1 /*
2 * Copyright(c) 2015 - 2020 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57 #include <linux/nospec.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "device.h"
62 #include "trace.h"
63 #include "qp.h"
64 #include "verbs_txreq.h"
65 #include "debugfs.h"
66 #include "vnic.h"
67 #include "fault.h"
68 #include "affinity.h"
69 #include "ipoib.h"
70
71 static unsigned int hfi1_lkey_table_size = 16;
72 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
73 S_IRUGO);
74 MODULE_PARM_DESC(lkey_table_size,
75 "LKEY table size in bits (2^n, 1 <= n <= 23)");
76
77 static unsigned int hfi1_max_pds = 0xFFFF;
78 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
79 MODULE_PARM_DESC(max_pds,
80 "Maximum number of protection domains to support");
81
82 static unsigned int hfi1_max_ahs = 0xFFFF;
83 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
84 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
85
86 unsigned int hfi1_max_cqes = 0x2FFFFF;
87 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
88 MODULE_PARM_DESC(max_cqes,
89 "Maximum number of completion queue entries to support");
90
91 unsigned int hfi1_max_cqs = 0x1FFFF;
92 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
93 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
94
95 unsigned int hfi1_max_qp_wrs = 0x3FFF;
96 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
97 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
98
99 unsigned int hfi1_max_qps = 32768;
100 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
101 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
102
103 unsigned int hfi1_max_sges = 0x60;
104 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
105 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
106
107 unsigned int hfi1_max_mcast_grps = 16384;
108 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
109 MODULE_PARM_DESC(max_mcast_grps,
110 "Maximum number of multicast groups to support");
111
112 unsigned int hfi1_max_mcast_qp_attached = 16;
113 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
114 uint, S_IRUGO);
115 MODULE_PARM_DESC(max_mcast_qp_attached,
116 "Maximum number of attached QPs to support");
117
118 unsigned int hfi1_max_srqs = 1024;
119 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
120 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
121
122 unsigned int hfi1_max_srq_sges = 128;
123 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
124 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
125
126 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
127 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
128 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
129
130 unsigned short piothreshold = 256;
131 module_param(piothreshold, ushort, S_IRUGO);
132 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
133
134 static unsigned int sge_copy_mode;
135 module_param(sge_copy_mode, uint, S_IRUGO);
136 MODULE_PARM_DESC(sge_copy_mode,
137 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
138
139 static void verbs_sdma_complete(
140 struct sdma_txreq *cookie,
141 int status);
142
143 static int pio_wait(struct rvt_qp *qp,
144 struct send_context *sc,
145 struct hfi1_pkt_state *ps,
146 u32 flag);
147
148 /* Length of buffer to create verbs txreq cache name */
149 #define TXREQ_NAME_LEN 24
150
151 static uint wss_threshold = 80;
152 module_param(wss_threshold, uint, S_IRUGO);
153 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
154 static uint wss_clean_period = 256;
155 module_param(wss_clean_period, uint, S_IRUGO);
156 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
157
158 /*
159 * Translate ib_wr_opcode into ib_wc_opcode.
160 */
161 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
162 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
163 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165 [IB_WR_SEND] = IB_WC_SEND,
166 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
169 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
170 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
171 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
172 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
173 [IB_WR_REG_MR] = IB_WC_REG_MR
174 };
175
176 /*
177 * Length of header by opcode, 0 --> not supported
178 */
179 const u8 hdr_len_by_opcode[256] = {
180 /* RC */
181 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
182 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
183 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
184 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
185 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
186 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
187 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
188 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
189 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
190 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
191 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
192 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
193 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
197 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
198 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
199 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8,
200 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
201 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
202 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
203 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
204 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36,
205 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36,
206 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36,
207 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36,
208 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36,
209 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36,
210 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36,
211 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36,
212 /* UC */
213 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
214 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
215 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
216 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
217 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
218 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
219 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
220 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
221 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
222 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
223 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
224 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
225 /* UD */
226 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
227 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
228 };
229
230 static const opcode_handler opcode_handler_tbl[256] = {
231 /* RC */
232 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
233 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
234 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
235 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
236 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
237 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
238 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
239 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
240 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
241 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
242 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
243 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
244 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
245 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
246 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
247 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
248 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
249 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
250 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
251 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
252 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
253 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
254 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
255
256 /* TID RDMA has separate handlers for different opcodes.*/
257 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req,
258 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp,
259 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data,
260 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
261 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req,
262 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp,
263 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync,
264 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack,
265
266 /* UC */
267 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
268 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
269 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
270 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
271 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
272 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
273 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
274 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
275 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
276 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
277 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
278 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
279 /* UD */
280 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
281 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
282 /* CNP */
283 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
284 };
285
286 #define OPMASK 0x1f
287
288 static const u32 pio_opmask[BIT(3)] = {
289 /* RC */
290 [IB_OPCODE_RC >> 5] =
291 BIT(RC_OP(SEND_ONLY) & OPMASK) |
292 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
293 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
294 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
295 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
296 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
297 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
298 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
299 BIT(RC_OP(FETCH_ADD) & OPMASK),
300 /* UC */
301 [IB_OPCODE_UC >> 5] =
302 BIT(UC_OP(SEND_ONLY) & OPMASK) |
303 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
304 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
305 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
306 };
307
308 /*
309 * System image GUID.
310 */
311 __be64 ib_hfi1_sys_image_guid;
312
313 /*
314 * Make sure the QP is ready and able to accept the given opcode.
315 */
qp_ok(struct hfi1_packet * packet)316 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
317 {
318 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
319 return NULL;
320 if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
321 packet->qp->allowed_ops) ||
322 (packet->opcode == IB_OPCODE_CNP))
323 return opcode_handler_tbl[packet->opcode];
324
325 return NULL;
326 }
327
hfi1_fault_tx(struct rvt_qp * qp,u8 opcode,u64 pbc)328 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
329 {
330 #ifdef CONFIG_FAULT_INJECTION
331 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
332 /*
333 * In order to drop non-IB traffic we
334 * set PbcInsertHrc to NONE (0x2).
335 * The packet will still be delivered
336 * to the receiving node but a
337 * KHdrHCRCErr (KDETH packet with a bad
338 * HCRC) will be triggered and the
339 * packet will not be delivered to the
340 * correct context.
341 */
342 pbc &= ~PBC_INSERT_HCRC_SMASK;
343 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
344 } else {
345 /*
346 * In order to drop regular verbs
347 * traffic we set the PbcTestEbp
348 * flag. The packet will still be
349 * delivered to the receiving node but
350 * a 'late ebp error' will be
351 * triggered and will be dropped.
