• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64 
65 #define NTB_TRANSPORT_VERSION	4
66 #define NTB_TRANSPORT_VER	"4"
67 #define NTB_TRANSPORT_NAME	"ntb_transport"
68 #define NTB_TRANSPORT_DESC	"Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70 
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75 
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79 
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83 
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87 
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91 
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95 
96 static bool use_msi;
97 #ifdef CONFIG_NTB_MSI
98 module_param(use_msi, bool, 0644);
99 MODULE_PARM_DESC(use_msi, "Use MSI interrupts instead of doorbells");
100 #endif
101 
102 static struct dentry *nt_debugfs_dir;
103 
104 /* Only two-ports NTB devices are supported */
105 #define PIDX		NTB_DEF_PEER_IDX
106 
107 struct ntb_queue_entry {
108 	/* ntb_queue list reference */
109 	struct list_head entry;
110 	/* pointers to data to be transferred */
111 	void *cb_data;
112 	void *buf;
113 	unsigned int len;
114 	unsigned int flags;
115 	int retries;
116 	int errors;
117 	unsigned int tx_index;
118 	unsigned int rx_index;
119 
120 	struct ntb_transport_qp *qp;
121 	union {
122 		struct ntb_payload_header __iomem *tx_hdr;
123 		struct ntb_payload_header *rx_hdr;
124 	};
125 };
126 
127 struct ntb_rx_info {
128 	unsigned int entry;
129 };
130 
131 struct ntb_transport_qp {
132 	struct ntb_transport_ctx *transport;
133 	struct ntb_dev *ndev;
134 	void *cb_data;
135 	struct dma_chan *tx_dma_chan;
136 	struct dma_chan *rx_dma_chan;
137 
138 	bool client_ready;
139 	bool link_is_up;
140 	bool active;
141 
142 	u8 qp_num;	/* Only 64 QP's are allowed.  0-63 */
143 	u64 qp_bit;
144 
145 	struct ntb_rx_info __iomem *rx_info;
146 	struct ntb_rx_info *remote_rx_info;
147 
148 	void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149 			   void *data, int len);
150 	struct list_head tx_free_q;
151 	spinlock_t ntb_tx_free_q_lock;
152 	void __iomem *tx_mw;
153 	phys_addr_t tx_mw_phys;
154 	size_t tx_mw_size;
155 	dma_addr_t tx_mw_dma_addr;
156 	unsigned int tx_index;
157 	unsigned int tx_max_entry;
158 	unsigned int tx_max_frame;
159 
160 	void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
161 			   void *data, int len);
162 	struct list_head rx_post_q;
163 	struct list_head rx_pend_q;
164 	struct list_head rx_free_q;
165 	/* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
166 	spinlock_t ntb_rx_q_lock;
167 	void *rx_buff;
168 	unsigned int rx_index;
169 	unsigned int rx_max_entry;
170 	unsigned int rx_max_frame;
171 	unsigned int rx_alloc_entry;
172 	dma_cookie_t last_cookie;
173 	struct tasklet_struct rxc_db_work;
174 
175 	void (*event_handler)(void *data, int status);
176 	struct delayed_work link_work;
177 	struct work_struct link_cleanup;
178 
179 	struct dentry *debugfs_dir;
180 	struct dentry *debugfs_stats;
181 
182 	/* Stats */
183 	u64 rx_bytes;
184 	u64 rx_pkts;
185 	u64 rx_ring_empty;
186 	u64 rx_err_no_buf;
187 	u64 rx_err_oflow;
188 	u64 rx_err_ver;
189 	u64 rx_memcpy;
190 	u64 rx_async;
191 	u64 tx_bytes;
192 	u64 tx_pkts;
193 	u64 tx_ring_full;
194 	u64 tx_err_no_buf;
195 	u64 tx_memcpy;
196 	u64 tx_async;
197 
198 	bool use_msi;
199 	int msi_irq;
200 	struct ntb_msi_desc msi_desc;
201 	struct ntb_msi_desc peer_msi_desc;
202 };
203 
204 struct ntb_transport_mw {
205 	phys_addr_t phys_addr;
206 	resource_size_t phys_size;
207 	void __iomem *vbase;
208 	size_t xlat_size;
209 	size_t buff_size;
210 	size_t alloc_size;
211 	void *alloc_addr;
212 	void *virt_addr;
213 	dma_addr_t dma_addr;
214 };
215 
216 struct ntb_transport_client_dev {
217 	struct list_head entry;
218 	struct ntb_transport_ctx *nt;
219 	struct device dev;
220 };
221 
222 struct ntb_transport_ctx {
223 	struct list_head entry;
224 	struct list_head client_devs;
225 
226 	struct ntb_dev *ndev;
227 
228 	struct ntb_transport_mw *mw_vec;
229 	struct ntb_transport_qp *qp_vec;
230 	unsigned int mw_count;
231 	unsigned int qp_count;
232 	u64 qp_bitmap;
233 	u64 qp_bitmap_free;
234 
235 	bool use_msi;
236 	unsigned int msi_spad_offset;
237 	u64 msi_db_mask;
238 
239 	bool link_is_up;
240 	struct delayed_work link_work;
241 	struct work_struct link_cleanup;
242 
243 	struct dentry *debugfs_node_dir;
244 };
245 
246 enum {
247 	DESC_DONE_FLAG = BIT(0),
248 	LINK_DOWN_FLAG = BIT(1),
249 };
250 
251 struct ntb_payload_header {
252 	unsigned int ver;
253 	unsigned int len;
254 	unsigned int flags;
255 };
256 
257 enum {
258 	VERSION = 0,
259 	QP_LINKS,
260 	NUM_QPS,
261 	NUM_MWS,
262 	MW0_SZ_HIGH,
263 	MW0_SZ_LOW,
264 };
265 
266 #define dev_client_dev(__dev) \
267 	container_of((__dev), struct ntb_transport_client_dev, dev)
268 
269 #define drv_client(__drv) \
270 	container_of((__drv), struct ntb_transport_client, driver)
271 
272 #define QP_TO_MW(nt, qp)	((qp) % nt->mw_count)
273 #define NTB_QP_DEF_NUM_ENTRIES	100
274 #define NTB_LINK_DOWN_TIMEOUT	10
275 
276 static void ntb_transport_rxc_db(unsigned long data);
277 static const struct ntb_ctx_ops ntb_transport_ops;
278 static struct ntb_client ntb_transport_client;
279 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
280 			       struct ntb_queue_entry *entry);
281 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
282 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
284 
285 
ntb_transport_bus_match(struct device * dev,struct device_driver * drv)286 static int ntb_transport_bus_match(struct device *dev,
287 				   struct device_driver *drv)
288 {
289 	return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
290 }
291 
ntb_transport_bus_probe(struct device * dev)292 static int ntb_transport_bus_probe(struct device *dev)
293 {
294 	const struct ntb_transport_client *client;
295 	int rc;
296 
297 	get_device(dev);
298 
299 	client = drv_client(dev->driver);
300 	rc = client->probe(dev);
301 	if (rc)
302 		put_device(dev);
303 
304 	return rc;
305 }
306 
ntb_transport_bus_remove(struct device * dev)307 static int ntb_transport_bus_remove(struct device *dev)
308 {
309 	const struct ntb_transport_client *client;
310 
311 	client = drv_client(dev->driver);
312 	client->remove(dev);
313 
314 	put_device(dev);
315 
316 	return 0;
317 }
318 
319 static struct bus_type ntb_transport_bus = {
320 	.name = "ntb_transport",
321 	.match = ntb_transport_bus_match,
322 	.probe = ntb_transport_bus_probe,
323 	.remove = ntb_transport_bus_remove,
324 };
325 
326 static LIST_HEAD(ntb_transport_list);
327 
ntb_bus_init(struct ntb_transport_ctx * nt)328 static int ntb_bus_init(struct ntb_transport_ctx *nt)
329 {
330 	list_add_tail(&nt->entry, &ntb_transport_list);
331 	return 0;
332 }
333 
ntb_bus_remove(struct ntb_transport_ctx * nt)334 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
335 {
336 	struct ntb_transport_client_dev *client_dev, *cd;
337 
338 	list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
339 		dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
340 			dev_name(&client_dev->dev));
341 		list_del(&client_dev->entry);
342 		device_unregister(&client_dev->dev);
343 	}
344 
345 	list_del(&nt->entry);
346 }
347 
ntb_transport_client_release(struct device * dev)348 static void ntb_transport_client_release(struct device *dev)
349 {
350 	struct ntb_transport_client_dev *client_dev;
351 
352 	client_dev = dev_client_dev(dev);
353 	kfree(client_dev);
354 }
355 
356 /**
357  * ntb_transport_unregister_client_dev - Unregister NTB client device
358  * @device_name: Name of NTB client device
359  *
360  * Unregister an NTB client device with the NTB transport layer
361  */
ntb_transport_unregister_client_dev(char * device_name)362 void ntb_transport_unregister_client_dev(char *device_name)
363 {
364 	struct ntb_transport_client_dev *client, *cd;
365 	struct ntb_transport_ctx *nt;
366 
367 	list_for_each_entry(nt, &ntb_transport_list, entry)
368 		list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
369 			if (!strncmp(dev_name(&client->dev), device_name,
370 				     strlen(device_name))) {
371 				list_del(&client->entry);
372 				device_unregister(&client->dev);
373 			}
374 }
375 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
376 
377 /**
378  * ntb_transport_register_client_dev - Register NTB client device
379  * @device_name: Name of NTB client device
380  *
381  * Register an NTB client device with the NTB transport layer
382  */
ntb_transport_register_client_dev(char * device_name)383 int ntb_transport_register_client_dev(char *device_name)
384 {
385 	struct ntb_transport_client_dev *client_dev;
386 	struct ntb_transport_ctx *nt;
387 	int node;
388 	int rc, i = 0;
389 
390 	if (list_empty(&ntb_transport_list))
391 		return -ENODEV;
392 
393 	list_for_each_entry(nt, &ntb_transport_list, entry) {
394 		struct device *dev;
395 
396 		node = dev_to_node(&nt->ndev->dev);
397 
398 		client_dev = kzalloc_node(sizeof(*client_dev),
