• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32 
33 #define DM_MSG_PREFIX "core"
34 
35 /*
36  * Cookies are numeric values sent with CHANGE and REMOVE
37  * uevents while resuming, removing or renaming the device.
38  */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41 
42 static const char *_name = DM_NAME;
43 
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46 
47 static DEFINE_IDR(_minor_idr);
48 
49 static DEFINE_SPINLOCK(_minor_lock);
50 
51 static void do_deferred_remove(struct work_struct *w);
52 
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 
55 static struct workqueue_struct *deferred_remove_workqueue;
56 
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 
dm_issue_global_event(void)60 void dm_issue_global_event(void)
61 {
62 	atomic_inc(&dm_global_event_nr);
63 	wake_up(&dm_global_eventq);
64 }
65 
66 /*
67  * One of these is allocated (on-stack) per original bio.
68  */
69 struct clone_info {
70 	struct dm_table *map;
71 	struct bio *bio;
72 	struct dm_io *io;
73 	sector_t sector;
74 	unsigned sector_count;
75 };
76 
77 /*
78  * One of these is allocated per clone bio.
79  */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 	unsigned magic;
83 	struct dm_io *io;
84 	struct dm_target *ti;
85 	unsigned target_bio_nr;
86 	unsigned *len_ptr;
87 	bool inside_dm_io;
88 	struct bio clone;
89 };
90 
91 /*
92  * One of these is allocated per original bio.
93  * It contains the first clone used for that original.
94  */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 	unsigned magic;
98 	struct mapped_device *md;
99 	blk_status_t status;
100 	atomic_t io_count;
101 	struct bio *orig_bio;
102 	unsigned long start_time;
103 	spinlock_t endio_lock;
104 	struct dm_stats_aux stats_aux;
105 	/* last member of dm_target_io is 'struct bio' */
106 	struct dm_target_io tio;
107 };
108 
dm_per_bio_data(struct bio * bio,size_t data_size)109 void *dm_per_bio_data(struct bio *bio, size_t data_size)
110 {
111 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
112 	if (!tio->inside_dm_io)
113 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
114 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
115 }
116 EXPORT_SYMBOL_GPL(dm_per_bio_data);
117 
dm_bio_from_per_bio_data(void * data,size_t data_size)118 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
119 {
120 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
121 	if (io->magic == DM_IO_MAGIC)
122 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
123 	BUG_ON(io->magic != DM_TIO_MAGIC);
124 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
125 }
126 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
127 
dm_bio_get_target_bio_nr(const struct bio * bio)128 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
129 {
130 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
131 }
132 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
133 
134 #define MINOR_ALLOCED ((void *)-1)
135 
136 /*
137  * Bits for the md->flags field.
138  */
139 #define DMF_BLOCK_IO_FOR_SUSPEND 0
140 #define DMF_SUSPENDED 1
141 #define DMF_FROZEN 2
142 #define DMF_FREEING 3
143 #define DMF_DELETING 4
144 #define DMF_NOFLUSH_SUSPENDING 5
145 #define DMF_DEFERRED_REMOVE 6
146 #define DMF_SUSPENDED_INTERNALLY 7
147 #define DMF_POST_SUSPENDING 8
148 
149 #define DM_NUMA_NODE NUMA_NO_NODE
150 static int dm_numa_node = DM_NUMA_NODE;
151 
152 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
153 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)154 static int get_swap_bios(void)
155 {
156 	int latch = READ_ONCE(swap_bios);
157 	if (unlikely(latch <= 0))
158 		latch = DEFAULT_SWAP_BIOS;
159 	return latch;
160 }
161 
162 /*
163  * For mempools pre-allocation at the table loading time.
164  */
165 struct dm_md_mempools {
166 	struct bio_set bs;
167 	struct bio_set io_bs;
168 };
169 
170 struct table_device {
171 	struct list_head list;
172 	refcount_t count;
173 	struct dm_dev dm_dev;
174 };
175 
176 /*
177  * Bio-based DM's mempools' reserved IOs set by the user.
178  */
179 #define RESERVED_BIO_BASED_IOS		16
180 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
181 
__dm_get_module_param_int(int * module_param,int min,int max)182 static int __dm_get_module_param_int(int *module_param, int min, int max)
183 {
184 	int param = READ_ONCE(*module_param);
185 	int modified_param = 0;
186 	bool modified = true;
187 
188 	if (param < min)
189 		modified_param = min;
190 	else if (param > max)
191 		modified_param = max;
192 	else
193 		modified = false;
194 
195 	if (modified) {
196 		(void)cmpxchg(module_param, param, modified_param);
197 		param = modified_param;
198 	}
199 
200 	return param;
201 }
202 
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)203 unsigned __dm_get_module_param(unsigned *module_param,
204 			       unsigned def, unsigned max)
205 {
206 	unsigned param = READ_ONCE(*module_param);
207 	unsigned modified_param = 0;
208 
209 	if (!param)
210 		modified_param = def;
211 	else if (param > max)
212 		modified_param = max;
213 
214 	if (modified_param) {
215 		(void)cmpxchg(module_param, param, modified_param);
216 		param = modified_param;
217 	}
218 
219 	return param;
220 }
221 
dm_get_reserved_bio_based_ios(void)222 unsigned dm_get_reserved_bio_based_ios(void)
223 {
224 	return __dm_get_module_param(&reserved_bio_based_ios,
225 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
226 }
227 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
228 
dm_get_numa_node(void)229 static unsigned dm_get_numa_node(void)
230 {
231 	return __dm_get_module_param_int(&dm_numa_node,
232 					 DM_NUMA_NODE, num_online_nodes() - 1);
233 }
234 
local_init(void)235 static int __init local_init(void)
236 {
237 	int r;
238 
239 	r = dm_uevent_init();
240 	if (r)
241 		return r;
242 
243 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
244 	if (!deferred_remove_workqueue) {
245 		r = -ENOMEM;
246 		goto out_uevent_exit;
247 	}
248 
249 	_major = major;
250 	r = register_blkdev(_major, _name);
251 	if (r < 0)
252 		goto out_free_workqueue;
253 
254 	if (!_major)
255 		_major = r;
256 
257 	return 0;
258 
259 out_free_workqueue:
260 	destroy_workqueue(deferred_remove_workqueue);
261 out_uevent_exit:
262 	dm_uevent_exit();
263 
264 	return r;
265 }
266 
local_exit(void)267 static void local_exit(void)
268 {
269 	destroy_workqueue(deferred_remove_workqueue);
270 
271 	unregister_blkdev(_major, _name);
272 	dm_uevent_exit();
273 
274 	_major = 0;
275 
276 	DMINFO("cleaned up");
277 }
278 
279 static int (*_inits[])(void) __initdata = {
280 	local_init,
281 	dm_target_init,
282 	dm_linear_init,
283 	dm_stripe_init,
284 	dm_io_init,
285 	dm_kcopyd_init,
286 	dm_interface_init,
287 	dm_statistics_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 	dm_statistics_exit,
299 };
300 
dm_init(void)301 static int __init dm_init(void)
302 {
303 	const int count = ARRAY_SIZE(_inits);
304 
305 	int r, i;
306 
307 	for (i = 0; i < count; i++) {
308 		r = _inits[i]();
309 		if (r)
310 			goto bad;
311 	}
312 
313 	return 0;
314 
315       bad:
316 	while (i--)
317 		_exits[i]();
318 
319 	return r;
320 }
321 
dm_exit(void)322 static void __exit dm_exit(void)
323 {
324 	int i = ARRAY_SIZE(_exits);
325 
326 	while (i--)
327 		_exits[i]();
328 
329 	/*
330 	 * Should be empty by this point.
331 	 */
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 out:
362 	spin_unlock(&_minor_lock);
363 
364 	return md ? 0 : -ENXIO;
365 }
366 
dm_blk_close(struct gendisk * disk,fmode_t mode)367 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
368 {
369 	struct mapped_device *md;
370 
371 	spin_lock(&_minor_lock);
372 
373 	md = disk->private_data;
374 	if (WARN_ON(!md))
375 		goto out;
376 
377 	if (atomic_dec_and_test(&md->open_count) &&
378 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
379 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
380 
381 	dm_put(md);
382 out:
383 	spin_unlock(&_minor_lock);
384 }
385 
dm_open_count(struct mapped_device * md)386 int dm_open_count(struct mapped_device *md)
387 {
388 	return atomic_read(&md->open_count);
389 }
390 
391 /*
392  * Guarantees nothing is using the device before it's deleted.
393  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)394 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
395 {
396 	int r = 0;
397 
398 	spin_lock(&_minor_lock);
399 
400 	if (dm_open_count(md)) {
401 		r = -EBUSY;
402 		if (mark_deferred)
403 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
404 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
405 		r = -EEXIST;
406 	else
407 		set_bit(DMF_DELETING, &md->flags);
408 
409 	spin_unlock(&_minor_lock);
410 
411 	return r;
412 }
413 
dm_cancel_deferred_remove(struct mapped_device * md)414 int dm_cancel_deferred_remove(struct mapped_device *md)
415 {
416 	int r = 0;
417 
418 	spin_lock(&_minor_lock);
419 
420 	if (test_bit(DMF_DELETING, &md->flags))
421 		r = -EBUSY;
422 	else
423 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
424 
425 	spin_unlock(&_minor_lock);
426 
427 	return r;
428 }
429 
do_deferred_remove(struct work_struct * w)430 static void do_deferred_remove(struct work_struct *w)
431 {
432 	dm_deferred_remove();
433 }
434 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)435 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
436 {
437 	struct mapped_device *md = bdev->bd_disk->private_data;
438 
439 	return dm_get_geometry(md, geo);
440 }
441 
442 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)443 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
444 {
445 	struct dm_report_zones_args *args = data;
446 	sector_t sector_diff = args->tgt->begin - args->start;
447 
448 	/*
449 	 * Ignore zones beyond the target range.
450 	 */
451 	if (zone->start >= args->start + args->tgt->len)
452 		return 0;
453 
454 	/*
455 	 * Remap the start sector and write pointer position of the zone
456 	 * to match its position in the target range.
457 	 */
458 	zone->start += sector_diff;
459 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
460 		if (zone->cond == BLK_ZONE_COND_FULL)
461 			zone->wp = zone->start + zone->len;
462 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
463 			zone->wp = zone->start;
464 		else
465 			zone->wp += sector_diff;
466 	}
467 
468 	args->next_sector = zone->start + zone->len;
469 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
470 }
471 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
472 
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)473 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
474 		unsigned int nr_zones, report_zones_cb cb, void *data)
475 {
476 	struct mapped_device *md = disk->private_data;
477 	struct dm_table *map;
478 	int srcu_idx, ret;
479 	struct dm_report_zones_args args = {
480 		.next_sector = sector,
481 		.orig_data = data,
482 		.orig_cb = cb,
483 	};
484 
485 	if (dm_suspended_md(md))
486 		return -EAGAIN;
487 
488 	map = dm_get_live_table(md, &srcu_idx);
489 	if (!map) {
490 		ret = -EIO;
491 		goto out;
492 	}
493 
494 	do {
495 		struct dm_target *tgt;
496 
497 		tgt = dm_table_find_target(map, args.next_sector);
498 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 			ret = -EIO;
500 			goto out;
501 		}
502 
503 		args.tgt = tgt;
504 		ret = tgt->type->report_zones(tgt, &args,
505 					      nr_zones - args.zone_idx);
506 		if (ret < 0)
507 			goto out;
508 	} while (args.zone_idx < nr_zones &&
509 		 args.next_sector < get_capacity(disk));
510 
511 	ret = args.zone_idx;
512 out:
513 	dm_put_live_table(md, srcu_idx);
514 	return ret;
515 }
516 #else
517 #define dm_blk_report_zones		NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 			    struct block_device **bdev)
522 {
523 	struct dm_target *tgt;
524 	struct dm_table *map;
525 	int r;
526 
527 retry:
528 	r = -ENOTTY;
529 	map = dm_get_live_table(md, srcu_idx);
530 	if (!map || !dm_table_get_size(map))
531 		return r;
532 
533 	/* We only support devices that have a single target */
534 	if (dm_table_get_num_targets(map) != 1)
535 		return r;
536 
537 	tgt = dm_table_get_target(map, 0);
538 	if (!tgt->type->prepare_ioctl)
539 		return r;
540 
541 	if (dm_suspended_md(md))
542 		return -EAGAIN;
543 
544 	r = tgt->type->prepare_ioctl(tgt, bdev);
545 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 		dm_put_live_table(md, *srcu_idx);
547 		msleep(10);
548 		goto retry;
549 	}
550 
551 	return r;
552 }
553 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 {
556 	dm_put_live_table(md, srcu_idx);
557 }
558 
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 			unsigned int cmd, unsigned long arg)
561 {
562 	struct mapped_device *md = bdev->bd_disk->private_data;
563 	int r, srcu_idx;
564 
565 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 	if (r < 0)
567 		goto out;
568 
569 	if (r > 0) {
570 		/*
571 		 * Target determined this ioctl is being issued against a
572 		 * subset of the parent bdev; require extra privileges.
