1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32
33 #define DM_MSG_PREFIX "core"
34
35 /*
36 * Cookies are numeric values sent with CHANGE and REMOVE
37 * uevents while resuming, removing or renaming the device.
38 */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41
42 static const char *_name = DM_NAME;
43
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46
47 static DEFINE_IDR(_minor_idr);
48
49 static DEFINE_SPINLOCK(_minor_lock);
50
51 static void do_deferred_remove(struct work_struct *w);
52
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54
55 static struct workqueue_struct *deferred_remove_workqueue;
56
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59
dm_issue_global_event(void)60 void dm_issue_global_event(void)
61 {
62 atomic_inc(&dm_global_event_nr);
63 wake_up(&dm_global_eventq);
64 }
65
66 /*
67 * One of these is allocated (on-stack) per original bio.
68 */
69 struct clone_info {
70 struct dm_table *map;
71 struct bio *bio;
72 struct dm_io *io;
73 sector_t sector;
74 unsigned sector_count;
75 };
76
77 /*
78 * One of these is allocated per clone bio.
79 */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 unsigned magic;
83 struct dm_io *io;
84 struct dm_target *ti;
85 unsigned target_bio_nr;
86 unsigned *len_ptr;
87 bool inside_dm_io;
88 struct bio clone;
89 };
90
91 /*
92 * One of these is allocated per original bio.
93 * It contains the first clone used for that original.
94 */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 unsigned magic;
98 struct mapped_device *md;
99 blk_status_t status;
100 atomic_t io_count;
101 struct bio *orig_bio;
102 unsigned long start_time;
103 spinlock_t endio_lock;
104 struct dm_stats_aux stats_aux;
105 /* last member of dm_target_io is 'struct bio' */
106 struct dm_target_io tio;
107 };
108
dm_per_bio_data(struct bio * bio,size_t data_size)109 void *dm_per_bio_data(struct bio *bio, size_t data_size)
110 {
111 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
112 if (!tio->inside_dm_io)
113 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
114 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
115 }
116 EXPORT_SYMBOL_GPL(dm_per_bio_data);
117
dm_bio_from_per_bio_data(void * data,size_t data_size)118 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
119 {
120 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
121 if (io->magic == DM_IO_MAGIC)
122 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
123 BUG_ON(io->magic != DM_TIO_MAGIC);
124 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
125 }
126 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
127
dm_bio_get_target_bio_nr(const struct bio * bio)128 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
129 {
130 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
131 }
132 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
133
134 #define MINOR_ALLOCED ((void *)-1)
135
136 /*
137 * Bits for the md->flags field.
138 */
139 #define DMF_BLOCK_IO_FOR_SUSPEND 0
140 #define DMF_SUSPENDED 1
141 #define DMF_FROZEN 2
142 #define DMF_FREEING 3
143 #define DMF_DELETING 4
144 #define DMF_NOFLUSH_SUSPENDING 5
145 #define DMF_DEFERRED_REMOVE 6
146 #define DMF_SUSPENDED_INTERNALLY 7
147 #define DMF_POST_SUSPENDING 8
148
149 #define DM_NUMA_NODE NUMA_NO_NODE
150 static int dm_numa_node = DM_NUMA_NODE;
151
152 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
153 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)154 static int get_swap_bios(void)
155 {
156 int latch = READ_ONCE(swap_bios);
157 if (unlikely(latch <= 0))
158 latch = DEFAULT_SWAP_BIOS;
159 return latch;
160 }
161
162 /*
163 * For mempools pre-allocation at the table loading time.
164 */
165 struct dm_md_mempools {
166 struct bio_set bs;
167 struct bio_set io_bs;
168 };
169
170 struct table_device {
171 struct list_head list;
172 refcount_t count;
173 struct dm_dev dm_dev;
174 };
175
176 /*
177 * Bio-based DM's mempools' reserved IOs set by the user.
178 */
179 #define RESERVED_BIO_BASED_IOS 16
180 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
181
__dm_get_module_param_int(int * module_param,int min,int max)182 static int __dm_get_module_param_int(int *module_param, int min, int max)
183 {
184 int param = READ_ONCE(*module_param);
185 int modified_param = 0;
186 bool modified = true;
187
188 if (param < min)
189 modified_param = min;
190 else if (param > max)
191 modified_param = max;
192 else
193 modified = false;
194
195 if (modified) {
196 (void)cmpxchg(module_param, param, modified_param);
197 param = modified_param;
198 }
199
200 return param;
201 }
202
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)203 unsigned __dm_get_module_param(unsigned *module_param,
204 unsigned def, unsigned max)
205 {
206 unsigned param = READ_ONCE(*module_param);
207 unsigned modified_param = 0;
208
209 if (!param)
210 modified_param = def;
211 else if (param > max)
212 modified_param = max;
213
214 if (modified_param) {
215 (void)cmpxchg(module_param, param, modified_param);
216 param = modified_param;
217 }
218
219 return param;
220 }
221
dm_get_reserved_bio_based_ios(void)222 unsigned dm_get_reserved_bio_based_ios(void)
223 {
224 return __dm_get_module_param(&reserved_bio_based_ios,
225 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
226 }
227 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
228
dm_get_numa_node(void)229 static unsigned dm_get_numa_node(void)
230 {
231 return __dm_get_module_param_int(&dm_numa_node,
232 DM_NUMA_NODE, num_online_nodes() - 1);
233 }
234
local_init(void)235 static int __init local_init(void)
236 {
237 int r;
238
239 r = dm_uevent_init();
240 if (r)
241 return r;
242
243 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
244 if (!deferred_remove_workqueue) {
245 r = -ENOMEM;
246 goto out_uevent_exit;
247 }
248
249 _major = major;
250 r = register_blkdev(_major, _name);
251 if (r < 0)
252 goto out_free_workqueue;
253
254 if (!_major)
255 _major = r;
256
257 return 0;
258
259 out_free_workqueue:
260 destroy_workqueue(deferred_remove_workqueue);
261 out_uevent_exit:
262 dm_uevent_exit();
263
264 return r;
265 }
266
local_exit(void)267 static void local_exit(void)
268 {
269 destroy_workqueue(deferred_remove_workqueue);
270
271 unregister_blkdev(_major, _name);
272 dm_uevent_exit();
273
274 _major = 0;
275
276 DMINFO("cleaned up");
277 }
278
279 static int (*_inits[])(void) __initdata = {
280 local_init,
281 dm_target_init,
282 dm_linear_init,
283 dm_stripe_init,
284 dm_io_init,
285 dm_kcopyd_init,
286 dm_interface_init,
287 dm_statistics_init,
288 };
289
290 static void (*_exits[])(void) = {
291 local_exit,
292 dm_target_exit,
293 dm_linear_exit,
294 dm_stripe_exit,
295 dm_io_exit,
296 dm_kcopyd_exit,
297 dm_interface_exit,
298 dm_statistics_exit,
299 };
300
dm_init(void)301 static int __init dm_init(void)
302 {
303 const int count = ARRAY_SIZE(_inits);
304
305 int r, i;
306
307 for (i = 0; i < count; i++) {
308 r = _inits[i]();
309 if (r)
310 goto bad;
311 }
312
313 return 0;
314
315 bad:
316 while (i--)
317 _exits[i]();
318
319 return r;
320 }
321
dm_exit(void)322 static void __exit dm_exit(void)
323 {
324 int i = ARRAY_SIZE(_exits);
325
326 while (i--)
327 _exits[i]();
328
329 /*
330 * Should be empty by this point.
331 */
332 idr_destroy(&_minor_idr);
333 }
334
335 /*
336 * Block device functions
337 */
dm_deleting_md(struct mapped_device * md)338 int dm_deleting_md(struct mapped_device *md)
339 {
340 return test_bit(DMF_DELETING, &md->flags);
341 }
342
dm_blk_open(struct block_device * bdev,fmode_t mode)343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 struct mapped_device *md;
346
347 spin_lock(&_minor_lock);
348
349 md = bdev->bd_disk->private_data;
350 if (!md)
351 goto out;
352
353 if (test_bit(DMF_FREEING, &md->flags) ||
354 dm_deleting_md(md)) {
355 md = NULL;
356 goto out;
357 }
358
359 dm_get(md);
360 atomic_inc(&md->open_count);
361 out:
362 spin_unlock(&_minor_lock);
363
364 return md ? 0 : -ENXIO;
365 }
366
dm_blk_close(struct gendisk * disk,fmode_t mode)367 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
368 {
369 struct mapped_device *md;
370
371 spin_lock(&_minor_lock);
372
373 md = disk->private_data;
374 if (WARN_ON(!md))
375 goto out;
376
377 if (atomic_dec_and_test(&md->open_count) &&
378 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
379 queue_work(deferred_remove_workqueue, &deferred_remove_work);
380
381 dm_put(md);
382 out:
383 spin_unlock(&_minor_lock);
384 }
385
dm_open_count(struct mapped_device * md)386 int dm_open_count(struct mapped_device *md)
387 {
388 return atomic_read(&md->open_count);
389 }
390
391 /*
392 * Guarantees nothing is using the device before it's deleted.
393 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)394 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
395 {
396 int r = 0;
397
398 spin_lock(&_minor_lock);
399
400 if (dm_open_count(md)) {
401 r = -EBUSY;
402 if (mark_deferred)
403 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
404 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
405 r = -EEXIST;
406 else
407 set_bit(DMF_DELETING, &md->flags);
408
409 spin_unlock(&_minor_lock);
410
411 return r;
412 }
413
dm_cancel_deferred_remove(struct mapped_device * md)414 int dm_cancel_deferred_remove(struct mapped_device *md)
415 {
416 int r = 0;
417
418 spin_lock(&_minor_lock);
419
420 if (test_bit(DMF_DELETING, &md->flags))
421 r = -EBUSY;
422 else
423 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
424
425 spin_unlock(&_minor_lock);
426
427 return r;
428 }
429
do_deferred_remove(struct work_struct * w)430 static void do_deferred_remove(struct work_struct *w)
431 {
432 dm_deferred_remove();
433 }
434
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)435 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
436 {
437 struct mapped_device *md = bdev->bd_disk->private_data;
438
439 return dm_get_geometry(md, geo);
440 }
441
442 #ifdef CONFIG_BLK_DEV_ZONED
dm_report_zones_cb(struct blk_zone * zone,unsigned int idx,void * data)443 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
444 {
445 struct dm_report_zones_args *args = data;
446 sector_t sector_diff = args->tgt->begin - args->start;
447
448 /*
449 * Ignore zones beyond the target range.
450 */
451 if (zone->start >= args->start + args->tgt->len)
452 return 0;
453
454 /*
455 * Remap the start sector and write pointer position of the zone
456 * to match its position in the target range.