399 					  GFP_KERNEL, node);
400 		if (!client_dev) {
401 			rc = -ENOMEM;
402 			goto err;
403 		}
404 
405 		dev = &client_dev->dev;
406 
407 		/* setup and register client devices */
408 		dev_set_name(dev, "%s%d", device_name, i);
409 		dev->bus = &ntb_transport_bus;
410 		dev->release = ntb_transport_client_release;
411 		dev->parent = &nt->ndev->dev;
412 
413 		rc = device_register(dev);
414 		if (rc) {
415 			put_device(dev);
416 			goto err;
417 		}
418 
419 		list_add_tail(&client_dev->entry, &nt->client_devs);
420 		i++;
421 	}
422 
423 	return 0;
424 
425 err:
426 	ntb_transport_unregister_client_dev(device_name);
427 
428 	return rc;
429 }
430 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
431 
432 /**
433  * ntb_transport_register_client - Register NTB client driver
434  * @drv: NTB client driver to be registered
435  *
436  * Register an NTB client driver with the NTB transport layer
437  *
438  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
439  */
ntb_transport_register_client(struct ntb_transport_client * drv)440 int ntb_transport_register_client(struct ntb_transport_client *drv)
441 {
442 	drv->driver.bus = &ntb_transport_bus;
443 
444 	if (list_empty(&ntb_transport_list))
445 		return -ENODEV;
446 
447 	return driver_register(&drv->driver);
448 }
449 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
450 
451 /**
452  * ntb_transport_unregister_client - Unregister NTB client driver
453  * @drv: NTB client driver to be unregistered
454  *
455  * Unregister an NTB client driver with the NTB transport layer
456  *
457  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
458  */
ntb_transport_unregister_client(struct ntb_transport_client * drv)459 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
460 {
461 	driver_unregister(&drv->driver);
462 }
463 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
464 
debugfs_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)465 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
466 			    loff_t *offp)
467 {
468 	struct ntb_transport_qp *qp;
469 	char *buf;
470 	ssize_t ret, out_offset, out_count;
471 
472 	qp = filp->private_data;
473 
474 	if (!qp || !qp->link_is_up)
475 		return 0;
476 
477 	out_count = 1000;
478 
479 	buf = kmalloc(out_count, GFP_KERNEL);
480 	if (!buf)
481 		return -ENOMEM;
482 
483 	out_offset = 0;
484 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
485 			       "\nNTB QP stats:\n\n");
486 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
487 			       "rx_bytes - \t%llu\n", qp->rx_bytes);
488 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
489 			       "rx_pkts - \t%llu\n", qp->rx_pkts);
490 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
491 			       "rx_memcpy - \t%llu\n", qp->rx_memcpy);
492 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
493 			       "rx_async - \t%llu\n", qp->rx_async);
494 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
495 			       "rx_ring_empty - %llu\n", qp->rx_ring_empty);
496 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
497 			       "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
498 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
499 			       "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
500 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
501 			       "rx_err_ver - \t%llu\n", qp->rx_err_ver);
502 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
503 			       "rx_buff - \t0x%p\n", qp->rx_buff);
504 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
505 			       "rx_index - \t%u\n", qp->rx_index);
506 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
507 			       "rx_max_entry - \t%u\n", qp->rx_max_entry);
508 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
509 			       "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
510 
511 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
512 			       "tx_bytes - \t%llu\n", qp->tx_bytes);
513 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
514 			       "tx_pkts - \t%llu\n", qp->tx_pkts);
515 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
516 			       "tx_memcpy - \t%llu\n", qp->tx_memcpy);
517 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
518 			       "tx_async - \t%llu\n", qp->tx_async);
519 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
520 			       "tx_ring_full - \t%llu\n", qp->tx_ring_full);
521 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
522 			       "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
523 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
524 			       "tx_mw - \t0x%p\n", qp->tx_mw);
525 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
526 			       "tx_index (H) - \t%u\n", qp->tx_index);
527 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
528 			       "RRI (T) - \t%u\n",
529 			       qp->remote_rx_info->entry);
530 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
531 			       "tx_max_entry - \t%u\n", qp->tx_max_entry);
532 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
533 			       "free tx - \t%u\n",
534 			       ntb_transport_tx_free_entry(qp));
535 
536 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
537 			       "\n");
538 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
539 			       "Using TX DMA - \t%s\n",
540 			       qp->tx_dma_chan ? "Yes" : "No");
541 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
542 			       "Using RX DMA - \t%s\n",
543 			       qp->rx_dma_chan ? "Yes" : "No");
544 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
545 			       "QP Link - \t%s\n",
546 			       qp->link_is_up ? "Up" : "Down");
547 	out_offset += scnprintf(buf + out_offset, out_count - out_offset,
548 			       "\n");
549 
550 	if (out_offset > out_count)
551 		out_offset = out_count;
552 
553 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
554 	kfree(buf);
555 	return ret;
556 }
557 
558 static const struct file_operations ntb_qp_debugfs_stats = {
559 	.owner = THIS_MODULE,
560 	.open = simple_open,
561 	.read = debugfs_read,
562 };
563 
ntb_list_add(spinlock_t * lock,struct list_head * entry,struct list_head * list)564 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
565 			 struct list_head *list)
566 {
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(lock, flags);
570 	list_add_tail(entry, list);
571 	spin_unlock_irqrestore(lock, flags);
572 }
573 
ntb_list_rm(spinlock_t * lock,struct list_head * list)574 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
575 					   struct list_head *list)
576 {
577 	struct ntb_queue_entry *entry;
578 	unsigned long flags;
579 
580 	spin_lock_irqsave(lock, flags);
581 	if (list_empty(list)) {
582 		entry = NULL;
583 		goto out;
584 	}
585 	entry = list_first_entry(list, struct ntb_queue_entry, entry);
586 	list_del(&entry->entry);
587 
588 out:
589 	spin_unlock_irqrestore(lock, flags);
590 
591 	return entry;
592 }
593 
ntb_list_mv(spinlock_t * lock,struct list_head * list,struct list_head * to_list)594 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
595 					   struct list_head *list,
596 					   struct list_head *to_list)
597 {
598 	struct ntb_queue_entry *entry;
599 	unsigned long flags;
600 
601 	spin_lock_irqsave(lock, flags);
602 
603 	if (list_empty(list)) {
604 		entry = NULL;
605 	} else {
606 		entry = list_first_entry(list, struct ntb_queue_entry, entry);
607 		list_move_tail(&entry->entry, to_list);
608 	}
609 
610 	spin_unlock_irqrestore(lock, flags);
611 
612 	return entry;
613 }
614 
ntb_transport_setup_qp_mw(struct ntb_transport_ctx * nt,unsigned int qp_num)615 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
616 				     unsigned int qp_num)
617 {
618 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
619 	struct ntb_transport_mw *mw;
620 	struct ntb_dev *ndev = nt->ndev;
621 	struct ntb_queue_entry *entry;
622 	unsigned int rx_size, num_qps_mw;
623 	unsigned int mw_num, mw_count, qp_count;
624 	unsigned int i;
625 	int node;
626 
627 	mw_count = nt->mw_count;
628 	qp_count = nt->qp_count;
629 
630 	mw_num = QP_TO_MW(nt, qp_num);
631 	mw = &nt->mw_vec[mw_num];
632 
633 	if (!mw->virt_addr)
634 		return -ENOMEM;
635 
636 	if (mw_num < qp_count % mw_count)
637 		num_qps_mw = qp_count / mw_count + 1;
638 	else
639 		num_qps_mw = qp_count / mw_count;
640 
641 	rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
642 	qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
643 	rx_size -= sizeof(struct ntb_rx_info);
644 
645 	qp->remote_rx_info = qp->rx_buff + rx_size;
646 
647 	/* Due to housekeeping, there must be atleast 2 buffs */
648 	qp->rx_max_frame = min(transport_mtu, rx_size / 2);
649 	qp->rx_max_entry = rx_size / qp->rx_max_frame;
650 	qp->rx_index = 0;
651 
652 	/*
653 	 * Checking to see if we have more entries than the default.
654 	 * We should add additional entries if that is the case so we
655 	 * can be in sync with the transport frames.