573 		 */
574 		if (!capable(CAP_SYS_RAWIO)) {
575 			DMDEBUG_LIMIT(
576 	"%s: sending ioctl %x to DM device without required privilege.",
577 				current->comm, cmd);
578 			r = -ENOIOCTLCMD;
579 			goto out;
580 		}
581 	}
582 
583 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 	dm_unprepare_ioctl(md, srcu_idx);
586 	return r;
587 }
588 
dm_start_time_ns_from_clone(struct bio * bio)589 u64 dm_start_time_ns_from_clone(struct bio *bio)
590 {
591 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
592 	struct dm_io *io = tio->io;
593 
594 	return jiffies_to_nsecs(io->start_time);
595 }
596 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
597 
start_io_acct(struct dm_io * io)598 static void start_io_acct(struct dm_io *io)
599 {
600 	struct mapped_device *md = io->md;
601 	struct bio *bio = io->orig_bio;
602 
603 	io->start_time = bio_start_io_acct(bio);
604 	if (unlikely(dm_stats_used(&md->stats)))
605 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
606 				    bio->bi_iter.bi_sector, bio_sectors(bio),
607 				    false, 0, &io->stats_aux);
608 }
609 
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)610 static void end_io_acct(struct mapped_device *md, struct bio *bio,
611 			unsigned long start_time, struct dm_stats_aux *stats_aux)
612 {
613 	unsigned long duration = jiffies - start_time;
614 
615 	if (unlikely(dm_stats_used(&md->stats)))
616 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
617 				    bio->bi_iter.bi_sector, bio_sectors(bio),
618 				    true, duration, stats_aux);
619 
620 	smp_wmb();
621 
622 	bio_end_io_acct(bio, start_time);
623 
624 	/* nudge anyone waiting on suspend queue */
625 	if (unlikely(wq_has_sleeper(&md->wait)))
626 		wake_up(&md->wait);
627 }
628 
alloc_io(struct mapped_device * md,struct bio * bio)629 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
630 {
631 	struct dm_io *io;
632 	struct dm_target_io *tio;
633 	struct bio *clone;
634 
635 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
636 	if (!clone)
637 		return NULL;
638 
639 	tio = container_of(clone, struct dm_target_io, clone);
640 	tio->inside_dm_io = true;
641 	tio->io = NULL;
642 
643 	io = container_of(tio, struct dm_io, tio);
644 	io->magic = DM_IO_MAGIC;
645 	io->status = 0;
646 	atomic_set(&io->io_count, 1);
647 	io->orig_bio = bio;
648 	io->md = md;
649 	spin_lock_init(&io->endio_lock);
650 
651 	start_io_acct(io);
652 
653 	return io;
654 }
655 
free_io(struct mapped_device * md,struct dm_io * io)656 static void free_io(struct mapped_device *md, struct dm_io *io)
657 {
658 	bio_put(&io->tio.clone);
659 }
660 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)661 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
662 				      unsigned target_bio_nr, gfp_t gfp_mask)
663 {
664 	struct dm_target_io *tio;
665 
666 	if (!ci->io->tio.io) {
667 		/* the dm_target_io embedded in ci->io is available */
668 		tio = &ci->io->tio;
669 	} else {
670 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
671 		if (!clone)
672 			return NULL;
673 
674 		tio = container_of(clone, struct dm_target_io, clone);
675 		tio->inside_dm_io = false;
676 	}
677 
678 	tio->magic = DM_TIO_MAGIC;
679 	tio->io = ci->io;
680 	tio->ti = ti;
681 	tio->target_bio_nr = target_bio_nr;
682 
683 	return tio;
684 }
685 
free_tio(struct dm_target_io * tio)686 static void free_tio(struct dm_target_io *tio)
687 {
688 	if (tio->inside_dm_io)
689 		return;
690 	bio_put(&tio->clone);
691 }
692 
693 /*
694  * Add the bio to the list of deferred io.
695  */
queue_io(struct mapped_device * md,struct bio * bio)696 static void queue_io(struct mapped_device *md, struct bio *bio)
697 {
698 	unsigned long flags;
699 
700 	spin_lock_irqsave(&md->deferred_lock, flags);
701 	bio_list_add(&md->deferred, bio);
702 	spin_unlock_irqrestore(&md->deferred_lock, flags);
703 	queue_work(md->wq, &md->work);
704 }
705 
706 /*
707  * Everyone (including functions in this file), should use this
708  * function to access the md->map field, and make sure they call
709  * dm_put_live_table() when finished.
710  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)711 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
712 {
713 	*srcu_idx = srcu_read_lock(&md->io_barrier);
714 
715 	return srcu_dereference(md->map, &md->io_barrier);
716 }
717 
dm_put_live_table(struct mapped_device * md,int srcu_idx)718 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
719 {
720 	srcu_read_unlock(&md->io_barrier, srcu_idx);
721 }
722 
dm_sync_table(struct mapped_device * md)723 void dm_sync_table(struct mapped_device *md)
724 {
725 	synchronize_srcu(&md->io_barrier);
726 	synchronize_rcu_expedited();
727 }
728 
729 /*
730  * A fast alternative to dm_get_live_table/dm_put_live_table.
731  * The caller must not block between these two functions.
732  */
dm_get_live_table_fast(struct mapped_device * md)733 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
734 {
735 	rcu_read_lock();
736 	return rcu_dereference(md->map);
737 }
738 
dm_put_live_table_fast(struct mapped_device * md)739 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
740 {
741 	rcu_read_unlock();
742 }
743 
744 static char *_dm_claim_ptr = "I belong to device-mapper";
745 
746 /*
747  * Open a table device so we can use it as a map destination.
748  */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)749 static int open_table_device(struct table_device *td, dev_t dev,
750 			     struct mapped_device *md)
751 {
752 	struct block_device *bdev;
753 
754 	int r;
755 
756 	BUG_ON(td->dm_dev.bdev);
757 
758 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
759 	if (IS_ERR(bdev))
760 		return PTR_ERR(bdev);
761 
762 	r = bd_link_disk_holder(bdev, dm_disk(md));
763 	if (r) {
764 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
765 		return r;
766 	}
767 
768 	td->dm_dev.bdev = bdev;
769 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
770 	return 0;
771 }
772 
773 /*
774  * Close a table device that we've been using.
775  */
close_table_device(struct table_device * td,struct mapped_device * md)776 static void close_table_device(struct table_device *td, struct mapped_device *md)
777 {
778 	if (!td->dm_dev.bdev)
779 		return;
780 
781 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
782 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
783 	put_dax(td->dm_dev.dax_dev);
784 	td->dm_dev.bdev = NULL;
785 	td->dm_dev.dax_dev = NULL;
786 }
787 
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)788 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
789 					      fmode_t mode)
790 {
791 	struct table_device *td;
792 
793 	list_for_each_entry(td, l, list)
794 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
795 			return td;
796 
797 	return NULL;
798 }
799 
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)800 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
801 			struct dm_dev **result)
802 {
803 	int r;
804 	struct table_device *td;
805 
806 	mutex_lock(&md->table_devices_lock);
807 	td = find_table_device(&md->table_devices, dev, mode);
808 	if (!td) {
809 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
810 		if (!td) {
811 			mutex_unlock(&md->table_devices_lock);
812 			return -ENOMEM;
813 		}
814 
815 		td->dm_dev.mode = mode;
816 		td->dm_dev.bdev = NULL;
817 
818 		if ((r = open_table_device(td, dev, md))) {
819 			mutex_unlock(&md->table_devices_lock);
820 			kfree(td);
821 			return r;
822 		}
823 
824 		format_dev_t(td->dm_dev.name, dev);
825 
826 		refcount_set(&td->count, 1);
827 		list_add(&td->list, &md->table_devices);
828 	} else {
829 		refcount_inc(&td->count);
830 	}
831 	mutex_unlock(&md->table_devices_lock);
832 
833 	*result = &td->dm_dev;
834 	return 0;
835 }
836 EXPORT_SYMBOL_GPL(dm_get_table_device);
837 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)838 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
839 {
840 	struct table_device *td = container_of(d, struct table_device, dm_dev);
841 
842 	mutex_lock(&md->table_devices_lock);
843 	if (refcount_dec_and_test(&td->count)) {
844 		close_table_device(td, md);
845 		list_del(&td->list);
846 		kfree(td);
847 	}
848 	mutex_unlock(&md->table_devices_lock);
849 }
850 EXPORT_SYMBOL(dm_put_table_device);
851 
free_table_devices(struct list_head * devices)852 static void free_table_devices(struct list_head *devices)
853 {
854 	struct list_head *tmp, *next;
855 
856 	list_for_each_safe(tmp, next, devices) {
857 		struct table_device *td = list_entry(tmp, struct table_device, list);
858 
859 		DMWARN("dm_destroy: %s still exists with %d references",
860 		       td->dm_dev.name, refcount_read(&td->count));
861 		kfree(td);
862 	}
863 }
864 
865 /*
866  * Get the geometry associated with a dm device
867  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)868 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 	*geo = md->geometry;
871 
872 	return 0;
873 }
874 
875 /*
876  * Set the geometry of a device.
877  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)878 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
879 {
880 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
881 
882 	if (geo->start > sz) {
883 		DMWARN("Start sector is beyond the geometry limits.");
884 		return -EINVAL;
885 	}
886 
887 	md->geometry = *geo;
888 
889 	return 0;
890 }
891 
__noflush_suspending(struct mapped_device * md)892 static int __noflush_suspending(struct mapped_device *md)
893 {
894 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
895 }
896 
897 /*
898  * Decrements the number of outstanding ios that a bio has been
899  * cloned into, completing the original io if necc.
900  */
dec_pending(struct dm_io * io,blk_status_t error)901 static void dec_pending(struct dm_io *io, blk_status_t error)
902 {
903 	unsigned long flags;
904 	blk_status_t io_error;
905 	struct bio *bio;
906 	struct mapped_device *md = io->md;
907 	unsigned long start_time = 0;
908 	struct dm_stats_aux stats_aux;
909 
910 	/* Push-back supersedes any I/O errors */
911 	if (unlikely(error)) {
912 		spin_lock_irqsave(&io->endio_lock, flags);
913 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
914 			io->status = error;
915 		spin_unlock_irqrestore(&io->endio_lock, flags);
916 	}
917 
918 	if (atomic_dec_and_test(&io->io_count)) {
919 		if (io->status == BLK_STS_DM_REQUEUE) {
920 			/*
921 			 * Target requested pushing back the I/O.
