1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
117 );
118
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 static u32
135 _base_readl_ext_retry(const volatile void __iomem *addr);
136
137 /**
138 * mpt3sas_base_check_cmd_timeout - Function
139 * to check timeout and command termination due
140 * to Host reset.
141 *
142 * @ioc: per adapter object.
143 * @status: Status of issued command.
144 * @mpi_request:mf request pointer.
145 * @sz: size of buffer.
146 *
147 * @Returns - 1/0 Reset to be done or Not
148 */
149 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)150 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
151 u8 status, void *mpi_request, int sz)
152 {
153 u8 issue_reset = 0;
154
155 if (!(status & MPT3_CMD_RESET))
156 issue_reset = 1;
157
158 ioc_err(ioc, "Command %s\n",
159 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
160 _debug_dump_mf(mpi_request, sz);
161
162 return issue_reset;
163 }
164
165 /**
166 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
167 * @val: ?
168 * @kp: ?
169 *
170 * Return: ?
171 */
172 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)173 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
174 {
175 int ret = param_set_int(val, kp);
176 struct MPT3SAS_ADAPTER *ioc;
177
178 if (ret)
179 return ret;
180
181 /* global ioc spinlock to protect controller list on list operations */
182 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
183 spin_lock(&gioc_lock);
184 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
185 ioc->fwfault_debug = mpt3sas_fwfault_debug;
186 spin_unlock(&gioc_lock);
187 return 0;
188 }
189 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
190 param_get_int, &mpt3sas_fwfault_debug, 0644);
191
192 /**
193 * _base_readl_aero - retry readl for max three times.
194 * @addr: MPT Fusion system interface register address
195 *
196 * Retry the readl() for max three times if it gets zero value
197 * while reading the system interface register.
198 */
199 static inline u32
_base_readl_aero(const volatile void __iomem * addr)200 _base_readl_aero(const volatile void __iomem *addr)
201 {
202 u32 i = 0, ret_val;
203
204 do {
205 ret_val = readl(addr);
206 i++;
207 } while (ret_val == 0 && i < 3);
208
209 return ret_val;
210 }
211
212 static u32
_base_readl_ext_retry(const volatile void __iomem * addr)213 _base_readl_ext_retry(const volatile void __iomem *addr)
214 {
215 u32 i, ret_val;
216
217 for (i = 0 ; i < 30 ; i++) {
218 ret_val = readl(addr);
219 if (ret_val != 0)
220 break;
221 }
222
223 return ret_val;
224 }
225
226 static inline u32
_base_readl(const volatile void __iomem * addr)227 _base_readl(const volatile void __iomem *addr)
228 {
229 return readl(addr);
230 }
231
232 /**
233 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
234 * in BAR0 space.
235 *
236 * @ioc: per adapter object
237 * @reply: reply message frame(lower 32bit addr)
238 * @index: System request message index.
239 */
240 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)241 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
242 u32 index)
243 {
244 /*
245 * 256 is offset within sys register.
246 * 256 offset MPI frame starts. Max MPI frame supported is 32.
247 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
248 */
249 u16 cmd_credit = ioc->facts.RequestCredit + 1;
250 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
251 MPI_FRAME_START_OFFSET +
252 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
253
254 writel(reply, reply_free_iomem);
255 }
256
257 /**
258 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
259 * to system/BAR0 region.
260 *
261 * @dst_iomem: Pointer to the destination location in BAR0 space.
262 * @src: Pointer to the Source data.
263 * @size: Size of data to be copied.
264 */
265 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)266 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
267 {
268 int i;
269 u32 *src_virt_mem = (u32 *)src;
270
271 for (i = 0; i < size/4; i++)
272 writel((u32)src_virt_mem[i],
273 (void __iomem *)dst_iomem + (i * 4));
274 }
275
276 /**
277 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
278 *
279 * @dst_iomem: Pointer to the destination location in BAR0 space.
280 * @src: Pointer to the Source data.
281 * @size: Size of data to be copied.
282 */
283 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)284 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
285 {
286 int i;
287 u32 *src_virt_mem = (u32 *)(src);
288
289 for (i = 0; i < size/4; i++)
290 writel((u32)src_virt_mem[i],
291 (void __iomem *)dst_iomem + (i * 4));
292 }
293
294 /**
295 * _base_get_chain - Calculates and Returns virtual chain address
296 * for the provided smid in BAR0 space.
297 *
298 * @ioc: per adapter object
299 * @smid: system request message index
300 * @sge_chain_count: Scatter gather chain count.
301 *
302 * Return: the chain address.
303 */
304 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)305 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
306 u8 sge_chain_count)
307 {
308 void __iomem *base_chain, *chain_virt;
309 u16 cmd_credit = ioc->facts.RequestCredit + 1;
310
311 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
312 (cmd_credit * ioc->request_sz) +
313 REPLY_FREE_POOL_SIZE;
314 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
315 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
316 return chain_virt;
317 }
318
319 /**
320 * _base_get_chain_phys - Calculates and Returns physical address
321 * in BAR0 for scatter gather chains, for
322 * the provided smid.
323 *
324 * @ioc: per adapter object
325 * @smid: system request message index
326 * @sge_chain_count: Scatter gather chain count.
327 *
328 * Return: Physical chain address.
329 */
330 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)331 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
332 u8 sge_chain_count)
333 {
334 phys_addr_t base_chain_phys, chain_phys;
335 u16 cmd_credit = ioc->facts.RequestCredit + 1;
336
337 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
338 (cmd_credit * ioc->request_sz) +
339 REPLY_FREE_POOL_SIZE;
340 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
341 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
342 return chain_phys;
343 }
344
345 /**
346 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
347 * buffer address for the provided smid.
348 * (Each smid can have 64K starts from 17024)
349 *
350 * @ioc: per adapter object
351 * @smid: system request message index
352 *
353 * Return: Pointer to buffer location in BAR0.
354 */
355
356 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)357 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
358 {
359 u16 cmd_credit = ioc->facts.RequestCredit + 1;
360 // Added extra 1 to reach end of chain.
361 void __iomem *chain_end = _base_get_chain(ioc,
362 cmd_credit + 1,
363 ioc->facts.MaxChainDepth);
364 return chain_end + (smid * 64 * 1024);
365 }
366
367 /**
368 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
369 * Host buffer Physical address for the provided smid.
370 * (Each smid can have 64K starts from 17024)
371 *
372 * @ioc: per adapter object
373 * @smid: system request message index
374 *
375 * Return: Pointer to buffer location in BAR0.
376 */
377 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)378 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
379 {
380 u16 cmd_credit = ioc->facts.RequestCredit + 1;
381 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
382 cmd_credit + 1,
383 ioc->facts.MaxChainDepth);
384 return chain_end_phys + (smid * 64 * 1024);
385 }
386
387 /**
388 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
389 * lookup list and Provides chain_buffer
390 * address for the matching dma address.
391 * (Each smid can have 64K starts from 17024)
392 *
393 * @ioc: per adapter object
394 * @chain_buffer_dma: Chain buffer dma address.
395 *
396 * Return: Pointer to chain buffer. Or Null on Failure.
397 */
398 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)399 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
400 dma_addr_t chain_buffer_dma)
401 {
402 u16 index, j;
403 struct chain_tracker *ct;
404
405 for (index = 0; index < ioc->scsiio_depth; index++) {
406 for (j = 0; j < ioc->chains_needed_per_io; j++) {
407 ct = &ioc->chain_lookup[index].chains_per_smid[j];
408 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
409 return ct->chain_buffer;
410 }
411 }
412 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
413 return NULL;
414 }
415
416 /**
417 * _clone_sg_entries - MPI EP's scsiio and config requests
418 * are handled here. Base function for
419 * double buffering, before submitting
420 * the requests.
421 *
422 * @ioc: per adapter object.
423 * @mpi_request: mf request pointer.
424 * @smid: system request message index.
425 */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)426 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
427 void *mpi_request, u16 smid)
428 {
429 Mpi2SGESimple32_t *sgel, *sgel_next;
430 u32 sgl_flags, sge_chain_count = 0;
431 bool is_write = false;
432 u16 i = 0;
433 void __iomem *buffer_iomem;
434 phys_addr_t buffer_iomem_phys;
435 void __iomem *buff_ptr;
436 phys_addr_t buff_ptr_phys;
437 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
438 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
439 phys_addr_t dst_addr_phys;
440 MPI2RequestHeader_t *request_hdr;
441 struct scsi_cmnd *scmd;
442 struct scatterlist *sg_scmd = NULL;
443 int is_scsiio_req = 0;
444
445 request_hdr = (MPI2RequestHeader_t *) mpi_request;
446
447 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
448 Mpi25SCSIIORequest_t *scsiio_request =
449 (Mpi25SCSIIORequest_t *)mpi_request;
450 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
451 is_scsiio_req = 1;
452 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
453 Mpi2ConfigRequest_t *config_req =
454 (Mpi2ConfigRequest_t *)mpi_request;
455 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
456 } else
457 return;
458
459 /* From smid we can get scsi_cmd, once we have sg_scmd,
460 * we just need to get sg_virt and sg_next to get virual
461 * address associated with sgel->Address.
462 */
463
464 if (is_scsiio_req) {
465 /* Get scsi_cmd using smid */
466 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
467 if (scmd == NULL) {
468 ioc_err(ioc, "scmd is NULL\n");
469 return;
470 }
471
472 /* Get sg_scmd from scmd provided */
473 sg_scmd = scsi_sglist(scmd);
474 }
475
476 /*
477 * 0 - 255 System register
478 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
479 * 4352 - 4864 Reply_free pool (512 byte is reserved
480 * considering maxCredit 32. Reply need extra
481 * room, for mCPU case kept four times of
482 * maxCredit).
483 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
484 * 128 byte size = 12288)
485 * 17152 - x Host buffer mapped with smid.
486 * (Each smid can have 64K Max IO.)
487 * BAR0+Last 1K MSIX Addr and Data
488 * Total size in use 2113664 bytes of 4MB BAR0
489 */
490
491 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
492 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
493
494 buff_ptr = buffer_iomem;
495 buff_ptr_phys = buffer_iomem_phys;
496 WARN_ON(buff_ptr_phys > U32_MAX);
497
498 if (le32_to_cpu(sgel->FlagsLength) &
499 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
500 is_write = true;
501
502 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
503
504 sgl_flags =
505 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
506
507 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
508 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
509 /*
510 * Helper function which on passing
511 * chain_buffer_dma returns chain_buffer. Get
512 * the virtual address for sgel->Address
513 */
514 sgel_next =
515 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
516 le32_to_cpu(sgel->Address));
517 if (sgel_next == NULL)
518 return;
519 /*
520 * This is coping 128 byte chain
521 * frame (not a host buffer)
522 */
523 dst_chain_addr[sge_chain_count] =
524 _base_get_chain(ioc,
525 smid, sge_chain_count);
526 src_chain_addr[sge_chain_count] =
527 (void *) sgel_next;
528 dst_addr_phys = _base_get_chain_phys(ioc,
529 smid, sge_chain_count);
530 WARN_ON(dst_addr_phys > U32_MAX);
531 sgel->Address =
532 cpu_to_le32(lower_32_bits(dst_addr_phys));
533 sgel = sgel_next;
534 sge_chain_count++;
535 break;
536 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
537 if (is_write) {
538 if (is_scsiio_req) {
539 _base_clone_to_sys_mem(buff_ptr,
540 sg_virt(sg_scmd),
541 (le32_to_cpu(sgel->FlagsLength) &
542 0x00ffffff));
543 /*
544 * FIXME: this relies on a a zero
545 * PCI mem_offset.
546 */
547 sgel->Address =
548 cpu_to_le32((u32)buff_ptr_phys);
549 } else {
550 _base_clone_to_sys_mem(buff_ptr,
551 ioc->config_vaddr,
552 (le32_to_cpu(sgel->FlagsLength) &
553 0x00ffffff));
554 sgel->Address =
555 cpu_to_le32((u32)buff_ptr_phys);
556 }
557 }
558 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
559 0x00ffffff);
560 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
561 0x00ffffff);
562 if ((le32_to_cpu(sgel->FlagsLength) &
563 (MPI2_SGE_FLAGS_END_OF_BUFFER
564 << MPI2_SGE_FLAGS_SHIFT)))
565 goto eob_clone_chain;
566 else {
567 /*
568 * Every single element in MPT will have
569 * associated sg_next. Better to sanity that
570 * sg_next is not NULL, but it will be a bug
571 * if it is null.
572 */
573 if (is_scsiio_req) {
574 sg_scmd = sg_next(sg_scmd);
575 if (sg_scmd)
576 sgel++;
577 else
578 goto eob_clone_chain;
579 }
580 }
581 break;
582 }
583 }
584
585 eob_clone_chain:
586 for (i = 0; i < sge_chain_count; i++) {
587 if (is_scsiio_req)
588 _base_clone_to_sys_mem(dst_chain_addr[i],
589 src_chain_addr[i], ioc->request_sz);
590 }
591 }
592
593 /**
594 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
595 * @arg: input argument, used to derive ioc
596 *
597 * Return:
598 * 0 if controller is removed from pci subsystem.
599 * -1 for other case.
600 */
mpt3sas_remove_dead_ioc_func(void * arg)601 static int mpt3sas_remove_dead_ioc_func(void *arg)
602 {
603 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
604 struct pci_dev *pdev;
605
606 if (!ioc)
607 return -1;
608
609 pdev = ioc->pdev;
610 if (!pdev)
611 return -1;
612 pci_stop_and_remove_bus_device_locked(pdev);
613 return 0;
614 }
615
616 /**
617 * _base_fault_reset_work - workq handling ioc fault conditions
618 * @work: input argument, used to derive ioc
619 *
620 * Context: sleep.
621 */
622 static void
_base_fault_reset_work(struct work_struct * work)623 _base_fault_reset_work(struct work_struct *work)
624 {
625 struct MPT3SAS_ADAPTER *ioc =
626 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
627 unsigned long flags;
628 u32 doorbell;
629 int rc;
630 struct task_struct *p;
631
632
633 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
634 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
635 ioc->pci_error_recovery)
636 goto rearm_timer;
637 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
638
639 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
640 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
641 ioc_err(ioc, "SAS host is non-operational !!!!\n");
642
643 /* It may be possible that EEH recovery can resolve some of
644 * pci bus failure issues rather removing the dead ioc function
645 * by considering controller is in a non-operational state. So
646 * here priority is given to the EEH recovery. If it doesn't
647 * not resolve this issue, mpt3sas driver will consider this
648 * controller to non-operational state and remove the dead ioc
649 * function.
650 */
651 if (ioc->non_operational_loop++ < 5) {
652 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
653 flags);
654 goto rearm_timer;
655 }
656
657 /*
658 * Call _scsih_flush_pending_cmds callback so that we flush all
659 * pending commands back to OS. This call is required to aovid
660 * deadlock at block layer. Dead IOC will fail to do diag reset,
661 * and this call is safe since dead ioc will never return any
662 * command back from HW.
663 */
664 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
665 /*
666 * Set remove_host flag early since kernel thread will
667 * take some time to execute.
668 */
669 ioc->remove_host = 1;
670 /*Remove the Dead Host */
671 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
672 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
673 if (IS_ERR(p))
674 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
675 __func__);
676 else
677 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
678 __func__);
679 return; /* don't rearm timer */
680 }
681
682 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
683 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
684 ioc->manu_pg11.CoreDumpTOSec :
685 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
686
687 timeout /= (FAULT_POLLING_INTERVAL/1000);
688
689 if (ioc->ioc_coredump_loop == 0) {
690 mpt3sas_print_coredump_info(ioc,
691 doorbell & MPI2_DOORBELL_DATA_MASK);
692 /* do not accept any IOs and disable the interrupts */
693 spin_lock_irqsave(
694 &ioc->ioc_reset_in_progress_lock, flags);
695 ioc->shost_recovery = 1;
696 spin_unlock_irqrestore(
697 &ioc->ioc_reset_in_progress_lock, flags);
698 mpt3sas_base_mask_interrupts(ioc);
699 _base_clear_outstanding_commands(ioc);
700 }
701
702 ioc_info(ioc, "%s: CoreDump loop %d.",
703 __func__, ioc->ioc_coredump_loop);
704
705 /* Wait until CoreDump completes or times out */
706 if (ioc->ioc_coredump_loop++ < timeout) {
707 spin_lock_irqsave(
708 &ioc->ioc_reset_in_progress_lock, flags);
709 goto rearm_timer;
710 }
711 }
712
713 if (ioc->ioc_coredump_loop) {
714 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
715 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
716 __func__, ioc->ioc_coredump_loop);
717 else
718 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
719 __func__, ioc->ioc_coredump_loop);
720 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
721 }
722 ioc->non_operational_loop = 0;
723 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
724 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
725 ioc_warn(ioc, "%s: hard reset: %s\n",
726 __func__, rc == 0 ? "success" : "failed");
727 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
728 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
729 mpt3sas_print_fault_code(ioc, doorbell &
730 MPI2_DOORBELL_DATA_MASK);
731 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
732 MPI2_IOC_STATE_COREDUMP)
733 mpt3sas_print_coredump_info(ioc, doorbell &
734 MPI2_DOORBELL_DATA_MASK);
735 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
736 MPI2_IOC_STATE_OPERATIONAL)
737 return; /* don't rearm timer */
738 }
739 ioc->ioc_coredump_loop = 0;
740
741 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
742 rearm_timer:
743 if (ioc->fault_reset_work_q)
744 queue_delayed_work(ioc->fault_reset_work_q,
745 &ioc->fault_reset_work,
746 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
747 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
748 }
749
750 /**
751 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
752 * @ioc: per adapter object
753 *
754 * Context: sleep.
755 */
756 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)757 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
758 {
759 unsigned long flags;
760
761 if (ioc->fault_reset_work_q)
762 return;
763
764 /* initialize fault polling */
765
766 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
767 snprintf(ioc->fault_reset_work_q_name,
768 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
769 ioc->driver_name, ioc->id);
770 ioc->fault_reset_work_q =
771 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
772 if (!ioc->fault_reset_work_q) {
773 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
774 return;
775 }
776 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
777 if (ioc->fault_reset_work_q)
778 queue_delayed_work(ioc->fault_reset_work_q,
779 &ioc->fault_reset_work,
780 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
781 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
782 }
783
784 /**
785 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
786 * @ioc: per adapter object
787 *
788 * Context: sleep.
789 */
790 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)791 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
792 {
793 unsigned long flags;
794 struct workqueue_struct *wq;
795
796 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
797 wq = ioc->fault_reset_work_q;
798 ioc->fault_reset_work_q = NULL;
799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
800 if (wq) {
801 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
802 flush_workqueue(wq);
803 destroy_workqueue(wq);
804 }
805 }
806
807 /**
808 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
809 * @ioc: per adapter object
810 * @fault_code: fault code
811 */
812 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)813 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
814 {
815 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
816 }
817
818 /**
819 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
820 * @ioc: per adapter object
821 * @fault_code: fault code
822 *
823 * Return nothing.
824 */
825 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)826 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
827 {
828 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
829 }
830
831 /**
832 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
833 * completes or times out
834 * @ioc: per adapter object
835 * @caller: caller function name
836 *
837 * Returns 0 for success, non-zero for failure.
838 */
839 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)840 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
841 const char *caller)
842 {
843 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
844 ioc->manu_pg11.CoreDumpTOSec :
845 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
846
847 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
848 timeout);
849
850 if (ioc_state)
851 ioc_err(ioc,
852 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
853 caller, ioc_state);
854 else
855 ioc_info(ioc,
856 "%s: CoreDump completed. (ioc_state=0x%x)\n",
857 caller, ioc_state);
858
859 return ioc_state;
860 }
861
862 /**
863 * mpt3sas_halt_firmware - halt's mpt controller firmware
864 * @ioc: per adapter object
865 *
866 * For debugging timeout related issues. Writing 0xCOFFEE00
867 * to the doorbell register will halt controller firmware. With
868 * the purpose to stop both driver and firmware, the enduser can
869 * obtain a ring buffer from controller UART.
870 */
871 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)872 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
873 {
874 u32 doorbell;
875
876 if (!ioc->fwfault_debug)
877 return;
878
879 dump_stack();
880
881 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
882 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
883 mpt3sas_print_fault_code(ioc, doorbell &
884 MPI2_DOORBELL_DATA_MASK);
885 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
886 MPI2_IOC_STATE_COREDUMP) {
887 mpt3sas_print_coredump_info(ioc, doorbell &
888 MPI2_DOORBELL_DATA_MASK);
889 } else {
890 writel(0xC0FFEE00, &ioc->chip->Doorbell);
891 ioc_err(ioc, "Firmware is halted due to command timeout\n");
892 }
893
894 if (ioc->fwfault_debug == 2)
895 for (;;)
896 ;
897 else
898 panic("panic in %s\n", __func__);
899 }
900
901 /**
902 * _base_sas_ioc_info - verbose translation of the ioc status
903 * @ioc: per adapter object
904 * @mpi_reply: reply mf payload returned from firmware
905 * @request_hdr: request mf
906 */
907 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)908 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
909 MPI2RequestHeader_t *request_hdr)
910 {
911 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
912 MPI2_IOCSTATUS_MASK;
913 char *desc = NULL;
914 u16 frame_sz;
915 char *func_str = NULL;
916
917 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
918 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
919 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
920 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
921 return;
922
923 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
924 return;
925
926 switch (ioc_status) {
927
928 /****************************************************************************
929 * Common IOCStatus values for all replies
930 ****************************************************************************/
931
932 case MPI2_IOCSTATUS_INVALID_FUNCTION:
933 desc = "invalid function";
934 break;
935 case MPI2_IOCSTATUS_BUSY:
936 desc = "busy";
937 break;
938 case MPI2_IOCSTATUS_INVALID_SGL:
939 desc = "invalid sgl";
940 break;
941 case MPI2_IOCSTATUS_INTERNAL_ERROR:
942 desc = "internal error";
943 break;
944 case MPI2_IOCSTATUS_INVALID_VPID:
945 desc = "invalid vpid";
946 break;
947 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
948 desc = "insufficient resources";
949 break;
950 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
951 desc = "insufficient power";
952 break;
953 case MPI2_IOCSTATUS_INVALID_FIELD:
954 desc = "invalid field";
955 break;
956 case MPI2_IOCSTATUS_INVALID_STATE:
957 desc = "invalid state";
958 break;
959 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
960 desc = "op state not supported";
961 break;
962
963 /****************************************************************************
964 * Config IOCStatus values
965 ****************************************************************************/
966
967 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
968 desc = "config invalid action";
969 break;
970 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
971 desc = "config invalid type";
972 break;
973 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
974 desc = "config invalid page";
975 break;
976 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
977 desc = "config invalid data";
978 break;
979 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
980 desc = "config no defaults";
981 break;
982 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
983 desc = "config cant commit";
984 break;
985
986 /****************************************************************************
987 * SCSI IO Reply
988 ****************************************************************************/
989
990 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
991 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
992 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
993 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
994 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
995 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
996 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
997 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
998 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
999 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1000 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1001 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1002 break;
1003
1004 /****************************************************************************
1005 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1006 ****************************************************************************/
1007
1008 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1009 desc = "eedp guard error";
1010 break;
1011 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1012 desc = "eedp ref tag error";
1013 break;
1014 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1015 desc = "eedp app tag error";
1016 break;
1017
1018 /****************************************************************************
1019 * SCSI Target values
1020 ****************************************************************************/
1021
1022 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1023 desc = "target invalid io index";
1024 break;
1025 case MPI2_IOCSTATUS_TARGET_ABORTED:
1026 desc = "target aborted";
1027 break;
1028 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1029 desc = "target no conn retryable";
1030 break;
1031 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1032 desc = "target no connection";
1033 break;
1034 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1035 desc = "target xfer count mismatch";
1036 break;
1037 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1038 desc = "target data offset error";
1039 break;
1040 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1041 desc = "target too much write data";
1042 break;
1043 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1044 desc = "target iu too short";
1045 break;
1046 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1047 desc = "target ack nak timeout";
1048 break;
1049 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1050 desc = "target nak received";
1051 break;
1052
1053 /****************************************************************************
1054 * Serial Attached SCSI values
1055 ****************************************************************************/
1056
1057 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1058 desc = "smp request failed";
1059 break;
1060 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1061 desc = "smp data overrun";
1062 break;
1063
1064 /****************************************************************************
1065 * Diagnostic Buffer Post / Diagnostic Release values
1066 ****************************************************************************/
1067
1068 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1069 desc = "diagnostic released";
1070 break;
1071 default:
1072 break;
1073 }
1074
1075 if (!desc)
1076 return;
1077
1078 switch (request_hdr->Function) {
1079 case MPI2_FUNCTION_CONFIG:
1080 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1081 func_str = "config_page";
1082 break;
1083 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1084 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1085 func_str = "task_mgmt";
1086 break;
1087 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1088 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1089 func_str = "sas_iounit_ctl";
1090 break;
1091 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1092 frame_sz = sizeof(Mpi2SepRequest_t);
1093 func_str = "enclosure";
1094 break;
1095 case MPI2_FUNCTION_IOC_INIT:
1096 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1097 func_str = "ioc_init";
1098 break;
1099 case MPI2_FUNCTION_PORT_ENABLE:
1100 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1101 func_str = "port_enable";
1102 break;
1103 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1104 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1105 func_str = "smp_passthru";
1106 break;
1107 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1108 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1109 ioc->sge_size;
1110 func_str = "nvme_encapsulated";
1111 break;
1112 default:
1113 frame_sz = 32;
1114 func_str = "unknown";
1115 break;
1116 }
1117
1118 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1119 desc, ioc_status, request_hdr, func_str);
1120
1121 _debug_dump_mf(request_hdr, frame_sz/4);
1122 }
1123
1124 /**
1125 * _base_display_event_data - verbose translation of firmware asyn events
1126 * @ioc: per adapter object
1127 * @mpi_reply: reply mf payload returned from firmware
1128 */
1129 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1130 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1131 Mpi2EventNotificationReply_t *mpi_reply)
1132 {
1133 char *desc = NULL;
1134 u16 event;
1135
1136 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1137 return;
1138
1139 event = le16_to_cpu(mpi_reply->Event);
1140
1141 switch (event) {
1142 case MPI2_EVENT_LOG_DATA:
1143 desc = "Log Data";
1144 break;
1145 case MPI2_EVENT_STATE_CHANGE:
1146 desc = "Status Change";
1147 break;
1148 case MPI2_EVENT_HARD_RESET_RECEIVED:
1149 desc = "Hard Reset Received";
1150 break;
1151 case MPI2_EVENT_EVENT_CHANGE:
1152 desc = "Event Change";
1153 break;
1154 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1155 desc = "Device Status Change";
1156 break;
1157 case MPI2_EVENT_IR_OPERATION_STATUS:
1158 if (!ioc->hide_ir_msg)
1159 desc = "IR Operation Status";
1160 break;
1161 case MPI2_EVENT_SAS_DISCOVERY:
1162 {
1163 Mpi2EventDataSasDiscovery_t *event_data =
1164 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1165 ioc_info(ioc, "Discovery: (%s)",
1166 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1167 "start" : "stop");
1168 if (event_data->DiscoveryStatus)
1169 pr_cont(" discovery_status(0x%08x)",
1170 le32_to_cpu(event_data->DiscoveryStatus));
1171 pr_cont("\n");
1172 return;
1173 }
1174 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1175 desc = "SAS Broadcast Primitive";
1176 break;
1177 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1178 desc = "SAS Init Device Status Change";
1179 break;
1180 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1181 desc = "SAS Init Table Overflow";
1182 break;
1183 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1184 desc = "SAS Topology Change List";
1185 break;
1186 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1187 desc = "SAS Enclosure Device Status Change";
1188 break;
1189 case MPI2_EVENT_IR_VOLUME:
1190 if (!ioc->hide_ir_msg)
1191 desc = "IR Volume";
1192 break;
1193 case MPI2_EVENT_IR_PHYSICAL_DISK:
1194 if (!ioc->hide_ir_msg)
1195 desc = "IR Physical Disk";
1196 break;
1197 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1198 if (!ioc->hide_ir_msg)
1199 desc = "IR Configuration Change List";
1200 break;
1201 case MPI2_EVENT_LOG_ENTRY_ADDED:
1202 if (!ioc->hide_ir_msg)
1203 desc = "Log Entry Added";
1204 break;
1205 case MPI2_EVENT_TEMP_THRESHOLD:
1206 desc = "Temperature Threshold";
1207 break;
1208 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1209 desc = "Cable Event";
1210 break;
1211 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1212 desc = "SAS Device Discovery Error";
1213 break;
1214 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1215 desc = "PCIE Device Status Change";
1216 break;
1217 case MPI2_EVENT_PCIE_ENUMERATION:
1218 {
1219 Mpi26EventDataPCIeEnumeration_t *event_data =
1220 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1221 ioc_info(ioc, "PCIE Enumeration: (%s)",
1222 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1223 "start" : "stop");
1224 if (event_data->EnumerationStatus)
1225 pr_cont("enumeration_status(0x%08x)",
1226 le32_to_cpu(event_data->EnumerationStatus));
1227 pr_cont("\n");
1228 return;
1229 }
1230 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1231 desc = "PCIE Topology Change List";
1232 break;
1233 }
1234
1235 if (!desc)
1236 return;
1237
1238 ioc_info(ioc, "%s\n", desc);
1239 }
1240
1241 /**
1242 * _base_sas_log_info - verbose translation of firmware log info
1243 * @ioc: per adapter object
1244 * @log_info: log info
1245 */
1246 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1247 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1248 {
1249 union loginfo_type {
1250 u32 loginfo;
1251 struct {
1252 u32 subcode:16;
1253 u32 code:8;
1254 u32 originator:4;
1255 u32 bus_type:4;
1256 } dw;
1257 };
1258 union loginfo_type sas_loginfo;
1259 char *originator_str = NULL;
1260
1261 sas_loginfo.loginfo = log_info;
1262 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1263 return;
1264
1265 /* each nexus loss loginfo */
1266 if (log_info == 0x31170000)
1267 return;
1268
1269 /* eat the loginfos associated with task aborts */
1270 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1271 0x31140000 || log_info == 0x31130000))
1272 return;
1273
1274 switch (sas_loginfo.dw.originator) {
1275 case 0:
1276 originator_str = "IOP";
1277 break;
1278 case 1:
1279 originator_str = "PL";
1280 break;
1281 case 2:
1282 if (!ioc->hide_ir_msg)
1283 originator_str = "IR";
1284 else
1285 originator_str = "WarpDrive";
1286 break;
1287 }
1288
1289 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1290 log_info,
1291 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1292 }
1293
1294 /**
1295 * _base_display_reply_info -
1296 * @ioc: per adapter object
1297 * @smid: system request message index
1298 * @msix_index: MSIX table index supplied by the OS
1299 * @reply: reply message frame(lower 32bit addr)
1300 */
1301 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1302 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1303 u32 reply)
1304 {
1305 MPI2DefaultReply_t *mpi_reply;
1306 u16 ioc_status;
1307 u32 loginfo = 0;
1308
1309 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1310 if (unlikely(!mpi_reply)) {
1311 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1312 __FILE__, __LINE__, __func__);
1313 return;
1314 }
1315 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1316
1317 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1318 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1319 _base_sas_ioc_info(ioc , mpi_reply,
1320 mpt3sas_base_get_msg_frame(ioc, smid));
1321 }
1322
1323 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1324 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1325 _base_sas_log_info(ioc, loginfo);
1326 }
1327
1328 if (ioc_status || loginfo) {
1329 ioc_status &= MPI2_IOCSTATUS_MASK;
1330 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1331 }
1332 }
1333
1334 /**
1335 * mpt3sas_base_done - base internal command completion routine
1336 * @ioc: per adapter object
1337 * @smid: system request message index
1338 * @msix_index: MSIX table index supplied by the OS
1339 * @reply: reply message frame(lower 32bit addr)
1340 *
1341 * Return:
1342 * 1 meaning mf should be freed from _base_interrupt
1343 * 0 means the mf is freed from this function.