656 	 */
657 	node = dev_to_node(&ndev->dev);
658 	for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
659 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
660 		if (!entry)
661 			return -ENOMEM;
662 
663 		entry->qp = qp;
664 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
665 			     &qp->rx_free_q);
666 		qp->rx_alloc_entry++;
667 	}
668 
669 	qp->remote_rx_info->entry = qp->rx_max_entry - 1;
670 
671 	/* setup the hdr offsets with 0's */
672 	for (i = 0; i < qp->rx_max_entry; i++) {
673 		void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
674 				sizeof(struct ntb_payload_header));
675 		memset(offset, 0, sizeof(struct ntb_payload_header));
676 	}
677 
678 	qp->rx_pkts = 0;
679 	qp->tx_pkts = 0;
680 	qp->tx_index = 0;
681 
682 	return 0;
683 }
684 
ntb_transport_isr(int irq,void * dev)685 static irqreturn_t ntb_transport_isr(int irq, void *dev)
686 {
687 	struct ntb_transport_qp *qp = dev;
688 
689 	tasklet_schedule(&qp->rxc_db_work);
690 
691 	return IRQ_HANDLED;
692 }
693 
ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)694 static void ntb_transport_setup_qp_peer_msi(struct ntb_transport_ctx *nt,
695 					    unsigned int qp_num)
696 {
697 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
698 	int spad = qp_num * 2 + nt->msi_spad_offset;
699 
700 	if (!nt->use_msi)
701 		return;
702 
703 	if (spad >= ntb_spad_count(nt->ndev))
704 		return;
705 
706 	qp->peer_msi_desc.addr_offset =
707 		ntb_peer_spad_read(qp->ndev, PIDX, spad);
708 	qp->peer_msi_desc.data =
709 		ntb_peer_spad_read(qp->ndev, PIDX, spad + 1);
710 
711 	dev_dbg(&qp->ndev->pdev->dev, "QP%d Peer MSI addr=%x data=%x\n",
712 		qp_num, qp->peer_msi_desc.addr_offset, qp->peer_msi_desc.data);
713 
714 	if (qp->peer_msi_desc.addr_offset) {
715 		qp->use_msi = true;
716 		dev_info(&qp->ndev->pdev->dev,
717 			 "Using MSI interrupts for QP%d\n", qp_num);
718 	}
719 }
720 
ntb_transport_setup_qp_msi(struct ntb_transport_ctx * nt,unsigned int qp_num)721 static void ntb_transport_setup_qp_msi(struct ntb_transport_ctx *nt,
722 				       unsigned int qp_num)
723 {
724 	struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
725 	int spad = qp_num * 2 + nt->msi_spad_offset;
726 	int rc;
727 
728 	if (!nt->use_msi)
729 		return;
730 
731 	if (spad >= ntb_spad_count(nt->ndev)) {
732 		dev_warn_once(&qp->ndev->pdev->dev,
733 			      "Not enough SPADS to use MSI interrupts\n");
734 		return;
735 	}
736 
737 	ntb_spad_write(qp->ndev, spad, 0);
738 	ntb_spad_write(qp->ndev, spad + 1, 0);
739 
740 	if (!qp->msi_irq) {
741 		qp->msi_irq = ntbm_msi_request_irq(qp->ndev, ntb_transport_isr,
742 						   KBUILD_MODNAME, qp,
743 						   &qp->msi_desc);
744 		if (qp->msi_irq < 0) {
745 			dev_warn(&qp->ndev->pdev->dev,
746 				 "Unable to allocate MSI interrupt for qp%d\n",
747 				 qp_num);
748 			return;
749 		}
750 	}
751 
752 	rc = ntb_spad_write(qp->ndev, spad, qp->msi_desc.addr_offset);
753 	if (rc)
754 		goto err_free_interrupt;
755 
756 	rc = ntb_spad_write(qp->ndev, spad + 1, qp->msi_desc.data);
757 	if (rc)
758 		goto err_free_interrupt;
759 
760 	dev_dbg(&qp->ndev->pdev->dev, "QP%d MSI %d addr=%x data=%x\n",
761 		qp_num, qp->msi_irq, qp->msi_desc.addr_offset,
762 		qp->msi_desc.data);
763 
764 	return;
765 
766 err_free_interrupt:
767 	devm_free_irq(&nt->ndev->dev, qp->msi_irq, qp);
768 }
769 
ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx * nt)770 static void ntb_transport_msi_peer_desc_changed(struct ntb_transport_ctx *nt)
771 {
772 	int i;
773 
774 	dev_dbg(&nt->ndev->pdev->dev, "Peer MSI descriptors changed");
775 
776 	for (i = 0; i < nt->qp_count; i++)
777 		ntb_transport_setup_qp_peer_msi(nt, i);
778 }
779 
ntb_transport_msi_desc_changed(void * data)780 static void ntb_transport_msi_desc_changed(void *data)
781 {
782 	struct ntb_transport_ctx *nt = data;
783 	int i;
784 
785 	dev_dbg(&nt->ndev->pdev->dev, "MSI descriptors changed");
786 
787 	for (i = 0; i < nt->qp_count; i++)
788 		ntb_transport_setup_qp_msi(nt, i);
789 
790 	ntb_peer_db_set(nt->ndev, nt->msi_db_mask);
791 }
792 
ntb_free_mw(struct ntb_transport_ctx * nt,int num_mw)793 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
794 {
795 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
796 	struct pci_dev *pdev = nt->ndev->pdev;
797 
798 	if (!mw->virt_addr)
799 		return;
800 
801 	ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
802 	dma_free_coherent(&pdev->dev, mw->alloc_size,
803 			  mw->alloc_addr, mw->dma_addr);
804 	mw->xlat_size = 0;
805 	mw->buff_size = 0;
806 	mw->alloc_size = 0;
807 	mw->alloc_addr = NULL;
808 	mw->virt_addr = NULL;
809 }
810 
ntb_alloc_mw_buffer(struct ntb_transport_mw * mw,struct device * dma_dev,size_t align)811 static int ntb_alloc_mw_buffer(struct ntb_transport_mw *mw,
812 			       struct device *dma_dev, size_t align)
813 {
814 	dma_addr_t dma_addr;
815 	void *alloc_addr, *virt_addr;
816 	int rc;
817 
818 	alloc_addr = dma_alloc_coherent(dma_dev, mw->alloc_size,
819 					&dma_addr, GFP_KERNEL);
820 	if (!alloc_addr) {
821 		dev_err(dma_dev, "Unable to alloc MW buff of size %zu\n",
822 			mw->alloc_size);
823 		return -ENOMEM;
824 	}
825 	virt_addr = alloc_addr;
826 
827 	/*
828 	 * we must ensure that the memory address allocated is BAR size
829 	 * aligned in order for the XLAT register to take the value. This
830 	 * is a requirement of the hardware. It is recommended to setup CMA
831 	 * for BAR sizes equal or greater than 4MB.
832 	 */
833 	if (!IS_ALIGNED(dma_addr, align)) {
834 		if (mw->alloc_size > mw->buff_size) {
835 			virt_addr = PTR_ALIGN(alloc_addr, align);
836 			dma_addr = ALIGN(dma_addr, align);
837 		} else {
838 			rc = -ENOMEM;
839 			goto err;
840 		}
841 	}
842 
843 	mw->alloc_addr = alloc_addr;
844 	mw->virt_addr = virt_addr;
845 	mw->dma_addr = dma_addr;
846 
847 	return 0;
848 
849 err:
850 	dma_free_coherent(dma_dev, mw->alloc_size, alloc_addr, dma_addr);
851 
852 	return rc;
853 }
854 
ntb_set_mw(struct ntb_transport_ctx * nt,int num_mw,resource_size_t size)855 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
856 		      resource_size_t size)
857 {
858 	struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
859 	struct pci_dev *pdev = nt->ndev->pdev;
860 	size_t xlat_size, buff_size;
861 	resource_size_t xlat_align;
862 	resource_size_t xlat_align_size;
863 	int rc;
864 
865 	if (!size)
866 		return -EINVAL;
867 
868 	rc = ntb_mw_get_align(nt->ndev, PIDX, num_mw, &xlat_align,
869 			      &xlat_align_size, NULL);
870 	if (rc)
871 		return rc;
872 
873 	xlat_size = round_up(size, xlat_align_size);
874 	buff_size = round_up(size, xlat_align);
875 
876 	/* No need to re-setup */
877 	if (mw->xlat_size == xlat_size)
878 		return 0;
879 
880 	if (mw->buff_size)
881 		ntb_free_mw(nt, num_mw);
882 
883 	/* Alloc memory for receiving data.  Must be aligned */
884 	mw->xlat_size = xlat_size;
885 	mw->buff_size = buff_size;
886 	mw->alloc_size = buff_size;
887 
888 	rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
889 	if (rc) {
890 		mw->alloc_size *= 2;
891 		rc = ntb_alloc_mw_buffer(mw, &pdev->dev, xlat_align);
892 		if (rc) {
893 			dev_err(&pdev->dev,
894 				"Unable to alloc aligned MW buff\n");
895 			mw->xlat_size = 0;
896 			mw->buff_size = 0;
897 			mw->alloc_size = 0;
898 			return rc;
899 		}
900 	}
901 
902 	/* Notify HW the memory location of the receive buffer */
903 	rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
904 			      mw->xlat_size);
905 	if (rc) {
906 		dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
907 		ntb_free_mw(nt, num_mw);
908 		return -EIO;
909 	}
910 
911 	return 0;
912 }
913 
ntb_qp_link_context_reset(struct ntb_transport_qp * qp)914 static void ntb_qp_link_context_reset(struct ntb_transport_qp *qp)
915 {
916 	qp->link_is_up = false;
917 	qp->active = false;
918 
919 	qp->tx_index = 0;
920 	qp->rx_index = 0;
921 	qp->rx_bytes = 0;
922 	qp->rx_pkts = 0;
923 	qp->rx_ring_empty = 0;
924 	qp->rx_err_no_buf = 0;
925 	qp->rx_err_oflow = 0;
926 	qp->rx_err_ver = 0;
927 	qp->rx_memcpy = 0;
928 	qp->rx_async = 0;
929 	qp->tx_bytes = 0;
930 	qp->tx_pkts = 0;
931 	qp->tx_ring_full = 0;
932 	qp->tx_err_no_buf = 0;
933 	qp->tx_memcpy = 0;
934 	qp->tx_async = 0;
935 }
936 
ntb_qp_link_down_reset(struct ntb_transport_qp * qp)937 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
938 {
939 	ntb_qp_link_context_reset(qp);
940 	if (qp->remote_rx_info)
941 		qp->remote_rx_info->entry = qp->rx_max_entry - 1;
942 }
943 
ntb_qp_link_cleanup(struct ntb_transport_qp * qp)944 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
945 {
946 	struct ntb_transport_ctx *nt = qp->transport;
947 	struct pci_dev *pdev = nt->ndev->pdev;
948 
949 	dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
950 
951 	cancel_delayed_work_sync(&qp->link_work);
952 	ntb_qp_link_down_reset(qp);
953 
954 	if (qp->event_handler)
955 		qp->event_handler(qp->cb_data, qp->link_is_up);
956 }
957 
ntb_qp_link_cleanup_work(struct work_struct * work)958 static void ntb_qp_link_cleanup_work(struct work_struct *work)
959 {
960 	struct ntb_transport_qp *qp = container_of(work,
961 						   struct ntb_transport_qp,
962 						   link_cleanup);
963 	struct ntb_transport_ctx *nt = qp->transport;
964 
965 	ntb_qp_link_cleanup(qp);
966 
967 	if (nt->link_is_up)
968 		schedule_delayed_work(&qp->link_work,
969 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
970 }
971 
ntb_qp_link_down(struct ntb_transport_qp * qp)972 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
973 {
974 	schedule_work(&qp->link_cleanup);
975 }
976 
