• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 
63 #define NFSDBG_FACILITY		NFSDBG_VFS
64 
65 static struct kmem_cache *nfs_direct_cachep;
66 
67 struct nfs_direct_req {
68 	struct kref		kref;		/* release manager */
69 
70 	/* I/O parameters */
71 	struct nfs_open_context	*ctx;		/* file open context info */
72 	struct nfs_lock_context *l_ctx;		/* Lock context info */
73 	struct kiocb *		iocb;		/* controlling i/o request */
74 	struct inode *		inode;		/* target file of i/o */
75 
76 	/* completion state */
77 	atomic_t		io_count;	/* i/os we're waiting for */
78 	spinlock_t		lock;		/* protect completion state */
79 
80 	loff_t			io_start;	/* Start offset for I/O */
81 	ssize_t			count,		/* bytes actually processed */
82 				max_count,	/* max expected count */
83 				bytes_left,	/* bytes left to be sent */
84 				error;		/* any reported error */
85 	struct completion	completion;	/* wait for i/o completion */
86 
87 	/* commit state */
88 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
89 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
90 	struct work_struct	work;
91 	int			flags;
92 	/* for write */
93 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
94 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
95 	/* for read */
96 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
97 #define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
98 };
99 
100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103 static void nfs_direct_write_schedule_work(struct work_struct *work);
104 
get_dreq(struct nfs_direct_req * dreq)105 static inline void get_dreq(struct nfs_direct_req *dreq)
106 {
107 	atomic_inc(&dreq->io_count);
108 }
109 
put_dreq(struct nfs_direct_req * dreq)110 static inline int put_dreq(struct nfs_direct_req *dreq)
111 {
112 	return atomic_dec_and_test(&dreq->io_count);
113 }
114 
115 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117 			    const struct nfs_pgio_header *hdr,
118 			    ssize_t dreq_len)
119 {
120 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122 		return;
123 	if (dreq->max_count >= dreq_len) {
124 		dreq->max_count = dreq_len;
125 		if (dreq->count > dreq_len)
126 			dreq->count = dreq_len;
127 
128 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129 			dreq->error = hdr->error;
130 		else /* Clear outstanding error if this is EOF */
131 			dreq->error = 0;
132 	}
133 }
134 
135 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)136 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137 		       const struct nfs_pgio_header *hdr)
138 {
139 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140 	ssize_t dreq_len = 0;
141 
142 	if (hdr_end > dreq->io_start)
143 		dreq_len = hdr_end - dreq->io_start;
144 
145 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146 
147 	if (dreq_len > dreq->max_count)
148 		dreq_len = dreq->max_count;
149 
150 	if (dreq->count < dreq_len)
151 		dreq->count = dreq_len;
152 }
153 
154 /**
155  * nfs_direct_IO - NFS address space operation for direct I/O
156  * @iocb: target I/O control block
157  * @iter: I/O buffer
158  *
159  * The presence of this routine in the address space ops vector means
160  * the NFS client supports direct I/O. However, for most direct IO, we
161  * shunt off direct read and write requests before the VFS gets them,
162  * so this method is only ever called for swap.
163  */
nfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)164 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165 {
166 	struct inode *inode = iocb->ki_filp->f_mapping->host;
167 
168 	/* we only support swap file calling nfs_direct_IO */
169 	if (!IS_SWAPFILE(inode))
170 		return 0;
171 
172 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173 
174 	if (iov_iter_rw(iter) == READ)
175 		return nfs_file_direct_read(iocb, iter, true);
176 	return nfs_file_direct_write(iocb, iter, true);
177 }
178 
nfs_direct_release_pages(struct page ** pages,unsigned int npages)179 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180 {
181 	unsigned int i;
182 	for (i = 0; i < npages; i++)
183 		put_page(pages[i]);
184 }
185 
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)186 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187 			      struct nfs_direct_req *dreq)
188 {
189 	cinfo->inode = dreq->inode;
190 	cinfo->mds = &dreq->mds_cinfo;
191 	cinfo->ds = &dreq->ds_cinfo;
192 	cinfo->dreq = dreq;
193 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194 }
195 
nfs_direct_req_alloc(void)196 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197 {
198 	struct nfs_direct_req *dreq;
199 
200 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201 	if (!dreq)
202 		return NULL;
203 
204 	kref_init(&dreq->kref);
205 	kref_get(&dreq->kref);
206 	init_completion(&dreq->completion);
207 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208 	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
210 	spin_lock_init(&dreq->lock);
211 
212 	return dreq;
213 }
214 
nfs_direct_req_free(struct kref * kref)215 static void nfs_direct_req_free(struct kref *kref)
216 {
217 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218 
219 	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220 	if (dreq->l_ctx != NULL)
221 		nfs_put_lock_context(dreq->l_ctx);
222 	if (dreq->ctx != NULL)
223 		put_nfs_open_context(dreq->ctx);
224 	kmem_cache_free(nfs_direct_cachep, dreq);
225 }
226 
nfs_direct_req_release(struct nfs_direct_req * dreq)227 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228 {
229 	kref_put(&dreq->kref, nfs_direct_req_free);
230 }
231 
nfs_dreq_bytes_left(struct nfs_direct_req * dreq)232 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233 {
234 	return dreq->bytes_left;
235 }
236 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237 
238 /*
239  * Collects and returns the final error value/byte-count.
