• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  *
4  * vim: noexpandtab sw=8 ts=8 sts=0:
5  *
6  * Copyright (C) 2005 Oracle.  All rights reserved.
7  */
8 
9 /* This quorum hack is only here until we transition to some more rational
10  * approach that is driven from userspace.  Honest.  No foolin'.
11  *
12  * Imagine two nodes lose network connectivity to each other but they're still
13  * up and operating in every other way.  Presumably a network timeout indicates
14  * that a node is broken and should be recovered.  They can't both recover each
15  * other and both carry on without serialising their access to the file system.
16  * They need to decide who is authoritative.  Now extend that problem to
17  * arbitrary groups of nodes losing connectivity between each other.
18  *
19  * So we declare that a node which has given up on connecting to a majority
20  * of nodes who are still heartbeating will fence itself.
21  *
22  * There are huge opportunities for races here.  After we give up on a node's
23  * connection we need to wait long enough to give heartbeat an opportunity
24  * to declare the node as truly dead.  We also need to be careful with the
25  * race between when we see a node start heartbeating and when we connect
26  * to it.
27  *
28  * So nodes that are in this transtion put a hold on the quorum decision
29  * with a counter.  As they fall out of this transition they drop the count
30  * and if they're the last, they fire off the decision.
31  */
32 #include <linux/kernel.h>
33 #include <linux/workqueue.h>
34 #include <linux/reboot.h>
35 
36 #include "heartbeat.h"
37 #include "nodemanager.h"
38 #define MLOG_MASK_PREFIX ML_QUORUM
39 #include "masklog.h"
40 #include "quorum.h"
41 
42 static struct o2quo_state {
43 	spinlock_t		qs_lock;
44 	struct work_struct	qs_work;
45 	int			qs_pending;
46 	int			qs_heartbeating;
47 	unsigned long		qs_hb_bm[BITS_TO_LONGS(O2NM_MAX_NODES)];
48 	int			qs_connected;
49 	unsigned long		qs_conn_bm[BITS_TO_LONGS(O2NM_MAX_NODES)];
50 	int			qs_holds;
51 	unsigned long		qs_hold_bm[BITS_TO_LONGS(O2NM_MAX_NODES)];
52 } o2quo_state;
53 
54 /* this is horribly heavy-handed.  It should instead flip the file
55  * system RO and call some userspace script. */
o2quo_fence_self(void)56 static void o2quo_fence_self(void)
57 {
58 	/* panic spins with interrupts enabled.  with preempt
59 	 * threads can still schedule, etc, etc */
60 	o2hb_stop_all_regions();
61 
62 	switch (o2nm_single_cluster->cl_fence_method) {
63 	case O2NM_FENCE_PANIC:
64 		panic("*** ocfs2 is very sorry to be fencing this system by "
65 		      "panicing ***\n");
66 		break;
67 	default:
68 		WARN_ON(o2nm_single_cluster->cl_fence_method >=
69 			O2NM_FENCE_METHODS);
70 		fallthrough;
71 	case O2NM_FENCE_RESET:
72 		printk(KERN_ERR "*** ocfs2 is very sorry to be fencing this "
73 		       "system by restarting ***\n");
74 		emergency_restart();
75 		break;
76 	}
77 }
78 
79 /* Indicate that a timeout occurred on a heartbeat region write. The
80  * other nodes in the cluster may consider us dead at that time so we
81  * want to "fence" ourselves so that we don't scribble on the disk
82  * after they think they've recovered us. This can't solve all
83  * problems related to writeout after recovery but this hack can at
84  * least close some of those gaps. When we have real fencing, this can
85  * go away as our node would be fenced externally before other nodes
86  * begin recovery. */
o2quo_disk_timeout(void)87 void o2quo_disk_timeout(void)
88 {
89 	o2quo_fence_self();
90 }
91 
o2quo_make_decision(struct work_struct * work)92 static void o2quo_make_decision(struct work_struct *work)
93 {
94 	int quorum;
95 	int lowest_hb, lowest_reachable = 0, fence = 0;
96 	struct o2quo_state *qs = &o2quo_state;
97 
98 	spin_lock(&qs->qs_lock);