352 */
353 pbc |= PBC_TEST_EBP;
354 }
355 #endif
356 return pbc;
357 }
358
tid_qp_ok(int opcode,struct hfi1_packet * packet)359 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
360 {
361 if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
362 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
363 return NULL;
364 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
365 return opcode_handler_tbl[opcode];
366 return NULL;
367 }
368
hfi1_kdeth_eager_rcv(struct hfi1_packet * packet)369 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
370 {
371 struct hfi1_ctxtdata *rcd = packet->rcd;
372 struct ib_header *hdr = packet->hdr;
373 u32 tlen = packet->tlen;
374 struct hfi1_pportdata *ppd = rcd->ppd;
375 struct hfi1_ibport *ibp = &ppd->ibport_data;
376 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
377 opcode_handler opcode_handler;
378 unsigned long flags;
379 u32 qp_num;
380 int lnh;
381 u8 opcode;
382
383 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
384 if (unlikely(tlen < 15 * sizeof(u32)))
385 goto drop;
386
387 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
388 if (lnh != HFI1_LRH_BTH)
389 goto drop;
390
391 packet->ohdr = &hdr->u.oth;
392 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
393
394 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
395 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
396
397 /* verbs_qp can be picked up from any tid_rdma header struct */
398 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
399 RVT_QPN_MASK;
400
401 rcu_read_lock();
402 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
403 if (!packet->qp)
404 goto drop_rcu;
405 spin_lock_irqsave(&packet->qp->r_lock, flags);
406 opcode_handler = tid_qp_ok(opcode, packet);
407 if (likely(opcode_handler))
408 opcode_handler(packet);
409 else
410 goto drop_unlock;
411 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
412 rcu_read_unlock();
413
414 return;
415 drop_unlock:
416 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
417 drop_rcu:
418 rcu_read_unlock();
419 drop:
420 ibp->rvp.n_pkt_drops++;
421 }
422
hfi1_kdeth_expected_rcv(struct hfi1_packet * packet)423 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
424 {
425 struct hfi1_ctxtdata *rcd = packet->rcd;
426 struct ib_header *hdr = packet->hdr;
427 u32 tlen = packet->tlen;
428 struct hfi1_pportdata *ppd = rcd->ppd;
429 struct hfi1_ibport *ibp = &ppd->ibport_data;
430 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
431 opcode_handler opcode_handler;
432 unsigned long flags;
433 u32 qp_num;
434 int lnh;
435 u8 opcode;
436
437 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
438 if (unlikely(tlen < 15 * sizeof(u32)))
439 goto drop;
440
441 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
442 if (lnh != HFI1_LRH_BTH)
443 goto drop;
444
445 packet->ohdr = &hdr->u.oth;
446 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
447
448 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
449 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
450
451 /* verbs_qp can be picked up from any tid_rdma header struct */
452 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
453 RVT_QPN_MASK;
454
455 rcu_read_lock();
456 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
457 if (!packet->qp)
458 goto drop_rcu;
459 spin_lock_irqsave(&packet->qp->r_lock, flags);
460 opcode_handler = tid_qp_ok(opcode, packet);
461 if (likely(opcode_handler))
462 opcode_handler(packet);
463 else
464 goto drop_unlock;
465 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
466 rcu_read_unlock();
467
468 return;
469 drop_unlock:
470 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
471 drop_rcu:
472 rcu_read_unlock();
473 drop:
474 ibp->rvp.n_pkt_drops++;
475 }
476
hfi1_do_pkey_check(struct hfi1_packet * packet)477 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
478 {
479 struct hfi1_ctxtdata *rcd = packet->rcd;
480 struct hfi1_pportdata *ppd = rcd->ppd;
481 struct hfi1_16b_header *hdr = packet->hdr;
482 u16 pkey;
483
484 /* Pkey check needed only for bypass packets */
485 if (packet->etype != RHF_RCV_TYPE_BYPASS)
486 return 0;
487
488 /* Perform pkey check */
489 pkey = hfi1_16B_get_pkey(hdr);
490 return ingress_pkey_check(ppd, pkey, packet->sc,
491 packet->qp->s_pkey_index,
492 packet->slid, true);
493 }
494
hfi1_handle_packet(struct hfi1_packet * packet,bool is_mcast)495 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
496 bool is_mcast)
497 {
498 u32 qp_num;
499 struct hfi1_ctxtdata *rcd = packet->rcd;
500 struct hfi1_pportdata *ppd = rcd->ppd;
501 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
502 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
503 opcode_handler packet_handler;
504 unsigned long flags;
505
506 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
507
508 if (unlikely(is_mcast)) {
509 struct rvt_mcast *mcast;
510 struct rvt_mcast_qp *p;
511
512 if (!packet->grh)
513 goto drop;
514 mcast = rvt_mcast_find(&ibp->rvp,
515 &packet->grh->dgid,
516 opa_get_lid(packet->dlid, 9B));
517 if (!mcast)
518 goto drop;
519 rcu_read_lock();
520 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
521 packet->qp = p->qp;
522 if (hfi1_do_pkey_check(packet))
523 goto unlock_drop;
524 spin_lock_irqsave(&packet->qp->r_lock, flags);
525 packet_handler = qp_ok(packet);
526 if (likely(packet_handler))
527 packet_handler(packet);
528 else
529 ibp->rvp.n_pkt_drops++;
530 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
531 }
532 rcu_read_unlock();
533 /*
534 * Notify rvt_multicast_detach() if it is waiting for us
535 * to finish.
536 */
537 if (atomic_dec_return(&mcast->refcount) <= 1)
538 wake_up(&mcast->wait);
539 } else {
540 /* Get the destination QP number. */
541 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
542 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
543 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
544 else
545 qp_num = ib_bth_get_qpn(packet->ohdr);
546
547 rcu_read_lock();
548 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
549 if (!packet->qp)
550 goto unlock_drop;
551
552 if (hfi1_do_pkey_check(packet))
553 goto unlock_drop;
554
555 spin_lock_irqsave(&packet->qp->r_lock, flags);
556 packet_handler = qp_ok(packet);
557 if (likely(packet_handler))
558 packet_handler(packet);
559 else
560 ibp->rvp.n_pkt_drops++;
561 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
562 rcu_read_unlock();
563 }
564 return;
565 unlock_drop:
566 rcu_read_unlock();
567 drop:
568 ibp->rvp.n_pkt_drops++;
569 }
570
571 /**
572 * hfi1_ib_rcv - process an incoming packet
573 * @packet: data packet information
574 *
575 * This is called to process an incoming packet at interrupt level.
576 */
hfi1_ib_rcv(struct hfi1_packet * packet)577 void hfi1_ib_rcv(struct hfi1_packet *packet)
578 {
579 struct hfi1_ctxtdata *rcd = packet->rcd;
580
581 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
582 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
583 }
584
hfi1_16B_rcv(struct hfi1_packet * packet)585 void hfi1_16B_rcv(struct hfi1_packet *packet)
586 {
587 struct hfi1_ctxtdata *rcd = packet->rcd;
588
589 trace_input_ibhdr(rcd->dd, packet, false);
590 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
591 }
592
593 /*
594 * This is called from a timer to check for QPs
595 * which need kernel memory in order to send a packet.
596 */
mem_timer(struct timer_list * t)597 static void mem_timer(struct timer_list *t)
598 {
599 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
600 struct list_head *list = &dev->memwait;
601 struct rvt_qp *qp = NULL;
602 struct iowait *wait;
603 unsigned long flags;
604 struct hfi1_qp_priv *priv;
605
606 write_seqlock_irqsave(&dev->iowait_lock, flags);
607 if (!list_empty(list)) {
608 wait = list_first_entry(list, struct iowait, list);
609 qp = iowait_to_qp(wait);
610 priv = qp->priv;
611 list_del_init(&priv->s_iowait.list);
612 priv->s_iowait.lock = NULL;
613 /* refcount held until actual wake up */
614 if (!list_empty(list))
615 mod_timer(&dev->mem_timer, jiffies + 1);
616 }
617 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
618
619 if (qp)
620 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
621 }
622
623 /*
624 * This is called with progress side lock held.