1344 */
1345 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1346 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1347 u32 reply)
1348 {
1349 MPI2DefaultReply_t *mpi_reply;
1350
1351 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1352 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1353 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1354
1355 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1356 return 1;
1357
1358 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1359 if (mpi_reply) {
1360 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1361 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1362 }
1363 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1364
1365 complete(&ioc->base_cmds.done);
1366 return 1;
1367 }
1368
1369 /**
1370 * _base_async_event - main callback handler for firmware asyn events
1371 * @ioc: per adapter object
1372 * @msix_index: MSIX table index supplied by the OS
1373 * @reply: reply message frame(lower 32bit addr)
1374 *
1375 * Return:
1376 * 1 meaning mf should be freed from _base_interrupt
1377 * 0 means the mf is freed from this function.
1378 */
1379 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1380 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1381 {
1382 Mpi2EventNotificationReply_t *mpi_reply;
1383 Mpi2EventAckRequest_t *ack_request;
1384 u16 smid;
1385 struct _event_ack_list *delayed_event_ack;
1386
1387 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1388 if (!mpi_reply)
1389 return 1;
1390 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1391 return 1;
1392
1393 _base_display_event_data(ioc, mpi_reply);
1394
1395 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1396 goto out;
1397 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1398 if (!smid) {
1399 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1400 GFP_ATOMIC);
1401 if (!delayed_event_ack)
1402 goto out;
1403 INIT_LIST_HEAD(&delayed_event_ack->list);
1404 delayed_event_ack->Event = mpi_reply->Event;
1405 delayed_event_ack->EventContext = mpi_reply->EventContext;
1406 list_add_tail(&delayed_event_ack->list,
1407 &ioc->delayed_event_ack_list);
1408 dewtprintk(ioc,
1409 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1410 le16_to_cpu(mpi_reply->Event)));
1411 goto out;
1412 }
1413
1414 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1415 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1416 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1417 ack_request->Event = mpi_reply->Event;
1418 ack_request->EventContext = mpi_reply->EventContext;
1419 ack_request->VF_ID = 0; /* TODO */
1420 ack_request->VP_ID = 0;
1421 ioc->put_smid_default(ioc, smid);
1422
1423 out:
1424
1425 /* scsih callback handler */
1426 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1427
1428 /* ctl callback handler */
1429 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1430
1431 return 1;
1432 }
1433
1434 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1435 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1436 {
1437 struct scsi_cmnd *cmd;
1438
1439 if (WARN_ON(!smid) ||
1440 WARN_ON(smid >= ioc->hi_priority_smid))
1441 return NULL;
1442
1443 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1444 if (cmd)
1445 return scsi_cmd_priv(cmd);
1446
1447 return NULL;
1448 }
1449
1450 /**
1451 * _base_get_cb_idx - obtain the callback index
1452 * @ioc: per adapter object
1453 * @smid: system request message index
1454 *
1455 * Return: callback index.
1456 */
1457 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1458 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1459 {
1460 int i;
1461 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1462 u8 cb_idx = 0xFF;
1463
1464 if (smid < ioc->hi_priority_smid) {
1465 struct scsiio_tracker *st;
1466
1467 if (smid < ctl_smid) {
1468 st = _get_st_from_smid(ioc, smid);
1469 if (st)
1470 cb_idx = st->cb_idx;
1471 } else if (smid == ctl_smid)
1472 cb_idx = ioc->ctl_cb_idx;
1473 } else if (smid < ioc->internal_smid) {
1474 i = smid - ioc->hi_priority_smid;
1475 cb_idx = ioc->hpr_lookup[i].cb_idx;
1476 } else if (smid <= ioc->hba_queue_depth) {
1477 i = smid - ioc->internal_smid;
1478 cb_idx = ioc->internal_lookup[i].cb_idx;
1479 }
1480 return cb_idx;
1481 }
1482
1483 /**
1484 * mpt3sas_base_mask_interrupts - disable interrupts
1485 * @ioc: per adapter object
1486 *
1487 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1488 */
1489 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1490 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1491 {
1492 u32 him_register;
1493
1494 ioc->mask_interrupts = 1;
1495 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1497 writel(him_register, &ioc->chip->HostInterruptMask);
1498 ioc->base_readl(&ioc->chip->HostInterruptMask);
1499 }
1500
1501 /**
1502 * mpt3sas_base_unmask_interrupts - enable interrupts
1503 * @ioc: per adapter object
1504 *
1505 * Enabling only Reply Interrupts
1506 */
1507 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1508 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1509 {
1510 u32 him_register;
1511
1512 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1513 him_register &= ~MPI2_HIM_RIM;
1514 writel(him_register, &ioc->chip->HostInterruptMask);
1515 ioc->mask_interrupts = 0;
1516 }
1517
1518 union reply_descriptor {
1519 u64 word;
1520 struct {
1521 u32 low;
1522 u32 high;
1523 } u;
1524 };
1525
base_mod64(u64 dividend,u32 divisor)1526 static u32 base_mod64(u64 dividend, u32 divisor)
1527 {
1528 u32 remainder;
1529
1530 if (!divisor)
1531 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1532 remainder = do_div(dividend, divisor);
1533 return remainder;
1534 }
1535
1536 /**
1537 * _base_process_reply_queue - Process reply descriptors from reply
1538 * descriptor post queue.
1539 * @reply_q: per IRQ's reply queue object.
1540 *
1541 * Return: number of reply descriptors processed from reply
1542 * descriptor queue.
1543 */
1544 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1545 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1546 {
1547 union reply_descriptor rd;
1548 u64 completed_cmds;
1549 u8 request_descript_type;
1550 u16 smid;
1551 u8 cb_idx;
1552 u32 reply;
1553 u8 msix_index = reply_q->msix_index;
1554 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1555 Mpi2ReplyDescriptorsUnion_t *rpf;
1556 u8 rc;
1557
1558 completed_cmds = 0;
1559 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1560 return completed_cmds;
1561
1562 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1563 request_descript_type = rpf->Default.ReplyFlags
1564 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1565 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1566 atomic_dec(&reply_q->busy);
1567 return completed_cmds;
1568 }
1569
1570 cb_idx = 0xFF;
1571 do {
1572 rd.word = le64_to_cpu(rpf->Words);
1573 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1574 goto out;
1575 reply = 0;
1576 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1577 if (request_descript_type ==
1578 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1579 request_descript_type ==
1580 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1581 request_descript_type ==
1582 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1583 cb_idx = _base_get_cb_idx(ioc, smid);
1584 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1585 (likely(mpt_callbacks[cb_idx] != NULL))) {
1586 rc = mpt_callbacks[cb_idx](ioc, smid,
1587 msix_index, 0);
1588 if (rc)
1589 mpt3sas_base_free_smid(ioc, smid);
1590 }
1591 } else if (request_descript_type ==
1592 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1593 reply = le32_to_cpu(
1594 rpf->AddressReply.ReplyFrameAddress);
1595 if (reply > ioc->reply_dma_max_address ||
1596 reply < ioc->reply_dma_min_address)
1597 reply = 0;
1598 if (smid) {
1599 cb_idx = _base_get_cb_idx(ioc, smid);
1600 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1601 (likely(mpt_callbacks[cb_idx] != NULL))) {
1602 rc = mpt_callbacks[cb_idx](ioc, smid,
1603 msix_index, reply);
1604 if (reply)
1605 _base_display_reply_info(ioc,
1606 smid, msix_index, reply);
1607 if (rc)
1608 mpt3sas_base_free_smid(ioc,
1609 smid);
1610 }
1611 } else {
1612 _base_async_event(ioc, msix_index, reply);
1613 }
1614
1615 /* reply free queue handling */
1616 if (reply) {
1617 ioc->reply_free_host_index =
1618 (ioc->reply_free_host_index ==
1619 (ioc->reply_free_queue_depth - 1)) ?
1620 0 : ioc->reply_free_host_index + 1;
1621 ioc->reply_free[ioc->reply_free_host_index] =
1622 cpu_to_le32(reply);
1623 if (ioc->is_mcpu_endpoint)
1624 _base_clone_reply_to_sys_mem(ioc,
1625 reply,
1626 ioc->reply_free_host_index);
1627 writel(ioc->reply_free_host_index,
1628 &ioc->chip->ReplyFreeHostIndex);
1629 }
1630 }
1631
1632 rpf->Words = cpu_to_le64(ULLONG_MAX);
1633 reply_q->reply_post_host_index =
1634 (reply_q->reply_post_host_index ==
1635 (ioc->reply_post_queue_depth - 1)) ? 0 :
1636 reply_q->reply_post_host_index + 1;
1637 request_descript_type =
1638 reply_q->reply_post_free[reply_q->reply_post_host_index].
1639 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1640 completed_cmds++;
1641 /* Update the reply post host index after continuously
1642 * processing the threshold number of Reply Descriptors.
1643 * So that FW can find enough entries to post the Reply
1644 * Descriptors in the reply descriptor post queue.
1645 */
1646 if (completed_cmds >= ioc->thresh_hold) {
1647 if (ioc->combined_reply_queue) {
1648 writel(reply_q->reply_post_host_index |
1649 ((msix_index & 7) <<
1650 MPI2_RPHI_MSIX_INDEX_SHIFT),
1651 ioc->replyPostRegisterIndex[msix_index/8]);
1652 } else {
1653 writel(reply_q->reply_post_host_index |
1654 (msix_index <<
1655 MPI2_RPHI_MSIX_INDEX_SHIFT),
1656 &ioc->chip->ReplyPostHostIndex);
1657 }
1658 if (!reply_q->irq_poll_scheduled) {
1659 reply_q->irq_poll_scheduled = true;
1660 irq_poll_sched(&reply_q->irqpoll);
1661 }
1662 atomic_dec(&reply_q->busy);
1663 return completed_cmds;
1664 }
1665 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1666 goto out;
1667 if (!reply_q->reply_post_host_index)
1668 rpf = reply_q->reply_post_free;
1669 else
1670 rpf++;
1671 } while (1);
1672
1673 out:
1674
1675 if (!completed_cmds) {
1676 atomic_dec(&reply_q->busy);
1677 return completed_cmds;
1678 }
1679
1680 if (ioc->is_warpdrive) {
1681 writel(reply_q->reply_post_host_index,
1682 ioc->reply_post_host_index[msix_index]);
1683 atomic_dec(&reply_q->busy);
1684 return completed_cmds;
1685 }
1686
1687 /* Update Reply Post Host Index.
1688 * For those HBA's which support combined reply queue feature
1689 * 1. Get the correct Supplemental Reply Post Host Index Register.
1690 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1691 * Index Register address bank i.e replyPostRegisterIndex[],
1692 * 2. Then update this register with new reply host index value
1693 * in ReplyPostIndex field and the MSIxIndex field with
1694 * msix_index value reduced to a value between 0 and 7,
1695 * using a modulo 8 operation. Since each Supplemental Reply Post
1696 * Host Index Register supports 8 MSI-X vectors.
1697 *
1698 * For other HBA's just update the Reply Post Host Index register with
1699 * new reply host index value in ReplyPostIndex Field and msix_index
1700 * value in MSIxIndex field.
1701 */
1702 if (ioc->combined_reply_queue)
1703 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1704 MPI2_RPHI_MSIX_INDEX_SHIFT),
1705 ioc->replyPostRegisterIndex[msix_index/8]);
1706 else
1707 writel(reply_q->reply_post_host_index | (msix_index <<
1708 MPI2_RPHI_MSIX_INDEX_SHIFT),
1709 &ioc->chip->ReplyPostHostIndex);
1710 atomic_dec(&reply_q->busy);
1711 return completed_cmds;
1712 }
1713
1714 /**
1715 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1716 * @irq: irq number (not used)
1717 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1718 *
1719 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1720 */
1721 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1722 _base_interrupt(int irq, void *bus_id)
1723 {
1724 struct adapter_reply_queue *reply_q = bus_id;
1725 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1726
1727 if (ioc->mask_interrupts)
1728 return IRQ_NONE;
1729 if (reply_q->irq_poll_scheduled)
1730 return IRQ_HANDLED;
1731 return ((_base_process_reply_queue(reply_q) > 0) ?
1732 IRQ_HANDLED : IRQ_NONE);
1733 }
1734
1735 /**
1736 * _base_irqpoll - IRQ poll callback handler
1737 * @irqpoll: irq_poll object
1738 * @budget: irq poll weight
1739 *
1740 * returns number of reply descriptors processed
1741 */
1742 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1743 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1744 {
1745 struct adapter_reply_queue *reply_q;
1746 int num_entries = 0;
1747
1748 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1749 irqpoll);
1750 if (reply_q->irq_line_enable) {
1751 disable_irq_nosync(reply_q->os_irq);
1752 reply_q->irq_line_enable = false;
1753 }
1754 num_entries = _base_process_reply_queue(reply_q);
1755 if (num_entries < budget) {
1756 irq_poll_complete(irqpoll);
1757 reply_q->irq_poll_scheduled = false;
1758 reply_q->irq_line_enable = true;
1759 enable_irq(reply_q->os_irq);
1760 /*
1761 * Go for one more round of processing the
1762 * reply descriptor post queue incase if HBA
1763 * Firmware has posted some reply descriptors
1764 * while reenabling the IRQ.
1765 */
1766 _base_process_reply_queue(reply_q);
1767 }
1768
1769 return num_entries;
1770 }
1771
1772 /**
1773 * _base_init_irqpolls - initliaze IRQ polls
1774 * @ioc: per adapter object
1775 *
1776 * returns nothing
1777 */
1778 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1779 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1780 {
1781 struct adapter_reply_queue *reply_q, *next;
1782
1783 if (list_empty(&ioc->reply_queue_list))
1784 return;
1785
1786 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1787 irq_poll_init(&reply_q->irqpoll,
1788 ioc->hba_queue_depth/4, _base_irqpoll);
1789 reply_q->irq_poll_scheduled = false;
1790 reply_q->irq_line_enable = true;
1791 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1792 reply_q->msix_index);
1793 }
1794 }
1795
1796 /**
1797 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1798 * @ioc: per adapter object
1799 *
1800 * Return: Whether or not MSI/X is enabled.
1801 */
1802 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1803 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1804 {
1805 return (ioc->facts.IOCCapabilities &
1806 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1807 }
1808
1809 /**
1810 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1811 * @ioc: per adapter object
1812 * @poll: poll over reply descriptor pools incase interrupt for
1813 * timed-out SCSI command got delayed
1814 * Context: non ISR conext
1815 *
1816 * Called when a Task Management request has completed.
1817 */
1818 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1819 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1820 {
1821 struct adapter_reply_queue *reply_q;
1822
1823 /* If MSIX capability is turned off
1824 * then multi-queues are not enabled
1825 */
1826 if (!_base_is_controller_msix_enabled(ioc))
1827 return;
1828
1829 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1830 if (ioc->shost_recovery || ioc->remove_host ||
1831 ioc->pci_error_recovery)
1832 return;
1833 /* TMs are on msix_index == 0 */
1834 if (reply_q->msix_index == 0)
1835 continue;
1836 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1837 if (reply_q->irq_poll_scheduled) {
1838 /* Calling irq_poll_disable will wait for any pending
1839 * callbacks to have completed.
1840 */
1841 irq_poll_disable(&reply_q->irqpoll);
1842 irq_poll_enable(&reply_q->irqpoll);
1843 /* check how the scheduled poll has ended,
1844 * clean up only if necessary
1845 */
1846 if (reply_q->irq_poll_scheduled) {
1847 reply_q->irq_poll_scheduled = false;
1848 reply_q->irq_line_enable = true;
1849 enable_irq(reply_q->os_irq);
1850 }
1851 }
1852
1853 if (poll)
1854 _base_process_reply_queue(reply_q);
1855 }
1856 }
1857
1858 /**
1859 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1860 * @cb_idx: callback index
1861 */
1862 void
mpt3sas_base_release_callback_handler(u8 cb_idx)1863 mpt3sas_base_release_callback_handler(u8 cb_idx)
1864 {
1865 mpt_callbacks[cb_idx] = NULL;
1866 }
1867
1868 /**
1869 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1870 * @cb_func: callback function
1871 *
1872 * Return: Index of @cb_func.
1873 */
1874 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)1875 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1876 {
1877 u8 cb_idx;
1878
1879 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1880 if (mpt_callbacks[cb_idx] == NULL)
1881 break;
1882
1883 mpt_callbacks[cb_idx] = cb_func;
1884 return cb_idx;
1885 }
1886
1887 /**
1888 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1889 */
1890 void
mpt3sas_base_initialize_callback_handler(void)1891 mpt3sas_base_initialize_callback_handler(void)
1892 {
1893 u8 cb_idx;
1894
1895 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1896 mpt3sas_base_release_callback_handler(cb_idx);
1897 }
1898
1899
1900 /**
1901 * _base_build_zero_len_sge - build zero length sg entry
1902 * @ioc: per adapter object
1903 * @paddr: virtual address for SGE
1904 *
1905 * Create a zero length scatter gather entry to insure the IOCs hardware has
1906 * something to use if the target device goes brain dead and tries
1907 * to send data even when none is asked for.
1908 */
1909 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)1910 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1911 {
1912 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1913 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1914 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1915 MPI2_SGE_FLAGS_SHIFT);
1916 ioc->base_add_sg_single(paddr, flags_length, -1);
1917 }
1918
1919 /**
1920 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1921 * @paddr: virtual address for SGE
1922 * @flags_length: SGE flags and data transfer length
1923 * @dma_addr: Physical address
1924 */
1925 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)1926 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1927 {
1928 Mpi2SGESimple32_t *sgel = paddr;
1929
1930 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1931 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1932 sgel->FlagsLength = cpu_to_le32(flags_length);
1933 sgel->Address = cpu_to_le32(dma_addr);
1934 }
1935
1936
1937 /**
1938 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1939 * @paddr: virtual address for SGE
1940 * @flags_length: SGE flags and data transfer length
1941 * @dma_addr: Physical address
1942 */
1943 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)1944 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1945 {
1946 Mpi2SGESimple64_t *sgel = paddr;
1947
1948 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1949 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1950 sgel->FlagsLength = cpu_to_le32(flags_length);
1951 sgel->Address = cpu_to_le64(dma_addr);
1952 }
1953
1954 /**
1955 * _base_get_chain_buffer_tracker - obtain chain tracker
1956 * @ioc: per adapter object
1957 * @scmd: SCSI commands of the IO request
1958 *
1959 * Return: chain tracker from chain_lookup table using key as
1960 * smid and smid's chain_offset.
1961 */
1962 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)1963 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1964 struct scsi_cmnd *scmd)
1965 {
1966 struct chain_tracker *chain_req;
1967 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1968 u16 smid = st->smid;
1969 u8 chain_offset =
1970 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1971
1972 if (chain_offset == ioc->chains_needed_per_io)
1973 return NULL;
1974
1975 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1976 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1977 return chain_req;
1978 }
1979
1980
1981 /**
1982 * _base_build_sg - build generic sg
1983 * @ioc: per adapter object
1984 * @psge: virtual address for SGE
1985 * @data_out_dma: physical address for WRITES
1986 * @data_out_sz: data xfer size for WRITES
1987 * @data_in_dma: physical address for READS
1988 * @data_in_sz: data xfer size for READS
1989 */
1990 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)1991 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1992 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1993 size_t data_in_sz)
1994 {
1995 u32 sgl_flags;
1996
1997 if (!data_out_sz && !data_in_sz) {
1998 _base_build_zero_len_sge(ioc, psge);
1999 return;
2000 }
2001
2002 if (data_out_sz && data_in_sz) {
2003 /* WRITE sgel first */
2004 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2005 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2006 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2007 ioc->base_add_sg_single(psge, sgl_flags |
2008 data_out_sz, data_out_dma);
2009
2010 /* incr sgel */
2011 psge += ioc->sge_size;
2012
2013 /* READ sgel last */
2014 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2015 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2016 MPI2_SGE_FLAGS_END_OF_LIST);
2017 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2018 ioc->base_add_sg_single(psge, sgl_flags |
2019 data_in_sz, data_in_dma);
2020 } else if (data_out_sz) /* WRITE */ {
2021 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2022 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2023 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2024 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2025 ioc->base_add_sg_single(psge, sgl_flags |
2026 data_out_sz, data_out_dma);
2027 } else if (data_in_sz) /* READ */ {
2028 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2029 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2030 MPI2_SGE_FLAGS_END_OF_LIST);
2031 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2032 ioc->base_add_sg_single(psge, sgl_flags |
2033 data_in_sz, data_in_dma);
2034 }
2035 }
2036
2037 /* IEEE format sgls */
2038
2039 /**
2040 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2041 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2042 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2043 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2044 * used to describe a larger data buffer. If the data buffer is too large to
2045 * describe using the two PRP entriess inside the NVMe message, then PRP1
2046 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2047 * list located elsewhere in memory to describe the remaining data memory
2048 * segments. The PRP list will be contiguous.
2049 *
2050 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2051 * consists of a list of PRP entries to describe a number of noncontigous
2052 * physical memory segments as a single memory buffer, just as a SGL does. Note
2053 * however, that this function is only used by the IOCTL call, so the memory
2054 * given will be guaranteed to be contiguous. There is no need to translate
2055 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2056 * contiguous space that is one page size each.
2057 *
2058 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2059 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2060 * contains the second PRP element if the memory being described fits within 2
2061 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2062 *
2063 * A PRP list pointer contains the address of a PRP list, structured as a linear
2064 * array of PRP entries. Each PRP entry in this list describes a segment of
2065 * physical memory.
2066 *
2067 * Each 64-bit PRP entry comprises an address and an offset field. The address
2068 * always points at the beginning of a 4KB physical memory page, and the offset
2069 * describes where within that 4KB page the memory segment begins. Only the
2070 * first element in a PRP list may contain a non-zero offest, implying that all
2071 * memory segments following the first begin at the start of a 4KB page.
2072 *
2073 * Each PRP element normally describes 4KB of physical memory, with exceptions
2074 * for the first and last elements in the list. If the memory being described
2075 * by the list begins at a non-zero offset within the first 4KB page, then the
2076 * first PRP element will contain a non-zero offset indicating where the region
2077 * begins within the 4KB page. The last memory segment may end before the end
2078 * of the 4KB segment, depending upon the overall size of the memory being
2079 * described by the PRP list.
