1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * journal.c
6 *
7 * Defines functions of journalling api
8 *
9 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44
45 DEFINE_SPINLOCK(trans_inc_lock);
46
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51 int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56 int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58 int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60 int slot,
61 enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64 int slot_num,
65 struct ocfs2_dinode *la_dinode,
66 struct ocfs2_dinode *tl_dinode,
67 struct ocfs2_quota_recovery *qrec,
68 enum ocfs2_orphan_reco_type orphan_reco_type);
69
ocfs2_wait_on_mount(struct ocfs2_super * osb)70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72 return __ocfs2_wait_on_mount(osb, 0);
73 }
74
ocfs2_wait_on_quotas(struct ocfs2_super * osb)75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77 return __ocfs2_wait_on_mount(osb, 1);
78 }
79
80 /*
81 * This replay_map is to track online/offline slots, so we could recover
82 * offline slots during recovery and mount
83 */
84
85 enum ocfs2_replay_state {
86 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
87 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
88 REPLAY_DONE /* Replay was already queued */
89 };
90
91 struct ocfs2_replay_map {
92 unsigned int rm_slots;
93 enum ocfs2_replay_state rm_state;
94 unsigned char rm_replay_slots[];
95 };
96
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99 if (!osb->replay_map)
100 return;
101
102 /* If we've already queued the replay, we don't have any more to do */
103 if (osb->replay_map->rm_state == REPLAY_DONE)
104 return;
105
106 osb->replay_map->rm_state = state;
107 }
108
ocfs2_compute_replay_slots(struct ocfs2_super * osb)109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111 struct ocfs2_replay_map *replay_map;
112 int i, node_num;
113
114 /* If replay map is already set, we don't do it again */
115 if (osb->replay_map)
116 return 0;
117
118 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119 (osb->max_slots * sizeof(char)), GFP_KERNEL);
120
121 if (!replay_map) {
122 mlog_errno(-ENOMEM);
123 return -ENOMEM;
124 }
125
126 spin_lock(&osb->osb_lock);
127
128 replay_map->rm_slots = osb->max_slots;
129 replay_map->rm_state = REPLAY_UNNEEDED;
130
131 /* set rm_replay_slots for offline slot(s) */
132 for (i = 0; i < replay_map->rm_slots; i++) {
133 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134 replay_map->rm_replay_slots[i] = 1;
135 }
136
137 osb->replay_map = replay_map;
138 spin_unlock(&osb->osb_lock);
139 return 0;
140 }
141
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143 enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145 struct ocfs2_replay_map *replay_map = osb->replay_map;
146 int i;
147
148 if (!replay_map)
149 return;
150
151 if (replay_map->rm_state != REPLAY_NEEDED)
152 return;
153
154 for (i = 0; i < replay_map->rm_slots; i++)
155 if (replay_map->rm_replay_slots[i])
156 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157 NULL, NULL,
158 orphan_reco_type);
159 replay_map->rm_state = REPLAY_DONE;
160 }
161
ocfs2_free_replay_slots(struct ocfs2_super * osb)162 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164 struct ocfs2_replay_map *replay_map = osb->replay_map;
165
166 if (!osb->replay_map)
167 return;
168
169 kfree(replay_map);
170 osb->replay_map = NULL;
171 }
172
ocfs2_recovery_init(struct ocfs2_super * osb)173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175 struct ocfs2_recovery_map *rm;
176
177 mutex_init(&osb->recovery_lock);
178 osb->disable_recovery = 0;
179 osb->recovery_thread_task = NULL;
180 init_waitqueue_head(&osb->recovery_event);
181
182 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183 osb->max_slots * sizeof(unsigned int),
184 GFP_KERNEL);
185 if (!rm) {
186 mlog_errno(-ENOMEM);
187 return -ENOMEM;
188 }
189
190 rm->rm_entries = (unsigned int *)((char *)rm +
191 sizeof(struct ocfs2_recovery_map));
192 osb->recovery_map = rm;
193
194 return 0;
195 }
196
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198 * memory barriers to make sure that we'll see the null task before
199 * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202 mb();
203 return osb->recovery_thread_task != NULL;
204 }
205
ocfs2_recovery_exit(struct ocfs2_super * osb)206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208 struct ocfs2_recovery_map *rm;
209
210 /* disable any new recovery threads and wait for any currently
211 * running ones to exit. Do this before setting the vol_state. */
212 mutex_lock(&osb->recovery_lock);
213 osb->disable_recovery = 1;
214 mutex_unlock(&osb->recovery_lock);
215 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216
217 /* At this point, we know that no more recovery threads can be
218 * launched, so wait for any recovery completion work to
219 * complete. */
220 if (osb->ocfs2_wq)
221 flush_workqueue(osb->ocfs2_wq);
222
223 /*
224 * Now that recovery is shut down, and the osb is about to be
225 * freed, the osb_lock is not taken here.