625 */
626 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status)627 static void verbs_sdma_complete(
628 struct sdma_txreq *cookie,
629 int status)
630 {
631 struct verbs_txreq *tx =
632 container_of(cookie, struct verbs_txreq, txreq);
633 struct rvt_qp *qp = tx->qp;
634
635 spin_lock(&qp->s_lock);
636 if (tx->wqe) {
637 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
638 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
639 struct hfi1_opa_header *hdr;
640
641 hdr = &tx->phdr.hdr;
642 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
643 hfi1_rc_verbs_aborted(qp, hdr);
644 hfi1_rc_send_complete(qp, hdr);
645 }
646 spin_unlock(&qp->s_lock);
647
648 hfi1_put_txreq(tx);
649 }
650
hfi1_wait_kmem(struct rvt_qp * qp)651 void hfi1_wait_kmem(struct rvt_qp *qp)
652 {
653 struct hfi1_qp_priv *priv = qp->priv;
654 struct ib_qp *ibqp = &qp->ibqp;
655 struct ib_device *ibdev = ibqp->device;
656 struct hfi1_ibdev *dev = to_idev(ibdev);
657
658 if (list_empty(&priv->s_iowait.list)) {
659 if (list_empty(&dev->memwait))
660 mod_timer(&dev->mem_timer, jiffies + 1);
661 qp->s_flags |= RVT_S_WAIT_KMEM;
662 list_add_tail(&priv->s_iowait.list, &dev->memwait);
663 priv->s_iowait.lock = &dev->iowait_lock;
664 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
665 rvt_get_qp(qp);
666 }
667 }
668
wait_kmem(struct hfi1_ibdev * dev,struct rvt_qp * qp,struct hfi1_pkt_state * ps)669 static int wait_kmem(struct hfi1_ibdev *dev,
670 struct rvt_qp *qp,
671 struct hfi1_pkt_state *ps)
672 {
673 unsigned long flags;
674 int ret = 0;
675
676 spin_lock_irqsave(&qp->s_lock, flags);
677 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
678 write_seqlock(&dev->iowait_lock);
679 list_add_tail(&ps->s_txreq->txreq.list,
680 &ps->wait->tx_head);
681 hfi1_wait_kmem(qp);
682 write_sequnlock(&dev->iowait_lock);
683 hfi1_qp_unbusy(qp, ps->wait);
684 ret = -EBUSY;
685 }
686 spin_unlock_irqrestore(&qp->s_lock, flags);
687
688 return ret;
689 }
690
691 /*
692 * This routine calls txadds for each sg entry.
693 *
694 * Add failures will revert the sge cursor
695 */
build_verbs_ulp_payload(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx)696 static noinline int build_verbs_ulp_payload(
697 struct sdma_engine *sde,
698 u32 length,
699 struct verbs_txreq *tx)
700 {
701 struct rvt_sge_state *ss = tx->ss;
702 struct rvt_sge *sg_list = ss->sg_list;
703 struct rvt_sge sge = ss->sge;
704 u8 num_sge = ss->num_sge;
705 u32 len;
706 int ret = 0;
707
708 while (length) {
709 len = rvt_get_sge_length(&ss->sge, length);
710 WARN_ON_ONCE(len == 0);
711 ret = sdma_txadd_kvaddr(
712 sde->dd,
713 &tx->txreq,
714 ss->sge.vaddr,
715 len);
716 if (ret)
717 goto bail_txadd;
718 rvt_update_sge(ss, len, false);
719 length -= len;
720 }
721 return ret;
722 bail_txadd:
723 /* unwind cursor */
724 ss->sge = sge;
725 ss->num_sge = num_sge;
726 ss->sg_list = sg_list;
727 return ret;
728 }
729
730 /**
731 * update_tx_opstats - record stats by opcode
732 * @qp; the qp
733 * @ps: transmit packet state
734 * @plen: the plen in dwords
735 *
736 * This is a routine to record the tx opstats after a
737 * packet has been presented to the egress mechanism.
738 */
update_tx_opstats(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u32 plen)739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
740 u32 plen)
741 {
742 #ifdef CONFIG_DEBUG_FS
743 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
744 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
745
746 inc_opstats(plen * 4, &s->stats[ps->opcode]);
747 put_cpu_ptr(s);
748 #endif
749 }
750
751 /*
752 * Build the number of DMA descriptors needed to send length bytes of data.
753 *
754 * NOTE: DMA mapping is held in the tx until completed in the ring or
755 * the tx desc is freed without having been submitted to the ring
756 *
757 * This routine ensures all the helper routine calls succeed.
758 */
759 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,u32 length,struct verbs_txreq * tx,struct hfi1_ahg_info * ahg_info,u64 pbc)760 static int build_verbs_tx_desc(
761 struct sdma_engine *sde,
762 u32 length,
763 struct verbs_txreq *tx,
764 struct hfi1_ahg_info *ahg_info,
765 u64 pbc)
766 {
767 int ret = 0;
768 struct hfi1_sdma_header *phdr = &tx->phdr;
769 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
770 u8 extra_bytes = 0;
771
772 if (tx->phdr.hdr.hdr_type) {
773 /*
774 * hdrbytes accounts for PBC. Need to subtract 8 bytes
775 * before calculating padding.
776 */
777 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
778 (SIZE_OF_CRC << 2) + SIZE_OF_LT;
779 }
780 if (!ahg_info->ahgcount) {
781 ret = sdma_txinit_ahg(
782 &tx->txreq,
783 ahg_info->tx_flags,
784 hdrbytes + length +
785 extra_bytes,
786 ahg_info->ahgidx,
787 0,
788 NULL,
789 0,
790 verbs_sdma_complete);
791 if (ret)
792 goto bail_txadd;
793 phdr->pbc = cpu_to_le64(pbc);
794 ret = sdma_txadd_kvaddr(
795 sde->dd,
796 &tx->txreq,
797 phdr,
798 hdrbytes);
799 if (ret)
800 goto bail_txadd;
801 } else {
802 ret = sdma_txinit_ahg(
803 &tx->txreq,
804 ahg_info->tx_flags,
805 length,
806 ahg_info->ahgidx,
807 ahg_info->ahgcount,
808 ahg_info->ahgdesc,
809 hdrbytes,
810 verbs_sdma_complete);
811 if (ret)
812 goto bail_txadd;
813 }
814 /* add the ulp payload - if any. tx->ss can be NULL for acks */
815 if (tx->ss) {
816 ret = build_verbs_ulp_payload(sde, length, tx);
817 if (ret)
818 goto bail_txadd;
819 }
820
821 /* add icrc, lt byte, and padding to flit */
822 if (extra_bytes)
823 ret = sdma_txadd_daddr(sde->dd, &tx->txreq, sde->dd->sdma_pad_phys,
824 extra_bytes);
825
826 bail_txadd:
827 return ret;
828 }
829
update_hcrc(u8 opcode,u64 pbc)830 static u64 update_hcrc(u8 opcode, u64 pbc)
831 {
832 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
833 pbc &= ~PBC_INSERT_HCRC_SMASK;
834 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
835 }
836 return pbc;
837 }
838
hfi1_verbs_send_dma(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
840 u64 pbc)
841 {
842 struct hfi1_qp_priv *priv = qp->priv;
843 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
844 u32 hdrwords = ps->s_txreq->hdr_dwords;
845 u32 len = ps->s_txreq->s_cur_size;
846 u32 plen;
847 struct hfi1_ibdev *dev = ps->dev;
848 struct hfi1_pportdata *ppd = ps->ppd;
849 struct verbs_txreq *tx;
850 u8 sc5 = priv->s_sc;
851 int ret;
852 u32 dwords;
853
854 if (ps->s_txreq->phdr.hdr.hdr_type) {
855 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
856
857 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
858 SIZE_OF_LT) >> 2;
859 } else {
860 dwords = (len + 3) >> 2;
861 }
862 plen = hdrwords + dwords + sizeof(pbc) / 4;
863
864 tx = ps->s_txreq;
865 if (!sdma_txreq_built(&tx->txreq)) {
866 if (likely(pbc == 0)) {
867 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
868
869 /* No vl15 here */
870 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
871 if (ps->s_txreq->phdr.hdr.hdr_type)
872 pbc |= PBC_PACKET_BYPASS |
873 PBC_INSERT_BYPASS_ICRC;
874 else
875 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
876
877 pbc = create_pbc(ppd,
878 pbc,
879 qp->srate_mbps,
880 vl,
881 plen);
882
883 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
884 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
885 else
886 /* Update HCRC based on packet opcode */
887 pbc = update_hcrc(ps->opcode, pbc);
888 }
889 tx->wqe = qp->s_wqe;
890 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
891 if (unlikely(ret))
892 goto bail_build;
893 }
894 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
895 if (unlikely(ret < 0)) {
896 if (ret == -ECOMM)
897 goto bail_ecomm;
898 return ret;
899 }
900
901 update_tx_opstats(qp, ps, plen);
902 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
903 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
904 return ret;
905
906 bail_ecomm:
907 /* The current one got "sent" */
908 return 0;
909 bail_build:
910 ret = wait_kmem(dev, qp, ps);
911 if (!ret) {
912 /* free txreq - bad state */
913 hfi1_put_txreq(ps->s_txreq);
914 ps->s_txreq = NULL;
915 }
916 return ret;
917 }
918
919 /*
920 * If we are now in the error state, return zero to flush the
921 * send work request.
