get(&memcg->css);
6853 commit_charge(page, memcg);
6854
6855 local_irq_disable();
6856 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6857 memcg_check_events(memcg, page);
6858 local_irq_enable();
6859
6860 /*
6861 * Cgroup1's unified memory+swap counter has been charged with the
6862 * new swapcache page, finish the transfer by uncharging the swap
6863 * slot. The swap slot would also get uncharged when it dies, but
6864 * it can stick around indefinitely and we'd count the page twice
6865 * the entire time.
6866 *
6867 * Cgroup2 has separate resource counters for memory and swap,
6868 * so this is a non-issue here. Memory and swap charge lifetimes
6869 * correspond 1:1 to page and swap slot lifetimes: we charge the
6870 * page to memory here, and uncharge swap when the slot is freed.
6871 */
6872 if (do_memsw_account() && PageSwapCache(page)) {
6873 swp_entry_t entry = { .val = page_private(page) };
6874 /*
6875 * The swap entry might not get freed for a long time,
6876 * let's not wait for it. The page already received a
6877 * memory+swap charge, drop the swap entry duplicate.
6878 */
6879 mem_cgroup_uncharge_swap(entry, nr_pages);
6880 }
6881
6882 out_put:
6883 css_put(&memcg->css);
6884 out:
6885 return ret;
6886 }
6887
6888 struct uncharge_gather {
6889 struct mem_cgroup *memcg;
6890 unsigned long nr_pages;
6891 unsigned long pgpgout;
6892 unsigned long nr_kmem;
6893 struct page *dummy_page;
6894 };
6895
uncharge_gather_clear(struct uncharge_gather * ug)6896 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6897 {
6898 memset(ug, 0, sizeof(*ug));
6899 }
6900
uncharge_batch(const struct uncharge_gather * ug)6901 static void uncharge_batch(const struct uncharge_gather *ug)
6902 {
6903 unsigned long flags;
6904
6905 if (!mem_cgroup_is_root(ug->memcg)) {
6906 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6907 if (do_memsw_account())
6908 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6909 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6910 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6911 memcg_oom_recover(ug->memcg);
6912 }
6913
6914 local_irq_save(flags);
6915 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6916 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6917 memcg_check_events(ug->memcg, ug->dummy_page);
6918 local_irq_restore(flags);
6919
6920 /* drop reference from uncharge_page */
6921 css_put(&ug->memcg->css);
6922 }
6923
uncharge_page(struct page * page,struct uncharge_gather * ug)6924 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6925 {
6926 unsigned long nr_pages;
6927
6928 VM_BUG_ON_PAGE(PageLRU(page), page);
6929
6930 if (!page->mem_cgroup)
6931 return;
6932
6933 /*
6934 * Nobody should be changing or seriously looking at
6935 * page->mem_cgroup at this point, we have fully
6936 * exclusive access to the page.
6937 */
6938
6939 if (ug->memcg != page->mem_cgroup) {
6940 if (ug->memcg) {
6941 uncharge_batch(ug);
6942 uncharge_gather_clear(ug);
6943 }
6944 ug->memcg = page->mem_cgroup;
6945
6946 /* pairs with css_put in uncharge_batch */
6947 css_get(&ug->memcg->css);
6948 }
6949
6950 nr_pages = compound_nr(page);
6951 ug->nr_pages += nr_pages;
6952
6953 if (!PageKmemcg(page)) {
6954 ug->pgpgout++;
6955 } else {
6956 ug->nr_kmem += nr_pages;
6957 __ClearPageKmemcg(page);
6958 }
6959
6960 ug->dummy_page = page;
6961 page->mem_cgroup = NULL;
6962 css_put(&ug->memcg->css);
6963 }
6964
uncharge_list(struct list_head * page_list)6965 static void uncharge_list(struct list_head *page_list)
6966 {
6967 struct uncharge_gather ug;
6968 struct list_head *next;
6969
6970 uncharge_gather_clear(&ug);
6971
6972 /*
6973 * Note that the list can be a single page->lru; hence the
6974 * do-while loop instead of a simple list_for_each_entry().