226 */
227 rm = osb->recovery_map;
228 /* XXX: Should we bug if there are dirty entries? */
229
230 kfree(rm);
231 }
232
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
234 unsigned int node_num)
235 {
236 int i;
237 struct ocfs2_recovery_map *rm = osb->recovery_map;
238
239 assert_spin_locked(&osb->osb_lock);
240
241 for (i = 0; i < rm->rm_used; i++) {
242 if (rm->rm_entries[i] == node_num)
243 return 1;
244 }
245
246 return 0;
247 }
248
249 /* Behaves like test-and-set. Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
251 unsigned int node_num)
252 {
253 struct ocfs2_recovery_map *rm = osb->recovery_map;
254
255 spin_lock(&osb->osb_lock);
256 if (__ocfs2_recovery_map_test(osb, node_num)) {
257 spin_unlock(&osb->osb_lock);
258 return 1;
259 }
260
261 /* XXX: Can this be exploited? Not from o2dlm... */
262 BUG_ON(rm->rm_used >= osb->max_slots);
263
264 rm->rm_entries[rm->rm_used] = node_num;
265 rm->rm_used++;
266 spin_unlock(&osb->osb_lock);
267
268 return 0;
269 }
270
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
272 unsigned int node_num)
273 {
274 int i;
275 struct ocfs2_recovery_map *rm = osb->recovery_map;
276
277 spin_lock(&osb->osb_lock);
278
279 for (i = 0; i < rm->rm_used; i++) {
280 if (rm->rm_entries[i] == node_num)
281 break;
282 }
283
284 if (i < rm->rm_used) {
285 /* XXX: be careful with the pointer math */
286 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
287 (rm->rm_used - i - 1) * sizeof(unsigned int));
288 rm->rm_used--;
289 }
290
291 spin_unlock(&osb->osb_lock);
292 }
293
ocfs2_commit_cache(struct ocfs2_super * osb)294 static int ocfs2_commit_cache(struct ocfs2_super *osb)
295 {
296 int status = 0;
297 unsigned int flushed;
298 struct ocfs2_journal *journal = NULL;
299
300 journal = osb->journal;
301
302 /* Flush all pending commits and checkpoint the journal. */
303 down_write(&journal->j_trans_barrier);
304
305 flushed = atomic_read(&journal->j_num_trans);
306 trace_ocfs2_commit_cache_begin(flushed);
307 if (flushed == 0) {
308 up_write(&journal->j_trans_barrier);
309 goto finally;
310 }
311
312 jbd2_journal_lock_updates(journal->j_journal);
313 status = jbd2_journal_flush(journal->j_journal);
314 jbd2_journal_unlock_updates(journal->j_journal);
315 if (status < 0) {
316 up_write(&journal->j_trans_barrier);
317 mlog_errno(status);
318 goto finally;
319 }
320
321 ocfs2_inc_trans_id(journal);
322
323 flushed = atomic_read(&journal->j_num_trans);
324 atomic_set(&journal->j_num_trans, 0);
325 up_write(&journal->j_trans_barrier);
326
327 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328
329 ocfs2_wake_downconvert_thread(osb);
330 wake_up(&journal->j_checkpointed);
331 finally:
332 return status;
333 }
334
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336 {
337 journal_t *journal = osb->journal->j_journal;
338 handle_t *handle;
339
340 BUG_ON(!osb || !osb->journal->j_journal);
341
342 if (ocfs2_is_hard_readonly(osb))
343 return ERR_PTR(-EROFS);
344
345 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
346 BUG_ON(max_buffs <= 0);
347
348 /* Nested transaction? Just return the handle... */
349 if (journal_current_handle())
350 return jbd2_journal_start(journal, max_buffs);
351
352 sb_start_intwrite(osb->sb);
353
354 down_read(&osb->journal->j_trans_barrier);
355
356 handle = jbd2_journal_start(journal, max_buffs);
357 if (IS_ERR(handle)) {
358 up_read(&osb->journal->j_trans_barrier);
359 sb_end_intwrite(osb->sb);
360
361 mlog_errno(PTR_ERR(handle));
362
363 if (is_journal_aborted(journal)) {
364 ocfs2_abort(osb->sb, "Detected aborted journal\n");
365 handle = ERR_PTR(-EROFS);