457 */
458 zone->start += sector_diff;
459 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
460 if (zone->cond == BLK_ZONE_COND_FULL)
461 zone->wp = zone->start + zone->len;
462 else if (zone->cond == BLK_ZONE_COND_EMPTY)
463 zone->wp = zone->start;
464 else
465 zone->wp += sector_diff;
466 }
467
468 args->next_sector = zone->start + zone->len;
469 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
470 }
471 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
472
dm_blk_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)473 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
474 unsigned int nr_zones, report_zones_cb cb, void *data)
475 {
476 struct mapped_device *md = disk->private_data;
477 struct dm_table *map;
478 int srcu_idx, ret;
479 struct dm_report_zones_args args = {
480 .next_sector = sector,
481 .orig_data = data,
482 .orig_cb = cb,
483 };
484
485 if (dm_suspended_md(md))
486 return -EAGAIN;
487
488 map = dm_get_live_table(md, &srcu_idx);
489 if (!map) {
490 ret = -EIO;
491 goto out;
492 }
493
494 do {
495 struct dm_target *tgt;
496
497 tgt = dm_table_find_target(map, args.next_sector);
498 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
499 ret = -EIO;
500 goto out;
501 }
502
503 args.tgt = tgt;
504 ret = tgt->type->report_zones(tgt, &args,
505 nr_zones - args.zone_idx);
506 if (ret < 0)
507 goto out;
508 } while (args.zone_idx < nr_zones &&
509 args.next_sector < get_capacity(disk));
510
511 ret = args.zone_idx;
512 out:
513 dm_put_live_table(md, srcu_idx);
514 return ret;
515 }
516 #else
517 #define dm_blk_report_zones NULL
518 #endif /* CONFIG_BLK_DEV_ZONED */
519
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
521 struct block_device **bdev)
522 {
523 struct dm_target *tgt;
524 struct dm_table *map;
525 int r;
526
527 retry:
528 r = -ENOTTY;
529 map = dm_get_live_table(md, srcu_idx);
530 if (!map || !dm_table_get_size(map))
531 return r;
532
533 /* We only support devices that have a single target */
534 if (dm_table_get_num_targets(map) != 1)
535 return r;
536
537 tgt = dm_table_get_target(map, 0);
538 if (!tgt->type->prepare_ioctl)
539 return r;
540
541 if (dm_suspended_md(md))
542 return -EAGAIN;
543
544 r = tgt->type->prepare_ioctl(tgt, bdev);
545 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
546 dm_put_live_table(md, *srcu_idx);
547 msleep(10);
548 goto retry;
549 }
550
551 return r;
552 }
553
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)554 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
555 {
556 dm_put_live_table(md, srcu_idx);
557 }
558
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 unsigned int cmd, unsigned long arg)
561 {
562 struct mapped_device *md = bdev->bd_disk->private_data;
563 int r, srcu_idx;
564
565 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 if (r < 0)
567 goto out;
568
569 if (r > 0) {
570 /*
571 * Target determined this ioctl is being issued against a
572 * subset of the parent bdev; require extra privileges.
573 */
574 if (!capable(CAP_SYS_RAWIO)) {
575 DMDEBUG_LIMIT(
576 "%s: sending ioctl %x to DM device without required privilege.",
577 current->comm, cmd);
578 r = -ENOIOCTLCMD;
579 goto out;
580 }
581 }
582
583 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 dm_unprepare_ioctl(md, srcu_idx);
586 return r;
587 }
588
dm_start_time_ns_from_clone(struct bio * bio)589 u64 dm_start_time_ns_from_clone(struct bio *bio)
590 {
591 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
592 struct dm_io *io = tio->io;
593
594 return jiffies_to_nsecs(io->start_time);
595 }
596 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
597
start_io_acct(struct dm_io * io)598 static void start_io_acct(struct dm_io *io)
599 {
600 struct mapped_device *md = io->md;
601 struct bio *bio = io->orig_bio;
602
603 io->start_time = bio_start_io_acct(bio);
604 if (unlikely(dm_stats_used(&md->stats)))
605 dm_stats_account_io(&md->stats, bio_data_dir(bio),
606 bio->bi_iter.bi_sector, bio_sectors(bio),
607 false, 0, &io->stats_aux);
608 }
609
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)610 static void end_io_acct(struct mapped_device *md, struct bio *bio,
611 unsigned long start_time, struct dm_stats_aux *stats_aux)
612 {
613 unsigned long duration = jiffies - start_time;
614
615 if (unlikely(dm_stats_used(&md->stats)))
616 dm_stats_account_io(&md->stats, bio_data_dir(bio),
617 bio->bi_iter.bi_sector, bio_sectors(bio),
618 true, duration, stats_aux);
619
620 smp_wmb();
621
622 bio_end_io_acct(bio, start_time);
623
624 /* nudge anyone waiting on suspend queue */
625 if (unlikely(wq_has_sleeper(&md->wait)))
626 wake_up(&md->wait);
627 }
628
alloc_io(struct mapped_device * md,struct bio * bio)629 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
630 {
631 struct dm_io *io;
632 struct dm_target_io *tio;
633 struct bio *clone;
634
635 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
636 if (!clone)
637 return NULL;
638
639 tio = container_of(clone, struct dm_target_io, clone);
640 tio->inside_dm_io = true;
641 tio->io = NULL;
642
643 io = container_of(tio, struct dm_io, tio);
644 io->magic = DM_IO_MAGIC;
645 io->status = 0;
646 atomic_set(&io->io_count, 1);
647 io->orig_bio = bio;
648 io->md = md;
649 spin_lock_init(&io->endio_lock);
650
651 start_io_acct(io);
652
653 return io;
654 }
655
free_io(struct mapped_device * md,struct dm_io * io)656 static void free_io(struct mapped_device *md, struct dm_io *io)
657 {
658 bio_put(&io->tio.clone);
659 }
660
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)661 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
662 unsigned target_bio_nr, gfp_t gfp_mask)
663 {
664 struct dm_target_io *tio;
665
666 if (!ci->io->tio.io) {
667 /* the dm_target_io embedded in ci->io is available */
668 tio = &ci->io->tio;
669 } else {
670 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
671 if (!clone)
672 return NULL;
673
674 tio = container_of(clone, struct dm_target_io, clone);
675 tio->inside_dm_io = false;
676 }
677
678 tio->magic = DM_TIO_MAGIC;
679 tio->io = ci->io;
680 tio->ti = ti;
681 tio->target_bio_nr = target_bio_nr;
682
683 return tio;
684 }
685
free_tio(struct dm_target_io * tio)686 static void free_tio(struct dm_target_io *tio)
687 {
688 if (tio->inside_dm_io)
689 return;
690 bio_put(&tio->clone);
691 }
692
693 /*
694 * Add the bio to the list of deferred io.
695 */
queue_io(struct mapped_device * md,struct bio * bio)696 static void queue_io(struct mapped_device *md, struct bio *bio)
697 {
698 unsigned long flags;
699
700 spin_lock_irqsave(&md->deferred_lock, flags);
701 bio_list_add(&md->deferred, bio);
702 spin_unlock_irqrestore(&md->deferred_lock, flags);
703 queue_work(md->wq, &md->work);
704 }
705
706 /*
707 * Everyone (including functions in this file), should use this
708 * function to access the md->map field, and make sure they call
709 * dm_put_live_table() when finished.
710 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)711 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
712 {
713 *srcu_idx = srcu_read_lock(&md->io_barrier);
714
715 return srcu_dereference(md->map, &md->io_barrier);
716 }
717
dm_put_live_table(struct mapped_device * md,int srcu_idx)718 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
719 {
720 srcu_read_unlock(&md->io_barrier, srcu_idx);
721 }
722
dm_sync_table(struct mapped_device * md)723 void dm_sync_table(struct mapped_device *md)
724 {
725 synchronize_srcu(&md->io_barrier);
726 synchronize_rcu_expedited();
727 }
728
729 /*
730 * A fast alternative to dm_get_live_table/dm_put_live_table.
731 * The caller must not block between these two functions.
732 */
dm_get_live_table_fast(struct mapped_device * md)733 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
734 {
735 rcu_read_lock();
736 return rcu_dereference(md->map);
737 }
738
dm_put_live_table_fast(struct mapped_device * md)739 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
740 {
741 rcu_read_unlock();
742 }
743
744 static char *_dm_claim_ptr = "I belong to device-mapper";
745
746 /*
747 * Open a table device so we can use it as a map destination.
748 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)749 static int open_table_device(struct table_device *td, dev_t dev,
750 struct mapped_device *md)
751 {
752 struct block_device *bdev;
753
754 int r;
755
756 BUG_ON(td->dm_dev.bdev);
757
758 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
759 if (IS_ERR(bdev))
760 return PTR_ERR(bdev);
761
762 r = bd_link_disk_holder(bdev, dm_disk(md));
763 if (r) {
764 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
765 return r;
766 }
767
768 td->dm_dev.bdev = bdev;
769 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
770 return 0;
771 }
772
773 /*
774 * Close a table device that we've been using.
775 */
close_table_device(struct table_device * td,struct mapped_device * md)776 static void close_table_device(struct table_device *td, struct mapped_device *md)
777 {
778 if (!td->dm_dev.bdev)
779 return;
780
781 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
782 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
783 put_dax(td->dm_dev.dax_dev);
784 td->dm_dev.bdev = NULL;
785 td->dm_dev.dax_dev = NULL;
786 }
787
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)788 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
789 fmode_t mode)
790 {
791 struct table_device *td;
792
793 list_for_each_entry(td, l, list)
794 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
795 return td;
796
797 return NULL;
798 }
799
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)800 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
801 struct dm_dev **result)
802 {
803 int r;
804 struct table_device *td;
805
806 mutex_lock(&md->table_devices_lock);
807 td = find_table_device(&md->table_devices, dev, mode);
808 if (!td) {
809 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
810 if (!td) {
811 mutex_unlock(&md->table_devices_lock);
812 return -ENOMEM;
813 }
814
815 td->dm_dev.mode = mode;
816 td->dm_dev.bdev = NULL;
817
818 if ((r = open_table_device(td, dev, md))) {
819 mutex_unlock(&md->table_devices_lock);
820 kfree(td);
821 return r;
822 }
823
824 format_dev_t(td->dm_dev.name, dev);
825
826 refcount_set(&td->count, 1);
827 list_add(&td->list, &md->table_devices);
828 } else {
829 refcount_inc(&td->count);
830 }
831 mutex_unlock(&md->table_devices_lock);
832
833 *result = &td->dm_dev;
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(dm_get_table_device);
837
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)838 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
839 {
840 struct table_device *td = container_of(d, struct table_device, dm_dev);
841
842 mutex_lock(&md->table_devices_lock);
843 if (refcount_dec_and_test(&td->count)) {
844 close_table_device(td, md);
845 list_del(&td->list);
846 kfree(td);
847 }
848 mutex_unlock(&md->table_devices_lock);
849 }
850 EXPORT_SYMBOL(dm_put_table_device);
851
free_table_devices(struct list_head * devices)852 static void free_table_devices(struct list_head *devices)
853 {
854 struct list_head *tmp, *next;
855
856 list_for_each_safe(tmp, next, devices) {
857 struct table_device *td = list_entry(tmp, struct table_device, list);
858
859 DMWARN("dm_destroy: %s still exists with %d references",
860 td->dm_dev.name, refcount_read(&td->count));
861 kfree(td);
862 }
863 }
864
865 /*
866 * Get the geometry associated with a dm device
867 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)868 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 *geo = md->geometry;
871
872 return 0;
873 }
874
875 /*
876 * Set the geometry of a device.
877 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)878 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
879 {
880 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
881
882 if (geo->start > sz) {
883 DMWARN("Start sector is beyond the geometry limits.");
884 return -EINVAL;
885 }
886
887 md->geometry = *geo;
888
889 return 0;
890 }
891
__noflush_suspending(struct mapped_device * md)892 static int __noflush_suspending(struct mapped_device *md)
893 {
894 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
895 }
896
897 /*
898 * Decrements the number of outstanding ios that a bio has been
899 * cloned into, completing the original io if necc.
