• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/gfp.h>
11 #include <linux/pagemap.h>
12 #include <linux/pagevec.h>
13 #include <linux/sched/signal.h>
14 #include <linux/swap.h>
15 #include <linux/uio.h>
16 #include <linux/writeback.h>
17 
18 #include <asm/page.h>
19 #include <linux/uaccess.h>
20 
21 #include "attrib.h"
22 #include "bitmap.h"
23 #include "inode.h"
24 #include "debug.h"
25 #include "lcnalloc.h"
26 #include "malloc.h"
27 #include "mft.h"
28 #include "ntfs.h"
29 
30 /**
31  * ntfs_file_open - called when an inode is about to be opened
32  * @vi:		inode to be opened
33  * @filp:	file structure describing the inode
34  *
35  * Limit file size to the page cache limit on architectures where unsigned long
36  * is 32-bits. This is the most we can do for now without overflowing the page
37  * cache page index. Doing it this way means we don't run into problems because
38  * of existing too large files. It would be better to allow the user to read
39  * the beginning of the file but I doubt very much anyone is going to hit this
40  * check on a 32-bit architecture, so there is no point in adding the extra
41  * complexity required to support this.
42  *
43  * On 64-bit architectures, the check is hopefully optimized away by the
44  * compiler.
45  *
46  * After the check passes, just call generic_file_open() to do its work.
47  */
ntfs_file_open(struct inode * vi,struct file * filp)48 static int ntfs_file_open(struct inode *vi, struct file *filp)
49 {
50 	if (sizeof(unsigned long) < 8) {
51 		if (i_size_read(vi) > MAX_LFS_FILESIZE)
52 			return -EOVERFLOW;
53 	}
54 	return generic_file_open(vi, filp);
55 }
56 
57 #ifdef NTFS_RW
58 
59 /**
60  * ntfs_attr_extend_initialized - extend the initialized size of an attribute
61  * @ni:			ntfs inode of the attribute to extend
62  * @new_init_size:	requested new initialized size in bytes
63  *
64  * Extend the initialized size of an attribute described by the ntfs inode @ni
65  * to @new_init_size bytes.  This involves zeroing any non-sparse space between
66  * the old initialized size and @new_init_size both in the page cache and on
67  * disk (if relevant complete pages are already uptodate in the page cache then
68  * these are simply marked dirty).
69  *
70  * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
71  * in the resident attribute case, it is tied to the initialized size and, in
72  * the non-resident attribute case, it may not fall below the initialized size.
73  *
74  * Note that if the attribute is resident, we do not need to touch the page
75  * cache at all.  This is because if the page cache page is not uptodate we
76  * bring it uptodate later, when doing the write to the mft record since we
77  * then already have the page mapped.  And if the page is uptodate, the
78  * non-initialized region will already have been zeroed when the page was
79  * brought uptodate and the region may in fact already have been overwritten
80  * with new data via mmap() based writes, so we cannot just zero it.  And since
81  * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
82  * is unspecified, we choose not to do zeroing and thus we do not need to touch
83  * the page at all.  For a more detailed explanation see ntfs_truncate() in
84  * fs/ntfs/inode.c.
85  *
86  * Return 0 on success and -errno on error.  In the case that an error is
87  * encountered it is possible that the initialized size will already have been
88  * incremented some way towards @new_init_size but it is guaranteed that if
89  * this is the case, the necessary zeroing will also have happened and that all
90  * metadata is self-consistent.
91  *
92  * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
93  *	    held by the caller.
94  */
ntfs_attr_extend_initialized(ntfs_inode * ni,const s64 new_init_size)95 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
96 {
97 	s64 old_init_size;
98 	loff_t old_i_size;
99 	pgoff_t index, end_index;
100 	unsigned long flags;
101 	struct inode *vi = VFS_I(ni);
102 	ntfs_inode *base_ni;
103 	MFT_RECORD *m = NULL;
104 	ATTR_RECORD *a;
105 	ntfs_attr_search_ctx *ctx = NULL;
106 	struct address_space *mapping;
107 	struct page *page = NULL;
108 	u8 *kattr;
109 	int err;
110 	u32 attr_len;
111 
112 	read_lock_irqsave(&ni->size_lock, flags);
113 	old_init_size = ni->initialized_size;
114 	old_i_size = i_size_read(vi);
115 	BUG_ON(new_init_size > ni->allocated_size);
116 	read_unlock_irqrestore(&ni->size_lock, flags);
117 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
118 			"old_initialized_size 0x%llx, "
119 			"new_initialized_size 0x%llx, i_size 0x%llx.",
120 			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
121 			(unsigned long long)old_init_size,
122 			(unsigned long long)new_init_size, old_i_size);
123 	if (!NInoAttr(ni))
124 		base_ni = ni;
125 	else
126 		base_ni = ni->ext.base_ntfs_ino;
127 	/* Use goto to reduce indentation and we need the label below anyway. */
128 	if (NInoNonResident(ni))
129 		goto do_non_resident_extend;
130 	BUG_ON(old_init_size != old_i_size);
131 	m = map_mft_record(base_ni);
132 	if (IS_ERR(m)) {
133 		err = PTR_ERR(m);
134 		m = NULL;
135 		goto err_out;
136 	}
137 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
138 	if (unlikely(!ctx)) {
139 		err = -ENOMEM;
140 		goto err_out;
141 	}
142 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
143 			CASE_SENSITIVE, 0, NULL, 0, ctx);
144 	if (unlikely(err)) {
145 		if (err == -ENOENT)
146 			err = -EIO;
147 		goto err_out;
148 	}
149 	m = ctx->mrec;
150 	a = ctx->attr;
151 	BUG_ON(a->non_resident);
152 	/* The total length of the attribute value. */
153 	attr_len = le32_to_cpu(a->data.resident.value_length);
154 	BUG_ON(old_i_size != (loff_t)attr_len);
155 	/*
156 	 * Do the zeroing in the mft record and update the attribute size in
157 	 * the mft record.
158 	 */
159 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
160 	memset(kattr + attr_len, 0, new_init_size - attr_len);
161 	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
162 	/* Finally, update the sizes in the vfs and ntfs inodes. */
163 	write_lock_irqsave(&ni->size_lock, flags);
164 	i_size_write(vi, new_init_size);
165 	ni->initialized_size = new_init_size;
166 	write_unlock_irqrestore(&ni->size_lock, flags);
167 	goto done;
168 do_non_resident_extend:
169 	/*
170 	 * If the new initialized size @new_init_size exceeds the current file
171 	 * size (vfs inode->i_size), we need to extend the file size to the
172 	 * new initialized size.
173 	 */
174 	if (new_init_size > old_i_size) {
175 		m = map_mft_record(base_ni);
176 		if (IS_ERR(m)) {
177 			err = PTR_ERR(m);
178 			m = NULL;
179 			goto err_out;
180 		}
181 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
182 		if (unlikely(!ctx)) {
183 			err = -ENOMEM;
184 			goto err_out;
185 		}
186 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
187 				CASE_SENSITIVE, 0, NULL, 0, ctx);
188 		if (unlikely(err)) {
189 			if (err == -ENOENT)
190 				err = -EIO;
191 			goto err_out;
192 		}
193 		m = ctx->mrec;
194 		a = ctx->attr;
195 		BUG_ON(!a->non_resident);
196 		BUG_ON(old_i_size != (loff_t)
197 				sle64_to_cpu(a->data.non_resident.data_size));
198 		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
199 		flush_dcache_mft_record_page(ctx->ntfs_ino);
200 		mark_mft_record_dirty(ctx->ntfs_ino);
201 		/* Update the file size in the vfs inode. */
202 		i_size_write(vi, new_init_size);
203 		ntfs_attr_put_search_ctx(ctx);
204 		ctx = NULL;
205 		unmap_mft_record(base_ni);
206 		m = NULL;
207 	}
208 	mapping = vi->i_mapping;
209 	index = old_init_size >> PAGE_SHIFT;
210 	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
211 	do {
212 		/*
213 		 * Read the page.  If the page is not present, this will zero
214 		 * the uninitialized regions for us.
215 		 */
216 		page = read_mapping_page(mapping, index, NULL);
217 		if (IS_ERR(page)) {
218 			err = PTR_ERR(page);
219 			goto init_err_out;
220 		}
221 		if (unlikely(PageError(page))) {
222 			put_page(page);
223 			err = -EIO;
224 			goto init_err_out;
225 		}
226 		/*
227 		 * Update the initialized size in the ntfs inode.  This is
228 		 * enough to make ntfs_writepage() work.
229 		 */
230 		write_lock_irqsave(&ni->size_lock, flags);
231 		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
232 		if (ni->initialized_size > new_init_size)
233 			ni->initialized_size = new_init_size;
234 		write_unlock_irqrestore(&ni->size_lock, flags);
235 		/* Set the page dirty so it gets written out. */
236 		set_page_dirty(page);
237 		put_page(page);
238 		/*
239 		 * Play nice with the vm and the rest of the system.  This is
240 		 * very much needed as we can potentially be modifying the
241 		 * initialised size from a very small value to a really huge
242 		 * value, e.g.
243 		 *	f = open(somefile, O_TRUNC);
244 		 *	truncate(f, 10GiB);
245 		 *	seek(f, 10GiB);
246 		 *	write(f, 1);
247 		 * And this would mean we would be marking dirty hundreds of
248 		 * thousands of pages or as in the above example more than
249 		 * two and a half million pages!
250 		 *
251 		 * TODO: For sparse pages could optimize this workload by using
252 		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
253 		 * would be set in readpage for sparse pages and here we would
254 		 * not need to mark dirty any pages which have this bit set.