366 }
367 } else {
368 if (!ocfs2_mount_local(osb))
369 atomic_inc(&(osb->journal->j_num_trans));
370 }
371
372 return handle;
373 }
374
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)375 int ocfs2_commit_trans(struct ocfs2_super *osb,
376 handle_t *handle)
377 {
378 int ret, nested;
379 struct ocfs2_journal *journal = osb->journal;
380
381 BUG_ON(!handle);
382
383 nested = handle->h_ref > 1;
384 ret = jbd2_journal_stop(handle);
385 if (ret < 0)
386 mlog_errno(ret);
387
388 if (!nested) {
389 up_read(&journal->j_trans_barrier);
390 sb_end_intwrite(osb->sb);
391 }
392
393 return ret;
394 }
395
396 /*
397 * 'nblocks' is what you want to add to the current transaction.
398 *
399 * This might call jbd2_journal_restart() which will commit dirty buffers
400 * and then restart the transaction. Before calling
401 * ocfs2_extend_trans(), any changed blocks should have been
402 * dirtied. After calling it, all blocks which need to be changed must
403 * go through another set of journal_access/journal_dirty calls.
404 *
405 * WARNING: This will not release any semaphores or disk locks taken
406 * during the transaction, so make sure they were taken *before*
407 * start_trans or we'll have ordering deadlocks.
408 *
409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410 * good because transaction ids haven't yet been recorded on the
411 * cluster locks associated with this handle.
412 */
ocfs2_extend_trans(handle_t * handle,int nblocks)413 int ocfs2_extend_trans(handle_t *handle, int nblocks)
414 {
415 int status, old_nblocks;
416
417 BUG_ON(!handle);
418 BUG_ON(nblocks < 0);
419
420 if (!nblocks)
421 return 0;
422
423 old_nblocks = jbd2_handle_buffer_credits(handle);
424
425 trace_ocfs2_extend_trans(old_nblocks, nblocks);
426
427 #ifdef CONFIG_OCFS2_DEBUG_FS
428 status = 1;
429 #else
430 status = jbd2_journal_extend(handle, nblocks, 0);
431 if (status < 0) {
432 mlog_errno(status);
433 goto bail;
434 }
435 #endif
436
437 if (status > 0) {
438 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
439 status = jbd2_journal_restart(handle,
440 old_nblocks + nblocks);
441 if (status < 0) {
442 mlog_errno(status);
443 goto bail;
444 }
445 }
446
447 status = 0;
448 bail:
449 return status;
450 }
451
452 /*
453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454 * If that fails, restart the transaction & regain write access for the
455 * buffer head which is used for metadata modifications.
456 * Taken from Ext4: extend_or_restart_transaction()
457 */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459 {
460 int status, old_nblks;
461
462 BUG_ON(!handle);
463
464 old_nblks = jbd2_handle_buffer_credits(handle);
465 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466
467 if (old_nblks < thresh)
468 return 0;
469
470 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
471 if (status < 0) {
472 mlog_errno(status);
473 goto bail;
474 }
475
476 if (status > 0) {
477 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
478 if (status < 0)
479 mlog_errno(status);
480 }
481
482 bail:
483 return status;
484 }
485
486
487 struct ocfs2_triggers {
488 struct jbd2_buffer_trigger_type ot_triggers;
489 int ot_offset;
490 };
491
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493 {
494 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
495 }
496
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
498 struct buffer_head *bh,
499 void *data, size_t size)
500 {
501 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
502
503 /*
504 * We aren't guaranteed to have the superblock here, so we
505 * must unconditionally compute the ecc data.
