• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * inode.c - NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  * @for_shadow: inode for shadowed page cache flag
34  */
35 struct nilfs_iget_args {
36 	u64 ino;
37 	__u64 cno;
38 	struct nilfs_root *root;
39 	bool for_gc;
40 	bool for_btnc;
41 	bool for_shadow;
42 };
43 
44 static int nilfs_iget_test(struct inode *inode, void *opaque);
45 
nilfs_inode_add_blocks(struct inode * inode,int n)46 void nilfs_inode_add_blocks(struct inode *inode, int n)
47 {
48 	struct nilfs_root *root = NILFS_I(inode)->i_root;
49 
50 	inode_add_bytes(inode, i_blocksize(inode) * n);
51 	if (root)
52 		atomic64_add(n, &root->blocks_count);
53 }
54 
nilfs_inode_sub_blocks(struct inode * inode,int n)55 void nilfs_inode_sub_blocks(struct inode *inode, int n)
56 {
57 	struct nilfs_root *root = NILFS_I(inode)->i_root;
58 
59 	inode_sub_bytes(inode, i_blocksize(inode) * n);
60 	if (root)
61 		atomic64_sub(n, &root->blocks_count);
62 }
63 
64 /**
65  * nilfs_get_block() - get a file block on the filesystem (callback function)
66  * @inode - inode struct of the target file
67  * @blkoff - file block number
68  * @bh_result - buffer head to be mapped on
69  * @create - indicate whether allocating the block or not when it has not
70  *      been allocated yet.
71  *
72  * This function does not issue actual read request of the specified data
73  * block. It is done by VFS.
74  */
nilfs_get_block(struct inode * inode,sector_t blkoff,struct buffer_head * bh_result,int create)75 int nilfs_get_block(struct inode *inode, sector_t blkoff,
76 		    struct buffer_head *bh_result, int create)
77 {
78 	struct nilfs_inode_info *ii = NILFS_I(inode);
79 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
80 	__u64 blknum = 0;
81 	int err = 0, ret;
82 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
83 
84 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
86 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
87 	if (ret >= 0) {	/* found */
88 		map_bh(bh_result, inode->i_sb, blknum);
89 		if (ret > 0)
90 			bh_result->b_size = (ret << inode->i_blkbits);
91 		goto out;
92 	}
93 	/* data block was not found */
94 	if (ret == -ENOENT && create) {
95 		struct nilfs_transaction_info ti;
96 
97 		bh_result->b_blocknr = 0;
98 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
99 		if (unlikely(err))
100 			goto out;
101 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
102 					(unsigned long)bh_result);
103 		if (unlikely(err != 0)) {
104 			if (err == -EEXIST) {
105 				/*
106 				 * The get_block() function could be called
107 				 * from multiple callers for an inode.
108 				 * However, the page having this block must
109 				 * be locked in this case.
110 				 */
111 				nilfs_warn(inode->i_sb,
112 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
113 					   __func__, inode->i_ino,
114 					   (unsigned long long)blkoff);
115 				err = 0;
116 			}
117 			nilfs_transaction_abort(inode->i_sb);
118 			goto out;
119 		}
120 		nilfs_mark_inode_dirty_sync(inode);
121 		nilfs_transaction_commit(inode->i_sb); /* never fails */
122 		/* Error handling should be detailed */
123 		set_buffer_new(bh_result);
124 		set_buffer_delay(bh_result);
125 		map_bh(bh_result, inode->i_sb, 0);
126 		/* Disk block number must be changed to proper value */
127 
128 	} else if (ret == -ENOENT) {
129 		/*
130 		 * not found is not error (e.g. hole); must return without
131 		 * the mapped state flag.
132 		 */
133 		;
134 	} else {
135 		err = ret;
136 	}
137 
138  out:
139 	return err;
140 }
141 
142 /**
143  * nilfs_readpage() - implement readpage() method of nilfs_aops {}
144  * address_space_operations.
145  * @file - file struct of the file to be read
146  * @page - the page to be read
147  */
nilfs_readpage(struct file * file,struct page * page)148 static int nilfs_readpage(struct file *file, struct page *page)
149 {
150 	return mpage_readpage(page, nilfs_get_block);
151 }
152 
nilfs_readahead(struct readahead_control * rac)153 static void nilfs_readahead(struct readahead_control *rac)
154 {
155 	mpage_readahead(rac, nilfs_get_block);
156 }
157 
nilfs_writepages(struct address_space * mapping,struct writeback_control * wbc)158 static int nilfs_writepages(struct address_space *mapping,
159 			    struct writeback_control *wbc)
160 {
161 	struct inode *inode = mapping->host;
162 	int err = 0;
163 
164 	if (sb_rdonly(inode->i_sb)) {
165 		nilfs_clear_dirty_pages(mapping, false);
166 		return -EROFS;
167 	}
168 
169 	if (wbc->sync_mode == WB_SYNC_ALL)
170 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
171 						    wbc->range_start,
172 						    wbc->range_end);
173 	return err;
174 }
175 
nilfs_writepage(struct page * page,struct writeback_control * wbc)176 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
177 {
178 	struct inode *inode = page->mapping->host;
179 	int err;
180 
181 	if (sb_rdonly(inode->i_sb)) {
182 		/*
183 		 * It means that filesystem was remounted in read-only
184 		 * mode because of error or metadata corruption. But we
185 		 * have dirty pages that try to be flushed in background.