2080 *
2081 * Since PRP entries lack any indication of size, the overall data buffer length
2082 * is used to determine where the end of the data memory buffer is located, and
2083 * how many PRP entries are required to describe it.
2084 *
2085 * @ioc: per adapter object
2086 * @smid: system request message index for getting asscociated SGL
2087 * @nvme_encap_request: the NVMe request msg frame pointer
2088 * @data_out_dma: physical address for WRITES
2089 * @data_out_sz: data xfer size for WRITES
2090 * @data_in_dma: physical address for READS
2091 * @data_in_sz: data xfer size for READS
2092 */
2093 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2094 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2095 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2096 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2097 size_t data_in_sz)
2098 {
2099 int prp_size = NVME_PRP_SIZE;
2100 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2101 __le64 *prp_page;
2102 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2103 u32 offset, entry_len;
2104 u32 page_mask_result, page_mask;
2105 size_t length;
2106 struct mpt3sas_nvme_cmd *nvme_cmd =
2107 (void *)nvme_encap_request->NVMe_Command;
2108
2109 /*
2110 * Not all commands require a data transfer. If no data, just return
2111 * without constructing any PRP.
2112 */
2113 if (!data_in_sz && !data_out_sz)
2114 return;
2115 prp1_entry = &nvme_cmd->prp1;
2116 prp2_entry = &nvme_cmd->prp2;
2117 prp_entry = prp1_entry;
2118 /*
2119 * For the PRP entries, use the specially allocated buffer of
2120 * contiguous memory.
2121 */
2122 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2123 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2124
2125 /*
2126 * Check if we are within 1 entry of a page boundary we don't
2127 * want our first entry to be a PRP List entry.
2128 */
2129 page_mask = ioc->page_size - 1;
2130 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2131 if (!page_mask_result) {
2132 /* Bump up to next page boundary. */
2133 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2134 prp_page_dma = prp_page_dma + prp_size;
2135 }
2136
2137 /*
2138 * Set PRP physical pointer, which initially points to the current PRP
2139 * DMA memory page.
2140 */
2141 prp_entry_dma = prp_page_dma;
2142
2143 /* Get physical address and length of the data buffer. */
2144 if (data_in_sz) {
2145 dma_addr = data_in_dma;
2146 length = data_in_sz;
2147 } else {
2148 dma_addr = data_out_dma;
2149 length = data_out_sz;
2150 }
2151
2152 /* Loop while the length is not zero. */
2153 while (length) {
2154 /*
2155 * Check if we need to put a list pointer here if we are at
2156 * page boundary - prp_size (8 bytes).
2157 */
2158 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2159 if (!page_mask_result) {
2160 /*
2161 * This is the last entry in a PRP List, so we need to
2162 * put a PRP list pointer here. What this does is:
2163 * - bump the current memory pointer to the next
2164 * address, which will be the next full page.
2165 * - set the PRP Entry to point to that page. This
2166 * is now the PRP List pointer.
2167 * - bump the PRP Entry pointer the start of the
2168 * next page. Since all of this PRP memory is
2169 * contiguous, no need to get a new page - it's
2170 * just the next address.
2171 */
2172 prp_entry_dma++;
2173 *prp_entry = cpu_to_le64(prp_entry_dma);
2174 prp_entry++;
2175 }
2176
2177 /* Need to handle if entry will be part of a page. */
2178 offset = dma_addr & page_mask;
2179 entry_len = ioc->page_size - offset;
2180
2181 if (prp_entry == prp1_entry) {
2182 /*
2183 * Must fill in the first PRP pointer (PRP1) before
2184 * moving on.
2185 */
2186 *prp1_entry = cpu_to_le64(dma_addr);
2187
2188 /*
2189 * Now point to the second PRP entry within the
2190 * command (PRP2).
2191 */
2192 prp_entry = prp2_entry;
2193 } else if (prp_entry == prp2_entry) {
2194 /*
2195 * Should the PRP2 entry be a PRP List pointer or just
2196 * a regular PRP pointer? If there is more than one
2197 * more page of data, must use a PRP List pointer.
2198 */
2199 if (length > ioc->page_size) {
2200 /*
2201 * PRP2 will contain a PRP List pointer because
2202 * more PRP's are needed with this command. The
2203 * list will start at the beginning of the
2204 * contiguous buffer.
2205 */
2206 *prp2_entry = cpu_to_le64(prp_entry_dma);
2207
2208 /*
2209 * The next PRP Entry will be the start of the
2210 * first PRP List.
2211 */
2212 prp_entry = prp_page;
2213 } else {
2214 /*
2215 * After this, the PRP Entries are complete.
2216 * This command uses 2 PRP's and no PRP list.
2217 */
2218 *prp2_entry = cpu_to_le64(dma_addr);
2219 }
2220 } else {
2221 /*
2222 * Put entry in list and bump the addresses.
2223 *
2224 * After PRP1 and PRP2 are filled in, this will fill in
2225 * all remaining PRP entries in a PRP List, one per
2226 * each time through the loop.
2227 */
2228 *prp_entry = cpu_to_le64(dma_addr);
2229 prp_entry++;
2230 prp_entry_dma++;
2231 }
2232
2233 /*
2234 * Bump the phys address of the command's data buffer by the
2235 * entry_len.
2236 */
2237 dma_addr += entry_len;
2238
2239 /* Decrement length accounting for last partial page. */
2240 if (entry_len > length)
2241 length = 0;
2242 else
2243 length -= entry_len;
2244 }
2245 }
2246
2247 /**
2248 * base_make_prp_nvme -
2249 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2250 *
2251 * @ioc: per adapter object
2252 * @scmd: SCSI command from the mid-layer
2253 * @mpi_request: mpi request
2254 * @smid: msg Index
2255 * @sge_count: scatter gather element count.
2256 *
2257 * Return: true: PRPs are built
2258 * false: IEEE SGLs needs to be built
2259 */
2260 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2261 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2262 struct scsi_cmnd *scmd,
2263 Mpi25SCSIIORequest_t *mpi_request,
2264 u16 smid, int sge_count)
2265 {
2266 int sge_len, num_prp_in_chain = 0;
2267 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2268 __le64 *curr_buff;
2269 dma_addr_t msg_dma, sge_addr, offset;
2270 u32 page_mask, page_mask_result;
2271 struct scatterlist *sg_scmd;
2272 u32 first_prp_len;
2273 int data_len = scsi_bufflen(scmd);
2274 u32 nvme_pg_size;
2275
2276 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2277 /*
2278 * Nvme has a very convoluted prp format. One prp is required
2279 * for each page or partial page. Driver need to split up OS sg_list
2280 * entries if it is longer than one page or cross a page
2281 * boundary. Driver also have to insert a PRP list pointer entry as
2282 * the last entry in each physical page of the PRP list.
2283 *
2284 * NOTE: The first PRP "entry" is actually placed in the first
2285 * SGL entry in the main message as IEEE 64 format. The 2nd
2286 * entry in the main message is the chain element, and the rest
2287 * of the PRP entries are built in the contiguous pcie buffer.
2288 */
2289 page_mask = nvme_pg_size - 1;
2290
2291 /*
2292 * Native SGL is needed.
2293 * Put a chain element in main message frame that points to the first
2294 * chain buffer.
2295 *
2296 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2297 * a native SGL.
2298 */
2299
2300 /* Set main message chain element pointer */
2301 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2302 /*
2303 * For NVMe the chain element needs to be the 2nd SG entry in the main
2304 * message.
2305 */
2306 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2307 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2308
2309 /*
2310 * For the PRP entries, use the specially allocated buffer of
2311 * contiguous memory. Normal chain buffers can't be used
2312 * because each chain buffer would need to be the size of an OS
2313 * page (4k).
2314 */
2315 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2316 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2317
2318 main_chain_element->Address = cpu_to_le64(msg_dma);
2319 main_chain_element->NextChainOffset = 0;
2320 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2321 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2322 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2323
2324 /* Build first prp, sge need not to be page aligned*/
2325 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2326 sg_scmd = scsi_sglist(scmd);
2327 sge_addr = sg_dma_address(sg_scmd);
2328 sge_len = sg_dma_len(sg_scmd);
2329
2330 offset = sge_addr & page_mask;
2331 first_prp_len = nvme_pg_size - offset;
2332
2333 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2334 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2335
2336 data_len -= first_prp_len;
2337
2338 if (sge_len > first_prp_len) {
2339 sge_addr += first_prp_len;
2340 sge_len -= first_prp_len;
2341 } else if (data_len && (sge_len == first_prp_len)) {
2342 sg_scmd = sg_next(sg_scmd);
2343 sge_addr = sg_dma_address(sg_scmd);
2344 sge_len = sg_dma_len(sg_scmd);
2345 }
2346
2347 for (;;) {
2348 offset = sge_addr & page_mask;
2349
2350 /* Put PRP pointer due to page boundary*/
2351 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2352 if (unlikely(!page_mask_result)) {
2353 scmd_printk(KERN_NOTICE,
2354 scmd, "page boundary curr_buff: 0x%p\n",
2355 curr_buff);
2356 msg_dma += 8;
2357 *curr_buff = cpu_to_le64(msg_dma);
2358 curr_buff++;
2359 num_prp_in_chain++;
2360 }
2361
2362 *curr_buff = cpu_to_le64(sge_addr);
2363 curr_buff++;
2364 msg_dma += 8;
2365 num_prp_in_chain++;
2366
2367 sge_addr += nvme_pg_size;
2368 sge_len -= nvme_pg_size;
2369 data_len -= nvme_pg_size;
2370
2371 if (data_len <= 0)
2372 break;
2373
2374 if (sge_len > 0)
2375 continue;
2376
2377 sg_scmd = sg_next(sg_scmd);
2378 sge_addr = sg_dma_address(sg_scmd);
2379 sge_len = sg_dma_len(sg_scmd);
2380 }
2381
2382 main_chain_element->Length =
2383 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2384 return;
2385 }
2386
2387 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2388 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2389 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2390 {
2391 u32 data_length = 0;
2392 bool build_prp = true;
2393
2394 data_length = scsi_bufflen(scmd);
2395 if (pcie_device &&
2396 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2397 build_prp = false;
2398 return build_prp;
2399 }
2400
2401 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2402 * we built IEEE SGL
2403 */
2404 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2405 build_prp = false;
2406
2407 return build_prp;
2408 }
2409
2410 /**
2411 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2412 * determine if the driver needs to build a native SGL. If so, that native
2413 * SGL is built in the special contiguous buffers allocated especially for
2414 * PCIe SGL creation. If the driver will not build a native SGL, return
2415 * TRUE and a normal IEEE SGL will be built. Currently this routine
2416 * supports NVMe.
2417 * @ioc: per adapter object
2418 * @mpi_request: mf request pointer
2419 * @smid: system request message index
2420 * @scmd: scsi command
2421 * @pcie_device: points to the PCIe device's info
2422 *
2423 * Return: 0 if native SGL was built, 1 if no SGL was built
2424 */
2425 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2426 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2427 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2428 struct _pcie_device *pcie_device)
2429 {
2430 int sges_left;
2431
2432 /* Get the SG list pointer and info. */
2433 sges_left = scsi_dma_map(scmd);
2434 if (sges_left < 0) {
2435 sdev_printk(KERN_ERR, scmd->device,
2436 "scsi_dma_map failed: request for %d bytes!\n",
2437 scsi_bufflen(scmd));
2438 return 1;
2439 }
2440
2441 /* Check if we need to build a native SG list. */
2442 if (base_is_prp_possible(ioc, pcie_device,
2443 scmd, sges_left) == 0) {
2444 /* We built a native SG list, just return. */
2445 goto out;
2446 }
2447
2448 /*
2449 * Build native NVMe PRP.
2450 */
2451 base_make_prp_nvme(ioc, scmd, mpi_request,
2452 smid, sges_left);
2453
2454 return 0;
2455 out:
2456 scsi_dma_unmap(scmd);
2457 return 1;
2458 }
2459
2460 /**
2461 * _base_add_sg_single_ieee - add sg element for IEEE format
2462 * @paddr: virtual address for SGE
2463 * @flags: SGE flags
2464 * @chain_offset: number of 128 byte elements from start of segment
2465 * @length: data transfer length
2466 * @dma_addr: Physical address
2467 */
2468 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2469 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2470 dma_addr_t dma_addr)
2471 {
2472 Mpi25IeeeSgeChain64_t *sgel = paddr;
2473
2474 sgel->Flags = flags;
2475 sgel->NextChainOffset = chain_offset;
2476 sgel->Length = cpu_to_le32(length);
2477 sgel->Address = cpu_to_le64(dma_addr);
2478 }
2479
2480 /**
2481 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2482 * @ioc: per adapter object
2483 * @paddr: virtual address for SGE
2484 *
2485 * Create a zero length scatter gather entry to insure the IOCs hardware has
2486 * something to use if the target device goes brain dead and tries
2487 * to send data even when none is asked for.
2488 */
2489 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2490 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2491 {
2492 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2493 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2494 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2495
2496 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2497 }
2498
2499 /**
2500 * _base_build_sg_scmd - main sg creation routine
2501 * pcie_device is unused here!
2502 * @ioc: per adapter object
2503 * @scmd: scsi command
2504 * @smid: system request message index
2505 * @unused: unused pcie_device pointer
2506 * Context: none.
2507 *
2508 * The main routine that builds scatter gather table from a given
2509 * scsi request sent via the .queuecommand main handler.
2510 *
2511 * Return: 0 success, anything else error
2512 */
2513 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2514 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2515 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2516 {
2517 Mpi2SCSIIORequest_t *mpi_request;
2518 dma_addr_t chain_dma;
2519 struct scatterlist *sg_scmd;
2520 void *sg_local, *chain;
2521 u32 chain_offset;
2522 u32 chain_length;
2523 u32 chain_flags;
2524 int sges_left;
2525 u32 sges_in_segment;
2526 u32 sgl_flags;
2527 u32 sgl_flags_last_element;
2528 u32 sgl_flags_end_buffer;
2529 struct chain_tracker *chain_req;
2530
2531 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2532
2533 /* init scatter gather flags */
2534 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2535 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2536 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2537 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2538 << MPI2_SGE_FLAGS_SHIFT;
2539 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2540 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2541 << MPI2_SGE_FLAGS_SHIFT;
2542 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2543
2544 sg_scmd = scsi_sglist(scmd);
2545 sges_left = scsi_dma_map(scmd);
2546 if (sges_left < 0) {
2547 sdev_printk(KERN_ERR, scmd->device,
2548 "scsi_dma_map failed: request for %d bytes!\n",
2549 scsi_bufflen(scmd));
2550 return -ENOMEM;
2551 }
2552
2553 sg_local = &mpi_request->SGL;
2554 sges_in_segment = ioc->max_sges_in_main_message;
2555 if (sges_left <= sges_in_segment)
2556 goto fill_in_last_segment;
2557
2558 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2559 (sges_in_segment * ioc->sge_size))/4;
2560
2561 /* fill in main message segment when there is a chain following */
2562 while (sges_in_segment) {
2563 if (sges_in_segment == 1)
2564 ioc->base_add_sg_single(sg_local,
2565 sgl_flags_last_element | sg_dma_len(sg_scmd),
2566 sg_dma_address(sg_scmd));
2567 else
2568 ioc->base_add_sg_single(sg_local, sgl_flags |
2569 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2570 sg_scmd = sg_next(sg_scmd);
2571 sg_local += ioc->sge_size;
2572 sges_left--;
2573 sges_in_segment--;
2574 }
2575
2576 /* initializing the chain flags and pointers */
2577 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2578 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2579 if (!chain_req)
2580 return -1;
2581 chain = chain_req->chain_buffer;
2582 chain_dma = chain_req->chain_buffer_dma;
2583 do {
2584 sges_in_segment = (sges_left <=
2585 ioc->max_sges_in_chain_message) ? sges_left :
2586 ioc->max_sges_in_chain_message;
2587 chain_offset = (sges_left == sges_in_segment) ?
2588 0 : (sges_in_segment * ioc->sge_size)/4;
2589 chain_length = sges_in_segment * ioc->sge_size;
2590 if (chain_offset) {
2591 chain_offset = chain_offset <<
2592 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2593 chain_length += ioc->sge_size;
2594 }
2595 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2596 chain_length, chain_dma);
2597 sg_local = chain;
2598 if (!chain_offset)
2599 goto fill_in_last_segment;
2600
2601 /* fill in chain segments */
2602 while (sges_in_segment) {
2603 if (sges_in_segment == 1)
2604 ioc->base_add_sg_single(sg_local,
2605 sgl_flags_last_element |
2606 sg_dma_len(sg_scmd),
2607 sg_dma_address(sg_scmd));
2608 else
2609 ioc->base_add_sg_single(sg_local, sgl_flags |
2610 sg_dma_len(sg_scmd),
2611 sg_dma_address(sg_scmd));
2612 sg_scmd = sg_next(sg_scmd);
2613 sg_local += ioc->sge_size;
2614 sges_left--;
2615 sges_in_segment--;
2616 }
2617
2618 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2619 if (!chain_req)
2620 return -1;
2621 chain = chain_req->chain_buffer;
2622 chain_dma = chain_req->chain_buffer_dma;
2623 } while (1);
2624
2625
2626 fill_in_last_segment:
2627
2628 /* fill the last segment */
2629 while (sges_left) {
2630 if (sges_left == 1)
2631 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2632 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2633 else
2634 ioc->base_add_sg_single(sg_local, sgl_flags |
2635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2636 sg_scmd = sg_next(sg_scmd);
2637 sg_local += ioc->sge_size;
2638 sges_left--;
2639 }
2640
2641 return 0;
2642 }
2643
2644 /**
2645 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2646 * @ioc: per adapter object
2647 * @scmd: scsi command
2648 * @smid: system request message index
2649 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2650 * constructed on need.
2651 * Context: none.
2652 *
2653 * The main routine that builds scatter gather table from a given
2654 * scsi request sent via the .queuecommand main handler.
2655 *
2656 * Return: 0 success, anything else error
2657 */
2658 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2659 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2660 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2661 {
2662 Mpi25SCSIIORequest_t *mpi_request;
2663 dma_addr_t chain_dma;
2664 struct scatterlist *sg_scmd;
2665 void *sg_local, *chain;
2666 u32 chain_offset;
2667 u32 chain_length;
2668 int sges_left;
2669 u32 sges_in_segment;
2670 u8 simple_sgl_flags;
2671 u8 simple_sgl_flags_last;
2672 u8 chain_sgl_flags;
2673 struct chain_tracker *chain_req;
2674
2675 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2676
2677 /* init scatter gather flags */
2678 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2679 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2680 simple_sgl_flags_last = simple_sgl_flags |
2681 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2682 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2683 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2684
2685 /* Check if we need to build a native SG list. */
2686 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2687 smid, scmd, pcie_device) == 0)) {
2688 /* We built a native SG list, just return. */
2689 return 0;
2690 }
2691
2692 sg_scmd = scsi_sglist(scmd);
2693 sges_left = scsi_dma_map(scmd);
2694 if (sges_left < 0) {
2695 sdev_printk(KERN_ERR, scmd->device,
2696 "scsi_dma_map failed: request for %d bytes!\n",
2697 scsi_bufflen(scmd));
2698 return -ENOMEM;
2699 }
2700
2701 sg_local = &mpi_request->SGL;
2702 sges_in_segment = (ioc->request_sz -
2703 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2704 if (sges_left <= sges_in_segment)
2705 goto fill_in_last_segment;
2706
2707 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2708 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2709
2710 /* fill in main message segment when there is a chain following */
2711 while (sges_in_segment > 1) {
2712 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2713 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2714 sg_scmd = sg_next(sg_scmd);
2715 sg_local += ioc->sge_size_ieee;
2716 sges_left--;
2717 sges_in_segment--;
2718 }
2719
2720 /* initializing the pointers */
2721 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2722 if (!chain_req)
2723 return -1;
2724 chain = chain_req->chain_buffer;
2725 chain_dma = chain_req->chain_buffer_dma;
2726 do {
2727 sges_in_segment = (sges_left <=
2728 ioc->max_sges_in_chain_message) ? sges_left :
2729 ioc->max_sges_in_chain_message;
2730 chain_offset = (sges_left == sges_in_segment) ?
2731 0 : sges_in_segment;
2732 chain_length = sges_in_segment * ioc->sge_size_ieee;
2733 if (chain_offset)
2734 chain_length += ioc->sge_size_ieee;
2735 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2736 chain_offset, chain_length, chain_dma);
2737
2738 sg_local = chain;
2739 if (!chain_offset)
2740 goto fill_in_last_segment;
2741
2742 /* fill in chain segments */
2743 while (sges_in_segment) {
2744 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2745 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2746 sg_scmd = sg_next(sg_scmd);
2747 sg_local += ioc->sge_size_ieee;
2748 sges_left--;
2749 sges_in_segment--;
2750 }
2751
2752 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2753 if (!chain_req)
2754 return -1;
2755 chain = chain_req->chain_buffer;
2756 chain_dma = chain_req->chain_buffer_dma;
2757 } while (1);
2758
2759
2760 fill_in_last_segment:
2761
2762 /* fill the last segment */
2763 while (sges_left > 0) {
2764 if (sges_left == 1)
2765 _base_add_sg_single_ieee(sg_local,
2766 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2767 sg_dma_address(sg_scmd));
2768 else
2769 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2770 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2771 sg_scmd = sg_next(sg_scmd);
2772 sg_local += ioc->sge_size_ieee;
2773 sges_left--;
2774 }
2775
2776 return 0;
2777 }
2778
2779 /**
2780 * _base_build_sg_ieee - build generic sg for IEEE format
2781 * @ioc: per adapter object
2782 * @psge: virtual address for SGE
2783 * @data_out_dma: physical address for WRITES
2784 * @data_out_sz: data xfer size for WRITES
2785 * @data_in_dma: physical address for READS
2786 * @data_in_sz: data xfer size for READS
2787 */
2788 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2789 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2790 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2791 size_t data_in_sz)
2792 {
2793 u8 sgl_flags;
2794
2795 if (!data_out_sz && !data_in_sz) {
2796 _base_build_zero_len_sge_ieee(ioc, psge);
2797 return;
2798 }
2799
2800 if (data_out_sz && data_in_sz) {
2801 /* WRITE sgel first */
2802 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2803 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2804 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2805 data_out_dma);
2806
2807 /* incr sgel */
2808 psge += ioc->sge_size_ieee;
2809
2810 /* READ sgel last */
2811 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2812 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2813 data_in_dma);
2814 } else if (data_out_sz) /* WRITE */ {
2815 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2816 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2817 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2818 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2819 data_out_dma);
2820 } else if (data_in_sz) /* READ */ {
2821 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2822 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2823 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2824 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2825 data_in_dma);
2826 }
2827 }
2828
2829 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2830
2831 /**
2832 * _base_config_dma_addressing - set dma addressing
2833 * @ioc: per adapter object
2834 * @pdev: PCI device struct
2835 *
2836 * Return: 0 for success, non-zero for failure.
2837 */
2838 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)2839 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2840 {
2841 struct sysinfo s;
2842 u64 coherent_dma_mask, dma_mask;
2843
2844 if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
2845 ioc->dma_mask = 32;
2846 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
2847 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2848 } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
2849 ioc->dma_mask = 63;
2850 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
2851 } else {
2852 ioc->dma_mask = 64;
2853 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
2854 }
2855
2856 if (ioc->use_32bit_dma)
2857 coherent_dma_mask = DMA_BIT_MASK(32);
2858
2859 if (dma_set_mask(&pdev->dev, dma_mask) ||
2860 dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
2861 return -ENODEV;
2862
2863 if (ioc->dma_mask > 32) {
2864 ioc->base_add_sg_single = &_base_add_sg_single_64;
2865 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2866 } else {
2867 ioc->base_add_sg_single = &_base_add_sg_single_32;
2868 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2869 }
2870
2871 si_meminfo(&s);
2872 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2873 ioc->dma_mask, convert_to_kb(s.totalram));
2874
2875 return 0;
2876 }
2877
2878 /**
2879 * _base_check_enable_msix - checks MSIX capabable.
2880 * @ioc: per adapter object
2881 *
2882 * Check to see if card is capable of MSIX, and set number
2883 * of available msix vectors
2884 */
2885 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)2886 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2887 {
2888 int base;
2889 u16 message_control;
2890
2891 /* Check whether controller SAS2008 B0 controller,
2892 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2893 */
2894 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2895 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2896 return -EINVAL;
2897 }
2898
2899 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2900 if (!base) {
2901 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2902 return -EINVAL;
2903 }
2904
2905 /* get msix vector count */
2906 /* NUMA_IO not supported for older controllers */
2907 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2908 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2909 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2910 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2911 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2912 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2913 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2914 ioc->msix_vector_count = 1;
2915 else {
2916 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2917 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2918 }
2919 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2920 ioc->msix_vector_count));
2921 return 0;
2922 }
2923
2924 /**
2925 * _base_free_irq - free irq
2926 * @ioc: per adapter object
2927 *
2928 * Freeing respective reply_queue from the list.
2929 */
2930 static void
_base_free_irq(struct MPT3SAS_ADAPTER * ioc)2931 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2932 {
2933 struct adapter_reply_queue *reply_q, *next;
2934
2935 if (list_empty(&ioc->reply_queue_list))
2936 return;
2937
2938 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2939 list_del(&reply_q->list);
2940 if (ioc->smp_affinity_enable)
2941 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2942 reply_q->msix_index), NULL);
2943 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2944 reply_q);
2945 kfree(reply_q);
2946 }
2947 }
2948
2949 /**
2950 * _base_request_irq - request irq
2951 * @ioc: per adapter object
2952 * @index: msix index into vector table
2953 *
2954 * Inserting respective reply_queue into the list.
2955 */
2956 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)2957 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2958 {
2959 struct pci_dev *pdev = ioc->pdev;
2960 struct adapter_reply_queue *reply_q;
2961 int r;
2962
2963 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2964 if (!reply_q) {
2965 ioc_err(ioc, "unable to allocate memory %zu!\n",
2966 sizeof(struct adapter_reply_queue));
2967 return -ENOMEM;
2968 }
2969 reply_q->ioc = ioc;
2970 reply_q->msix_index = index;
2971
2972 atomic_set(&reply_q->busy, 0);
2973 if (ioc->msix_enable)
2974 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2975 ioc->driver_name, ioc->id, index);
2976 else
2977 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2978 ioc->driver_name, ioc->id);
2979 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2980 IRQF_SHARED, reply_q->name, reply_q);
2981 if (r) {
2982 pr_err("%s: unable to allocate interrupt %d!\n",
2983 reply_q->name, pci_irq_vector(pdev, index));
2984 kfree(reply_q);
2985 return -EBUSY;
2986 }
2987
2988 INIT_LIST_HEAD(&reply_q->list);
2989 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2990 return 0;
2991 }
2992
2993 /**
2994 * _base_assign_reply_queues - assigning msix index for each cpu
2995 * @ioc: per adapter object
2996 *
2997 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2998 *
2999 * It would nice if we could call irq_set_affinity, however it is not
3000 * an exported symbol
3001 */
3002 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3003 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3004 {
3005 unsigned int cpu, nr_cpus, nr_msix, index = 0;
3006 struct adapter_reply_queue *reply_q;
3007 int local_numa_node;
3008
3009 if (!_base_is_controller_msix_enabled(ioc))
3010 return;
3011
3012 if (ioc->msix_load_balance)
3013 return;
3014
3015 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3016
3017 nr_cpus = num_online_cpus();
3018 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3019 ioc->facts.MaxMSIxVectors);
3020 if (!nr_msix)
3021 return;
3022
3023 if (ioc->smp_affinity_enable) {
3024
3025 /*
3026 * set irq affinity to local numa node for those irqs
3027 * corresponding to high iops queues.