255 		 * The only caveat is that we have to clear the bit everywhere
256 		 * where we allocate any clusters that lie in the page or that
257 		 * contain the page.
258 		 *
259 		 * TODO: An even greater optimization would be for us to only
260 		 * call readpage() on pages which are not in sparse regions as
261 		 * determined from the runlist.  This would greatly reduce the
262 		 * number of pages we read and make dirty in the case of sparse
263 		 * files.
264 		 */
265 		balance_dirty_pages_ratelimited(mapping);
266 		cond_resched();
267 	} while (++index < end_index);
268 	read_lock_irqsave(&ni->size_lock, flags);
269 	BUG_ON(ni->initialized_size != new_init_size);
270 	read_unlock_irqrestore(&ni->size_lock, flags);
271 	/* Now bring in sync the initialized_size in the mft record. */
272 	m = map_mft_record(base_ni);
273 	if (IS_ERR(m)) {
274 		err = PTR_ERR(m);
275 		m = NULL;
276 		goto init_err_out;
277 	}
278 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
279 	if (unlikely(!ctx)) {
280 		err = -ENOMEM;
281 		goto init_err_out;
282 	}
283 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
284 			CASE_SENSITIVE, 0, NULL, 0, ctx);
285 	if (unlikely(err)) {
286 		if (err == -ENOENT)
287 			err = -EIO;
288 		goto init_err_out;
289 	}
290 	m = ctx->mrec;
291 	a = ctx->attr;
292 	BUG_ON(!a->non_resident);
293 	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
294 done:
295 	flush_dcache_mft_record_page(ctx->ntfs_ino);
296 	mark_mft_record_dirty(ctx->ntfs_ino);
297 	if (ctx)
298 		ntfs_attr_put_search_ctx(ctx);
299 	if (m)
300 		unmap_mft_record(base_ni);
301 	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
302 			(unsigned long long)new_init_size, i_size_read(vi));
303 	return 0;
304 init_err_out:
305 	write_lock_irqsave(&ni->size_lock, flags);
306 	ni->initialized_size = old_init_size;
307 	write_unlock_irqrestore(&ni->size_lock, flags);
308 err_out:
309 	if (ctx)
310 		ntfs_attr_put_search_ctx(ctx);
311 	if (m)
312 		unmap_mft_record(base_ni);
313 	ntfs_debug("Failed.  Returning error code %i.", err);
314 	return err;
315 }
316 
ntfs_prepare_file_for_write(struct kiocb * iocb,struct iov_iter * from)317 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
318 		struct iov_iter *from)
319 {
320 	loff_t pos;
321 	s64 end, ll;
322 	ssize_t err;
323 	unsigned long flags;
324 	struct file *file = iocb->ki_filp;
325 	struct inode *vi = file_inode(file);
326 	ntfs_inode *base_ni, *ni = NTFS_I(vi);
327 	ntfs_volume *vol = ni->vol;
328 
329 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
330 			"0x%llx, count 0x%zx.", vi->i_ino,
331 			(unsigned)le32_to_cpu(ni->type),
332 			(unsigned long long)iocb->ki_pos,
333 			iov_iter_count(from));
334 	err = generic_write_checks(iocb, from);
335 	if (unlikely(err <= 0))
336 		goto out;
337 	/*
338 	 * All checks have passed.  Before we start doing any writing we want
339 	 * to abort any totally illegal writes.
340 	 */
341 	BUG_ON(NInoMstProtected(ni));
342 	BUG_ON(ni->type != AT_DATA);
343 	/* If file is encrypted, deny access, just like NT4. */
344 	if (NInoEncrypted(ni)) {
345 		/* Only $DATA attributes can be encrypted. */
346 		/*
347 		 * Reminder for later: Encrypted files are _always_
348 		 * non-resident so that the content can always be encrypted.
349 		 */
350 		ntfs_debug("Denying write access to encrypted file.");
351 		err = -EACCES;
352 		goto out;
353 	}
354 	if (NInoCompressed(ni)) {
355 		/* Only unnamed $DATA attribute can be compressed. */
356 		BUG_ON(ni->name_len);
357 		/*
358 		 * Reminder for later: If resident, the data is not actually
359 		 * compressed.  Only on the switch to non-resident does
360 		 * compression kick in.  This is in contrast to encrypted files
361 		 * (see above).
362 		 */
363 		ntfs_error(vi->i_sb, "Writing to compressed files is not "
364 				"implemented yet.  Sorry.");
365 		err = -EOPNOTSUPP;
366 		goto out;
367 	}
368 	base_ni = ni;
369 	if (NInoAttr(ni))
370 		base_ni = ni->ext.base_ntfs_ino;
371 	err = file_remove_privs(file);
372 	if (unlikely(err))
373 		goto out;
374 	/*
375 	 * Our ->update_time method always succeeds thus file_update_time()
376 	 * cannot fail either so there is no need to check the return code.
377 	 */
378 	file_update_time(file);
379 	pos = iocb->ki_pos;
380 	/* The first byte after the last cluster being written to. */
381 	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
382 			~(u64)vol->cluster_size_mask;
383 	/*
384 	 * If the write goes beyond the allocated size, extend the allocation
385 	 * to cover the whole of the write, rounded up to the nearest cluster.
386 	 */
387 	read_lock_irqsave(&ni->size_lock, flags);
388 	ll = ni->allocated_size;
389 	read_unlock_irqrestore(&ni->size_lock, flags);
390 	if (end > ll) {
391 		/*
392 		 * Extend the allocation without changing the data size.
393 		 *
394 		 * Note we ensure the allocation is big enough to at least
395 		 * write some data but we do not require the allocation to be
396 		 * complete, i.e. it may be partial.
397 		 */
398 		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
399 		if (likely(ll >= 0)) {
400 			BUG_ON(pos >= ll);
401 			/* If the extension was partial truncate the write. */
402 			if (end > ll) {
403 				ntfs_debug("Truncating write to inode 0x%lx, "
404 						"attribute type 0x%x, because "
405 						"the allocation was only "
406 						"partially extended.",
407 						vi->i_ino, (unsigned)
408 						le32_to_cpu(ni->type));
409 				iov_iter_truncate(from, ll - pos);
410 			}
411 		} else {
412 			err = ll;
413 			read_lock_irqsave(&ni->size_lock, flags);
414 			ll = ni->allocated_size;
415 			read_unlock_irqrestore(&ni->size_lock, flags);
416 			/* Perform a partial write if possible or fail. */
417 			if (pos < ll) {
418 				ntfs_debug("Truncating write to inode 0x%lx "
419 						"attribute type 0x%x, because "
420 						"extending the allocation "
421 						"failed (error %d).",
422 						vi->i_ino, (unsigned)
423 						le32_to_cpu(ni->type),
424 						(int)-err);
425 				iov_iter_truncate(from, ll - pos);
426 			} else {
427 				if (err != -ENOSPC)
428 					ntfs_error(vi->i_sb, "Cannot perform "
429 							"write to inode "
430 							"0x%lx, attribute "
431 							"type 0x%x, because "
432 							"extending the "
433 							"allocation failed "
434 							"(error %ld).",
435 							vi->i_ino, (unsigned)
436 							le32_to_cpu(ni->type),
437 							(long)-err);
438 				else
439 					ntfs_debug("Cannot perform write to "
440 							"inode 0x%lx, "
441 							"attribute type 0x%x, "
442 							"because there is not "
443 							"space left.",
444 							vi->i_ino, (unsigned)
445 							le32_to_cpu(ni->type));
446 				goto out;
447 			}
448 		}
449 	}
450 	/*
451 	 * If the write starts beyond the initialized size, extend it up to the
452 	 * beginning of the write and initialize all non-sparse space between
453 	 * the old initialized size and the new one.  This automatically also
454 	 * increments the vfs inode->i_size to keep it above or equal to the
455 	 * initialized_size.
456 	 */
457 	read_lock_irqsave(&ni->size_lock, flags);
458 	ll = ni->initialized_size;
459 	read_unlock_irqrestore(&ni->size_lock, flags);
460 	if (pos > ll) {
461 		/*
462 		 * Wait for ongoing direct i/o to complete before proceeding.
463 		 * New direct i/o cannot start as we hold i_mutex.
464 		 */
465 		inode_dio_wait(vi);
466 		err = ntfs_attr_extend_initialized(ni, pos);
467 		if (unlikely(err < 0))
468 			ntfs_error(vi->i_sb, "Cannot perform write to inode "
469 					"0x%lx, attribute type 0x%x, because "
470 					"extending the initialized size "
471 					"failed (error %d).", vi->i_ino,
472 					(unsigned)le32_to_cpu(ni->type),
473 					(int)-err);
474 	}
475 out:
476 	return err;
477 }
478 
479 /**
480  * __ntfs_grab_cache_pages - obtain a number of locked pages
481  * @mapping:	address space mapping from which to obtain page cache pages
482  * @index:	starting index in @mapping at which to begin obtaining pages
483  * @nr_pages:	number of page cache pages to obtain
484  * @pages:	array of pages in which to return the obtained page cache pages
485  * @cached_page: allocated but as yet unused page
486  *
487  * Obtain @nr_pages locked page cache pages from the mapping @mapping and
488  * starting at index @index.
489  *
490  * If a page is newly created, add it to lru list
491  *
492  * Note, the page locks are obtained in ascending page index order.