6975 */
6976 next = page_list->next;
6977 do {
6978 struct page *page;
6979
6980 page = list_entry(next, struct page, lru);
6981 next = page->lru.next;
6982
6983 uncharge_page(page, &ug);
6984 } while (next != page_list);
6985
6986 if (ug.memcg)
6987 uncharge_batch(&ug);
6988 }
6989
6990 /**
6991 * __mem_cgroup_uncharge - uncharge a page
6992 * @page: page to uncharge
6993 *
6994 * Uncharge a page previously charged with __mem_cgroup_charge().
6995 */
__mem_cgroup_uncharge(struct page * page)6996 void __mem_cgroup_uncharge(struct page *page)
6997 {
6998 struct uncharge_gather ug;
6999
7000 /* Don't touch page->lru of any random page, pre-check: */
7001 if (!page->mem_cgroup)
7002 return;
7003
7004 uncharge_gather_clear(&ug);
7005 uncharge_page(page, &ug);
7006 uncharge_batch(&ug);
7007 }
7008
7009 /**
7010 * __mem_cgroup_uncharge_list - uncharge a list of page
7011 * @page_list: list of pages to uncharge
7012 *
7013 * Uncharge a list of pages previously charged with
7014 * __mem_cgroup_charge().
7015 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7016 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7017 {
7018 if (!list_empty(page_list))
7019 uncharge_list(page_list);
7020 }
7021
7022 /**
7023 * mem_cgroup_migrate - charge a page's replacement
7024 * @oldpage: currently circulating page
7025 * @newpage: replacement page
7026 *
7027 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7028 * be uncharged upon free.
7029 *
7030 * Both pages must be locked, @newpage->mapping must be set up.
7031 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7032 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7033 {
7034 struct mem_cgroup *memcg;
7035 unsigned int nr_pages;
7036 unsigned long flags;
7037
7038 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7039 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7040 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7041 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7042 newpage);
7043
7044 if (mem_cgroup_disabled())
7045 return;
7046
7047 /* Page cache replacement: new page already charged? */
7048 if (newpage->mem_cgroup)
7049 return;
7050
7051 /* Swapcache readahead pages can get replaced before being charged */
7052 memcg = oldpage->mem_cgroup;
7053 if (!memcg)
7054 return;
7055
7056 /* Force-charge the new page. The old one will be freed soon */
7057 nr_pages = thp_nr_pages(newpage);
7058
7059 page_counter_charge(&memcg->memory, nr_pages);
7060 if (do_memsw_account())
7061 page_counter_charge(&memcg->memsw, nr_pages);
7062
7063 css_get(&memcg->css);
7064 commit_charge(newpage, memcg);
7065
7066 local_irq_save(flags);
7067 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7068 memcg_check_events(memcg, newpage);
7069 local_irq_restore(flags);
7070 }
7071
7072 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7073 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7074
mem_cgroup_sk_alloc(struct sock * sk)7075 void mem_cgroup_sk_alloc(struct sock *sk)
7076 {
7077 struct mem_cgroup *memcg;
7078
7079 if (!mem_cgroup_sockets_enabled)
7080 return;
7081
7082 /* Do not associate the sock with unrelated interrupted task's memcg. */
7083 if (in_interrupt())
7084 return;
7085
7086 rcu_read_lock();
7087 memcg = mem_cgroup_from_task(current);
7088 if (memcg == root_mem_cgroup)
7089 goto out;
7090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7091 goto out;
7092 if (css_tryget(&memcg->css))
7093 sk->sk_memcg = memcg;
7094 out:
7095 rcu_read_unlock();
7096 }
7097
mem_cgroup_sk_free(struct sock * sk)7098 void mem_cgroup_sk_free(struct sock *sk)
7099 {
7100 if (sk->sk_memcg)
7101 css_put(&sk->sk_memcg->css);
7102 }
7103
7104 /**
7105 * mem_cgroup_charge_skmem - charge socket memory
7106 * @memcg: memcg to charge
7107 * @nr_pages: number of pages to charge
7108 *
7109 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7110 * @memcg's configured limit, %false if the charge had to be forced.