900 */
dec_pending(struct dm_io * io,blk_status_t error)901 static void dec_pending(struct dm_io *io, blk_status_t error)
902 {
903 unsigned long flags;
904 blk_status_t io_error;
905 struct bio *bio;
906 struct mapped_device *md = io->md;
907 unsigned long start_time = 0;
908 struct dm_stats_aux stats_aux;
909
910 /* Push-back supersedes any I/O errors */
911 if (unlikely(error)) {
912 spin_lock_irqsave(&io->endio_lock, flags);
913 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
914 io->status = error;
915 spin_unlock_irqrestore(&io->endio_lock, flags);
916 }
917
918 if (atomic_dec_and_test(&io->io_count)) {
919 if (io->status == BLK_STS_DM_REQUEUE) {
920 /*
921 * Target requested pushing back the I/O.
922 */
923 spin_lock_irqsave(&md->deferred_lock, flags);
924 if (__noflush_suspending(md))
925 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
926 bio_list_add_head(&md->deferred, io->orig_bio);
927 else
928 /* noflush suspend was interrupted. */
929 io->status = BLK_STS_IOERR;
930 spin_unlock_irqrestore(&md->deferred_lock, flags);
931 }
932
933 io_error = io->status;
934 bio = io->orig_bio;
935 start_time = io->start_time;
936 stats_aux = io->stats_aux;
937 free_io(md, io);
938 end_io_acct(md, bio, start_time, &stats_aux);
939
940 if (io_error == BLK_STS_DM_REQUEUE)
941 return;
942
943 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
944 /*
945 * Preflush done for flush with data, reissue
946 * without REQ_PREFLUSH.
947 */
948 bio->bi_opf &= ~REQ_PREFLUSH;
949 queue_io(md, bio);
950 } else {
951 /* done with normal IO or empty flush */
952 if (io_error)
953 bio->bi_status = io_error;
954 bio_endio(bio);
955 }
956 }
957 }
958
disable_discard(struct mapped_device * md)959 void disable_discard(struct mapped_device *md)
960 {
961 struct queue_limits *limits = dm_get_queue_limits(md);
962
963 /* device doesn't really support DISCARD, disable it */
964 limits->max_discard_sectors = 0;
965 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
966 }
967
disable_write_same(struct mapped_device * md)968 void disable_write_same(struct mapped_device *md)
969 {
970 struct queue_limits *limits = dm_get_queue_limits(md);
971
972 /* device doesn't really support WRITE SAME, disable it */
973 limits->max_write_same_sectors = 0;
974 }
975
disable_write_zeroes(struct mapped_device * md)976 void disable_write_zeroes(struct mapped_device *md)
977 {
978 struct queue_limits *limits = dm_get_queue_limits(md);
979
980 /* device doesn't really support WRITE ZEROES, disable it */
981 limits->max_write_zeroes_sectors = 0;
982 }
983
swap_bios_limit(struct dm_target * ti,struct bio * bio)984 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
985 {
986 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
987 }
988
clone_endio(struct bio * bio)989 static void clone_endio(struct bio *bio)
990 {
991 blk_status_t error = bio->bi_status;
992 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
993 struct dm_io *io = tio->io;
994 struct mapped_device *md = tio->io->md;
995 dm_endio_fn endio = tio->ti->type->end_io;
996 struct bio *orig_bio = io->orig_bio;
997
998 if (unlikely(error == BLK_STS_TARGET)) {
999 if (bio_op(bio) == REQ_OP_DISCARD &&
1000 !bio->bi_disk->queue->limits.max_discard_sectors)
1001 disable_discard(md);
1002 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1003 !bio->bi_disk->queue->limits.max_write_same_sectors)
1004 disable_write_same(md);
1005 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1006 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1007 disable_write_zeroes(md);
1008 }
1009
1010 /*
1011 * For zone-append bios get offset in zone of the written
1012 * sector and add that to the original bio sector pos.
1013 */
1014 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1015 sector_t written_sector = bio->bi_iter.bi_sector;
1016 struct request_queue *q = orig_bio->bi_disk->queue;
1017 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1018
1019 orig_bio->bi_iter.bi_sector += written_sector & mask;
1020 }
1021
1022 if (endio) {
1023 int r = endio(tio->ti, bio, &error);
1024 switch (r) {
1025 case DM_ENDIO_REQUEUE:
1026 error = BLK_STS_DM_REQUEUE;
1027 fallthrough;
1028 case DM_ENDIO_DONE:
1029 break;
1030 case DM_ENDIO_INCOMPLETE:
1031 /* The target will handle the io */
1032 return;
1033 default:
1034 DMWARN("unimplemented target endio return value: %d", r);
1035 BUG();
1036 }
1037 }
1038
1039 if (unlikely(swap_bios_limit(tio->ti, bio))) {
1040 struct mapped_device *md = io->md;
1041 up(&md->swap_bios_semaphore);
1042 }
1043
1044 free_tio(tio);
1045 dec_pending(io, error);
1046 }
1047
1048 /*
1049 * Return maximum size of I/O possible at the supplied sector up to the current
1050 * target boundary.
1051 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1052 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1053 sector_t target_offset)
1054 {
1055 return ti->len - target_offset;
1056 }
1057
max_io_len(struct dm_target * ti,sector_t sector)1058 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1059 {
1060 sector_t target_offset = dm_target_offset(ti, sector);
1061 sector_t len = max_io_len_target_boundary(ti, target_offset);
1062 sector_t max_len;
1063
1064 /*
1065 * Does the target need to split IO even further?
1066 * - varied (per target) IO splitting is a tenet of DM; this
1067 * explains why stacked chunk_sectors based splitting via
1068 * blk_max_size_offset() isn't possible here. So pass in
1069 * ti->max_io_len to override stacked chunk_sectors.
1070 */
1071 if (ti->max_io_len) {
1072 max_len = blk_max_size_offset(ti->table->md->queue,
1073 target_offset, ti->max_io_len);
1074 if (len > max_len)
1075 len = max_len;
1076 }
1077
1078 return len;
1079 }
1080
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1081 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1082 {
1083 if (len > UINT_MAX) {
1084 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1085 (unsigned long long)len, UINT_MAX);
1086 ti->error = "Maximum size of target IO is too large";
1087 return -EINVAL;
1088 }
1089
1090 ti->max_io_len = (uint32_t) len;
1091
1092 return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1095
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1096 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1097 sector_t sector, int *srcu_idx)
1098 __acquires(md->io_barrier)
1099 {
1100 struct dm_table *map;
1101 struct dm_target *ti;
1102
1103 map = dm_get_live_table(md, srcu_idx);
1104 if (!map)
1105 return NULL;
1106
1107 ti = dm_table_find_target(map, sector);
1108 if (!ti)
1109 return NULL;
1110
1111 return ti;
1112 }
1113
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1114 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1115 long nr_pages, void **kaddr, pfn_t *pfn)
1116 {
1117 struct mapped_device *md = dax_get_private(dax_dev);
1118 sector_t sector = pgoff * PAGE_SECTORS;
1119 struct dm_target *ti;
1120 long len, ret = -EIO;
1121 int srcu_idx;
1122
1123 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1124
1125 if (!ti)
1126 goto out;
1127 if (!ti->type->direct_access)
1128 goto out;
1129 len = max_io_len(ti, sector) / PAGE_SECTORS;
1130 if (len < 1)
1131 goto out;
1132 nr_pages = min(len, nr_pages);
1133 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1134
1135 out:
1136 dm_put_live_table(md, srcu_idx);
1137
1138 return ret;
1139 }
1140
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1141 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1142 int blocksize, sector_t start, sector_t len)
1143 {
1144 struct mapped_device *md = dax_get_private(dax_dev);
1145 struct dm_table *map;
1146 bool ret = false;
1147 int srcu_idx;
1148
1149 map = dm_get_live_table(md, &srcu_idx);
1150 if (!map)
1151 goto out;
1152
1153 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1154
1155 out:
1156 dm_put_live_table(md, srcu_idx);
1157
1158 return ret;
1159 }
1160
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1161 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1162 void *addr, size_t bytes, struct iov_iter *i)
1163 {
1164 struct mapped_device *md = dax_get_private(dax_dev);
1165 sector_t sector = pgoff * PAGE_SECTORS;
1166 struct dm_target *ti;
1167 long ret = 0;
1168 int srcu_idx;
1169
1170 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1171
1172 if (!ti)
1173 goto out;
1174 if (!ti->type->dax_copy_from_iter) {
1175 ret = copy_from_iter(addr, bytes, i);
1176 goto out;
1177 }
1178 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1179 out:
1180 dm_put_live_table(md, srcu_idx);
1181
1182 return ret;
1183 }
1184
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1185 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1186 void *addr, size_t bytes, struct iov_iter *i)
1187 {
1188 struct mapped_device *md = dax_get_private(dax_dev);
1189 sector_t sector = pgoff * PAGE_SECTORS;
1190 struct dm_target *ti;
1191 long ret = 0;
1192 int srcu_idx;
1193
1194 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1195
1196 if (!ti)
1197 goto out;
1198 if (!ti->type->dax_copy_to_iter) {
1199 ret = copy_to_iter(addr, bytes, i);
1200 goto out;
1201 }
1202 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1203 out:
1204 dm_put_live_table(md, srcu_idx);
1205
1206 return ret;
1207 }
1208
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1209 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1210 size_t nr_pages)
1211 {
1212 struct mapped_device *md = dax_get_private(dax_dev);
1213 sector_t sector = pgoff * PAGE_SECTORS;
1214 struct dm_target *ti;
1215 int ret = -EIO;
1216 int srcu_idx;
1217
1218 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1219
1220 if (!ti)
1221 goto out;
1222 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1223 /*
1224 * ->zero_page_range() is mandatory dax operation. If we are
1225 * here, something is wrong.
1226 */
1227 goto out;
1228 }
1229 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1230 out:
1231 dm_put_live_table(md, srcu_idx);
1232
1233 return ret;
1234 }
1235
1236 /*
1237 * A target may call dm_accept_partial_bio only from the map routine. It is
1238 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1239 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1240 *
1241 * dm_accept_partial_bio informs the dm that the target only wants to process
1242 * additional n_sectors sectors of the bio and the rest of the data should be
1243 * sent in a next bio.
1244 *
1245 * A diagram that explains the arithmetics:
1246 * +--------------------+---------------+-------+
1247 * | 1 | 2 | 3 |
1248 * +--------------------+---------------+-------+
1249 *
1250 * <-------------- *tio->len_ptr --------------->
1251 * <------- bi_size ------->
1252 * <-- n_sectors -->
1253 *
1254 * Region 1 was already iterated over with bio_advance or similar function.
1255 * (it may be empty if the target doesn't use bio_advance)
1256 * Region 2 is the remaining bio size that the target wants to process.
1257 * (it may be empty if region 1 is non-empty, although there is no reason
1258 * to make it empty)
1259 * The target requires that region 3 is to be sent in the next bio.
1260 *
1261 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1262 * the partially processed part (the sum of regions 1+2) must be the same for all
1263 * copies of the bio.