922 			 */
923 			spin_lock_irqsave(&md->deferred_lock, flags);
924 			if (__noflush_suspending(md))
925 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
926 				bio_list_add_head(&md->deferred, io->orig_bio);
927 			else
928 				/* noflush suspend was interrupted. */
929 				io->status = BLK_STS_IOERR;
930 			spin_unlock_irqrestore(&md->deferred_lock, flags);
931 		}
932 
933 		io_error = io->status;
934 		bio = io->orig_bio;
935 		start_time = io->start_time;
936 		stats_aux = io->stats_aux;
937 		free_io(md, io);
938 		end_io_acct(md, bio, start_time, &stats_aux);
939 
940 		if (io_error == BLK_STS_DM_REQUEUE)
941 			return;
942 
943 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
944 			/*
945 			 * Preflush done for flush with data, reissue
946 			 * without REQ_PREFLUSH.
947 			 */
948 			bio->bi_opf &= ~REQ_PREFLUSH;
949 			queue_io(md, bio);
950 		} else {
951 			/* done with normal IO or empty flush */
952 			if (io_error)
953 				bio->bi_status = io_error;
954 			bio_endio(bio);
955 		}
956 	}
957 }
958 
disable_discard(struct mapped_device * md)959 void disable_discard(struct mapped_device *md)
960 {
961 	struct queue_limits *limits = dm_get_queue_limits(md);
962 
963 	/* device doesn't really support DISCARD, disable it */
964 	limits->max_discard_sectors = 0;
965 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
966 }
967 
disable_write_same(struct mapped_device * md)968 void disable_write_same(struct mapped_device *md)
969 {
970 	struct queue_limits *limits = dm_get_queue_limits(md);
971 
972 	/* device doesn't really support WRITE SAME, disable it */
973 	limits->max_write_same_sectors = 0;
974 }
975 
disable_write_zeroes(struct mapped_device * md)976 void disable_write_zeroes(struct mapped_device *md)
977 {
978 	struct queue_limits *limits = dm_get_queue_limits(md);
979 
980 	/* device doesn't really support WRITE ZEROES, disable it */
981 	limits->max_write_zeroes_sectors = 0;
982 }
983 
swap_bios_limit(struct dm_target * ti,struct bio * bio)984 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
985 {
986 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
987 }
988 
clone_endio(struct bio * bio)989 static void clone_endio(struct bio *bio)
990 {
991 	blk_status_t error = bio->bi_status;
992 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
993 	struct dm_io *io = tio->io;
994 	struct mapped_device *md = tio->io->md;
995 	dm_endio_fn endio = tio->ti->type->end_io;
996 	struct bio *orig_bio = io->orig_bio;
997 
998 	if (unlikely(error == BLK_STS_TARGET)) {
999 		if (bio_op(bio) == REQ_OP_DISCARD &&
1000 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1001 			disable_discard(md);
1002 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1003 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1004 			disable_write_same(md);
1005 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1006 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1007 			disable_write_zeroes(md);
1008 	}
1009 
1010 	/*
1011 	 * For zone-append bios get offset in zone of the written
1012 	 * sector and add that to the original bio sector pos.
1013 	 */
1014 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1015 		sector_t written_sector = bio->bi_iter.bi_sector;
1016 		struct request_queue *q = orig_bio->bi_disk->queue;
1017 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1018 
1019 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1020 	}
1021 
1022 	if (endio) {
1023 		int r = endio(tio->ti, bio, &error);
1024 		switch (r) {
1025 		case DM_ENDIO_REQUEUE:
1026 			error = BLK_STS_DM_REQUEUE;
1027 			fallthrough;
1028 		case DM_ENDIO_DONE:
1029 			break;
1030 		case DM_ENDIO_INCOMPLETE:
1031 			/* The target will handle the io */
1032 			return;
1033 		default:
1034 			DMWARN("unimplemented target endio return value: %d", r);
1035 			BUG();
1036 		}
1037 	}
1038 
1039 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1040 		struct mapped_device *md = io->md;
1041 		up(&md->swap_bios_semaphore);
1042 	}
1043 
1044 	free_tio(tio);
1045 	dec_pending(io, error);
1046 }
1047 
1048 /*
1049  * Return maximum size of I/O possible at the supplied sector up to the current
1050  * target boundary.
1051  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1052 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1053 						  sector_t target_offset)
1054 {
1055 	return ti->len - target_offset;
1056 }
1057 
max_io_len(struct dm_target * ti,sector_t sector)1058 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1059 {
1060 	sector_t target_offset = dm_target_offset(ti, sector);
1061 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1062 	sector_t max_len;
1063 
1064 	/*
1065 	 * Does the target need to split IO even further?
1066 	 * - varied (per target) IO splitting is a tenet of DM; this
1067 	 *   explains why stacked chunk_sectors based splitting via
1068 	 *   blk_max_size_offset() isn't possible here. So pass in
1069 	 *   ti->max_io_len to override stacked chunk_sectors.
1070 	 */
1071 	if (ti->max_io_len) {
1072 		max_len = blk_max_size_offset(ti->table->md->queue,
1073 					      target_offset, ti->max_io_len);
1074 		if (len > max_len)
1075 			len = max_len;
1076 	}
1077 
1078 	return len;
1079 }
1080 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1081 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1082 {
1083 	if (len > UINT_MAX) {
1084 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1085 		      (unsigned long long)len, UINT_MAX);
1086 		ti->error = "Maximum size of target IO is too large";
1087 		return -EINVAL;
1088 	}
1089 
1090 	ti->max_io_len = (uint32_t) len;
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1095 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1096 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1097 						sector_t sector, int *srcu_idx)
1098 	__acquires(md->io_barrier)
1099 {
1100 	struct dm_table *map;
1101 	struct dm_target *ti;
1102 
1103 	map = dm_get_live_table(md, srcu_idx);
1104 	if (!map)
1105 		return NULL;
1106 
1107 	ti = dm_table_find_target(map, sector);
1108 	if (!ti)
1109 		return NULL;
1110 
1111 	return ti;
1112 }
1113 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1114 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1115 				 long nr_pages, void **kaddr, pfn_t *pfn)
1116 {
1117 	struct mapped_device *md = dax_get_private(dax_dev);
1118 	sector_t sector = pgoff * PAGE_SECTORS;
1119 	struct dm_target *ti;
1120 	long len, ret = -EIO;
1121 	int srcu_idx;
1122 
1123 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1124 
1125 	if (!ti)
1126 		goto out;
1127 	if (!ti->type->direct_access)
1128 		goto out;
1129 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1130 	if (len < 1)
1131 		goto out;
1132 	nr_pages = min(len, nr_pages);
1133 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1134 
1135  out:
1136 	dm_put_live_table(md, srcu_idx);
1137 
1138 	return ret;
1139 }
1140 
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1141 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1142 		int blocksize, sector_t start, sector_t len)
1143 {
1144 	struct mapped_device *md = dax_get_private(dax_dev);
1145 	struct dm_table *map;
1146 	bool ret = false;
1147 	int srcu_idx;
1148 
1149 	map = dm_get_live_table(md, &srcu_idx);
1150 	if (!map)
1151 		goto out;
1152 
1153 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1154 
1155 out:
1156 	dm_put_live_table(md, srcu_idx);
1157 
1158 	return ret;
1159 }
1160 
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1161 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1162 				    void *addr, size_t bytes, struct iov_iter *i)
1163 {
1164 	struct mapped_device *md = dax_get_private(dax_dev);
1165 	sector_t sector = pgoff * PAGE_SECTORS;
1166 	struct dm_target *ti;
1167 	long ret = 0;
1168 	int srcu_idx;
1169 
1170 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1171 
1172 	if (!ti)
1173 		goto out;
1174 	if (!ti->type->dax_copy_from_iter) {
1175 		ret = copy_from_iter(addr, bytes, i);
1176 		goto out;
1177 	}
1178 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1179  out:
1180 	dm_put_live_table(md, srcu_idx);
1181 
1182 	return ret;
1183 }
1184 
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1185 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1186 		void *addr, size_t bytes, struct iov_iter *i)
1187 {
1188 	struct mapped_device *md = dax_get_private(dax_dev);
1189 	sector_t sector = pgoff * PAGE_SECTORS;
1190 	struct dm_target *ti;
1191 	long ret = 0;
1192 	int srcu_idx;
1193 
1194 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1195 
1196 	if (!ti)
1197 		goto out;
1198 	if (!ti->type->dax_copy_to_iter) {
1199 		ret = copy_to_iter(addr, bytes, i);
1200 		goto out;
1201 	}
1202 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1203  out:
1204 	dm_put_live_table(md, srcu_idx);
1205 
1206 	return ret;
1207 }
1208 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1209 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1210 				  size_t nr_pages)
1211 {
1212 	struct mapped_device *md = dax_get_private(dax_dev);
1213 	sector_t sector = pgoff * PAGE_SECTORS;
1214 	struct dm_target *ti;
1215 	int ret = -EIO;
1216 	int srcu_idx;
1217 
1218 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1219 
1220 	if (!ti)
1221 		goto out;
1222 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1223 		/*
1224 		 * ->zero_page_range() is mandatory dax operation. If we are
1225 		 *  here, something is wrong.
1226 		 */
1227 		goto out;
1228 	}
1229 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1230  out:
1231 	dm_put_live_table(md, srcu_idx);
1232 
1233 	return ret;
1234 }
1235 
1236 /*
1237  * A target may call dm_accept_partial_bio only from the map routine.  It is
1238  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1239  * operations and REQ_OP_ZONE_APPEND (zone append writes).
1240  *
1241  * dm_accept_partial_bio informs the dm that the target only wants to process
1242  * additional n_sectors sectors of the bio and the rest of the data should be
1243  * sent in a next bio.
1244  *
1245  * A diagram that explains the arithmetics:
1246  * +--------------------+---------------+-------+
1247  * |         1          |       2       |   3   |
1248  * +--------------------+---------------+-------+
1249  *
1250  * <-------------- *tio->len_ptr --------------->
1251  *                      <------- bi_size ------->
1252  *                      <-- n_sectors -->
1253  *
1254  * Region 1 was already iterated over with bio_advance or similar function.
1255  *	(it may be empty if the target doesn't use bio_advance)
1256  * Region 2 is the remaining bio size that the target wants to process.
1257  *	(it may be empty if region 1 is non-empty, although there is no reason
1258  *	 to make it empty)
1259  * The target requires that region 3 is to be sent in the next bio.
1260  *
1261  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1262  * the partially processed part (the sum of regions 1+2) must be the same for all
1263  * copies of the bio.
1264  */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1266 {
1267 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1268 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1269 
1270 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1271 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1272 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1273 	BUG_ON(bi_size > *tio->len_ptr);
1274 	BUG_ON(n_sectors > bi_size);
1275 
1276 	*tio->len_ptr -= bi_size - n_sectors;
1277 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280 
__set_swap_bios_limit(struct mapped_device * md,int latch)1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1282 {
1283 	mutex_lock(&md->swap_bios_lock);
1284 	while (latch < md->swap_bios) {
1285 		cond_resched();
1286 		down(&md->swap_bios_semaphore);
1287 		md->swap_bios--;
1288 	}
1289 	while (latch > md->swap_bios) {
1290 		cond_resched();
1291 		up(&md->swap_bios_semaphore);
1292 		md->swap_bios++;
1293 	}
1294 	mutex_unlock(&md->swap_bios_lock);
1295 }
1296 
__map_bio(struct dm_target_io * tio)1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1298 {
1299 	int r;
1300 	sector_t sector;
1301 	struct bio *clone = &tio->clone;
1302 	struct dm_io *io = tio->io;
1303 	struct dm_target *ti = tio->ti;
1304 	blk_qc_t ret = BLK_QC_T_NONE;
1305 
1306 	clone->bi_end_io = clone_endio;
1307 
1308 	/*
1309 	 * Map the clone.  If r == 0 we don't need to do
1310 	 * anything, the target has assumed ownership of
1311 	 * this io.