3028 */
3029 if (ioc->high_iops_queues) {
3030 local_numa_node = dev_to_node(&ioc->pdev->dev);
3031 for (index = 0; index < ioc->high_iops_queues;
3032 index++) {
3033 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3034 index), cpumask_of_node(local_numa_node));
3035 }
3036 }
3037
3038 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3039 const cpumask_t *mask;
3040
3041 if (reply_q->msix_index < ioc->high_iops_queues)
3042 continue;
3043
3044 mask = pci_irq_get_affinity(ioc->pdev,
3045 reply_q->msix_index);
3046 if (!mask) {
3047 ioc_warn(ioc, "no affinity for msi %x\n",
3048 reply_q->msix_index);
3049 goto fall_back;
3050 }
3051
3052 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3053 if (cpu >= ioc->cpu_msix_table_sz)
3054 break;
3055 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3056 }
3057 }
3058 return;
3059 }
3060
3061 fall_back:
3062 cpu = cpumask_first(cpu_online_mask);
3063 nr_msix -= ioc->high_iops_queues;
3064 index = 0;
3065
3066 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3067 unsigned int i, group = nr_cpus / nr_msix;
3068
3069 if (reply_q->msix_index < ioc->high_iops_queues)
3070 continue;
3071
3072 if (cpu >= nr_cpus)
3073 break;
3074
3075 if (index < nr_cpus % nr_msix)
3076 group++;
3077
3078 for (i = 0 ; i < group ; i++) {
3079 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3080 cpu = cpumask_next(cpu, cpu_online_mask);
3081 }
3082 index++;
3083 }
3084 }
3085
3086 /**
3087 * _base_check_and_enable_high_iops_queues - enable high iops mode
3088 * @ioc: per adapter object
3089 * @hba_msix_vector_count: msix vectors supported by HBA
3090 *
3091 * Enable high iops queues only if
3092 * - HBA is a SEA/AERO controller and
3093 * - MSI-Xs vector supported by the HBA is 128 and
3094 * - total CPU count in the system >=16 and
3095 * - loaded driver with default max_msix_vectors module parameter and
3096 * - system booted in non kdump mode
3097 *
3098 * returns nothing.
3099 */
3100 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3101 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3102 int hba_msix_vector_count)
3103 {
3104 u16 lnksta, speed;
3105
3106 if (perf_mode == MPT_PERF_MODE_IOPS ||
3107 perf_mode == MPT_PERF_MODE_LATENCY) {
3108 ioc->high_iops_queues = 0;
3109 return;
3110 }
3111
3112 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3113
3114 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3115 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3116
3117 if (speed < 0x4) {
3118 ioc->high_iops_queues = 0;
3119 return;
3120 }
3121 }
3122
3123 if (!reset_devices && ioc->is_aero_ioc &&
3124 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3125 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3126 max_msix_vectors == -1)
3127 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3128 else
3129 ioc->high_iops_queues = 0;
3130 }
3131
3132 /**
3133 * _base_disable_msix - disables msix
3134 * @ioc: per adapter object
3135 *
3136 */
3137 static void
_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3138 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3139 {
3140 if (!ioc->msix_enable)
3141 return;
3142 pci_free_irq_vectors(ioc->pdev);
3143 ioc->msix_enable = 0;
3144 }
3145
3146 /**
3147 * _base_alloc_irq_vectors - allocate msix vectors
3148 * @ioc: per adapter object
3149 *
3150 */
3151 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3152 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3153 {
3154 int i, irq_flags = PCI_IRQ_MSIX;
3155 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3156 struct irq_affinity *descp = &desc;
3157
3158 if (ioc->smp_affinity_enable)
3159 irq_flags |= PCI_IRQ_AFFINITY;
3160 else
3161 descp = NULL;
3162
3163 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3164 ioc->reply_queue_count);
3165
3166 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3167 ioc->high_iops_queues,
3168 ioc->reply_queue_count, irq_flags, descp);
3169
3170 return i;
3171 }
3172
3173 /**
3174 * _base_enable_msix - enables msix, failback to io_apic
3175 * @ioc: per adapter object
3176 *
3177 */
3178 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3179 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3180 {
3181 int r;
3182 int i, local_max_msix_vectors;
3183 u8 try_msix = 0;
3184
3185 ioc->msix_load_balance = false;
3186
3187 if (msix_disable == -1 || msix_disable == 0)
3188 try_msix = 1;
3189
3190 if (!try_msix)
3191 goto try_ioapic;
3192
3193 if (_base_check_enable_msix(ioc) != 0)
3194 goto try_ioapic;
3195
3196 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3197 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3198 ioc->cpu_count, max_msix_vectors);
3199 if (ioc->is_aero_ioc)
3200 _base_check_and_enable_high_iops_queues(ioc,
3201 ioc->msix_vector_count);
3202 ioc->reply_queue_count =
3203 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3204 ioc->msix_vector_count);
3205
3206 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3207 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3208 else
3209 local_max_msix_vectors = max_msix_vectors;
3210
3211 if (local_max_msix_vectors > 0)
3212 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3213 ioc->reply_queue_count);
3214 else if (local_max_msix_vectors == 0)
3215 goto try_ioapic;
3216
3217 /*
3218 * Enable msix_load_balance only if combined reply queue mode is
3219 * disabled on SAS3 & above generation HBA devices.
3220 */
3221 if (!ioc->combined_reply_queue &&
3222 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3223 ioc_info(ioc,
3224 "combined ReplyQueue is off, Enabling msix load balance\n");
3225 ioc->msix_load_balance = true;
3226 }
3227
3228 /*
3229 * smp affinity setting is not need when msix load balance
3230 * is enabled.
3231 */
3232 if (ioc->msix_load_balance)
3233 ioc->smp_affinity_enable = 0;
3234
3235 r = _base_alloc_irq_vectors(ioc);
3236 if (r < 0) {
3237 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3238 goto try_ioapic;
3239 }
3240
3241 ioc->msix_enable = 1;
3242 ioc->reply_queue_count = r;
3243 for (i = 0; i < ioc->reply_queue_count; i++) {
3244 r = _base_request_irq(ioc, i);
3245 if (r) {
3246 _base_free_irq(ioc);
3247 _base_disable_msix(ioc);
3248 goto try_ioapic;
3249 }
3250 }
3251
3252 ioc_info(ioc, "High IOPs queues : %s\n",
3253 ioc->high_iops_queues ? "enabled" : "disabled");
3254
3255 return 0;
3256
3257 /* failback to io_apic interrupt routing */
3258 try_ioapic:
3259 ioc->high_iops_queues = 0;
3260 ioc_info(ioc, "High IOPs queues : disabled\n");
3261 ioc->reply_queue_count = 1;
3262 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3263 if (r < 0) {
3264 dfailprintk(ioc,
3265 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3266 r));
3267 } else
3268 r = _base_request_irq(ioc, 0);
3269
3270 return r;
3271 }
3272
3273 /**
3274 * mpt3sas_base_unmap_resources - free controller resources
3275 * @ioc: per adapter object
3276 */
3277 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3278 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3279 {
3280 struct pci_dev *pdev = ioc->pdev;
3281
3282 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3283
3284 _base_free_irq(ioc);
3285 _base_disable_msix(ioc);
3286
3287 kfree(ioc->replyPostRegisterIndex);
3288 ioc->replyPostRegisterIndex = NULL;
3289
3290
3291 if (ioc->chip_phys) {
3292 iounmap(ioc->chip);
3293 ioc->chip_phys = 0;
3294 }
3295
3296 if (pci_is_enabled(pdev)) {
3297 pci_release_selected_regions(ioc->pdev, ioc->bars);
3298 pci_disable_pcie_error_reporting(pdev);
3299 pci_disable_device(pdev);
3300 }
3301 }
3302
3303 static int
3304 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3305
3306 /**
3307 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3308 * and if it is in fault state then issue diag reset.
3309 * @ioc: per adapter object
3310 *
3311 * Returns: 0 for success, non-zero for failure.
3312 */
3313 static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3314 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3315 {
3316 u32 ioc_state;
3317 int rc = -EFAULT;
3318
3319 dinitprintk(ioc, pr_info("%s\n", __func__));
3320 if (ioc->pci_error_recovery)
3321 return 0;
3322 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3323 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3324
3325 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3326 mpt3sas_print_fault_code(ioc, ioc_state &
3327 MPI2_DOORBELL_DATA_MASK);
3328 rc = _base_diag_reset(ioc);
3329 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3330 MPI2_IOC_STATE_COREDUMP) {
3331 mpt3sas_print_coredump_info(ioc, ioc_state &
3332 MPI2_DOORBELL_DATA_MASK);
3333 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3334 rc = _base_diag_reset(ioc);
3335 }
3336
3337 return rc;
3338 }
3339
3340 /**
3341 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3342 * @ioc: per adapter object
3343 *
3344 * Return: 0 for success, non-zero for failure.
3345 */
3346 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3347 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3348 {
3349 struct pci_dev *pdev = ioc->pdev;
3350 u32 memap_sz;
3351 u32 pio_sz;
3352 int i, r = 0, rc;
3353 u64 pio_chip = 0;
3354 phys_addr_t chip_phys = 0;
3355 struct adapter_reply_queue *reply_q;
3356
3357 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3358
3359 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3360 if (pci_enable_device_mem(pdev)) {
3361 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3362 ioc->bars = 0;
3363 return -ENODEV;
3364 }
3365
3366
3367 if (pci_request_selected_regions(pdev, ioc->bars,
3368 ioc->driver_name)) {
3369 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3370 ioc->bars = 0;
3371 r = -ENODEV;
3372 goto out_fail;
3373 }
3374
3375 /* AER (Advanced Error Reporting) hooks */
3376 pci_enable_pcie_error_reporting(pdev);
3377
3378 pci_set_master(pdev);
3379
3380
3381 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3382 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3383 r = -ENODEV;
3384 goto out_fail;
3385 }
3386
3387 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3388 (!memap_sz || !pio_sz); i++) {
3389 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3390 if (pio_sz)
3391 continue;
3392 pio_chip = (u64)pci_resource_start(pdev, i);
3393 pio_sz = pci_resource_len(pdev, i);
3394 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3395 if (memap_sz)
3396 continue;
3397 ioc->chip_phys = pci_resource_start(pdev, i);
3398 chip_phys = ioc->chip_phys;
3399 memap_sz = pci_resource_len(pdev, i);
3400 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3401 }
3402 }
3403
3404 if (ioc->chip == NULL) {
3405 ioc_err(ioc,
3406 "unable to map adapter memory! or resource not found\n");
3407 r = -EINVAL;
3408 goto out_fail;
3409 }
3410
3411 mpt3sas_base_mask_interrupts(ioc);
3412
3413 r = _base_get_ioc_facts(ioc);
3414 if (r) {
3415 rc = _base_check_for_fault_and_issue_reset(ioc);
3416 if (rc || (_base_get_ioc_facts(ioc)))
3417 goto out_fail;
3418 }
3419
3420 if (!ioc->rdpq_array_enable_assigned) {
3421 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3422 ioc->rdpq_array_enable_assigned = 1;
3423 }
3424
3425 r = _base_enable_msix(ioc);
3426 if (r)
3427 goto out_fail;
3428
3429 if (!ioc->is_driver_loading)
3430 _base_init_irqpolls(ioc);
3431 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3432 * revision HBAs and also only when reply queue count is greater than 8
3433 */
3434 if (ioc->combined_reply_queue) {
3435 /* Determine the Supplemental Reply Post Host Index Registers
3436 * Addresse. Supplemental Reply Post Host Index Registers
3437 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3438 * each register is at offset bytes of
3439 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3440 */
3441 ioc->replyPostRegisterIndex = kcalloc(
3442 ioc->combined_reply_index_count,
3443 sizeof(resource_size_t *), GFP_KERNEL);
3444 if (!ioc->replyPostRegisterIndex) {
3445 ioc_err(ioc,
3446 "allocation for replyPostRegisterIndex failed!\n");
3447 r = -ENOMEM;
3448 goto out_fail;
3449 }
3450
3451 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3452 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3453 ((u8 __force *)&ioc->chip->Doorbell +
3454 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3455 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3456 }
3457 }
3458
3459 if (ioc->is_warpdrive) {
3460 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3461 &ioc->chip->ReplyPostHostIndex;
3462
3463 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3464 ioc->reply_post_host_index[i] =
3465 (resource_size_t __iomem *)
3466 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3467 * 4)));
3468 }
3469
3470 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3471 pr_info("%s: %s enabled: IRQ %d\n",
3472 reply_q->name,
3473 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3474 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3475
3476 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3477 &chip_phys, ioc->chip, memap_sz);
3478 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3479 (unsigned long long)pio_chip, pio_sz);
3480
3481 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3482 pci_save_state(pdev);
3483 return 0;
3484
3485 out_fail:
3486 mpt3sas_base_unmap_resources(ioc);
3487 return r;
3488 }
3489
3490 /**
3491 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3492 * @ioc: per adapter object
3493 * @smid: system request message index(smid zero is invalid)
3494 *
3495 * Return: virt pointer to message frame.
3496 */
3497 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3498 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3499 {
3500 return (void *)(ioc->request + (smid * ioc->request_sz));
3501 }
3502
3503 /**
3504 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3505 * @ioc: per adapter object
3506 * @smid: system request message index
3507 *
3508 * Return: virt pointer to sense buffer.
3509 */
3510 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3511 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3512 {
3513 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3514 }
3515
3516 /**
3517 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3518 * @ioc: per adapter object
3519 * @smid: system request message index
3520 *
3521 * Return: phys pointer to the low 32bit address of the sense buffer.
3522 */
3523 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3524 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3525 {
3526 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3527 SCSI_SENSE_BUFFERSIZE));
3528 }
3529
3530 /**
3531 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3532 * @ioc: per adapter object
3533 * @smid: system request message index
3534 *
3535 * Return: virt pointer to a PCIe SGL.
3536 */
3537 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3538 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3539 {
3540 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3541 }
3542
3543 /**
3544 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3545 * @ioc: per adapter object
3546 * @smid: system request message index
3547 *
3548 * Return: phys pointer to the address of the PCIe buffer.
3549 */
3550 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3551 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3552 {
3553 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3554 }
3555
3556 /**
3557 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3558 * @ioc: per adapter object
3559 * @phys_addr: lower 32 physical addr of the reply
3560 *
3561 * Converts 32bit lower physical addr into a virt address.
3562 */
3563 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3564 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3565 {
3566 if (!phys_addr)
3567 return NULL;
3568 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3569 }
3570
3571 /**
3572 * _base_get_msix_index - get the msix index
3573 * @ioc: per adapter object
3574 * @scmd: scsi_cmnd object
3575 *
3576 * returns msix index of general reply queues,
3577 * i.e. reply queue on which IO request's reply
3578 * should be posted by the HBA firmware.
3579 */
3580 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3581 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3582 struct scsi_cmnd *scmd)
3583 {
3584 /* Enables reply_queue load balancing */
3585 if (ioc->msix_load_balance)
3586 return ioc->reply_queue_count ?
3587 base_mod64(atomic64_add_return(1,
3588 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3589
3590 return ioc->cpu_msix_table[raw_smp_processor_id()];
3591 }
3592
3593 /**
3594 * _base_sdev_nr_inflight_request -get number of inflight requests
3595 * of a request queue.
3596 * @q: request_queue object
3597 *
3598 * returns number of inflight request of a request queue.
3599 */
3600 inline unsigned long
_base_sdev_nr_inflight_request(struct request_queue * q)3601 _base_sdev_nr_inflight_request(struct request_queue *q)
3602 {
3603 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3604
3605 return atomic_read(&hctx->nr_active);
3606 }
3607
3608
3609 /**
3610 * _base_get_high_iops_msix_index - get the msix index of
3611 * high iops queues
3612 * @ioc: per adapter object
3613 * @scmd: scsi_cmnd object
3614 *
3615 * Returns: msix index of high iops reply queues.
3616 * i.e. high iops reply queue on which IO request's
3617 * reply should be posted by the HBA firmware.
3618 */
3619 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3620 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3621 struct scsi_cmnd *scmd)
3622 {
3623 /**
3624 * Round robin the IO interrupts among the high iops
3625 * reply queues in terms of batch count 16 when outstanding
3626 * IOs on the target device is >=8.
3627 */
3628 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3629 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3630 return base_mod64((
3631 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3632 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3633 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3634
3635 return _base_get_msix_index(ioc, scmd);
3636 }
3637
3638 /**
3639 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3640 * @ioc: per adapter object
3641 * @cb_idx: callback index
3642 *
3643 * Return: smid (zero is invalid)
3644 */
3645 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3646 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3647 {
3648 unsigned long flags;
3649 struct request_tracker *request;
3650 u16 smid;
3651
3652 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3653 if (list_empty(&ioc->internal_free_list)) {
3654 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3655 ioc_err(ioc, "%s: smid not available\n", __func__);
3656 return 0;
3657 }
3658
3659 request = list_entry(ioc->internal_free_list.next,
3660 struct request_tracker, tracker_list);
3661 request->cb_idx = cb_idx;
3662 smid = request->smid;
3663 list_del(&request->tracker_list);
3664 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3665 return smid;
3666 }
3667
3668 /**
3669 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3670 * @ioc: per adapter object
3671 * @cb_idx: callback index
3672 * @scmd: pointer to scsi command object
3673 *
3674 * Return: smid (zero is invalid)
3675 */
3676 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3677 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3678 struct scsi_cmnd *scmd)
3679 {
3680 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3681 unsigned int tag = scmd->request->tag;
3682 u16 smid;
3683
3684 smid = tag + 1;
3685 request->cb_idx = cb_idx;
3686 request->smid = smid;
3687 request->scmd = scmd;
3688 INIT_LIST_HEAD(&request->chain_list);
3689 return smid;
3690 }
3691
3692 /**
3693 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3694 * @ioc: per adapter object
3695 * @cb_idx: callback index
3696 *
3697 * Return: smid (zero is invalid)
3698 */
3699 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3700 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3701 {
3702 unsigned long flags;
3703 struct request_tracker *request;
3704 u16 smid;
3705
3706 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3707 if (list_empty(&ioc->hpr_free_list)) {
3708 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3709 return 0;
3710 }
3711
3712 request = list_entry(ioc->hpr_free_list.next,
3713 struct request_tracker, tracker_list);
3714 request->cb_idx = cb_idx;
3715 smid = request->smid;
3716 list_del(&request->tracker_list);
3717 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3718 return smid;
3719 }
3720
3721 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)3722 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3723 {
3724 /*
3725 * See _wait_for_commands_to_complete() call with regards to this code.
3726 */
3727 if (ioc->shost_recovery && ioc->pending_io_count) {
3728 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3729 if (ioc->pending_io_count == 0)
3730 wake_up(&ioc->reset_wq);
3731 }
3732 }
3733
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)3734 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3735 struct scsiio_tracker *st)
3736 {
3737 if (WARN_ON(st->smid == 0))
3738 return;
3739 st->cb_idx = 0xFF;
3740 st->direct_io = 0;
3741 st->scmd = NULL;
3742 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3743 st->smid = 0;
3744 }
3745
3746 /**
3747 * mpt3sas_base_free_smid - put smid back on free_list
3748 * @ioc: per adapter object
3749 * @smid: system request message index
3750 */
3751 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)3752 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3753 {
3754 unsigned long flags;
3755 int i;
3756
3757 if (smid < ioc->hi_priority_smid) {
3758 struct scsiio_tracker *st;
3759 void *request;
3760
3761 st = _get_st_from_smid(ioc, smid);
3762 if (!st) {
3763 _base_recovery_check(ioc);
3764 return;
3765 }
3766
3767 /* Clear MPI request frame */
3768 request = mpt3sas_base_get_msg_frame(ioc, smid);
3769 memset(request, 0, ioc->request_sz);
3770
3771 mpt3sas_base_clear_st(ioc, st);
3772 _base_recovery_check(ioc);
3773 return;
3774 }
3775
3776 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3777 if (smid < ioc->internal_smid) {
3778 /* hi-priority */
3779 i = smid - ioc->hi_priority_smid;
3780 ioc->hpr_lookup[i].cb_idx = 0xFF;
3781 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3782 } else if (smid <= ioc->hba_queue_depth) {
3783 /* internal queue */
3784 i = smid - ioc->internal_smid;
3785 ioc->internal_lookup[i].cb_idx = 0xFF;
3786 list_add(&ioc->internal_lookup[i].tracker_list,
3787 &ioc->internal_free_list);
3788 }
3789 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3790 }
3791
3792 /**
3793 * _base_mpi_ep_writeq - 32 bit write to MMIO
3794 * @b: data payload
3795 * @addr: address in MMIO space
3796 * @writeq_lock: spin lock
3797 *
3798 * This special handling for MPI EP to take care of 32 bit
3799 * environment where its not quarenteed to send the entire word
3800 * in one transfer.
3801 */
3802 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3803 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3804 spinlock_t *writeq_lock)
3805 {
3806 unsigned long flags;
3807
3808 spin_lock_irqsave(writeq_lock, flags);
3809 __raw_writel((u32)(b), addr);
3810 __raw_writel((u32)(b >> 32), (addr + 4));
3811 spin_unlock_irqrestore(writeq_lock, flags);
3812 }
3813
3814 /**
3815 * _base_writeq - 64 bit write to MMIO
3816 * @b: data payload
3817 * @addr: address in MMIO space
3818 * @writeq_lock: spin lock
3819 *
3820 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3821 * care of 32 bit environment where its not quarenteed to send the entire word
3822 * in one transfer.
3823 */
3824 #if defined(writeq) && defined(CONFIG_64BIT)
3825 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3826 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3827 {
3828 wmb();
3829 __raw_writeq(b, addr);
3830 barrier();
3831 }
3832 #else
3833 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)3834 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3835 {
3836 _base_mpi_ep_writeq(b, addr, writeq_lock);
3837 }
3838 #endif
3839
3840 /**
3841 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3842 * variable of scsi tracker
3843 * @ioc: per adapter object
3844 * @smid: system request message index
3845 *
3846 * returns msix index.
3847 */
3848 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)3849 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3850 {
3851 struct scsiio_tracker *st = NULL;
3852
3853 if (smid < ioc->hi_priority_smid)
3854 st = _get_st_from_smid(ioc, smid);
3855
3856 if (st == NULL)
3857 return _base_get_msix_index(ioc, NULL);
3858
3859 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3860 return st->msix_io;
3861 }
3862
3863 /**
3864 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3865 * @ioc: per adapter object
3866 * @smid: system request message index
3867 * @handle: device handle
3868 */
3869 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3870 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3871 u16 smid, u16 handle)
3872 {
3873 Mpi2RequestDescriptorUnion_t descriptor;
3874 u64 *request = (u64 *)&descriptor;
3875 void *mpi_req_iomem;
3876 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3877
3878 _clone_sg_entries(ioc, (void *) mfp, smid);
3879 mpi_req_iomem = (void __force *)ioc->chip +
3880 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3881 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3882 ioc->request_sz);
3883 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3884 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3885 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3886 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3887 descriptor.SCSIIO.LMID = 0;
3888 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3889 &ioc->scsi_lookup_lock);
3890 }
3891
3892 /**
3893 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3894 * @ioc: per adapter object
3895 * @smid: system request message index
3896 * @handle: device handle
3897 */
3898 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3899 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3900 {
3901 Mpi2RequestDescriptorUnion_t descriptor;
3902 u64 *request = (u64 *)&descriptor;
3903
3904
3905 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3906 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3907 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3908 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3909 descriptor.SCSIIO.LMID = 0;
3910 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3911 &ioc->scsi_lookup_lock);
3912 }
3913
3914 /**
3915 * _base_put_smid_fast_path - send fast path request to firmware
3916 * @ioc: per adapter object
3917 * @smid: system request message index
3918 * @handle: device handle
3919 */
3920 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)3921 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3922 u16 handle)
3923 {
3924 Mpi2RequestDescriptorUnion_t descriptor;
3925 u64 *request = (u64 *)&descriptor;
3926
3927 descriptor.SCSIIO.RequestFlags =
3928 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3929 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3930 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3931 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3932 descriptor.SCSIIO.LMID = 0;
3933 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3934 &ioc->scsi_lookup_lock);
3935 }
3936
3937 /**
3938 * _base_put_smid_hi_priority - send Task Management request to firmware
3939 * @ioc: per adapter object
3940 * @smid: system request message index
3941 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3942 */
3943 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)3944 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3945 u16 msix_task)
3946 {
3947 Mpi2RequestDescriptorUnion_t descriptor;
3948 void *mpi_req_iomem;
3949 u64 *request;
3950
3951 if (ioc->is_mcpu_endpoint) {
3952 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3953
3954 /* TBD 256 is offset within sys register. */
3955 mpi_req_iomem = (void __force *)ioc->chip
3956 + MPI_FRAME_START_OFFSET
3957 + (smid * ioc->request_sz);
3958 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3959 ioc->request_sz);
3960 }
3961
3962 request = (u64 *)&descriptor;
3963
3964 descriptor.HighPriority.RequestFlags =
3965 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3966 descriptor.HighPriority.MSIxIndex = msix_task;
3967 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3968 descriptor.HighPriority.LMID = 0;
3969 descriptor.HighPriority.Reserved1 = 0;
3970 if (ioc->is_mcpu_endpoint)
3971 _base_mpi_ep_writeq(*request,
3972 &ioc->chip->RequestDescriptorPostLow,
3973 &ioc->scsi_lookup_lock);
3974 else
3975 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3976 &ioc->scsi_lookup_lock);
3977 }
3978
3979 /**
3980 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3981 * firmware
3982 * @ioc: per adapter object
3983 * @smid: system request message index
3984 */
3985 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)3986 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3987 {
3988 Mpi2RequestDescriptorUnion_t descriptor;
3989 u64 *request = (u64 *)&descriptor;
3990
3991 descriptor.Default.RequestFlags =
3992 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3993 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3994 descriptor.Default.SMID = cpu_to_le16(smid);
3995 descriptor.Default.LMID = 0;
3996 descriptor.Default.DescriptorTypeDependent = 0;
3997 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3998 &ioc->scsi_lookup_lock);
3999 }
4000
4001 /**
4002 * _base_put_smid_default - Default, primarily used for config pages
4003 * @ioc: per adapter object
4004 * @smid: system request message index
4005 */
4006 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4007 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4008 {
4009 Mpi2RequestDescriptorUnion_t descriptor;
4010 void *mpi_req_iomem;
4011 u64 *request;
4012
4013 if (ioc->is_mcpu_endpoint) {
4014 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4015
4016 _clone_sg_entries(ioc, (void *) mfp, smid);
4017 /* TBD 256 is offset within sys register */
4018 mpi_req_iomem = (void __force *)ioc->chip +
4019 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4020 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4021 ioc->request_sz);
4022 }
4023 request = (u64 *)&descriptor;
4024 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4025 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4026 descriptor.Default.SMID = cpu_to_le16(smid);
4027 descriptor.Default.LMID = 0;
4028 descriptor.Default.DescriptorTypeDependent = 0;
4029 if (ioc->is_mcpu_endpoint)
4030 _base_mpi_ep_writeq(*request,
4031 &ioc->chip->RequestDescriptorPostLow,
4032 &ioc->scsi_lookup_lock);
4033 else
4034 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4035 &ioc->scsi_lookup_lock);
4036 }
4037
4038 /**
4039 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4040 * Atomic Request Descriptor
4041 * @ioc: per adapter object
4042 * @smid: system request message index
4043 * @handle: device handle, unused in this function, for function type match
4044 *
4045 * Return nothing.