922 */
pio_wait(struct rvt_qp * qp,struct send_context * sc,struct hfi1_pkt_state * ps,u32 flag)923 static int pio_wait(struct rvt_qp *qp,
924 struct send_context *sc,
925 struct hfi1_pkt_state *ps,
926 u32 flag)
927 {
928 struct hfi1_qp_priv *priv = qp->priv;
929 struct hfi1_devdata *dd = sc->dd;
930 unsigned long flags;
931 int ret = 0;
932
933 /*
934 * Note that as soon as want_buffer() is called and
935 * possibly before it returns, sc_piobufavail()
936 * could be called. Therefore, put QP on the I/O wait list before
937 * enabling the PIO avail interrupt.
938 */
939 spin_lock_irqsave(&qp->s_lock, flags);
940 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
941 write_seqlock(&sc->waitlock);
942 list_add_tail(&ps->s_txreq->txreq.list,
943 &ps->wait->tx_head);
944 if (list_empty(&priv->s_iowait.list)) {
945 struct hfi1_ibdev *dev = &dd->verbs_dev;
946 int was_empty;
947
948 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
949 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
950 qp->s_flags |= flag;
951 was_empty = list_empty(&sc->piowait);
952 iowait_get_priority(&priv->s_iowait);
953 iowait_queue(ps->pkts_sent, &priv->s_iowait,
954 &sc->piowait);
955 priv->s_iowait.lock = &sc->waitlock;
956 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
957 rvt_get_qp(qp);
958 /* counting: only call wantpiobuf_intr if first user */
959 if (was_empty)
960 hfi1_sc_wantpiobuf_intr(sc, 1);
961 }
962 write_sequnlock(&sc->waitlock);
963 hfi1_qp_unbusy(qp, ps->wait);
964 ret = -EBUSY;
965 }
966 spin_unlock_irqrestore(&qp->s_lock, flags);
967 return ret;
968 }
969
verbs_pio_complete(void * arg,int code)970 static void verbs_pio_complete(void *arg, int code)
971 {
972 struct rvt_qp *qp = (struct rvt_qp *)arg;
973 struct hfi1_qp_priv *priv = qp->priv;
974
975 if (iowait_pio_dec(&priv->s_iowait))
976 iowait_drain_wakeup(&priv->s_iowait);
977 }
978
hfi1_verbs_send_pio(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)979 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
980 u64 pbc)
981 {
982 struct hfi1_qp_priv *priv = qp->priv;
983 u32 hdrwords = ps->s_txreq->hdr_dwords;
984 struct rvt_sge_state *ss = ps->s_txreq->ss;
985 u32 len = ps->s_txreq->s_cur_size;
986 u32 dwords;
987 u32 plen;
988 struct hfi1_pportdata *ppd = ps->ppd;
989 u32 *hdr;
990 u8 sc5;
991 unsigned long flags = 0;
992 struct send_context *sc;
993 struct pio_buf *pbuf;
994 int wc_status = IB_WC_SUCCESS;
995 int ret = 0;
996 pio_release_cb cb = NULL;
997 u8 extra_bytes = 0;
998
999 if (ps->s_txreq->phdr.hdr.hdr_type) {
1000 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
1001
1002 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1003 dwords = (len + extra_bytes) >> 2;
1004 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1005 } else {
1006 dwords = (len + 3) >> 2;
1007 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1008 }
1009 plen = hdrwords + dwords + sizeof(pbc) / 4;
1010
1011 /* only RC/UC use complete */
1012 switch (qp->ibqp.qp_type) {
1013 case IB_QPT_RC:
1014 case IB_QPT_UC:
1015 cb = verbs_pio_complete;
1016 break;
1017 default:
1018 break;
1019 }
1020
1021 /* vl15 special case taken care of in ud.c */
1022 sc5 = priv->s_sc;
1023 sc = ps->s_txreq->psc;
1024
1025 if (likely(pbc == 0)) {
1026 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1027
1028 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1029 if (ps->s_txreq->phdr.hdr.hdr_type)
1030 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1031 else
1032 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1033
1034 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1035 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1036 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1037 else
1038 /* Update HCRC based on packet opcode */
1039 pbc = update_hcrc(ps->opcode, pbc);
1040 }
1041 if (cb)
1042 iowait_pio_inc(&priv->s_iowait);
1043 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1044 if (IS_ERR_OR_NULL(pbuf)) {
1045 if (cb)
1046 verbs_pio_complete(qp, 0);
1047 if (IS_ERR(pbuf)) {
1048 /*
1049 * If we have filled the PIO buffers to capacity and are
1050 * not in an active state this request is not going to
1051 * go out to so just complete it with an error or else a
1052 * ULP or the core may be stuck waiting.
1053 */
1054 hfi1_cdbg(
1055 PIO,
1056 "alloc failed. state not active, completing");
1057 wc_status = IB_WC_GENERAL_ERR;
1058 goto pio_bail;
1059 } else {
1060 /*
1061 * This is a normal occurrence. The PIO buffs are full
1062 * up but we are still happily sending, well we could be
1063 * so lets continue to queue the request.