ntb_transport_link_cleanup(struct ntb_transport_ctx * nt)977 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
978 {
979 	struct ntb_transport_qp *qp;
980 	u64 qp_bitmap_alloc;
981 	unsigned int i, count;
982 
983 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
984 
985 	/* Pass along the info to any clients */
986 	for (i = 0; i < nt->qp_count; i++)
987 		if (qp_bitmap_alloc & BIT_ULL(i)) {
988 			qp = &nt->qp_vec[i];
989 			ntb_qp_link_cleanup(qp);
990 			cancel_work_sync(&qp->link_cleanup);
991 			cancel_delayed_work_sync(&qp->link_work);
992 		}
993 
994 	if (!nt->link_is_up)
995 		cancel_delayed_work_sync(&nt->link_work);
996 
997 	for (i = 0; i < nt->mw_count; i++)
998 		ntb_free_mw(nt, i);
999 
1000 	/* The scratchpad registers keep the values if the remote side
1001 	 * goes down, blast them now to give them a sane value the next
1002 	 * time they are accessed
1003 	 */
1004 	count = ntb_spad_count(nt->ndev);
1005 	for (i = 0; i < count; i++)
1006 		ntb_spad_write(nt->ndev, i, 0);
1007 }
1008 
ntb_transport_link_cleanup_work(struct work_struct * work)1009 static void ntb_transport_link_cleanup_work(struct work_struct *work)
1010 {
1011 	struct ntb_transport_ctx *nt =
1012 		container_of(work, struct ntb_transport_ctx, link_cleanup);
1013 
1014 	ntb_transport_link_cleanup(nt);
1015 }
1016 
ntb_transport_event_callback(void * data)1017 static void ntb_transport_event_callback(void *data)
1018 {
1019 	struct ntb_transport_ctx *nt = data;
1020 
1021 	if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
1022 		schedule_delayed_work(&nt->link_work, 0);
1023 	else
1024 		schedule_work(&nt->link_cleanup);
1025 }
1026 
ntb_transport_link_work(struct work_struct * work)1027 static void ntb_transport_link_work(struct work_struct *work)
1028 {
1029 	struct ntb_transport_ctx *nt =
1030 		container_of(work, struct ntb_transport_ctx, link_work.work);
1031 	struct ntb_dev *ndev = nt->ndev;
1032 	struct pci_dev *pdev = ndev->pdev;
1033 	resource_size_t size;
1034 	u32 val;
1035 	int rc = 0, i, spad;
1036 
1037 	/* send the local info, in the opposite order of the way we read it */
1038 
1039 	if (nt->use_msi) {
1040 		rc = ntb_msi_setup_mws(ndev);
1041 		if (rc) {
1042 			dev_warn(&pdev->dev,
1043 				 "Failed to register MSI memory window: %d\n",
1044 				 rc);
1045 			nt->use_msi = false;
1046 		}
1047 	}
1048 
1049 	for (i = 0; i < nt->qp_count; i++)
1050 		ntb_transport_setup_qp_msi(nt, i);
1051 
1052 	for (i = 0; i < nt->mw_count; i++) {
1053 		size = nt->mw_vec[i].phys_size;
1054 
1055 		if (max_mw_size && size > max_mw_size)
1056 			size = max_mw_size;
1057 
1058 		spad = MW0_SZ_HIGH + (i * 2);
1059 		ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
1060 
1061 		spad = MW0_SZ_LOW + (i * 2);
1062 		ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
1063 	}
1064 
1065 	ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
1066 
1067 	ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
1068 
1069 	ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
1070 
1071 	/* Query the remote side for its info */
1072 	val = ntb_spad_read(ndev, VERSION);
1073 	dev_dbg(&pdev->dev, "Remote version = %d\n", val);
1074 	if (val != NTB_TRANSPORT_VERSION)
1075 		goto out;
1076 
1077 	val = ntb_spad_read(ndev, NUM_QPS);
1078 	dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
1079 	if (val != nt->qp_count)
1080 		goto out;
1081 
1082 	val = ntb_spad_read(ndev, NUM_MWS);
1083 	dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
1084 	if (val != nt->mw_count)
1085 		goto out;
1086 
1087 	for (i = 0; i < nt->mw_count; i++) {
1088 		u64 val64;
1089 
1090 		val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
1091 		val64 = (u64)val << 32;
1092 
1093 		val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
1094 		val64 |= val;
1095 
1096 		dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
1097 
1098 		rc = ntb_set_mw(nt, i, val64);
1099 		if (rc)
1100 			goto out1;
1101 	}
1102 
1103 	nt->link_is_up = true;
1104 
1105 	for (i = 0; i < nt->qp_count; i++) {
1106 		struct ntb_transport_qp *qp = &nt->qp_vec[i];
1107 
1108 		ntb_transport_setup_qp_mw(nt, i);
1109 		ntb_transport_setup_qp_peer_msi(nt, i);
1110 
1111 		if (qp->client_ready)
1112 			schedule_delayed_work(&qp->link_work, 0);
1113 	}
1114 
1115 	return;
1116 
1117 out1:
1118 	for (i = 0; i < nt->mw_count; i++)
1119 		ntb_free_mw(nt, i);
1120 
1121 	/* if there's an actual failure, we should just bail */
1122 	if (rc < 0)
1123 		return;
1124 
1125 out:
1126 	if (ntb_link_is_up(ndev, NULL, NULL) == 1)
1127 		schedule_delayed_work(&nt->link_work,
1128 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1129 }
1130 
ntb_qp_link_work(struct work_struct * work)1131 static void ntb_qp_link_work(struct work_struct *work)
1132 {
1133 	struct ntb_transport_qp *qp = container_of(work,
1134 						   struct ntb_transport_qp,
1135 						   link_work.work);
1136 	struct pci_dev *pdev = qp->ndev->pdev;
1137 	struct ntb_transport_ctx *nt = qp->transport;
1138 	int val;
1139 
1140 	WARN_ON(!nt->link_is_up);
1141 
1142 	val = ntb_spad_read(nt->ndev, QP_LINKS);
1143 
1144 	ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
1145 
1146 	/* query remote spad for qp ready bits */
1147 	dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
1148 
1149 	/* See if the remote side is up */
1150 	if (val & BIT(qp->qp_num)) {
1151 		dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
1152 		qp->link_is_up = true;
1153 		qp->active = true;
1154 
1155 		if (qp->event_handler)
1156 			qp->event_handler(qp->cb_data, qp->link_is_up);
1157 
1158 		if (qp->active)
1159 			tasklet_schedule(&qp->rxc_db_work);
1160 	} else if (nt->link_is_up)
1161 		schedule_delayed_work(&qp->link_work,
1162 				      msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
1163 }
1164 
ntb_transport_init_queue(struct ntb_transport_ctx * nt,unsigned int qp_num)1165 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
1166 				    unsigned int qp_num)
1167 {
1168 	struct ntb_transport_qp *qp;
1169 	phys_addr_t mw_base;
1170 	resource_size_t mw_size;
1171 	unsigned int num_qps_mw, tx_size;
1172 	unsigned int mw_num, mw_count, qp_count;
1173 	u64 qp_offset;
1174 
1175 	mw_count = nt->mw_count;
1176 	qp_count = nt->qp_count;
1177 
1178 	mw_num = QP_TO_MW(nt, qp_num);
1179 
1180 	qp = &nt->qp_vec[qp_num];
1181 	qp->qp_num = qp_num;
1182 	qp->transport = nt;
1183 	qp->ndev = nt->ndev;
1184 	qp->client_ready = false;
1185 	qp->event_handler = NULL;
1186 	ntb_qp_link_context_reset(qp);
1187 
1188 	if (mw_num < qp_count % mw_count)
1189 		num_qps_mw = qp_count / mw_count + 1;
1190 	else
1191 		num_qps_mw = qp_count / mw_count;
1192 
1193 	mw_base = nt->mw_vec[mw_num].phys_addr;
1194 	mw_size = nt->mw_vec[mw_num].phys_size;
1195 
1196 	if (max_mw_size && mw_size > max_mw_size)
1197 		mw_size = max_mw_size;
1198 
1199 	tx_size = (unsigned int)mw_size / num_qps_mw;
1200 	qp_offset = tx_size * (qp_num / mw_count);
1201 
1202 	qp->tx_mw_size = tx_size;
1203 	qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1204 	if (!qp->tx_mw)
1205 		return -EINVAL;
1206 
1207 	qp->tx_mw_phys = mw_base + qp_offset;
1208 	if (!qp->tx_mw_phys)
1209 		return -EINVAL;
1210 
1211 	tx_size -= sizeof(struct ntb_rx_info);
1212 	qp->rx_info = qp->tx_mw + tx_size;
1213 
1214 	/* Due to housekeeping, there must be atleast 2 buffs */
1215 	qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1216 	qp->tx_max_entry = tx_size / qp->tx_max_frame;
1217 
1218 	if (nt->debugfs_node_dir) {
1219 		char debugfs_name[4];
1220 
1221 		snprintf(debugfs_name, 4, "qp%d", qp_num);
1222 		qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1223 						     nt->debugfs_node_dir);
1224 
1225 		qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1226 							qp->debugfs_dir, qp,
1227 							&ntb_qp_debugfs_stats);
1228 	} else {
1229 		qp->debugfs_dir = NULL;
1230 		qp->debugfs_stats = NULL;
1231 	}
1232 
1233 	INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1234 	INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1235 
1236 	spin_lock_init(&qp->ntb_rx_q_lock);
1237 	spin_lock_init(&qp->ntb_tx_free_q_lock);
1238 
1239 	INIT_LIST_HEAD(&qp->rx_post_q);
1240 	INIT_LIST_HEAD(&qp->rx_pend_q);
1241 	INIT_LIST_HEAD(&qp->rx_free_q);
1242 	INIT_LIST_HEAD(&qp->tx_free_q);
1243 
1244 	tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1245 		     (unsigned long)qp);
1246 
1247 	return 0;
1248 }
1249 
ntb_transport_probe(struct ntb_client * self,struct ntb_dev * ndev)1250 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1251 {
1252 	struct ntb_transport_ctx *nt;
1253 	struct ntb_transport_mw *mw;
1254 	unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1255 	u64 qp_bitmap;
1256 	int node;
1257 	int rc, i;
1258 
1259 	mw_count = ntb_peer_mw_count(ndev);
1260 
1261 	if (!ndev->ops->mw_set_trans) {
1262 		dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	if (ntb_db_is_unsafe(ndev))
1267 		dev_dbg(&ndev->dev,
1268 			"doorbell is unsafe, proceed anyway...\n");
1269 	if (ntb_spad_is_unsafe(ndev))
1270 		dev_dbg(&ndev->dev,
1271 			"scratchpad is unsafe, proceed anyway...\n");
1272 
1273 	if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1274 		dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1275 
1276 	node = dev_to_node(&ndev->dev);
1277 
1278 	nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1279 	if (!nt)
1280 		return -ENOMEM;
1281 
1282 	nt->ndev = ndev;
1283 
1284 	/*
1285 	 * If we are using MSI, and have at least one extra memory window,
1286 	 * we will reserve the last MW for the MSI window.