7111 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7112 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7113 {
7114 gfp_t gfp_mask = GFP_KERNEL;
7115
7116 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7117 struct page_counter *fail;
7118
7119 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7120 memcg->tcpmem_pressure = 0;
7121 return true;
7122 }
7123 page_counter_charge(&memcg->tcpmem, nr_pages);
7124 memcg->tcpmem_pressure = 1;
7125 return false;
7126 }
7127
7128 /* Don't block in the packet receive path */
7129 if (in_softirq())
7130 gfp_mask = GFP_NOWAIT;
7131
7132 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7133
7134 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7135 return true;
7136
7137 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7138 return false;
7139 }
7140
7141 /**
7142 * mem_cgroup_uncharge_skmem - uncharge socket memory
7143 * @memcg: memcg to uncharge
7144 * @nr_pages: number of pages to uncharge
7145 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7146 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7147 {
7148 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7149 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7150 return;
7151 }
7152
7153 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7154
7155 refill_stock(memcg, nr_pages);
7156 }
7157
cgroup_memory(char * s)7158 static int __init cgroup_memory(char *s)
7159 {
7160 char *token;
7161
7162 while ((token = strsep(&s, ",")) != NULL) {
7163 if (!*token)
7164 continue;
7165 if (!strcmp(token, "nosocket"))
7166 cgroup_memory_nosocket = true;
7167 if (!strcmp(token, "nokmem"))
7168 cgroup_memory_nokmem = true;
7169 }
7170 return 1;
7171 }
7172 __setup("cgroup.memory=", cgroup_memory);
7173
7174 /*
7175 * subsys_initcall() for memory controller.
7176 *
7177 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7178 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7179 * basically everything that doesn't depend on a specific mem_cgroup structure
7180 * should be initialized from here.
7181 */
mem_cgroup_init(void)7182 static int __init mem_cgroup_init(void)
7183 {
7184 int cpu, node;
7185
7186 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7187 memcg_hotplug_cpu_dead);
7188
7189 for_each_possible_cpu(cpu)
7190 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7191 drain_local_stock);
7192
7193 for_each_node(node) {
7194 struct mem_cgroup_tree_per_node *rtpn;
7195
7196 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7197 node_online(node) ? node : NUMA_NO_NODE);
7198
7199 rtpn->rb_root = RB_ROOT;
7200 rtpn->rb_rightmost = NULL;
7201 spin_lock_init(&rtpn->lock);
7202 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7203 }
7204
7205 return 0;
7206 }
7207 subsys_initcall(mem_cgroup_init);
7208
7209 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7210 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7211 {
7212 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7213 /*
7214 * The root cgroup cannot be destroyed, so it's refcount must
7215 * always be >= 1.
7216 */
7217 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7218 VM_BUG_ON(1);
7219 break;
7220 }
7221 memcg = parent_mem_cgroup(memcg);
7222 if (!memcg)
7223 memcg = root_mem_cgroup;
7224 }
7225 return memcg;
7226 }
7227
7228 /**
7229 * mem_cgroup_swapout - transfer a memsw charge to swap
7230 * @page: page whose memsw charge to transfer
7231 * @entry: swap entry to move the charge to
7232 *
7233 * Transfer the memsw charge of @page to @entry.
7234 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7235 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7236 {
7237 struct mem_cgroup *memcg, *swap_memcg;
7238 unsigned int nr_entries;
7239 unsigned short oldid;
7240
7241 VM_BUG_ON_PAGE(PageLRU(page), page);
7242 VM_BUG_ON_PAGE(page_count(page), page);
7243
7244 if (mem_cgroup_disabled())
7245 return;
7246
7247 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7248 return;
7249
7250 memcg = page->mem_cgroup;
7251
7252 /* Readahead page, never charged */
7253 if (!memcg)
7254 return;
7255
7256 /*
7257 * In case the memcg owning these pages has been offlined and doesn't
7258 * have an ID allocated to it anymore, charge the closest online
7259 * ancestor for the swap instead and transfer the memory+swap charge.