1312 	 */
1313 	atomic_inc(&io->io_count);
1314 	sector = clone->bi_iter.bi_sector;
1315 
1316 	if (unlikely(swap_bios_limit(ti, clone))) {
1317 		struct mapped_device *md = io->md;
1318 		int latch = get_swap_bios();
1319 		if (unlikely(latch != md->swap_bios))
1320 			__set_swap_bios_limit(md, latch);
1321 		down(&md->swap_bios_semaphore);
1322 	}
1323 
1324 	r = ti->type->map(ti, clone);
1325 	switch (r) {
1326 	case DM_MAPIO_SUBMITTED:
1327 		break;
1328 	case DM_MAPIO_REMAPPED:
1329 		/* the bio has been remapped so dispatch it */
1330 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1331 				      bio_dev(io->orig_bio), sector);
1332 		ret = submit_bio_noacct(clone);
1333 		break;
1334 	case DM_MAPIO_KILL:
1335 		if (unlikely(swap_bios_limit(ti, clone))) {
1336 			struct mapped_device *md = io->md;
1337 			up(&md->swap_bios_semaphore);
1338 		}
1339 		free_tio(tio);
1340 		dec_pending(io, BLK_STS_IOERR);
1341 		break;
1342 	case DM_MAPIO_REQUEUE:
1343 		if (unlikely(swap_bios_limit(ti, clone))) {
1344 			struct mapped_device *md = io->md;
1345 			up(&md->swap_bios_semaphore);
1346 		}
1347 		free_tio(tio);
1348 		dec_pending(io, BLK_STS_DM_REQUEUE);
1349 		break;
1350 	default:
1351 		DMWARN("unimplemented target map return value: %d", r);
1352 		BUG();
1353 	}
1354 
1355 	return ret;
1356 }
1357 
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1358 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1359 {
1360 	bio->bi_iter.bi_sector = sector;
1361 	bio->bi_iter.bi_size = to_bytes(len);
1362 }
1363 
1364 /*
1365  * Creates a bio that consists of range of complete bvecs.
1366  */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1367 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1368 		     sector_t sector, unsigned len)
1369 {
1370 	struct bio *clone = &tio->clone;
1371 	int r;
1372 
1373 	__bio_clone_fast(clone, bio);
1374 
1375 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1376 	if (r < 0)
1377 		return r;
1378 
1379 	if (bio_integrity(bio)) {
1380 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1381 			     !dm_target_passes_integrity(tio->ti->type))) {
1382 			DMWARN("%s: the target %s doesn't support integrity data.",
1383 				dm_device_name(tio->io->md),
1384 				tio->ti->type->name);
1385 			return -EIO;
1386 		}
1387 
1388 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1389 		if (r < 0)
1390 			return r;
1391 	}
1392 
1393 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1394 	clone->bi_iter.bi_size = to_bytes(len);
1395 
1396 	if (bio_integrity(bio))
1397 		bio_integrity_trim(clone);
1398 
1399 	return 0;
1400 }
1401 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1402 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1403 				struct dm_target *ti, unsigned num_bios)
1404 {
1405 	struct dm_target_io *tio;
1406 	int try;
1407 
1408 	if (!num_bios)
1409 		return;
1410 
1411 	if (num_bios == 1) {
1412 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1413 		bio_list_add(blist, &tio->clone);
1414 		return;
1415 	}
1416 
1417 	for (try = 0; try < 2; try++) {
1418 		int bio_nr;
1419 		struct bio *bio;
1420 
1421 		if (try)
1422 			mutex_lock(&ci->io->md->table_devices_lock);
1423 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1424 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1425 			if (!tio)
1426 				break;
1427 
1428 			bio_list_add(blist, &tio->clone);
1429 		}
1430 		if (try)
1431 			mutex_unlock(&ci->io->md->table_devices_lock);
1432 		if (bio_nr == num_bios)
1433 			return;
1434 
1435 		while ((bio = bio_list_pop(blist))) {
1436 			tio = container_of(bio, struct dm_target_io, clone);
1437 			free_tio(tio);
1438 		}
1439 	}
1440 }
1441 
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1442 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1443 					   struct dm_target_io *tio, unsigned *len)
1444 {
1445 	struct bio *clone = &tio->clone;
1446 
1447 	tio->len_ptr = len;
1448 
1449 	__bio_clone_fast(clone, ci->bio);
1450 	if (len)
1451 		bio_setup_sector(clone, ci->sector, *len);
1452 
1453 	return __map_bio(tio);
1454 }
1455 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 				  unsigned num_bios, unsigned *len)
1458 {
1459 	struct bio_list blist = BIO_EMPTY_LIST;
1460 	struct bio *bio;
1461 	struct dm_target_io *tio;
1462 
1463 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1464 
1465 	while ((bio = bio_list_pop(&blist))) {
1466 		tio = container_of(bio, struct dm_target_io, clone);
1467 		(void) __clone_and_map_simple_bio(ci, tio, len);
1468 	}
1469 }
1470 
__send_empty_flush(struct clone_info * ci)1471 static int __send_empty_flush(struct clone_info *ci)
1472 {
1473 	unsigned target_nr = 0;
1474 	struct dm_target *ti;
1475 	struct bio flush_bio;
1476 
1477 	/*
1478 	 * Use an on-stack bio for this, it's safe since we don't
1479 	 * need to reference it after submit. It's just used as
1480 	 * the basis for the clone(s).
1481 	 */
1482 	bio_init(&flush_bio, NULL, 0);
1483 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1484 	ci->bio = &flush_bio;
1485 	ci->sector_count = 0;
1486 
1487 	/*
1488 	 * Empty flush uses a statically initialized bio, as the base for
1489 	 * cloning.  However, blkg association requires that a bdev is
1490 	 * associated with a gendisk, which doesn't happen until the bdev is
1491 	 * opened.  So, blkg association is done at issue time of the flush
1492 	 * rather than when the device is created in alloc_dev().
1493 	 */
1494 	bio_set_dev(ci->bio, ci->io->md->bdev);
1495 
1496 	BUG_ON(bio_has_data(ci->bio));
1497 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1498 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1499 
1500 	bio_uninit(ci->bio);
1501 	return 0;
1502 }
1503 
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1504 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1505 				    sector_t sector, unsigned *len)
1506 {
1507 	struct bio *bio = ci->bio;
1508 	struct dm_target_io *tio;
1509 	int r;
1510 
1511 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1512 	tio->len_ptr = len;
1513 	r = clone_bio(tio, bio, sector, *len);
1514 	if (r < 0) {
1515 		free_tio(tio);
1516 		return r;
1517 	}
1518 	(void) __map_bio(tio);
1519 
1520 	return 0;
1521 }
1522 
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1523 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1524 				       unsigned num_bios)
1525 {
1526 	unsigned len;
1527 
1528 	/*
1529 	 * Even though the device advertised support for this type of
1530 	 * request, that does not mean every target supports it, and
1531 	 * reconfiguration might also have changed that since the
1532 	 * check was performed.
1533 	 */
1534 	if (!num_bios)
1535 		return -EOPNOTSUPP;
1536 
1537 	len = min_t(sector_t, ci->sector_count,
1538 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1539 
1540 	__send_duplicate_bios(ci, ti, num_bios, &len);
1541 
1542 	ci->sector += len;
1543 	ci->sector_count -= len;
1544 
1545 	return 0;
1546 }
1547 
is_abnormal_io(struct bio * bio)1548 static bool is_abnormal_io(struct bio *bio)
1549 {
1550 	bool r = false;
1551 
1552 	switch (bio_op(bio)) {
1553 	case REQ_OP_DISCARD:
1554 	case REQ_OP_SECURE_ERASE:
1555 	case REQ_OP_WRITE_SAME:
1556 	case REQ_OP_WRITE_ZEROES:
1557 		r = true;
1558 		break;
1559 	}
1560 
1561 	return r;
1562 }
1563 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1564 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1565 				  int *result)
1566 {
1567 	struct bio *bio = ci->bio;
1568 	unsigned num_bios = 0;
1569 
1570 	switch (bio_op(bio)) {
1571 	case REQ_OP_DISCARD:
1572 		num_bios = ti->num_discard_bios;
1573 		break;
1574 	case REQ_OP_SECURE_ERASE:
1575 		num_bios = ti->num_secure_erase_bios;
1576 		break;
1577 	case REQ_OP_WRITE_SAME:
1578 		num_bios = ti->num_write_same_bios;
1579 		break;
1580 	case REQ_OP_WRITE_ZEROES:
1581 		num_bios = ti->num_write_zeroes_bios;
1582 		break;
1583 	default:
1584 		return false;
1585 	}
1586 
1587 	*result = __send_changing_extent_only(ci, ti, num_bios);
1588 	return true;
1589 }
1590 
1591 /*
1592  * Select the correct strategy for processing a non-flush bio.
1593  */
__split_and_process_non_flush(struct clone_info * ci)1594 static int __split_and_process_non_flush(struct clone_info *ci)
1595 {
1596 	struct dm_target *ti;
1597 	unsigned len;
1598 	int r;
1599 
1600 	ti = dm_table_find_target(ci->map, ci->sector);
1601 	if (!ti)
1602 		return -EIO;
1603 
1604 	if (__process_abnormal_io(ci, ti, &r))
1605 		return r;
1606 
1607 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1608 
1609 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1610 	if (r < 0)
1611 		return r;
1612 
1613 	ci->sector += len;
1614 	ci->sector_count -= len;
1615 
1616 	return 0;
1617 }
1618 
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1619 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1620 			    struct dm_table *map, struct bio *bio)
1621 {
1622 	ci->map = map;
1623 	ci->io = alloc_io(md, bio);
1624 	ci->sector = bio->bi_iter.bi_sector;
1625 }
1626 
1627 #define __dm_part_stat_sub(part, field, subnd)	\
1628 	(part_stat_get(part, field) -= (subnd))
1629 
1630 /*
1631  * Entry point to split a bio into clones and submit them to the targets.
1632  */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1633 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1634 					struct dm_table *map, struct bio *bio)
1635 {
1636 	struct clone_info ci;
1637 	blk_qc_t ret = BLK_QC_T_NONE;
1638 	int error = 0;
1639 
1640 	init_clone_info(&ci, md, map, bio);
1641 
1642 	if (bio->bi_opf & REQ_PREFLUSH) {
1643 		error = __send_empty_flush(&ci);
1644 		/* dec_pending submits any data associated with flush */
1645 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1646 		ci.bio = bio;
1647 		ci.sector_count = 0;
1648 		error = __split_and_process_non_flush(&ci);
1649 	} else {
1650 		ci.bio = bio;
1651 		ci.sector_count = bio_sectors(bio);
1652 		while (ci.sector_count && !error) {
1653 			error = __split_and_process_non_flush(&ci);
1654 			if (current->bio_list && ci.sector_count && !error) {
1655 				/*
1656 				 * Remainder must be passed to submit_bio_noacct()
1657 				 * so that it gets handled *after* bios already submitted
1658 				 * have been completely processed.
1659 				 * We take a clone of the original to store in
1660 				 * ci.io->orig_bio to be used by end_io_acct() and
1661 				 * for dec_pending to use for completion handling.
1662 				 */
1663 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1664 							  GFP_NOIO, &md->queue->bio_split);
1665 				ci.io->orig_bio = b;
1666 
1667 				/*
1668 				 * Adjust IO stats for each split, otherwise upon queue
1669 				 * reentry there will be redundant IO accounting.