186 		 * So, here we simply discard this dirty page.
187 		 */
188 		nilfs_clear_dirty_page(page, false);
189 		unlock_page(page);
190 		return -EROFS;
191 	}
192 
193 	redirty_page_for_writepage(wbc, page);
194 	unlock_page(page);
195 
196 	if (wbc->sync_mode == WB_SYNC_ALL) {
197 		err = nilfs_construct_segment(inode->i_sb);
198 		if (unlikely(err))
199 			return err;
200 	} else if (wbc->for_reclaim)
201 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
202 
203 	return 0;
204 }
205 
nilfs_set_page_dirty(struct page * page)206 static int nilfs_set_page_dirty(struct page *page)
207 {
208 	struct inode *inode = page->mapping->host;
209 	int ret = __set_page_dirty_nobuffers(page);
210 
211 	if (page_has_buffers(page)) {
212 		unsigned int nr_dirty = 0;
213 		struct buffer_head *bh, *head;
214 
215 		/*
216 		 * This page is locked by callers, and no other thread
217 		 * concurrently marks its buffers dirty since they are
218 		 * only dirtied through routines in fs/buffer.c in
219 		 * which call sites of mark_buffer_dirty are protected
220 		 * by page lock.
221 		 */
222 		bh = head = page_buffers(page);
223 		do {
224 			/* Do not mark hole blocks dirty */
225 			if (buffer_dirty(bh) || !buffer_mapped(bh))
226 				continue;
227 
228 			set_buffer_dirty(bh);
229 			nr_dirty++;
230 		} while (bh = bh->b_this_page, bh != head);
231 
232 		if (nr_dirty)
233 			nilfs_set_file_dirty(inode, nr_dirty);
234 	} else if (ret) {
235 		unsigned int nr_dirty = 1 << (PAGE_SHIFT - inode->i_blkbits);
236 
237 		nilfs_set_file_dirty(inode, nr_dirty);
238 	}
239 	return ret;
240 }
241 
nilfs_write_failed(struct address_space * mapping,loff_t to)242 void nilfs_write_failed(struct address_space *mapping, loff_t to)
243 {
244 	struct inode *inode = mapping->host;
245 
246 	if (to > inode->i_size) {
247 		truncate_pagecache(inode, inode->i_size);
248 		nilfs_truncate(inode);
249 	}
250 }
251 
nilfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)252 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
253 			     loff_t pos, unsigned len, unsigned flags,
254 			     struct page **pagep, void **fsdata)
255 
256 {
257 	struct inode *inode = mapping->host;
258 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
259 
260 	if (unlikely(err))
261 		return err;
262 
263 	err = block_write_begin(mapping, pos, len, flags, pagep,
264 				nilfs_get_block);
265 	if (unlikely(err)) {
266 		nilfs_write_failed(mapping, pos + len);
267 		nilfs_transaction_abort(inode->i_sb);
268 	}
269 	return err;
270 }
271 
nilfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)272 static int nilfs_write_end(struct file *file, struct address_space *mapping,
273 			   loff_t pos, unsigned len, unsigned copied,
274 			   struct page *page, void *fsdata)
275 {
276 	struct inode *inode = mapping->host;
277 	unsigned int start = pos & (PAGE_SIZE - 1);
278 	unsigned int nr_dirty;
279 	int err;
280 
281 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
282 						  start + copied);
283 	copied = generic_write_end(file, mapping, pos, len, copied, page,
284 				   fsdata);
285 	nilfs_set_file_dirty(inode, nr_dirty);
286 	err = nilfs_transaction_commit(inode->i_sb);
287 	return err ? : copied;
288 }
289 
290 static ssize_t
nilfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)291 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
292 {
293 	struct inode *inode = file_inode(iocb->ki_filp);
294 
295 	if (iov_iter_rw(iter) == WRITE)
296 		return 0;
297 
298 	/* Needs synchronization with the cleaner */
299 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
300 }
301 
302 const struct address_space_operations nilfs_aops = {
303 	.writepage		= nilfs_writepage,
304 	.readpage		= nilfs_readpage,
305 	.writepages		= nilfs_writepages,
306 	.set_page_dirty		= nilfs_set_page_dirty,
307 	.readahead		= nilfs_readahead,
308 	.write_begin		= nilfs_write_begin,
309 	.write_end		= nilfs_write_end,
310 	/* .releasepage		= nilfs_releasepage, */
311 	.invalidatepage		= block_invalidatepage,
312 	.direct_IO		= nilfs_direct_IO,
313 	.is_partially_uptodate  = block_is_partially_uptodate,
314 };
315 
nilfs_insert_inode_locked(struct inode * inode,struct nilfs_root * root,unsigned long ino)316 static int nilfs_insert_inode_locked(struct inode *inode,
317 				     struct nilfs_root *root,
318 				     unsigned long ino)
319 {
320 	struct nilfs_iget_args args = {
321 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
322 		.for_btnc = false, .for_shadow = false
323 	};
324 
325 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
326 }
327 
nilfs_new_inode(struct inode * dir,umode_t mode)328 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
329 {
330 	struct super_block *sb = dir->i_sb;
331 	struct the_nilfs *nilfs = sb->s_fs_info;
332 	struct inode *inode;
333 	struct nilfs_inode_info *ii;
334 	struct nilfs_root *root;
335 	struct buffer_head *bh;
336 	int err = -ENOMEM;
337 	ino_t ino;
338 
339 	inode = new_inode(sb);
340 	if (unlikely(!inode))
341 		goto failed;
342 
343 	mapping_set_gfp_mask(inode->i_mapping,
344 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
345 
346 	root = NILFS_I(dir)->i_root;
347 	ii = NILFS_I(inode);
348 	ii->i_state = BIT(NILFS_I_NEW);