7260 */
7261 swap_memcg = mem_cgroup_id_get_online(memcg);
7262 nr_entries = thp_nr_pages(page);
7263 /* Get references for the tail pages, too */
7264 if (nr_entries > 1)
7265 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7266 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7267 nr_entries);
7268 VM_BUG_ON_PAGE(oldid, page);
7269 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7270
7271 page->mem_cgroup = NULL;
7272
7273 if (!mem_cgroup_is_root(memcg))
7274 page_counter_uncharge(&memcg->memory, nr_entries);
7275
7276 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7277 if (!mem_cgroup_is_root(swap_memcg))
7278 page_counter_charge(&swap_memcg->memsw, nr_entries);
7279 page_counter_uncharge(&memcg->memsw, nr_entries);
7280 }
7281
7282 /*
7283 * Interrupts should be disabled here because the caller holds the
7284 * i_pages lock which is taken with interrupts-off. It is
7285 * important here to have the interrupts disabled because it is the
7286 * only synchronisation we have for updating the per-CPU variables.
7287 */
7288 VM_BUG_ON(!irqs_disabled());
7289 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7290 memcg_check_events(memcg, page);
7291
7292 css_put(&memcg->css);
7293 }
7294
7295 /**
7296 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7297 * @page: page being added to swap
7298 * @entry: swap entry to charge
7299 *
7300 * Try to charge @page's memcg for the swap space at @entry.
7301 *
7302 * Returns 0 on success, -ENOMEM on failure.
7303 */
__mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7304 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7305 {
7306 unsigned int nr_pages = thp_nr_pages(page);
7307 struct page_counter *counter;
7308 struct mem_cgroup *memcg;
7309 unsigned short oldid;
7310
7311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7312 return 0;
7313
7314 memcg = page->mem_cgroup;
7315
7316 /* Readahead page, never charged */
7317 if (!memcg)
7318 return 0;
7319
7320 if (!entry.val) {
7321 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7322 return 0;
7323 }
7324
7325 memcg = mem_cgroup_id_get_online(memcg);
7326
7327 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7328 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7329 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7330 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7331 mem_cgroup_id_put(memcg);
7332 return -ENOMEM;
7333 }
7334
7335 /* Get references for the tail pages, too */
7336 if (nr_pages > 1)
7337 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7338 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7339 VM_BUG_ON_PAGE(oldid, page);
7340 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7341
7342 return 0;
7343 }
7344
7345 /**
7346 * __mem_cgroup_uncharge_swap - uncharge swap space
7347 * @entry: swap entry to uncharge
7348 * @nr_pages: the amount of swap space to uncharge
7349 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7350 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7351 {
7352 struct mem_cgroup *memcg;
7353 unsigned short id;
7354
7355 id = swap_cgroup_record(entry, 0, nr_pages);
7356 rcu_read_lock();
7357 memcg = mem_cgroup_from_id(id);
7358 if (memcg) {
7359 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7360 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7361 page_counter_uncharge(&memcg->swap, nr_pages);
7362 else
7363 page_counter_uncharge(&memcg->memsw, nr_pages);
7364 }
7365 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7366 mem_cgroup_id_put_many(memcg, nr_pages);
7367 }
7368 rcu_read_unlock();
7369 }
7370
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7371 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7372 {
7373 long nr_swap_pages = get_nr_swap_pages();
7374
7375 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7376 return nr_swap_pages;
7377 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7378 nr_swap_pages = min_t(long, nr_swap_pages,
7379 READ_ONCE(memcg->swap.max) -
7380 page_counter_read(&memcg->swap));
7381 return nr_swap_pages;
7382 }
7383
mem_cgroup_swap_full(struct page * page)7384 bool mem_cgroup_swap_full(struct page *page)
7385 {
7386 struct mem_cgroup *memcg;
7387
7388 VM_BUG_ON_PAGE(!PageLocked(page), page);
7389
7390 if (vm_swap_full())
7391 return true;
7392 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7393 return false;
7394
7395 memcg = page->mem_cgroup;
7396 if (!memcg)
7397 return false;
7398
7399 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7400 unsigned long usage = page_counter_read(&memcg->swap);
7401
7402 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7403 usage * 2 >= READ_ONCE(memcg->swap.max))