1287 	 */
1288 	if (use_msi && mw_count > 1) {
1289 		rc = ntb_msi_init(ndev, ntb_transport_msi_desc_changed);
1290 		if (!rc) {
1291 			mw_count -= 1;
1292 			nt->use_msi = true;
1293 		}
1294 	}
1295 
1296 	spad_count = ntb_spad_count(ndev);
1297 
1298 	/* Limit the MW's based on the availability of scratchpads */
1299 
1300 	if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1301 		nt->mw_count = 0;
1302 		rc = -EINVAL;
1303 		goto err;
1304 	}
1305 
1306 	max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1307 	nt->mw_count = min(mw_count, max_mw_count_for_spads);
1308 
1309 	nt->msi_spad_offset = nt->mw_count * 2 + MW0_SZ_HIGH;
1310 
1311 	nt->mw_vec = kcalloc_node(mw_count, sizeof(*nt->mw_vec),
1312 				  GFP_KERNEL, node);
1313 	if (!nt->mw_vec) {
1314 		rc = -ENOMEM;
1315 		goto err;
1316 	}
1317 
1318 	for (i = 0; i < mw_count; i++) {
1319 		mw = &nt->mw_vec[i];
1320 
1321 		rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1322 					  &mw->phys_size);
1323 		if (rc)
1324 			goto err1;
1325 
1326 		mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1327 		if (!mw->vbase) {
1328 			rc = -ENOMEM;
1329 			goto err1;
1330 		}
1331 
1332 		mw->buff_size = 0;
1333 		mw->xlat_size = 0;
1334 		mw->virt_addr = NULL;
1335 		mw->dma_addr = 0;
1336 	}
1337 
1338 	qp_bitmap = ntb_db_valid_mask(ndev);
1339 
1340 	qp_count = ilog2(qp_bitmap);
1341 	if (nt->use_msi) {
1342 		qp_count -= 1;
1343 		nt->msi_db_mask = 1 << qp_count;
1344 		ntb_db_clear_mask(ndev, nt->msi_db_mask);
1345 	}
1346 
1347 	if (max_num_clients && max_num_clients < qp_count)
1348 		qp_count = max_num_clients;
1349 	else if (nt->mw_count < qp_count)
1350 		qp_count = nt->mw_count;
1351 
1352 	qp_bitmap &= BIT_ULL(qp_count) - 1;
1353 
1354 	nt->qp_count = qp_count;
1355 	nt->qp_bitmap = qp_bitmap;
1356 	nt->qp_bitmap_free = qp_bitmap;
1357 
1358 	nt->qp_vec = kcalloc_node(qp_count, sizeof(*nt->qp_vec),
1359 				  GFP_KERNEL, node);
1360 	if (!nt->qp_vec) {
1361 		rc = -ENOMEM;
1362 		goto err1;
1363 	}
1364 
1365 	if (nt_debugfs_dir) {
1366 		nt->debugfs_node_dir =
1367 			debugfs_create_dir(pci_name(ndev->pdev),
1368 					   nt_debugfs_dir);
1369 	}
1370 
1371 	for (i = 0; i < qp_count; i++) {
1372 		rc = ntb_transport_init_queue(nt, i);
1373 		if (rc)
1374 			goto err2;
1375 	}
1376 
1377 	INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1378 	INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1379 
1380 	rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1381 	if (rc)
1382 		goto err2;
1383 
1384 	INIT_LIST_HEAD(&nt->client_devs);
1385 	rc = ntb_bus_init(nt);
1386 	if (rc)
1387 		goto err3;
1388 
1389 	nt->link_is_up = false;
1390 	ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1391 	ntb_link_event(ndev);
1392 
1393 	return 0;
1394 
1395 err3:
1396 	ntb_clear_ctx(ndev);
1397 err2:
1398 	kfree(nt->qp_vec);
1399 err1:
1400 	while (i--) {
1401 		mw = &nt->mw_vec[i];
1402 		iounmap(mw->vbase);
1403 	}
1404 	kfree(nt->mw_vec);
1405 err:
1406 	kfree(nt);
1407 	return rc;
1408 }
1409 
ntb_transport_free(struct ntb_client * self,struct ntb_dev * ndev)1410 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1411 {
1412 	struct ntb_transport_ctx *nt = ndev->ctx;
1413 	struct ntb_transport_qp *qp;
1414 	u64 qp_bitmap_alloc;
1415 	int i;
1416 
1417 	ntb_transport_link_cleanup(nt);
1418 	cancel_work_sync(&nt->link_cleanup);
1419 	cancel_delayed_work_sync(&nt->link_work);
1420 
1421 	qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1422 
1423 	/* verify that all the qp's are freed */
1424 	for (i = 0; i < nt->qp_count; i++) {
1425 		qp = &nt->qp_vec[i];
1426 		if (qp_bitmap_alloc & BIT_ULL(i))
1427 			ntb_transport_free_queue(qp);
1428 		debugfs_remove_recursive(qp->debugfs_dir);
1429 	}
1430 
1431 	ntb_link_disable(ndev);
1432 	ntb_clear_ctx(ndev);
1433 
1434 	ntb_bus_remove(nt);
1435 
1436 	for (i = nt->mw_count; i--; ) {
1437 		ntb_free_mw(nt, i);
1438 		iounmap(nt->mw_vec[i].vbase);
1439 	}
1440 
1441 	kfree(nt->qp_vec);
1442 	kfree(nt->mw_vec);
1443 	kfree(nt);
1444 }
1445 
ntb_complete_rxc(struct ntb_transport_qp * qp)1446 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1447 {
1448 	struct ntb_queue_entry *entry;
1449 	void *cb_data;
1450 	unsigned int len;
1451 	unsigned long irqflags;
1452 
1453 	spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1454 
1455 	while (!list_empty(&qp->rx_post_q)) {
1456 		entry = list_first_entry(&qp->rx_post_q,
1457 					 struct ntb_queue_entry, entry);
1458 		if (!(entry->flags & DESC_DONE_FLAG))
1459 			break;
1460 
1461 		entry->rx_hdr->flags = 0;
1462 		iowrite32(entry->rx_index, &qp->rx_info->entry);
1463 
1464 		cb_data = entry->cb_data;
1465 		len = entry->len;
1466 
1467 		list_move_tail(&entry->entry, &qp->rx_free_q);
1468 
1469 		spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1470 
1471 		if (qp->rx_handler && qp->client_ready)
1472 			qp->rx_handler(qp, qp->cb_data, cb_data, len);
1473 
1474 		spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1475 	}
1476 
1477 	spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1478 }
1479 
ntb_rx_copy_callback(void * data,const struct dmaengine_result * res)1480 static void ntb_rx_copy_callback(void *data,
1481 				 const struct dmaengine_result *res)
1482 {
1483 	struct ntb_queue_entry *entry = data;
1484 
1485 	/* we need to check DMA results if we are using DMA */
1486 	if (res) {
1487 		enum dmaengine_tx_result dma_err = res->result;
1488 
1489 		switch (dma_err) {
1490 		case DMA_TRANS_READ_FAILED:
1491 		case DMA_TRANS_WRITE_FAILED:
1492 			entry->errors++;
1493 			fallthrough;
1494 		case DMA_TRANS_ABORTED:
1495 		{
1496 			struct ntb_transport_qp *qp = entry->qp;
1497 			void *offset = qp->rx_buff + qp->rx_max_frame *
1498 					qp->rx_index;
1499 
1500 			ntb_memcpy_rx(entry, offset);
1501 			qp->rx_memcpy++;
1502 			return;
1503 		}
1504 
1505 		case DMA_TRANS_NOERROR:
1506 		default:
1507 			break;
1508 		}
1509 	}
1510 
1511 	entry->flags |= DESC_DONE_FLAG;
1512 
1513 	ntb_complete_rxc(entry->qp);
1514 }
1515 
ntb_memcpy_rx(struct ntb_queue_entry * entry,void * offset)1516 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1517 {
1518 	void *buf = entry->buf;
1519 	size_t len = entry->len;
1520 
1521 	memcpy(buf, offset, len);
1522 
1523 	/* Ensure that the data is fully copied out before clearing the flag */
1524 	wmb();
1525 
1526 	ntb_rx_copy_callback(entry, NULL);
1527 }
1528 
ntb_async_rx_submit(struct ntb_queue_entry * entry,void * offset)1529 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1530 {
1531 	struct dma_async_tx_descriptor *txd;
1532 	struct ntb_transport_qp *qp = entry->qp;
1533 	struct dma_chan *chan = qp->rx_dma_chan;
1534 	struct dma_device *device;
1535 	size_t pay_off, buff_off, len;
1536 	struct dmaengine_unmap_data *unmap;
1537 	dma_cookie_t cookie;
1538 	void *buf = entry->buf;
1539 
1540 	len = entry->len;
1541 	device = chan->device;
1542 	pay_off = (size_t)offset & ~PAGE_MASK;
1543 	buff_off = (size_t)buf & ~PAGE_MASK;
1544 
1545 	if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1546 		goto err;
1547 
1548 	unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1549 	if (!unmap)