506 * __ocfs2_journal_access() will only set the triggers if
507 * metaecc is enabled.
508 */
509 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
510 }
511
512 /*
513 * Quota blocks have their own trigger because the struct ocfs2_block_check
514 * offset depends on the blocksize.
515 */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
517 struct buffer_head *bh,
518 void *data, size_t size)
519 {
520 struct ocfs2_disk_dqtrailer *dqt =
521 ocfs2_block_dqtrailer(size, data);
522
523 /*
524 * We aren't guaranteed to have the superblock here, so we
525 * must unconditionally compute the ecc data.
526 * __ocfs2_journal_access() will only set the triggers if
527 * metaecc is enabled.
528 */
529 ocfs2_block_check_compute(data, size, &dqt->dq_check);
530 }
531
532 /*
533 * Directory blocks also have their own trigger because the
534 * struct ocfs2_block_check offset depends on the blocksize.
535 */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
537 struct buffer_head *bh,
538 void *data, size_t size)
539 {
540 struct ocfs2_dir_block_trailer *trailer =
541 ocfs2_dir_trailer_from_size(size, data);
542
543 /*
544 * We aren't guaranteed to have the superblock here, so we
545 * must unconditionally compute the ecc data.
546 * __ocfs2_journal_access() will only set the triggers if
547 * metaecc is enabled.
548 */
549 ocfs2_block_check_compute(data, size, &trailer->db_check);
550 }
551
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
553 struct buffer_head *bh)
554 {
555 mlog(ML_ERROR,
556 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
557 "bh->b_blocknr = %llu\n",
558 (unsigned long)bh,
559 (unsigned long long)bh->b_blocknr);
560
561 ocfs2_error(bh->b_bdev->bd_super,
562 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
563 }
564
565 static struct ocfs2_triggers di_triggers = {
566 .ot_triggers = {
567 .t_frozen = ocfs2_frozen_trigger,
568 .t_abort = ocfs2_abort_trigger,
569 },
570 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
571 };
572
573 static struct ocfs2_triggers eb_triggers = {
574 .ot_triggers = {
575 .t_frozen = ocfs2_frozen_trigger,
576 .t_abort = ocfs2_abort_trigger,
577 },
578 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
579 };
580
581 static struct ocfs2_triggers rb_triggers = {
582 .ot_triggers = {
583 .t_frozen = ocfs2_frozen_trigger,
584 .t_abort = ocfs2_abort_trigger,
585 },
586 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
587 };
588
589 static struct ocfs2_triggers gd_triggers = {
590 .ot_triggers = {
591 .t_frozen = ocfs2_frozen_trigger,
592 .t_abort = ocfs2_abort_trigger,
593 },
594 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
595 };
596
597 static struct ocfs2_triggers db_triggers = {
598 .ot_triggers = {
599 .t_frozen = ocfs2_db_frozen_trigger,
600 .t_abort = ocfs2_abort_trigger,
601 },
602 };
603
604 static struct ocfs2_triggers xb_triggers = {
605 .ot_triggers = {
606 .t_frozen = ocfs2_frozen_trigger,
607 .t_abort = ocfs2_abort_trigger,
608 },
609 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
610 };
611
612 static struct ocfs2_triggers dq_triggers = {
613 .ot_triggers = {
614 .t_frozen = ocfs2_dq_frozen_trigger,
615 .t_abort = ocfs2_abort_trigger,
616 },
617 };
618
619 static struct ocfs2_triggers dr_triggers = {
620 .ot_triggers = {
621 .t_frozen = ocfs2_frozen_trigger,
622 .t_abort = ocfs2_abort_trigger,
623 },
624 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
625 };
626
627 static struct ocfs2_triggers dl_triggers = {
628 .ot_triggers = {
629 .t_frozen = ocfs2_frozen_trigger,
630 .t_abort = ocfs2_abort_trigger,
631 },
632 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
633 };
634
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)635 static int __ocfs2_journal_access(handle_t *handle,
636 struct ocfs2_caching_info *ci,
637 struct buffer_head *bh,
638 struct ocfs2_triggers *triggers,
639 int type)
640 {
641 int status;
642 struct ocfs2_super *osb =
643 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644
645 BUG_ON(!ci || !ci->ci_ops);
646 BUG_ON(!handle);
647 BUG_ON(!bh);
648
649 trace_ocfs2_journal_access(
650 (unsigned long long)ocfs2_metadata_cache_owner(ci),
651 (unsigned long long)bh->b_blocknr, type, bh->b_size);
652
653 /* we can safely remove this assertion after testing. */
654 if (!buffer_uptodate(bh)) {
655 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
656 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
657 (unsigned long long)bh->b_blocknr, bh->b_state);
658
659 lock_buffer(bh);
660 /*
661 * A previous transaction with a couple of buffer heads fail
662 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663 * For current transaction, the bh is just among those error
664 * bhs which previous transaction handle. We can't just clear
665 * its BH_Write_EIO and reuse directly, since other bhs are
666 * not written to disk yet and that will cause metadata
667 * inconsistency. So we should set fs read-only to avoid
668 * further damage.