493  */
__ntfs_grab_cache_pages(struct address_space * mapping,pgoff_t index,const unsigned nr_pages,struct page ** pages,struct page ** cached_page)494 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
495 		pgoff_t index, const unsigned nr_pages, struct page **pages,
496 		struct page **cached_page)
497 {
498 	int err, nr;
499 
500 	BUG_ON(!nr_pages);
501 	err = nr = 0;
502 	do {
503 		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
504 				FGP_ACCESSED);
505 		if (!pages[nr]) {
506 			if (!*cached_page) {
507 				*cached_page = page_cache_alloc(mapping);
508 				if (unlikely(!*cached_page)) {
509 					err = -ENOMEM;
510 					goto err_out;
511 				}
512 			}
513 			err = add_to_page_cache_lru(*cached_page, mapping,
514 				   index,
515 				   mapping_gfp_constraint(mapping, GFP_KERNEL));
516 			if (unlikely(err)) {
517 				if (err == -EEXIST)
518 					continue;
519 				goto err_out;
520 			}
521 			pages[nr] = *cached_page;
522 			*cached_page = NULL;
523 		}
524 		index++;
525 		nr++;
526 	} while (nr < nr_pages);
527 out:
528 	return err;
529 err_out:
530 	while (nr > 0) {
531 		unlock_page(pages[--nr]);
532 		put_page(pages[nr]);
533 	}
534 	goto out;
535 }
536 
ntfs_submit_bh_for_read(struct buffer_head * bh)537 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
538 {
539 	lock_buffer(bh);
540 	get_bh(bh);
541 	bh->b_end_io = end_buffer_read_sync;
542 	return submit_bh(REQ_OP_READ, 0, bh);
543 }
544 
545 /**
546  * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
547  * @pages:	array of destination pages
548  * @nr_pages:	number of pages in @pages
549  * @pos:	byte position in file at which the write begins
550  * @bytes:	number of bytes to be written
551  *
552  * This is called for non-resident attributes from ntfs_file_buffered_write()
553  * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
554  * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
555  * data has not yet been copied into the @pages.
556  *
557  * Need to fill any holes with actual clusters, allocate buffers if necessary,
558  * ensure all the buffers are mapped, and bring uptodate any buffers that are
559  * only partially being written to.
560  *
561  * If @nr_pages is greater than one, we are guaranteed that the cluster size is
562  * greater than PAGE_SIZE, that all pages in @pages are entirely inside
563  * the same cluster and that they are the entirety of that cluster, and that
564  * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
565  *
566  * i_size is not to be modified yet.
567  *
568  * Return 0 on success or -errno on error.
569  */
ntfs_prepare_pages_for_non_resident_write(struct page ** pages,unsigned nr_pages,s64 pos,size_t bytes)570 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
571 		unsigned nr_pages, s64 pos, size_t bytes)
572 {
573 	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
574 	LCN lcn;
575 	s64 bh_pos, vcn_len, end, initialized_size;
576 	sector_t lcn_block;
577 	struct page *page;
578 	struct inode *vi;
579 	ntfs_inode *ni, *base_ni = NULL;
580 	ntfs_volume *vol;
581 	runlist_element *rl, *rl2;
582 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
583 	ntfs_attr_search_ctx *ctx = NULL;
584 	MFT_RECORD *m = NULL;
585 	ATTR_RECORD *a = NULL;
586 	unsigned long flags;
587 	u32 attr_rec_len = 0;
588 	unsigned blocksize, u;
589 	int err, mp_size;
590 	bool rl_write_locked, was_hole, is_retry;
591 	unsigned char blocksize_bits;
592 	struct {
593 		u8 runlist_merged:1;
594 		u8 mft_attr_mapped:1;
595 		u8 mp_rebuilt:1;
596 		u8 attr_switched:1;
597 	} status = { 0, 0, 0, 0 };
598 
599 	BUG_ON(!nr_pages);
600 	BUG_ON(!pages);
601 	BUG_ON(!*pages);
602 	vi = pages[0]->mapping->host;
603 	ni = NTFS_I(vi);
604 	vol = ni->vol;
605 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
606 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
607 			vi->i_ino, ni->type, pages[0]->index, nr_pages,
608 			(long long)pos, bytes);
609 	blocksize = vol->sb->s_blocksize;
610 	blocksize_bits = vol->sb->s_blocksize_bits;
611 	u = 0;
612 	do {
613 		page = pages[u];
614 		BUG_ON(!page);
615 		/*
616 		 * create_empty_buffers() will create uptodate/dirty buffers if
617 		 * the page is uptodate/dirty.
618 		 */
619 		if (!page_has_buffers(page)) {
620 			create_empty_buffers(page, blocksize, 0);
621 			if (unlikely(!page_has_buffers(page)))
622 				return -ENOMEM;
623 		}
624 	} while (++u < nr_pages);
625 	rl_write_locked = false;
626 	rl = NULL;
627 	err = 0;
628 	vcn = lcn = -1;
629 	vcn_len = 0;
630 	lcn_block = -1;
631 	was_hole = false;
632 	cpos = pos >> vol->cluster_size_bits;
633 	end = pos + bytes;
634 	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
635 	/*
636 	 * Loop over each page and for each page over each buffer.  Use goto to
637 	 * reduce indentation.
638 	 */
639 	u = 0;
640 do_next_page:
641 	page = pages[u];
642 	bh_pos = (s64)page->index << PAGE_SHIFT;
643 	bh = head = page_buffers(page);
644 	do {
645 		VCN cdelta;
646 		s64 bh_end;
647 		unsigned bh_cofs;
648 
649 		/* Clear buffer_new on all buffers to reinitialise state. */
650 		if (buffer_new(bh))
651 			clear_buffer_new(bh);
652 		bh_end = bh_pos + blocksize;
653 		bh_cpos = bh_pos >> vol->cluster_size_bits;
654 		bh_cofs = bh_pos & vol->cluster_size_mask;
655 		if (buffer_mapped(bh)) {
656 			/*
657 			 * The buffer is already mapped.  If it is uptodate,
658 			 * ignore it.
659 			 */
660 			if (buffer_uptodate(bh))
661 				continue;
662 			/*
663 			 * The buffer is not uptodate.  If the page is uptodate
664 			 * set the buffer uptodate and otherwise ignore it.
665 			 */
666 			if (PageUptodate(page)) {
667 				set_buffer_uptodate(bh);
668 				continue;
669 			}
670 			/*
671 			 * Neither the page nor the buffer are uptodate.  If
672 			 * the buffer is only partially being written to, we
673 			 * need to read it in before the write, i.e. now.
674 			 */
675 			if ((bh_pos < pos && bh_end > pos) ||
676 					(bh_pos < end && bh_end > end)) {
677 				/*
678 				 * If the buffer is fully or partially within
679 				 * the initialized size, do an actual read.
680 				 * Otherwise, simply zero the buffer.
681 				 */
682 				read_lock_irqsave(&ni->size_lock, flags);
683 				initialized_size = ni->initialized_size;
684 				read_unlock_irqrestore(&ni->size_lock, flags);
685 				if (bh_pos < initialized_size) {
686 					ntfs_submit_bh_for_read(bh);
687 					*wait_bh++ = bh;
688 				} else {
689 					zero_user(page, bh_offset(bh),
690 							blocksize);
691 					set_buffer_uptodate(bh);
692 				}
693 			}
694 			continue;
695 		}
696 		/* Unmapped buffer.  Need to map it. */
697 		bh->b_bdev = vol->sb->s_bdev;
698 		/*
699 		 * If the current buffer is in the same clusters as the map
700 		 * cache, there is no need to check the runlist again.  The
701 		 * map cache is made up of @vcn, which is the first cached file
702 		 * cluster, @vcn_len which is the number of cached file
703 		 * clusters, @lcn is the device cluster corresponding to @vcn,
704 		 * and @lcn_block is the block number corresponding to @lcn.
705 		 */
706 		cdelta = bh_cpos - vcn;
707 		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
708 map_buffer_cached:
709 			BUG_ON(lcn < 0);
710 			bh->b_blocknr = lcn_block +
711 					(cdelta << (vol->cluster_size_bits -
712 					blocksize_bits)) +
713 					(bh_cofs >> blocksize_bits);
714 			set_buffer_mapped(bh);
715 			/*
716 			 * If the page is uptodate so is the buffer.  If the
717 			 * buffer is fully outside the write, we ignore it if
718 			 * it was already allocated and we mark it dirty so it
719 			 * gets written out if we allocated it.  On the other
720 			 * hand, if we allocated the buffer but we are not
721 			 * marking it dirty we set buffer_new so we can do
722 			 * error recovery.
723 			 */
724 			if (PageUptodate(page)) {
725 				if (!buffer_uptodate(bh))
726 					set_buffer_uptodate(bh);
727 				if (unlikely(was_hole)) {
728 					/* We allocated the buffer. */
729 					clean_bdev_bh_alias(bh);
730 					if (bh_end <= pos || bh_pos >= end)
731 						mark_buffer_dirty(bh);
732 					else
733 						set_buffer_new(bh);
734 				}
735 				continue;
736 			}
737 			/* Page is _not_ uptodate. */
738 			if (likely(!was_hole)) {
739 				/*
740 				 * Buffer was already allocated.  If it is not
741 				 * uptodate and is only partially being written
742 				 * to, we need to read it in before the write,
743 				 * i.e. now.
744 				 */
745 				if (!buffer_uptodate(bh) && bh_pos < end &&
746 						bh_end > pos &&
747 						(bh_pos < pos ||
748 						bh_end > end)) {
749 					/*
750 					 * If the buffer is fully or partially
751 					 * within the initialized size, do an
752 					 * actual read.  Otherwise, simply zero
753 					 * the buffer.