1264 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1266 {
1267 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1268 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1269
1270 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1271 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1272 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1273 BUG_ON(bi_size > *tio->len_ptr);
1274 BUG_ON(n_sectors > bi_size);
1275
1276 *tio->len_ptr -= bi_size - n_sectors;
1277 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1278 }
1279 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1280
__set_swap_bios_limit(struct mapped_device * md,int latch)1281 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1282 {
1283 mutex_lock(&md->swap_bios_lock);
1284 while (latch < md->swap_bios) {
1285 cond_resched();
1286 down(&md->swap_bios_semaphore);
1287 md->swap_bios--;
1288 }
1289 while (latch > md->swap_bios) {
1290 cond_resched();
1291 up(&md->swap_bios_semaphore);
1292 md->swap_bios++;
1293 }
1294 mutex_unlock(&md->swap_bios_lock);
1295 }
1296
__map_bio(struct dm_target_io * tio)1297 static blk_qc_t __map_bio(struct dm_target_io *tio)
1298 {
1299 int r;
1300 sector_t sector;
1301 struct bio *clone = &tio->clone;
1302 struct dm_io *io = tio->io;
1303 struct dm_target *ti = tio->ti;
1304 blk_qc_t ret = BLK_QC_T_NONE;
1305
1306 clone->bi_end_io = clone_endio;
1307
1308 /*
1309 * Map the clone. If r == 0 we don't need to do
1310 * anything, the target has assumed ownership of
1311 * this io.
1312 */
1313 atomic_inc(&io->io_count);
1314 sector = clone->bi_iter.bi_sector;
1315
1316 if (unlikely(swap_bios_limit(ti, clone))) {
1317 struct mapped_device *md = io->md;
1318 int latch = get_swap_bios();
1319 if (unlikely(latch != md->swap_bios))
1320 __set_swap_bios_limit(md, latch);
1321 down(&md->swap_bios_semaphore);
1322 }
1323
1324 r = ti->type->map(ti, clone);
1325 switch (r) {
1326 case DM_MAPIO_SUBMITTED:
1327 break;
1328 case DM_MAPIO_REMAPPED:
1329 /* the bio has been remapped so dispatch it */
1330 trace_block_bio_remap(clone->bi_disk->queue, clone,
1331 bio_dev(io->orig_bio), sector);
1332 ret = submit_bio_noacct(clone);
1333 break;
1334 case DM_MAPIO_KILL:
1335 if (unlikely(swap_bios_limit(ti, clone))) {
1336 struct mapped_device *md = io->md;
1337 up(&md->swap_bios_semaphore);
1338 }
1339 free_tio(tio);
1340 dec_pending(io, BLK_STS_IOERR);
1341 break;
1342 case DM_MAPIO_REQUEUE:
1343 if (unlikely(swap_bios_limit(ti, clone))) {
1344 struct mapped_device *md = io->md;
1345 up(&md->swap_bios_semaphore);
1346 }
1347 free_tio(tio);
1348 dec_pending(io, BLK_STS_DM_REQUEUE);
1349 break;
1350 default:
1351 DMWARN("unimplemented target map return value: %d", r);
1352 BUG();
1353 }
1354
1355 return ret;
1356 }
1357
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1358 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1359 {
1360 bio->bi_iter.bi_sector = sector;
1361 bio->bi_iter.bi_size = to_bytes(len);
1362 }
1363
1364 /*
1365 * Creates a bio that consists of range of complete bvecs.
1366 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1367 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1368 sector_t sector, unsigned len)
1369 {
1370 struct bio *clone = &tio->clone;
1371 int r;
1372
1373 __bio_clone_fast(clone, bio);
1374
1375 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1376 if (r < 0)
1377 return r;
1378
1379 if (bio_integrity(bio)) {
1380 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1381 !dm_target_passes_integrity(tio->ti->type))) {
1382 DMWARN("%s: the target %s doesn't support integrity data.",
1383 dm_device_name(tio->io->md),
1384 tio->ti->type->name);
1385 return -EIO;
1386 }
1387
1388 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1389 if (r < 0)
1390 return r;
1391 }
1392
1393 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1394 clone->bi_iter.bi_size = to_bytes(len);
1395
1396 if (bio_integrity(bio))
1397 bio_integrity_trim(clone);
1398
1399 return 0;
1400 }
1401
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1402 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1403 struct dm_target *ti, unsigned num_bios)
1404 {
1405 struct dm_target_io *tio;
1406 int try;
1407
1408 if (!num_bios)
1409 return;
1410
1411 if (num_bios == 1) {
1412 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1413 bio_list_add(blist, &tio->clone);
1414 return;
1415 }
1416
1417 for (try = 0; try < 2; try++) {
1418 int bio_nr;
1419 struct bio *bio;
1420
1421 if (try)
1422 mutex_lock(&ci->io->md->table_devices_lock);
1423 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1424 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1425 if (!tio)
1426 break;
1427
1428 bio_list_add(blist, &tio->clone);
1429 }
1430 if (try)
1431 mutex_unlock(&ci->io->md->table_devices_lock);
1432 if (bio_nr == num_bios)
1433 return;
1434
1435 while ((bio = bio_list_pop(blist))) {
1436 tio = container_of(bio, struct dm_target_io, clone);
1437 free_tio(tio);
1438 }
1439 }
1440 }
1441
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1442 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1443 struct dm_target_io *tio, unsigned *len)
1444 {
1445 struct bio *clone = &tio->clone;
1446
1447 tio->len_ptr = len;
1448
1449 __bio_clone_fast(clone, ci->bio);
1450 if (len)
1451 bio_setup_sector(clone, ci->sector, *len);
1452
1453 return __map_bio(tio);
1454 }
1455
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 unsigned num_bios, unsigned *len)
1458 {
1459 struct bio_list blist = BIO_EMPTY_LIST;
1460 struct bio *bio;
1461 struct dm_target_io *tio;
1462
1463 alloc_multiple_bios(&blist, ci, ti, num_bios);
1464
1465 while ((bio = bio_list_pop(&blist))) {
1466 tio = container_of(bio, struct dm_target_io, clone);
1467 (void) __clone_and_map_simple_bio(ci, tio, len);
1468 }
1469 }
1470
__send_empty_flush(struct clone_info * ci)1471 static int __send_empty_flush(struct clone_info *ci)
1472 {
1473 unsigned target_nr = 0;
1474 struct dm_target *ti;
1475 struct bio flush_bio;
1476
1477 /*
1478 * Use an on-stack bio for this, it's safe since we don't
1479 * need to reference it after submit. It's just used as
1480 * the basis for the clone(s).
1481 */
1482 bio_init(&flush_bio, NULL, 0);
1483 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1484 ci->bio = &flush_bio;
1485 ci->sector_count = 0;
1486
1487 /*
1488 * Empty flush uses a statically initialized bio, as the base for
1489 * cloning. However, blkg association requires that a bdev is
1490 * associated with a gendisk, which doesn't happen until the bdev is
1491 * opened. So, blkg association is done at issue time of the flush
1492 * rather than when the device is created in alloc_dev().
1493 */
1494 bio_set_dev(ci->bio, ci->io->md->bdev);
1495
1496 BUG_ON(bio_has_data(ci->bio));
1497 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1498 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1499
1500 bio_uninit(ci->bio);
1501 return 0;
1502 }
1503
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1504 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1505 sector_t sector, unsigned *len)
1506 {
1507 struct bio *bio = ci->bio;
1508 struct dm_target_io *tio;
1509 int r;
1510
1511 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1512 tio->len_ptr = len;
1513 r = clone_bio(tio, bio, sector, *len);
1514 if (r < 0) {
1515 free_tio(tio);
1516 return r;
1517 }
1518 (void) __map_bio(tio);
1519
1520 return 0;
1521 }
1522
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1523 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1524 unsigned num_bios)
1525 {
1526 unsigned len;
1527
1528 /*
1529 * Even though the device advertised support for this type of
1530 * request, that does not mean every target supports it, and
1531 * reconfiguration might also have changed that since the
1532 * check was performed.
1533 */
1534 if (!num_bios)
1535 return -EOPNOTSUPP;
1536
1537 len = min_t(sector_t, ci->sector_count,
1538 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1539
1540 __send_duplicate_bios(ci, ti, num_bios, &len);
1541
1542 ci->sector += len;
1543 ci->sector_count -= len;
1544
1545 return 0;
1546 }
1547
is_abnormal_io(struct bio * bio)1548 static bool is_abnormal_io(struct bio *bio)
1549 {
1550 bool r = false;
1551
1552 switch (bio_op(bio)) {
1553 case REQ_OP_DISCARD:
1554 case REQ_OP_SECURE_ERASE:
1555 case REQ_OP_WRITE_SAME:
1556 case REQ_OP_WRITE_ZEROES:
1557 r = true;
1558 break;
1559 }
1560
1561 return r;
1562 }
1563
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1564 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1565 int *result)
1566 {
1567 struct bio *bio = ci->bio;
1568 unsigned num_bios = 0;
1569
1570 switch (bio_op(bio)) {
1571 case REQ_OP_DISCARD:
1572 num_bios = ti->num_discard_bios;
1573 break;
1574 case REQ_OP_SECURE_ERASE:
1575 num_bios = ti->num_secure_erase_bios;
1576 break;
1577 case REQ_OP_WRITE_SAME:
1578 num_bios = ti->num_write_same_bios;
1579 break;
1580 case REQ_OP_WRITE_ZEROES:
1581 num_bios = ti->num_write_zeroes_bios;
1582 break;
1583 default:
1584 return false;
1585 }
1586
1587 *result = __send_changing_extent_only(ci, ti, num_bios);
1588 return true;
1589 }
1590
1591 /*
1592 * Select the correct strategy for processing a non-flush bio.
1593 */
__split_and_process_non_flush(struct clone_info * ci)1594 static int __split_and_process_non_flush(struct clone_info *ci)
1595 {
1596 struct dm_target *ti;
1597 unsigned len;
1598 int r;
1599
1600 ti = dm_table_find_target(ci->map, ci->sector);
1601 if (!ti)
1602 return -EIO;
1603
1604 if (__process_abnormal_io(ci, ti, &r))
1605 return r;
1606
1607 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1608
1609 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1610 if (r < 0)
1611 return r;
1612
1613 ci->sector += len;
1614 ci->sector_count -= len;
1615
1616 return 0;
1617 }
1618
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1619 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1620 struct dm_table *map, struct bio *bio)
1621 {
1622 ci->map = map;
1623 ci->io = alloc_io(md, bio);
1624 ci->sector = bio->bi_iter.bi_sector;
1625 }
1626
1627 #define __dm_part_stat_sub(part, field, subnd) \
1628 (part_stat_get(part, field) -= (subnd))
1629
1630 /*
1631 * Entry point to split a bio into clones and submit them to the targets.
1632 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1633 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1634 struct dm_table *map, struct bio *bio)
1635 {
1636 struct clone_info ci;
1637 blk_qc_t ret = BLK_QC_T_NONE;
1638 int error = 0;
1639
1640 init_clone_info(&ci, md, map, bio);
1641
1642 if (bio->bi_opf & REQ_PREFLUSH) {
1643 error = __send_empty_flush(&ci);
1644 /* dec_pending submits any data associated with flush */
1645 } else if (op_is_zone_mgmt(bio_op(bio))) {
1646 ci.bio = bio;
1647 ci.sector_count = 0;
1648 error = __split_and_process_non_flush(&ci);
1649 } else {
1650 ci.bio = bio;
1651 ci.sector_count = bio_sectors(bio);
1652 while (ci.sector_count && !error) {
1653 error = __split_and_process_non_flush(&ci);
1654 if (current->bio_list && ci.sector_count && !error) {
1655 /*
1656 * Remainder must be passed to submit_bio_noacct()
1657 * so that it gets handled *after* bios already submitted
1658 * have been completely processed.
1659 * We take a clone of the original to store in
1660 * ci.io->orig_bio to be used by end_io_acct() and
1661 * for dec_pending to use for completion handling.