669 */
670 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
671 unlock_buffer(bh);
672 return ocfs2_error(osb->sb, "A previous attempt to "
673 "write this buffer head failed\n");
674 }
675 unlock_buffer(bh);
676 }
677
678 /* Set the current transaction information on the ci so
679 * that the locking code knows whether it can drop it's locks
680 * on this ci or not. We're protected from the commit
681 * thread updating the current transaction id until
682 * ocfs2_commit_trans() because ocfs2_start_trans() took
683 * j_trans_barrier for us. */
684 ocfs2_set_ci_lock_trans(osb->journal, ci);
685
686 ocfs2_metadata_cache_io_lock(ci);
687 switch (type) {
688 case OCFS2_JOURNAL_ACCESS_CREATE:
689 case OCFS2_JOURNAL_ACCESS_WRITE:
690 status = jbd2_journal_get_write_access(handle, bh);
691 break;
692
693 case OCFS2_JOURNAL_ACCESS_UNDO:
694 status = jbd2_journal_get_undo_access(handle, bh);
695 break;
696
697 default:
698 status = -EINVAL;
699 mlog(ML_ERROR, "Unknown access type!\n");
700 }
701 if (!status && ocfs2_meta_ecc(osb) && triggers)
702 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
703 ocfs2_metadata_cache_io_unlock(ci);
704
705 if (status < 0)
706 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
707 status, type);
708
709 return status;
710 }
711
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
713 struct buffer_head *bh, int type)
714 {
715 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
716 }
717
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
719 struct buffer_head *bh, int type)
720 {
721 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
722 }
723
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
725 struct buffer_head *bh, int type)
726 {
727 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
728 type);
729 }
730
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
732 struct buffer_head *bh, int type)
733 {
734 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
735 }
736
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
738 struct buffer_head *bh, int type)
739 {
740 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
741 }
742
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744 struct buffer_head *bh, int type)
745 {
746 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
747 }
748
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
750 struct buffer_head *bh, int type)
751 {
752 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
753 }
754
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
756 struct buffer_head *bh, int type)
757 {
758 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
759 }
760
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
762 struct buffer_head *bh, int type)
763 {
764 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
765 }
766
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
768 struct buffer_head *bh, int type)
769 {
770 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
771 }
772
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774 {
775 int status;
776
777 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778
779 status = jbd2_journal_dirty_metadata(handle, bh);
780 if (status) {
781 mlog_errno(status);
782 if (!is_handle_aborted(handle)) {
783 journal_t *journal = handle->h_transaction->t_journal;
784 struct super_block *sb = bh->b_bdev->bd_super;
785
786 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
787 "Aborting transaction and journal.\n");
788 handle->h_err = status;
789 jbd2_journal_abort_handle(handle);
790 jbd2_journal_abort(journal, status);
791 ocfs2_abort(sb, "Journal already aborted.\n");
792 }
793 }
794 }
795
796 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797
ocfs2_set_journal_params(struct ocfs2_super * osb)798 void ocfs2_set_journal_params(struct ocfs2_super *osb)
799 {
800 journal_t *journal = osb->journal->j_journal;
801 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802
803 if (osb->osb_commit_interval)
804 commit_interval = osb->osb_commit_interval;
805
806 write_lock(&journal->j_state_lock);
807 journal->j_commit_interval = commit_interval;
808 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
809 journal->j_flags |= JBD2_BARRIER;