754 					 */
755 					read_lock_irqsave(&ni->size_lock,
756 							flags);
757 					initialized_size = ni->initialized_size;
758 					read_unlock_irqrestore(&ni->size_lock,
759 							flags);
760 					if (bh_pos < initialized_size) {
761 						ntfs_submit_bh_for_read(bh);
762 						*wait_bh++ = bh;
763 					} else {
764 						zero_user(page, bh_offset(bh),
765 								blocksize);
766 						set_buffer_uptodate(bh);
767 					}
768 				}
769 				continue;
770 			}
771 			/* We allocated the buffer. */
772 			clean_bdev_bh_alias(bh);
773 			/*
774 			 * If the buffer is fully outside the write, zero it,
775 			 * set it uptodate, and mark it dirty so it gets
776 			 * written out.  If it is partially being written to,
777 			 * zero region surrounding the write but leave it to
778 			 * commit write to do anything else.  Finally, if the
779 			 * buffer is fully being overwritten, do nothing.
780 			 */
781 			if (bh_end <= pos || bh_pos >= end) {
782 				if (!buffer_uptodate(bh)) {
783 					zero_user(page, bh_offset(bh),
784 							blocksize);
785 					set_buffer_uptodate(bh);
786 				}
787 				mark_buffer_dirty(bh);
788 				continue;
789 			}
790 			set_buffer_new(bh);
791 			if (!buffer_uptodate(bh) &&
792 					(bh_pos < pos || bh_end > end)) {
793 				u8 *kaddr;
794 				unsigned pofs;
795 
796 				kaddr = kmap_atomic(page);
797 				if (bh_pos < pos) {
798 					pofs = bh_pos & ~PAGE_MASK;
799 					memset(kaddr + pofs, 0, pos - bh_pos);
800 				}
801 				if (bh_end > end) {
802 					pofs = end & ~PAGE_MASK;
803 					memset(kaddr + pofs, 0, bh_end - end);
804 				}
805 				kunmap_atomic(kaddr);
806 				flush_dcache_page(page);
807 			}
808 			continue;
809 		}
810 		/*
811 		 * Slow path: this is the first buffer in the cluster.  If it
812 		 * is outside allocated size and is not uptodate, zero it and
813 		 * set it uptodate.
814 		 */
815 		read_lock_irqsave(&ni->size_lock, flags);
816 		initialized_size = ni->allocated_size;
817 		read_unlock_irqrestore(&ni->size_lock, flags);
818 		if (bh_pos > initialized_size) {
819 			if (PageUptodate(page)) {
820 				if (!buffer_uptodate(bh))
821 					set_buffer_uptodate(bh);
822 			} else if (!buffer_uptodate(bh)) {
823 				zero_user(page, bh_offset(bh), blocksize);
824 				set_buffer_uptodate(bh);
825 			}
826 			continue;
827 		}
828 		is_retry = false;
829 		if (!rl) {
830 			down_read(&ni->runlist.lock);
831 retry_remap:
832 			rl = ni->runlist.rl;
833 		}
834 		if (likely(rl != NULL)) {
835 			/* Seek to element containing target cluster. */
836 			while (rl->length && rl[1].vcn <= bh_cpos)
837 				rl++;
838 			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
839 			if (likely(lcn >= 0)) {
840 				/*
841 				 * Successful remap, setup the map cache and
842 				 * use that to deal with the buffer.
843 				 */
844 				was_hole = false;
845 				vcn = bh_cpos;
846 				vcn_len = rl[1].vcn - vcn;
847 				lcn_block = lcn << (vol->cluster_size_bits -
848 						blocksize_bits);
849 				cdelta = 0;
850 				/*
851 				 * If the number of remaining clusters touched
852 				 * by the write is smaller or equal to the
853 				 * number of cached clusters, unlock the
854 				 * runlist as the map cache will be used from
855 				 * now on.
856 				 */
857 				if (likely(vcn + vcn_len >= cend)) {
858 					if (rl_write_locked) {
859 						up_write(&ni->runlist.lock);
860 						rl_write_locked = false;
861 					} else
862 						up_read(&ni->runlist.lock);
863 					rl = NULL;
864 				}
865 				goto map_buffer_cached;
866 			}
867 		} else
868 			lcn = LCN_RL_NOT_MAPPED;
869 		/*
870 		 * If it is not a hole and not out of bounds, the runlist is
871 		 * probably unmapped so try to map it now.
872 		 */
873 		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
874 			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
875 				/* Attempt to map runlist. */
876 				if (!rl_write_locked) {
877 					/*
878 					 * We need the runlist locked for
879 					 * writing, so if it is locked for
880 					 * reading relock it now and retry in
881 					 * case it changed whilst we dropped
882 					 * the lock.
883 					 */
884 					up_read(&ni->runlist.lock);
885 					down_write(&ni->runlist.lock);
886 					rl_write_locked = true;
887 					goto retry_remap;
888 				}
889 				err = ntfs_map_runlist_nolock(ni, bh_cpos,
890 						NULL);
891 				if (likely(!err)) {
892 					is_retry = true;
893 					goto retry_remap;
894 				}
895 				/*
896 				 * If @vcn is out of bounds, pretend @lcn is
897 				 * LCN_ENOENT.  As long as the buffer is out
898 				 * of bounds this will work fine.
899 				 */
900 				if (err == -ENOENT) {
901 					lcn = LCN_ENOENT;
902 					err = 0;
903 					goto rl_not_mapped_enoent;
904 				}
905 			} else
906 				err = -EIO;
907 			/* Failed to map the buffer, even after retrying. */
908 			bh->b_blocknr = -1;
909 			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
910 					"attribute type 0x%x, vcn 0x%llx, "
911 					"vcn offset 0x%x, because its "
912 					"location on disk could not be "
913 					"determined%s (error code %i).",
914 					ni->mft_no, ni->type,
915 					(unsigned long long)bh_cpos,
916 					(unsigned)bh_pos &
917 					vol->cluster_size_mask,
918 					is_retry ? " even after retrying" : "",
919 					err);
920 			break;
921 		}
922 rl_not_mapped_enoent:
923 		/*
924 		 * The buffer is in a hole or out of bounds.  We need to fill
925 		 * the hole, unless the buffer is in a cluster which is not
926 		 * touched by the write, in which case we just leave the buffer
927 		 * unmapped.  This can only happen when the cluster size is
928 		 * less than the page cache size.
929 		 */
930 		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
931 			bh_cend = (bh_end + vol->cluster_size - 1) >>
932 					vol->cluster_size_bits;
933 			if ((bh_cend <= cpos || bh_cpos >= cend)) {
934 				bh->b_blocknr = -1;
935 				/*
936 				 * If the buffer is uptodate we skip it.  If it
937 				 * is not but the page is uptodate, we can set
938 				 * the buffer uptodate.  If the page is not
939 				 * uptodate, we can clear the buffer and set it
940 				 * uptodate.  Whether this is worthwhile is
941 				 * debatable and this could be removed.
942 				 */
943 				if (PageUptodate(page)) {
944 					if (!buffer_uptodate(bh))
945 						set_buffer_uptodate(bh);
946 				} else if (!buffer_uptodate(bh)) {
947 					zero_user(page, bh_offset(bh),
948 						blocksize);
949 					set_buffer_uptodate(bh);
950 				}
951 				continue;
952 			}
953 		}
954 		/*
955 		 * Out of bounds buffer is invalid if it was not really out of
956 		 * bounds.
957 		 */
958 		BUG_ON(lcn != LCN_HOLE);
959 		/*
960 		 * We need the runlist locked for writing, so if it is locked
961 		 * for reading relock it now and retry in case it changed
962 		 * whilst we dropped the lock.
963 		 */
964 		BUG_ON(!rl);
965 		if (!rl_write_locked) {
966 			up_read(&ni->runlist.lock);
967 			down_write(&ni->runlist.lock);
968 			rl_write_locked = true;
969 			goto retry_remap;
970 		}
971 		/* Find the previous last allocated cluster. */
972 		BUG_ON(rl->lcn != LCN_HOLE);
973 		lcn = -1;
974 		rl2 = rl;
975 		while (--rl2 >= ni->runlist.rl) {
976 			if (rl2->lcn >= 0) {
977 				lcn = rl2->lcn + rl2->length;
978 				break;
979 			}
980 		}
981 		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
982 				false);
983 		if (IS_ERR(rl2)) {
984 			err = PTR_ERR(rl2);
985 			ntfs_debug("Failed to allocate cluster, error code %i.",
986 					err);
987 			break;
988 		}
989 		lcn = rl2->lcn;
990 		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
991 		if (IS_ERR(rl)) {
992 			err = PTR_ERR(rl);
993 			if (err != -ENOMEM)
994 				err = -EIO;
995 			if (ntfs_cluster_free_from_rl(vol, rl2)) {
996 				ntfs_error(vol->sb, "Failed to release "
997 						"allocated cluster in error "
998 						"code path.  Run chkdsk to "
999 						"recover the lost cluster.");
1000 				NVolSetErrors(vol);
1001 			}
1002 			ntfs_free(rl2);
1003 			break;
1004 		}
1005 		ni->runlist.rl = rl;
1006 		status.runlist_merged = 1;
1007 		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1008 				(unsigned long long)lcn);
1009 		/* Map and lock the mft record and get the attribute record. */
1010 		if (!NInoAttr(ni))
1011 			base_ni = ni;
1012 		else
1013 			base_ni = ni->ext.base_ntfs_ino;
1014 		m = map_mft_record(base_ni);
1015 		if (IS_ERR(m)) {
1016 			err = PTR_ERR(m);
1017 			break;
1018 		}
1019 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1020 		if (unlikely(!ctx)) {
1021 			err = -ENOMEM;
1022 			unmap_mft_record(base_ni);
1023 			break;
1024 		}
1025 		status.mft_attr_mapped = 1;
1026 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1027 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1028 		if (unlikely(err)) {
1029 			if (err == -ENOENT)
1030 				err = -EIO;
1031 			break;
1032 		}
1033 		m = ctx->mrec;
1034 		a = ctx->attr;
1035 		/*
1036 		 * Find the runlist element with which the attribute extent
1037 		 * starts.  Note, we cannot use the _attr_ version because we
1038 		 * have mapped the mft record.  That is ok because we know the
1039 		 * runlist fragment must be mapped already to have ever gotten
1040 		 * here, so we can just use the _rl_ version.