1064 */
1065 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1066 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1067 if (!ret)
1068 /* txreq not queued - free */
1069 goto bail;
1070 /* tx consumed in wait */
1071 return ret;
1072 }
1073 }
1074
1075 if (dwords == 0) {
1076 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1077 } else {
1078 seg_pio_copy_start(pbuf, pbc,
1079 hdr, hdrwords * 4);
1080 if (ss) {
1081 while (len) {
1082 void *addr = ss->sge.vaddr;
1083 u32 slen = rvt_get_sge_length(&ss->sge, len);
1084
1085 rvt_update_sge(ss, slen, false);
1086 seg_pio_copy_mid(pbuf, addr, slen);
1087 len -= slen;
1088 }
1089 }
1090 /* add icrc, lt byte, and padding to flit */
1091 if (extra_bytes)
1092 seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma,
1093 extra_bytes);
1094
1095 seg_pio_copy_end(pbuf);
1096 }
1097
1098 update_tx_opstats(qp, ps, plen);
1099 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1101
1102 pio_bail:
1103 spin_lock_irqsave(&qp->s_lock, flags);
1104 if (qp->s_wqe) {
1105 rvt_send_complete(qp, qp->s_wqe, wc_status);
1106 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1107 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1108 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1109 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110 }
1111 spin_unlock_irqrestore(&qp->s_lock, flags);
1112
1113 ret = 0;
1114
1115 bail:
1116 hfi1_put_txreq(ps->s_txreq);
1117 return ret;
1118 }
1119
1120 /*
1121 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122 * being an entry from the partition key table), return 0
1123 * otherwise. Use the matching criteria for egress partition keys
1124 * specified in the OPAv1 spec., section 9.1l.7.
1125 */
egress_pkey_matches_entry(u16 pkey,u16 ent)1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127 {
1128 u16 mkey = pkey & PKEY_LOW_15_MASK;
1129 u16 mentry = ent & PKEY_LOW_15_MASK;
1130
1131 if (mkey == mentry) {
1132 /*
1133 * If pkey[15] is set (full partition member),
1134 * is bit 15 in the corresponding table element
1135 * clear (limited member)?
1136 */
1137 if (pkey & PKEY_MEMBER_MASK)
1138 return !!(ent & PKEY_MEMBER_MASK);
1139 return 1;
1140 }
1141 return 0;
1142 }
1143
1144 /**
1145 * egress_pkey_check - check P_KEY of a packet
1146 * @ppd: Physical IB port data
1147 * @slid: SLID for packet
1148 * @bkey: PKEY for header
1149 * @sc5: SC for packet
1150 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151 * only. If it is negative value, then it means user contexts is calling this
1152 * function.
1153 *
1154 * It checks if hdr's pkey is valid.
1155 *
1156 * Return: 0 on success, otherwise, 1
1157 */
egress_pkey_check(struct hfi1_pportdata * ppd,u32 slid,u16 pkey,u8 sc5,int8_t s_pkey_index)1158 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1159 u8 sc5, int8_t s_pkey_index)
1160 {
1161 struct hfi1_devdata *dd;
1162 int i;
1163 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1164
1165 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1166 return 0;
1167
1168 /* If SC15, pkey[0:14] must be 0x7fff */
1169 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1170 goto bad;
1171
1172 /* Is the pkey = 0x0, or 0x8000? */
1173 if ((pkey & PKEY_LOW_15_MASK) == 0)
1174 goto bad;
1175
1176 /*
1177 * For the kernel contexts only, if a qp is passed into the function,
1178 * the most likely matching pkey has index qp->s_pkey_index
1179 */
1180 if (!is_user_ctxt_mechanism &&
1181 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1182 return 0;
1183 }
1184
1185 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1186 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1187 return 0;
1188 }
1189 bad:
1190 /*
1191 * For the user-context mechanism, the P_KEY check would only happen
1192 * once per SDMA request, not once per packet. Therefore, there's no
1193 * need to increment the counter for the user-context mechanism.
1194 */
1195 if (!is_user_ctxt_mechanism) {
1196 incr_cntr64(&ppd->port_xmit_constraint_errors);
1197 dd = ppd->dd;
1198 if (!(dd->err_info_xmit_constraint.status &
1199 OPA_EI_STATUS_SMASK)) {
1200 dd->err_info_xmit_constraint.status |=
1201 OPA_EI_STATUS_SMASK;
1202 dd->err_info_xmit_constraint.slid = slid;
1203 dd->err_info_xmit_constraint.pkey = pkey;
1204 }
1205 }
1206 return 1;
1207 }
1208
1209 /**
1210 * get_send_routine - choose an egress routine
1211 *
1212 * Choose an egress routine based on QP type
1213 * and size
1214 */
get_send_routine(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1215 static inline send_routine get_send_routine(struct rvt_qp *qp,
1216 struct hfi1_pkt_state *ps)
1217 {
1218 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1219 struct hfi1_qp_priv *priv = qp->priv;
1220 struct verbs_txreq *tx = ps->s_txreq;
1221
1222 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1223 return dd->process_pio_send;
1224 switch (qp->ibqp.qp_type) {
1225 case IB_QPT_SMI:
1226 return dd->process_pio_send;
1227 case IB_QPT_GSI:
1228 case IB_QPT_UD:
1229 break;
1230 case IB_QPT_UC:
1231 case IB_QPT_RC:
1232 priv->s_running_pkt_size =
1233 (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1234 if (piothreshold &&
1235 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1236 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1237 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1238 !sdma_txreq_built(&tx->txreq))
1239 return dd->process_pio_send;
1240 break;
1241 default:
1242 break;
1243 }
1244 return dd->process_dma_send;
1245 }
1246
1247 /**
1248 * hfi1_verbs_send - send a packet
1249 * @qp: the QP to send on
1250 * @ps: the state of the packet to send
1251 *
1252 * Return zero if packet is sent or queued OK.
1253 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1254 */
hfi1_verbs_send(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1255 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1256 {
1257 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1258 struct hfi1_qp_priv *priv = qp->priv;
1259 struct ib_other_headers *ohdr = NULL;
1260 send_routine sr;
1261 int ret;
1262 u16 pkey;
1263 u32 slid;
1264 u8 l4 = 0;
1265
1266 /* locate the pkey within the headers */
1267 if (ps->s_txreq->phdr.hdr.hdr_type) {
1268 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1269
1270 l4 = hfi1_16B_get_l4(hdr);
1271 if (l4 == OPA_16B_L4_IB_LOCAL)
1272 ohdr = &hdr->u.oth;
1273 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1274 ohdr = &hdr->u.l.oth;
1275
1276 slid = hfi1_16B_get_slid(hdr);
1277 pkey = hfi1_16B_get_pkey(hdr);
1278 } else {
1279 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1280 u8 lnh = ib_get_lnh(hdr);
1281
1282 if (lnh == HFI1_LRH_GRH)
1283 ohdr = &hdr->u.l.oth;
1284 else
1285 ohdr = &hdr->u.oth;
1286 slid = ib_get_slid(hdr);
1287 pkey = ib_bth_get_pkey(ohdr);
1288 }
1289
1290 if (likely(l4 != OPA_16B_L4_FM))
1291 ps->opcode = ib_bth_get_opcode(ohdr);
1292 else
1293 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1294
1295 sr = get_send_routine(qp, ps);
1296 ret = egress_pkey_check(dd->pport, slid, pkey,
1297 priv->s_sc, qp->s_pkey_index);
1298 if (unlikely(ret)) {
1299 /*
1300 * The value we are returning here does not get propagated to
1301 * the verbs caller. Thus we need to complete the request with
1302 * error otherwise the caller could be sitting waiting on the
1303 * completion event. Only do this for PIO. SDMA has its own
1304 * mechanism for handling the errors. So for SDMA we can just
1305 * return.