349 	ii->i_root = root;
350 
351 	err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
352 	if (unlikely(err))
353 		goto failed_ifile_create_inode;
354 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
355 
356 	if (unlikely(ino < NILFS_USER_INO)) {
357 		nilfs_warn(sb,
358 			   "inode bitmap is inconsistent for reserved inodes");
359 		do {
360 			brelse(bh);
361 			err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
362 			if (unlikely(err))
363 				goto failed_ifile_create_inode;
364 		} while (ino < NILFS_USER_INO);
365 
366 		nilfs_info(sb, "repaired inode bitmap for reserved inodes");
367 	}
368 	ii->i_bh = bh;
369 
370 	atomic64_inc(&root->inodes_count);
371 	inode_init_owner(inode, dir, mode);
372 	inode->i_ino = ino;
373 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
374 
375 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
376 		err = nilfs_bmap_read(ii->i_bmap, NULL);
377 		if (err < 0)
378 			goto failed_after_creation;
379 
380 		set_bit(NILFS_I_BMAP, &ii->i_state);
381 		/* No lock is needed; iget() ensures it. */
382 	}
383 
384 	ii->i_flags = nilfs_mask_flags(
385 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
386 
387 	/* ii->i_file_acl = 0; */
388 	/* ii->i_dir_acl = 0; */
389 	ii->i_dir_start_lookup = 0;
390 	nilfs_set_inode_flags(inode);
391 	spin_lock(&nilfs->ns_next_gen_lock);
392 	inode->i_generation = nilfs->ns_next_generation++;
393 	spin_unlock(&nilfs->ns_next_gen_lock);
394 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
395 		err = -EIO;
396 		goto failed_after_creation;
397 	}
398 
399 	err = nilfs_init_acl(inode, dir);
400 	if (unlikely(err))
401 		/*
402 		 * Never occur.  When supporting nilfs_init_acl(),
403 		 * proper cancellation of above jobs should be considered.
404 		 */
405 		goto failed_after_creation;
406 
407 	return inode;
408 
409  failed_after_creation:
410 	clear_nlink(inode);
411 	if (inode->i_state & I_NEW)
412 		unlock_new_inode(inode);
413 	iput(inode);  /*
414 		       * raw_inode will be deleted through
415 		       * nilfs_evict_inode().
416 		       */
417 	goto failed;
418 
419  failed_ifile_create_inode:
420 	make_bad_inode(inode);
421 	iput(inode);
422  failed:
423 	return ERR_PTR(err);
424 }
425 
nilfs_set_inode_flags(struct inode * inode)426 void nilfs_set_inode_flags(struct inode *inode)
427 {
428 	unsigned int flags = NILFS_I(inode)->i_flags;
429 	unsigned int new_fl = 0;
430 
431 	if (flags & FS_SYNC_FL)
432 		new_fl |= S_SYNC;
433 	if (flags & FS_APPEND_FL)
434 		new_fl |= S_APPEND;
435 	if (flags & FS_IMMUTABLE_FL)
436 		new_fl |= S_IMMUTABLE;
437 	if (flags & FS_NOATIME_FL)
438 		new_fl |= S_NOATIME;
439 	if (flags & FS_DIRSYNC_FL)
440 		new_fl |= S_DIRSYNC;
441 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
442 			S_NOATIME | S_DIRSYNC);
443 }
444 
nilfs_read_inode_common(struct inode * inode,struct nilfs_inode * raw_inode)445 int nilfs_read_inode_common(struct inode *inode,
446 			    struct nilfs_inode *raw_inode)
447 {
448 	struct nilfs_inode_info *ii = NILFS_I(inode);
449 	int err;
450 
451 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
452 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
453 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
454 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
455 	inode->i_size = le64_to_cpu(raw_inode->i_size);
456 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
457 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
458 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
459 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
460 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
461 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
462 	if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode))
463 		return -EIO; /* this inode is for metadata and corrupted */
464 	if (inode->i_nlink == 0)
465 		return -ESTALE; /* this inode is deleted */
466 
467 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
468 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
469 #if 0
470 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
471 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
472 		0 : le32_to_cpu(raw_inode->i_dir_acl);
473 #endif
474 	ii->i_dir_start_lookup = 0;
475 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
476 
477 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
478 	    S_ISLNK(inode->i_mode)) {
479 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
480 		if (err < 0)
481 			return err;
482 		set_bit(NILFS_I_BMAP, &ii->i_state);
483 		/* No lock is needed; iget() ensures it. */
484 	}
485 	return 0;
486 }
487 
__nilfs_read_inode(struct super_block * sb,struct nilfs_root * root,unsigned long ino,struct inode * inode)488 static int __nilfs_read_inode(struct super_block *sb,
489 			      struct nilfs_root *root, unsigned long ino,
490 			      struct inode *inode)
491 {
492 	struct the_nilfs *nilfs = sb->s_fs_info;
493 	struct buffer_head *bh;
494 	struct nilfs_inode *raw_inode;
495 	int err;
496 
497 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
498 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
499 	if (unlikely(err))
500 		goto bad_inode;
501 