1041 		 */
1042 		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1043 		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1044 		BUG_ON(!rl2);
1045 		BUG_ON(!rl2->length);
1046 		BUG_ON(rl2->lcn < LCN_HOLE);
1047 		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1048 		/*
1049 		 * If @highest_vcn is zero, calculate the real highest_vcn
1050 		 * (which can really be zero).
1051 		 */
1052 		if (!highest_vcn)
1053 			highest_vcn = (sle64_to_cpu(
1054 					a->data.non_resident.allocated_size) >>
1055 					vol->cluster_size_bits) - 1;
1056 		/*
1057 		 * Determine the size of the mapping pairs array for the new
1058 		 * extent, i.e. the old extent with the hole filled.
1059 		 */
1060 		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1061 				highest_vcn);
1062 		if (unlikely(mp_size <= 0)) {
1063 			if (!(err = mp_size))
1064 				err = -EIO;
1065 			ntfs_debug("Failed to get size for mapping pairs "
1066 					"array, error code %i.", err);
1067 			break;
1068 		}
1069 		/*
1070 		 * Resize the attribute record to fit the new mapping pairs
1071 		 * array.
1072 		 */
1073 		attr_rec_len = le32_to_cpu(a->length);
1074 		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1075 				a->data.non_resident.mapping_pairs_offset));
1076 		if (unlikely(err)) {
1077 			BUG_ON(err != -ENOSPC);
1078 			// TODO: Deal with this by using the current attribute
1079 			// and fill it with as much of the mapping pairs
1080 			// array as possible.  Then loop over each attribute
1081 			// extent rewriting the mapping pairs arrays as we go
1082 			// along and if when we reach the end we have not
1083 			// enough space, try to resize the last attribute
1084 			// extent and if even that fails, add a new attribute
1085 			// extent.
1086 			// We could also try to resize at each step in the hope
1087 			// that we will not need to rewrite every single extent.
1088 			// Note, we may need to decompress some extents to fill
1089 			// the runlist as we are walking the extents...
1090 			ntfs_error(vol->sb, "Not enough space in the mft "
1091 					"record for the extended attribute "
1092 					"record.  This case is not "
1093 					"implemented yet.");
1094 			err = -EOPNOTSUPP;
1095 			break ;
1096 		}
1097 		status.mp_rebuilt = 1;
1098 		/*
1099 		 * Generate the mapping pairs array directly into the attribute
1100 		 * record.
1101 		 */
1102 		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1103 				a->data.non_resident.mapping_pairs_offset),
1104 				mp_size, rl2, vcn, highest_vcn, NULL);
1105 		if (unlikely(err)) {
1106 			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1107 					"attribute type 0x%x, because building "
1108 					"the mapping pairs failed with error "
1109 					"code %i.", vi->i_ino,
1110 					(unsigned)le32_to_cpu(ni->type), err);
1111 			err = -EIO;
1112 			break;
1113 		}
1114 		/* Update the highest_vcn but only if it was not set. */
1115 		if (unlikely(!a->data.non_resident.highest_vcn))
1116 			a->data.non_resident.highest_vcn =
1117 					cpu_to_sle64(highest_vcn);
1118 		/*
1119 		 * If the attribute is sparse/compressed, update the compressed
1120 		 * size in the ntfs_inode structure and the attribute record.
1121 		 */
1122 		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1123 			/*
1124 			 * If we are not in the first attribute extent, switch
1125 			 * to it, but first ensure the changes will make it to
1126 			 * disk later.
1127 			 */
1128 			if (a->data.non_resident.lowest_vcn) {
1129 				flush_dcache_mft_record_page(ctx->ntfs_ino);
1130 				mark_mft_record_dirty(ctx->ntfs_ino);
1131 				ntfs_attr_reinit_search_ctx(ctx);
1132 				err = ntfs_attr_lookup(ni->type, ni->name,
1133 						ni->name_len, CASE_SENSITIVE,
1134 						0, NULL, 0, ctx);
1135 				if (unlikely(err)) {
1136 					status.attr_switched = 1;
1137 					break;
1138 				}
1139 				/* @m is not used any more so do not set it. */
1140 				a = ctx->attr;
1141 			}
1142 			write_lock_irqsave(&ni->size_lock, flags);
1143 			ni->itype.compressed.size += vol->cluster_size;
1144 			a->data.non_resident.compressed_size =
1145 					cpu_to_sle64(ni->itype.compressed.size);
1146 			write_unlock_irqrestore(&ni->size_lock, flags);
1147 		}
1148 		/* Ensure the changes make it to disk. */
1149 		flush_dcache_mft_record_page(ctx->ntfs_ino);
1150 		mark_mft_record_dirty(ctx->ntfs_ino);
1151 		ntfs_attr_put_search_ctx(ctx);
1152 		unmap_mft_record(base_ni);
1153 		/* Successfully filled the hole. */
1154 		status.runlist_merged = 0;
1155 		status.mft_attr_mapped = 0;
1156 		status.mp_rebuilt = 0;
1157 		/* Setup the map cache and use that to deal with the buffer. */
1158 		was_hole = true;
1159 		vcn = bh_cpos;
1160 		vcn_len = 1;
1161 		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1162 		cdelta = 0;
1163 		/*
1164 		 * If the number of remaining clusters in the @pages is smaller
1165 		 * or equal to the number of cached clusters, unlock the
1166 		 * runlist as the map cache will be used from now on.
1167 		 */
1168 		if (likely(vcn + vcn_len >= cend)) {
1169 			up_write(&ni->runlist.lock);
1170 			rl_write_locked = false;
1171 			rl = NULL;
1172 		}
1173 		goto map_buffer_cached;
1174 	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1175 	/* If there are no errors, do the next page. */
1176 	if (likely(!err && ++u < nr_pages))
1177 		goto do_next_page;
1178 	/* If there are no errors, release the runlist lock if we took it. */
1179 	if (likely(!err)) {
1180 		if (unlikely(rl_write_locked)) {
1181 			up_write(&ni->runlist.lock);
1182 			rl_write_locked = false;
1183 		} else if (unlikely(rl))
1184 			up_read(&ni->runlist.lock);
1185 		rl = NULL;
1186 	}
1187 	/* If we issued read requests, let them complete. */
1188 	read_lock_irqsave(&ni->size_lock, flags);
1189 	initialized_size = ni->initialized_size;
1190 	read_unlock_irqrestore(&ni->size_lock, flags);
1191 	while (wait_bh > wait) {
1192 		bh = *--wait_bh;
1193 		wait_on_buffer(bh);
1194 		if (likely(buffer_uptodate(bh))) {
1195 			page = bh->b_page;
1196 			bh_pos = ((s64)page->index << PAGE_SHIFT) +
1197 					bh_offset(bh);
1198 			/*
1199 			 * If the buffer overflows the initialized size, need
1200 			 * to zero the overflowing region.
1201 			 */
1202 			if (unlikely(bh_pos + blocksize > initialized_size)) {
1203 				int ofs = 0;
1204 
1205 				if (likely(bh_pos < initialized_size))
1206 					ofs = initialized_size - bh_pos;
1207 				zero_user_segment(page, bh_offset(bh) + ofs,
1208 						blocksize);
1209 			}
1210 		} else /* if (unlikely(!buffer_uptodate(bh))) */
1211 			err = -EIO;
1212 	}
1213 	if (likely(!err)) {
1214 		/* Clear buffer_new on all buffers. */
1215 		u = 0;
1216 		do {
1217 			bh = head = page_buffers(pages[u]);
1218 			do {
1219 				if (buffer_new(bh))
1220 					clear_buffer_new(bh);
1221 			} while ((bh = bh->b_this_page) != head);
1222 		} while (++u < nr_pages);
1223 		ntfs_debug("Done.");
1224 		return err;
1225 	}
1226 	if (status.attr_switched) {
1227 		/* Get back to the attribute extent we modified. */
1228 		ntfs_attr_reinit_search_ctx(ctx);
1229 		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1230 				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1231 			ntfs_error(vol->sb, "Failed to find required "
1232 					"attribute extent of attribute in "
1233 					"error code path.  Run chkdsk to "
1234 					"recover.");
1235 			write_lock_irqsave(&ni->size_lock, flags);
1236 			ni->itype.compressed.size += vol->cluster_size;
1237 			write_unlock_irqrestore(&ni->size_lock, flags);
1238 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1239 			mark_mft_record_dirty(ctx->ntfs_ino);
1240 			/*
1241 			 * The only thing that is now wrong is the compressed
1242 			 * size of the base attribute extent which chkdsk
1243 			 * should be able to fix.
1244 			 */
1245 			NVolSetErrors(vol);
1246 		} else {
1247 			m = ctx->mrec;
1248 			a = ctx->attr;
1249 			status.attr_switched = 0;
1250 		}
1251 	}
1252 	/*
1253 	 * If the runlist has been modified, need to restore it by punching a
1254 	 * hole into it and we then need to deallocate the on-disk cluster as
1255 	 * well.  Note, we only modify the runlist if we are able to generate a
1256 	 * new mapping pairs array, i.e. only when the mapped attribute extent
1257 	 * is not switched.