1662 */
1663 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1664 GFP_NOIO, &md->queue->bio_split);
1665 ci.io->orig_bio = b;
1666
1667 /*
1668 * Adjust IO stats for each split, otherwise upon queue
1669 * reentry there will be redundant IO accounting.
1670 * NOTE: this is a stop-gap fix, a proper fix involves
1671 * significant refactoring of DM core's bio splitting
1672 * (by eliminating DM's splitting and just using bio_split)
1673 */
1674 part_stat_lock();
1675 __dm_part_stat_sub(&dm_disk(md)->part0,
1676 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1677 part_stat_unlock();
1678
1679 bio_chain(b, bio);
1680 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1681 ret = submit_bio_noacct(bio);
1682 break;
1683 }
1684 }
1685 }
1686
1687 /* drop the extra reference count */
1688 dec_pending(ci.io, errno_to_blk_status(error));
1689 return ret;
1690 }
1691
dm_submit_bio(struct bio * bio)1692 static blk_qc_t dm_submit_bio(struct bio *bio)
1693 {
1694 struct mapped_device *md = bio->bi_disk->private_data;
1695 blk_qc_t ret = BLK_QC_T_NONE;
1696 int srcu_idx;
1697 struct dm_table *map;
1698
1699 map = dm_get_live_table(md, &srcu_idx);
1700
1701 /* If suspended, or map not yet available, queue this IO for later */
1702 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1703 unlikely(!map)) {
1704 if (bio->bi_opf & REQ_NOWAIT)
1705 bio_wouldblock_error(bio);
1706 else if (bio->bi_opf & REQ_RAHEAD)
1707 bio_io_error(bio);
1708 else
1709 queue_io(md, bio);
1710 goto out;
1711 }
1712
1713 /*
1714 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1715 * otherwise associated queue_limits won't be imposed.
1716 */
1717 if (is_abnormal_io(bio))
1718 blk_queue_split(&bio);
1719
1720 ret = __split_and_process_bio(md, map, bio);
1721 out:
1722 dm_put_live_table(md, srcu_idx);
1723 return ret;
1724 }
1725
1726 /*-----------------------------------------------------------------
1727 * An IDR is used to keep track of allocated minor numbers.
1728 *---------------------------------------------------------------*/
free_minor(int minor)1729 static void free_minor(int minor)
1730 {
1731 spin_lock(&_minor_lock);
1732 idr_remove(&_minor_idr, minor);
1733 spin_unlock(&_minor_lock);
1734 }
1735
1736 /*
1737 * See if the device with a specific minor # is free.
1738 */
specific_minor(int minor)1739 static int specific_minor(int minor)
1740 {
1741 int r;
1742
1743 if (minor >= (1 << MINORBITS))
1744 return -EINVAL;
1745
1746 idr_preload(GFP_KERNEL);
1747 spin_lock(&_minor_lock);
1748
1749 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1750
1751 spin_unlock(&_minor_lock);
1752 idr_preload_end();
1753 if (r < 0)
1754 return r == -ENOSPC ? -EBUSY : r;
1755 return 0;
1756 }
1757
next_free_minor(int * minor)1758 static int next_free_minor(int *minor)
1759 {
1760 int r;
1761
1762 idr_preload(GFP_KERNEL);
1763 spin_lock(&_minor_lock);
1764
1765 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1766
1767 spin_unlock(&_minor_lock);
1768 idr_preload_end();
1769 if (r < 0)
1770 return r;
1771 *minor = r;
1772 return 0;
1773 }
1774
1775 static const struct block_device_operations dm_blk_dops;
1776 static const struct block_device_operations dm_rq_blk_dops;
1777 static const struct dax_operations dm_dax_ops;
1778
1779 static void dm_wq_work(struct work_struct *work);
1780
1781 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_keyslot_manager(struct request_queue * q)1782 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1783 {
1784 dm_destroy_keyslot_manager(q->ksm);
1785 }
1786
1787 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1788
dm_queue_destroy_keyslot_manager(struct request_queue * q)1789 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1790 {
1791 }
1792 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1793
cleanup_mapped_device(struct mapped_device * md)1794 static void cleanup_mapped_device(struct mapped_device *md)
1795 {
1796 if (md->wq)
1797 destroy_workqueue(md->wq);
1798 bioset_exit(&md->bs);
1799 bioset_exit(&md->io_bs);
1800
1801 if (md->dax_dev) {
1802 kill_dax(md->dax_dev);
1803 put_dax(md->dax_dev);
1804 md->dax_dev = NULL;
1805 }
1806
1807 if (md->disk) {
1808 spin_lock(&_minor_lock);
1809 md->disk->private_data = NULL;
1810 spin_unlock(&_minor_lock);
1811 del_gendisk(md->disk);
1812 put_disk(md->disk);
1813 }
1814
1815 if (md->queue) {
1816 dm_queue_destroy_keyslot_manager(md->queue);
1817 blk_cleanup_queue(md->queue);
1818 }
1819
1820 cleanup_srcu_struct(&md->io_barrier);
1821
1822 if (md->bdev) {
1823 bdput(md->bdev);
1824 md->bdev = NULL;
1825 }
1826
1827 mutex_destroy(&md->suspend_lock);
1828 mutex_destroy(&md->type_lock);
1829 mutex_destroy(&md->table_devices_lock);
1830 mutex_destroy(&md->swap_bios_lock);
1831
1832 dm_mq_cleanup_mapped_device(md);
1833 }
1834
1835 /*
1836 * Allocate and initialise a blank device with a given minor.
1837 */
alloc_dev(int minor)1838 static struct mapped_device *alloc_dev(int minor)
1839 {
1840 int r, numa_node_id = dm_get_numa_node();
1841 struct mapped_device *md;
1842 void *old_md;
1843
1844 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1845 if (!md) {
1846 DMWARN("unable to allocate device, out of memory.");
1847 return NULL;
1848 }
1849
1850 if (!try_module_get(THIS_MODULE))
1851 goto bad_module_get;
1852
1853 /* get a minor number for the dev */
1854 if (minor == DM_ANY_MINOR)
1855 r = next_free_minor(&minor);
1856 else
1857 r = specific_minor(minor);
1858 if (r < 0)
1859 goto bad_minor;
1860
1861 r = init_srcu_struct(&md->io_barrier);
1862 if (r < 0)
1863 goto bad_io_barrier;
1864
1865 md->numa_node_id = numa_node_id;
1866 md->init_tio_pdu = false;
1867 md->type = DM_TYPE_NONE;
1868 mutex_init(&md->suspend_lock);
1869 mutex_init(&md->type_lock);
1870 mutex_init(&md->table_devices_lock);
1871 spin_lock_init(&md->deferred_lock);
1872 atomic_set(&md->holders, 1);
1873 atomic_set(&md->open_count, 0);
1874 atomic_set(&md->event_nr, 0);
1875 atomic_set(&md->uevent_seq, 0);
1876 INIT_LIST_HEAD(&md->uevent_list);
1877 INIT_LIST_HEAD(&md->table_devices);
1878 spin_lock_init(&md->uevent_lock);
1879
1880 /*
1881 * default to bio-based until DM table is loaded and md->type
1882 * established. If request-based table is loaded: blk-mq will
1883 * override accordingly.
1884 */
1885 md->queue = blk_alloc_queue(numa_node_id);
1886 if (!md->queue)
1887 goto bad;
1888
1889 md->disk = alloc_disk_node(1, md->numa_node_id);
1890 if (!md->disk)
1891 goto bad;
1892
1893 init_waitqueue_head(&md->wait);
1894 INIT_WORK(&md->work, dm_wq_work);
1895 init_waitqueue_head(&md->eventq);
1896 init_completion(&md->kobj_holder.completion);
1897
1898 md->swap_bios = get_swap_bios();
1899 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1900 mutex_init(&md->swap_bios_lock);
1901
1902 md->disk->major = _major;
1903 md->disk->first_minor = minor;
1904 md->disk->fops = &dm_blk_dops;
1905 md->disk->queue = md->queue;
1906 md->disk->private_data = md;
1907 sprintf(md->disk->disk_name, "dm-%d", minor);
1908
1909 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1910 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1911 &dm_dax_ops, 0);
1912 if (IS_ERR(md->dax_dev)) {
1913 md->dax_dev = NULL;
1914 goto bad;
1915 }
1916 }
1917
1918 add_disk_no_queue_reg(md->disk);
1919 format_dev_t(md->name, MKDEV(_major, minor));
1920
1921 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1922 if (!md->wq)
1923 goto bad;
1924
1925 md->bdev = bdget_disk(md->disk, 0);
1926 if (!md->bdev)
1927 goto bad;
1928
1929 r = dm_stats_init(&md->stats);
1930 if (r < 0)
1931 goto bad;
1932
1933 /* Populate the mapping, nobody knows we exist yet */
1934 spin_lock(&_minor_lock);
1935 old_md = idr_replace(&_minor_idr, md, minor);
1936 spin_unlock(&_minor_lock);
1937
1938 BUG_ON(old_md != MINOR_ALLOCED);
1939
1940 return md;
1941
1942 bad:
1943 cleanup_mapped_device(md);
1944 bad_io_barrier:
1945 free_minor(minor);
1946 bad_minor:
1947 module_put(THIS_MODULE);
1948 bad_module_get:
1949 kvfree(md);
1950 return NULL;
1951 }
1952
1953 static void unlock_fs(struct mapped_device *md);
1954
free_dev(struct mapped_device * md)1955 static void free_dev(struct mapped_device *md)
1956 {
1957 int minor = MINOR(disk_devt(md->disk));
1958
1959 unlock_fs(md);
1960
1961 cleanup_mapped_device(md);
1962
1963 free_table_devices(&md->table_devices);
1964 dm_stats_cleanup(&md->stats);
1965 free_minor(minor);
1966
1967 module_put(THIS_MODULE);
1968 kvfree(md);
1969 }
1970
__bind_mempools(struct mapped_device * md,struct dm_table * t)1971 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1972 {
1973 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1974 int ret = 0;
1975
1976 if (dm_table_bio_based(t)) {
1977 /*
1978 * The md may already have mempools that need changing.
1979 * If so, reload bioset because front_pad may have changed
1980 * because a different table was loaded.
1981 */
1982 bioset_exit(&md->bs);
1983 bioset_exit(&md->io_bs);
1984
1985 } else if (bioset_initialized(&md->bs)) {
1986 /*
1987 * There's no need to reload with request-based dm
1988 * because the size of front_pad doesn't change.
1989 * Note for future: If you are to reload bioset,
1990 * prep-ed requests in the queue may refer
1991 * to bio from the old bioset, so you must walk
1992 * through the queue to unprep.
1993 */
1994 goto out;
1995 }
1996
1997 BUG_ON(!p ||
1998 bioset_initialized(&md->bs) ||
1999 bioset_initialized(&md->io_bs));
2000
2001 ret = bioset_init_from_src(&md->bs, &p->bs);
2002 if (ret)
2003 goto out;
2004 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2005 if (ret)
2006 bioset_exit(&md->bs);
2007 out:
2008 /* mempool bind completed, no longer need any mempools in the table */
2009 dm_table_free_md_mempools(t);
2010 return ret;
2011 }
2012
2013 /*
2014 * Bind a table to the device.
2015 */
event_callback(void * context)2016 static void event_callback(void *context)
2017 {
2018 unsigned long flags;
2019 LIST_HEAD(uevents);
2020 struct mapped_device *md = (struct mapped_device *) context;
2021
2022 spin_lock_irqsave(&md->uevent_lock, flags);
2023 list_splice_init(&md->uevent_list, &uevents);
2024 spin_unlock_irqrestore(&md->uevent_lock, flags);
2025
2026 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2027
2028 atomic_inc(&md->event_nr);
2029 wake_up(&md->eventq);
2030 dm_issue_global_event();
2031 }
2032
2033 /*
2034 * Returns old map, which caller must destroy.