502 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
503 
504 	err = nilfs_read_inode_common(inode, raw_inode);
505 	if (err)
506 		goto failed_unmap;
507 
508 	if (S_ISREG(inode->i_mode)) {
509 		inode->i_op = &nilfs_file_inode_operations;
510 		inode->i_fop = &nilfs_file_operations;
511 		inode->i_mapping->a_ops = &nilfs_aops;
512 	} else if (S_ISDIR(inode->i_mode)) {
513 		inode->i_op = &nilfs_dir_inode_operations;
514 		inode->i_fop = &nilfs_dir_operations;
515 		inode->i_mapping->a_ops = &nilfs_aops;
516 	} else if (S_ISLNK(inode->i_mode)) {
517 		inode->i_op = &nilfs_symlink_inode_operations;
518 		inode_nohighmem(inode);
519 		inode->i_mapping->a_ops = &nilfs_aops;
520 	} else {
521 		inode->i_op = &nilfs_special_inode_operations;
522 		init_special_inode(
523 			inode, inode->i_mode,
524 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
525 	}
526 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
527 	brelse(bh);
528 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
529 	nilfs_set_inode_flags(inode);
530 	mapping_set_gfp_mask(inode->i_mapping,
531 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
532 	return 0;
533 
534  failed_unmap:
535 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
536 	brelse(bh);
537 
538  bad_inode:
539 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
540 	return err;
541 }
542 
nilfs_iget_test(struct inode * inode,void * opaque)543 static int nilfs_iget_test(struct inode *inode, void *opaque)
544 {
545 	struct nilfs_iget_args *args = opaque;
546 	struct nilfs_inode_info *ii;
547 
548 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
549 		return 0;
550 
551 	ii = NILFS_I(inode);
552 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
553 		if (!args->for_btnc)
554 			return 0;
555 	} else if (args->for_btnc) {
556 		return 0;
557 	}
558 	if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
559 		if (!args->for_shadow)
560 			return 0;
561 	} else if (args->for_shadow) {
562 		return 0;
563 	}
564 
565 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
566 		return !args->for_gc;
567 
568 	return args->for_gc && args->cno == ii->i_cno;
569 }
570 
nilfs_iget_set(struct inode * inode,void * opaque)571 static int nilfs_iget_set(struct inode *inode, void *opaque)
572 {
573 	struct nilfs_iget_args *args = opaque;
574 
575 	inode->i_ino = args->ino;
576 	NILFS_I(inode)->i_cno = args->cno;
577 	NILFS_I(inode)->i_root = args->root;
578 	if (args->root && args->ino == NILFS_ROOT_INO)
579 		nilfs_get_root(args->root);
580 
581 	if (args->for_gc)
582 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
583 	if (args->for_btnc)
584 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
585 	if (args->for_shadow)
586 		NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
587 	return 0;
588 }
589 
nilfs_ilookup(struct super_block * sb,struct nilfs_root * root,unsigned long ino)590 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
591 			    unsigned long ino)
592 {
593 	struct nilfs_iget_args args = {
594 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
595 		.for_btnc = false, .for_shadow = false
596 	};
597 
598 	return ilookup5(sb, ino, nilfs_iget_test, &args);
599 }
600 
nilfs_iget_locked(struct super_block * sb,struct nilfs_root * root,unsigned long ino)601 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
602 				unsigned long ino)
603 {
604 	struct nilfs_iget_args args = {
605 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
606 		.for_btnc = false, .for_shadow = false
607 	};
608 
609 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
610 }
611 
nilfs_iget(struct super_block * sb,struct nilfs_root * root,unsigned long ino)612 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
613 			 unsigned long ino)
614 {
615 	struct inode *inode;
616 	int err;
617 
618 	inode = nilfs_iget_locked(sb, root, ino);
619 	if (unlikely(!inode))
620 		return ERR_PTR(-ENOMEM);
621 	if (!(inode->i_state & I_NEW))
622 		return inode;
623 
624 	err = __nilfs_read_inode(sb, root, ino, inode);
625 	if (unlikely(err)) {
626 		iget_failed(inode);
627 		return ERR_PTR(err);
628 	}
629 	unlock_new_inode(inode);
630 	return inode;
631 }
632 
nilfs_iget_for_gc(struct super_block * sb,unsigned long ino,__u64 cno)633 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
634 				__u64 cno)
635 {
636 	struct nilfs_iget_args args = {
637 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
638 		.for_btnc = false, .for_shadow = false
639 	};
640 	struct inode *inode;
641 	int err;
642 
643 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
644 	if (unlikely(!inode))
645 		return ERR_PTR(-ENOMEM);
646 	if (!(inode->i_state & I_NEW))
647 		return inode;
648 
649 	err = nilfs_init_gcinode(inode);
650 	if (unlikely(err)) {
651 		iget_failed(inode);
652 		return ERR_PTR(err);
653 	}
654 	unlock_new_inode(inode);
655 	return inode;
656 }
657 
658 /**
659  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
660  * @inode: inode object
661  *
662  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
663  * or does nothing if the inode already has it.  This function allocates
664  * an additional inode to maintain page cache of B-tree nodes one-on-one.