240  */
nfs_direct_wait(struct nfs_direct_req * dreq)241 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242 {
243 	ssize_t result = -EIOCBQUEUED;
244 
245 	/* Async requests don't wait here */
246 	if (dreq->iocb)
247 		goto out;
248 
249 	result = wait_for_completion_killable(&dreq->completion);
250 
251 	if (!result) {
252 		result = dreq->count;
253 		WARN_ON_ONCE(dreq->count < 0);
254 	}
255 	if (!result)
256 		result = dreq->error;
257 
258 out:
259 	return (ssize_t) result;
260 }
261 
262 /*
263  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
264  * the iocb is still valid here if this is a synchronous request.
265  */
nfs_direct_complete(struct nfs_direct_req * dreq)266 static void nfs_direct_complete(struct nfs_direct_req *dreq)
267 {
268 	struct inode *inode = dreq->inode;
269 
270 	inode_dio_end(inode);
271 
272 	if (dreq->iocb) {
273 		long res = (long) dreq->error;
274 		if (dreq->count != 0) {
275 			res = (long) dreq->count;
276 			WARN_ON_ONCE(dreq->count < 0);
277 		}
278 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
279 	}
280 
281 	complete(&dreq->completion);
282 
283 	nfs_direct_req_release(dreq);
284 }
285 
nfs_direct_read_completion(struct nfs_pgio_header * hdr)286 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287 {
288 	unsigned long bytes = 0;
289 	struct nfs_direct_req *dreq = hdr->dreq;
290 
291 	spin_lock(&dreq->lock);
292 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
293 		spin_unlock(&dreq->lock);
294 		goto out_put;
295 	}
296 
297 	nfs_direct_count_bytes(dreq, hdr);
298 	spin_unlock(&dreq->lock);
299 
300 	while (!list_empty(&hdr->pages)) {
301 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302 		struct page *page = req->wb_page;
303 
304 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
305 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306 			set_page_dirty(page);
307 		bytes += req->wb_bytes;
308 		nfs_list_remove_request(req);
309 		nfs_release_request(req);
310 	}
311 out_put:
312 	if (put_dreq(dreq))
313 		nfs_direct_complete(dreq);
314 	hdr->release(hdr);
315 }
316 
nfs_read_sync_pgio_error(struct list_head * head,int error)317 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318 {
319 	struct nfs_page *req;
320 
321 	while (!list_empty(head)) {
322 		req = nfs_list_entry(head->next);
323 		nfs_list_remove_request(req);
324 		nfs_release_request(req);
325 	}
326 }
327 
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)328 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329 {
330 	get_dreq(hdr->dreq);
331 }
332 
333 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334 	.error_cleanup = nfs_read_sync_pgio_error,
335 	.init_hdr = nfs_direct_pgio_init,
336 	.completion = nfs_direct_read_completion,
337 };
338 
339 /*
340  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
342  * bail and stop sending more reads.  Read length accounting is
343  * handled automatically by nfs_direct_read_result().  Otherwise, if
344  * no requests have been sent, just return an error.