7404 return true;
7405 }
7406
7407 return false;
7408 }
7409
setup_swap_account(char * s)7410 static int __init setup_swap_account(char *s)
7411 {
7412 if (!strcmp(s, "1"))
7413 cgroup_memory_noswap = 0;
7414 else if (!strcmp(s, "0"))
7415 cgroup_memory_noswap = 1;
7416 return 1;
7417 }
7418 __setup("swapaccount=", setup_swap_account);
7419
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7420 static u64 swap_current_read(struct cgroup_subsys_state *css,
7421 struct cftype *cft)
7422 {
7423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7424
7425 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7426 }
7427
swap_high_show(struct seq_file * m,void * v)7428 static int swap_high_show(struct seq_file *m, void *v)
7429 {
7430 return seq_puts_memcg_tunable(m,
7431 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7432 }
7433
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7434 static ssize_t swap_high_write(struct kernfs_open_file *of,
7435 char *buf, size_t nbytes, loff_t off)
7436 {
7437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7438 unsigned long high;
7439 int err;
7440
7441 buf = strstrip(buf);
7442 err = page_counter_memparse(buf, "max", &high);
7443 if (err)
7444 return err;
7445
7446 page_counter_set_high(&memcg->swap, high);
7447
7448 return nbytes;
7449 }
7450
swap_max_show(struct seq_file * m,void * v)7451 static int swap_max_show(struct seq_file *m, void *v)
7452 {
7453 return seq_puts_memcg_tunable(m,
7454 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7455 }
7456
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7457 static ssize_t swap_max_write(struct kernfs_open_file *of,
7458 char *buf, size_t nbytes, loff_t off)
7459 {
7460 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7461 unsigned long max;
7462 int err;
7463
7464 buf = strstrip(buf);
7465 err = page_counter_memparse(buf, "max", &max);
7466 if (err)
7467 return err;
7468
7469 xchg(&memcg->swap.max, max);
7470
7471 return nbytes;
7472 }
7473
swap_events_show(struct seq_file * m,void * v)7474 static int swap_events_show(struct seq_file *m, void *v)
7475 {
7476 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7477
7478 seq_printf(m, "high %lu\n",
7479 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7480 seq_printf(m, "max %lu\n",
7481 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7482 seq_printf(m, "fail %lu\n",
7483 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7484
7485 return 0;
7486 }
7487
7488 static struct cftype swap_files[] = {
7489 {
7490 .name = "swap.current",
7491 .flags = CFTYPE_NOT_ON_ROOT,
7492 .read_u64 = swap_current_read,
7493 },
7494 {
7495 .name = "swap.high",
7496 .flags = CFTYPE_NOT_ON_ROOT,
7497 .seq_show = swap_high_show,
7498 .write = swap_high_write,
7499 },
7500 {
7501 .name = "swap.max",
7502 .flags = CFTYPE_NOT_ON_ROOT,
7503 .seq_show = swap_max_show,
7504 .write = swap_max_write,
7505 },
7506 {
7507 .name = "swap.events",
7508 .flags = CFTYPE_NOT_ON_ROOT,
7509 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7510 .seq_show = swap_events_show,
7511 },
7512 { } /* terminate */
7513 };
7514
7515 static struct cftype memsw_files[] = {
7516 {
7517 .name = "memsw.usage_in_bytes",
7518 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7519 .read_u64 = mem_cgroup_read_u64,
7520 },
7521 {
7522 .name = "memsw.max_usage_in_bytes",
7523 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7524 .write = mem_cgroup_reset,
7525 .read_u64 = mem_cgroup_read_u64,
7526 },
7527 {
7528 .name = "memsw.limit_in_bytes",
7529 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7530 .write = mem_cgroup_write,
7531 .read_u64 = mem_cgroup_read_u64,
7532 },
7533 {
7534 .name = "memsw.failcnt",
7535 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7536 .write = mem_cgroup_reset,
7537 .read_u64 = mem_cgroup_read_u64,
7538 },
7539 { }, /* terminate */
7540 };
7541
7542 /*
7543 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7544 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7545 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7546 * boot parameter. This may result in premature OOPS inside
7547 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7548 */
mem_cgroup_swap_init(void)7549 static int __init mem_cgroup_swap_init(void)
7550 {
7551 /* No memory control -> no swap control */
7552 if (mem_cgroup_disabled())
7553 cgroup_memory_noswap = true;
7554
7555 if (cgroup_memory_noswap)
7556 return 0;
7557
7558 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7559 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7560
7561 return 0;
7562 }
7563 core_initcall(mem_cgroup_swap_init);
7564
7565 #endif /* CONFIG_MEMCG_SWAP */
7566