665  *
666  * Return Value: On success, 0 is returned. On errors, one of the following
667  * negative error code is returned.
668  *
669  * %-ENOMEM - Insufficient memory available.
670  */
nilfs_attach_btree_node_cache(struct inode * inode)671 int nilfs_attach_btree_node_cache(struct inode *inode)
672 {
673 	struct nilfs_inode_info *ii = NILFS_I(inode);
674 	struct inode *btnc_inode;
675 	struct nilfs_iget_args args;
676 
677 	if (ii->i_assoc_inode)
678 		return 0;
679 
680 	args.ino = inode->i_ino;
681 	args.root = ii->i_root;
682 	args.cno = ii->i_cno;
683 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
684 	args.for_btnc = true;
685 	args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
686 
687 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
688 				  nilfs_iget_set, &args);
689 	if (unlikely(!btnc_inode))
690 		return -ENOMEM;
691 	if (btnc_inode->i_state & I_NEW) {
692 		nilfs_init_btnc_inode(btnc_inode);
693 		unlock_new_inode(btnc_inode);
694 	}
695 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
696 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
697 	ii->i_assoc_inode = btnc_inode;
698 
699 	return 0;
700 }
701 
702 /**
703  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
704  * @inode: inode object
705  *
706  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
707  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
708  */
nilfs_detach_btree_node_cache(struct inode * inode)709 void nilfs_detach_btree_node_cache(struct inode *inode)
710 {
711 	struct nilfs_inode_info *ii = NILFS_I(inode);
712 	struct inode *btnc_inode = ii->i_assoc_inode;
713 
714 	if (btnc_inode) {
715 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
716 		ii->i_assoc_inode = NULL;
717 		iput(btnc_inode);
718 	}
719 }
720 
721 /**
722  * nilfs_iget_for_shadow - obtain inode for shadow mapping
723  * @inode: inode object that uses shadow mapping
724  *
725  * nilfs_iget_for_shadow() allocates a pair of inodes that holds page
726  * caches for shadow mapping.  The page cache for data pages is set up
727  * in one inode and the one for b-tree node pages is set up in the
728  * other inode, which is attached to the former inode.
729  *
730  * Return Value: On success, a pointer to the inode for data pages is
731  * returned. On errors, one of the following negative error code is returned
732  * in a pointer type.
733  *
734  * %-ENOMEM - Insufficient memory available.
735  */
nilfs_iget_for_shadow(struct inode * inode)736 struct inode *nilfs_iget_for_shadow(struct inode *inode)
737 {
738 	struct nilfs_iget_args args = {
739 		.ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
740 		.for_btnc = false, .for_shadow = true
741 	};
742 	struct inode *s_inode;
743 	int err;
744 
745 	s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
746 			       nilfs_iget_set, &args);
747 	if (unlikely(!s_inode))
748 		return ERR_PTR(-ENOMEM);
749 	if (!(s_inode->i_state & I_NEW))
750 		return inode;
751 
752 	NILFS_I(s_inode)->i_flags = 0;
753 	memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
754 	mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
755 
756 	err = nilfs_attach_btree_node_cache(s_inode);
757 	if (unlikely(err)) {
758 		iget_failed(s_inode);
759 		return ERR_PTR(err);
760 	}
761 	unlock_new_inode(s_inode);
762 	return s_inode;
763 }
764 
nilfs_write_inode_common(struct inode * inode,struct nilfs_inode * raw_inode,int has_bmap)765 void nilfs_write_inode_common(struct inode *inode,
766 			      struct nilfs_inode *raw_inode, int has_bmap)
767 {
768 	struct nilfs_inode_info *ii = NILFS_I(inode);
769 
770 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
771 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
772 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
773 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
774 	raw_inode->i_size = cpu_to_le64(inode->i_size);
775 	raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
776 	raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
777 	raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
778 	raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
779 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
780 
781 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
782 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
783 
784 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
785 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
786 
787 		/* zero-fill unused portion in the case of super root block */
788 		raw_inode->i_xattr = 0;
789 		raw_inode->i_pad = 0;
790 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
791 		       nilfs->ns_inode_size - sizeof(*raw_inode));
792 	}
793 
794 	if (has_bmap)
795 		nilfs_bmap_write(ii->i_bmap, raw_inode);
796 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
797 		raw_inode->i_device_code =
798 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
799 	/*
800 	 * When extending inode, nilfs->ns_inode_size should be checked
801 	 * for substitutions of appended fields.