345  */
346 
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)347 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348 					      struct iov_iter *iter,
349 					      loff_t pos)
350 {
351 	struct nfs_pageio_descriptor desc;
352 	struct inode *inode = dreq->inode;
353 	ssize_t result = -EINVAL;
354 	size_t requested_bytes = 0;
355 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356 
357 	nfs_pageio_init_read(&desc, dreq->inode, false,
358 			     &nfs_direct_read_completion_ops);
359 	get_dreq(dreq);
360 	desc.pg_dreq = dreq;
361 	inode_dio_begin(inode);
362 
363 	while (iov_iter_count(iter)) {
364 		struct page **pagevec;
365 		size_t bytes;
366 		size_t pgbase;
367 		unsigned npages, i;
368 
369 		result = iov_iter_get_pages_alloc(iter, &pagevec,
370 						  rsize, &pgbase);
371 		if (result < 0)
372 			break;
373 
374 		bytes = result;
375 		iov_iter_advance(iter, bytes);
376 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377 		for (i = 0; i < npages; i++) {
378 			struct nfs_page *req;
379 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380 			/* XXX do we need to do the eof zeroing found in async_filler? */
381 			req = nfs_create_request(dreq->ctx, pagevec[i],
382 						 pgbase, req_len);
383 			if (IS_ERR(req)) {
384 				result = PTR_ERR(req);
385 				break;
386 			}
387 			req->wb_index = pos >> PAGE_SHIFT;
388 			req->wb_offset = pos & ~PAGE_MASK;
389 			if (!nfs_pageio_add_request(&desc, req)) {
390 				result = desc.pg_error;
391 				nfs_release_request(req);
392 				break;
393 			}
394 			pgbase = 0;
395 			bytes -= req_len;
396 			requested_bytes += req_len;
397 			pos += req_len;
398 			dreq->bytes_left -= req_len;
399 		}
400 		nfs_direct_release_pages(pagevec, npages);
401 		kvfree(pagevec);
402 		if (result < 0)
403 			break;
404 	}
405 
406 	nfs_pageio_complete(&desc);
407 
408 	/*
409 	 * If no bytes were started, return the error, and let the
410 	 * generic layer handle the completion.
411 	 */
412 	if (requested_bytes == 0) {
413 		inode_dio_end(inode);
414 		nfs_direct_req_release(dreq);
415 		return result < 0 ? result : -EIO;
416 	}
417 
418 	if (put_dreq(dreq))
419 		nfs_direct_complete(dreq);
420 	return requested_bytes;
421 }
422 
423 /**
424  * nfs_file_direct_read - file direct read operation for NFS files
425  * @iocb: target I/O control block
426  * @iter: vector of user buffers into which to read data
427  * @swap: flag indicating this is swap IO, not O_DIRECT IO
428  *
429  * We use this function for direct reads instead of calling
430  * generic_file_aio_read() in order to avoid gfar's check to see if
431  * the request starts before the end of the file.  For that check
432  * to work, we must generate a GETATTR before each direct read, and
433  * even then there is a window between the GETATTR and the subsequent
434  * READ where the file size could change.  Our preference is simply
435  * to do all reads the application wants, and the server will take
436  * care of managing the end of file boundary.
437  *
438  * This function also eliminates unnecessarily updating the file's
439  * atime locally, as the NFS server sets the file's atime, and this
440  * client must read the updated atime from the server back into its
441  * cache.