1306 */
1307 if (sr == dd->process_pio_send) {
1308 unsigned long flags;
1309
1310 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1311 __func__);
1312 spin_lock_irqsave(&qp->s_lock, flags);
1313 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1314 spin_unlock_irqrestore(&qp->s_lock, flags);
1315 }
1316 return -EINVAL;
1317 }
1318 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1319 return pio_wait(qp,
1320 ps->s_txreq->psc,
1321 ps,
1322 HFI1_S_WAIT_PIO_DRAIN);
1323 return sr(qp, ps, 0);
1324 }
1325
1326 /**
1327 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1328 * @dd: the device data structure
1329 */
hfi1_fill_device_attr(struct hfi1_devdata * dd)1330 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1331 {
1332 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1333 u32 ver = dd->dc8051_ver;
1334
1335 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1336
1337 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1338 ((u64)(dc8051_ver_min(ver)) << 16) |
1339 (u64)dc8051_ver_patch(ver);
1340
1341 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1342 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1343 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1344 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1345 IB_DEVICE_MEM_MGT_EXTENSIONS |
1346 IB_DEVICE_RDMA_NETDEV_OPA;
1347 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1348 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1349 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1350 rdi->dparms.props.hw_ver = dd->minrev;
1351 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1352 rdi->dparms.props.max_mr_size = U64_MAX;
1353 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1354 rdi->dparms.props.max_qp = hfi1_max_qps;
1355 rdi->dparms.props.max_qp_wr =
1356 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1357 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1358 rdi->dparms.props.max_send_sge = hfi1_max_sges;
1359 rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1360 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1361 rdi->dparms.props.max_cq = hfi1_max_cqs;
1362 rdi->dparms.props.max_ah = hfi1_max_ahs;
1363 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1364 rdi->dparms.props.max_pd = hfi1_max_pds;
1365 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1366 rdi->dparms.props.max_qp_init_rd_atom = 255;
1367 rdi->dparms.props.max_srq = hfi1_max_srqs;
1368 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1369 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1370 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1371 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1372 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1373 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1374 rdi->dparms.props.max_total_mcast_qp_attach =
1375 rdi->dparms.props.max_mcast_qp_attach *
1376 rdi->dparms.props.max_mcast_grp;
1377 }
1378
opa_speed_to_ib(u16 in)1379 static inline u16 opa_speed_to_ib(u16 in)
1380 {
1381 u16 out = 0;
1382
1383 if (in & OPA_LINK_SPEED_25G)
1384 out |= IB_SPEED_EDR;
1385 if (in & OPA_LINK_SPEED_12_5G)
1386 out |= IB_SPEED_FDR;
1387
1388 return out;
1389 }
1390
1391 /*
1392 * Convert a single OPA link width (no multiple flags) to an IB value.
1393 * A zero OPA link width means link down, which means the IB width value
1394 * is a don't care.
1395 */
opa_width_to_ib(u16 in)1396 static inline u16 opa_width_to_ib(u16 in)
1397 {
1398 switch (in) {
1399 case OPA_LINK_WIDTH_1X:
1400 /* map 2x and 3x to 1x as they don't exist in IB */
1401 case OPA_LINK_WIDTH_2X:
1402 case OPA_LINK_WIDTH_3X:
1403 return IB_WIDTH_1X;
1404 default: /* link down or unknown, return our largest width */
1405 case OPA_LINK_WIDTH_4X:
1406 return IB_WIDTH_4X;
1407 }
1408 }
1409
query_port(struct rvt_dev_info * rdi,u8 port_num,struct ib_port_attr * props)1410 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1411 struct ib_port_attr *props)
1412 {
1413 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1414 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1415 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1416 u32 lid = ppd->lid;
1417
1418 /* props being zeroed by the caller, avoid zeroing it here */
1419 props->lid = lid ? lid : 0;
1420 props->lmc = ppd->lmc;
1421 /* OPA logical states match IB logical states */
1422 props->state = driver_lstate(ppd);
1423 props->phys_state = driver_pstate(ppd);
1424 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1425 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1426 /* see rate_show() in ib core/sysfs.c */
1427 props->active_speed = opa_speed_to_ib(ppd->link_speed_active);
1428 props->max_vl_num = ppd->vls_supported;
1429
1430 /* Once we are a "first class" citizen and have added the OPA MTUs to
1431 * the core we can advertise the larger MTU enum to the ULPs, for now
1432 * advertise only 4K.
1433 *
1434 * Those applications which are either OPA aware or pass the MTU enum
1435 * from the Path Records to us will get the new 8k MTU. Those that
1436 * attempt to process the MTU enum may fail in various ways.
1437 */
1438 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1439 4096 : hfi1_max_mtu), IB_MTU_4096);
1440 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1441 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1442 props->phys_mtu = hfi1_max_mtu;
1443
1444 return 0;
1445 }
1446
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1447 static int modify_device(struct ib_device *device,
1448 int device_modify_mask,
1449 struct ib_device_modify *device_modify)
1450 {
1451 struct hfi1_devdata *dd = dd_from_ibdev(device);
1452 unsigned i;
1453 int ret;
1454
1455 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1456 IB_DEVICE_MODIFY_NODE_DESC)) {
1457 ret = -EOPNOTSUPP;
1458 goto bail;
1459 }
1460
1461 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1462 memcpy(device->node_desc, device_modify->node_desc,
1463 IB_DEVICE_NODE_DESC_MAX);
1464 for (i = 0; i < dd->num_pports; i++) {
1465 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1466
1467 hfi1_node_desc_chg(ibp);
1468 }
1469 }
1470
1471 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1472 ib_hfi1_sys_image_guid =
1473 cpu_to_be64(device_modify->sys_image_guid);
1474 for (i = 0; i < dd->num_pports; i++) {
1475 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1476
1477 hfi1_sys_guid_chg(ibp);
1478 }
1479 }
1480
1481 ret = 0;
1482
1483 bail:
1484 return ret;
1485 }
1486
shut_down_port(struct rvt_dev_info * rdi,u8 port_num)1487 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1488 {
1489 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1490 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1491 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1492 int ret;
1493
1494 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1495 OPA_LINKDOWN_REASON_UNKNOWN);
1496 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1497 return ret;
1498 }
1499
hfi1_get_guid_be(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,int guid_index,__be64 * guid)1500 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1501 int guid_index, __be64 *guid)
1502 {
1503 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1504
1505 if (guid_index >= HFI1_GUIDS_PER_PORT)
1506 return -EINVAL;
1507
1508 *guid = get_sguid(ibp, guid_index);
1509 return 0;
1510 }
1511
1512 /*
1513 * convert ah port,sl to sc
1514 */
ah_to_sc(struct ib_device * ibdev,struct rdma_ah_attr * ah)1515 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1516 {
1517 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1518
1519 return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1520 }
1521
hfi1_check_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr)1522 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1523 {
1524 struct hfi1_ibport *ibp;
1525 struct hfi1_pportdata *ppd;
1526 struct hfi1_devdata *dd;
1527 u8 sc5;
1528 u8 sl;
1529
1530 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1531 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1532 return -EINVAL;
1533
1534 /* test the mapping for validity */
1535 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1536 ppd = ppd_from_ibp(ibp);
1537 dd = dd_from_ppd(ppd);
1538
1539 sl = rdma_ah_get_sl(ah_attr);
1540 if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1541 return -EINVAL;
1542 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc));
1543
1544 sc5 = ibp->sl_to_sc[sl];
1545 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1546 return -EINVAL;
1547 return 0;
1548 }
1549
hfi1_notify_new_ah(struct ib_device * ibdev,struct rdma_ah_attr * ah_attr,struct rvt_ah * ah)1550 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1551 struct rdma_ah_attr *ah_attr,
1552 struct rvt_ah *ah)
1553 {
1554 struct hfi1_ibport *ibp;
1555 struct hfi1_pportdata *ppd;
1556 struct hfi1_devdata *dd;
1557 u8 sc5;
1558 struct rdma_ah_attr *attr = &ah->attr;
1559
1560 /*
1561 * Do not trust reading anything from rvt_ah at this point as it is not
1562 * done being setup. We can however modify things which we need to set.