1670 				 * NOTE: this is a stop-gap fix, a proper fix involves
1671 				 * significant refactoring of DM core's bio splitting
1672 				 * (by eliminating DM's splitting and just using bio_split)
1673 				 */
1674 				part_stat_lock();
1675 				__dm_part_stat_sub(&dm_disk(md)->part0,
1676 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1677 				part_stat_unlock();
1678 
1679 				bio_chain(b, bio);
1680 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1681 				ret = submit_bio_noacct(bio);
1682 				break;
1683 			}
1684 		}
1685 	}
1686 
1687 	/* drop the extra reference count */
1688 	dec_pending(ci.io, errno_to_blk_status(error));
1689 	return ret;
1690 }
1691 
dm_submit_bio(struct bio * bio)1692 static blk_qc_t dm_submit_bio(struct bio *bio)
1693 {
1694 	struct mapped_device *md = bio->bi_disk->private_data;
1695 	blk_qc_t ret = BLK_QC_T_NONE;
1696 	int srcu_idx;
1697 	struct dm_table *map;
1698 
1699 	map = dm_get_live_table(md, &srcu_idx);
1700 
1701 	/* If suspended, or map not yet available, queue this IO for later */
1702 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1703 	    unlikely(!map)) {
1704 		if (bio->bi_opf & REQ_NOWAIT)
1705 			bio_wouldblock_error(bio);
1706 		else if (bio->bi_opf & REQ_RAHEAD)
1707 			bio_io_error(bio);
1708 		else
1709 			queue_io(md, bio);
1710 		goto out;
1711 	}
1712 
1713 	/*
1714 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1715 	 * otherwise associated queue_limits won't be imposed.
1716 	 */
1717 	if (is_abnormal_io(bio))
1718 		blk_queue_split(&bio);
1719 
1720 	ret = __split_and_process_bio(md, map, bio);
1721 out:
1722 	dm_put_live_table(md, srcu_idx);
1723 	return ret;
1724 }
1725 
1726 /*-----------------------------------------------------------------
1727  * An IDR is used to keep track of allocated minor numbers.
1728  *---------------------------------------------------------------*/
free_minor(int minor)1729 static void free_minor(int minor)
1730 {
1731 	spin_lock(&_minor_lock);
1732 	idr_remove(&_minor_idr, minor);
1733 	spin_unlock(&_minor_lock);
1734 }
1735 
1736 /*
1737  * See if the device with a specific minor # is free.
1738  */
specific_minor(int minor)1739 static int specific_minor(int minor)
1740 {
1741 	int r;
1742 
1743 	if (minor >= (1 << MINORBITS))
1744 		return -EINVAL;
1745 
1746 	idr_preload(GFP_KERNEL);
1747 	spin_lock(&_minor_lock);
1748 
1749 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1750 
1751 	spin_unlock(&_minor_lock);
1752 	idr_preload_end();
1753 	if (r < 0)
1754 		return r == -ENOSPC ? -EBUSY : r;
1755 	return 0;
1756 }
1757 
next_free_minor(int * minor)1758 static int next_free_minor(int *minor)
1759 {
1760 	int r;
1761 
1762 	idr_preload(GFP_KERNEL);
1763 	spin_lock(&_minor_lock);
1764 
1765 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1766 
1767 	spin_unlock(&_minor_lock);
1768 	idr_preload_end();
1769 	if (r < 0)
1770 		return r;
1771 	*minor = r;
1772 	return 0;
1773 }
1774 
1775 static const struct block_device_operations dm_blk_dops;
1776 static const struct block_device_operations dm_rq_blk_dops;
1777 static const struct dax_operations dm_dax_ops;
1778 
1779 static void dm_wq_work(struct work_struct *work);
1780 
1781 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_keyslot_manager(struct request_queue * q)1782 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1783 {
1784 	dm_destroy_keyslot_manager(q->ksm);
1785 }
1786 
1787 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1788 
dm_queue_destroy_keyslot_manager(struct request_queue * q)1789 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1790 {
1791 }
1792 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1793 
cleanup_mapped_device(struct mapped_device * md)1794 static void cleanup_mapped_device(struct mapped_device *md)
1795 {
1796 	if (md->wq)
1797 		destroy_workqueue(md->wq);
1798 	bioset_exit(&md->bs);
1799 	bioset_exit(&md->io_bs);
1800 
1801 	if (md->dax_dev) {
1802 		kill_dax(md->dax_dev);
1803 		put_dax(md->dax_dev);
1804 		md->dax_dev = NULL;
1805 	}
1806 
1807 	if (md->disk) {
1808 		spin_lock(&_minor_lock);
1809 		md->disk->private_data = NULL;
1810 		spin_unlock(&_minor_lock);
1811 		del_gendisk(md->disk);
1812 		put_disk(md->disk);
1813 	}
1814 
1815 	if (md->queue) {
1816 		dm_queue_destroy_keyslot_manager(md->queue);
1817 		blk_cleanup_queue(md->queue);
1818 	}
1819 
1820 	cleanup_srcu_struct(&md->io_barrier);
1821 
1822 	if (md->bdev) {
1823 		bdput(md->bdev);
1824 		md->bdev = NULL;
1825 	}
1826 
1827 	mutex_destroy(&md->suspend_lock);
1828 	mutex_destroy(&md->type_lock);
1829 	mutex_destroy(&md->table_devices_lock);
1830 	mutex_destroy(&md->swap_bios_lock);
1831 
1832 	dm_mq_cleanup_mapped_device(md);
1833 }
1834 
1835 /*
1836  * Allocate and initialise a blank device with a given minor.
1837  */
alloc_dev(int minor)1838 static struct mapped_device *alloc_dev(int minor)
1839 {
1840 	int r, numa_node_id = dm_get_numa_node();
1841 	struct mapped_device *md;
1842 	void *old_md;
1843 
1844 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1845 	if (!md) {
1846 		DMWARN("unable to allocate device, out of memory.");
1847 		return NULL;
1848 	}
1849 
1850 	if (!try_module_get(THIS_MODULE))
1851 		goto bad_module_get;
1852 
1853 	/* get a minor number for the dev */
1854 	if (minor == DM_ANY_MINOR)
1855 		r = next_free_minor(&minor);
1856 	else
1857 		r = specific_minor(minor);
1858 	if (r < 0)
1859 		goto bad_minor;
1860 
1861 	r = init_srcu_struct(&md->io_barrier);
1862 	if (r < 0)
1863 		goto bad_io_barrier;
1864 
1865 	md->numa_node_id = numa_node_id;
1866 	md->init_tio_pdu = false;
1867 	md->type = DM_TYPE_NONE;
1868 	mutex_init(&md->suspend_lock);
1869 	mutex_init(&md->type_lock);
1870 	mutex_init(&md->table_devices_lock);
1871 	spin_lock_init(&md->deferred_lock);
1872 	atomic_set(&md->holders, 1);
1873 	atomic_set(&md->open_count, 0);
1874 	atomic_set(&md->event_nr, 0);
1875 	atomic_set(&md->uevent_seq, 0);
1876 	INIT_LIST_HEAD(&md->uevent_list);
1877 	INIT_LIST_HEAD(&md->table_devices);
1878 	spin_lock_init(&md->uevent_lock);
1879 
1880 	/*
1881 	 * default to bio-based until DM table is loaded and md->type
1882 	 * established. If request-based table is loaded: blk-mq will
1883 	 * override accordingly.
1884 	 */
1885 	md->queue = blk_alloc_queue(numa_node_id);
1886 	if (!md->queue)
1887 		goto bad;
1888 
1889 	md->disk = alloc_disk_node(1, md->numa_node_id);
1890 	if (!md->disk)
1891 		goto bad;
1892 
1893 	init_waitqueue_head(&md->wait);
1894 	INIT_WORK(&md->work, dm_wq_work);
1895 	init_waitqueue_head(&md->eventq);
1896 	init_completion(&md->kobj_holder.completion);
1897 
1898 	md->swap_bios = get_swap_bios();
1899 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1900 	mutex_init(&md->swap_bios_lock);
1901 
1902 	md->disk->major = _major;
1903 	md->disk->first_minor = minor;
1904 	md->disk->fops = &dm_blk_dops;
1905 	md->disk->queue = md->queue;
1906 	md->disk->private_data = md;
1907 	sprintf(md->disk->disk_name, "dm-%d", minor);
1908 
1909 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1910 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1911 					&dm_dax_ops, 0);
1912 		if (IS_ERR(md->dax_dev)) {
1913 			md->dax_dev = NULL;
1914 			goto bad;
1915 		}
1916 	}
1917 
1918 	add_disk_no_queue_reg(md->disk);
1919 	format_dev_t(md->name, MKDEV(_major, minor));
1920 
1921 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1922 	if (!md->wq)
1923 		goto bad;
1924 
1925 	md->bdev = bdget_disk(md->disk, 0);
1926 	if (!md->bdev)
1927 		goto bad;
1928 
1929 	r = dm_stats_init(&md->stats);
1930 	if (r < 0)
1931 		goto bad;
1932 
1933 	/* Populate the mapping, nobody knows we exist yet */
1934 	spin_lock(&_minor_lock);
1935 	old_md = idr_replace(&_minor_idr, md, minor);
1936 	spin_unlock(&_minor_lock);
1937 
1938 	BUG_ON(old_md != MINOR_ALLOCED);
1939 
1940 	return md;
1941 
1942 bad:
1943 	cleanup_mapped_device(md);
1944 bad_io_barrier:
1945 	free_minor(minor);
1946 bad_minor:
1947 	module_put(THIS_MODULE);
1948 bad_module_get:
1949 	kvfree(md);
1950 	return NULL;
1951 }
1952 
1953 static void unlock_fs(struct mapped_device *md);
1954 
free_dev(struct mapped_device * md)1955 static void free_dev(struct mapped_device *md)
1956 {
1957 	int minor = MINOR(disk_devt(md->disk));
1958 
1959 	unlock_fs(md);
1960 
1961 	cleanup_mapped_device(md);
1962 
1963 	free_table_devices(&md->table_devices);
1964 	dm_stats_cleanup(&md->stats);
1965 	free_minor(minor);
1966 
1967 	module_put(THIS_MODULE);
1968 	kvfree(md);
1969 }
1970 
__bind_mempools(struct mapped_device * md,struct dm_table * t)1971 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1972 {
1973 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1974 	int ret = 0;
1975 
1976 	if (dm_table_bio_based(t)) {
1977 		/*
1978 		 * The md may already have mempools that need changing.
1979 		 * If so, reload bioset because front_pad may have changed
1980 		 * because a different table was loaded.
1981 		 */
1982 		bioset_exit(&md->bs);
1983 		bioset_exit(&md->io_bs);
1984 
1985 	} else if (bioset_initialized(&md->bs)) {
1986 		/*
1987 		 * There's no need to reload with request-based dm
1988 		 * because the size of front_pad doesn't change.
1989 		 * Note for future: If you are to reload bioset,
1990 		 * prep-ed requests in the queue may refer
1991 		 * to bio from the old bioset, so you must walk
1992 		 * through the queue to unprep.
1993 		 */
1994 		goto out;
1995 	}
1996 
1997 	BUG_ON(!p ||
1998 	       bioset_initialized(&md->bs) ||
1999 	       bioset_initialized(&md->io_bs));
2000 
2001 	ret = bioset_init_from_src(&md->bs, &p->bs);
2002 	if (ret)
2003 		goto out;
2004 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2005 	if (ret)
2006 		bioset_exit(&md->bs);
2007 out:
2008 	/* mempool bind completed, no longer need any mempools in the table */
2009 	dm_table_free_md_mempools(t);
2010 	return ret;
2011 }
2012 
2013 /*
2014  * Bind a table to the device.
2015  */
event_callback(void * context)2016 static void event_callback(void *context)
2017 {
2018 	unsigned long flags;
2019 	LIST_HEAD(uevents);
2020 	struct mapped_device *md = (struct mapped_device *) context;
2021 
2022 	spin_lock_irqsave(&md->uevent_lock, flags);
2023 	list_splice_init(&md->uevent_list, &uevents);
2024 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2025 
2026 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2027 
2028 	atomic_inc(&md->event_nr);
2029 	wake_up(&md->eventq);
2030 	dm_issue_global_event();
2031 }
2032 
2033 /*
2034  * Returns old map, which caller must destroy.