442  */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)443 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
444 			     bool swap)
445 {
446 	struct file *file = iocb->ki_filp;
447 	struct address_space *mapping = file->f_mapping;
448 	struct inode *inode = mapping->host;
449 	struct nfs_direct_req *dreq;
450 	struct nfs_lock_context *l_ctx;
451 	ssize_t result, requested;
452 	size_t count = iov_iter_count(iter);
453 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
454 
455 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
456 		file, count, (long long) iocb->ki_pos);
457 
458 	result = 0;
459 	if (!count)
460 		goto out;
461 
462 	task_io_account_read(count);
463 
464 	result = -ENOMEM;
465 	dreq = nfs_direct_req_alloc();
466 	if (dreq == NULL)
467 		goto out;
468 
469 	dreq->inode = inode;
470 	dreq->bytes_left = dreq->max_count = count;
471 	dreq->io_start = iocb->ki_pos;
472 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
473 	l_ctx = nfs_get_lock_context(dreq->ctx);
474 	if (IS_ERR(l_ctx)) {
475 		result = PTR_ERR(l_ctx);
476 		nfs_direct_req_release(dreq);
477 		goto out_release;
478 	}
479 	dreq->l_ctx = l_ctx;
480 	if (!is_sync_kiocb(iocb))
481 		dreq->iocb = iocb;
482 
483 	if (iter_is_iovec(iter))
484 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
485 
486 	if (!swap)
487 		nfs_start_io_direct(inode);
488 
489 	NFS_I(inode)->read_io += count;
490 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
491 
492 	if (!swap)
493 		nfs_end_io_direct(inode);
494 
495 	if (requested > 0) {
496 		result = nfs_direct_wait(dreq);
497 		if (result > 0) {
498 			requested -= result;
499 			iocb->ki_pos += result;
500 		}
501 		iov_iter_revert(iter, requested);
502 	} else {
503 		result = requested;
504 	}
505 
506 out_release:
507 	nfs_direct_req_release(dreq);
508 out:
509 	return result;
510 }
511 
nfs_direct_add_page_head(struct list_head * list,struct nfs_page * req)512 static void nfs_direct_add_page_head(struct list_head *list,
513 				     struct nfs_page *req)
514 {
515 	struct nfs_page *head = req->wb_head;
516 
517 	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
518 		return;
519 	if (!list_empty(&head->wb_list)) {
520 		nfs_unlock_request(head);
521 		return;
522 	}
523 	list_add(&head->wb_list, list);
524 	kref_get(&head->wb_kref);
525 	kref_get(&head->wb_kref);
526 }
527 
nfs_direct_join_group(struct list_head * list,struct nfs_commit_info * cinfo,struct inode * inode)528 static void nfs_direct_join_group(struct list_head *list,
529 				  struct nfs_commit_info *cinfo,
530 				  struct inode *inode)
531 {
532 	struct nfs_page *req, *subreq;
533 
534 	list_for_each_entry(req, list, wb_list) {
535 		if (req->wb_head != req) {
536 			nfs_direct_add_page_head(&req->wb_list, req);
537 			continue;
538 		}
539 		subreq = req->wb_this_page;
540 		if (subreq == req)
541 			continue;
542 		do {
543 			/*
544 			 * Remove subrequests from this list before freeing
545 			 * them in the call to nfs_join_page_group().
546 			 */
547 			if (!list_empty(&subreq->wb_list)) {
548 				nfs_list_remove_request(subreq);
549 				nfs_release_request(subreq);
550 			}
551 		} while ((subreq = subreq->wb_this_page) != req);
552 		nfs_join_page_group(req, cinfo, inode);
553 	}
554 }
555 
556 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)557 nfs_direct_write_scan_commit_list(struct inode *inode,
558 				  struct list_head *list,
559 				  struct nfs_commit_info *cinfo)
560 {
561 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
562 	pnfs_recover_commit_reqs(list, cinfo);
563 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
564 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
565 }
566 
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)567 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
568 {
569 	struct nfs_pageio_descriptor desc;
570 	struct nfs_page *req, *tmp;
571 	LIST_HEAD(reqs);
572 	struct nfs_commit_info cinfo;
573 	LIST_HEAD(failed);
574 
575 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
576 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
577 
578 	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
579 
580 	dreq->count = 0;
581 	dreq->max_count = 0;
582 	list_for_each_entry(req, &reqs, wb_list)
583 		dreq->max_count += req->wb_bytes;
584 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
585 	get_dreq(dreq);
586 
587 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
588 			      &nfs_direct_write_completion_ops);
589 	desc.pg_dreq = dreq;
590 
591 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
592 		/* Bump the transmission count */
593 		req->wb_nio++;
594 		if (!nfs_pageio_add_request(&desc, req)) {
595 			nfs_list_move_request(req, &failed);
596 			spin_lock(&cinfo.inode->i_lock);
597 			dreq->flags = 0;
598 			if (desc.pg_error < 0)
599 				dreq->error = desc.pg_error;
600 			else
601 				dreq->error = -EIO;
602 			spin_unlock(&cinfo.inode->i_lock);
603 		}
604 		nfs_release_request(req);
605 	}
606 	nfs_pageio_complete(&desc);
607 
608 	while (!list_empty(&failed)) {
609 		req = nfs_list_entry(failed.next);
610 		nfs_list_remove_request(req);
611 		nfs_unlock_and_release_request(req);
612 	}
613 
614 	if (put_dreq(dreq))
615 		nfs_direct_write_complete(dreq);
616 }
617 
nfs_direct_commit_complete(struct nfs_commit_data * data)618 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
619 {
620 	const struct nfs_writeverf *verf = data->res.verf;
621 	struct nfs_direct_req *dreq = data->dreq;
622 	struct nfs_commit_info cinfo;
623 	struct nfs_page *req;
624 	int status = data->task.tk_status;
625 
626 	if (status < 0) {
627 		/* Errors in commit are fatal */
628 		dreq->error = status;
629 		dreq->max_count = 0;
630 		dreq->count = 0;
631 		dreq->flags = NFS_ODIRECT_DONE;
632 	} else if (dreq->flags == NFS_ODIRECT_DONE)
633 		status = dreq->error;
634 
635 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
636 
637 	while (!list_empty(&data->pages)) {
638 		req = nfs_list_entry(data->pages.next);
639 		nfs_list_remove_request(req);
640 		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
641 			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
642 			/*
643 			 * Despite the reboot, the write was successful,
644 			 * so reset wb_nio.