802 	 */
803 }
804 
nilfs_update_inode(struct inode * inode,struct buffer_head * ibh,int flags)805 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
806 {
807 	ino_t ino = inode->i_ino;
808 	struct nilfs_inode_info *ii = NILFS_I(inode);
809 	struct inode *ifile = ii->i_root->ifile;
810 	struct nilfs_inode *raw_inode;
811 
812 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
813 
814 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
815 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
816 	if (flags & I_DIRTY_DATASYNC)
817 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
818 
819 	nilfs_write_inode_common(inode, raw_inode, 0);
820 		/*
821 		 * XXX: call with has_bmap = 0 is a workaround to avoid
822 		 * deadlock of bmap.  This delays update of i_bmap to just
823 		 * before writing.
824 		 */
825 
826 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
827 }
828 
829 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
830 
nilfs_truncate_bmap(struct nilfs_inode_info * ii,unsigned long from)831 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
832 				unsigned long from)
833 {
834 	__u64 b;
835 	int ret;
836 
837 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
838 		return;
839 repeat:
840 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
841 	if (ret == -ENOENT)
842 		return;
843 	else if (ret < 0)
844 		goto failed;
845 
846 	if (b < from)
847 		return;
848 
849 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
850 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
851 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
852 	if (!ret || (ret == -ENOMEM &&
853 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
854 		goto repeat;
855 
856 failed:
857 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
858 		   ret, ii->vfs_inode.i_ino);
859 }
860 
nilfs_truncate(struct inode * inode)861 void nilfs_truncate(struct inode *inode)
862 {
863 	unsigned long blkoff;
864 	unsigned int blocksize;
865 	struct nilfs_transaction_info ti;
866 	struct super_block *sb = inode->i_sb;
867 	struct nilfs_inode_info *ii = NILFS_I(inode);
868 
869 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
870 		return;
871 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
872 		return;
873 
874 	blocksize = sb->s_blocksize;
875 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
876 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
877 
878 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
879 
880 	nilfs_truncate_bmap(ii, blkoff);
881 
882 	inode->i_mtime = inode->i_ctime = current_time(inode);
883 	if (IS_SYNC(inode))
884 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
885 
886 	nilfs_mark_inode_dirty(inode);
887 	nilfs_set_file_dirty(inode, 0);
888 	nilfs_transaction_commit(sb);
889 	/*
890 	 * May construct a logical segment and may fail in sync mode.
891 	 * But truncate has no return value.
892 	 */
893 }
894 
nilfs_clear_inode(struct inode * inode)895 static void nilfs_clear_inode(struct inode *inode)
896 {
897 	struct nilfs_inode_info *ii = NILFS_I(inode);
898 
899 	/*
900 	 * Free resources allocated in nilfs_read_inode(), here.
901 	 */
902 	BUG_ON(!list_empty(&ii->i_dirty));
903 	brelse(ii->i_bh);
904 	ii->i_bh = NULL;
905 
906 	if (nilfs_is_metadata_file_inode(inode))
907 		nilfs_mdt_clear(inode);
908 
909 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
910 		nilfs_bmap_clear(ii->i_bmap);
911 
912 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
913 		nilfs_detach_btree_node_cache(inode);
914 
915 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
916 		nilfs_put_root(ii->i_root);
917 }
918 
nilfs_evict_inode(struct inode * inode)919 void nilfs_evict_inode(struct inode *inode)
920 {
921 	struct nilfs_transaction_info ti;
922 	struct super_block *sb = inode->i_sb;
923 	struct nilfs_inode_info *ii = NILFS_I(inode);
924 	struct the_nilfs *nilfs;
925 	int ret;
926 
927 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
928 		truncate_inode_pages_final(&inode->i_data);
929 		clear_inode(inode);
930 		nilfs_clear_inode(inode);
931 		return;
932 	}
933 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
934 
935 	truncate_inode_pages_final(&inode->i_data);
936 
937 	nilfs = sb->s_fs_info;
938 	if (unlikely(sb_rdonly(sb) || !nilfs->ns_writer)) {
939 		/*
940 		 * If this inode is about to be disposed after the file system
941 		 * has been degraded to read-only due to file system corruption
942 		 * or after the writer has been detached, do not make any
943 		 * changes that cause writes, just clear it.
944 		 * Do this check after read-locking ns_segctor_sem by
945 		 * nilfs_transaction_begin() in order to avoid a race with
946 		 * the writer detach operation.
947 		 */
948 		clear_inode(inode);
949 		nilfs_clear_inode(inode);
950 		nilfs_transaction_abort(sb);
951 		return;
952 	}
953 
954 	/* TODO: some of the following operations may fail.  */
955 	nilfs_truncate_bmap(ii, 0);
956 	nilfs_mark_inode_dirty(inode);
957 	clear_inode(inode);
958 
959 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
960 	if (!ret)
961 		atomic64_dec(&ii->i_root->inodes_count);
962 
963 	nilfs_clear_inode(inode);
964 
965 	if (IS_SYNC(inode))
966 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
967 	nilfs_transaction_commit(sb);
968 	/*
969 	 * May construct a logical segment and may fail in sync mode.
970 	 * But delete_inode has no return value.