2035  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2036 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2037 			       struct queue_limits *limits)
2038 {
2039 	struct dm_table *old_map;
2040 	struct request_queue *q = md->queue;
2041 	bool request_based = dm_table_request_based(t);
2042 	sector_t size;
2043 	int ret;
2044 
2045 	lockdep_assert_held(&md->suspend_lock);
2046 
2047 	size = dm_table_get_size(t);
2048 
2049 	/*
2050 	 * Wipe any geometry if the size of the table changed.
2051 	 */
2052 	if (size != dm_get_size(md))
2053 		memset(&md->geometry, 0, sizeof(md->geometry));
2054 
2055 	set_capacity(md->disk, size);
2056 	bd_set_nr_sectors(md->bdev, size);
2057 
2058 	dm_table_event_callback(t, event_callback, md);
2059 
2060 	/*
2061 	 * The queue hasn't been stopped yet, if the old table type wasn't
2062 	 * for request-based during suspension.  So stop it to prevent
2063 	 * I/O mapping before resume.
2064 	 * This must be done before setting the queue restrictions,
2065 	 * because request-based dm may be run just after the setting.
2066 	 */
2067 	if (request_based)
2068 		dm_stop_queue(q);
2069 
2070 	if (request_based) {
2071 		/*
2072 		 * Leverage the fact that request-based DM targets are
2073 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2074 		 */
2075 		md->immutable_target = dm_table_get_immutable_target(t);
2076 	}
2077 
2078 	ret = __bind_mempools(md, t);
2079 	if (ret) {
2080 		old_map = ERR_PTR(ret);
2081 		goto out;
2082 	}
2083 
2084 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2085 	rcu_assign_pointer(md->map, (void *)t);
2086 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2087 
2088 	dm_table_set_restrictions(t, q, limits);
2089 	if (old_map)
2090 		dm_sync_table(md);
2091 
2092 out:
2093 	return old_map;
2094 }
2095 
2096 /*
2097  * Returns unbound table for the caller to free.
2098  */
__unbind(struct mapped_device * md)2099 static struct dm_table *__unbind(struct mapped_device *md)
2100 {
2101 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2102 
2103 	if (!map)
2104 		return NULL;
2105 
2106 	dm_table_event_callback(map, NULL, NULL);
2107 	RCU_INIT_POINTER(md->map, NULL);
2108 	dm_sync_table(md);
2109 
2110 	return map;
2111 }
2112 
2113 /*
2114  * Constructor for a new device.
2115  */
dm_create(int minor,struct mapped_device ** result)2116 int dm_create(int minor, struct mapped_device **result)
2117 {
2118 	int r;
2119 	struct mapped_device *md;
2120 
2121 	md = alloc_dev(minor);
2122 	if (!md)
2123 		return -ENXIO;
2124 
2125 	r = dm_sysfs_init(md);
2126 	if (r) {
2127 		free_dev(md);
2128 		return r;
2129 	}
2130 
2131 	*result = md;
2132 	return 0;
2133 }
2134 
2135 /*
2136  * Functions to manage md->type.
2137  * All are required to hold md->type_lock.
2138  */
dm_lock_md_type(struct mapped_device * md)2139 void dm_lock_md_type(struct mapped_device *md)
2140 {
2141 	mutex_lock(&md->type_lock);
2142 }
2143 
dm_unlock_md_type(struct mapped_device * md)2144 void dm_unlock_md_type(struct mapped_device *md)
2145 {
2146 	mutex_unlock(&md->type_lock);
2147 }
2148 
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2149 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2150 {
2151 	BUG_ON(!mutex_is_locked(&md->type_lock));
2152 	md->type = type;
2153 }
2154 
dm_get_md_type(struct mapped_device * md)2155 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2156 {
2157 	return md->type;
2158 }
2159 
dm_get_immutable_target_type(struct mapped_device * md)2160 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2161 {
2162 	return md->immutable_target_type;
2163 }
2164 
2165 /*
2166  * The queue_limits are only valid as long as you have a reference
2167  * count on 'md'.
2168  */
dm_get_queue_limits(struct mapped_device * md)2169 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2170 {
2171 	BUG_ON(!atomic_read(&md->holders));
2172 	return &md->queue->limits;
2173 }
2174 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2175 
2176 /*
2177  * Setup the DM device's queue based on md's type
2178  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2179 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2180 {
2181 	int r;
2182 	struct queue_limits limits;
2183 	enum dm_queue_mode type = dm_get_md_type(md);
2184 
2185 	switch (type) {
2186 	case DM_TYPE_REQUEST_BASED:
2187 		md->disk->fops = &dm_rq_blk_dops;
2188 		r = dm_mq_init_request_queue(md, t);
2189 		if (r) {
2190 			DMERR("Cannot initialize queue for request-based dm mapped device");
2191 			return r;
2192 		}
2193 		break;
2194 	case DM_TYPE_BIO_BASED:
2195 	case DM_TYPE_DAX_BIO_BASED:
2196 		break;
2197 	case DM_TYPE_NONE:
2198 		WARN_ON_ONCE(true);
2199 		break;
2200 	}
2201 
2202 	r = dm_calculate_queue_limits(t, &limits);
2203 	if (r) {
2204 		DMERR("Cannot calculate initial queue limits");
2205 		return r;
2206 	}
2207 	dm_table_set_restrictions(t, md->queue, &limits);
2208 	blk_register_queue(md->disk);
2209 
2210 	return 0;
2211 }
2212 
dm_get_md(dev_t dev)2213 struct mapped_device *dm_get_md(dev_t dev)
2214 {
2215 	struct mapped_device *md;
2216 	unsigned minor = MINOR(dev);
2217 
2218 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2219 		return NULL;
2220 
2221 	spin_lock(&_minor_lock);
2222 
2223 	md = idr_find(&_minor_idr, minor);
2224 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2225 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2226 		md = NULL;
2227 		goto out;
2228 	}
2229 	dm_get(md);
2230 out:
2231 	spin_unlock(&_minor_lock);
2232 
2233 	return md;
2234 }
2235 EXPORT_SYMBOL_GPL(dm_get_md);
2236 
dm_get_mdptr(struct mapped_device * md)2237 void *dm_get_mdptr(struct mapped_device *md)
2238 {
2239 	return md->interface_ptr;
2240 }
2241 
dm_set_mdptr(struct mapped_device * md,void * ptr)2242 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2243 {
2244 	md->interface_ptr = ptr;
2245 }
2246 
dm_get(struct mapped_device * md)2247 void dm_get(struct mapped_device *md)
2248 {
2249 	atomic_inc(&md->holders);
2250 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2251 }
2252 
dm_hold(struct mapped_device * md)2253 int dm_hold(struct mapped_device *md)
2254 {
2255 	spin_lock(&_minor_lock);
2256 	if (test_bit(DMF_FREEING, &md->flags)) {
2257 		spin_unlock(&_minor_lock);
2258 		return -EBUSY;
2259 	}
2260 	dm_get(md);
2261 	spin_unlock(&_minor_lock);
2262 	return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(dm_hold);
2265 
dm_device_name(struct mapped_device * md)2266 const char *dm_device_name(struct mapped_device *md)
2267 {
2268 	return md->name;
2269 }
2270 EXPORT_SYMBOL_GPL(dm_device_name);
2271 
__dm_destroy(struct mapped_device * md,bool wait)2272 static void __dm_destroy(struct mapped_device *md, bool wait)
2273 {
2274 	struct dm_table *map;
2275 	int srcu_idx;
2276 
2277 	might_sleep();
2278 
2279 	spin_lock(&_minor_lock);
2280 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2281 	set_bit(DMF_FREEING, &md->flags);
2282 	spin_unlock(&_minor_lock);
2283 
2284 	blk_set_queue_dying(md->queue);
2285 
2286 	/*
2287 	 * Take suspend_lock so that presuspend and postsuspend methods
2288 	 * do not race with internal suspend.
2289 	 */
2290 	mutex_lock(&md->suspend_lock);
2291 	map = dm_get_live_table(md, &srcu_idx);
2292 	if (!dm_suspended_md(md)) {
2293 		dm_table_presuspend_targets(map);
2294 		set_bit(DMF_SUSPENDED, &md->flags);
2295 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2296 		dm_table_postsuspend_targets(map);
2297 	}
2298 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2299 	dm_put_live_table(md, srcu_idx);
2300 	mutex_unlock(&md->suspend_lock);
2301 
2302 	/*
2303 	 * Rare, but there may be I/O requests still going to complete,
2304 	 * for example.  Wait for all references to disappear.
2305 	 * No one should increment the reference count of the mapped_device,
2306 	 * after the mapped_device state becomes DMF_FREEING.
2307 	 */
2308 	if (wait)
2309 		while (atomic_read(&md->holders))
2310 			msleep(1);
2311 	else if (atomic_read(&md->holders))
2312 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2313 		       dm_device_name(md), atomic_read(&md->holders));
2314 
2315 	dm_sysfs_exit(md);
2316 	dm_table_destroy(__unbind(md));
2317 	free_dev(md);
2318 }
2319 
dm_destroy(struct mapped_device * md)2320 void dm_destroy(struct mapped_device *md)
2321 {
2322 	__dm_destroy(md, true);
2323 }
2324 
dm_destroy_immediate(struct mapped_device * md)2325 void dm_destroy_immediate(struct mapped_device *md)
2326 {
2327 	__dm_destroy(md, false);
2328 }
2329 
dm_put(struct mapped_device * md)2330 void dm_put(struct mapped_device *md)
2331 {
2332 	atomic_dec(&md->holders);
2333 }
2334 EXPORT_SYMBOL_GPL(dm_put);
2335 
md_in_flight_bios(struct mapped_device * md)2336 static bool md_in_flight_bios(struct mapped_device *md)
2337 {
2338 	int cpu;
2339 	struct hd_struct *part = &dm_disk(md)->part0;
2340 	long sum = 0;
2341 
2342 	for_each_possible_cpu(cpu) {
2343 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2344 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2345 	}
2346 
2347 	return sum != 0;
2348 }
2349 
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2350 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2351 {
2352 	int r = 0;
2353 	DEFINE_WAIT(wait);
2354 
2355 	while (true) {
2356 		prepare_to_wait(&md->wait, &wait, task_state);
2357 
2358 		if (!md_in_flight_bios(md))
2359 			break;
2360 
2361 		if (signal_pending_state(task_state, current)) {
2362 			r = -EINTR;
2363 			break;
2364 		}
2365 
2366 		io_schedule();
2367 	}
2368 	finish_wait(&md->wait, &wait);
2369 
2370 	smp_rmb();
2371 
2372 	return r;
2373 }
2374 
dm_wait_for_completion(struct mapped_device * md,long task_state)2375 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2376 {
2377 	int r = 0;
2378 
2379 	if (!queue_is_mq(md->queue))
2380 		return dm_wait_for_bios_completion(md, task_state);
2381 
2382 	while (true) {
2383 		if (!blk_mq_queue_inflight(md->queue))
2384 			break;
2385 
2386 		if (signal_pending_state(task_state, current)) {
2387 			r = -EINTR;
2388 			break;
2389 		}
2390 
2391 		msleep(5);
2392 	}
2393 
2394 	return r;
2395 }
2396 
2397 /*
2398  * Process the deferred bios
2399  */
dm_wq_work(struct work_struct * work)2400 static void dm_wq_work(struct work_struct *work)
2401 {
2402 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2403 	struct bio *bio;
2404 
2405 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2406 		spin_lock_irq(&md->deferred_lock);
2407 		bio = bio_list_pop(&md->deferred);
2408 		spin_unlock_irq(&md->deferred_lock);
2409 
2410 		if (!bio)
2411 			break;
2412 
2413 		submit_bio_noacct(bio);
2414 		cond_resched();
2415 	}
2416 }
2417 
dm_queue_flush(struct mapped_device * md)2418 static void dm_queue_flush(struct mapped_device *md)
2419 {
2420 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2421 	smp_mb__after_atomic();
2422 	queue_work(md->wq, &md->work);
2423 }
2424 
2425 /*
2426  * Swap in a new table, returning the old one for the caller to destroy.