4046 */
4047 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4048 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4049 u16 handle)
4050 {
4051 Mpi26AtomicRequestDescriptor_t descriptor;
4052 u32 *request = (u32 *)&descriptor;
4053
4054 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4055 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4056 descriptor.SMID = cpu_to_le16(smid);
4057
4058 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4059 }
4060
4061 /**
4062 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4063 * using Atomic Request Descriptor
4064 * @ioc: per adapter object
4065 * @smid: system request message index
4066 * @handle: device handle, unused in this function, for function type match
4067 * Return nothing
4068 */
4069 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4070 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4071 u16 handle)
4072 {
4073 Mpi26AtomicRequestDescriptor_t descriptor;
4074 u32 *request = (u32 *)&descriptor;
4075
4076 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4077 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4078 descriptor.SMID = cpu_to_le16(smid);
4079
4080 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4081 }
4082
4083 /**
4084 * _base_put_smid_hi_priority_atomic - send Task Management request to
4085 * firmware using Atomic Request Descriptor
4086 * @ioc: per adapter object
4087 * @smid: system request message index
4088 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4089 *
4090 * Return nothing.
4091 */
4092 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4093 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4094 u16 msix_task)
4095 {
4096 Mpi26AtomicRequestDescriptor_t descriptor;
4097 u32 *request = (u32 *)&descriptor;
4098
4099 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4100 descriptor.MSIxIndex = msix_task;
4101 descriptor.SMID = cpu_to_le16(smid);
4102
4103 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4104 }
4105
4106 /**
4107 * _base_put_smid_default - Default, primarily used for config pages
4108 * use Atomic Request Descriptor
4109 * @ioc: per adapter object
4110 * @smid: system request message index
4111 *
4112 * Return nothing.
4113 */
4114 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4115 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4116 {
4117 Mpi26AtomicRequestDescriptor_t descriptor;
4118 u32 *request = (u32 *)&descriptor;
4119
4120 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4121 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4122 descriptor.SMID = cpu_to_le16(smid);
4123
4124 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4125 }
4126
4127 /**
4128 * _base_display_OEMs_branding - Display branding string
4129 * @ioc: per adapter object
4130 */
4131 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4132 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4133 {
4134 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4135 return;
4136
4137 switch (ioc->pdev->subsystem_vendor) {
4138 case PCI_VENDOR_ID_INTEL:
4139 switch (ioc->pdev->device) {
4140 case MPI2_MFGPAGE_DEVID_SAS2008:
4141 switch (ioc->pdev->subsystem_device) {
4142 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4143 ioc_info(ioc, "%s\n",
4144 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4145 break;
4146 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4147 ioc_info(ioc, "%s\n",
4148 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4149 break;
4150 case MPT2SAS_INTEL_SSD910_SSDID:
4151 ioc_info(ioc, "%s\n",
4152 MPT2SAS_INTEL_SSD910_BRANDING);
4153 break;
4154 default:
4155 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4156 ioc->pdev->subsystem_device);
4157 break;
4158 }
4159 break;
4160 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4161 switch (ioc->pdev->subsystem_device) {
4162 case MPT2SAS_INTEL_RS25GB008_SSDID:
4163 ioc_info(ioc, "%s\n",
4164 MPT2SAS_INTEL_RS25GB008_BRANDING);
4165 break;
4166 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4167 ioc_info(ioc, "%s\n",
4168 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4169 break;
4170 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4171 ioc_info(ioc, "%s\n",
4172 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4173 break;
4174 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4175 ioc_info(ioc, "%s\n",
4176 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4177 break;
4178 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4179 ioc_info(ioc, "%s\n",
4180 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4181 break;
4182 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4183 ioc_info(ioc, "%s\n",
4184 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4185 break;
4186 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4187 ioc_info(ioc, "%s\n",
4188 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4189 break;
4190 default:
4191 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4192 ioc->pdev->subsystem_device);
4193 break;
4194 }
4195 break;
4196 case MPI25_MFGPAGE_DEVID_SAS3008:
4197 switch (ioc->pdev->subsystem_device) {
4198 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4199 ioc_info(ioc, "%s\n",
4200 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4201 break;
4202
4203 case MPT3SAS_INTEL_RS3GC008_SSDID:
4204 ioc_info(ioc, "%s\n",
4205 MPT3SAS_INTEL_RS3GC008_BRANDING);
4206 break;
4207 case MPT3SAS_INTEL_RS3FC044_SSDID:
4208 ioc_info(ioc, "%s\n",
4209 MPT3SAS_INTEL_RS3FC044_BRANDING);
4210 break;
4211 case MPT3SAS_INTEL_RS3UC080_SSDID:
4212 ioc_info(ioc, "%s\n",
4213 MPT3SAS_INTEL_RS3UC080_BRANDING);
4214 break;
4215 default:
4216 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4217 ioc->pdev->subsystem_device);
4218 break;
4219 }
4220 break;
4221 default:
4222 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4223 ioc->pdev->subsystem_device);
4224 break;
4225 }
4226 break;
4227 case PCI_VENDOR_ID_DELL:
4228 switch (ioc->pdev->device) {
4229 case MPI2_MFGPAGE_DEVID_SAS2008:
4230 switch (ioc->pdev->subsystem_device) {
4231 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4232 ioc_info(ioc, "%s\n",
4233 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4234 break;
4235 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4236 ioc_info(ioc, "%s\n",
4237 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4238 break;
4239 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4240 ioc_info(ioc, "%s\n",
4241 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4242 break;
4243 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4244 ioc_info(ioc, "%s\n",
4245 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4246 break;
4247 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4248 ioc_info(ioc, "%s\n",
4249 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4250 break;
4251 case MPT2SAS_DELL_PERC_H200_SSDID:
4252 ioc_info(ioc, "%s\n",
4253 MPT2SAS_DELL_PERC_H200_BRANDING);
4254 break;
4255 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4256 ioc_info(ioc, "%s\n",
4257 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4258 break;
4259 default:
4260 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4261 ioc->pdev->subsystem_device);
4262 break;
4263 }
4264 break;
4265 case MPI25_MFGPAGE_DEVID_SAS3008:
4266 switch (ioc->pdev->subsystem_device) {
4267 case MPT3SAS_DELL_12G_HBA_SSDID:
4268 ioc_info(ioc, "%s\n",
4269 MPT3SAS_DELL_12G_HBA_BRANDING);
4270 break;
4271 default:
4272 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4273 ioc->pdev->subsystem_device);
4274 break;
4275 }
4276 break;
4277 default:
4278 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4279 ioc->pdev->subsystem_device);
4280 break;
4281 }
4282 break;
4283 case PCI_VENDOR_ID_CISCO:
4284 switch (ioc->pdev->device) {
4285 case MPI25_MFGPAGE_DEVID_SAS3008:
4286 switch (ioc->pdev->subsystem_device) {
4287 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4288 ioc_info(ioc, "%s\n",
4289 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4290 break;
4291 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4292 ioc_info(ioc, "%s\n",
4293 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4294 break;
4295 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4296 ioc_info(ioc, "%s\n",
4297 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4298 break;
4299 default:
4300 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4301 ioc->pdev->subsystem_device);
4302 break;
4303 }
4304 break;
4305 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4306 switch (ioc->pdev->subsystem_device) {
4307 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4308 ioc_info(ioc, "%s\n",
4309 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4310 break;
4311 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4312 ioc_info(ioc, "%s\n",
4313 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4314 break;
4315 default:
4316 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4317 ioc->pdev->subsystem_device);
4318 break;
4319 }
4320 break;
4321 default:
4322 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4323 ioc->pdev->subsystem_device);
4324 break;
4325 }
4326 break;
4327 case MPT2SAS_HP_3PAR_SSVID:
4328 switch (ioc->pdev->device) {
4329 case MPI2_MFGPAGE_DEVID_SAS2004:
4330 switch (ioc->pdev->subsystem_device) {
4331 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4332 ioc_info(ioc, "%s\n",
4333 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4334 break;
4335 default:
4336 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4337 ioc->pdev->subsystem_device);
4338 break;
4339 }
4340 break;
4341 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4342 switch (ioc->pdev->subsystem_device) {
4343 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4344 ioc_info(ioc, "%s\n",
4345 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4346 break;
4347 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4348 ioc_info(ioc, "%s\n",
4349 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4350 break;
4351 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4352 ioc_info(ioc, "%s\n",
4353 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4354 break;
4355 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4356 ioc_info(ioc, "%s\n",
4357 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4358 break;
4359 default:
4360 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4361 ioc->pdev->subsystem_device);
4362 break;
4363 }
4364 break;
4365 default:
4366 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4367 ioc->pdev->subsystem_device);
4368 break;
4369 }
4370 default:
4371 break;
4372 }
4373 }
4374
4375 /**
4376 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4377 * version from FW Image Header.
4378 * @ioc: per adapter object
4379 *
4380 * Return: 0 for success, non-zero for failure.
4381 */
4382 static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4383 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4384 {
4385 Mpi2FWImageHeader_t *fw_img_hdr;
4386 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4387 Mpi25FWUploadRequest_t *mpi_request;
4388 Mpi2FWUploadReply_t mpi_reply;
4389 int r = 0;
4390 u32 package_version = 0;
4391 void *fwpkg_data = NULL;
4392 dma_addr_t fwpkg_data_dma;
4393 u16 smid, ioc_status;
4394 size_t data_length;
4395
4396 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4397
4398 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4399 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4400 return -EAGAIN;
4401 }
4402
4403 data_length = sizeof(Mpi2FWImageHeader_t);
4404 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4405 &fwpkg_data_dma, GFP_KERNEL);
4406 if (!fwpkg_data) {
4407 ioc_err(ioc,
4408 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4409 __FILE__, __LINE__, __func__);
4410 return -ENOMEM;
4411 }
4412
4413 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4414 if (!smid) {
4415 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4416 r = -EAGAIN;
4417 goto out;
4418 }
4419
4420 ioc->base_cmds.status = MPT3_CMD_PENDING;
4421 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4422 ioc->base_cmds.smid = smid;
4423 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4424 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4425 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4426 mpi_request->ImageSize = cpu_to_le32(data_length);
4427 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4428 data_length);
4429 init_completion(&ioc->base_cmds.done);
4430 ioc->put_smid_default(ioc, smid);
4431 /* Wait for 15 seconds */
4432 wait_for_completion_timeout(&ioc->base_cmds.done,
4433 FW_IMG_HDR_READ_TIMEOUT*HZ);
4434 ioc_info(ioc, "%s: complete\n", __func__);
4435 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4436 ioc_err(ioc, "%s: timeout\n", __func__);
4437 _debug_dump_mf(mpi_request,
4438 sizeof(Mpi25FWUploadRequest_t)/4);
4439 r = -ETIME;
4440 } else {
4441 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4442 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4443 memcpy(&mpi_reply, ioc->base_cmds.reply,
4444 sizeof(Mpi2FWUploadReply_t));
4445 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4446 MPI2_IOCSTATUS_MASK;
4447 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4448 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4449 if (le32_to_cpu(fw_img_hdr->Signature) ==
4450 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4451 cmp_img_hdr =
4452 (Mpi26ComponentImageHeader_t *)
4453 (fwpkg_data);
4454 package_version =
4455 le32_to_cpu(
4456 cmp_img_hdr->ApplicationSpecific);
4457 } else
4458 package_version =
4459 le32_to_cpu(
4460 fw_img_hdr->PackageVersion.Word);
4461 if (package_version)
4462 ioc_info(ioc,
4463 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4464 ((package_version) & 0xFF000000) >> 24,
4465 ((package_version) & 0x00FF0000) >> 16,
4466 ((package_version) & 0x0000FF00) >> 8,
4467 (package_version) & 0x000000FF);
4468 } else {
4469 _debug_dump_mf(&mpi_reply,
4470 sizeof(Mpi2FWUploadReply_t)/4);
4471 }
4472 }
4473 }
4474 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4475 out:
4476 if (fwpkg_data)
4477 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4478 fwpkg_data_dma);
4479 return r;
4480 }
4481
4482 /**
4483 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4484 * @ioc: per adapter object
4485 */
4486 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4487 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4488 {
4489 int i = 0;
4490 char desc[16];
4491 u32 iounit_pg1_flags;
4492 u32 bios_version;
4493
4494 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4495 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4496 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4497 desc,
4498 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4499 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4500 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4501 ioc->facts.FWVersion.Word & 0x000000FF,
4502 ioc->pdev->revision,
4503 (bios_version & 0xFF000000) >> 24,
4504 (bios_version & 0x00FF0000) >> 16,
4505 (bios_version & 0x0000FF00) >> 8,
4506 bios_version & 0x000000FF);
4507
4508 _base_display_OEMs_branding(ioc);
4509
4510 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4511 pr_info("%sNVMe", i ? "," : "");
4512 i++;
4513 }
4514
4515 ioc_info(ioc, "Protocol=(");
4516
4517 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4518 pr_cont("Initiator");
4519 i++;
4520 }
4521
4522 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4523 pr_cont("%sTarget", i ? "," : "");
4524 i++;
4525 }
4526
4527 i = 0;
4528 pr_cont("), Capabilities=(");
4529
4530 if (!ioc->hide_ir_msg) {
4531 if (ioc->facts.IOCCapabilities &
4532 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4533 pr_cont("Raid");
4534 i++;
4535 }
4536 }
4537
4538 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4539 pr_cont("%sTLR", i ? "," : "");
4540 i++;
4541 }
4542
4543 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4544 pr_cont("%sMulticast", i ? "," : "");
4545 i++;
4546 }
4547
4548 if (ioc->facts.IOCCapabilities &
4549 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4550 pr_cont("%sBIDI Target", i ? "," : "");
4551 i++;
4552 }
4553
4554 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4555 pr_cont("%sEEDP", i ? "," : "");
4556 i++;
4557 }
4558
4559 if (ioc->facts.IOCCapabilities &
4560 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4561 pr_cont("%sSnapshot Buffer", i ? "," : "");
4562 i++;
4563 }
4564
4565 if (ioc->facts.IOCCapabilities &
4566 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4567 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4568 i++;
4569 }
4570
4571 if (ioc->facts.IOCCapabilities &
4572 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4573 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4574 i++;
4575 }
4576
4577 if (ioc->facts.IOCCapabilities &
4578 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4579 pr_cont("%sTask Set Full", i ? "," : "");
4580 i++;
4581 }
4582
4583 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4584 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4585 pr_cont("%sNCQ", i ? "," : "");
4586 i++;
4587 }
4588
4589 pr_cont(")\n");
4590 }
4591
4592 /**
4593 * mpt3sas_base_update_missing_delay - change the missing delay timers
4594 * @ioc: per adapter object
4595 * @device_missing_delay: amount of time till device is reported missing
4596 * @io_missing_delay: interval IO is returned when there is a missing device
4597 *
4598 * Passed on the command line, this function will modify the device missing
4599 * delay, as well as the io missing delay. This should be called at driver
4600 * load time.
4601 */
4602 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4603 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4604 u16 device_missing_delay, u8 io_missing_delay)
4605 {
4606 u16 dmd, dmd_new, dmd_orignal;
4607 u8 io_missing_delay_original;
4608 u16 sz;
4609 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4610 Mpi2ConfigReply_t mpi_reply;
4611 u8 num_phys = 0;
4612 u16 ioc_status;
4613
4614 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4615 if (!num_phys)
4616 return;
4617
4618 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4619 sizeof(Mpi2SasIOUnit1PhyData_t));
4620 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4621 if (!sas_iounit_pg1) {
4622 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4623 __FILE__, __LINE__, __func__);
4624 goto out;
4625 }
4626 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4627 sas_iounit_pg1, sz))) {
4628 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4629 __FILE__, __LINE__, __func__);
4630 goto out;
4631 }
4632 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4633 MPI2_IOCSTATUS_MASK;
4634 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4635 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4636 __FILE__, __LINE__, __func__);
4637 goto out;
4638 }
4639
4640 /* device missing delay */
4641 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4642 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4643 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4644 else
4645 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4646 dmd_orignal = dmd;
4647 if (device_missing_delay > 0x7F) {
4648 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4649 device_missing_delay;
4650 dmd = dmd / 16;
4651 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4652 } else
4653 dmd = device_missing_delay;
4654 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4655
4656 /* io missing delay */
4657 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4658 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4659
4660 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4661 sz)) {
4662 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4663 dmd_new = (dmd &
4664 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4665 else
4666 dmd_new =
4667 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4668 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4669 dmd_orignal, dmd_new);
4670 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4671 io_missing_delay_original,
4672 io_missing_delay);
4673 ioc->device_missing_delay = dmd_new;
4674 ioc->io_missing_delay = io_missing_delay;
4675 }
4676
4677 out:
4678 kfree(sas_iounit_pg1);
4679 }
4680
4681 /**
4682 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4683 * according to performance mode.
4684 * @ioc : per adapter object
4685 *
4686 * Return nothing.
4687 */
4688 static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4689 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4690 {
4691 Mpi2IOCPage1_t ioc_pg1;
4692 Mpi2ConfigReply_t mpi_reply;
4693
4694 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4695 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4696
4697 switch (perf_mode) {
4698 case MPT_PERF_MODE_DEFAULT:
4699 case MPT_PERF_MODE_BALANCED:
4700 if (ioc->high_iops_queues) {
4701 ioc_info(ioc,
4702 "Enable interrupt coalescing only for first\t"
4703 "%d reply queues\n",
4704 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4705 /*
4706 * If 31st bit is zero then interrupt coalescing is
4707 * enabled for all reply descriptor post queues.
4708 * If 31st bit is set to one then user can
4709 * enable/disable interrupt coalescing on per reply
4710 * descriptor post queue group(8) basis. So to enable
4711 * interrupt coalescing only on first reply descriptor
4712 * post queue group 31st bit and zero th bit is enabled.
4713 */
4714 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4715 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4716 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4717 ioc_info(ioc, "performance mode: balanced\n");
4718 return;
4719 }
4720 fallthrough;
4721 case MPT_PERF_MODE_LATENCY:
4722 /*
4723 * Enable interrupt coalescing on all reply queues
4724 * with timeout value 0xA
4725 */
4726 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4727 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4728 ioc_pg1.ProductSpecific = 0;
4729 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4730 ioc_info(ioc, "performance mode: latency\n");
4731 break;
4732 case MPT_PERF_MODE_IOPS:
4733 /*
4734 * Enable interrupt coalescing on all reply queues.
4735 */
4736 ioc_info(ioc,
4737 "performance mode: iops with coalescing timeout: 0x%x\n",
4738 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4739 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4740 ioc_pg1.ProductSpecific = 0;
4741 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4742 break;
4743 }
4744 }
4745
4746 /**
4747 * _base_static_config_pages - static start of day config pages
4748 * @ioc: per adapter object
4749 */
4750 static void
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)4751 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4752 {
4753 Mpi2ConfigReply_t mpi_reply;
4754 u32 iounit_pg1_flags;
4755
4756 ioc->nvme_abort_timeout = 30;
4757 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4758 if (ioc->ir_firmware)
4759 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4760 &ioc->manu_pg10);
4761
4762 /*
4763 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4764 * flag unset in NVDATA.
4765 */
4766 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4767 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4768 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4769 ioc->name);
4770 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4771 ioc->manu_pg11.EEDPTagMode |= 0x1;
4772 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4773 &ioc->manu_pg11);
4774 }
4775 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4776 ioc->tm_custom_handling = 1;
4777 else {
4778 ioc->tm_custom_handling = 0;
4779 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4780 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4781 else if (ioc->manu_pg11.NVMeAbortTO >
4782 NVME_TASK_ABORT_MAX_TIMEOUT)
4783 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4784 else
4785 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4786 }
4787
4788 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4789 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4790 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4791 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4792 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4793 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4794 _base_display_ioc_capabilities(ioc);
4795
4796 /*
4797 * Enable task_set_full handling in iounit_pg1 when the
4798 * facts capabilities indicate that its supported.
4799 */
4800 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4801 if ((ioc->facts.IOCCapabilities &
4802 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4803 iounit_pg1_flags &=
4804 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4805 else
4806 iounit_pg1_flags |=
4807 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4808 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4809 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4810
4811 if (ioc->iounit_pg8.NumSensors)
4812 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4813 if (ioc->is_aero_ioc)
4814 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4815 }
4816
4817 /**
4818 * mpt3sas_free_enclosure_list - release memory
4819 * @ioc: per adapter object
4820 *
4821 * Free memory allocated during encloure add.
4822 */
4823 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)4824 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4825 {
4826 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4827
4828 /* Free enclosure list */
4829 list_for_each_entry_safe(enclosure_dev,
4830 enclosure_dev_next, &ioc->enclosure_list, list) {
4831 list_del(&enclosure_dev->list);
4832 kfree(enclosure_dev);
4833 }
4834 }
4835
4836 /**
4837 * _base_release_memory_pools - release memory
4838 * @ioc: per adapter object
4839 *
4840 * Free memory allocated from _base_allocate_memory_pools.
4841 */
4842 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)4843 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4844 {
4845 int i = 0;
4846 int j = 0;
4847 int dma_alloc_count = 0;
4848 struct chain_tracker *ct;
4849 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4850
4851 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4852
4853 if (ioc->request) {
4854 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4855 ioc->request, ioc->request_dma);
4856 dexitprintk(ioc,
4857 ioc_info(ioc, "request_pool(0x%p): free\n",
4858 ioc->request));
4859 ioc->request = NULL;
4860 }
4861
4862 if (ioc->sense) {
4863 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4864 dma_pool_destroy(ioc->sense_dma_pool);
4865 dexitprintk(ioc,
4866 ioc_info(ioc, "sense_pool(0x%p): free\n",
4867 ioc->sense));
4868 ioc->sense = NULL;
4869 }
4870
4871 if (ioc->reply) {
4872 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4873 dma_pool_destroy(ioc->reply_dma_pool);
4874 dexitprintk(ioc,
4875 ioc_info(ioc, "reply_pool(0x%p): free\n",
4876 ioc->reply));
4877 ioc->reply = NULL;
4878 }
4879
4880 if (ioc->reply_free) {
4881 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4882 ioc->reply_free_dma);
4883 dma_pool_destroy(ioc->reply_free_dma_pool);
4884 dexitprintk(ioc,
4885 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4886 ioc->reply_free));
4887 ioc->reply_free = NULL;
4888 }
4889
4890 if (ioc->reply_post) {
4891 dma_alloc_count = DIV_ROUND_UP(count,
4892 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4893 for (i = 0; i < count; i++) {
4894 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4895 && dma_alloc_count) {
4896 if (ioc->reply_post[i].reply_post_free) {
4897 dma_pool_free(
4898 ioc->reply_post_free_dma_pool,
4899 ioc->reply_post[i].reply_post_free,
4900 ioc->reply_post[i].reply_post_free_dma);
4901 dexitprintk(ioc, ioc_info(ioc,
4902 "reply_post_free_pool(0x%p): free\n",
4903 ioc->reply_post[i].reply_post_free));
4904 ioc->reply_post[i].reply_post_free =
4905 NULL;
4906 }
4907 --dma_alloc_count;
4908 }
4909 }
4910 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4911 if (ioc->reply_post_free_array &&
4912 ioc->rdpq_array_enable) {
4913 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4914 ioc->reply_post_free_array,
4915 ioc->reply_post_free_array_dma);
4916 ioc->reply_post_free_array = NULL;
4917 }
4918 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4919 kfree(ioc->reply_post);
4920 }
4921
4922 if (ioc->pcie_sgl_dma_pool) {
4923 for (i = 0; i < ioc->scsiio_depth; i++) {
4924 dma_pool_free(ioc->pcie_sgl_dma_pool,
4925 ioc->pcie_sg_lookup[i].pcie_sgl,
4926 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4927 ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
4928 }
4929 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4930 }
4931 kfree(ioc->pcie_sg_lookup);
4932 ioc->pcie_sg_lookup = NULL;
4933
4934 if (ioc->config_page) {
4935 dexitprintk(ioc,
4936 ioc_info(ioc, "config_page(0x%p): free\n",
4937 ioc->config_page));
4938 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4939 ioc->config_page, ioc->config_page_dma);
4940 }
4941
4942 kfree(ioc->hpr_lookup);
4943 ioc->hpr_lookup = NULL;
4944 kfree(ioc->internal_lookup);
4945 ioc->internal_lookup = NULL;
4946 if (ioc->chain_lookup) {
4947 for (i = 0; i < ioc->scsiio_depth; i++) {
4948 for (j = ioc->chains_per_prp_buffer;
4949 j < ioc->chains_needed_per_io; j++) {
4950 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4951 if (ct && ct->chain_buffer)
4952 dma_pool_free(ioc->chain_dma_pool,
4953 ct->chain_buffer,
4954 ct->chain_buffer_dma);
4955 }
4956 kfree(ioc->chain_lookup[i].chains_per_smid);
4957 }
4958 dma_pool_destroy(ioc->chain_dma_pool);
4959 kfree(ioc->chain_lookup);
4960 ioc->chain_lookup = NULL;
4961 }
4962 }
4963
4964 /**
4965 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4966 * having same upper 32bits in their base memory address.
4967 * @reply_pool_start_address: Base address of a reply queue set
4968 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4969 *
4970 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4971 * memory address, else 0.
4972 */
4973
4974 static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address,u32 pool_sz)4975 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4976 {
4977 long reply_pool_end_address;
4978
4979 reply_pool_end_address = reply_pool_start_address + pool_sz;
4980
4981 if (upper_32_bits(reply_pool_start_address) ==
4982 upper_32_bits(reply_pool_end_address))
4983 return 1;
4984 else
4985 return 0;
4986 }
4987
4988 /**
4989 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
4990 * @ioc: Adapter object
4991 *
4992 * Return: 0 for success, non-zero for failure.