1258 	 */
1259 	if (status.runlist_merged && !status.attr_switched) {
1260 		BUG_ON(!rl_write_locked);
1261 		/* Make the file cluster we allocated sparse in the runlist. */
1262 		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1263 			ntfs_error(vol->sb, "Failed to punch hole into "
1264 					"attribute runlist in error code "
1265 					"path.  Run chkdsk to recover the "
1266 					"lost cluster.");
1267 			NVolSetErrors(vol);
1268 		} else /* if (success) */ {
1269 			status.runlist_merged = 0;
1270 			/*
1271 			 * Deallocate the on-disk cluster we allocated but only
1272 			 * if we succeeded in punching its vcn out of the
1273 			 * runlist.
1274 			 */
1275 			down_write(&vol->lcnbmp_lock);
1276 			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1277 				ntfs_error(vol->sb, "Failed to release "
1278 						"allocated cluster in error "
1279 						"code path.  Run chkdsk to "
1280 						"recover the lost cluster.");
1281 				NVolSetErrors(vol);
1282 			}
1283 			up_write(&vol->lcnbmp_lock);
1284 		}
1285 	}
1286 	/*
1287 	 * Resize the attribute record to its old size and rebuild the mapping
1288 	 * pairs array.  Note, we only can do this if the runlist has been
1289 	 * restored to its old state which also implies that the mapped
1290 	 * attribute extent is not switched.
1291 	 */
1292 	if (status.mp_rebuilt && !status.runlist_merged) {
1293 		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1294 			ntfs_error(vol->sb, "Failed to restore attribute "
1295 					"record in error code path.  Run "
1296 					"chkdsk to recover.");
1297 			NVolSetErrors(vol);
1298 		} else /* if (success) */ {
1299 			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1300 					le16_to_cpu(a->data.non_resident.
1301 					mapping_pairs_offset), attr_rec_len -
1302 					le16_to_cpu(a->data.non_resident.
1303 					mapping_pairs_offset), ni->runlist.rl,
1304 					vcn, highest_vcn, NULL)) {
1305 				ntfs_error(vol->sb, "Failed to restore "
1306 						"mapping pairs array in error "
1307 						"code path.  Run chkdsk to "
1308 						"recover.");
1309 				NVolSetErrors(vol);
1310 			}
1311 			flush_dcache_mft_record_page(ctx->ntfs_ino);
1312 			mark_mft_record_dirty(ctx->ntfs_ino);
1313 		}
1314 	}
1315 	/* Release the mft record and the attribute. */
1316 	if (status.mft_attr_mapped) {
1317 		ntfs_attr_put_search_ctx(ctx);
1318 		unmap_mft_record(base_ni);
1319 	}
1320 	/* Release the runlist lock. */
1321 	if (rl_write_locked)
1322 		up_write(&ni->runlist.lock);
1323 	else if (rl)
1324 		up_read(&ni->runlist.lock);
1325 	/*
1326 	 * Zero out any newly allocated blocks to avoid exposing stale data.
1327 	 * If BH_New is set, we know that the block was newly allocated above
1328 	 * and that it has not been fully zeroed and marked dirty yet.
1329 	 */
1330 	nr_pages = u;
1331 	u = 0;
1332 	end = bh_cpos << vol->cluster_size_bits;
1333 	do {
1334 		page = pages[u];
1335 		bh = head = page_buffers(page);
1336 		do {
1337 			if (u == nr_pages &&
1338 					((s64)page->index << PAGE_SHIFT) +
1339 					bh_offset(bh) >= end)
1340 				break;
1341 			if (!buffer_new(bh))
1342 				continue;
1343 			clear_buffer_new(bh);
1344 			if (!buffer_uptodate(bh)) {
1345 				if (PageUptodate(page))
1346 					set_buffer_uptodate(bh);
1347 				else {
1348 					zero_user(page, bh_offset(bh),
1349 							blocksize);
1350 					set_buffer_uptodate(bh);
1351 				}
1352 			}
1353 			mark_buffer_dirty(bh);
1354 		} while ((bh = bh->b_this_page) != head);
1355 	} while (++u <= nr_pages);
1356 	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1357 	return err;
1358 }
1359 
ntfs_flush_dcache_pages(struct page ** pages,unsigned nr_pages)1360 static inline void ntfs_flush_dcache_pages(struct page **pages,
1361 		unsigned nr_pages)
1362 {
1363 	BUG_ON(!nr_pages);
1364 	/*
1365 	 * Warning: Do not do the decrement at the same time as the call to
1366 	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1367 	 * decrement never happens so the loop never terminates.
1368 	 */
1369 	do {
1370 		--nr_pages;
1371 		flush_dcache_page(pages[nr_pages]);
1372 	} while (nr_pages > 0);
1373 }
1374 
1375 /**
1376  * ntfs_commit_pages_after_non_resident_write - commit the received data
1377  * @pages:	array of destination pages
1378  * @nr_pages:	number of pages in @pages
1379  * @pos:	byte position in file at which the write begins
1380  * @bytes:	number of bytes to be written
1381  *
1382  * See description of ntfs_commit_pages_after_write(), below.
1383  */
ntfs_commit_pages_after_non_resident_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1384 static inline int ntfs_commit_pages_after_non_resident_write(
1385 		struct page **pages, const unsigned nr_pages,
1386 		s64 pos, size_t bytes)
1387 {
1388 	s64 end, initialized_size;
1389 	struct inode *vi;
1390 	ntfs_inode *ni, *base_ni;
1391 	struct buffer_head *bh, *head;
1392 	ntfs_attr_search_ctx *ctx;
1393 	MFT_RECORD *m;
1394 	ATTR_RECORD *a;
1395 	unsigned long flags;
1396 	unsigned blocksize, u;
1397 	int err;
1398 
1399 	vi = pages[0]->mapping->host;
1400 	ni = NTFS_I(vi);
1401 	blocksize = vi->i_sb->s_blocksize;
1402 	end = pos + bytes;
1403 	u = 0;
1404 	do {
1405 		s64 bh_pos;
1406 		struct page *page;
1407 		bool partial;
1408 
1409 		page = pages[u];
1410 		bh_pos = (s64)page->index << PAGE_SHIFT;
1411 		bh = head = page_buffers(page);
1412 		partial = false;
1413 		do {
1414 			s64 bh_end;
1415 
1416 			bh_end = bh_pos + blocksize;
1417 			if (bh_end <= pos || bh_pos >= end) {
1418 				if (!buffer_uptodate(bh))
1419 					partial = true;
1420 			} else {
1421 				set_buffer_uptodate(bh);
1422 				mark_buffer_dirty(bh);
1423 			}
1424 		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1425 		/*
1426 		 * If all buffers are now uptodate but the page is not, set the
1427 		 * page uptodate.
1428 		 */
1429 		if (!partial && !PageUptodate(page))
1430 			SetPageUptodate(page);
1431 	} while (++u < nr_pages);
1432 	/*
1433 	 * Finally, if we do not need to update initialized_size or i_size we
1434 	 * are finished.
1435 	 */
1436 	read_lock_irqsave(&ni->size_lock, flags);
1437 	initialized_size = ni->initialized_size;
1438 	read_unlock_irqrestore(&ni->size_lock, flags);
1439 	if (end <= initialized_size) {
1440 		ntfs_debug("Done.");
1441 		return 0;
1442 	}
1443 	/*
1444 	 * Update initialized_size/i_size as appropriate, both in the inode and
1445 	 * the mft record.
1446 	 */
1447 	if (!NInoAttr(ni))
1448 		base_ni = ni;
1449 	else
1450 		base_ni = ni->ext.base_ntfs_ino;
1451 	/* Map, pin, and lock the mft record. */
1452 	m = map_mft_record(base_ni);
1453 	if (IS_ERR(m)) {
1454 		err = PTR_ERR(m);
1455 		m = NULL;
1456 		ctx = NULL;
1457 		goto err_out;
1458 	}
1459 	BUG_ON(!NInoNonResident(ni));
1460 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1461 	if (unlikely(!ctx)) {
1462 		err = -ENOMEM;
1463 		goto err_out;
1464 	}
1465 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1466 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1467 	if (unlikely(err)) {
1468 		if (err == -ENOENT)
1469 			err = -EIO;
1470 		goto err_out;
1471 	}
1472 	a = ctx->attr;
1473 	BUG_ON(!a->non_resident);
1474 	write_lock_irqsave(&ni->size_lock, flags);
1475 	BUG_ON(end > ni->allocated_size);
1476 	ni->initialized_size = end;
1477 	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1478 	if (end > i_size_read(vi)) {
1479 		i_size_write(vi, end);
1480 		a->data.non_resident.data_size =
1481 				a->data.non_resident.initialized_size;
1482 	}
1483 	write_unlock_irqrestore(&ni->size_lock, flags);
1484 	/* Mark the mft record dirty, so it gets written back. */
1485 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1486 	mark_mft_record_dirty(ctx->ntfs_ino);
1487 	ntfs_attr_put_search_ctx(ctx);
1488 	unmap_mft_record(base_ni);
1489 	ntfs_debug("Done.");
1490 	return 0;
1491 err_out:
1492 	if (ctx)
1493 		ntfs_attr_put_search_ctx(ctx);
1494 	if (m)
1495 		unmap_mft_record(base_ni);
1496 	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1497 			"code %i).", err);
1498 	if (err != -ENOMEM)
1499 		NVolSetErrors(ni->vol);
1500 	return err;
1501 }
1502 
1503 /**
1504  * ntfs_commit_pages_after_write - commit the received data
1505  * @pages:	array of destination pages
1506  * @nr_pages:	number of pages in @pages
1507  * @pos:	byte position in file at which the write begins
1508  * @bytes:	number of bytes to be written
1509  *
1510  * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1511  * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1512  * locked but not kmap()ped.  The source data has already been copied into the
1513  * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1514  * the data was copied (for non-resident attributes only) and it returned
1515  * success.