810 else
811 journal->j_flags &= ~JBD2_BARRIER;
812 write_unlock(&journal->j_state_lock);
813 }
814
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816 {
817 int status = -1;
818 struct inode *inode = NULL; /* the journal inode */
819 journal_t *j_journal = NULL;
820 struct ocfs2_dinode *di = NULL;
821 struct buffer_head *bh = NULL;
822 struct ocfs2_super *osb;
823 int inode_lock = 0;
824
825 BUG_ON(!journal);
826
827 osb = journal->j_osb;
828
829 /* already have the inode for our journal */
830 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
831 osb->slot_num);
832 if (inode == NULL) {
833 status = -EACCES;
834 mlog_errno(status);
835 goto done;
836 }
837 if (is_bad_inode(inode)) {
838 mlog(ML_ERROR, "access error (bad inode)\n");
839 iput(inode);
840 inode = NULL;
841 status = -EACCES;
842 goto done;
843 }
844
845 SET_INODE_JOURNAL(inode);
846 OCFS2_I(inode)->ip_open_count++;
847
848 /* Skip recovery waits here - journal inode metadata never
849 * changes in a live cluster so it can be considered an
850 * exception to the rule. */
851 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
852 if (status < 0) {
853 if (status != -ERESTARTSYS)
854 mlog(ML_ERROR, "Could not get lock on journal!\n");
855 goto done;
856 }
857
858 inode_lock = 1;
859 di = (struct ocfs2_dinode *)bh->b_data;
860
861 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
862 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
863 i_size_read(inode));
864 status = -EINVAL;
865 goto done;
866 }
867
868 trace_ocfs2_journal_init(i_size_read(inode),
869 (unsigned long long)inode->i_blocks,
870 OCFS2_I(inode)->ip_clusters);
871
872 /* call the kernels journal init function now */
873 j_journal = jbd2_journal_init_inode(inode);
874 if (j_journal == NULL) {
875 mlog(ML_ERROR, "Linux journal layer error\n");
876 status = -EINVAL;
877 goto done;
878 }
879
880 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
881
882 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
883 OCFS2_JOURNAL_DIRTY_FL);
884
885 journal->j_journal = j_journal;
886 journal->j_journal->j_submit_inode_data_buffers =
887 jbd2_journal_submit_inode_data_buffers;
888 journal->j_journal->j_finish_inode_data_buffers =
889 jbd2_journal_finish_inode_data_buffers;
890 journal->j_inode = inode;
891 journal->j_bh = bh;
892
893 ocfs2_set_journal_params(osb);
894
895 journal->j_state = OCFS2_JOURNAL_LOADED;
896
897 status = 0;
898 done:
899 if (status < 0) {
900 if (inode_lock)
901 ocfs2_inode_unlock(inode, 1);
902 brelse(bh);
903 if (inode) {
904 OCFS2_I(inode)->ip_open_count--;
905 iput(inode);
906 }
907 }
908
909 return status;
910 }
911
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)912 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
913 {
914 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
915 }
916
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)917 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
918 {
919 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
920 }
921
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)922 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
923 int dirty, int replayed)
924 {
925 int status;
926 unsigned int flags;
927 struct ocfs2_journal *journal = osb->journal;
928 struct buffer_head *bh = journal->j_bh;
929 struct ocfs2_dinode *fe;
930
931 fe = (struct ocfs2_dinode *)bh->b_data;
932
933 /* The journal bh on the osb always comes from ocfs2_journal_init()
934 * and was validated there inside ocfs2_inode_lock_full(). It's a
935 * code bug if we mess it up. */
936 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
937
938 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
939 if (dirty)
940 flags |= OCFS2_JOURNAL_DIRTY_FL;
941 else
942 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
943 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
944
945 if (replayed)
946 ocfs2_bump_recovery_generation(fe);
947
948 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
949 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
950 if (status < 0)
951 mlog_errno(status);
952
953 return status;
954 }
955
956 /*
957 * If the journal has been kmalloc'd it needs to be freed after this
958 * call.