1563 */
1564
1565 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1566 ppd = ppd_from_ibp(ibp);
1567 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1568 hfi1_update_ah_attr(ibdev, attr);
1569 hfi1_make_opa_lid(attr);
1570 dd = dd_from_ppd(ppd);
1571 ah->vl = sc_to_vlt(dd, sc5);
1572 if (ah->vl < num_vls || ah->vl == 15)
1573 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1574 }
1575
1576 /**
1577 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1578 * @dd: the hfi1_ib device
1579 */
hfi1_get_npkeys(struct hfi1_devdata * dd)1580 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1581 {
1582 return ARRAY_SIZE(dd->pport[0].pkeys);
1583 }
1584
init_ibport(struct hfi1_pportdata * ppd)1585 static void init_ibport(struct hfi1_pportdata *ppd)
1586 {
1587 struct hfi1_ibport *ibp = &ppd->ibport_data;
1588 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1589 int i;
1590
1591 for (i = 0; i < sz; i++) {
1592 ibp->sl_to_sc[i] = i;
1593 ibp->sc_to_sl[i] = i;
1594 }
1595
1596 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1597 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1598 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1599
1600 spin_lock_init(&ibp->rvp.lock);
1601 /* Set the prefix to the default value (see ch. 4.1.1) */
1602 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1603 ibp->rvp.sm_lid = 0;
1604 /*
1605 * Below should only set bits defined in OPA PortInfo.CapabilityMask
1606 * and PortInfo.CapabilityMask3
1607 */
1608 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1609 IB_PORT_CAP_MASK_NOTICE_SUP;
1610 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1611 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1612 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1613 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1614 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1615 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1616
1617 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1618 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1619 }
1620
hfi1_get_dev_fw_str(struct ib_device * ibdev,char * str)1621 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1622 {
1623 struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1624 struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1625 u32 ver = dd_from_dev(dev)->dc8051_ver;
1626
1627 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1628 dc8051_ver_min(ver), dc8051_ver_patch(ver));
1629 }
1630
1631 static const char * const driver_cntr_names[] = {
1632 /* must be element 0*/
1633 "DRIVER_KernIntr",
1634 "DRIVER_ErrorIntr",
1635 "DRIVER_Tx_Errs",
1636 "DRIVER_Rcv_Errs",
1637 "DRIVER_HW_Errs",
1638 "DRIVER_NoPIOBufs",
1639 "DRIVER_CtxtsOpen",
1640 "DRIVER_RcvLen_Errs",
1641 "DRIVER_EgrBufFull",
1642 "DRIVER_EgrHdrFull"
1643 };
1644
1645 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1646 static const char **dev_cntr_names;
1647 static const char **port_cntr_names;
1648 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1649 static int num_dev_cntrs;
1650 static int num_port_cntrs;
1651 static int cntr_names_initialized;
1652
1653 /*
1654 * Convert a list of names separated by '\n' into an array of NULL terminated
1655 * strings. Optionally some entries can be reserved in the array to hold extra
1656 * external strings.
1657 */
init_cntr_names(const char * names_in,const size_t names_len,int num_extra_names,int * num_cntrs,const char *** cntr_names)1658 static int init_cntr_names(const char *names_in,
1659 const size_t names_len,
1660 int num_extra_names,
1661 int *num_cntrs,
1662 const char ***cntr_names)
1663 {
1664 char *names_out, *p, **q;
1665 int i, n;
1666
1667 n = 0;
1668 for (i = 0; i < names_len; i++)
1669 if (names_in[i] == '\n')
1670 n++;
1671
1672 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1673 GFP_KERNEL);
1674 if (!names_out) {
1675 *num_cntrs = 0;
1676 *cntr_names = NULL;
1677 return -ENOMEM;
1678 }
1679
1680 p = names_out + (n + num_extra_names) * sizeof(char *);
1681 memcpy(p, names_in, names_len);
1682
1683 q = (char **)names_out;
1684 for (i = 0; i < n; i++) {
1685 q[i] = p;
1686 p = strchr(p, '\n');
1687 *p++ = '\0';
1688 }
1689
1690 *num_cntrs = n;
1691 *cntr_names = (const char **)names_out;
1692 return 0;
1693 }
1694
alloc_hw_stats(struct ib_device * ibdev,u8 port_num)1695 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1696 u8 port_num)
1697 {
1698 int i, err;
1699
1700 mutex_lock(&cntr_names_lock);
1701 if (!cntr_names_initialized) {
1702 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1703
1704 err = init_cntr_names(dd->cntrnames,
1705 dd->cntrnameslen,
1706 num_driver_cntrs,
1707 &num_dev_cntrs,
1708 &dev_cntr_names);
1709 if (err) {
1710 mutex_unlock(&cntr_names_lock);
1711 return NULL;
1712 }
1713
1714 for (i = 0; i < num_driver_cntrs; i++)
1715 dev_cntr_names[num_dev_cntrs + i] =
1716 driver_cntr_names[i];
1717
1718 err = init_cntr_names(dd->portcntrnames,
1719 dd->portcntrnameslen,
1720 0,
1721 &num_port_cntrs,
1722 &port_cntr_names);
1723 if (err) {
1724 kfree(dev_cntr_names);
1725 dev_cntr_names = NULL;
1726 mutex_unlock(&cntr_names_lock);
1727 return NULL;
1728 }
1729 cntr_names_initialized = 1;
1730 }
1731 mutex_unlock(&cntr_names_lock);
1732
1733 if (!port_num)
1734 return rdma_alloc_hw_stats_struct(
1735 dev_cntr_names,
1736 num_dev_cntrs + num_driver_cntrs,
1737 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1738 else
1739 return rdma_alloc_hw_stats_struct(
1740 port_cntr_names,
1741 num_port_cntrs,
1742 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1743 }
1744
hfi1_sps_ints(void)1745 static u64 hfi1_sps_ints(void)
1746 {
1747 unsigned long index, flags;
1748 struct hfi1_devdata *dd;
1749 u64 sps_ints = 0;
1750
1751 xa_lock_irqsave(&hfi1_dev_table, flags);
1752 xa_for_each(&hfi1_dev_table, index, dd) {
1753 sps_ints += get_all_cpu_total(dd->int_counter);
1754 }
1755 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1756 return sps_ints;
1757 }
1758
get_hw_stats(struct ib_device * ibdev,struct rdma_hw_stats * stats,u8 port,int index)1759 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1760 u8 port, int index)
1761 {
1762 u64 *values;
1763 int count;
1764
1765 if (!port) {
1766 u64 *stats = (u64 *)&hfi1_stats;
1767 int i;
1768
1769 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1770 values[num_dev_cntrs] = hfi1_sps_ints();
1771 for (i = 1; i < num_driver_cntrs; i++)
1772 values[num_dev_cntrs + i] = stats[i];
1773 count = num_dev_cntrs + num_driver_cntrs;
1774 } else {
1775 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1776
1777 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1778 count = num_port_cntrs;
1779 }
1780
1781 memcpy(stats->value, values, count * sizeof(u64));
1782 return count;
1783 }
1784
1785 static const struct ib_device_ops hfi1_dev_ops = {
1786 .owner = THIS_MODULE,
1787 .driver_id = RDMA_DRIVER_HFI1,
1788
1789 .alloc_hw_stats = alloc_hw_stats,
1790 .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1791 .get_dev_fw_str = hfi1_get_dev_fw_str,
1792 .get_hw_stats = get_hw_stats,
1793 .init_port = hfi1_create_port_files,
1794 .modify_device = modify_device,
1795 /* keep process mad in the driver */
1796 .process_mad = hfi1_process_mad,
1797 .rdma_netdev_get_params = hfi1_ipoib_rn_get_params,
1798 };
1799
1800 /**
1801 * hfi1_register_ib_device - register our device with the infiniband core
1802 * @dd: the device data structure
1803 * Return 0 if successful, errno if unsuccessful.