1516  *
1517  * Need to set uptodate and mark dirty all buffers within the boundary of the
1518  * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1519  *
1520  * Setting the buffers dirty ensures that they get written out later when
1521  * ntfs_writepage() is invoked by the VM.
1522  *
1523  * Finally, we need to update i_size and initialized_size as appropriate both
1524  * in the inode and the mft record.
1525  *
1526  * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1527  * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1528  * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1529  * that case, it also marks the inode dirty.
1530  *
1531  * If things have gone as outlined in
1532  * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1533  * content modifications here for non-resident attributes.  For resident
1534  * attributes we need to do the uptodate bringing here which we combine with
1535  * the copying into the mft record which means we save one atomic kmap.
1536  *
1537  * Return 0 on success or -errno on error.
1538  */
ntfs_commit_pages_after_write(struct page ** pages,const unsigned nr_pages,s64 pos,size_t bytes)1539 static int ntfs_commit_pages_after_write(struct page **pages,
1540 		const unsigned nr_pages, s64 pos, size_t bytes)
1541 {
1542 	s64 end, initialized_size;
1543 	loff_t i_size;
1544 	struct inode *vi;
1545 	ntfs_inode *ni, *base_ni;
1546 	struct page *page;
1547 	ntfs_attr_search_ctx *ctx;
1548 	MFT_RECORD *m;
1549 	ATTR_RECORD *a;
1550 	char *kattr, *kaddr;
1551 	unsigned long flags;
1552 	u32 attr_len;
1553 	int err;
1554 
1555 	BUG_ON(!nr_pages);
1556 	BUG_ON(!pages);
1557 	page = pages[0];
1558 	BUG_ON(!page);
1559 	vi = page->mapping->host;
1560 	ni = NTFS_I(vi);
1561 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1562 			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1563 			vi->i_ino, ni->type, page->index, nr_pages,
1564 			(long long)pos, bytes);
1565 	if (NInoNonResident(ni))
1566 		return ntfs_commit_pages_after_non_resident_write(pages,
1567 				nr_pages, pos, bytes);
1568 	BUG_ON(nr_pages > 1);
1569 	/*
1570 	 * Attribute is resident, implying it is not compressed, encrypted, or
1571 	 * sparse.
1572 	 */
1573 	if (!NInoAttr(ni))
1574 		base_ni = ni;
1575 	else
1576 		base_ni = ni->ext.base_ntfs_ino;
1577 	BUG_ON(NInoNonResident(ni));
1578 	/* Map, pin, and lock the mft record. */
1579 	m = map_mft_record(base_ni);
1580 	if (IS_ERR(m)) {
1581 		err = PTR_ERR(m);
1582 		m = NULL;
1583 		ctx = NULL;
1584 		goto err_out;
1585 	}
1586 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1587 	if (unlikely(!ctx)) {
1588 		err = -ENOMEM;
1589 		goto err_out;
1590 	}
1591 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1592 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1593 	if (unlikely(err)) {
1594 		if (err == -ENOENT)
1595 			err = -EIO;
1596 		goto err_out;
1597 	}
1598 	a = ctx->attr;
1599 	BUG_ON(a->non_resident);
1600 	/* The total length of the attribute value. */
1601 	attr_len = le32_to_cpu(a->data.resident.value_length);
1602 	i_size = i_size_read(vi);
1603 	BUG_ON(attr_len != i_size);
1604 	BUG_ON(pos > attr_len);
1605 	end = pos + bytes;
1606 	BUG_ON(end > le32_to_cpu(a->length) -
1607 			le16_to_cpu(a->data.resident.value_offset));
1608 	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1609 	kaddr = kmap_atomic(page);
1610 	/* Copy the received data from the page to the mft record. */
1611 	memcpy(kattr + pos, kaddr + pos, bytes);
1612 	/* Update the attribute length if necessary. */
1613 	if (end > attr_len) {
1614 		attr_len = end;
1615 		a->data.resident.value_length = cpu_to_le32(attr_len);
1616 	}
1617 	/*
1618 	 * If the page is not uptodate, bring the out of bounds area(s)
1619 	 * uptodate by copying data from the mft record to the page.
1620 	 */
1621 	if (!PageUptodate(page)) {
1622 		if (pos > 0)
1623 			memcpy(kaddr, kattr, pos);
1624 		if (end < attr_len)
1625 			memcpy(kaddr + end, kattr + end, attr_len - end);
1626 		/* Zero the region outside the end of the attribute value. */
1627 		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1628 		flush_dcache_page(page);
1629 		SetPageUptodate(page);
1630 	}
1631 	kunmap_atomic(kaddr);
1632 	/* Update initialized_size/i_size if necessary. */
1633 	read_lock_irqsave(&ni->size_lock, flags);
1634 	initialized_size = ni->initialized_size;
1635 	BUG_ON(end > ni->allocated_size);
1636 	read_unlock_irqrestore(&ni->size_lock, flags);
1637 	BUG_ON(initialized_size != i_size);
1638 	if (end > initialized_size) {
1639 		write_lock_irqsave(&ni->size_lock, flags);
1640 		ni->initialized_size = end;
1641 		i_size_write(vi, end);
1642 		write_unlock_irqrestore(&ni->size_lock, flags);
1643 	}
1644 	/* Mark the mft record dirty, so it gets written back. */
1645 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1646 	mark_mft_record_dirty(ctx->ntfs_ino);
1647 	ntfs_attr_put_search_ctx(ctx);
1648 	unmap_mft_record(base_ni);
1649 	ntfs_debug("Done.");
1650 	return 0;
1651 err_out:
1652 	if (err == -ENOMEM) {
1653 		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1654 				"commit the write.");
1655 		if (PageUptodate(page)) {
1656 			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1657 					"dirty so the write will be retried "
1658 					"later on by the VM.");
1659 			/*
1660 			 * Put the page on mapping->dirty_pages, but leave its
1661 			 * buffers' dirty state as-is.
1662 			 */
1663 			__set_page_dirty_nobuffers(page);
1664 			err = 0;
1665 		} else
1666 			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1667 					"data has been lost.");
1668 	} else {
1669 		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1670 				"with error %i.", err);
1671 		NVolSetErrors(ni->vol);
1672 	}
1673 	if (ctx)
1674 		ntfs_attr_put_search_ctx(ctx);
1675 	if (m)
1676 		unmap_mft_record(base_ni);
1677 	return err;
1678 }
1679 
1680 /*
1681  * Copy as much as we can into the pages and return the number of bytes which
1682  * were successfully copied.  If a fault is encountered then clear the pages
1683  * out to (ofs + bytes) and return the number of bytes which were copied.
1684  */
ntfs_copy_from_user_iter(struct page ** pages,unsigned nr_pages,unsigned ofs,struct iov_iter * i,size_t bytes)1685 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1686 		unsigned ofs, struct iov_iter *i, size_t bytes)
1687 {
1688 	struct page **last_page = pages + nr_pages;
1689 	size_t total = 0;
1690 	struct iov_iter data = *i;
1691 	unsigned len, copied;
1692 
1693 	do {
1694 		len = PAGE_SIZE - ofs;
1695 		if (len > bytes)
1696 			len = bytes;
1697 		copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
1698 				len);
1699 		total += copied;
1700 		bytes -= copied;
1701 		if (!bytes)
1702 			break;
1703 		iov_iter_advance(&data, copied);
1704 		if (copied < len)
1705 			goto err;
1706 		ofs = 0;
1707 	} while (++pages < last_page);
1708 out:
1709 	return total;
1710 err:
1711 	/* Zero the rest of the target like __copy_from_user(). */
1712 	len = PAGE_SIZE - copied;
1713 	do {
1714 		if (len > bytes)
1715 			len = bytes;
1716 		zero_user(*pages, copied, len);
1717 		bytes -= len;
1718 		copied = 0;
1719 		len = PAGE_SIZE;
1720 	} while (++pages < last_page);
1721 	goto out;
1722 }
1723 
1724 /**
1725  * ntfs_perform_write - perform buffered write to a file
1726  * @file:	file to write to
1727  * @i:		iov_iter with data to write
1728  * @pos:	byte offset in file at which to begin writing to
1729  */
ntfs_perform_write(struct file * file,struct iov_iter * i,loff_t pos)1730 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1731 		loff_t pos)
1732 {
1733 	struct address_space *mapping = file->f_mapping;
1734 	struct inode *vi = mapping->host;
1735 	ntfs_inode *ni = NTFS_I(vi);
1736 	ntfs_volume *vol = ni->vol;
1737 	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1738 	struct page *cached_page = NULL;
1739 	VCN last_vcn;
1740 	LCN lcn;
1741 	size_t bytes;
1742 	ssize_t status, written = 0;
1743 	unsigned nr_pages;
1744 
1745 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1746 			"0x%llx, count 0x%lx.", vi->i_ino,
1747 			(unsigned)le32_to_cpu(ni->type),
1748 			(unsigned long long)pos,
1749 			(unsigned long)iov_iter_count(i));
1750 	/*
1751 	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1752 	 * fails again.
1753 	 */
1754 	if (unlikely(NInoTruncateFailed(ni))) {
1755 		int err;
1756 
1757 		inode_dio_wait(vi);
1758 		err = ntfs_truncate(vi);
1759 		if (err || NInoTruncateFailed(ni)) {
1760 			if (!err)
1761 				err = -EIO;
1762 			ntfs_error(vol->sb, "Cannot perform write to inode "
1763 					"0x%lx, attribute type 0x%x, because "
1764 					"ntfs_truncate() failed (error code "
1765 					"%i).", vi->i_ino,
1766 					(unsigned)le32_to_cpu(ni->type), err);
1767 			return err;
1768 		}
1769 	}
1770 	/*
1771 	 * Determine the number of pages per cluster for non-resident
1772 	 * attributes.