1550 		goto err;
1551 
1552 	unmap->len = len;
1553 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1554 				      pay_off, len, DMA_TO_DEVICE);
1555 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1556 		goto err_get_unmap;
1557 
1558 	unmap->to_cnt = 1;
1559 
1560 	unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1561 				      buff_off, len, DMA_FROM_DEVICE);
1562 	if (dma_mapping_error(device->dev, unmap->addr[1]))
1563 		goto err_get_unmap;
1564 
1565 	unmap->from_cnt = 1;
1566 
1567 	txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1568 					     unmap->addr[0], len,
1569 					     DMA_PREP_INTERRUPT);
1570 	if (!txd)
1571 		goto err_get_unmap;
1572 
1573 	txd->callback_result = ntb_rx_copy_callback;
1574 	txd->callback_param = entry;
1575 	dma_set_unmap(txd, unmap);
1576 
1577 	cookie = dmaengine_submit(txd);
1578 	if (dma_submit_error(cookie))
1579 		goto err_set_unmap;
1580 
1581 	dmaengine_unmap_put(unmap);
1582 
1583 	qp->last_cookie = cookie;
1584 
1585 	qp->rx_async++;
1586 
1587 	return 0;
1588 
1589 err_set_unmap:
1590 	dmaengine_unmap_put(unmap);
1591 err_get_unmap:
1592 	dmaengine_unmap_put(unmap);
1593 err:
1594 	return -ENXIO;
1595 }
1596 
ntb_async_rx(struct ntb_queue_entry * entry,void * offset)1597 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1598 {
1599 	struct ntb_transport_qp *qp = entry->qp;
1600 	struct dma_chan *chan = qp->rx_dma_chan;
1601 	int res;
1602 
1603 	if (!chan)
1604 		goto err;
1605 
1606 	if (entry->len < copy_bytes)
1607 		goto err;
1608 
1609 	res = ntb_async_rx_submit(entry, offset);
1610 	if (res < 0)
1611 		goto err;
1612 
1613 	if (!entry->retries)
1614 		qp->rx_async++;
1615 
1616 	return;
1617 
1618 err:
1619 	ntb_memcpy_rx(entry, offset);
1620 	qp->rx_memcpy++;
1621 }
1622 
ntb_process_rxc(struct ntb_transport_qp * qp)1623 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1624 {
1625 	struct ntb_payload_header *hdr;
1626 	struct ntb_queue_entry *entry;
1627 	void *offset;
1628 
1629 	offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1630 	hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1631 
1632 	dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1633 		qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1634 
1635 	if (!(hdr->flags & DESC_DONE_FLAG)) {
1636 		dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1637 		qp->rx_ring_empty++;
1638 		return -EAGAIN;
1639 	}
1640 
1641 	if (hdr->flags & LINK_DOWN_FLAG) {
1642 		dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1643 		ntb_qp_link_down(qp);
1644 		hdr->flags = 0;
1645 		return -EAGAIN;
1646 	}
1647 
1648 	if (hdr->ver != (u32)qp->rx_pkts) {
1649 		dev_dbg(&qp->ndev->pdev->dev,
1650 			"version mismatch, expected %llu - got %u\n",
1651 			qp->rx_pkts, hdr->ver);
1652 		qp->rx_err_ver++;
1653 		return -EIO;
1654 	}
1655 
1656 	entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1657 	if (!entry) {
1658 		dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1659 		qp->rx_err_no_buf++;
1660 		return -EAGAIN;
1661 	}
1662 
1663 	entry->rx_hdr = hdr;
1664 	entry->rx_index = qp->rx_index;
1665 
1666 	if (hdr->len > entry->len) {
1667 		dev_dbg(&qp->ndev->pdev->dev,
1668 			"receive buffer overflow! Wanted %d got %d\n",
1669 			hdr->len, entry->len);
1670 		qp->rx_err_oflow++;
1671 
1672 		entry->len = -EIO;
1673 		entry->flags |= DESC_DONE_FLAG;
1674 
1675 		ntb_complete_rxc(qp);
1676 	} else {
1677 		dev_dbg(&qp->ndev->pdev->dev,
1678 			"RX OK index %u ver %u size %d into buf size %d\n",
1679 			qp->rx_index, hdr->ver, hdr->len, entry->len);
1680 
1681 		qp->rx_bytes += hdr->len;
1682 		qp->rx_pkts++;
1683 
1684 		entry->len = hdr->len;
1685 
1686 		ntb_async_rx(entry, offset);
1687 	}
1688 
1689 	qp->rx_index++;
1690 	qp->rx_index %= qp->rx_max_entry;
1691 
1692 	return 0;
1693 }
1694 
ntb_transport_rxc_db(unsigned long data)1695 static void ntb_transport_rxc_db(unsigned long data)
1696 {
1697 	struct ntb_transport_qp *qp = (void *)data;
1698 	int rc, i;
1699 
1700 	dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1701 		__func__, qp->qp_num);
1702 
1703 	/* Limit the number of packets processed in a single interrupt to
1704 	 * provide fairness to others
1705 	 */
1706 	for (i = 0; i < qp->rx_max_entry; i++) {
1707 		rc = ntb_process_rxc(qp);
1708 		if (rc)
1709 			break;
1710 	}
1711 
1712 	if (i && qp->rx_dma_chan)
1713 		dma_async_issue_pending(qp->rx_dma_chan);
1714 
1715 	if (i == qp->rx_max_entry) {
1716 		/* there is more work to do */
1717 		if (qp->active)
1718 			tasklet_schedule(&qp->rxc_db_work);
1719 	} else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1720 		/* the doorbell bit is set: clear it */
1721 		ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1722 		/* ntb_db_read ensures ntb_db_clear write is committed */
1723 		ntb_db_read(qp->ndev);
1724 
1725 		/* an interrupt may have arrived between finishing
1726 		 * ntb_process_rxc and clearing the doorbell bit:
1727 		 * there might be some more work to do.
1728 		 */
1729 		if (qp->active)
1730 			tasklet_schedule(&qp->rxc_db_work);
1731 	}
1732 }
1733 
ntb_tx_copy_callback(void * data,const struct dmaengine_result * res)1734 static void ntb_tx_copy_callback(void *data,
1735 				 const struct dmaengine_result *res)
1736 {
1737 	struct ntb_queue_entry *entry = data;
1738 	struct ntb_transport_qp *qp = entry->qp;
1739 	struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1740 
1741 	/* we need to check DMA results if we are using DMA */
1742 	if (res) {
1743 		enum dmaengine_tx_result dma_err = res->result;
1744 
1745 		switch (dma_err) {
1746 		case DMA_TRANS_READ_FAILED:
1747 		case DMA_TRANS_WRITE_FAILED:
1748 			entry->errors++;
1749 			fallthrough;
1750 		case DMA_TRANS_ABORTED:
1751 		{
1752 			void __iomem *offset =
1753 				qp->tx_mw + qp->tx_max_frame *
1754 				entry->tx_index;
1755 
1756 			/* resubmit via CPU */
1757 			ntb_memcpy_tx(entry, offset);
1758 			qp->tx_memcpy++;
1759 			return;
1760 		}
1761 
1762 		case DMA_TRANS_NOERROR:
1763 		default:
1764 			break;
1765 		}
1766 	}
1767 
1768 	iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1769 
1770 	if (qp->use_msi)
1771 		ntb_msi_peer_trigger(qp->ndev, PIDX, &qp->peer_msi_desc);
1772 	else
1773 		ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1774 
1775 	/* The entry length can only be zero if the packet is intended to be a
1776 	 * "link down" or similar.  Since no payload is being sent in these
1777 	 * cases, there is nothing to add to the completion queue.
1778 	 */
1779 	if (entry->len > 0) {
1780 		qp->tx_bytes += entry->len;
1781 
1782 		if (qp->tx_handler)
1783 			qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1784 				       entry->len);
1785 	}
1786 
1787 	ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1788 }
1789 
ntb_memcpy_tx(struct ntb_queue_entry * entry,void __iomem * offset)1790 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1791 {
1792 #ifdef ARCH_HAS_NOCACHE_UACCESS
1793 	/*
1794 	 * Using non-temporal mov to improve performance on non-cached
1795 	 * writes, even though we aren't actually copying from user space.