99 
100 	lowest_hb = find_first_bit(qs->qs_hb_bm, O2NM_MAX_NODES);
101 	if (lowest_hb != O2NM_MAX_NODES)
102 		lowest_reachable = test_bit(lowest_hb, qs->qs_conn_bm);
103 
104 	mlog(0, "heartbeating: %d, connected: %d, "
105 	     "lowest: %d (%sreachable)\n", qs->qs_heartbeating,
106 	     qs->qs_connected, lowest_hb, lowest_reachable ? "" : "un");
107 
108 	if (!test_bit(o2nm_this_node(), qs->qs_hb_bm) ||
109 	    qs->qs_heartbeating == 1)
110 		goto out;
111 
112 	if (qs->qs_heartbeating & 1) {
113 		/* the odd numbered cluster case is straight forward --
114 		 * if we can't talk to the majority we're hosed */
115 		quorum = (qs->qs_heartbeating + 1)/2;
116 		if (qs->qs_connected < quorum) {
117 			mlog(ML_ERROR, "fencing this node because it is "
118 			     "only connected to %u nodes and %u is needed "
119 			     "to make a quorum out of %u heartbeating nodes\n",
120 			     qs->qs_connected, quorum,
121 			     qs->qs_heartbeating);
122 			fence = 1;
123 		}
124 	} else {
125 		/* the even numbered cluster adds the possibility of each half
126 		 * of the cluster being able to talk amongst themselves.. in
127 		 * that case we're hosed if we can't talk to the group that has
128 		 * the lowest numbered node */
129 		quorum = qs->qs_heartbeating / 2;
130 		if (qs->qs_connected < quorum) {
131 			mlog(ML_ERROR, "fencing this node because it is "
132 			     "only connected to %u nodes and %u is needed "
133 			     "to make a quorum out of %u heartbeating nodes\n",
134 			     qs->qs_connected, quorum,
135 			     qs->qs_heartbeating);
136 			fence = 1;
137 		}
138 		else if ((qs->qs_connected == quorum) &&
139 			 !lowest_reachable) {
140 			mlog(ML_ERROR, "fencing this node because it is "
141 			     "connected to a half-quorum of %u out of %u "
142 			     "nodes which doesn't include the lowest active "
143 			     "node %u\n", quorum, qs->qs_heartbeating,
144 			     lowest_hb);
145 			fence = 1;
146 		}
147 	}
148 
149 out:
150 	if (fence) {
151 		spin_unlock(&qs->qs_lock);
152 		o2quo_fence_self();
153 	} else {
154 		mlog(ML_NOTICE, "not fencing this node, heartbeating: %d, "
155 			"connected: %d, lowest: %d (%sreachable)\n",
156 			qs->qs_heartbeating, qs->qs_connected, lowest_hb,
157 			lowest_reachable ? "" : "un");
158 		spin_unlock(&qs->qs_lock);
159 
160 	}
161 
162 }
163 
o2quo_set_hold(struct o2quo_state * qs,u8 node)164 static void o2quo_set_hold(struct o2quo_state *qs, u8 node)
165 {
166 	assert_spin_locked(&qs->qs_lock);
167 
168 	if (!test_and_set_bit(node, qs->qs_hold_bm)) {
169 		qs->qs_holds++;
170 		mlog_bug_on_msg(qs->qs_holds == O2NM_MAX_NODES,
171 			        "node %u\n", node);
172 		mlog(0, "node %u, %d total\n", node, qs->qs_holds);
173 	}
174 }
175 
o2quo_clear_hold(struct o2quo_state * qs,u8 node)176 static void o2quo_clear_hold(struct o2quo_state *qs, u8 node)
177 {
178 	assert_spin_locked(&qs->qs_lock);
179 
180 	if (test_and_clear_bit(node, qs->qs_hold_bm)) {
181 		mlog(0, "node %u, %d total\n", node, qs->qs_holds - 1);
182 		if (--qs->qs_holds == 0) {
183 			if (qs->qs_pending) {
184 				qs->qs_pending = 0;
185 				schedule_work(&qs->qs_work);
186 			}
187 		}
188 		mlog_bug_on_msg(qs->qs_holds < 0, "node %u, holds %d\n",
189 				node, qs->qs_holds);
190 	}
191 }
192 
193 /* as a node comes up we delay the quorum decision until we know the fate of
194  * the connection.  the hold will be droped in conn_up or hb_down.  it might be
195  * perpetuated by con_err until hb_down.  if we already have a conn, we might
196  * be dropping a hold that conn_up got. */
o2quo_hb_up(u8 node)197 void o2quo_hb_up(u8 node)
198 {
199 	struct o2quo_state *qs = &o2quo_state;
200 
201 	spin_lock(&qs->qs_lock);
202 
203 	qs->qs_heartbeating++;
204 	mlog_bug_on_msg(qs->qs_heartbeating == O2NM_MAX_NODES,
205 		        "node %u\n", node);