971 	 */
972 }
973 
nilfs_setattr(struct dentry * dentry,struct iattr * iattr)974 int nilfs_setattr(struct dentry *dentry, struct iattr *iattr)
975 {
976 	struct nilfs_transaction_info ti;
977 	struct inode *inode = d_inode(dentry);
978 	struct super_block *sb = inode->i_sb;
979 	int err;
980 
981 	err = setattr_prepare(dentry, iattr);
982 	if (err)
983 		return err;
984 
985 	err = nilfs_transaction_begin(sb, &ti, 0);
986 	if (unlikely(err))
987 		return err;
988 
989 	if ((iattr->ia_valid & ATTR_SIZE) &&
990 	    iattr->ia_size != i_size_read(inode)) {
991 		inode_dio_wait(inode);
992 		truncate_setsize(inode, iattr->ia_size);
993 		nilfs_truncate(inode);
994 	}
995 
996 	setattr_copy(inode, iattr);
997 	mark_inode_dirty(inode);
998 
999 	if (iattr->ia_valid & ATTR_MODE) {
1000 		err = nilfs_acl_chmod(inode);
1001 		if (unlikely(err))
1002 			goto out_err;
1003 	}
1004 
1005 	return nilfs_transaction_commit(sb);
1006 
1007 out_err:
1008 	nilfs_transaction_abort(sb);
1009 	return err;
1010 }
1011 
nilfs_permission(struct inode * inode,int mask)1012 int nilfs_permission(struct inode *inode, int mask)
1013 {
1014 	struct nilfs_root *root = NILFS_I(inode)->i_root;
1015 
1016 	if ((mask & MAY_WRITE) && root &&
1017 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
1018 		return -EROFS; /* snapshot is not writable */
1019 
1020 	return generic_permission(inode, mask);
1021 }
1022 
nilfs_load_inode_block(struct inode * inode,struct buffer_head ** pbh)1023 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
1024 {
1025 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1026 	struct nilfs_inode_info *ii = NILFS_I(inode);
1027 	int err;
1028 
1029 	spin_lock(&nilfs->ns_inode_lock);
1030 	if (ii->i_bh == NULL || unlikely(!buffer_uptodate(ii->i_bh))) {
1031 		spin_unlock(&nilfs->ns_inode_lock);
1032 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
1033 						  inode->i_ino, pbh);
1034 		if (unlikely(err))
1035 			return err;
1036 		spin_lock(&nilfs->ns_inode_lock);
1037 		if (ii->i_bh == NULL)
1038 			ii->i_bh = *pbh;
1039 		else if (unlikely(!buffer_uptodate(ii->i_bh))) {
1040 			__brelse(ii->i_bh);
1041 			ii->i_bh = *pbh;
1042 		} else {
1043 			brelse(*pbh);
1044 			*pbh = ii->i_bh;
1045 		}
1046 	} else
1047 		*pbh = ii->i_bh;
1048 
1049 	get_bh(*pbh);
1050 	spin_unlock(&nilfs->ns_inode_lock);
1051 	return 0;
1052 }
1053 
nilfs_inode_dirty(struct inode * inode)1054 int nilfs_inode_dirty(struct inode *inode)
1055 {
1056 	struct nilfs_inode_info *ii = NILFS_I(inode);
1057 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1058 	int ret = 0;
1059 
1060 	if (!list_empty(&ii->i_dirty)) {
1061 		spin_lock(&nilfs->ns_inode_lock);
1062 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
1063 			test_bit(NILFS_I_BUSY, &ii->i_state);
1064 		spin_unlock(&nilfs->ns_inode_lock);
1065 	}
1066 	return ret;
1067 }
1068 
nilfs_set_file_dirty(struct inode * inode,unsigned int nr_dirty)1069 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
1070 {
1071 	struct nilfs_inode_info *ii = NILFS_I(inode);
1072 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1073 
1074 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
1075 
1076 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
1077 		return 0;
1078 
1079 	spin_lock(&nilfs->ns_inode_lock);
1080 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
1081 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
1082 		/*
1083 		 * Because this routine may race with nilfs_dispose_list(),
1084 		 * we have to check NILFS_I_QUEUED here, too.
1085 		 */
1086 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
1087 			/*
1088 			 * This will happen when somebody is freeing
1089 			 * this inode.
1090 			 */
1091 			nilfs_warn(inode->i_sb,
1092 				   "cannot set file dirty (ino=%lu): the file is being freed",
1093 				   inode->i_ino);
1094 			spin_unlock(&nilfs->ns_inode_lock);
1095 			return -EINVAL; /*
1096 					 * NILFS_I_DIRTY may remain for
1097 					 * freeing inode.
1098 					 */
1099 		}
1100 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1101 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1102 	}
1103 	spin_unlock(&nilfs->ns_inode_lock);
1104 	return 0;
1105 }
1106 
__nilfs_mark_inode_dirty(struct inode * inode,int flags)1107 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1108 {
1109 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1110 	struct buffer_head *ibh;
1111 	int err;
1112 
1113 	/*
1114 	 * Do not dirty inodes after the log writer has been detached
1115 	 * and its nilfs_root struct has been freed.
1116 	 */
1117 	if (unlikely(nilfs_purging(nilfs)))
1118 		return 0;
1119 
1120 	err = nilfs_load_inode_block(inode, &ibh);
1121 	if (unlikely(err)) {
1122 		nilfs_warn(inode->i_sb,
1123 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1124 			   inode->i_ino, err);
1125 		return err;
1126 	}
1127 	nilfs_update_inode(inode, ibh, flags);
1128 	mark_buffer_dirty(ibh);
1129 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1130 	brelse(ibh);
1131 	return 0;
1132 }
1133 
1134 /**
1135  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1136  * @inode: inode of the file to be registered.