4993 **/
4994 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)4995 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
4996 {
4997 int reduce_sz = 64;
4998
4999 if ((ioc->hba_queue_depth - reduce_sz) >
5000 (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5001 ioc->hba_queue_depth -= reduce_sz;
5002 return 0;
5003 } else
5004 return -ENOMEM;
5005 }
5006
5007 /**
5008 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5009 * for pcie sgl pools.
5010 * @ioc: Adapter object
5011 * @sz: DMA Pool size
5012 * @ct: Chain tracker
5013 * Return: 0 for success, non-zero for failure.
5014 */
5015
5016 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5017 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5018 {
5019 int i = 0, j = 0;
5020 struct chain_tracker *ct;
5021
5022 ioc->pcie_sgl_dma_pool =
5023 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5024 ioc->page_size, 0);
5025 if (!ioc->pcie_sgl_dma_pool) {
5026 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5027 return -ENOMEM;
5028 }
5029
5030 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5031 ioc->chains_per_prp_buffer =
5032 min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5033 for (i = 0; i < ioc->scsiio_depth; i++) {
5034 ioc->pcie_sg_lookup[i].pcie_sgl =
5035 dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5036 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5037 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5038 ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5039 return -EAGAIN;
5040 }
5041
5042 if (!mpt3sas_check_same_4gb_region(
5043 (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5044 ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5045 ioc->pcie_sg_lookup[i].pcie_sgl,
5046 (unsigned long long)
5047 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5048 ioc->use_32bit_dma = true;
5049 return -EAGAIN;
5050 }
5051
5052 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5053 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5054 ct->chain_buffer =
5055 ioc->pcie_sg_lookup[i].pcie_sgl +
5056 (j * ioc->chain_segment_sz);
5057 ct->chain_buffer_dma =
5058 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5059 (j * ioc->chain_segment_sz);
5060 }
5061 }
5062 dinitprintk(ioc, ioc_info(ioc,
5063 "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5064 ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5065 dinitprintk(ioc, ioc_info(ioc,
5066 "Number of chains can fit in a PRP page(%d)\n",
5067 ioc->chains_per_prp_buffer));
5068 return 0;
5069 }
5070
5071 /**
5072 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5073 * for reply queues.
5074 * @ioc: per adapter object
5075 * @sz: DMA Pool size
5076 * Return: 0 for success, non-zero for failure.
5077 */
5078 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)5079 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5080 {
5081 int i = 0;
5082 u32 dma_alloc_count = 0;
5083 int reply_post_free_sz = ioc->reply_post_queue_depth *
5084 sizeof(Mpi2DefaultReplyDescriptor_t);
5085 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5086
5087 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5088 GFP_KERNEL);
5089 if (!ioc->reply_post)
5090 return -ENOMEM;
5091 /*
5092 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5093 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5094 * be within 4GB boundary i.e reply queues in a set must have same
5095 * upper 32-bits in their memory address. so here driver is allocating
5096 * the DMA'able memory for reply queues according.
5097 * Driver uses limitation of
5098 * VENTURA_SERIES to manage INVADER_SERIES as well.
5099 */
5100 dma_alloc_count = DIV_ROUND_UP(count,
5101 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5102 ioc->reply_post_free_dma_pool =
5103 dma_pool_create("reply_post_free pool",
5104 &ioc->pdev->dev, sz, 16, 0);
5105 if (!ioc->reply_post_free_dma_pool)
5106 return -ENOMEM;
5107 for (i = 0; i < count; i++) {
5108 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5109 ioc->reply_post[i].reply_post_free =
5110 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5111 GFP_KERNEL,
5112 &ioc->reply_post[i].reply_post_free_dma);
5113 if (!ioc->reply_post[i].reply_post_free)
5114 return -ENOMEM;
5115 /*
5116 * Each set of RDPQ pool must satisfy 4gb boundary
5117 * restriction.
5118 * 1) Check if allocated resources for RDPQ pool are in
5119 * the same 4GB range.
5120 * 2) If #1 is true, continue with 64 bit DMA.
5121 * 3) If #1 is false, return 1. which means free all the
5122 * resources and set DMA mask to 32 and allocate.
5123 */
5124 if (!mpt3sas_check_same_4gb_region(
5125 (long)ioc->reply_post[i].reply_post_free, sz)) {
5126 dinitprintk(ioc,
5127 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5128 "reply_post_free_dma = (0x%llx)\n",
5129 ioc->reply_post[i].reply_post_free,
5130 (unsigned long long)
5131 ioc->reply_post[i].reply_post_free_dma));
5132 return -EAGAIN;
5133 }
5134 dma_alloc_count--;
5135
5136 } else {
5137 ioc->reply_post[i].reply_post_free =
5138 (Mpi2ReplyDescriptorsUnion_t *)
5139 ((long)ioc->reply_post[i-1].reply_post_free
5140 + reply_post_free_sz);
5141 ioc->reply_post[i].reply_post_free_dma =
5142 (dma_addr_t)
5143 (ioc->reply_post[i-1].reply_post_free_dma +
5144 reply_post_free_sz);
5145 }
5146 }
5147 return 0;
5148 }
5149
5150 /**
5151 * _base_allocate_memory_pools - allocate start of day memory pools
5152 * @ioc: per adapter object
5153 *
5154 * Return: 0 success, anything else error.
5155 */
5156 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)5157 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5158 {
5159 struct mpt3sas_facts *facts;
5160 u16 max_sge_elements;
5161 u16 chains_needed_per_io;
5162 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5163 u32 retry_sz;
5164 u32 rdpq_sz = 0;
5165 u16 max_request_credit, nvme_blocks_needed;
5166 unsigned short sg_tablesize;
5167 u16 sge_size;
5168 int i, j;
5169 int ret = 0, rc = 0;
5170 struct chain_tracker *ct;
5171
5172 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5173
5174
5175 retry_sz = 0;
5176 facts = &ioc->facts;
5177
5178 /* command line tunables for max sgl entries */
5179 if (max_sgl_entries != -1)
5180 sg_tablesize = max_sgl_entries;
5181 else {
5182 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5183 sg_tablesize = MPT2SAS_SG_DEPTH;
5184 else
5185 sg_tablesize = MPT3SAS_SG_DEPTH;
5186 }
5187
5188 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5189 if (reset_devices)
5190 sg_tablesize = min_t(unsigned short, sg_tablesize,
5191 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5192
5193 if (ioc->is_mcpu_endpoint)
5194 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5195 else {
5196 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5197 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5198 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5199 sg_tablesize = min_t(unsigned short, sg_tablesize,
5200 SG_MAX_SEGMENTS);
5201 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5202 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5203 }
5204 ioc->shost->sg_tablesize = sg_tablesize;
5205 }
5206
5207 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5208 (facts->RequestCredit / 4));
5209 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5210 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5211 INTERNAL_SCSIIO_CMDS_COUNT)) {
5212 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5213 facts->RequestCredit);
5214 return -ENOMEM;
5215 }
5216 ioc->internal_depth = 10;
5217 }
5218
5219 ioc->hi_priority_depth = ioc->internal_depth - (5);
5220 /* command line tunables for max controller queue depth */
5221 if (max_queue_depth != -1 && max_queue_depth != 0) {
5222 max_request_credit = min_t(u16, max_queue_depth +
5223 ioc->internal_depth, facts->RequestCredit);
5224 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5225 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5226 } else if (reset_devices)
5227 max_request_credit = min_t(u16, facts->RequestCredit,
5228 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5229 else
5230 max_request_credit = min_t(u16, facts->RequestCredit,
5231 MAX_HBA_QUEUE_DEPTH);
5232
5233 /* Firmware maintains additional facts->HighPriorityCredit number of
5234 * credits for HiPriprity Request messages, so hba queue depth will be
5235 * sum of max_request_credit and high priority queue depth.
5236 */
5237 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5238
5239 /* request frame size */
5240 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5241
5242 /* reply frame size */
5243 ioc->reply_sz = facts->ReplyFrameSize * 4;
5244
5245 /* chain segment size */
5246 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5247 if (facts->IOCMaxChainSegmentSize)
5248 ioc->chain_segment_sz =
5249 facts->IOCMaxChainSegmentSize *
5250 MAX_CHAIN_ELEMT_SZ;
5251 else
5252 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5253 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5254 MAX_CHAIN_ELEMT_SZ;
5255 } else
5256 ioc->chain_segment_sz = ioc->request_sz;
5257
5258 /* calculate the max scatter element size */
5259 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5260
5261 retry_allocation:
5262 total_sz = 0;
5263 /* calculate number of sg elements left over in the 1st frame */
5264 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5265 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5266 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5267
5268 /* now do the same for a chain buffer */
5269 max_sge_elements = ioc->chain_segment_sz - sge_size;
5270 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5271
5272 /*
5273 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5274 */
5275 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5276 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5277 + 1;
5278 if (chains_needed_per_io > facts->MaxChainDepth) {
5279 chains_needed_per_io = facts->MaxChainDepth;
5280 ioc->shost->sg_tablesize = min_t(u16,
5281 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5282 * chains_needed_per_io), ioc->shost->sg_tablesize);
5283 }
5284 ioc->chains_needed_per_io = chains_needed_per_io;
5285
5286 /* reply free queue sizing - taking into account for 64 FW events */
5287 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5288
5289 /* mCPU manage single counters for simplicity */
5290 if (ioc->is_mcpu_endpoint)
5291 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5292 else {
5293 /* calculate reply descriptor post queue depth */
5294 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5295 ioc->reply_free_queue_depth + 1;
5296 /* align the reply post queue on the next 16 count boundary */
5297 if (ioc->reply_post_queue_depth % 16)
5298 ioc->reply_post_queue_depth += 16 -
5299 (ioc->reply_post_queue_depth % 16);
5300 }
5301
5302 if (ioc->reply_post_queue_depth >
5303 facts->MaxReplyDescriptorPostQueueDepth) {
5304 ioc->reply_post_queue_depth =
5305 facts->MaxReplyDescriptorPostQueueDepth -
5306 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5307 ioc->hba_queue_depth =
5308 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5309 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5310 }
5311
5312 ioc_info(ioc,
5313 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5314 "sge_per_io(%d), chains_per_io(%d)\n",
5315 ioc->max_sges_in_main_message,
5316 ioc->max_sges_in_chain_message,
5317 ioc->shost->sg_tablesize,
5318 ioc->chains_needed_per_io);
5319
5320 /* reply post queue, 16 byte align */
5321 reply_post_free_sz = ioc->reply_post_queue_depth *
5322 sizeof(Mpi2DefaultReplyDescriptor_t);
5323 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5324 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5325 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5326 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5327 if (ret == -EAGAIN) {
5328 /*
5329 * Free allocated bad RDPQ memory pools.
5330 * Change dma coherent mask to 32 bit and reallocate RDPQ
5331 */
5332 _base_release_memory_pools(ioc);
5333 ioc->use_32bit_dma = true;
5334 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5335 ioc_err(ioc,
5336 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5337 return -ENODEV;
5338 }
5339 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5340 return -ENOMEM;
5341 } else if (ret == -ENOMEM)
5342 return -ENOMEM;
5343 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5344 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5345 ioc->scsiio_depth = ioc->hba_queue_depth -
5346 ioc->hi_priority_depth - ioc->internal_depth;
5347
5348 /* set the scsi host can_queue depth
5349 * with some internal commands that could be outstanding
5350 */
5351 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5352 dinitprintk(ioc,
5353 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5354 ioc->shost->can_queue));
5355
5356 /* contiguous pool for request and chains, 16 byte align, one extra "
5357 * "frame for smid=0
5358 */
5359 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5360 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5361
5362 /* hi-priority queue */
5363 sz += (ioc->hi_priority_depth * ioc->request_sz);
5364
5365 /* internal queue */
5366 sz += (ioc->internal_depth * ioc->request_sz);
5367
5368 ioc->request_dma_sz = sz;
5369 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5370 &ioc->request_dma, GFP_KERNEL);
5371 if (!ioc->request) {
5372 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5373 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5374 ioc->request_sz, sz / 1024);
5375 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5376 goto out;
5377 retry_sz = 64;
5378 ioc->hba_queue_depth -= retry_sz;
5379 _base_release_memory_pools(ioc);
5380 goto retry_allocation;
5381 }
5382
5383 if (retry_sz)
5384 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5385 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5386 ioc->request_sz, sz / 1024);
5387
5388 /* hi-priority queue */
5389 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5390 ioc->request_sz);
5391 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5392 ioc->request_sz);
5393
5394 /* internal queue */
5395 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5396 ioc->request_sz);
5397 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5398 ioc->request_sz);
5399
5400 ioc_info(ioc,
5401 "request pool(0x%p) - dma(0x%llx): "
5402 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5403 ioc->request, (unsigned long long) ioc->request_dma,
5404 ioc->hba_queue_depth, ioc->request_sz,
5405 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5406
5407 total_sz += sz;
5408
5409 dinitprintk(ioc,
5410 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5411 ioc->request, ioc->scsiio_depth));
5412
5413 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5414 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5415 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5416 if (!ioc->chain_lookup) {
5417 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5418 goto out;
5419 }
5420
5421 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5422 for (i = 0; i < ioc->scsiio_depth; i++) {
5423 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5424 if (!ioc->chain_lookup[i].chains_per_smid) {
5425 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5426 goto out;
5427 }
5428 }
5429
5430 /* initialize hi-priority queue smid's */
5431 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5432 sizeof(struct request_tracker), GFP_KERNEL);
5433 if (!ioc->hpr_lookup) {
5434 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5435 goto out;
5436 }
5437 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5438 dinitprintk(ioc,
5439 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5440 ioc->hi_priority,
5441 ioc->hi_priority_depth, ioc->hi_priority_smid));
5442
5443 /* initialize internal queue smid's */
5444 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5445 sizeof(struct request_tracker), GFP_KERNEL);
5446 if (!ioc->internal_lookup) {
5447 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5448 goto out;
5449 }
5450 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5451 dinitprintk(ioc,
5452 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5453 ioc->internal,
5454 ioc->internal_depth, ioc->internal_smid));
5455 /*
5456 * The number of NVMe page sized blocks needed is:
5457 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5458 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5459 * that is placed in the main message frame. 8 is the size of each PRP
5460 * entry or PRP list pointer entry. 8 is subtracted from page_size
5461 * because of the PRP list pointer entry at the end of a page, so this
5462 * is not counted as a PRP entry. The 1 added page is a round up.
5463 *
5464 * To avoid allocation failures due to the amount of memory that could
5465 * be required for NVMe PRP's, only each set of NVMe blocks will be
5466 * contiguous, so a new set is allocated for each possible I/O.
5467 */
5468
5469 ioc->chains_per_prp_buffer = 0;
5470 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5471 nvme_blocks_needed =
5472 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5473 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5474 nvme_blocks_needed++;
5475
5476 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5477 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5478 if (!ioc->pcie_sg_lookup) {
5479 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5480 goto out;
5481 }
5482 sz = nvme_blocks_needed * ioc->page_size;
5483 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
5484 if (rc == -ENOMEM)
5485 return -ENOMEM;
5486 else if (rc == -EAGAIN)
5487 goto try_32bit_dma;
5488 total_sz += sz * ioc->scsiio_depth;
5489 }
5490
5491 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5492 ioc->chain_segment_sz, 16, 0);
5493 if (!ioc->chain_dma_pool) {
5494 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5495 goto out;
5496 }
5497 for (i = 0; i < ioc->scsiio_depth; i++) {
5498 for (j = ioc->chains_per_prp_buffer;
5499 j < ioc->chains_needed_per_io; j++) {
5500 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5501 ct->chain_buffer = dma_pool_alloc(
5502 ioc->chain_dma_pool, GFP_KERNEL,
5503 &ct->chain_buffer_dma);
5504 if (!ct->chain_buffer) {
5505 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5506 goto out;
5507 }
5508 }
5509 total_sz += ioc->chain_segment_sz;
5510 }
5511
5512 dinitprintk(ioc,
5513 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5514 ioc->chain_depth, ioc->chain_segment_sz,
5515 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5516
5517 /* sense buffers, 4 byte align */
5518 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5519 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5520 4, 0);
5521 if (!ioc->sense_dma_pool) {
5522 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5523 goto out;
5524 }
5525 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5526 &ioc->sense_dma);
5527 if (!ioc->sense) {
5528 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5529 goto out;
5530 }
5531 /* sense buffer requires to be in same 4 gb region.
5532 * Below function will check the same.
5533 * In case of failure, new pci pool will be created with updated
5534 * alignment. Older allocation and pool will be destroyed.
5535 * Alignment will be used such a way that next allocation if
5536 * success, will always meet same 4gb region requirement.
5537 * Actual requirement is not alignment, but we need start and end of
5538 * DMA address must have same upper 32 bit address.
5539 */
5540 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5541 //Release Sense pool & Reallocate
5542 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5543 dma_pool_destroy(ioc->sense_dma_pool);
5544 ioc->sense = NULL;
5545
5546 ioc->sense_dma_pool =
5547 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5548 roundup_pow_of_two(sz), 0);
5549 if (!ioc->sense_dma_pool) {
5550 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5551 goto out;
5552 }
5553 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5554 &ioc->sense_dma);
5555 if (!ioc->sense) {
5556 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5557 goto out;
5558 }
5559 }
5560 ioc_info(ioc,
5561 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5562 "element_size(%d), pool_size(%d kB)\n",
5563 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5564 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5565
5566 total_sz += sz;
5567
5568 /* reply pool, 4 byte align */
5569 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5570 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5571 4, 0);
5572 if (!ioc->reply_dma_pool) {
5573 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5574 goto out;
5575 }
5576 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5577 &ioc->reply_dma);
5578 if (!ioc->reply) {
5579 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5580 goto out;
5581 }
5582 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5583 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5584 dinitprintk(ioc,
5585 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5586 ioc->reply, ioc->reply_free_queue_depth,
5587 ioc->reply_sz, sz / 1024));
5588 dinitprintk(ioc,
5589 ioc_info(ioc, "reply_dma(0x%llx)\n",
5590 (unsigned long long)ioc->reply_dma));
5591 total_sz += sz;
5592
5593 /* reply free queue, 16 byte align */
5594 sz = ioc->reply_free_queue_depth * 4;
5595 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5596 &ioc->pdev->dev, sz, 16, 0);
5597 if (!ioc->reply_free_dma_pool) {
5598 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5599 goto out;
5600 }
5601 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5602 &ioc->reply_free_dma);
5603 if (!ioc->reply_free) {
5604 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5605 goto out;
5606 }
5607 dinitprintk(ioc,
5608 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5609 ioc->reply_free, ioc->reply_free_queue_depth,
5610 4, sz / 1024));
5611 dinitprintk(ioc,
5612 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5613 (unsigned long long)ioc->reply_free_dma));
5614 total_sz += sz;
5615
5616 if (ioc->rdpq_array_enable) {
5617 reply_post_free_array_sz = ioc->reply_queue_count *
5618 sizeof(Mpi2IOCInitRDPQArrayEntry);
5619 ioc->reply_post_free_array_dma_pool =
5620 dma_pool_create("reply_post_free_array pool",
5621 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5622 if (!ioc->reply_post_free_array_dma_pool) {
5623 dinitprintk(ioc,
5624 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5625 goto out;
5626 }
5627 ioc->reply_post_free_array =
5628 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5629 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5630 if (!ioc->reply_post_free_array) {
5631 dinitprintk(ioc,
5632 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5633 goto out;
5634 }
5635 }
5636 ioc->config_page_sz = 512;
5637 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5638 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5639 if (!ioc->config_page) {
5640 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5641 goto out;
5642 }
5643
5644 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5645 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5646 ioc->config_page_sz);
5647 total_sz += ioc->config_page_sz;
5648
5649 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5650 total_sz / 1024);
5651 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5652 ioc->shost->can_queue, facts->RequestCredit);
5653 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5654 ioc->shost->sg_tablesize);
5655 return 0;
5656
5657 try_32bit_dma:
5658 _base_release_memory_pools(ioc);
5659 if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
5660 /* Change dma coherent mask to 32 bit and reallocate */
5661 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5662 pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
5663 pci_name(ioc->pdev));
5664 return -ENODEV;
5665 }
5666 } else if (_base_reduce_hba_queue_depth(ioc) != 0)
5667 return -ENOMEM;
5668 goto retry_allocation;
5669
5670 out:
5671 return -ENOMEM;
5672 }
5673
5674 /**
5675 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5676 * @ioc: Pointer to MPT_ADAPTER structure
5677 * @cooked: Request raw or cooked IOC state
5678 *
5679 * Return: all IOC Doorbell register bits if cooked==0, else just the
5680 * Doorbell bits in MPI_IOC_STATE_MASK.
5681 */
5682 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)5683 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5684 {
5685 u32 s, sc;
5686
5687 s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
5688 sc = s & MPI2_IOC_STATE_MASK;
5689 return cooked ? sc : s;
5690 }
5691
5692 /**
5693 * _base_wait_on_iocstate - waiting on a particular ioc state
5694 * @ioc: ?
5695 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5696 * @timeout: timeout in second
5697 *
5698 * Return: 0 for success, non-zero for failure.
5699 */
5700 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)5701 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5702 {
5703 u32 count, cntdn;
5704 u32 current_state;
5705
5706 count = 0;
5707 cntdn = 1000 * timeout;
5708 do {
5709 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5710 if (current_state == ioc_state)
5711 return 0;
5712 if (count && current_state == MPI2_IOC_STATE_FAULT)
5713 break;
5714 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5715 break;
5716
5717 usleep_range(1000, 1500);
5718 count++;
5719 } while (--cntdn);
5720
5721 return current_state;
5722 }
5723
5724 /**
5725 * _base_dump_reg_set - This function will print hexdump of register set.
5726 * @ioc: per adapter object
5727 *
5728 * Returns nothing.
5729 */
5730 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)5731 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5732 {
5733 unsigned int i, sz = 256;
5734 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5735
5736 ioc_info(ioc, "System Register set:\n");
5737 for (i = 0; i < (sz / sizeof(u32)); i++)
5738 pr_info("%08x: %08x\n", (i * 4), readl(®[i]));
5739 }
5740
5741 /**
5742 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5743 * a write to the doorbell)
5744 * @ioc: per adapter object
5745 * @timeout: timeout in seconds
5746 *
5747 * Return: 0 for success, non-zero for failure.
5748 *
5749 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5750 */
5751
5752 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5753 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5754 {
5755 u32 cntdn, count;
5756 u32 int_status;
5757
5758 count = 0;
5759 cntdn = 1000 * timeout;
5760 do {
5761 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5762 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5763 dhsprintk(ioc,
5764 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5765 __func__, count, timeout));
5766 return 0;
5767 }
5768
5769 usleep_range(1000, 1500);
5770 count++;
5771 } while (--cntdn);
5772
5773 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5774 __func__, count, int_status);
5775 return -EFAULT;
5776 }
5777
5778 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)5779 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5780 {
5781 u32 cntdn, count;
5782 u32 int_status;
5783
5784 count = 0;
5785 cntdn = 2000 * timeout;
5786 do {
5787 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5788 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5789 dhsprintk(ioc,
5790 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5791 __func__, count, timeout));
5792 return 0;
5793 }
5794
5795 udelay(500);
5796 count++;
5797 } while (--cntdn);
5798
5799 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5800 __func__, count, int_status);
5801 return -EFAULT;
5802
5803 }
5804
5805 /**
5806 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5807 * @ioc: per adapter object
5808 * @timeout: timeout in second
5809 *
5810 * Return: 0 for success, non-zero for failure.
5811 *
5812 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5813 * doorbell.
5814 */
5815 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)5816 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5817 {
5818 u32 cntdn, count;
5819 u32 int_status;
5820 u32 doorbell;
5821
5822 count = 0;
5823 cntdn = 1000 * timeout;
5824 do {
5825 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5826 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5827 dhsprintk(ioc,
5828 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5829 __func__, count, timeout));
5830 return 0;
5831 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5832 doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
5833 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5834 MPI2_IOC_STATE_FAULT) {
5835 mpt3sas_print_fault_code(ioc, doorbell);
5836 return -EFAULT;
5837 }
5838 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5839 MPI2_IOC_STATE_COREDUMP) {
5840 mpt3sas_print_coredump_info(ioc, doorbell);
5841 return -EFAULT;
5842 }
5843 } else if (int_status == 0xFFFFFFFF)
5844 goto out;
5845
5846 usleep_range(1000, 1500);
5847 count++;
5848 } while (--cntdn);
5849
5850 out:
5851 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5852 __func__, count, int_status);
5853 return -EFAULT;
5854 }
5855
5856 /**
5857 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5858 * @ioc: per adapter object
5859 * @timeout: timeout in second
5860 *
5861 * Return: 0 for success, non-zero for failure.
5862 */
5863 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)5864 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5865 {
5866 u32 cntdn, count;
5867 u32 doorbell_reg;
5868
5869 count = 0;
5870 cntdn = 1000 * timeout;
5871 do {
5872 doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
5873 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5874 dhsprintk(ioc,
5875 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5876 __func__, count, timeout));
5877 return 0;
5878 }
5879
5880 usleep_range(1000, 1500);
5881 count++;
5882 } while (--cntdn);
5883
5884 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5885 __func__, count, doorbell_reg);
5886 return -EFAULT;
5887 }
5888
5889 /**
5890 * _base_send_ioc_reset - send doorbell reset
5891 * @ioc: per adapter object
5892 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5893 * @timeout: timeout in second
5894 *
5895 * Return: 0 for success, non-zero for failure.
5896 */
5897 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)5898 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5899 {
5900 u32 ioc_state;
5901 int r = 0;
5902 unsigned long flags;
5903
5904 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5905 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5906 return -EFAULT;
5907 }
5908
5909 if (!(ioc->facts.IOCCapabilities &
5910 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5911 return -EFAULT;
5912
5913 ioc_info(ioc, "sending message unit reset !!\n");
5914
5915 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5916 &ioc->chip->Doorbell);
5917 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5918 r = -EFAULT;
5919 goto out;
5920 }
5921
5922 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5923 if (ioc_state) {
5924 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5925 __func__, ioc_state);
5926 r = -EFAULT;
5927 goto out;
5928 }
5929 out:
5930 if (r != 0) {
5931 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5932 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5933 /*
5934 * Wait for IOC state CoreDump to clear only during
5935 * HBA initialization & release time.
5936 */
5937 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5938 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5939 ioc->fault_reset_work_q == NULL)) {
5940 spin_unlock_irqrestore(
5941 &ioc->ioc_reset_in_progress_lock, flags);
5942 mpt3sas_print_coredump_info(ioc, ioc_state);
5943 mpt3sas_base_wait_for_coredump_completion(ioc,
5944 __func__);
5945 spin_lock_irqsave(
5946 &ioc->ioc_reset_in_progress_lock, flags);
5947 }
5948 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5949 }
5950 ioc_info(ioc, "message unit reset: %s\n",
5951 r == 0 ? "SUCCESS" : "FAILED");
5952 return r;
5953 }
5954
5955 /**
5956 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5957 * @ioc: per adapter object
5958 * @timeout: timeout in seconds
5959 *
5960 * Return: Waits up to timeout seconds for the IOC to
5961 * become operational. Returns 0 if IOC is present
5962 * and operational; otherwise returns -EFAULT.