1796 	 */
1797 	__copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1798 #else
1799 	memcpy_toio(offset, entry->buf, entry->len);
1800 #endif
1801 
1802 	/* Ensure that the data is fully copied out before setting the flags */
1803 	wmb();
1804 
1805 	ntb_tx_copy_callback(entry, NULL);
1806 }
1807 
ntb_async_tx_submit(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1808 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1809 			       struct ntb_queue_entry *entry)
1810 {
1811 	struct dma_async_tx_descriptor *txd;
1812 	struct dma_chan *chan = qp->tx_dma_chan;
1813 	struct dma_device *device;
1814 	size_t len = entry->len;
1815 	void *buf = entry->buf;
1816 	size_t dest_off, buff_off;
1817 	struct dmaengine_unmap_data *unmap;
1818 	dma_addr_t dest;
1819 	dma_cookie_t cookie;
1820 
1821 	device = chan->device;
1822 	dest = qp->tx_mw_dma_addr + qp->tx_max_frame * entry->tx_index;
1823 	buff_off = (size_t)buf & ~PAGE_MASK;
1824 	dest_off = (size_t)dest & ~PAGE_MASK;
1825 
1826 	if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1827 		goto err;
1828 
1829 	unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1830 	if (!unmap)
1831 		goto err;
1832 
1833 	unmap->len = len;
1834 	unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1835 				      buff_off, len, DMA_TO_DEVICE);
1836 	if (dma_mapping_error(device->dev, unmap->addr[0]))
1837 		goto err_get_unmap;
1838 
1839 	unmap->to_cnt = 1;
1840 
1841 	txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1842 					     DMA_PREP_INTERRUPT);
1843 	if (!txd)
1844 		goto err_get_unmap;
1845 
1846 	txd->callback_result = ntb_tx_copy_callback;
1847 	txd->callback_param = entry;
1848 	dma_set_unmap(txd, unmap);
1849 
1850 	cookie = dmaengine_submit(txd);
1851 	if (dma_submit_error(cookie))
1852 		goto err_set_unmap;
1853 
1854 	dmaengine_unmap_put(unmap);
1855 
1856 	dma_async_issue_pending(chan);
1857 
1858 	return 0;
1859 err_set_unmap:
1860 	dmaengine_unmap_put(unmap);
1861 err_get_unmap:
1862 	dmaengine_unmap_put(unmap);
1863 err:
1864 	return -ENXIO;
1865 }
1866 
ntb_async_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1867 static void ntb_async_tx(struct ntb_transport_qp *qp,
1868 			 struct ntb_queue_entry *entry)
1869 {
1870 	struct ntb_payload_header __iomem *hdr;
1871 	struct dma_chan *chan = qp->tx_dma_chan;
1872 	void __iomem *offset;
1873 	int res;
1874 
1875 	entry->tx_index = qp->tx_index;
1876 	offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1877 	hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1878 	entry->tx_hdr = hdr;
1879 
1880 	iowrite32(entry->len, &hdr->len);
1881 	iowrite32((u32)qp->tx_pkts, &hdr->ver);
1882 
1883 	if (!chan)
1884 		goto err;
1885 
1886 	if (entry->len < copy_bytes)
1887 		goto err;
1888 
1889 	res = ntb_async_tx_submit(qp, entry);
1890 	if (res < 0)
1891 		goto err;
1892 
1893 	if (!entry->retries)
1894 		qp->tx_async++;
1895 
1896 	return;
1897 
1898 err:
1899 	ntb_memcpy_tx(entry, offset);
1900 	qp->tx_memcpy++;
1901 }
1902 
ntb_process_tx(struct ntb_transport_qp * qp,struct ntb_queue_entry * entry)1903 static int ntb_process_tx(struct ntb_transport_qp *qp,
1904 			  struct ntb_queue_entry *entry)
1905 {
1906 	if (qp->tx_index == qp->remote_rx_info->entry) {
1907 		qp->tx_ring_full++;
1908 		return -EAGAIN;
1909 	}
1910 
1911 	if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1912 		if (qp->tx_handler)
1913 			qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1914 
1915 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1916 			     &qp->tx_free_q);
1917 		return 0;
1918 	}
1919 
1920 	ntb_async_tx(qp, entry);
1921 
1922 	qp->tx_index++;
1923 	qp->tx_index %= qp->tx_max_entry;
1924 
1925 	qp->tx_pkts++;
1926 
1927 	return 0;
1928 }
1929 
ntb_send_link_down(struct ntb_transport_qp * qp)1930 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1931 {
1932 	struct pci_dev *pdev = qp->ndev->pdev;
1933 	struct ntb_queue_entry *entry;
1934 	int i, rc;
1935 
1936 	if (!qp->link_is_up)
1937 		return;
1938 
1939 	dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1940 
1941 	for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1942 		entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1943 		if (entry)
1944 			break;
1945 		msleep(100);
1946 	}
1947 
1948 	if (!entry)
1949 		return;
1950 
1951 	entry->cb_data = NULL;
1952 	entry->buf = NULL;
1953 	entry->len = 0;
1954 	entry->flags = LINK_DOWN_FLAG;
1955 
1956 	rc = ntb_process_tx(qp, entry);
1957 	if (rc)
1958 		dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1959 			qp->qp_num);
1960 
1961 	ntb_qp_link_down_reset(qp);
1962 }
1963 
ntb_dma_filter_fn(struct dma_chan * chan,void * node)1964 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1965 {
1966 	return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1967 }
1968 
1969 /**
1970  * ntb_transport_create_queue - Create a new NTB transport layer queue
1971  * @rx_handler: receive callback function
1972  * @tx_handler: transmit callback function
1973  * @event_handler: event callback function
1974  *
1975  * Create a new NTB transport layer queue and provide the queue with a callback
1976  * routine for both transmit and receive.  The receive callback routine will be
1977  * used to pass up data when the transport has received it on the queue.   The
1978  * transmit callback routine will be called when the transport has completed the
1979  * transmission of the data on the queue and the data is ready to be freed.
1980  *
1981  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1982  */
1983 struct ntb_transport_qp *
ntb_transport_create_queue(void * data,struct device * client_dev,const struct ntb_queue_handlers * handlers)1984 ntb_transport_create_queue(void *data, struct device *client_dev,
1985 			   const struct ntb_queue_handlers *handlers)
1986 {
1987 	struct ntb_dev *ndev;
1988 	struct pci_dev *pdev;
1989 	struct ntb_transport_ctx *nt;
1990 	struct ntb_queue_entry *entry;
1991 	struct ntb_transport_qp *qp;
1992 	u64 qp_bit;
1993 	unsigned int free_queue;
1994 	dma_cap_mask_t dma_mask;
1995 	int node;
1996 	int i;
1997 
1998 	ndev = dev_ntb(client_dev->parent);
1999 	pdev = ndev->pdev;
2000 	nt = ndev->ctx;
2001 
2002 	node = dev_to_node(&ndev->dev);
2003 
2004 	free_queue = ffs(nt->qp_bitmap_free);
2005 	if (!free_queue)
2006 		goto err;
2007 
2008 	/* decrement free_queue to make it zero based */
2009 	free_queue--;
2010 
2011 	qp = &nt->qp_vec[free_queue];
2012 	qp_bit = BIT_ULL(qp->qp_num);
2013 
2014 	nt->qp_bitmap_free &= ~qp_bit;
2015 
2016 	qp->cb_data = data;
2017 	qp->rx_handler = handlers->rx_handler;
2018 	qp->tx_handler = handlers->tx_handler;
2019 	qp->event_handler = handlers->event_handler;
2020 
2021 	dma_cap_zero(dma_mask);
2022 	dma_cap_set(DMA_MEMCPY, dma_mask);
2023 
2024 	if (use_dma) {
2025 		qp->tx_dma_chan =
2026 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2027 					    (void *)(unsigned long)node);
2028 		if (!qp->tx_dma_chan)
2029 			dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
2030 
2031 		qp->rx_dma_chan =
2032 			dma_request_channel(dma_mask, ntb_dma_filter_fn,
2033 					    (void *)(unsigned long)node);
2034 		if (!qp->rx_dma_chan)
2035 			dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
2036 	} else {
2037 		qp->tx_dma_chan = NULL;
2038 		qp->rx_dma_chan = NULL;
2039 	}
2040 
2041 	qp->tx_mw_dma_addr = 0;
2042 	if (qp->tx_dma_chan) {
2043 		qp->tx_mw_dma_addr =
2044 			dma_map_resource(qp->tx_dma_chan->device->dev,
2045 					 qp->tx_mw_phys, qp->tx_mw_size,
2046 					 DMA_FROM_DEVICE, 0);
2047 		if (dma_mapping_error(qp->tx_dma_chan->device->dev,
2048 				      qp->tx_mw_dma_addr)) {
2049 			qp->tx_mw_dma_addr = 0;
2050 			goto err1;
2051 		}
2052 	}
2053 
2054 	dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
2055 		qp->tx_dma_chan ? "DMA" : "CPU");
2056 
2057 	dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
2058 		qp->rx_dma_chan ? "DMA" : "CPU");
2059 
2060 	for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
2061 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2062 		if (!entry)
2063 			goto err1;
2064 
2065 		entry->qp = qp;
2066 		ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
2067 			     &qp->rx_free_q);
2068 	}
2069 	qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
2070 
2071 	for (i = 0; i < qp->tx_max_entry; i++) {
2072 		entry = kzalloc_node(sizeof(*entry), GFP_KERNEL, node);
2073 		if (!entry)
2074 			goto err2;
2075 
2076 		entry->qp = qp;
2077 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2078 			     &qp->tx_free_q);
2079 	}
2080 
2081 	ntb_db_clear(qp->ndev, qp_bit);
2082 	ntb_db_clear_mask(qp->ndev, qp_bit);
2083 
2084 	dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
2085 
2086 	return qp;
2087 
2088 err2:
2089 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2090 		kfree(entry);
2091 err1:
2092 	qp->rx_alloc_entry = 0;
2093 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2094 		kfree(entry);
2095 	if (qp->tx_mw_dma_addr)
2096 		dma_unmap_resource(qp->tx_dma_chan->device->dev,
2097 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2098 				   DMA_FROM_DEVICE, 0);
2099 	if (qp->tx_dma_chan)
2100 		dma_release_channel(qp->tx_dma_chan);
2101 	if (qp->rx_dma_chan)
2102 		dma_release_channel(qp->rx_dma_chan);
2103 	nt->qp_bitmap_free |= qp_bit;
2104 err:
2105 	return NULL;
2106 }
2107 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
2108 
2109 /**
2110  * ntb_transport_free_queue - Frees NTB transport queue
2111  * @qp: NTB queue to be freed
2112  *
2113  * Frees NTB transport queue
2114  */
ntb_transport_free_queue(struct ntb_transport_qp * qp)2115 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
2116 {
2117 	struct pci_dev *pdev;
2118 	struct ntb_queue_entry *entry;
2119 	u64 qp_bit;
2120 
2121 	if (!qp)
2122 		return;
2123 
2124 	pdev = qp->ndev->pdev;
2125 
2126 	qp->active = false;
2127 
2128 	if (qp->tx_dma_chan) {
2129 		struct dma_chan *chan = qp->tx_dma_chan;
2130 		/* Putting the dma_chan to NULL will force any new traffic to be
2131 		 * processed by the CPU instead of the DAM engine
2132 		 */
2133 		qp->tx_dma_chan = NULL;
2134 
2135 		/* Try to be nice and wait for any queued DMA engine
2136 		 * transactions to process before smashing it with a rock
2137 		 */
2138 		dma_sync_wait(chan, qp->last_cookie);
2139 		dmaengine_terminate_all(chan);
2140 
2141 		dma_unmap_resource(chan->device->dev,
2142 				   qp->tx_mw_dma_addr, qp->tx_mw_size,
2143 				   DMA_FROM_DEVICE, 0);
2144 
2145 		dma_release_channel(chan);
2146 	}
2147 
2148 	if (qp->rx_dma_chan) {
2149 		struct dma_chan *chan = qp->rx_dma_chan;
2150 		/* Putting the dma_chan to NULL will force any new traffic to be
2151 		 * processed by the CPU instead of the DAM engine
2152 		 */
2153 		qp->rx_dma_chan = NULL;
2154 
2155 		/* Try to be nice and wait for any queued DMA engine
2156 		 * transactions to process before smashing it with a rock
2157 		 */
2158 		dma_sync_wait(chan, qp->last_cookie);
2159 		dmaengine_terminate_all(chan);
2160 		dma_release_channel(chan);
2161 	}
2162 
2163 	qp_bit = BIT_ULL(qp->qp_num);
2164 
2165 	ntb_db_set_mask(qp->ndev, qp_bit);
2166 	tasklet_kill(&qp->rxc_db_work);
2167 
2168 	cancel_delayed_work_sync(&qp->link_work);
2169 
2170 	qp->cb_data = NULL;
2171 	qp->rx_handler = NULL;
2172 	qp->tx_handler = NULL;
2173 	qp->event_handler = NULL;
2174 
2175 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
2176 		kfree(entry);
2177 
2178 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
2179 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
2180 		kfree(entry);
2181 	}
2182 
2183 	while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
2184 		dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
2185 		kfree(entry);
2186 	}
2187 
2188 	while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
2189 		kfree(entry);
2190 
2191 	qp->transport->qp_bitmap_free |= qp_bit;
2192 
2193 	dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
2194 }
2195 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
2196 
2197 /**
2198  * ntb_transport_rx_remove - Dequeues enqueued rx packet
2199  * @qp: NTB queue to be freed
2200  * @len: pointer to variable to write enqueued buffers length
2201  *
2202  * Dequeues unused buffers from receive queue.  Should only be used during
2203  * shutdown of qp.