2035 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2036 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2037 struct queue_limits *limits)
2038 {
2039 struct dm_table *old_map;
2040 struct request_queue *q = md->queue;
2041 bool request_based = dm_table_request_based(t);
2042 sector_t size;
2043 int ret;
2044
2045 lockdep_assert_held(&md->suspend_lock);
2046
2047 size = dm_table_get_size(t);
2048
2049 /*
2050 * Wipe any geometry if the size of the table changed.
2051 */
2052 if (size != dm_get_size(md))
2053 memset(&md->geometry, 0, sizeof(md->geometry));
2054
2055 set_capacity(md->disk, size);
2056 bd_set_nr_sectors(md->bdev, size);
2057
2058 dm_table_event_callback(t, event_callback, md);
2059
2060 /*
2061 * The queue hasn't been stopped yet, if the old table type wasn't
2062 * for request-based during suspension. So stop it to prevent
2063 * I/O mapping before resume.
2064 * This must be done before setting the queue restrictions,
2065 * because request-based dm may be run just after the setting.
2066 */
2067 if (request_based)
2068 dm_stop_queue(q);
2069
2070 if (request_based) {
2071 /*
2072 * Leverage the fact that request-based DM targets are
2073 * immutable singletons - used to optimize dm_mq_queue_rq.
2074 */
2075 md->immutable_target = dm_table_get_immutable_target(t);
2076 }
2077
2078 ret = __bind_mempools(md, t);
2079 if (ret) {
2080 old_map = ERR_PTR(ret);
2081 goto out;
2082 }
2083
2084 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2085 rcu_assign_pointer(md->map, (void *)t);
2086 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2087
2088 dm_table_set_restrictions(t, q, limits);
2089 if (old_map)
2090 dm_sync_table(md);
2091
2092 out:
2093 return old_map;
2094 }
2095
2096 /*
2097 * Returns unbound table for the caller to free.
2098 */
__unbind(struct mapped_device * md)2099 static struct dm_table *__unbind(struct mapped_device *md)
2100 {
2101 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2102
2103 if (!map)
2104 return NULL;
2105
2106 dm_table_event_callback(map, NULL, NULL);
2107 RCU_INIT_POINTER(md->map, NULL);
2108 dm_sync_table(md);
2109
2110 return map;
2111 }
2112
2113 /*
2114 * Constructor for a new device.
2115 */
dm_create(int minor,struct mapped_device ** result)2116 int dm_create(int minor, struct mapped_device **result)
2117 {
2118 int r;
2119 struct mapped_device *md;
2120
2121 md = alloc_dev(minor);
2122 if (!md)
2123 return -ENXIO;
2124
2125 r = dm_sysfs_init(md);
2126 if (r) {
2127 free_dev(md);
2128 return r;
2129 }
2130
2131 *result = md;
2132 return 0;
2133 }
2134
2135 /*
2136 * Functions to manage md->type.
2137 * All are required to hold md->type_lock.
2138 */
dm_lock_md_type(struct mapped_device * md)2139 void dm_lock_md_type(struct mapped_device *md)
2140 {
2141 mutex_lock(&md->type_lock);
2142 }
2143
dm_unlock_md_type(struct mapped_device * md)2144 void dm_unlock_md_type(struct mapped_device *md)
2145 {
2146 mutex_unlock(&md->type_lock);
2147 }
2148
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2149 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2150 {
2151 BUG_ON(!mutex_is_locked(&md->type_lock));
2152 md->type = type;
2153 }
2154
dm_get_md_type(struct mapped_device * md)2155 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2156 {
2157 return md->type;
2158 }
2159
dm_get_immutable_target_type(struct mapped_device * md)2160 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2161 {
2162 return md->immutable_target_type;
2163 }
2164
2165 /*
2166 * The queue_limits are only valid as long as you have a reference
2167 * count on 'md'.
2168 */
dm_get_queue_limits(struct mapped_device * md)2169 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2170 {
2171 BUG_ON(!atomic_read(&md->holders));
2172 return &md->queue->limits;
2173 }
2174 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2175
2176 /*
2177 * Setup the DM device's queue based on md's type
2178 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2179 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2180 {
2181 int r;
2182 struct queue_limits limits;
2183 enum dm_queue_mode type = dm_get_md_type(md);
2184
2185 switch (type) {
2186 case DM_TYPE_REQUEST_BASED:
2187 md->disk->fops = &dm_rq_blk_dops;
2188 r = dm_mq_init_request_queue(md, t);
2189 if (r) {
2190 DMERR("Cannot initialize queue for request-based dm mapped device");
2191 return r;
2192 }
2193 break;
2194 case DM_TYPE_BIO_BASED:
2195 case DM_TYPE_DAX_BIO_BASED:
2196 break;
2197 case DM_TYPE_NONE:
2198 WARN_ON_ONCE(true);
2199 break;
2200 }
2201
2202 r = dm_calculate_queue_limits(t, &limits);
2203 if (r) {
2204 DMERR("Cannot calculate initial queue limits");
2205 return r;
2206 }
2207 dm_table_set_restrictions(t, md->queue, &limits);
2208 blk_register_queue(md->disk);
2209
2210 return 0;
2211 }
2212
dm_get_md(dev_t dev)2213 struct mapped_device *dm_get_md(dev_t dev)
2214 {
2215 struct mapped_device *md;
2216 unsigned minor = MINOR(dev);
2217
2218 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2219 return NULL;
2220
2221 spin_lock(&_minor_lock);
2222
2223 md = idr_find(&_minor_idr, minor);
2224 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2225 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2226 md = NULL;
2227 goto out;
2228 }
2229 dm_get(md);
2230 out:
2231 spin_unlock(&_minor_lock);
2232
2233 return md;
2234 }
2235 EXPORT_SYMBOL_GPL(dm_get_md);
2236
dm_get_mdptr(struct mapped_device * md)2237 void *dm_get_mdptr(struct mapped_device *md)
2238 {
2239 return md->interface_ptr;
2240 }
2241
dm_set_mdptr(struct mapped_device * md,void * ptr)2242 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2243 {
2244 md->interface_ptr = ptr;
2245 }
2246
dm_get(struct mapped_device * md)2247 void dm_get(struct mapped_device *md)
2248 {
2249 atomic_inc(&md->holders);
2250 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2251 }
2252
dm_hold(struct mapped_device * md)2253 int dm_hold(struct mapped_device *md)
2254 {
2255 spin_lock(&_minor_lock);
2256 if (test_bit(DMF_FREEING, &md->flags)) {
2257 spin_unlock(&_minor_lock);
2258 return -EBUSY;
2259 }
2260 dm_get(md);
2261 spin_unlock(&_minor_lock);
2262 return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(dm_hold);
2265
dm_device_name(struct mapped_device * md)2266 const char *dm_device_name(struct mapped_device *md)
2267 {
2268 return md->name;
2269 }
2270 EXPORT_SYMBOL_GPL(dm_device_name);
2271
__dm_destroy(struct mapped_device * md,bool wait)2272 static void __dm_destroy(struct mapped_device *md, bool wait)
2273 {
2274 struct dm_table *map;
2275 int srcu_idx;
2276
2277 might_sleep();
2278
2279 spin_lock(&_minor_lock);
2280 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2281 set_bit(DMF_FREEING, &md->flags);
2282 spin_unlock(&_minor_lock);
2283
2284 blk_set_queue_dying(md->queue);
2285
2286 /*
2287 * Take suspend_lock so that presuspend and postsuspend methods
2288 * do not race with internal suspend.
2289 */
2290 mutex_lock(&md->suspend_lock);
2291 map = dm_get_live_table(md, &srcu_idx);
2292 if (!dm_suspended_md(md)) {
2293 dm_table_presuspend_targets(map);
2294 set_bit(DMF_SUSPENDED, &md->flags);
2295 set_bit(DMF_POST_SUSPENDING, &md->flags);
2296 dm_table_postsuspend_targets(map);
2297 }
2298 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2299 dm_put_live_table(md, srcu_idx);
2300 mutex_unlock(&md->suspend_lock);
2301
2302 /*
2303 * Rare, but there may be I/O requests still going to complete,
2304 * for example. Wait for all references to disappear.
2305 * No one should increment the reference count of the mapped_device,
2306 * after the mapped_device state becomes DMF_FREEING.
2307 */
2308 if (wait)
2309 while (atomic_read(&md->holders))
2310 msleep(1);
2311 else if (atomic_read(&md->holders))
2312 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2313 dm_device_name(md), atomic_read(&md->holders));
2314
2315 dm_sysfs_exit(md);
2316 dm_table_destroy(__unbind(md));
2317 free_dev(md);
2318 }
2319
dm_destroy(struct mapped_device * md)2320 void dm_destroy(struct mapped_device *md)
2321 {
2322 __dm_destroy(md, true);
2323 }
2324
dm_destroy_immediate(struct mapped_device * md)2325 void dm_destroy_immediate(struct mapped_device *md)
2326 {
2327 __dm_destroy(md, false);
2328 }
2329
dm_put(struct mapped_device * md)2330 void dm_put(struct mapped_device *md)
2331 {
2332 atomic_dec(&md->holders);
2333 }
2334 EXPORT_SYMBOL_GPL(dm_put);
2335
md_in_flight_bios(struct mapped_device * md)2336 static bool md_in_flight_bios(struct mapped_device *md)
2337 {
2338 int cpu;
2339 struct hd_struct *part = &dm_disk(md)->part0;
2340 long sum = 0;
2341
2342 for_each_possible_cpu(cpu) {
2343 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2344 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2345 }
2346
2347 return sum != 0;
2348 }
2349
dm_wait_for_bios_completion(struct mapped_device * md,long task_state)2350 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2351 {
2352 int r = 0;
2353 DEFINE_WAIT(wait);
2354
2355 while (true) {
2356 prepare_to_wait(&md->wait, &wait, task_state);
2357
2358 if (!md_in_flight_bios(md))
2359 break;
2360
2361 if (signal_pending_state(task_state, current)) {
2362 r = -EINTR;
2363 break;
2364 }
2365
2366 io_schedule();
2367 }
2368 finish_wait(&md->wait, &wait);
2369
2370 smp_rmb();
2371
2372 return r;
2373 }
2374
dm_wait_for_completion(struct mapped_device * md,long task_state)2375 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2376 {
2377 int r = 0;
2378
2379 if (!queue_is_mq(md->queue))
2380 return dm_wait_for_bios_completion(md, task_state);
2381
2382 while (true) {
2383 if (!blk_mq_queue_inflight(md->queue))
2384 break;
2385
2386 if (signal_pending_state(task_state, current)) {
2387 r = -EINTR;
2388 break;
2389 }
2390
2391 msleep(5);
2392 }
2393
2394 return r;
2395 }
2396
2397 /*
2398 * Process the deferred bios
2399 */
dm_wq_work(struct work_struct * work)2400 static void dm_wq_work(struct work_struct *work)
2401 {
2402 struct mapped_device *md = container_of(work, struct mapped_device, work);
2403 struct bio *bio;
2404
2405 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2406 spin_lock_irq(&md->deferred_lock);
2407 bio = bio_list_pop(&md->deferred);
2408 spin_unlock_irq(&md->deferred_lock);
2409
2410 if (!bio)
2411 break;
2412
2413 submit_bio_noacct(bio);
2414 cond_resched();
2415 }
2416 }
2417
dm_queue_flush(struct mapped_device * md)2418 static void dm_queue_flush(struct mapped_device *md)
2419 {
2420 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2421 smp_mb__after_atomic();
2422 queue_work(md->wq, &md->work);
2423 }
2424
2425 /*
2426 * Swap in a new table, returning the old one for the caller to destroy.