645 			 */
646 			req->wb_nio = 0;
647 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
648 		} else /* Error or match */
649 			nfs_release_request(req);
650 		nfs_unlock_and_release_request(req);
651 	}
652 
653 	if (nfs_commit_end(cinfo.mds))
654 		nfs_direct_write_complete(dreq);
655 }
656 
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)657 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
658 		struct nfs_page *req)
659 {
660 	struct nfs_direct_req *dreq = cinfo->dreq;
661 
662 	spin_lock(&dreq->lock);
663 	if (dreq->flags != NFS_ODIRECT_DONE)
664 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
665 	spin_unlock(&dreq->lock);
666 	nfs_mark_request_commit(req, NULL, cinfo, 0);
667 }
668 
669 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
670 	.completion = nfs_direct_commit_complete,
671 	.resched_write = nfs_direct_resched_write,
672 };
673 
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)674 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
675 {
676 	int res;
677 	struct nfs_commit_info cinfo;
678 	LIST_HEAD(mds_list);
679 
680 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
681 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
682 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
683 	if (res < 0) /* res == -ENOMEM */
684 		nfs_direct_write_reschedule(dreq);
685 }
686 
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)687 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
688 {
689 	struct nfs_commit_info cinfo;
690 	struct nfs_page *req;
691 	LIST_HEAD(reqs);
692 
693 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
694 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
695 
696 	while (!list_empty(&reqs)) {
697 		req = nfs_list_entry(reqs.next);
698 		nfs_list_remove_request(req);
699 		nfs_release_request(req);
700 		nfs_unlock_and_release_request(req);
701 	}
702 }
703 
nfs_direct_write_schedule_work(struct work_struct * work)704 static void nfs_direct_write_schedule_work(struct work_struct *work)
705 {
706 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
707 	int flags = dreq->flags;
708 
709 	dreq->flags = 0;
710 	switch (flags) {
711 		case NFS_ODIRECT_DO_COMMIT:
712 			nfs_direct_commit_schedule(dreq);
713 			break;
714 		case NFS_ODIRECT_RESCHED_WRITES:
715 			nfs_direct_write_reschedule(dreq);
716 			break;
717 		default:
718 			nfs_direct_write_clear_reqs(dreq);
719 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
720 			nfs_direct_complete(dreq);
721 	}
722 }
723 
nfs_direct_write_complete(struct nfs_direct_req * dreq)724 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
725 {
726 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
727 }
728 
nfs_direct_write_completion(struct nfs_pgio_header * hdr)729 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
730 {
731 	struct nfs_direct_req *dreq = hdr->dreq;
732 	struct nfs_commit_info cinfo;
733 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
734 	int flags = NFS_ODIRECT_DONE;
735 
736 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
737 
738 	spin_lock(&dreq->lock);
739 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
740 		spin_unlock(&dreq->lock);
741 		goto out_put;
742 	}
743 
744 	nfs_direct_count_bytes(dreq, hdr);
745 	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
746 		if (!dreq->flags)
747 			dreq->flags = NFS_ODIRECT_DO_COMMIT;
748 		flags = dreq->flags;
749 	}
750 	spin_unlock(&dreq->lock);
751 
752 	while (!list_empty(&hdr->pages)) {
753 
754 		req = nfs_list_entry(hdr->pages.next);
755 		nfs_list_remove_request(req);
756 		if (flags == NFS_ODIRECT_DO_COMMIT) {
757 			kref_get(&req->wb_kref);
758 			memcpy(&req->wb_verf, &hdr->verf.verifier,
759 			       sizeof(req->wb_verf));
760 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
761 				hdr->ds_commit_idx);
762 		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
763 			kref_get(&req->wb_kref);