2204  *
2205  * RETURNS: NULL error value on error, or void* for success.
2206  */
ntb_transport_rx_remove(struct ntb_transport_qp * qp,unsigned int * len)2207 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
2208 {
2209 	struct ntb_queue_entry *entry;
2210 	void *buf;
2211 
2212 	if (!qp || qp->client_ready)
2213 		return NULL;
2214 
2215 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
2216 	if (!entry)
2217 		return NULL;
2218 
2219 	buf = entry->cb_data;
2220 	*len = entry->len;
2221 
2222 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2223 
2224 	return buf;
2225 }
2226 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2227 
2228 /**
2229  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2230  * @qp: NTB transport layer queue the entry is to be enqueued on
2231  * @cb: per buffer pointer for callback function to use
2232  * @data: pointer to data buffer that incoming packets will be copied into
2233  * @len: length of the data buffer
2234  *
2235  * Enqueue a new receive buffer onto the transport queue into which a NTB
2236  * payload can be received into.
2237  *
2238  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2239  */
ntb_transport_rx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2240 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2241 			     unsigned int len)
2242 {
2243 	struct ntb_queue_entry *entry;
2244 
2245 	if (!qp)
2246 		return -EINVAL;
2247 
2248 	entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2249 	if (!entry)
2250 		return -ENOMEM;
2251 
2252 	entry->cb_data = cb;
2253 	entry->buf = data;
2254 	entry->len = len;
2255 	entry->flags = 0;
2256 	entry->retries = 0;
2257 	entry->errors = 0;
2258 	entry->rx_index = 0;
2259 
2260 	ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2261 
2262 	if (qp->active)
2263 		tasklet_schedule(&qp->rxc_db_work);
2264 
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2268 
2269 /**
2270  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2271  * @qp: NTB transport layer queue the entry is to be enqueued on
2272  * @cb: per buffer pointer for callback function to use
2273  * @data: pointer to data buffer that will be sent
2274  * @len: length of the data buffer
2275  *
2276  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2277  * payload will be transmitted.  This assumes that a lock is being held to
2278  * serialize access to the qp.
2279  *
2280  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2281  */
ntb_transport_tx_enqueue(struct ntb_transport_qp * qp,void * cb,void * data,unsigned int len)2282 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2283 			     unsigned int len)
2284 {
2285 	struct ntb_queue_entry *entry;
2286 	int rc;
2287 
2288 	if (!qp || !len)
2289 		return -EINVAL;
2290 
2291 	/* If the qp link is down already, just ignore. */
2292 	if (!qp->link_is_up)
2293 		return 0;
2294 
2295 	entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2296 	if (!entry) {
2297 		qp->tx_err_no_buf++;
2298 		return -EBUSY;
2299 	}
2300 
2301 	entry->cb_data = cb;
2302 	entry->buf = data;
2303 	entry->len = len;
2304 	entry->flags = 0;
2305 	entry->errors = 0;
2306 	entry->retries = 0;
2307 	entry->tx_index = 0;
2308 
2309 	rc = ntb_process_tx(qp, entry);
2310 	if (rc)
2311 		ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2312 			     &qp->tx_free_q);
2313 
2314 	return rc;
2315 }
2316 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2317 
2318 /**
2319  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2320  * @qp: NTB transport layer queue to be enabled
2321  *
2322  * Notify NTB transport layer of client readiness to use queue
2323  */
ntb_transport_link_up(struct ntb_transport_qp * qp)2324 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2325 {
2326 	if (!qp)
2327 		return;
2328 
2329 	qp->client_ready = true;
2330 
2331 	if (qp->transport->link_is_up)
2332 		schedule_delayed_work(&qp->link_work, 0);
2333 }
2334 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2335 
2336 /**
2337  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2338  * @qp: NTB transport layer queue to be disabled
2339  *
2340  * Notify NTB transport layer of client's desire to no longer receive data on
2341  * transport queue specified.  It is the client's responsibility to ensure all
2342  * entries on queue are purged or otherwise handled appropriately.
2343  */
ntb_transport_link_down(struct ntb_transport_qp * qp)2344 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2345 {
2346 	int val;
2347 
2348 	if (!qp)
2349 		return;
2350 
2351 	qp->client_ready = false;
2352 
2353 	val = ntb_spad_read(qp->ndev, QP_LINKS);
2354 
2355 	ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2356 
2357 	if (qp->link_is_up)
2358 		ntb_send_link_down(qp);
2359 	else
2360 		cancel_delayed_work_sync(&qp->link_work);
2361 }
2362 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2363 
2364 /**
2365  * ntb_transport_link_query - Query transport link state
2366  * @qp: NTB transport layer queue to be queried
2367  *
2368  * Query connectivity to the remote system of the NTB transport queue
2369  *
2370  * RETURNS: true for link up or false for link down
2371  */
ntb_transport_link_query(struct ntb_transport_qp * qp)2372 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2373 {
2374 	if (!qp)
2375 		return false;
2376 
2377 	return qp->link_is_up;
2378 }
2379 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2380 
2381 /**
2382  * ntb_transport_qp_num - Query the qp number
2383  * @qp: NTB transport layer queue to be queried
2384  *
2385  * Query qp number of the NTB transport queue
2386  *
2387  * RETURNS: a zero based number specifying the qp number
2388  */
ntb_transport_qp_num(struct ntb_transport_qp * qp)2389 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2390 {
2391 	if (!qp)
2392 		return 0;
2393 
2394 	return qp->qp_num;
2395 }
2396 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2397 
2398 /**
2399  * ntb_transport_max_size - Query the max payload size of a qp
2400  * @qp: NTB transport layer queue to be queried
2401  *
2402  * Query the maximum payload size permissible on the given qp
2403  *
2404  * RETURNS: the max payload size of a qp
2405  */
ntb_transport_max_size(struct ntb_transport_qp * qp)2406 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2407 {
2408 	unsigned int max_size;
2409 	unsigned int copy_align;
2410 	struct dma_chan *rx_chan, *tx_chan;
2411 
2412 	if (!qp)
2413 		return 0;
2414 
2415 	rx_chan = qp->rx_dma_chan;
2416 	tx_chan = qp->tx_dma_chan;
2417 
2418 	copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2419 			 tx_chan ? tx_chan->device->copy_align : 0);
2420 
2421 	/* If DMA engine usage is possible, try to find the max size for that */
2422 	max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2423 	max_size = round_down(max_size, 1 << copy_align);
2424 
2425 	return max_size;
2426 }
2427 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2428 
ntb_transport_tx_free_entry(struct ntb_transport_qp * qp)2429 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2430 {
2431 	unsigned int head = qp->tx_index;
2432 	unsigned int tail = qp->remote_rx_info->entry;
2433 
2434 	return tail >= head ? tail - head : qp->tx_max_entry + tail - head;
2435 }
2436 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2437 
ntb_transport_doorbell_callback(void * data,int vector)2438 static void ntb_transport_doorbell_callback(void *data, int vector)
2439 {
2440 	struct ntb_transport_ctx *nt = data;
2441 	struct ntb_transport_qp *qp;
2442 	u64 db_bits;
2443 	unsigned int qp_num;
2444 
2445 	if (ntb_db_read(nt->ndev) & nt->msi_db_mask) {
2446 		ntb_transport_msi_peer_desc_changed(nt);
2447 		ntb_db_clear(nt->ndev, nt->msi_db_mask);
2448 	}
2449 
2450 	db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2451 		   ntb_db_vector_mask(nt->ndev, vector));
2452 
2453 	while (db_bits) {
2454 		qp_num = __ffs(db_bits);
2455 		qp = &nt->qp_vec[qp_num];
2456 
2457 		if (qp->active)
2458 			tasklet_schedule(&qp->rxc_db_work);
2459 
2460 		db_bits &= ~BIT_ULL(qp_num);
2461 	}
2462 }
2463 
2464 static const struct ntb_ctx_ops ntb_transport_ops = {
2465 	.link_event = ntb_transport_event_callback,
2466 	.db_event = ntb_transport_doorbell_callback,
2467 };
2468 
2469 static struct ntb_client ntb_transport_client = {
2470 	.ops = {
2471 		.probe = ntb_transport_probe,
2472 		.remove = ntb_transport_free,
2473 	},
2474 };
2475 
ntb_transport_init(void)2476 static int __init ntb_transport_init(void)
2477 {
2478 	int rc;
2479 
2480 	pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2481 
2482 	if (debugfs_initialized())
2483 		nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2484 
2485 	rc = bus_register(&ntb_transport_bus);
2486 	if (rc)
2487 		goto err_bus;
2488 
2489 	rc = ntb_register_client(&ntb_transport_client);
2490 	if (rc)
2491 		goto err_client;
2492 
2493 	return 0;
2494 
2495 err_client:
2496 	bus_unregister(&ntb_transport_bus);
2497 err_bus:
2498 	debugfs_remove_recursive(nt_debugfs_dir);
2499 	return rc;
2500 }
2501 module_init(ntb_transport_init);
2502 
ntb_transport_exit(void)2503 static void __exit ntb_transport_exit(void)
2504 {
2505 	ntb_unregister_client(&ntb_transport_client);
2506 	bus_unregister(&ntb_transport_bus);
2507 	debugfs_remove_recursive(nt_debugfs_dir);
2508 }
2509 module_exit(ntb_transport_exit);
2510