2427 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2428 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2429 {
2430 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2431 struct queue_limits limits;
2432 int r;
2433
2434 mutex_lock(&md->suspend_lock);
2435
2436 /* device must be suspended */
2437 if (!dm_suspended_md(md))
2438 goto out;
2439
2440 /*
2441 * If the new table has no data devices, retain the existing limits.
2442 * This helps multipath with queue_if_no_path if all paths disappear,
2443 * then new I/O is queued based on these limits, and then some paths
2444 * reappear.
2445 */
2446 if (dm_table_has_no_data_devices(table)) {
2447 live_map = dm_get_live_table_fast(md);
2448 if (live_map)
2449 limits = md->queue->limits;
2450 dm_put_live_table_fast(md);
2451 }
2452
2453 if (!live_map) {
2454 r = dm_calculate_queue_limits(table, &limits);
2455 if (r) {
2456 map = ERR_PTR(r);
2457 goto out;
2458 }
2459 }
2460
2461 map = __bind(md, table, &limits);
2462 dm_issue_global_event();
2463
2464 out:
2465 mutex_unlock(&md->suspend_lock);
2466 return map;
2467 }
2468
2469 /*
2470 * Functions to lock and unlock any filesystem running on the
2471 * device.
2472 */
lock_fs(struct mapped_device * md)2473 static int lock_fs(struct mapped_device *md)
2474 {
2475 int r;
2476
2477 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2478
2479 r = freeze_bdev(md->bdev);
2480 if (!r)
2481 set_bit(DMF_FROZEN, &md->flags);
2482 return r;
2483 }
2484
unlock_fs(struct mapped_device * md)2485 static void unlock_fs(struct mapped_device *md)
2486 {
2487 if (!test_bit(DMF_FROZEN, &md->flags))
2488 return;
2489 thaw_bdev(md->bdev);
2490 clear_bit(DMF_FROZEN, &md->flags);
2491 }
2492
2493 /*
2494 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2495 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2496 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2497 *
2498 * If __dm_suspend returns 0, the device is completely quiescent
2499 * now. There is no request-processing activity. All new requests
2500 * are being added to md->deferred list.
2501 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,long task_state,int dmf_suspended_flag)2502 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2503 unsigned suspend_flags, long task_state,
2504 int dmf_suspended_flag)
2505 {
2506 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2507 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2508 int r;
2509
2510 lockdep_assert_held(&md->suspend_lock);
2511
2512 /*
2513 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2514 * This flag is cleared before dm_suspend returns.
2515 */
2516 if (noflush)
2517 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2518 else
2519 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2520
2521 /*
2522 * This gets reverted if there's an error later and the targets
2523 * provide the .presuspend_undo hook.
2524 */
2525 dm_table_presuspend_targets(map);
2526
2527 /*
2528 * Flush I/O to the device.
2529 * Any I/O submitted after lock_fs() may not be flushed.
2530 * noflush takes precedence over do_lockfs.
2531 * (lock_fs() flushes I/Os and waits for them to complete.)
2532 */
2533 if (!noflush && do_lockfs) {
2534 r = lock_fs(md);
2535 if (r) {
2536 dm_table_presuspend_undo_targets(map);
2537 return r;
2538 }
2539 }
2540
2541 /*
2542 * Here we must make sure that no processes are submitting requests
2543 * to target drivers i.e. no one may be executing
2544 * __split_and_process_bio from dm_submit_bio.
2545 *
2546 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2547 * we take the write lock. To prevent any process from reentering
2548 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2549 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2550 * flush_workqueue(md->wq).
2551 */
2552 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2553 if (map)
2554 synchronize_srcu(&md->io_barrier);
2555
2556 /*
2557 * Stop md->queue before flushing md->wq in case request-based
2558 * dm defers requests to md->wq from md->queue.
2559 */
2560 if (dm_request_based(md))
2561 dm_stop_queue(md->queue);
2562
2563 flush_workqueue(md->wq);
2564
2565 /*
2566 * At this point no more requests are entering target request routines.
2567 * We call dm_wait_for_completion to wait for all existing requests
2568 * to finish.
2569 */
2570 r = dm_wait_for_completion(md, task_state);
2571 if (!r)
2572 set_bit(dmf_suspended_flag, &md->flags);
2573
2574 if (noflush)
2575 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2576 if (map)
2577 synchronize_srcu(&md->io_barrier);
2578
2579 /* were we interrupted ? */
2580 if (r < 0) {
2581 dm_queue_flush(md);
2582
2583 if (dm_request_based(md))
2584 dm_start_queue(md->queue);
2585
2586 unlock_fs(md);
2587 dm_table_presuspend_undo_targets(map);
2588 /* pushback list is already flushed, so skip flush */
2589 }
2590
2591 return r;
2592 }
2593
2594 /*
2595 * We need to be able to change a mapping table under a mounted
2596 * filesystem. For example we might want to move some data in
2597 * the background. Before the table can be swapped with
2598 * dm_bind_table, dm_suspend must be called to flush any in
2599 * flight bios and ensure that any further io gets deferred.
2600 */
2601 /*
2602 * Suspend mechanism in request-based dm.
2603 *
2604 * 1. Flush all I/Os by lock_fs() if needed.
2605 * 2. Stop dispatching any I/O by stopping the request_queue.
2606 * 3. Wait for all in-flight I/Os to be completed or requeued.
2607 *
2608 * To abort suspend, start the request_queue.
2609 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2610 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2611 {
2612 struct dm_table *map = NULL;
2613 int r = 0;
2614
2615 retry:
2616 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2617
2618 if (dm_suspended_md(md)) {
2619 r = -EINVAL;
2620 goto out_unlock;
2621 }
2622
2623 if (dm_suspended_internally_md(md)) {
2624 /* already internally suspended, wait for internal resume */
2625 mutex_unlock(&md->suspend_lock);
2626 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2627 if (r)
2628 return r;
2629 goto retry;
2630 }
2631
2632 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2633
2634 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2635 if (r)
2636 goto out_unlock;
2637
2638 set_bit(DMF_POST_SUSPENDING, &md->flags);
2639 dm_table_postsuspend_targets(map);
2640 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2641
2642 out_unlock:
2643 mutex_unlock(&md->suspend_lock);
2644 return r;
2645 }
2646
__dm_resume(struct mapped_device * md,struct dm_table * map)2647 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2648 {
2649 if (map) {
2650 int r = dm_table_resume_targets(map);
2651 if (r)
2652 return r;
2653 }
2654
2655 dm_queue_flush(md);
2656
2657 /*
2658 * Flushing deferred I/Os must be done after targets are resumed
2659 * so that mapping of targets can work correctly.
2660 * Request-based dm is queueing the deferred I/Os in its request_queue.
2661 */
2662 if (dm_request_based(md))
2663 dm_start_queue(md->queue);
2664
2665 unlock_fs(md);
2666
2667 return 0;
2668 }
2669
dm_resume(struct mapped_device * md)2670 int dm_resume(struct mapped_device *md)
2671 {
2672 int r;
2673 struct dm_table *map = NULL;
2674
2675 retry:
2676 r = -EINVAL;
2677 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2678
2679 if (!dm_suspended_md(md))
2680 goto out;
2681
2682 if (dm_suspended_internally_md(md)) {
2683 /* already internally suspended, wait for internal resume */
2684 mutex_unlock(&md->suspend_lock);
2685 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2686 if (r)
2687 return r;
2688 goto retry;
2689 }
2690
2691 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2692 if (!map || !dm_table_get_size(map))
2693 goto out;
2694
2695 r = __dm_resume(md, map);
2696 if (r)
2697 goto out;
2698
2699 clear_bit(DMF_SUSPENDED, &md->flags);
2700 out:
2701 mutex_unlock(&md->suspend_lock);
2702
2703 return r;
2704 }
2705
2706 /*
2707 * Internal suspend/resume works like userspace-driven suspend. It waits
2708 * until all bios finish and prevents issuing new bios to the target drivers.
2709 * It may be used only from the kernel.
2710 */
2711
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2712 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2713 {
2714 struct dm_table *map = NULL;
2715
2716 lockdep_assert_held(&md->suspend_lock);
2717
2718 if (md->internal_suspend_count++)
2719 return; /* nested internal suspend */
2720
2721 if (dm_suspended_md(md)) {
2722 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2723 return; /* nest suspend */
2724 }
2725
2726 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2727
2728 /*
2729 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2730 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2731 * would require changing .presuspend to return an error -- avoid this
2732 * until there is a need for more elaborate variants of internal suspend.
2733 */
2734 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2735 DMF_SUSPENDED_INTERNALLY);
2736
2737 set_bit(DMF_POST_SUSPENDING, &md->flags);
2738 dm_table_postsuspend_targets(map);
2739 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2740 }
2741
__dm_internal_resume(struct mapped_device * md)2742 static void __dm_internal_resume(struct mapped_device *md)
2743 {
2744 BUG_ON(!md->internal_suspend_count);
2745
2746 if (--md->internal_suspend_count)
2747 return; /* resume from nested internal suspend */
2748
2749 if (dm_suspended_md(md))
2750 goto done; /* resume from nested suspend */
2751
2752 /*
2753 * NOTE: existing callers don't need to call dm_table_resume_targets
2754 * (which may fail -- so best to avoid it for now by passing NULL map)
2755 */
2756 (void) __dm_resume(md, NULL);
2757
2758 done:
2759 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2760 smp_mb__after_atomic();
2761 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2762 }
2763
dm_internal_suspend_noflush(struct mapped_device * md)2764 void dm_internal_suspend_noflush(struct mapped_device *md)
2765 {
2766 mutex_lock(&md->suspend_lock);
2767 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2768 mutex_unlock(&md->suspend_lock);
2769 }
2770 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2771
dm_internal_resume(struct mapped_device * md)2772 void dm_internal_resume(struct mapped_device *md)
2773 {
2774 mutex_lock(&md->suspend_lock);
2775 __dm_internal_resume(md);
2776 mutex_unlock(&md->suspend_lock);
2777 }
2778 EXPORT_SYMBOL_GPL(dm_internal_resume);
2779
2780 /*
2781 * Fast variants of internal suspend/resume hold md->suspend_lock,
2782 * which prevents interaction with userspace-driven suspend.
2783 */
2784
dm_internal_suspend_fast(struct mapped_device * md)2785 void dm_internal_suspend_fast(struct mapped_device *md)
2786 {
2787 mutex_lock(&md->suspend_lock);
2788 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2789 return;
2790
2791 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2792 synchronize_srcu(&md->io_barrier);
2793 flush_workqueue(md->wq);
2794 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2795 }
2796 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2797
dm_internal_resume_fast(struct mapped_device * md)2798 void dm_internal_resume_fast(struct mapped_device *md)
2799 {
2800 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2801 goto done;
2802
2803 dm_queue_flush(md);
2804
2805 done:
2806 mutex_unlock(&md->suspend_lock);
2807 }
2808 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2809
2810 /*-----------------------------------------------------------------
2811 * Event notification.