2427  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2428 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2429 {
2430 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2431 	struct queue_limits limits;
2432 	int r;
2433 
2434 	mutex_lock(&md->suspend_lock);
2435 
2436 	/* device must be suspended */
2437 	if (!dm_suspended_md(md))
2438 		goto out;
2439 
2440 	/*
2441 	 * If the new table has no data devices, retain the existing limits.
2442 	 * This helps multipath with queue_if_no_path if all paths disappear,
2443 	 * then new I/O is queued based on these limits, and then some paths
2444 	 * reappear.
2445 	 */
2446 	if (dm_table_has_no_data_devices(table)) {
2447 		live_map = dm_get_live_table_fast(md);
2448 		if (live_map)
2449 			limits = md->queue->limits;
2450 		dm_put_live_table_fast(md);
2451 	}
2452 
2453 	if (!live_map) {
2454 		r = dm_calculate_queue_limits(table, &limits);
2455 		if (r) {
2456 			map = ERR_PTR(r);
2457 			goto out;
2458 		}
2459 	}
2460 
2461 	map = __bind(md, table, &limits);
2462 	dm_issue_global_event();
2463 
2464 out:
2465 	mutex_unlock(&md->suspend_lock);
2466 	return map;
2467 }
2468 
2469 /*
2470  * Functions to lock and unlock any filesystem running on the
2471  * device.
2472  */
lock_fs(struct mapped_device * md)2473 static int lock_fs(struct mapped_device *md)
2474 {
2475 	int r;
2476 
2477 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2478 
2479 	r = freeze_bdev(md->bdev);
2480 	if (!r)
2481 		set_bit(DMF_FROZEN, &md->flags);
2482 	return r;
2483 }
2484 
unlock_fs(struct mapped_device * md)2485 static void unlock_fs(struct mapped_device *md)
2486 {
2487 	if (!test_bit(DMF_FROZEN, &md->flags))
2488 		return;
2489 	thaw_bdev(md->bdev);
2490 	clear_bit(DMF_FROZEN, &md->flags);
2491 }
2492 
2493 /*
2494  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2495  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2496  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2497  *
2498  * If __dm_suspend returns 0, the device is completely quiescent
2499  * now. There is no request-processing activity. All new requests
2500  * are being added to md->deferred list.
2501  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2502 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2503 			unsigned suspend_flags, long task_state,
2504 			int dmf_suspended_flag)
2505 {
2506 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2507 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2508 	int r;
2509 
2510 	lockdep_assert_held(&md->suspend_lock);
2511 
2512 	/*
2513 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2514 	 * This flag is cleared before dm_suspend returns.
2515 	 */
2516 	if (noflush)
2517 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2518 	else
2519 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2520 
2521 	/*
2522 	 * This gets reverted if there's an error later and the targets
2523 	 * provide the .presuspend_undo hook.
2524 	 */
2525 	dm_table_presuspend_targets(map);
2526 
2527 	/*
2528 	 * Flush I/O to the device.
2529 	 * Any I/O submitted after lock_fs() may not be flushed.
2530 	 * noflush takes precedence over do_lockfs.
2531 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2532 	 */
2533 	if (!noflush && do_lockfs) {
2534 		r = lock_fs(md);
2535 		if (r) {
2536 			dm_table_presuspend_undo_targets(map);
2537 			return r;
2538 		}
2539 	}
2540 
2541 	/*
2542 	 * Here we must make sure that no processes are submitting requests
2543 	 * to target drivers i.e. no one may be executing
2544 	 * __split_and_process_bio from dm_submit_bio.
2545 	 *
2546 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2547 	 * we take the write lock. To prevent any process from reentering
2548 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2549 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2550 	 * flush_workqueue(md->wq).
2551 	 */
2552 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2553 	if (map)
2554 		synchronize_srcu(&md->io_barrier);
2555 
2556 	/*
2557 	 * Stop md->queue before flushing md->wq in case request-based
2558 	 * dm defers requests to md->wq from md->queue.
2559 	 */
2560 	if (dm_request_based(md))
2561 		dm_stop_queue(md->queue);
2562 
2563 	flush_workqueue(md->wq);
2564 
2565 	/*
2566 	 * At this point no more requests are entering target request routines.
2567 	 * We call dm_wait_for_completion to wait for all existing requests
2568 	 * to finish.
2569 	 */
2570 	r = dm_wait_for_completion(md, task_state);
2571 	if (!r)
2572 		set_bit(dmf_suspended_flag, &md->flags);
2573 
2574 	if (noflush)
2575 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2576 	if (map)
2577 		synchronize_srcu(&md->io_barrier);
2578 
2579 	/* were we interrupted ? */
2580 	if (r < 0) {
2581 		dm_queue_flush(md);
2582 
2583 		if (dm_request_based(md))
2584 			dm_start_queue(md->queue);
2585 
2586 		unlock_fs(md);
2587 		dm_table_presuspend_undo_targets(map);
2588 		/* pushback list is already flushed, so skip flush */
2589 	}
2590 
2591 	return r;
2592 }
2593 
2594 /*
2595  * We need to be able to change a mapping table under a mounted
2596  * filesystem.  For example we might want to move some data in
2597  * the background.  Before the table can be swapped with
2598  * dm_bind_table, dm_suspend must be called to flush any in
2599  * flight bios and ensure that any further io gets deferred.
2600  */
2601 /*
2602  * Suspend mechanism in request-based dm.
2603  *
2604  * 1. Flush all I/Os by lock_fs() if needed.
2605  * 2. Stop dispatching any I/O by stopping the request_queue.
2606  * 3. Wait for all in-flight I/Os to be completed or requeued.
2607  *
2608  * To abort suspend, start the request_queue.
2609  */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2610 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2611 {
2612 	struct dm_table *map = NULL;
2613 	int r = 0;
2614 
2615 retry:
2616 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2617 
2618 	if (dm_suspended_md(md)) {
2619 		r = -EINVAL;
2620 		goto out_unlock;
2621 	}
2622 
2623 	if (dm_suspended_internally_md(md)) {
2624 		/* already internally suspended, wait for internal resume */
2625 		mutex_unlock(&md->suspend_lock);
2626 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2627 		if (r)
2628 			return r;
2629 		goto retry;
2630 	}
2631 
2632 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2633 
2634 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2635 	if (r)
2636 		goto out_unlock;
2637 
2638 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2639 	dm_table_postsuspend_targets(map);
2640 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2641 
2642 out_unlock:
2643 	mutex_unlock(&md->suspend_lock);
2644 	return r;
2645 }
2646 
__dm_resume(struct mapped_device * md,struct dm_table * map)2647 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2648 {
2649 	if (map) {
2650 		int r = dm_table_resume_targets(map);
2651 		if (r)
2652 			return r;
2653 	}
2654 
2655 	dm_queue_flush(md);
2656 
2657 	/*
2658 	 * Flushing deferred I/Os must be done after targets are resumed
2659 	 * so that mapping of targets can work correctly.
2660 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2661 	 */
2662 	if (dm_request_based(md))
2663 		dm_start_queue(md->queue);
2664 
2665 	unlock_fs(md);
2666 
2667 	return 0;
2668 }
2669 
dm_resume(struct mapped_device * md)2670 int dm_resume(struct mapped_device *md)
2671 {
2672 	int r;
2673 	struct dm_table *map = NULL;
2674 
2675 retry:
2676 	r = -EINVAL;
2677 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2678 
2679 	if (!dm_suspended_md(md))
2680 		goto out;
2681 
2682 	if (dm_suspended_internally_md(md)) {
2683 		/* already internally suspended, wait for internal resume */
2684 		mutex_unlock(&md->suspend_lock);
2685 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2686 		if (r)
2687 			return r;
2688 		goto retry;
2689 	}
2690 
2691 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2692 	if (!map || !dm_table_get_size(map))
2693 		goto out;
2694 
2695 	r = __dm_resume(md, map);
2696 	if (r)
2697 		goto out;
2698 
2699 	clear_bit(DMF_SUSPENDED, &md->flags);
2700 out:
2701 	mutex_unlock(&md->suspend_lock);
2702 
2703 	return r;
2704 }
2705 
2706 /*
2707  * Internal suspend/resume works like userspace-driven suspend. It waits
2708  * until all bios finish and prevents issuing new bios to the target drivers.
2709  * It may be used only from the kernel.
2710  */
2711 
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2712 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2713 {
2714 	struct dm_table *map = NULL;
2715 
2716 	lockdep_assert_held(&md->suspend_lock);
2717 
2718 	if (md->internal_suspend_count++)
2719 		return; /* nested internal suspend */
2720 
2721 	if (dm_suspended_md(md)) {
2722 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2723 		return; /* nest suspend */
2724 	}
2725 
2726 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2727 
2728 	/*
2729 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2730 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2731 	 * would require changing .presuspend to return an error -- avoid this
2732 	 * until there is a need for more elaborate variants of internal suspend.
2733 	 */
2734 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2735 			    DMF_SUSPENDED_INTERNALLY);
2736 
2737 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2738 	dm_table_postsuspend_targets(map);
2739 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2740 }
2741 
__dm_internal_resume(struct mapped_device * md)2742 static void __dm_internal_resume(struct mapped_device *md)
2743 {
2744 	BUG_ON(!md->internal_suspend_count);
2745 
2746 	if (--md->internal_suspend_count)
2747 		return; /* resume from nested internal suspend */
2748 
2749 	if (dm_suspended_md(md))
2750 		goto done; /* resume from nested suspend */
2751 
2752 	/*
2753 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2754 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2755 	 */
2756 	(void) __dm_resume(md, NULL);
2757 
2758 done:
2759 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2760 	smp_mb__after_atomic();
2761 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2762 }
2763 
dm_internal_suspend_noflush(struct mapped_device * md)2764 void dm_internal_suspend_noflush(struct mapped_device *md)
2765 {
2766 	mutex_lock(&md->suspend_lock);
2767 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2768 	mutex_unlock(&md->suspend_lock);
2769 }
2770 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2771 
dm_internal_resume(struct mapped_device * md)2772 void dm_internal_resume(struct mapped_device *md)
2773 {
2774 	mutex_lock(&md->suspend_lock);
2775 	__dm_internal_resume(md);
2776 	mutex_unlock(&md->suspend_lock);
2777 }
2778 EXPORT_SYMBOL_GPL(dm_internal_resume);
2779 
2780 /*
2781  * Fast variants of internal suspend/resume hold md->suspend_lock,
2782  * which prevents interaction with userspace-driven suspend.
2783  */
2784 
dm_internal_suspend_fast(struct mapped_device * md)2785 void dm_internal_suspend_fast(struct mapped_device *md)
2786 {
2787 	mutex_lock(&md->suspend_lock);
2788 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2789 		return;
2790 
2791 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2792 	synchronize_srcu(&md->io_barrier);
2793 	flush_workqueue(md->wq);
2794 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2795 }
2796 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2797 
dm_internal_resume_fast(struct mapped_device * md)2798 void dm_internal_resume_fast(struct mapped_device *md)
2799 {
2800 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2801 		goto done;
2802 
2803 	dm_queue_flush(md);
2804 
2805 done:
2806 	mutex_unlock(&md->suspend_lock);
2807 }
2808 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2809 
2810 /*-----------------------------------------------------------------
2811  * Event notification.