5963 */
5964
5965 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)5966 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5967 {
5968 int wait_state_count = 0;
5969 u32 ioc_state;
5970
5971 do {
5972 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5973 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5974 break;
5975 ssleep(1);
5976 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5977 __func__, ++wait_state_count);
5978 } while (--timeout);
5979 if (!timeout) {
5980 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5981 return -EFAULT;
5982 }
5983 if (wait_state_count)
5984 ioc_info(ioc, "ioc is operational\n");
5985 return 0;
5986 }
5987
5988 /**
5989 * _base_handshake_req_reply_wait - send request thru doorbell interface
5990 * @ioc: per adapter object
5991 * @request_bytes: request length
5992 * @request: pointer having request payload
5993 * @reply_bytes: reply length
5994 * @reply: pointer to reply payload
5995 * @timeout: timeout in second
5996 *
5997 * Return: 0 for success, non-zero for failure.
5998 */
5999 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)6000 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6001 u32 *request, int reply_bytes, u16 *reply, int timeout)
6002 {
6003 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6004 int i;
6005 u8 failed;
6006 __le32 *mfp;
6007
6008 /* make sure doorbell is not in use */
6009 if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6010 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6011 return -EFAULT;
6012 }
6013
6014 /* clear pending doorbell interrupts from previous state changes */
6015 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6016 MPI2_HIS_IOC2SYS_DB_STATUS)
6017 writel(0, &ioc->chip->HostInterruptStatus);
6018
6019 /* send message to ioc */
6020 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6021 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6022 &ioc->chip->Doorbell);
6023
6024 if ((_base_spin_on_doorbell_int(ioc, 5))) {
6025 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6026 __LINE__);
6027 return -EFAULT;
6028 }
6029 writel(0, &ioc->chip->HostInterruptStatus);
6030
6031 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6032 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6033 __LINE__);
6034 return -EFAULT;
6035 }
6036
6037 /* send message 32-bits at a time */
6038 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6039 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6040 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6041 failed = 1;
6042 }
6043
6044 if (failed) {
6045 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6046 __LINE__);
6047 return -EFAULT;
6048 }
6049
6050 /* now wait for the reply */
6051 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6052 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6053 __LINE__);
6054 return -EFAULT;
6055 }
6056
6057 /* read the first two 16-bits, it gives the total length of the reply */
6058 reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6059 & MPI2_DOORBELL_DATA_MASK);
6060 writel(0, &ioc->chip->HostInterruptStatus);
6061 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6062 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6063 __LINE__);
6064 return -EFAULT;
6065 }
6066 reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6067 & MPI2_DOORBELL_DATA_MASK);
6068 writel(0, &ioc->chip->HostInterruptStatus);
6069
6070 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6071 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6072 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6073 __LINE__);
6074 return -EFAULT;
6075 }
6076 if (i >= reply_bytes/2) /* overflow case */
6077 ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6078 else
6079 reply[i] = le16_to_cpu(
6080 ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
6081 & MPI2_DOORBELL_DATA_MASK);
6082 writel(0, &ioc->chip->HostInterruptStatus);
6083 }
6084
6085 _base_wait_for_doorbell_int(ioc, 5);
6086 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6087 dhsprintk(ioc,
6088 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6089 __LINE__));
6090 }
6091 writel(0, &ioc->chip->HostInterruptStatus);
6092
6093 if (ioc->logging_level & MPT_DEBUG_INIT) {
6094 mfp = (__le32 *)reply;
6095 pr_info("\toffset:data\n");
6096 for (i = 0; i < reply_bytes/4; i++)
6097 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6098 le32_to_cpu(mfp[i]));
6099 }
6100 return 0;
6101 }
6102
6103 /**
6104 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6105 * @ioc: per adapter object
6106 * @mpi_reply: the reply payload from FW
6107 * @mpi_request: the request payload sent to FW
6108 *
6109 * The SAS IO Unit Control Request message allows the host to perform low-level
6110 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6111 * to obtain the IOC assigned device handles for a device if it has other
6112 * identifying information about the device, in addition allows the host to
6113 * remove IOC resources associated with the device.
6114 *
6115 * Return: 0 for success, non-zero for failure.
6116 */
6117 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)6118 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6119 Mpi2SasIoUnitControlReply_t *mpi_reply,
6120 Mpi2SasIoUnitControlRequest_t *mpi_request)
6121 {
6122 u16 smid;
6123 u8 issue_reset = 0;
6124 int rc;
6125 void *request;
6126
6127 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6128
6129 mutex_lock(&ioc->base_cmds.mutex);
6130
6131 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6132 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6133 rc = -EAGAIN;
6134 goto out;
6135 }
6136
6137 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6138 if (rc)
6139 goto out;
6140
6141 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6142 if (!smid) {
6143 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6144 rc = -EAGAIN;
6145 goto out;
6146 }
6147
6148 rc = 0;
6149 ioc->base_cmds.status = MPT3_CMD_PENDING;
6150 request = mpt3sas_base_get_msg_frame(ioc, smid);
6151 ioc->base_cmds.smid = smid;
6152 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6153 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6154 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6155 ioc->ioc_link_reset_in_progress = 1;
6156 init_completion(&ioc->base_cmds.done);
6157 ioc->put_smid_default(ioc, smid);
6158 wait_for_completion_timeout(&ioc->base_cmds.done,
6159 msecs_to_jiffies(10000));
6160 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6161 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6162 ioc->ioc_link_reset_in_progress)
6163 ioc->ioc_link_reset_in_progress = 0;
6164 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6165 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6166 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6167 issue_reset);
6168 goto issue_host_reset;
6169 }
6170 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6171 memcpy(mpi_reply, ioc->base_cmds.reply,
6172 sizeof(Mpi2SasIoUnitControlReply_t));
6173 else
6174 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6175 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6176 goto out;
6177
6178 issue_host_reset:
6179 if (issue_reset)
6180 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6181 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6182 rc = -EFAULT;
6183 out:
6184 mutex_unlock(&ioc->base_cmds.mutex);
6185 return rc;
6186 }
6187
6188 /**
6189 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6190 * @ioc: per adapter object
6191 * @mpi_reply: the reply payload from FW
6192 * @mpi_request: the request payload sent to FW
6193 *
6194 * The SCSI Enclosure Processor request message causes the IOC to
6195 * communicate with SES devices to control LED status signals.
6196 *
6197 * Return: 0 for success, non-zero for failure.
6198 */
6199 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)6200 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6201 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6202 {
6203 u16 smid;
6204 u8 issue_reset = 0;
6205 int rc;
6206 void *request;
6207
6208 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6209
6210 mutex_lock(&ioc->base_cmds.mutex);
6211
6212 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6213 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6214 rc = -EAGAIN;
6215 goto out;
6216 }
6217
6218 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6219 if (rc)
6220 goto out;
6221
6222 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6223 if (!smid) {
6224 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6225 rc = -EAGAIN;
6226 goto out;
6227 }
6228
6229 rc = 0;
6230 ioc->base_cmds.status = MPT3_CMD_PENDING;
6231 request = mpt3sas_base_get_msg_frame(ioc, smid);
6232 ioc->base_cmds.smid = smid;
6233 memset(request, 0, ioc->request_sz);
6234 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6235 init_completion(&ioc->base_cmds.done);
6236 ioc->put_smid_default(ioc, smid);
6237 wait_for_completion_timeout(&ioc->base_cmds.done,
6238 msecs_to_jiffies(10000));
6239 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6240 mpt3sas_check_cmd_timeout(ioc,
6241 ioc->base_cmds.status, mpi_request,
6242 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6243 goto issue_host_reset;
6244 }
6245 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6246 memcpy(mpi_reply, ioc->base_cmds.reply,
6247 sizeof(Mpi2SepReply_t));
6248 else
6249 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6250 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6251 goto out;
6252
6253 issue_host_reset:
6254 if (issue_reset)
6255 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6256 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6257 rc = -EFAULT;
6258 out:
6259 mutex_unlock(&ioc->base_cmds.mutex);
6260 return rc;
6261 }
6262
6263 /**
6264 * _base_get_port_facts - obtain port facts reply and save in ioc
6265 * @ioc: per adapter object
6266 * @port: ?
6267 *
6268 * Return: 0 for success, non-zero for failure.
6269 */
6270 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)6271 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6272 {
6273 Mpi2PortFactsRequest_t mpi_request;
6274 Mpi2PortFactsReply_t mpi_reply;
6275 struct mpt3sas_port_facts *pfacts;
6276 int mpi_reply_sz, mpi_request_sz, r;
6277
6278 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6279
6280 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6281 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6282 memset(&mpi_request, 0, mpi_request_sz);
6283 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6284 mpi_request.PortNumber = port;
6285 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6286 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6287
6288 if (r != 0) {
6289 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6290 return r;
6291 }
6292
6293 pfacts = &ioc->pfacts[port];
6294 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6295 pfacts->PortNumber = mpi_reply.PortNumber;
6296 pfacts->VP_ID = mpi_reply.VP_ID;
6297 pfacts->VF_ID = mpi_reply.VF_ID;
6298 pfacts->MaxPostedCmdBuffers =
6299 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6300
6301 return 0;
6302 }
6303
6304 /**
6305 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6306 * @ioc: per adapter object
6307 * @timeout:
6308 *
6309 * Return: 0 for success, non-zero for failure.
6310 */
6311 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)6312 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6313 {
6314 u32 ioc_state;
6315 int rc;
6316
6317 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6318
6319 if (ioc->pci_error_recovery) {
6320 dfailprintk(ioc,
6321 ioc_info(ioc, "%s: host in pci error recovery\n",
6322 __func__));
6323 return -EFAULT;
6324 }
6325
6326 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6327 dhsprintk(ioc,
6328 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6329 __func__, ioc_state));
6330
6331 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6332 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6333 return 0;
6334
6335 if (ioc_state & MPI2_DOORBELL_USED) {
6336 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6337 goto issue_diag_reset;
6338 }
6339
6340 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6341 mpt3sas_print_fault_code(ioc, ioc_state &
6342 MPI2_DOORBELL_DATA_MASK);
6343 goto issue_diag_reset;
6344 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6345 MPI2_IOC_STATE_COREDUMP) {
6346 ioc_info(ioc,
6347 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6348 __func__, ioc_state);
6349 return -EFAULT;
6350 }
6351
6352 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6353 if (ioc_state) {
6354 dfailprintk(ioc,
6355 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6356 __func__, ioc_state));
6357 return -EFAULT;
6358 }
6359
6360 issue_diag_reset:
6361 rc = _base_diag_reset(ioc);
6362 return rc;
6363 }
6364
6365 /**
6366 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6367 * @ioc: per adapter object
6368 *
6369 * Return: 0 for success, non-zero for failure.
6370 */
6371 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)6372 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6373 {
6374 Mpi2IOCFactsRequest_t mpi_request;
6375 Mpi2IOCFactsReply_t mpi_reply;
6376 struct mpt3sas_facts *facts;
6377 int mpi_reply_sz, mpi_request_sz, r;
6378
6379 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6380
6381 r = _base_wait_for_iocstate(ioc, 10);
6382 if (r) {
6383 dfailprintk(ioc,
6384 ioc_info(ioc, "%s: failed getting to correct state\n",
6385 __func__));
6386 return r;
6387 }
6388 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6389 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6390 memset(&mpi_request, 0, mpi_request_sz);
6391 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6392 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6393 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6394
6395 if (r != 0) {
6396 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6397 return r;
6398 }
6399
6400 facts = &ioc->facts;
6401 memset(facts, 0, sizeof(struct mpt3sas_facts));
6402 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6403 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6404 facts->VP_ID = mpi_reply.VP_ID;
6405 facts->VF_ID = mpi_reply.VF_ID;
6406 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6407 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6408 facts->WhoInit = mpi_reply.WhoInit;
6409 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6410 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6411 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6412 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6413 ioc->combined_reply_queue = 0;
6414 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6415 facts->MaxReplyDescriptorPostQueueDepth =
6416 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6417 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6418 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6419 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6420 ioc->ir_firmware = 1;
6421 if ((facts->IOCCapabilities &
6422 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6423 ioc->rdpq_array_capable = 1;
6424 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6425 && ioc->is_aero_ioc)
6426 ioc->atomic_desc_capable = 1;
6427 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6428 facts->IOCRequestFrameSize =
6429 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6430 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6431 facts->IOCMaxChainSegmentSize =
6432 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6433 }
6434 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6435 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6436 ioc->shost->max_id = -1;
6437 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6438 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6439 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6440 facts->HighPriorityCredit =
6441 le16_to_cpu(mpi_reply.HighPriorityCredit);
6442 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6443 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6444 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6445
6446 /*
6447 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6448 */
6449 ioc->page_size = 1 << facts->CurrentHostPageSize;
6450 if (ioc->page_size == 1) {
6451 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6452 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6453 }
6454 dinitprintk(ioc,
6455 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6456 facts->CurrentHostPageSize));
6457
6458 dinitprintk(ioc,
6459 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6460 facts->RequestCredit, facts->MaxChainDepth));
6461 dinitprintk(ioc,
6462 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6463 facts->IOCRequestFrameSize * 4,
6464 facts->ReplyFrameSize * 4));
6465 return 0;
6466 }
6467
6468 /**
6469 * _base_send_ioc_init - send ioc_init to firmware
6470 * @ioc: per adapter object
6471 *
6472 * Return: 0 for success, non-zero for failure.
6473 */
6474 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)6475 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6476 {
6477 Mpi2IOCInitRequest_t mpi_request;
6478 Mpi2IOCInitReply_t mpi_reply;
6479 int i, r = 0;
6480 ktime_t current_time;
6481 u16 ioc_status;
6482 u32 reply_post_free_array_sz = 0;
6483
6484 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6485
6486 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6487 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6488 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6489 mpi_request.VF_ID = 0; /* TODO */
6490 mpi_request.VP_ID = 0;
6491 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6492 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6493 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6494
6495 if (_base_is_controller_msix_enabled(ioc))
6496 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6497 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6498 mpi_request.ReplyDescriptorPostQueueDepth =
6499 cpu_to_le16(ioc->reply_post_queue_depth);
6500 mpi_request.ReplyFreeQueueDepth =
6501 cpu_to_le16(ioc->reply_free_queue_depth);
6502
6503 mpi_request.SenseBufferAddressHigh =
6504 cpu_to_le32((u64)ioc->sense_dma >> 32);
6505 mpi_request.SystemReplyAddressHigh =
6506 cpu_to_le32((u64)ioc->reply_dma >> 32);
6507 mpi_request.SystemRequestFrameBaseAddress =
6508 cpu_to_le64((u64)ioc->request_dma);
6509 mpi_request.ReplyFreeQueueAddress =
6510 cpu_to_le64((u64)ioc->reply_free_dma);
6511
6512 if (ioc->rdpq_array_enable) {
6513 reply_post_free_array_sz = ioc->reply_queue_count *
6514 sizeof(Mpi2IOCInitRDPQArrayEntry);
6515 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6516 for (i = 0; i < ioc->reply_queue_count; i++)
6517 ioc->reply_post_free_array[i].RDPQBaseAddress =
6518 cpu_to_le64(
6519 (u64)ioc->reply_post[i].reply_post_free_dma);
6520 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6521 mpi_request.ReplyDescriptorPostQueueAddress =
6522 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6523 } else {
6524 mpi_request.ReplyDescriptorPostQueueAddress =
6525 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6526 }
6527
6528 /*
6529 * Set the flag to enable CoreDump state feature in IOC firmware.
6530 */
6531 mpi_request.ConfigurationFlags |=
6532 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6533
6534 /* This time stamp specifies number of milliseconds
6535 * since epoch ~ midnight January 1, 1970.
6536 */
6537 current_time = ktime_get_real();
6538 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6539
6540 if (ioc->logging_level & MPT_DEBUG_INIT) {
6541 __le32 *mfp;
6542 int i;
6543
6544 mfp = (__le32 *)&mpi_request;
6545 ioc_info(ioc, "\toffset:data\n");
6546 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6547 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6548 le32_to_cpu(mfp[i]));
6549 }
6550
6551 r = _base_handshake_req_reply_wait(ioc,
6552 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6553 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6554
6555 if (r != 0) {
6556 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6557 return r;
6558 }
6559
6560 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6561 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6562 mpi_reply.IOCLogInfo) {
6563 ioc_err(ioc, "%s: failed\n", __func__);
6564 r = -EIO;
6565 }
6566
6567 return r;
6568 }
6569
6570 /**
6571 * mpt3sas_port_enable_done - command completion routine for port enable
6572 * @ioc: per adapter object
6573 * @smid: system request message index
6574 * @msix_index: MSIX table index supplied by the OS
6575 * @reply: reply message frame(lower 32bit addr)
6576 *
6577 * Return: 1 meaning mf should be freed from _base_interrupt
6578 * 0 means the mf is freed from this function.
6579 */
6580 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)6581 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6582 u32 reply)
6583 {
6584 MPI2DefaultReply_t *mpi_reply;
6585 u16 ioc_status;
6586
6587 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6588 return 1;
6589
6590 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6591 if (!mpi_reply)
6592 return 1;
6593
6594 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6595 return 1;
6596
6597 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6598 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6599 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6600 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6601 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6602 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6603 ioc->port_enable_failed = 1;
6604
6605 if (ioc->is_driver_loading) {
6606 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6607 mpt3sas_port_enable_complete(ioc);
6608 return 1;
6609 } else {
6610 ioc->start_scan_failed = ioc_status;
6611 ioc->start_scan = 0;
6612 return 1;
6613 }
6614 }
6615 complete(&ioc->port_enable_cmds.done);
6616 return 1;
6617 }
6618
6619 /**
6620 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6621 * @ioc: per adapter object
6622 *
6623 * Return: 0 for success, non-zero for failure.
6624 */
6625 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)6626 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6627 {
6628 Mpi2PortEnableRequest_t *mpi_request;
6629 Mpi2PortEnableReply_t *mpi_reply;
6630 int r = 0;
6631 u16 smid;
6632 u16 ioc_status;
6633
6634 ioc_info(ioc, "sending port enable !!\n");
6635
6636 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6637 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6638 return -EAGAIN;
6639 }
6640
6641 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6642 if (!smid) {
6643 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6644 return -EAGAIN;
6645 }
6646
6647 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6648 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6649 ioc->port_enable_cmds.smid = smid;
6650 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6651 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6652
6653 init_completion(&ioc->port_enable_cmds.done);
6654 ioc->put_smid_default(ioc, smid);
6655 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6656 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6657 ioc_err(ioc, "%s: timeout\n", __func__);
6658 _debug_dump_mf(mpi_request,
6659 sizeof(Mpi2PortEnableRequest_t)/4);
6660 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6661 r = -EFAULT;
6662 else
6663 r = -ETIME;
6664 goto out;
6665 }
6666
6667 mpi_reply = ioc->port_enable_cmds.reply;
6668 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6669 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6670 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6671 __func__, ioc_status);
6672 r = -EFAULT;
6673 goto out;
6674 }
6675
6676 out:
6677 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6678 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6679 return r;
6680 }
6681
6682 /**
6683 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6684 * @ioc: per adapter object
6685 *
6686 * Return: 0 for success, non-zero for failure.
6687 */
6688 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)6689 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6690 {
6691 Mpi2PortEnableRequest_t *mpi_request;
6692 u16 smid;
6693
6694 ioc_info(ioc, "sending port enable !!\n");
6695
6696 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6697 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6698 return -EAGAIN;
6699 }
6700
6701 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6702 if (!smid) {
6703 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6704 return -EAGAIN;
6705 }
6706
6707 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6708 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6709 ioc->port_enable_cmds.smid = smid;
6710 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6711 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6712
6713 ioc->put_smid_default(ioc, smid);
6714 return 0;
6715 }
6716
6717 /**
6718 * _base_determine_wait_on_discovery - desposition
6719 * @ioc: per adapter object
6720 *
6721 * Decide whether to wait on discovery to complete. Used to either
6722 * locate boot device, or report volumes ahead of physical devices.
6723 *
6724 * Return: 1 for wait, 0 for don't wait.
6725 */
6726 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)6727 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6728 {
6729 /* We wait for discovery to complete if IR firmware is loaded.
6730 * The sas topology events arrive before PD events, so we need time to
6731 * turn on the bit in ioc->pd_handles to indicate PD
6732 * Also, it maybe required to report Volumes ahead of physical
6733 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6734 */
6735 if (ioc->ir_firmware)
6736 return 1;
6737
6738 /* if no Bios, then we don't need to wait */
6739 if (!ioc->bios_pg3.BiosVersion)
6740 return 0;
6741
6742 /* Bios is present, then we drop down here.
6743 *
6744 * If there any entries in the Bios Page 2, then we wait
6745 * for discovery to complete.
6746 */
6747
6748 /* Current Boot Device */
6749 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6750 MPI2_BIOSPAGE2_FORM_MASK) ==
6751 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6752 /* Request Boot Device */
6753 (ioc->bios_pg2.ReqBootDeviceForm &
6754 MPI2_BIOSPAGE2_FORM_MASK) ==
6755 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6756 /* Alternate Request Boot Device */
6757 (ioc->bios_pg2.ReqAltBootDeviceForm &
6758 MPI2_BIOSPAGE2_FORM_MASK) ==
6759 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6760 return 0;
6761
6762 return 1;
6763 }
6764
6765 /**
6766 * _base_unmask_events - turn on notification for this event
6767 * @ioc: per adapter object
6768 * @event: firmware event
6769 *
6770 * The mask is stored in ioc->event_masks.
6771 */
6772 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)6773 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6774 {
6775 u32 desired_event;
6776
6777 if (event >= 128)
6778 return;
6779
6780 desired_event = (1 << (event % 32));
6781
6782 if (event < 32)
6783 ioc->event_masks[0] &= ~desired_event;
6784 else if (event < 64)
6785 ioc->event_masks[1] &= ~desired_event;
6786 else if (event < 96)
6787 ioc->event_masks[2] &= ~desired_event;
6788 else if (event < 128)
6789 ioc->event_masks[3] &= ~desired_event;
6790 }
6791
6792 /**
6793 * _base_event_notification - send event notification
6794 * @ioc: per adapter object
6795 *
6796 * Return: 0 for success, non-zero for failure.
6797 */
6798 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)6799 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6800 {
6801 Mpi2EventNotificationRequest_t *mpi_request;
6802 u16 smid;
6803 int r = 0;
6804 int i;
6805
6806 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6807
6808 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6809 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6810 return -EAGAIN;
6811 }
6812
6813 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6814 if (!smid) {
6815 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6816 return -EAGAIN;
6817 }
6818 ioc->base_cmds.status = MPT3_CMD_PENDING;
6819 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6820 ioc->base_cmds.smid = smid;
6821 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6822 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6823 mpi_request->VF_ID = 0; /* TODO */
6824 mpi_request->VP_ID = 0;
6825 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6826 mpi_request->EventMasks[i] =
6827 cpu_to_le32(ioc->event_masks[i]);
6828 init_completion(&ioc->base_cmds.done);
6829 ioc->put_smid_default(ioc, smid);
6830 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6831 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6832 ioc_err(ioc, "%s: timeout\n", __func__);
6833 _debug_dump_mf(mpi_request,
6834 sizeof(Mpi2EventNotificationRequest_t)/4);
6835 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6836 r = -EFAULT;
6837 else
6838 r = -ETIME;
6839 } else
6840 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6841 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6842 return r;
6843 }
6844
6845 /**
6846 * mpt3sas_base_validate_event_type - validating event types
6847 * @ioc: per adapter object
6848 * @event_type: firmware event
6849 *
6850 * This will turn on firmware event notification when application
6851 * ask for that event. We don't mask events that are already enabled.
6852 */
6853 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)6854 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6855 {
6856 int i, j;
6857 u32 event_mask, desired_event;
6858 u8 send_update_to_fw;
6859
6860 for (i = 0, send_update_to_fw = 0; i <
6861 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6862 event_mask = ~event_type[i];
6863 desired_event = 1;
6864 for (j = 0; j < 32; j++) {
6865 if (!(event_mask & desired_event) &&
6866 (ioc->event_masks[i] & desired_event)) {
6867 ioc->event_masks[i] &= ~desired_event;
6868 send_update_to_fw = 1;
6869 }
6870 desired_event = (desired_event << 1);
6871 }
6872 }
6873
6874 if (!send_update_to_fw)
6875 return;
6876
6877 mutex_lock(&ioc->base_cmds.mutex);
6878 _base_event_notification(ioc);
6879 mutex_unlock(&ioc->base_cmds.mutex);
6880 }
6881
6882 /**
6883 * _base_diag_reset - the "big hammer" start of day reset
6884 * @ioc: per adapter object
6885 *
6886 * Return: 0 for success, non-zero for failure.
6887 */
6888 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)6889 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6890 {
6891 u32 host_diagnostic;
6892 u32 ioc_state;
6893 u32 count;
6894 u32 hcb_size;
6895
6896 ioc_info(ioc, "sending diag reset !!\n");
6897
6898 pci_cfg_access_lock(ioc->pdev);
6899
6900 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6901
6902 count = 0;
6903 do {
6904 /* Write magic sequence to WriteSequence register
6905 * Loop until in diagnostic mode
6906 */
6907 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6908 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6909 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6910 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6911 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6912 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6913 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6914 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6915
6916 /* wait 100 msec */
6917 msleep(100);
6918
6919 if (count++ > 20) {
6920 ioc_info(ioc,
6921 "Stop writing magic sequence after 20 retries\n");
6922 _base_dump_reg_set(ioc);
6923 goto out;
6924 }
6925
6926 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
6927 drsprintk(ioc,
6928 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6929 count, host_diagnostic));
6930
6931 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6932
6933 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6934
6935 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6936 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6937 &ioc->chip->HostDiagnostic);
6938
6939 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6940 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6941
6942 /* Approximately 300 second max wait */
6943 for (count = 0; count < (300000000 /
6944 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6945
6946 host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
6947
6948 if (host_diagnostic == 0xFFFFFFFF) {
6949 ioc_info(ioc,
6950 "Invalid host diagnostic register value\n");
6951 _base_dump_reg_set(ioc);
6952 goto out;
6953 }
6954 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6955 break;
6956
6957 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6958 }
6959
6960 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6961
6962 drsprintk(ioc,
6963 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6964 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6965 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6966 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6967
6968 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6969 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6970 &ioc->chip->HCBSize);
6971 }
6972
6973 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6974 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6975 &ioc->chip->HostDiagnostic);
6976
6977 drsprintk(ioc,
6978 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6979 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6980
6981 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6982 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6983 if (ioc_state) {
6984 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6985 __func__, ioc_state);
6986 _base_dump_reg_set(ioc);
6987 goto out;
6988 }
6989
6990 pci_cfg_access_unlock(ioc->pdev);
6991 ioc_info(ioc, "diag reset: SUCCESS\n");
6992 return 0;
6993
6994 out:
6995 pci_cfg_access_unlock(ioc->pdev);
6996 ioc_err(ioc, "diag reset: FAILED\n");
6997 return -EFAULT;
6998 }
6999
7000 /**
7001 * _base_make_ioc_ready - put controller in READY state
7002 * @ioc: per adapter object
7003 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7004 *
7005 * Return: 0 for success, non-zero for failure.