2812 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2813 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2814 unsigned cookie)
2815 {
2816 int r;
2817 unsigned noio_flag;
2818 char udev_cookie[DM_COOKIE_LENGTH];
2819 char *envp[] = { udev_cookie, NULL };
2820
2821 noio_flag = memalloc_noio_save();
2822
2823 if (!cookie)
2824 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2825 else {
2826 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2827 DM_COOKIE_ENV_VAR_NAME, cookie);
2828 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2829 action, envp);
2830 }
2831
2832 memalloc_noio_restore(noio_flag);
2833
2834 return r;
2835 }
2836
dm_next_uevent_seq(struct mapped_device * md)2837 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2838 {
2839 return atomic_add_return(1, &md->uevent_seq);
2840 }
2841
dm_get_event_nr(struct mapped_device * md)2842 uint32_t dm_get_event_nr(struct mapped_device *md)
2843 {
2844 return atomic_read(&md->event_nr);
2845 }
2846
dm_wait_event(struct mapped_device * md,int event_nr)2847 int dm_wait_event(struct mapped_device *md, int event_nr)
2848 {
2849 return wait_event_interruptible(md->eventq,
2850 (event_nr != atomic_read(&md->event_nr)));
2851 }
2852
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2853 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2854 {
2855 unsigned long flags;
2856
2857 spin_lock_irqsave(&md->uevent_lock, flags);
2858 list_add(elist, &md->uevent_list);
2859 spin_unlock_irqrestore(&md->uevent_lock, flags);
2860 }
2861
2862 /*
2863 * The gendisk is only valid as long as you have a reference
2864 * count on 'md'.
2865 */
dm_disk(struct mapped_device * md)2866 struct gendisk *dm_disk(struct mapped_device *md)
2867 {
2868 return md->disk;
2869 }
2870 EXPORT_SYMBOL_GPL(dm_disk);
2871
dm_kobject(struct mapped_device * md)2872 struct kobject *dm_kobject(struct mapped_device *md)
2873 {
2874 return &md->kobj_holder.kobj;
2875 }
2876
dm_get_from_kobject(struct kobject * kobj)2877 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2878 {
2879 struct mapped_device *md;
2880
2881 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2882
2883 spin_lock(&_minor_lock);
2884 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2885 md = NULL;
2886 goto out;
2887 }
2888 dm_get(md);
2889 out:
2890 spin_unlock(&_minor_lock);
2891
2892 return md;
2893 }
2894
dm_suspended_md(struct mapped_device * md)2895 int dm_suspended_md(struct mapped_device *md)
2896 {
2897 return test_bit(DMF_SUSPENDED, &md->flags);
2898 }
2899
dm_post_suspending_md(struct mapped_device * md)2900 static int dm_post_suspending_md(struct mapped_device *md)
2901 {
2902 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2903 }
2904
dm_suspended_internally_md(struct mapped_device * md)2905 int dm_suspended_internally_md(struct mapped_device *md)
2906 {
2907 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2908 }
2909
dm_test_deferred_remove_flag(struct mapped_device * md)2910 int dm_test_deferred_remove_flag(struct mapped_device *md)
2911 {
2912 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2913 }
2914
dm_suspended(struct dm_target * ti)2915 int dm_suspended(struct dm_target *ti)
2916 {
2917 return dm_suspended_md(ti->table->md);
2918 }
2919 EXPORT_SYMBOL_GPL(dm_suspended);
2920
dm_post_suspending(struct dm_target * ti)2921 int dm_post_suspending(struct dm_target *ti)
2922 {
2923 return dm_post_suspending_md(ti->table->md);
2924 }
2925 EXPORT_SYMBOL_GPL(dm_post_suspending);
2926
dm_noflush_suspending(struct dm_target * ti)2927 int dm_noflush_suspending(struct dm_target *ti)
2928 {
2929 return __noflush_suspending(ti->table->md);
2930 }
2931 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2932
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2933 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2934 unsigned integrity, unsigned per_io_data_size,
2935 unsigned min_pool_size)
2936 {
2937 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2938 unsigned int pool_size = 0;
2939 unsigned int front_pad, io_front_pad;
2940 int ret;
2941
2942 if (!pools)
2943 return NULL;
2944
2945 switch (type) {
2946 case DM_TYPE_BIO_BASED:
2947 case DM_TYPE_DAX_BIO_BASED:
2948 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2949 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2950 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2951 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2952 if (ret)
2953 goto out;
2954 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2955 goto out;
2956 break;
2957 case DM_TYPE_REQUEST_BASED:
2958 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2959 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2960 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2961 break;
2962 default:
2963 BUG();
2964 }
2965
2966 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2967 if (ret)
2968 goto out;
2969
2970 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2971 goto out;
2972
2973 return pools;
2974
2975 out:
2976 dm_free_md_mempools(pools);
2977
2978 return NULL;
2979 }
2980
dm_free_md_mempools(struct dm_md_mempools * pools)2981 void dm_free_md_mempools(struct dm_md_mempools *pools)
2982 {
2983 if (!pools)
2984 return;
2985
2986 bioset_exit(&pools->bs);
2987 bioset_exit(&pools->io_bs);
2988
2989 kfree(pools);
2990 }
2991
2992 struct dm_pr {
2993 u64 old_key;
2994 u64 new_key;
2995 u32 flags;
2996 bool fail_early;
2997 };
2998
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2999 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3000 void *data)
3001 {
3002 struct mapped_device *md = bdev->bd_disk->private_data;
3003 struct dm_table *table;
3004 struct dm_target *ti;
3005 int ret = -ENOTTY, srcu_idx;
3006
3007 table = dm_get_live_table(md, &srcu_idx);
3008 if (!table || !dm_table_get_size(table))
3009 goto out;
3010
3011 /* We only support devices that have a single target */
3012 if (dm_table_get_num_targets(table) != 1)
3013 goto out;
3014 ti = dm_table_get_target(table, 0);
3015
3016 if (dm_suspended_md(md)) {
3017 ret = -EAGAIN;
3018 goto out;
3019 }
3020
3021 ret = -EINVAL;
3022 if (!ti->type->iterate_devices)
3023 goto out;
3024
3025 ret = ti->type->iterate_devices(ti, fn, data);
3026 out:
3027 dm_put_live_table(md, srcu_idx);
3028 return ret;
3029 }
3030
3031 /*
3032 * For register / unregister we need to manually call out to every path.
3033 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3034 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3035 sector_t start, sector_t len, void *data)
3036 {
3037 struct dm_pr *pr = data;
3038 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3039
3040 if (!ops || !ops->pr_register)
3041 return -EOPNOTSUPP;
3042 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3043 }
3044
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3045 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3046 u32 flags)
3047 {
3048 struct dm_pr pr = {
3049 .old_key = old_key,
3050 .new_key = new_key,
3051 .flags = flags,
3052 .fail_early = true,
3053 };
3054 int ret;
3055
3056 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3057 if (ret && new_key) {
3058 /* unregister all paths if we failed to register any path */
3059 pr.old_key = new_key;
3060 pr.new_key = 0;
3061 pr.flags = 0;
3062 pr.fail_early = false;
3063 dm_call_pr(bdev, __dm_pr_register, &pr);
3064 }
3065
3066 return ret;
3067 }
3068
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3069 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3070 u32 flags)
3071 {
3072 struct mapped_device *md = bdev->bd_disk->private_data;
3073 const struct pr_ops *ops;
3074 int r, srcu_idx;
3075
3076 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3077 if (r < 0)
3078 goto out;
3079
3080 ops = bdev->bd_disk->fops->pr_ops;
3081 if (ops && ops->pr_reserve)
3082 r = ops->pr_reserve(bdev, key, type, flags);
3083 else
3084 r = -EOPNOTSUPP;
3085 out:
3086 dm_unprepare_ioctl(md, srcu_idx);
3087 return r;
3088 }
3089
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3090 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3091 {
3092 struct mapped_device *md = bdev->bd_disk->private_data;
3093 const struct pr_ops *ops;
3094 int r, srcu_idx;
3095
3096 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3097 if (r < 0)
3098 goto out;
3099
3100 ops = bdev->bd_disk->fops->pr_ops;
3101 if (ops && ops->pr_release)
3102 r = ops->pr_release(bdev, key, type);
3103 else
3104 r = -EOPNOTSUPP;
3105 out:
3106 dm_unprepare_ioctl(md, srcu_idx);
3107 return r;
3108 }
3109
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3110 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3111 enum pr_type type, bool abort)
3112 {
3113 struct mapped_device *md = bdev->bd_disk->private_data;
3114 const struct pr_ops *ops;
3115 int r, srcu_idx;
3116
3117 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3118 if (r < 0)
3119 goto out;
3120
3121 ops = bdev->bd_disk->fops->pr_ops;
3122 if (ops && ops->pr_preempt)
3123 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3124 else
3125 r = -EOPNOTSUPP;
3126 out:
3127 dm_unprepare_ioctl(md, srcu_idx);
3128 return r;
3129 }
3130
dm_pr_clear(struct block_device * bdev,u64 key)3131 static int dm_pr_clear(struct block_device *bdev, u64 key)
3132 {
3133 struct mapped_device *md = bdev->bd_disk->private_data;
3134 const struct pr_ops *ops;
3135 int r, srcu_idx;
3136
3137 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3138 if (r < 0)
3139 goto out;
3140
3141 ops = bdev->bd_disk->fops->pr_ops;
3142 if (ops && ops->pr_clear)
3143 r = ops->pr_clear(bdev, key);
3144 else
3145 r = -EOPNOTSUPP;
3146 out:
3147 dm_unprepare_ioctl(md, srcu_idx);
3148 return r;
3149 }
3150
3151 static const struct pr_ops dm_pr_ops = {
3152 .pr_register = dm_pr_register,
3153 .pr_reserve = dm_pr_reserve,
3154 .pr_release = dm_pr_release,
3155 .pr_preempt = dm_pr_preempt,
3156 .pr_clear = dm_pr_clear,
3157 };
3158
3159 static const struct block_device_operations dm_blk_dops = {
3160 .submit_bio = dm_submit_bio,
3161 .open = dm_blk_open,
3162 .release = dm_blk_close,
3163 .ioctl = dm_blk_ioctl,
3164 .getgeo = dm_blk_getgeo,
3165 .report_zones = dm_blk_report_zones,
3166 .pr_ops = &dm_pr_ops,
3167 .owner = THIS_MODULE
3168 };
3169
3170 static const struct block_device_operations dm_rq_blk_dops = {
3171 .open = dm_blk_open,
3172 .release = dm_blk_close,
3173 .ioctl = dm_blk_ioctl,
3174 .getgeo = dm_blk_getgeo,
3175 .pr_ops = &dm_pr_ops,
3176 .owner = THIS_MODULE
3177 };
3178
3179 static const struct dax_operations dm_dax_ops = {
3180 .direct_access = dm_dax_direct_access,
3181 .dax_supported = dm_dax_supported,
3182 .copy_from_iter = dm_dax_copy_from_iter,
3183 .copy_to_iter = dm_dax_copy_to_iter,
3184 .zero_page_range = dm_dax_zero_page_range,
3185 };
3186
3187 /*
3188 * module hooks
3189 */
3190 module_init(dm_init);
3191 module_exit(dm_exit);
3192
3193 module_param(major, uint, 0);
3194 MODULE_PARM_DESC(major, "The major number of the device mapper");
3195
3196 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3197 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3198
3199 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3200 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3201
3202 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3203 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3204
3205 MODULE_DESCRIPTION(DM_NAME " driver");
3206 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3207 MODULE_LICENSE("GPL");
3208