764 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
765 		}
766 		nfs_unlock_and_release_request(req);
767 	}
768 
769 out_put:
770 	if (put_dreq(dreq))
771 		nfs_direct_write_complete(dreq);
772 	hdr->release(hdr);
773 }
774 
nfs_write_sync_pgio_error(struct list_head * head,int error)775 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
776 {
777 	struct nfs_page *req;
778 
779 	while (!list_empty(head)) {
780 		req = nfs_list_entry(head->next);
781 		nfs_list_remove_request(req);
782 		nfs_unlock_and_release_request(req);
783 	}
784 }
785 
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)786 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
787 {
788 	struct nfs_direct_req *dreq = hdr->dreq;
789 
790 	spin_lock(&dreq->lock);
791 	if (dreq->error == 0) {
792 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
793 		/* fake unstable write to let common nfs resend pages */
794 		hdr->verf.committed = NFS_UNSTABLE;
795 		hdr->good_bytes = hdr->args.offset + hdr->args.count -
796 			hdr->io_start;
797 	}
798 	spin_unlock(&dreq->lock);
799 }
800 
801 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
802 	.error_cleanup = nfs_write_sync_pgio_error,
803 	.init_hdr = nfs_direct_pgio_init,
804 	.completion = nfs_direct_write_completion,
805 	.reschedule_io = nfs_direct_write_reschedule_io,
806 };
807 
808 
809 /*
810  * NB: Return the value of the first error return code.  Subsequent
811  *     errors after the first one are ignored.
812  */
813 /*
814  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
815  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
816  * bail and stop sending more writes.  Write length accounting is
817  * handled automatically by nfs_direct_write_result().  Otherwise, if
818  * no requests have been sent, just return an error.
819  */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)820 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
821 					       struct iov_iter *iter,
822 					       loff_t pos, int ioflags)
823 {
824 	struct nfs_pageio_descriptor desc;
825 	struct inode *inode = dreq->inode;
826 	ssize_t result = 0;
827 	size_t requested_bytes = 0;
828 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
829 
830 	nfs_pageio_init_write(&desc, inode, ioflags, false,
831 			      &nfs_direct_write_completion_ops);
832 	desc.pg_dreq = dreq;
833 	get_dreq(dreq);
834 	inode_dio_begin(inode);
835 
836 	NFS_I(inode)->write_io += iov_iter_count(iter);
837 	while (iov_iter_count(iter)) {
838 		struct page **pagevec;
839 		size_t bytes;
840 		size_t pgbase;
841 		unsigned npages, i;
842 
843 		result = iov_iter_get_pages_alloc(iter, &pagevec,
844 						  wsize, &pgbase);
845 		if (result < 0)
846 			break;
847 
848 		bytes = result;
849 		iov_iter_advance(iter, bytes);
850 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
851 		for (i = 0; i < npages; i++) {
852 			struct nfs_page *req;
853 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
854 
855 			req = nfs_create_request(dreq->ctx, pagevec[i],
856 						 pgbase, req_len);
857 			if (IS_ERR(req)) {
858 				result = PTR_ERR(req);
859 				break;
860 			}
861 
862 			if (desc.pg_error < 0) {
863 				nfs_free_request(req);
864 				result = desc.pg_error;
865 				break;
866 			}
867 
868 			nfs_lock_request(req);
869 			req->wb_index = pos >> PAGE_SHIFT;
870 			req->wb_offset = pos & ~PAGE_MASK;
871 			if (!nfs_pageio_add_request(&desc, req)) {
872 				result = desc.pg_error;
873 				nfs_unlock_and_release_request(req);
874 				break;
875 			}
876 			pgbase = 0;
877 			bytes -= req_len;
878 			requested_bytes += req_len;
879 			pos += req_len;
880 			dreq->bytes_left -= req_len;
881 		}
882 		nfs_direct_release_pages(pagevec, npages);
883 		kvfree(pagevec);
884 		if (result < 0)
885 			break;
886 	}
887 	nfs_pageio_complete(&desc);
888 
889 	/*
890 	 * If no bytes were started, return the error, and let the
891 	 * generic layer handle the completion.