2812  *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2813 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2814 		       unsigned cookie)
2815 {
2816 	int r;
2817 	unsigned noio_flag;
2818 	char udev_cookie[DM_COOKIE_LENGTH];
2819 	char *envp[] = { udev_cookie, NULL };
2820 
2821 	noio_flag = memalloc_noio_save();
2822 
2823 	if (!cookie)
2824 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2825 	else {
2826 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2827 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2828 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2829 				       action, envp);
2830 	}
2831 
2832 	memalloc_noio_restore(noio_flag);
2833 
2834 	return r;
2835 }
2836 
dm_next_uevent_seq(struct mapped_device * md)2837 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2838 {
2839 	return atomic_add_return(1, &md->uevent_seq);
2840 }
2841 
dm_get_event_nr(struct mapped_device * md)2842 uint32_t dm_get_event_nr(struct mapped_device *md)
2843 {
2844 	return atomic_read(&md->event_nr);
2845 }
2846 
dm_wait_event(struct mapped_device * md,int event_nr)2847 int dm_wait_event(struct mapped_device *md, int event_nr)
2848 {
2849 	return wait_event_interruptible(md->eventq,
2850 			(event_nr != atomic_read(&md->event_nr)));
2851 }
2852 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2853 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2854 {
2855 	unsigned long flags;
2856 
2857 	spin_lock_irqsave(&md->uevent_lock, flags);
2858 	list_add(elist, &md->uevent_list);
2859 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2860 }
2861 
2862 /*
2863  * The gendisk is only valid as long as you have a reference
2864  * count on 'md'.
2865  */
dm_disk(struct mapped_device * md)2866 struct gendisk *dm_disk(struct mapped_device *md)
2867 {
2868 	return md->disk;
2869 }
2870 EXPORT_SYMBOL_GPL(dm_disk);
2871 
dm_kobject(struct mapped_device * md)2872 struct kobject *dm_kobject(struct mapped_device *md)
2873 {
2874 	return &md->kobj_holder.kobj;
2875 }
2876 
dm_get_from_kobject(struct kobject * kobj)2877 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2878 {
2879 	struct mapped_device *md;
2880 
2881 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2882 
2883 	spin_lock(&_minor_lock);
2884 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2885 		md = NULL;
2886 		goto out;
2887 	}
2888 	dm_get(md);
2889 out:
2890 	spin_unlock(&_minor_lock);
2891 
2892 	return md;
2893 }
2894 
dm_suspended_md(struct mapped_device * md)2895 int dm_suspended_md(struct mapped_device *md)
2896 {
2897 	return test_bit(DMF_SUSPENDED, &md->flags);
2898 }
2899 
dm_post_suspending_md(struct mapped_device * md)2900 static int dm_post_suspending_md(struct mapped_device *md)
2901 {
2902 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2903 }
2904 
dm_suspended_internally_md(struct mapped_device * md)2905 int dm_suspended_internally_md(struct mapped_device *md)
2906 {
2907 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2908 }
2909 
dm_test_deferred_remove_flag(struct mapped_device * md)2910 int dm_test_deferred_remove_flag(struct mapped_device *md)
2911 {
2912 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2913 }
2914 
dm_suspended(struct dm_target * ti)2915 int dm_suspended(struct dm_target *ti)
2916 {
2917 	return dm_suspended_md(ti->table->md);
2918 }
2919 EXPORT_SYMBOL_GPL(dm_suspended);
2920 
dm_post_suspending(struct dm_target * ti)2921 int dm_post_suspending(struct dm_target *ti)
2922 {
2923 	return dm_post_suspending_md(ti->table->md);
2924 }
2925 EXPORT_SYMBOL_GPL(dm_post_suspending);
2926 
dm_noflush_suspending(struct dm_target * ti)2927 int dm_noflush_suspending(struct dm_target *ti)
2928 {
2929 	return __noflush_suspending(ti->table->md);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2932 
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2933 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2934 					    unsigned integrity, unsigned per_io_data_size,
2935 					    unsigned min_pool_size)
2936 {
2937 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2938 	unsigned int pool_size = 0;
2939 	unsigned int front_pad, io_front_pad;
2940 	int ret;
2941 
2942 	if (!pools)
2943 		return NULL;
2944 
2945 	switch (type) {
2946 	case DM_TYPE_BIO_BASED:
2947 	case DM_TYPE_DAX_BIO_BASED:
2948 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2949 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2950 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2951 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2952 		if (ret)
2953 			goto out;
2954 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2955 			goto out;
2956 		break;
2957 	case DM_TYPE_REQUEST_BASED:
2958 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2959 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2960 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2961 		break;
2962 	default:
2963 		BUG();
2964 	}
2965 
2966 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2967 	if (ret)
2968 		goto out;
2969 
2970 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2971 		goto out;
2972 
2973 	return pools;
2974 
2975 out:
2976 	dm_free_md_mempools(pools);
2977 
2978 	return NULL;
2979 }
2980 
dm_free_md_mempools(struct dm_md_mempools * pools)2981 void dm_free_md_mempools(struct dm_md_mempools *pools)
2982 {
2983 	if (!pools)
2984 		return;
2985 
2986 	bioset_exit(&pools->bs);
2987 	bioset_exit(&pools->io_bs);
2988 
2989 	kfree(pools);
2990 }
2991 
2992 struct dm_pr {
2993 	u64	old_key;
2994 	u64	new_key;
2995 	u32	flags;
2996 	bool	fail_early;
2997 };
2998 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2999 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3000 		      void *data)
3001 {
3002 	struct mapped_device *md = bdev->bd_disk->private_data;
3003 	struct dm_table *table;
3004 	struct dm_target *ti;
3005 	int ret = -ENOTTY, srcu_idx;
3006 
3007 	table = dm_get_live_table(md, &srcu_idx);
3008 	if (!table || !dm_table_get_size(table))
3009 		goto out;
3010 
3011 	/* We only support devices that have a single target */
3012 	if (dm_table_get_num_targets(table) != 1)
3013 		goto out;
3014 	ti = dm_table_get_target(table, 0);
3015 
3016 	if (dm_suspended_md(md)) {
3017 		ret = -EAGAIN;
3018 		goto out;
3019 	}
3020 
3021 	ret = -EINVAL;
3022 	if (!ti->type->iterate_devices)
3023 		goto out;
3024 
3025 	ret = ti->type->iterate_devices(ti, fn, data);
3026 out:
3027 	dm_put_live_table(md, srcu_idx);
3028 	return ret;
3029 }
3030 
3031 /*
3032  * For register / unregister we need to manually call out to every path.
3033  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3034 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3035 			    sector_t start, sector_t len, void *data)
3036 {
3037 	struct dm_pr *pr = data;
3038 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3039 
3040 	if (!ops || !ops->pr_register)
3041 		return -EOPNOTSUPP;
3042 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3043 }
3044 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3045 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3046 			  u32 flags)
3047 {
3048 	struct dm_pr pr = {
3049 		.old_key	= old_key,
3050 		.new_key	= new_key,
3051 		.flags		= flags,
3052 		.fail_early	= true,
3053 	};
3054 	int ret;
3055 
3056 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3057 	if (ret && new_key) {
3058 		/* unregister all paths if we failed to register any path */
3059 		pr.old_key = new_key;
3060 		pr.new_key = 0;
3061 		pr.flags = 0;
3062 		pr.fail_early = false;
3063 		dm_call_pr(bdev, __dm_pr_register, &pr);
3064 	}
3065 
3066 	return ret;
3067 }
3068 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3069 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3070 			 u32 flags)
3071 {
3072 	struct mapped_device *md = bdev->bd_disk->private_data;
3073 	const struct pr_ops *ops;
3074 	int r, srcu_idx;
3075 
3076 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3077 	if (r < 0)
3078 		goto out;
3079 
3080 	ops = bdev->bd_disk->fops->pr_ops;
3081 	if (ops && ops->pr_reserve)
3082 		r = ops->pr_reserve(bdev, key, type, flags);
3083 	else
3084 		r = -EOPNOTSUPP;
3085 out:
3086 	dm_unprepare_ioctl(md, srcu_idx);
3087 	return r;
3088 }
3089 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3090 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3091 {
3092 	struct mapped_device *md = bdev->bd_disk->private_data;
3093 	const struct pr_ops *ops;
3094 	int r, srcu_idx;
3095 
3096 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3097 	if (r < 0)
3098 		goto out;
3099 
3100 	ops = bdev->bd_disk->fops->pr_ops;
3101 	if (ops && ops->pr_release)
3102 		r = ops->pr_release(bdev, key, type);
3103 	else
3104 		r = -EOPNOTSUPP;
3105 out:
3106 	dm_unprepare_ioctl(md, srcu_idx);
3107 	return r;
3108 }
3109 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3110 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3111 			 enum pr_type type, bool abort)
3112 {
3113 	struct mapped_device *md = bdev->bd_disk->private_data;
3114 	const struct pr_ops *ops;
3115 	int r, srcu_idx;
3116 
3117 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3118 	if (r < 0)
3119 		goto out;
3120 
3121 	ops = bdev->bd_disk->fops->pr_ops;
3122 	if (ops && ops->pr_preempt)
3123 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3124 	else
3125 		r = -EOPNOTSUPP;
3126 out:
3127 	dm_unprepare_ioctl(md, srcu_idx);
3128 	return r;
3129 }
3130 
dm_pr_clear(struct block_device * bdev,u64 key)3131 static int dm_pr_clear(struct block_device *bdev, u64 key)
3132 {
3133 	struct mapped_device *md = bdev->bd_disk->private_data;
3134 	const struct pr_ops *ops;
3135 	int r, srcu_idx;
3136 
3137 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3138 	if (r < 0)
3139 		goto out;
3140 
3141 	ops = bdev->bd_disk->fops->pr_ops;
3142 	if (ops && ops->pr_clear)
3143 		r = ops->pr_clear(bdev, key);
3144 	else
3145 		r = -EOPNOTSUPP;
3146 out:
3147 	dm_unprepare_ioctl(md, srcu_idx);
3148 	return r;
3149 }
3150 
3151 static const struct pr_ops dm_pr_ops = {
3152 	.pr_register	= dm_pr_register,
3153 	.pr_reserve	= dm_pr_reserve,
3154 	.pr_release	= dm_pr_release,
3155 	.pr_preempt	= dm_pr_preempt,
3156 	.pr_clear	= dm_pr_clear,
3157 };
3158 
3159 static const struct block_device_operations dm_blk_dops = {
3160 	.submit_bio = dm_submit_bio,
3161 	.open = dm_blk_open,
3162 	.release = dm_blk_close,
3163 	.ioctl = dm_blk_ioctl,
3164 	.getgeo = dm_blk_getgeo,
3165 	.report_zones = dm_blk_report_zones,
3166 	.pr_ops = &dm_pr_ops,
3167 	.owner = THIS_MODULE
3168 };
3169 
3170 static const struct block_device_operations dm_rq_blk_dops = {
3171 	.open = dm_blk_open,
3172 	.release = dm_blk_close,
3173 	.ioctl = dm_blk_ioctl,
3174 	.getgeo = dm_blk_getgeo,
3175 	.pr_ops = &dm_pr_ops,
3176 	.owner = THIS_MODULE
3177 };
3178 
3179 static const struct dax_operations dm_dax_ops = {
3180 	.direct_access = dm_dax_direct_access,
3181 	.dax_supported = dm_dax_supported,
3182 	.copy_from_iter = dm_dax_copy_from_iter,
3183 	.copy_to_iter = dm_dax_copy_to_iter,
3184 	.zero_page_range = dm_dax_zero_page_range,
3185 };
3186 
3187 /*
3188  * module hooks
3189  */
3190 module_init(dm_init);
3191 module_exit(dm_exit);
3192 
3193 module_param(major, uint, 0);
3194 MODULE_PARM_DESC(major, "The major number of the device mapper");
3195 
3196 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3197 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3198 
3199 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3200 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3201 
3202 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3203 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3204 
3205 MODULE_DESCRIPTION(DM_NAME " driver");
3206 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3207 MODULE_LICENSE("GPL");
3208