206 	mlog_bug_on_msg(test_bit(node, qs->qs_hb_bm), "node %u\n", node);
207 	set_bit(node, qs->qs_hb_bm);
208 
209 	mlog(0, "node %u, %d total\n", node, qs->qs_heartbeating);
210 
211 	if (!test_bit(node, qs->qs_conn_bm))
212 		o2quo_set_hold(qs, node);
213 	else
214 		o2quo_clear_hold(qs, node);
215 
216 	spin_unlock(&qs->qs_lock);
217 }
218 
219 /* hb going down releases any holds we might have had due to this node from
220  * conn_up, conn_err, or hb_up */
o2quo_hb_down(u8 node)221 void o2quo_hb_down(u8 node)
222 {
223 	struct o2quo_state *qs = &o2quo_state;
224 
225 	spin_lock(&qs->qs_lock);
226 
227 	qs->qs_heartbeating--;
228 	mlog_bug_on_msg(qs->qs_heartbeating < 0,
229 			"node %u, %d heartbeating\n",
230 			node, qs->qs_heartbeating);
231 	mlog_bug_on_msg(!test_bit(node, qs->qs_hb_bm), "node %u\n", node);
232 	clear_bit(node, qs->qs_hb_bm);
233 
234 	mlog(0, "node %u, %d total\n", node, qs->qs_heartbeating);
235 
236 	o2quo_clear_hold(qs, node);
237 
238 	spin_unlock(&qs->qs_lock);
239 }
240 
241 /* this tells us that we've decided that the node is still heartbeating
242  * even though we've lost it's conn.  it must only be called after conn_err
243  * and indicates that we must now make a quorum decision in the future,
244  * though we might be doing so after waiting for holds to drain.  Here
245  * we'll be dropping the hold from conn_err. */
o2quo_hb_still_up(u8 node)246 void o2quo_hb_still_up(u8 node)
247 {
248 	struct o2quo_state *qs = &o2quo_state;
249 
250 	spin_lock(&qs->qs_lock);
251 
252 	mlog(0, "node %u\n", node);
253 
254 	qs->qs_pending = 1;
255 	o2quo_clear_hold(qs, node);
256 
257 	spin_unlock(&qs->qs_lock);
258 }
259 
260 /* This is analogous to hb_up.  as a node's connection comes up we delay the
261  * quorum decision until we see it heartbeating.  the hold will be droped in
262  * hb_up or hb_down.  it might be perpetuated by con_err until hb_down.  if
263  * it's already heartbeating we might be dropping a hold that conn_up got.
264  * */
o2quo_conn_up(u8 node)265 void o2quo_conn_up(u8 node)
266 {
267 	struct o2quo_state *qs = &o2quo_state;
268 
269 	spin_lock(&qs->qs_lock);
270 
271 	qs->qs_connected++;
272 	mlog_bug_on_msg(qs->qs_connected == O2NM_MAX_NODES,
273 		        "node %u\n", node);
274 	mlog_bug_on_msg(test_bit(node, qs->qs_conn_bm), "node %u\n", node);
275 	set_bit(node, qs->qs_conn_bm);
276 
277 	mlog(0, "node %u, %d total\n", node, qs->qs_connected);
278 
279 	if (!test_bit(node, qs->qs_hb_bm))
280 		o2quo_set_hold(qs, node);
281 	else
282 		o2quo_clear_hold(qs, node);
283 
284 	spin_unlock(&qs->qs_lock);
285 }
286 
287 /* we've decided that we won't ever be connecting to the node again.  if it's
288  * still heartbeating we grab a hold that will delay decisions until either the
289  * node stops heartbeating from hb_down or the caller decides that the node is
290  * still up and calls still_up */
o2quo_conn_err(u8 node)291 void o2quo_conn_err(u8 node)
292 {
293 	struct o2quo_state *qs = &o2quo_state;
294 
295 	spin_lock(&qs->qs_lock);
296 
297 	if (test_bit(node, qs->qs_conn_bm)) {
298 		qs->qs_connected--;
299 		mlog_bug_on_msg(qs->qs_connected < 0,
300 				"node %u, connected %d\n",
301 				node, qs->qs_connected);
302 
303 		clear_bit(node, qs->qs_conn_bm);
304 
305 		if (test_bit(node, qs->qs_hb_bm))
306 			o2quo_set_hold(qs, node);
307 	}
308 
309 	mlog(0, "node %u, %d total\n", node, qs->qs_connected);
310 
311 
312 	spin_unlock(&qs->qs_lock);
313 }
314 
o2quo_init(void)315 void o2quo_init(void)
316 {
317 	struct o2quo_state *qs = &o2quo_state;
318 
319 	spin_lock_init(&qs->qs_lock);
320 	INIT_WORK(&qs->qs_work, o2quo_make_decision);
321 }
322 
o2quo_exit(void)323 void o2quo_exit(void)
324 {
325 	struct o2quo_state *qs = &o2quo_state;
326 
327 	flush_work(&qs->qs_work);
328 }
329