892 	 */
893 	if (requested_bytes == 0) {
894 		inode_dio_end(inode);
895 		nfs_direct_req_release(dreq);
896 		return result < 0 ? result : -EIO;
897 	}
898 
899 	if (put_dreq(dreq))
900 		nfs_direct_write_complete(dreq);
901 	return requested_bytes;
902 }
903 
904 /**
905  * nfs_file_direct_write - file direct write operation for NFS files
906  * @iocb: target I/O control block
907  * @iter: vector of user buffers from which to write data
908  * @swap: flag indicating this is swap IO, not O_DIRECT IO
909  *
910  * We use this function for direct writes instead of calling
911  * generic_file_aio_write() in order to avoid taking the inode
912  * semaphore and updating the i_size.  The NFS server will set
913  * the new i_size and this client must read the updated size
914  * back into its cache.  We let the server do generic write
915  * parameter checking and report problems.
916  *
917  * We eliminate local atime updates, see direct read above.
918  *
919  * We avoid unnecessary page cache invalidations for normal cached
920  * readers of this file.
921  *
922  * Note that O_APPEND is not supported for NFS direct writes, as there
923  * is no atomic O_APPEND write facility in the NFS protocol.
924  */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)925 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
926 			      bool swap)
927 {
928 	ssize_t result, requested;
929 	size_t count;
930 	struct file *file = iocb->ki_filp;
931 	struct address_space *mapping = file->f_mapping;
932 	struct inode *inode = mapping->host;
933 	struct nfs_direct_req *dreq;
934 	struct nfs_lock_context *l_ctx;
935 	loff_t pos, end;
936 
937 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
938 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
939 
940 	if (swap)
941 		/* bypass generic checks */
942 		result =  iov_iter_count(iter);
943 	else
944 		result = generic_write_checks(iocb, iter);
945 	if (result <= 0)
946 		return result;
947 	count = result;
948 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
949 
950 	pos = iocb->ki_pos;
951 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
952 
953 	task_io_account_write(count);
954 
955 	result = -ENOMEM;
956 	dreq = nfs_direct_req_alloc();
957 	if (!dreq)
958 		goto out;
959 
960 	dreq->inode = inode;
961 	dreq->bytes_left = dreq->max_count = count;
962 	dreq->io_start = pos;
963 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
964 	l_ctx = nfs_get_lock_context(dreq->ctx);
965 	if (IS_ERR(l_ctx)) {
966 		result = PTR_ERR(l_ctx);
967 		nfs_direct_req_release(dreq);
968 		goto out_release;
969 	}
970 	dreq->l_ctx = l_ctx;
971 	if (!is_sync_kiocb(iocb))
972 		dreq->iocb = iocb;
973 	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
974 
975 	if (swap) {
976 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
977 							    FLUSH_STABLE);
978 	} else {
979 		nfs_start_io_direct(inode);
980 
981 		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
982 							    FLUSH_COND_STABLE);
983 
984 		if (mapping->nrpages) {
985 			invalidate_inode_pages2_range(mapping,
986 						      pos >> PAGE_SHIFT, end);
987 		}
988 
989 		nfs_end_io_direct(inode);
990 	}
991 
992 	if (requested > 0) {
993 		result = nfs_direct_wait(dreq);
994 		if (result > 0) {
995 			requested -= result;
996 			iocb->ki_pos = pos + result;
997 			/* XXX: should check the generic_write_sync retval */
998 			generic_write_sync(iocb, result);
999 		}
1000 		iov_iter_revert(iter, requested);
1001 	} else {
1002 		result = requested;
1003 	}
1004 out_release:
1005 	nfs_direct_req_release(dreq);
1006 out:
1007 	return result;
1008 }
1009 
1010 /**
1011  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1012  *
1013  */
nfs_init_directcache(void)1014 int __init nfs_init_directcache(void)
1015 {
1016 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1017 						sizeof(struct nfs_direct_req),
1018 						0, (SLAB_RECLAIM_ACCOUNT|
1019 							SLAB_MEM_SPREAD),
1020 						NULL);
1021 	if (nfs_direct_cachep == NULL)
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1029  *
1030  */
nfs_destroy_directcache(void)1031 void nfs_destroy_directcache(void)
1032 {
1033 	kmem_cache_destroy(nfs_direct_cachep);
1034 }
1035