1773 	 */
1774 	nr_pages = 1;
1775 	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1776 		nr_pages = vol->cluster_size >> PAGE_SHIFT;
1777 	last_vcn = -1;
1778 	do {
1779 		VCN vcn;
1780 		pgoff_t idx, start_idx;
1781 		unsigned ofs, do_pages, u;
1782 		size_t copied;
1783 
1784 		start_idx = idx = pos >> PAGE_SHIFT;
1785 		ofs = pos & ~PAGE_MASK;
1786 		bytes = PAGE_SIZE - ofs;
1787 		do_pages = 1;
1788 		if (nr_pages > 1) {
1789 			vcn = pos >> vol->cluster_size_bits;
1790 			if (vcn != last_vcn) {
1791 				last_vcn = vcn;
1792 				/*
1793 				 * Get the lcn of the vcn the write is in.  If
1794 				 * it is a hole, need to lock down all pages in
1795 				 * the cluster.
1796 				 */
1797 				down_read(&ni->runlist.lock);
1798 				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1799 						vol->cluster_size_bits, false);
1800 				up_read(&ni->runlist.lock);
1801 				if (unlikely(lcn < LCN_HOLE)) {
1802 					if (lcn == LCN_ENOMEM)
1803 						status = -ENOMEM;
1804 					else {
1805 						status = -EIO;
1806 						ntfs_error(vol->sb, "Cannot "
1807 							"perform write to "
1808 							"inode 0x%lx, "
1809 							"attribute type 0x%x, "
1810 							"because the attribute "
1811 							"is corrupt.",
1812 							vi->i_ino, (unsigned)
1813 							le32_to_cpu(ni->type));
1814 					}
1815 					break;
1816 				}
1817 				if (lcn == LCN_HOLE) {
1818 					start_idx = (pos & ~(s64)
1819 							vol->cluster_size_mask)
1820 							>> PAGE_SHIFT;
1821 					bytes = vol->cluster_size - (pos &
1822 							vol->cluster_size_mask);
1823 					do_pages = nr_pages;
1824 				}
1825 			}
1826 		}
1827 		if (bytes > iov_iter_count(i))
1828 			bytes = iov_iter_count(i);
1829 again:
1830 		/*
1831 		 * Bring in the user page(s) that we will copy from _first_.
1832 		 * Otherwise there is a nasty deadlock on copying from the same
1833 		 * page(s) as we are writing to, without it/them being marked
1834 		 * up-to-date.  Note, at present there is nothing to stop the
1835 		 * pages being swapped out between us bringing them into memory
1836 		 * and doing the actual copying.
1837 		 */
1838 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
1839 			status = -EFAULT;
1840 			break;
1841 		}
1842 		/* Get and lock @do_pages starting at index @start_idx. */
1843 		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1844 				pages, &cached_page);
1845 		if (unlikely(status))
1846 			break;
1847 		/*
1848 		 * For non-resident attributes, we need to fill any holes with
1849 		 * actual clusters and ensure all bufferes are mapped.  We also
1850 		 * need to bring uptodate any buffers that are only partially
1851 		 * being written to.
1852 		 */
1853 		if (NInoNonResident(ni)) {
1854 			status = ntfs_prepare_pages_for_non_resident_write(
1855 					pages, do_pages, pos, bytes);
1856 			if (unlikely(status)) {
1857 				do {
1858 					unlock_page(pages[--do_pages]);
1859 					put_page(pages[do_pages]);
1860 				} while (do_pages);
1861 				break;
1862 			}
1863 		}
1864 		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1865 		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1866 					i, bytes);
1867 		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1868 		status = 0;
1869 		if (likely(copied == bytes)) {
1870 			status = ntfs_commit_pages_after_write(pages, do_pages,
1871 					pos, bytes);
1872 			if (!status)
1873 				status = bytes;
1874 		}
1875 		do {
1876 			unlock_page(pages[--do_pages]);
1877 			put_page(pages[do_pages]);
1878 		} while (do_pages);
1879 		if (unlikely(status < 0))
1880 			break;
1881 		copied = status;
1882 		cond_resched();
1883 		if (unlikely(!copied)) {
1884 			size_t sc;
1885 
1886 			/*
1887 			 * We failed to copy anything.  Fall back to single
1888 			 * segment length write.
1889 			 *
1890 			 * This is needed to avoid possible livelock in the
1891 			 * case that all segments in the iov cannot be copied
1892 			 * at once without a pagefault.
1893 			 */
1894 			sc = iov_iter_single_seg_count(i);
1895 			if (bytes > sc)
1896 				bytes = sc;
1897 			goto again;
1898 		}
1899 		iov_iter_advance(i, copied);
1900 		pos += copied;
1901 		written += copied;
1902 		balance_dirty_pages_ratelimited(mapping);
1903 		if (fatal_signal_pending(current)) {
1904 			status = -EINTR;
1905 			break;
1906 		}
1907 	} while (iov_iter_count(i));
1908 	if (cached_page)
1909 		put_page(cached_page);
1910 	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1911 			written ? "written" : "status", (unsigned long)written,
1912 			(long)status);
1913 	return written ? written : status;
1914 }
1915 
1916 /**
1917  * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1918  * @iocb:	IO state structure
1919  * @from:	iov_iter with data to write
1920  *
1921  * Basically the same as generic_file_write_iter() except that it ends up
1922  * up calling ntfs_perform_write() instead of generic_perform_write() and that
1923  * O_DIRECT is not implemented.
1924  */
ntfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1925 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1926 {
1927 	struct file *file = iocb->ki_filp;
1928 	struct inode *vi = file_inode(file);
1929 	ssize_t written = 0;
1930 	ssize_t err;
1931 
1932 	inode_lock(vi);
1933 	/* We can write back this queue in page reclaim. */
1934 	current->backing_dev_info = inode_to_bdi(vi);
1935 	err = ntfs_prepare_file_for_write(iocb, from);
1936 	if (iov_iter_count(from) && !err)
1937 		written = ntfs_perform_write(file, from, iocb->ki_pos);
1938 	current->backing_dev_info = NULL;
1939 	inode_unlock(vi);
1940 	iocb->ki_pos += written;
1941 	if (likely(written > 0))
1942 		written = generic_write_sync(iocb, written);
1943 	return written ? written : err;
1944 }
1945 
1946 /**
1947  * ntfs_file_fsync - sync a file to disk
1948  * @filp:	file to be synced
1949  * @datasync:	if non-zero only flush user data and not metadata
1950  *
1951  * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1952  * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1953  *
1954  * If @datasync is false, write the mft record and all associated extent mft
1955  * records as well as the $DATA attribute and then sync the block device.
1956  *
1957  * If @datasync is true and the attribute is non-resident, we skip the writing
1958  * of the mft record and all associated extent mft records (this might still
1959  * happen due to the write_inode_now() call).
1960  *
1961  * Also, if @datasync is true, we do not wait on the inode to be written out
1962  * but we always wait on the page cache pages to be written out.
1963  *
1964  * Locking: Caller must hold i_mutex on the inode.
1965  *
1966  * TODO: We should probably also write all attribute/index inodes associated
1967  * with this inode but since we have no simple way of getting to them we ignore
1968  * this problem for now.
1969  */
ntfs_file_fsync(struct file * filp,loff_t start,loff_t end,int datasync)1970 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1971 			   int datasync)
1972 {
1973 	struct inode *vi = filp->f_mapping->host;
1974 	int err, ret = 0;
1975 
1976 	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1977 
1978 	err = file_write_and_wait_range(filp, start, end);
1979 	if (err)
1980 		return err;
1981 	inode_lock(vi);
1982 
1983 	BUG_ON(S_ISDIR(vi->i_mode));
1984 	if (!datasync || !NInoNonResident(NTFS_I(vi)))
1985 		ret = __ntfs_write_inode(vi, 1);
1986 	write_inode_now(vi, !datasync);
1987 	/*
1988 	 * NOTE: If we were to use mapping->private_list (see ext2 and
1989 	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1990 	 * sync_mapping_buffers(vi->i_mapping).
1991 	 */
1992 	err = sync_blockdev(vi->i_sb->s_bdev);
1993 	if (unlikely(err && !ret))
1994 		ret = err;
1995 	if (likely(!ret))
1996 		ntfs_debug("Done.");
1997 	else
1998 		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
1999 				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2000 	inode_unlock(vi);
2001 	return ret;
2002 }
2003 
2004 #endif /* NTFS_RW */
2005 
2006 const struct file_operations ntfs_file_ops = {
2007 	.llseek		= generic_file_llseek,
2008 	.read_iter	= generic_file_read_iter,
2009 #ifdef NTFS_RW
2010 	.write_iter	= ntfs_file_write_iter,
2011 	.fsync		= ntfs_file_fsync,
2012 #endif /* NTFS_RW */
2013 	.mmap		= generic_file_mmap,
2014 	.open		= ntfs_file_open,
2015 	.splice_read	= generic_file_splice_read,
2016 };
2017 
2018 const struct inode_operations ntfs_file_inode_ops = {
2019 #ifdef NTFS_RW
2020 	.setattr	= ntfs_setattr,
2021 #endif /* NTFS_RW */
2022 };
2023 
2024 const struct file_operations ntfs_empty_file_ops = {};
2025 
2026 const struct inode_operations ntfs_empty_inode_ops = {};
2027