1804 */
hfi1_register_ib_device(struct hfi1_devdata * dd)1805 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1806 {
1807 struct hfi1_ibdev *dev = &dd->verbs_dev;
1808 struct ib_device *ibdev = &dev->rdi.ibdev;
1809 struct hfi1_pportdata *ppd = dd->pport;
1810 struct hfi1_ibport *ibp = &ppd->ibport_data;
1811 unsigned i;
1812 int ret;
1813
1814 for (i = 0; i < dd->num_pports; i++)
1815 init_ibport(ppd + i);
1816
1817 /* Only need to initialize non-zero fields. */
1818
1819 timer_setup(&dev->mem_timer, mem_timer, 0);
1820
1821 seqlock_init(&dev->iowait_lock);
1822 seqlock_init(&dev->txwait_lock);
1823 INIT_LIST_HEAD(&dev->txwait);
1824 INIT_LIST_HEAD(&dev->memwait);
1825
1826 ret = verbs_txreq_init(dev);
1827 if (ret)
1828 goto err_verbs_txreq;
1829
1830 /* Use first-port GUID as node guid */
1831 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1832
1833 /*
1834 * The system image GUID is supposed to be the same for all
1835 * HFIs in a single system but since there can be other
1836 * device types in the system, we can't be sure this is unique.
1837 */
1838 if (!ib_hfi1_sys_image_guid)
1839 ib_hfi1_sys_image_guid = ibdev->node_guid;
1840 ibdev->phys_port_cnt = dd->num_pports;
1841 ibdev->dev.parent = &dd->pcidev->dev;
1842
1843 ib_set_device_ops(ibdev, &hfi1_dev_ops);
1844
1845 strlcpy(ibdev->node_desc, init_utsname()->nodename,
1846 sizeof(ibdev->node_desc));
1847
1848 /*
1849 * Fill in rvt info object.
1850 */
1851 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1852 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1853 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1854 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1855 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1856 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1857 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1858 /*
1859 * Fill in rvt info device attributes.
1860 */
1861 hfi1_fill_device_attr(dd);
1862
1863 /* queue pair */
1864 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1865 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1866 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1867 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1868 dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE;
1869 dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX;
1870 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1871 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1872 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1873 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1874 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1875 RDMA_CORE_CAP_OPA_AH;
1876 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1877
1878 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1879 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1880 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1881 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1882 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1883 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1884 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1885 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1886 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1887 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1888 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1889 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1890 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1891 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1892 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1893 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1894 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1895 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1896 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1897 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1898 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1899 hfi1_comp_vect_mappings_lookup;
1900
1901 /* completeion queue */
1902 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1903 dd->verbs_dev.rdi.dparms.node = dd->node;
1904
1905 /* misc settings */
1906 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1907 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1908 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1909 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1910 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1911 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1912 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1913 dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1914 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1915
1916 /* post send table */
1917 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1918
1919 /* opcode translation table */
1920 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1921
1922 ppd = dd->pport;
1923 for (i = 0; i < dd->num_pports; i++, ppd++)
1924 rvt_init_port(&dd->verbs_dev.rdi,
1925 &ppd->ibport_data.rvp,
1926 i,
1927 ppd->pkeys);
1928
1929 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1930 &ib_hfi1_attr_group);
1931
1932 ret = rvt_register_device(&dd->verbs_dev.rdi);
1933 if (ret)
1934 goto err_verbs_txreq;
1935
1936 ret = hfi1_verbs_register_sysfs(dd);
1937 if (ret)
1938 goto err_class;
1939
1940 return ret;
1941
1942 err_class:
1943 rvt_unregister_device(&dd->verbs_dev.rdi);
1944 err_verbs_txreq:
1945 verbs_txreq_exit(dev);
1946 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1947 return ret;
1948 }
1949
hfi1_unregister_ib_device(struct hfi1_devdata * dd)1950 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1951 {
1952 struct hfi1_ibdev *dev = &dd->verbs_dev;
1953
1954 hfi1_verbs_unregister_sysfs(dd);
1955
1956 rvt_unregister_device(&dd->verbs_dev.rdi);
1957
1958 if (!list_empty(&dev->txwait))
1959 dd_dev_err(dd, "txwait list not empty!\n");
1960 if (!list_empty(&dev->memwait))
1961 dd_dev_err(dd, "memwait list not empty!\n");
1962
1963 del_timer_sync(&dev->mem_timer);
1964 verbs_txreq_exit(dev);
1965
1966 mutex_lock(&cntr_names_lock);
1967 kfree(dev_cntr_names);
1968 kfree(port_cntr_names);
1969 dev_cntr_names = NULL;
1970 port_cntr_names = NULL;
1971 cntr_names_initialized = 0;
1972 mutex_unlock(&cntr_names_lock);
1973 }
1974
hfi1_cnp_rcv(struct hfi1_packet * packet)1975 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1976 {
1977 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1978 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1979 struct ib_header *hdr = packet->hdr;
1980 struct rvt_qp *qp = packet->qp;
1981 u32 lqpn, rqpn = 0;
1982 u16 rlid = 0;
1983 u8 sl, sc5, svc_type;
1984
1985 switch (packet->qp->ibqp.qp_type) {
1986 case IB_QPT_UC:
1987 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1988 rqpn = qp->remote_qpn;
1989 svc_type = IB_CC_SVCTYPE_UC;
1990 break;
1991 case IB_QPT_RC:
1992 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1993 rqpn = qp->remote_qpn;
1994 svc_type = IB_CC_SVCTYPE_RC;
1995 break;
1996 case IB_QPT_SMI:
1997 case IB_QPT_GSI:
1998 case IB_QPT_UD:
1999 svc_type = IB_CC_SVCTYPE_UD;
2000 break;
2001 default:
2002 ibp->rvp.n_pkt_drops++;
2003 return;
2004 }
2005
2006 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2007 sl = ibp->sc_to_sl[sc5];
2008 lqpn = qp->ibqp.qp_num;
2009
2010 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2011 }
2012