1137  *
1138  * nilfs_dirty_inode() loads a inode block containing the specified
1139  * @inode and copies data from a nilfs_inode to a corresponding inode
1140  * entry in the inode block. This operation is excluded from the segment
1141  * construction. This function can be called both as a single operation
1142  * and as a part of indivisible file operations.
1143  */
nilfs_dirty_inode(struct inode * inode,int flags)1144 void nilfs_dirty_inode(struct inode *inode, int flags)
1145 {
1146 	struct nilfs_transaction_info ti;
1147 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1148 
1149 	if (is_bad_inode(inode)) {
1150 		nilfs_warn(inode->i_sb,
1151 			   "tried to mark bad_inode dirty. ignored.");
1152 		dump_stack();
1153 		return;
1154 	}
1155 	if (mdi) {
1156 		nilfs_mdt_mark_dirty(inode);
1157 		return;
1158 	}
1159 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1160 	__nilfs_mark_inode_dirty(inode, flags);
1161 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1162 }
1163 
nilfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)1164 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1165 		 __u64 start, __u64 len)
1166 {
1167 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1168 	__u64 logical = 0, phys = 0, size = 0;
1169 	__u32 flags = 0;
1170 	loff_t isize;
1171 	sector_t blkoff, end_blkoff;
1172 	sector_t delalloc_blkoff;
1173 	unsigned long delalloc_blklen;
1174 	unsigned int blkbits = inode->i_blkbits;
1175 	int ret, n;
1176 
1177 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1178 	if (ret)
1179 		return ret;
1180 
1181 	inode_lock(inode);
1182 
1183 	isize = i_size_read(inode);
1184 
1185 	blkoff = start >> blkbits;
1186 	end_blkoff = (start + len - 1) >> blkbits;
1187 
1188 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1189 							&delalloc_blkoff);
1190 
1191 	do {
1192 		__u64 blkphy;
1193 		unsigned int maxblocks;
1194 
1195 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1196 			if (size) {
1197 				/* End of the current extent */
1198 				ret = fiemap_fill_next_extent(
1199 					fieinfo, logical, phys, size, flags);
1200 				if (ret)
1201 					break;
1202 			}
1203 			if (blkoff > end_blkoff)
1204 				break;
1205 
1206 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1207 			logical = blkoff << blkbits;
1208 			phys = 0;
1209 			size = delalloc_blklen << blkbits;
1210 
1211 			blkoff = delalloc_blkoff + delalloc_blklen;
1212 			delalloc_blklen = nilfs_find_uncommitted_extent(
1213 				inode, blkoff, &delalloc_blkoff);
1214 			continue;
1215 		}
1216 
1217 		/*
1218 		 * Limit the number of blocks that we look up so as
1219 		 * not to get into the next delayed allocation extent.
1220 		 */
1221 		maxblocks = INT_MAX;
1222 		if (delalloc_blklen)
1223 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1224 					  maxblocks);
1225 		blkphy = 0;
1226 
1227 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1228 		n = nilfs_bmap_lookup_contig(
1229 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1230 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1231 
1232 		if (n < 0) {
1233 			int past_eof;
1234 
1235 			if (unlikely(n != -ENOENT))
1236 				break; /* error */
1237 
1238 			/* HOLE */
1239 			blkoff++;
1240 			past_eof = ((blkoff << blkbits) >= isize);
1241 
1242 			if (size) {
1243 				/* End of the current extent */
1244 
1245 				if (past_eof)
1246 					flags |= FIEMAP_EXTENT_LAST;
1247 
1248 				ret = fiemap_fill_next_extent(
1249 					fieinfo, logical, phys, size, flags);
1250 				if (ret)
1251 					break;
1252 				size = 0;
1253 			}
1254 			if (blkoff > end_blkoff || past_eof)
1255 				break;
1256 		} else {
1257 			if (size) {
1258 				if (phys && blkphy << blkbits == phys + size) {
1259 					/* The current extent goes on */
1260 					size += n << blkbits;
1261 				} else {
1262 					/* Terminate the current extent */
1263 					ret = fiemap_fill_next_extent(
1264 						fieinfo, logical, phys, size,
1265 						flags);
1266 					if (ret || blkoff > end_blkoff)
1267 						break;
1268 
1269 					/* Start another extent */
1270 					flags = FIEMAP_EXTENT_MERGED;
1271 					logical = blkoff << blkbits;
1272 					phys = blkphy << blkbits;
1273 					size = n << blkbits;
1274 				}
1275 			} else {
1276 				/* Start a new extent */
1277 				flags = FIEMAP_EXTENT_MERGED;
1278 				logical = blkoff << blkbits;
1279 				phys = blkphy << blkbits;
1280 				size = n << blkbits;
1281 			}
1282 			blkoff += n;
1283 		}
1284 		cond_resched();
1285 	} while (true);
1286 
1287 	/* If ret is 1 then we just hit the end of the extent array */
1288 	if (ret == 1)
1289 		ret = 0;
1290 
1291 	inode_unlock(inode);
1292 	return ret;
1293 }
1294