7006 */
7007 static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7008 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7009 {
7010 u32 ioc_state;
7011 int rc;
7012 int count;
7013
7014 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7015
7016 if (ioc->pci_error_recovery)
7017 return 0;
7018
7019 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7020 dhsprintk(ioc,
7021 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7022 __func__, ioc_state));
7023
7024 /* if in RESET state, it should move to READY state shortly */
7025 count = 0;
7026 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7027 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7028 MPI2_IOC_STATE_READY) {
7029 if (count++ == 10) {
7030 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7031 __func__, ioc_state);
7032 return -EFAULT;
7033 }
7034 ssleep(1);
7035 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7036 }
7037 }
7038
7039 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7040 return 0;
7041
7042 if (ioc_state & MPI2_DOORBELL_USED) {
7043 ioc_info(ioc, "unexpected doorbell active!\n");
7044 goto issue_diag_reset;
7045 }
7046
7047 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7048 mpt3sas_print_fault_code(ioc, ioc_state &
7049 MPI2_DOORBELL_DATA_MASK);
7050 goto issue_diag_reset;
7051 }
7052
7053 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7054 /*
7055 * if host reset is invoked while watch dog thread is waiting
7056 * for IOC state to be changed to Fault state then driver has
7057 * to wait here for CoreDump state to clear otherwise reset
7058 * will be issued to the FW and FW move the IOC state to
7059 * reset state without copying the FW logs to coredump region.
7060 */
7061 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7062 mpt3sas_print_coredump_info(ioc, ioc_state &
7063 MPI2_DOORBELL_DATA_MASK);
7064 mpt3sas_base_wait_for_coredump_completion(ioc,
7065 __func__);
7066 }
7067 goto issue_diag_reset;
7068 }
7069
7070 if (type == FORCE_BIG_HAMMER)
7071 goto issue_diag_reset;
7072
7073 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7074 if (!(_base_send_ioc_reset(ioc,
7075 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7076 return 0;
7077 }
7078
7079 issue_diag_reset:
7080 rc = _base_diag_reset(ioc);
7081 return rc;
7082 }
7083
7084 /**
7085 * _base_make_ioc_operational - put controller in OPERATIONAL state
7086 * @ioc: per adapter object
7087 *
7088 * Return: 0 for success, non-zero for failure.
7089 */
7090 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)7091 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7092 {
7093 int r, i, index, rc;
7094 unsigned long flags;
7095 u32 reply_address;
7096 u16 smid;
7097 struct _tr_list *delayed_tr, *delayed_tr_next;
7098 struct _sc_list *delayed_sc, *delayed_sc_next;
7099 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7100 u8 hide_flag;
7101 struct adapter_reply_queue *reply_q;
7102 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7103
7104 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7105
7106 /* clean the delayed target reset list */
7107 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7108 &ioc->delayed_tr_list, list) {
7109 list_del(&delayed_tr->list);
7110 kfree(delayed_tr);
7111 }
7112
7113
7114 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7115 &ioc->delayed_tr_volume_list, list) {
7116 list_del(&delayed_tr->list);
7117 kfree(delayed_tr);
7118 }
7119
7120 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7121 &ioc->delayed_sc_list, list) {
7122 list_del(&delayed_sc->list);
7123 kfree(delayed_sc);
7124 }
7125
7126 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7127 &ioc->delayed_event_ack_list, list) {
7128 list_del(&delayed_event_ack->list);
7129 kfree(delayed_event_ack);
7130 }
7131
7132 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7133
7134 /* hi-priority queue */
7135 INIT_LIST_HEAD(&ioc->hpr_free_list);
7136 smid = ioc->hi_priority_smid;
7137 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7138 ioc->hpr_lookup[i].cb_idx = 0xFF;
7139 ioc->hpr_lookup[i].smid = smid;
7140 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7141 &ioc->hpr_free_list);
7142 }
7143
7144 /* internal queue */
7145 INIT_LIST_HEAD(&ioc->internal_free_list);
7146 smid = ioc->internal_smid;
7147 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7148 ioc->internal_lookup[i].cb_idx = 0xFF;
7149 ioc->internal_lookup[i].smid = smid;
7150 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7151 &ioc->internal_free_list);
7152 }
7153
7154 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7155
7156 /* initialize Reply Free Queue */
7157 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7158 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7159 ioc->reply_sz) {
7160 ioc->reply_free[i] = cpu_to_le32(reply_address);
7161 if (ioc->is_mcpu_endpoint)
7162 _base_clone_reply_to_sys_mem(ioc,
7163 reply_address, i);
7164 }
7165
7166 /* initialize reply queues */
7167 if (ioc->is_driver_loading)
7168 _base_assign_reply_queues(ioc);
7169
7170 /* initialize Reply Post Free Queue */
7171 index = 0;
7172 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7173 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7174 /*
7175 * If RDPQ is enabled, switch to the next allocation.
7176 * Otherwise advance within the contiguous region.
7177 */
7178 if (ioc->rdpq_array_enable) {
7179 reply_q->reply_post_free =
7180 ioc->reply_post[index++].reply_post_free;
7181 } else {
7182 reply_q->reply_post_free = reply_post_free_contig;
7183 reply_post_free_contig += ioc->reply_post_queue_depth;
7184 }
7185
7186 reply_q->reply_post_host_index = 0;
7187 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7188 reply_q->reply_post_free[i].Words =
7189 cpu_to_le64(ULLONG_MAX);
7190 if (!_base_is_controller_msix_enabled(ioc))
7191 goto skip_init_reply_post_free_queue;
7192 }
7193 skip_init_reply_post_free_queue:
7194
7195 r = _base_send_ioc_init(ioc);
7196 if (r) {
7197 /*
7198 * No need to check IOC state for fault state & issue
7199 * diag reset during host reset. This check is need
7200 * only during driver load time.
7201 */
7202 if (!ioc->is_driver_loading)
7203 return r;
7204
7205 rc = _base_check_for_fault_and_issue_reset(ioc);
7206 if (rc || (_base_send_ioc_init(ioc)))
7207 return r;
7208 }
7209
7210 /* initialize reply free host index */
7211 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7212 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7213
7214 /* initialize reply post host index */
7215 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7216 if (ioc->combined_reply_queue)
7217 writel((reply_q->msix_index & 7)<<
7218 MPI2_RPHI_MSIX_INDEX_SHIFT,
7219 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7220 else
7221 writel(reply_q->msix_index <<
7222 MPI2_RPHI_MSIX_INDEX_SHIFT,
7223 &ioc->chip->ReplyPostHostIndex);
7224
7225 if (!_base_is_controller_msix_enabled(ioc))
7226 goto skip_init_reply_post_host_index;
7227 }
7228
7229 skip_init_reply_post_host_index:
7230
7231 mpt3sas_base_unmask_interrupts(ioc);
7232
7233 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7234 r = _base_display_fwpkg_version(ioc);
7235 if (r)
7236 return r;
7237 }
7238
7239 _base_static_config_pages(ioc);
7240 r = _base_event_notification(ioc);
7241 if (r)
7242 return r;
7243
7244 if (ioc->is_driver_loading) {
7245
7246 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7247 == 0x80) {
7248 hide_flag = (u8) (
7249 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7250 MFG_PAGE10_HIDE_SSDS_MASK);
7251 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7252 ioc->mfg_pg10_hide_flag = hide_flag;
7253 }
7254
7255 ioc->wait_for_discovery_to_complete =
7256 _base_determine_wait_on_discovery(ioc);
7257
7258 return r; /* scan_start and scan_finished support */
7259 }
7260
7261 r = _base_send_port_enable(ioc);
7262 if (r)
7263 return r;
7264
7265 return r;
7266 }
7267
7268 /**
7269 * mpt3sas_base_free_resources - free resources controller resources
7270 * @ioc: per adapter object
7271 */
7272 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)7273 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7274 {
7275 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7276
7277 /* synchronizing freeing resource with pci_access_mutex lock */
7278 mutex_lock(&ioc->pci_access_mutex);
7279 if (ioc->chip_phys && ioc->chip) {
7280 mpt3sas_base_mask_interrupts(ioc);
7281 ioc->shost_recovery = 1;
7282 _base_make_ioc_ready(ioc, SOFT_RESET);
7283 ioc->shost_recovery = 0;
7284 }
7285
7286 mpt3sas_base_unmap_resources(ioc);
7287 mutex_unlock(&ioc->pci_access_mutex);
7288 return;
7289 }
7290
7291 /**
7292 * mpt3sas_base_attach - attach controller instance
7293 * @ioc: per adapter object
7294 *
7295 * Return: 0 for success, non-zero for failure.
7296 */
7297 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)7298 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7299 {
7300 int r, i, rc;
7301 int cpu_id, last_cpu_id = 0;
7302
7303 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7304
7305 /* setup cpu_msix_table */
7306 ioc->cpu_count = num_online_cpus();
7307 for_each_online_cpu(cpu_id)
7308 last_cpu_id = cpu_id;
7309 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7310 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7311 ioc->reply_queue_count = 1;
7312 if (!ioc->cpu_msix_table) {
7313 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7314 r = -ENOMEM;
7315 goto out_free_resources;
7316 }
7317
7318 if (ioc->is_warpdrive) {
7319 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7320 sizeof(resource_size_t *), GFP_KERNEL);
7321 if (!ioc->reply_post_host_index) {
7322 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7323 r = -ENOMEM;
7324 goto out_free_resources;
7325 }
7326 }
7327
7328 ioc->smp_affinity_enable = smp_affinity_enable;
7329
7330 ioc->rdpq_array_enable_assigned = 0;
7331 ioc->use_32bit_dma = false;
7332 ioc->dma_mask = 64;
7333 if (ioc->is_aero_ioc) {
7334 ioc->base_readl = &_base_readl_aero;
7335 ioc->base_readl_ext_retry = &_base_readl_ext_retry;
7336 } else {
7337 ioc->base_readl = &_base_readl;
7338 ioc->base_readl_ext_retry = &_base_readl;
7339 }
7340 r = mpt3sas_base_map_resources(ioc);
7341 if (r)
7342 goto out_free_resources;
7343
7344 pci_set_drvdata(ioc->pdev, ioc->shost);
7345 r = _base_get_ioc_facts(ioc);
7346 if (r) {
7347 rc = _base_check_for_fault_and_issue_reset(ioc);
7348 if (rc || (_base_get_ioc_facts(ioc)))
7349 goto out_free_resources;
7350 }
7351
7352 switch (ioc->hba_mpi_version_belonged) {
7353 case MPI2_VERSION:
7354 ioc->build_sg_scmd = &_base_build_sg_scmd;
7355 ioc->build_sg = &_base_build_sg;
7356 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7357 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7358 break;
7359 case MPI25_VERSION:
7360 case MPI26_VERSION:
7361 /*
7362 * In SAS3.0,
7363 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7364 * Target Status - all require the IEEE formated scatter gather
7365 * elements.
7366 */
7367 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7368 ioc->build_sg = &_base_build_sg_ieee;
7369 ioc->build_nvme_prp = &_base_build_nvme_prp;
7370 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7371 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7372 if (ioc->high_iops_queues)
7373 ioc->get_msix_index_for_smlio =
7374 &_base_get_high_iops_msix_index;
7375 else
7376 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7377 break;
7378 }
7379 if (ioc->atomic_desc_capable) {
7380 ioc->put_smid_default = &_base_put_smid_default_atomic;
7381 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7382 ioc->put_smid_fast_path =
7383 &_base_put_smid_fast_path_atomic;
7384 ioc->put_smid_hi_priority =
7385 &_base_put_smid_hi_priority_atomic;
7386 } else {
7387 ioc->put_smid_default = &_base_put_smid_default;
7388 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7389 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7390 if (ioc->is_mcpu_endpoint)
7391 ioc->put_smid_scsi_io =
7392 &_base_put_smid_mpi_ep_scsi_io;
7393 else
7394 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7395 }
7396 /*
7397 * These function pointers for other requests that don't
7398 * the require IEEE scatter gather elements.
7399 *
7400 * For example Configuration Pages and SAS IOUNIT Control don't.
7401 */
7402 ioc->build_sg_mpi = &_base_build_sg;
7403 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7404
7405 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7406 if (r)
7407 goto out_free_resources;
7408
7409 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7410 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7411 if (!ioc->pfacts) {
7412 r = -ENOMEM;
7413 goto out_free_resources;
7414 }
7415
7416 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7417 r = _base_get_port_facts(ioc, i);
7418 if (r) {
7419 rc = _base_check_for_fault_and_issue_reset(ioc);
7420 if (rc || (_base_get_port_facts(ioc, i)))
7421 goto out_free_resources;
7422 }
7423 }
7424
7425 r = _base_allocate_memory_pools(ioc);
7426 if (r)
7427 goto out_free_resources;
7428
7429 if (irqpoll_weight > 0)
7430 ioc->thresh_hold = irqpoll_weight;
7431 else
7432 ioc->thresh_hold = ioc->hba_queue_depth/4;
7433
7434 _base_init_irqpolls(ioc);
7435 init_waitqueue_head(&ioc->reset_wq);
7436
7437 /* allocate memory pd handle bitmask list */
7438 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7439 if (ioc->facts.MaxDevHandle % 8)
7440 ioc->pd_handles_sz++;
7441 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7442 GFP_KERNEL);
7443 if (!ioc->pd_handles) {
7444 r = -ENOMEM;
7445 goto out_free_resources;
7446 }
7447 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7448 GFP_KERNEL);
7449 if (!ioc->blocking_handles) {
7450 r = -ENOMEM;
7451 goto out_free_resources;
7452 }
7453
7454 /* allocate memory for pending OS device add list */
7455 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7456 if (ioc->facts.MaxDevHandle % 8)
7457 ioc->pend_os_device_add_sz++;
7458 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7459 GFP_KERNEL);
7460 if (!ioc->pend_os_device_add) {
7461 r = -ENOMEM;
7462 goto out_free_resources;
7463 }
7464
7465 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7466 ioc->device_remove_in_progress =
7467 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7468 if (!ioc->device_remove_in_progress) {
7469 r = -ENOMEM;
7470 goto out_free_resources;
7471 }
7472
7473 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7474
7475 /* base internal command bits */
7476 mutex_init(&ioc->base_cmds.mutex);
7477 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7478 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7479
7480 /* port_enable command bits */
7481 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7482 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7483
7484 /* transport internal command bits */
7485 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7486 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7487 mutex_init(&ioc->transport_cmds.mutex);
7488
7489 /* scsih internal command bits */
7490 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7491 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7492 mutex_init(&ioc->scsih_cmds.mutex);
7493
7494 /* task management internal command bits */
7495 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7496 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7497 mutex_init(&ioc->tm_cmds.mutex);
7498
7499 /* config page internal command bits */
7500 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7501 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7502 mutex_init(&ioc->config_cmds.mutex);
7503
7504 /* ctl module internal command bits */
7505 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7506 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7507 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7508 mutex_init(&ioc->ctl_cmds.mutex);
7509
7510 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7511 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7512 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7513 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7514 r = -ENOMEM;
7515 goto out_free_resources;
7516 }
7517
7518 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7519 ioc->event_masks[i] = -1;
7520
7521 /* here we enable the events we care about */
7522 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7523 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7524 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7525 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7526 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7527 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7528 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7529 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7530 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7531 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7532 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7533 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7534 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7535 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7536 if (ioc->is_gen35_ioc) {
7537 _base_unmask_events(ioc,
7538 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7539 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7540 _base_unmask_events(ioc,
7541 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7542 }
7543 }
7544 r = _base_make_ioc_operational(ioc);
7545 if (r)
7546 goto out_free_resources;
7547
7548 /*
7549 * Copy current copy of IOCFacts in prev_fw_facts
7550 * and it will be used during online firmware upgrade.
7551 */
7552 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7553 sizeof(struct mpt3sas_facts));
7554
7555 ioc->non_operational_loop = 0;
7556 ioc->ioc_coredump_loop = 0;
7557 ioc->got_task_abort_from_ioctl = 0;
7558 return 0;
7559
7560 out_free_resources:
7561
7562 ioc->remove_host = 1;
7563
7564 mpt3sas_base_free_resources(ioc);
7565 _base_release_memory_pools(ioc);
7566 pci_set_drvdata(ioc->pdev, NULL);
7567 kfree(ioc->cpu_msix_table);
7568 if (ioc->is_warpdrive)
7569 kfree(ioc->reply_post_host_index);
7570 kfree(ioc->pd_handles);
7571 kfree(ioc->blocking_handles);
7572 kfree(ioc->device_remove_in_progress);
7573 kfree(ioc->pend_os_device_add);
7574 kfree(ioc->tm_cmds.reply);
7575 kfree(ioc->transport_cmds.reply);
7576 kfree(ioc->scsih_cmds.reply);
7577 kfree(ioc->config_cmds.reply);
7578 kfree(ioc->base_cmds.reply);
7579 kfree(ioc->port_enable_cmds.reply);
7580 kfree(ioc->ctl_cmds.reply);
7581 kfree(ioc->ctl_cmds.sense);
7582 kfree(ioc->pfacts);
7583 ioc->ctl_cmds.reply = NULL;
7584 ioc->base_cmds.reply = NULL;
7585 ioc->tm_cmds.reply = NULL;
7586 ioc->scsih_cmds.reply = NULL;
7587 ioc->transport_cmds.reply = NULL;
7588 ioc->config_cmds.reply = NULL;
7589 ioc->pfacts = NULL;
7590 return r;
7591 }
7592
7593
7594 /**
7595 * mpt3sas_base_detach - remove controller instance
7596 * @ioc: per adapter object
7597 */
7598 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)7599 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7600 {
7601 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7602
7603 mpt3sas_base_stop_watchdog(ioc);
7604 mpt3sas_base_free_resources(ioc);
7605 _base_release_memory_pools(ioc);
7606 mpt3sas_free_enclosure_list(ioc);
7607 pci_set_drvdata(ioc->pdev, NULL);
7608 kfree(ioc->cpu_msix_table);
7609 if (ioc->is_warpdrive)
7610 kfree(ioc->reply_post_host_index);
7611 kfree(ioc->pd_handles);
7612 kfree(ioc->blocking_handles);
7613 kfree(ioc->device_remove_in_progress);
7614 kfree(ioc->pend_os_device_add);
7615 kfree(ioc->pfacts);
7616 kfree(ioc->ctl_cmds.reply);
7617 kfree(ioc->ctl_cmds.sense);
7618 kfree(ioc->base_cmds.reply);
7619 kfree(ioc->port_enable_cmds.reply);
7620 kfree(ioc->tm_cmds.reply);
7621 kfree(ioc->transport_cmds.reply);
7622 kfree(ioc->scsih_cmds.reply);
7623 kfree(ioc->config_cmds.reply);
7624 }
7625
7626 /**
7627 * _base_pre_reset_handler - pre reset handler
7628 * @ioc: per adapter object
7629 */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)7630 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7631 {
7632 mpt3sas_scsih_pre_reset_handler(ioc);
7633 mpt3sas_ctl_pre_reset_handler(ioc);
7634 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7635 }
7636
7637 /**
7638 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7639 * @ioc: per adapter object
7640 */
7641 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)7642 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7643 {
7644 dtmprintk(ioc,
7645 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7646 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7647 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7648 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7649 complete(&ioc->transport_cmds.done);
7650 }
7651 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7652 ioc->base_cmds.status |= MPT3_CMD_RESET;
7653 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7654 complete(&ioc->base_cmds.done);
7655 }
7656 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7657 ioc->port_enable_failed = 1;
7658 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7659 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7660 if (ioc->is_driver_loading) {
7661 ioc->start_scan_failed =
7662 MPI2_IOCSTATUS_INTERNAL_ERROR;
7663 ioc->start_scan = 0;
7664 ioc->port_enable_cmds.status =
7665 MPT3_CMD_NOT_USED;
7666 } else {
7667 complete(&ioc->port_enable_cmds.done);
7668 }
7669 }
7670 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7671 ioc->config_cmds.status |= MPT3_CMD_RESET;
7672 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7673 ioc->config_cmds.smid = USHRT_MAX;
7674 complete(&ioc->config_cmds.done);
7675 }
7676 }
7677
7678 /**
7679 * _base_clear_outstanding_commands - clear all outstanding commands
7680 * @ioc: per adapter object
7681 */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)7682 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7683 {
7684 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7685 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7686 _base_clear_outstanding_mpt_commands(ioc);
7687 }
7688
7689 /**
7690 * _base_reset_done_handler - reset done handler
7691 * @ioc: per adapter object
7692 */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)7693 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7694 {
7695 mpt3sas_scsih_reset_done_handler(ioc);
7696 mpt3sas_ctl_reset_done_handler(ioc);
7697 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7698 }
7699
7700 /**
7701 * mpt3sas_wait_for_commands_to_complete - reset controller
7702 * @ioc: Pointer to MPT_ADAPTER structure
7703 *
7704 * This function is waiting 10s for all pending commands to complete
7705 * prior to putting controller in reset.
7706 */
7707 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)7708 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7709 {
7710 u32 ioc_state;
7711
7712 ioc->pending_io_count = 0;
7713
7714 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7715 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7716 return;
7717
7718 /* pending command count */
7719 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7720
7721 if (!ioc->pending_io_count)
7722 return;
7723
7724 /* wait for pending commands to complete */
7725 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7726 }
7727
7728 /**
7729 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7730 * attributes during online firmware upgrade and update the corresponding
7731 * IOC variables accordingly.
7732 *
7733 * @ioc: Pointer to MPT_ADAPTER structure
7734 */
7735 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)7736 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7737 {
7738 u16 pd_handles_sz;
7739 void *pd_handles = NULL, *blocking_handles = NULL;
7740 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7741 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7742
7743 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7744 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7745 if (ioc->facts.MaxDevHandle % 8)
7746 pd_handles_sz++;
7747
7748 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7749 GFP_KERNEL);
7750 if (!pd_handles) {
7751 ioc_info(ioc,
7752 "Unable to allocate the memory for pd_handles of sz: %d\n",
7753 pd_handles_sz);
7754 return -ENOMEM;
7755 }
7756 memset(pd_handles + ioc->pd_handles_sz, 0,
7757 (pd_handles_sz - ioc->pd_handles_sz));
7758 ioc->pd_handles = pd_handles;
7759
7760 blocking_handles = krealloc(ioc->blocking_handles,
7761 pd_handles_sz, GFP_KERNEL);
7762 if (!blocking_handles) {
7763 ioc_info(ioc,
7764 "Unable to allocate the memory for "
7765 "blocking_handles of sz: %d\n",
7766 pd_handles_sz);
7767 return -ENOMEM;
7768 }
7769 memset(blocking_handles + ioc->pd_handles_sz, 0,
7770 (pd_handles_sz - ioc->pd_handles_sz));
7771 ioc->blocking_handles = blocking_handles;
7772 ioc->pd_handles_sz = pd_handles_sz;
7773
7774 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7775 pd_handles_sz, GFP_KERNEL);
7776 if (!pend_os_device_add) {
7777 ioc_info(ioc,
7778 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7779 pd_handles_sz);
7780 return -ENOMEM;
7781 }
7782 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7783 (pd_handles_sz - ioc->pend_os_device_add_sz));
7784 ioc->pend_os_device_add = pend_os_device_add;
7785 ioc->pend_os_device_add_sz = pd_handles_sz;
7786
7787 device_remove_in_progress = krealloc(
7788 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7789 if (!device_remove_in_progress) {
7790 ioc_info(ioc,
7791 "Unable to allocate the memory for "
7792 "device_remove_in_progress of sz: %d\n "
7793 , pd_handles_sz);
7794 return -ENOMEM;
7795 }
7796 memset(device_remove_in_progress +
7797 ioc->device_remove_in_progress_sz, 0,
7798 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7799 ioc->device_remove_in_progress = device_remove_in_progress;
7800 ioc->device_remove_in_progress_sz = pd_handles_sz;
7801 }
7802
7803 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7804 return 0;
7805 }
7806
7807 /**
7808 * mpt3sas_base_hard_reset_handler - reset controller
7809 * @ioc: Pointer to MPT_ADAPTER structure
7810 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7811 *
7812 * Return: 0 for success, non-zero for failure.
7813 */
7814 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)7815 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7816 enum reset_type type)
7817 {
7818 int r;
7819 unsigned long flags;
7820 u32 ioc_state;
7821 u8 is_fault = 0, is_trigger = 0;
7822
7823 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7824
7825 if (ioc->pci_error_recovery) {
7826 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7827 r = 0;
7828 goto out_unlocked;
7829 }
7830
7831 if (mpt3sas_fwfault_debug)
7832 mpt3sas_halt_firmware(ioc);
7833
7834 /* wait for an active reset in progress to complete */
7835 mutex_lock(&ioc->reset_in_progress_mutex);
7836
7837 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7838 ioc->shost_recovery = 1;
7839 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7840
7841 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7842 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7843 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7844 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7845 is_trigger = 1;
7846 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7847 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7848 (ioc_state & MPI2_IOC_STATE_MASK) ==
7849 MPI2_IOC_STATE_COREDUMP)
7850 is_fault = 1;
7851 }
7852 _base_pre_reset_handler(ioc);
7853 mpt3sas_wait_for_commands_to_complete(ioc);
7854 mpt3sas_base_mask_interrupts(ioc);
7855 r = _base_make_ioc_ready(ioc, type);
7856 if (r)
7857 goto out;
7858 _base_clear_outstanding_commands(ioc);
7859
7860 /* If this hard reset is called while port enable is active, then
7861 * there is no reason to call make_ioc_operational
7862 */
7863 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7864 ioc->remove_host = 1;
7865 r = -EFAULT;
7866 goto out;
7867 }
7868 r = _base_get_ioc_facts(ioc);
7869 if (r)
7870 goto out;
7871
7872 r = _base_check_ioc_facts_changes(ioc);
7873 if (r) {
7874 ioc_info(ioc,
7875 "Some of the parameters got changed in this new firmware"
7876 " image and it requires system reboot\n");
7877 goto out;
7878 }
7879 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7880 panic("%s: Issue occurred with flashing controller firmware."
7881 "Please reboot the system and ensure that the correct"
7882 " firmware version is running\n", ioc->name);
7883
7884 r = _base_make_ioc_operational(ioc);
7885 if (!r)
7886 _base_reset_done_handler(ioc);
7887
7888 out:
7889 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7890
7891 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7892 ioc->shost_recovery = 0;
7893 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7894 ioc->ioc_reset_count++;
7895 mutex_unlock(&ioc->reset_in_progress_mutex);
7896
7897 out_unlocked:
7898 if ((r == 0) && is_trigger) {
7899 if (is_fault)
7900 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7901 else
7902 mpt3sas_trigger_master(ioc,
7903 MASTER_TRIGGER_ADAPTER_RESET);
7904 }
7905 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7906 return r;
7907 }
7908