959 */
ocfs2_journal_shutdown(struct ocfs2_super * osb)960 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
961 {
962 struct ocfs2_journal *journal = NULL;
963 int status = 0;
964 struct inode *inode = NULL;
965 int num_running_trans = 0;
966
967 BUG_ON(!osb);
968
969 journal = osb->journal;
970 if (!journal)
971 goto done;
972
973 inode = journal->j_inode;
974
975 if (journal->j_state != OCFS2_JOURNAL_LOADED)
976 goto done;
977
978 /* need to inc inode use count - jbd2_journal_destroy will iput. */
979 if (!igrab(inode))
980 BUG();
981
982 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
983 trace_ocfs2_journal_shutdown(num_running_trans);
984
985 /* Do a commit_cache here. It will flush our journal, *and*
986 * release any locks that are still held.
987 * set the SHUTDOWN flag and release the trans lock.
988 * the commit thread will take the trans lock for us below. */
989 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
990
991 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
992 * drop the trans_lock (which we want to hold until we
993 * completely destroy the journal. */
994 if (osb->commit_task) {
995 /* Wait for the commit thread */
996 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
997 kthread_stop(osb->commit_task);
998 osb->commit_task = NULL;
999 }
1000
1001 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1002
1003 if (ocfs2_mount_local(osb)) {
1004 jbd2_journal_lock_updates(journal->j_journal);
1005 status = jbd2_journal_flush(journal->j_journal);
1006 jbd2_journal_unlock_updates(journal->j_journal);
1007 if (status < 0)
1008 mlog_errno(status);
1009 }
1010
1011 /* Shutdown the kernel journal system */
1012 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1013 /*
1014 * Do not toggle if flush was unsuccessful otherwise
1015 * will leave dirty metadata in a "clean" journal
1016 */
1017 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1018 if (status < 0)
1019 mlog_errno(status);
1020 }
1021 journal->j_journal = NULL;
1022
1023 OCFS2_I(inode)->ip_open_count--;
1024
1025 /* unlock our journal */
1026 ocfs2_inode_unlock(inode, 1);
1027
1028 brelse(journal->j_bh);
1029 journal->j_bh = NULL;
1030
1031 journal->j_state = OCFS2_JOURNAL_FREE;
1032
1033 // up_write(&journal->j_trans_barrier);
1034 done:
1035 iput(inode);
1036 }
1037
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1038 static void ocfs2_clear_journal_error(struct super_block *sb,
1039 journal_t *journal,
1040 int slot)
1041 {
1042 int olderr;
1043
1044 olderr = jbd2_journal_errno(journal);
1045 if (olderr) {
1046 mlog(ML_ERROR, "File system error %d recorded in "
1047 "journal %u.\n", olderr, slot);
1048 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1049 sb->s_id);
1050
1051 jbd2_journal_ack_err(journal);
1052 jbd2_journal_clear_err(journal);
1053 }
1054 }
1055
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1056 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1057 {
1058 int status = 0;
1059 struct ocfs2_super *osb;
1060
1061 BUG_ON(!journal);
1062
1063 osb = journal->j_osb;
1064
1065 status = jbd2_journal_load(journal->j_journal);
1066 if (status < 0) {
1067 mlog(ML_ERROR, "Failed to load journal!\n");
1068 goto done;
1069 }
1070
1071 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1072
1073 if (replayed) {
1074 jbd2_journal_lock_updates(journal->j_journal);
1075 status = jbd2_journal_flush(journal->j_journal);
1076 jbd2_journal_unlock_updates(journal->j_journal);
1077 if (status < 0)
1078 mlog_errno(status);
1079 }
1080
1081 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1082 if (status < 0) {
1083 mlog_errno(status);
1084 goto done;
1085 }
1086
1087 /* Launch the commit thread */
1088 if (!local) {
1089 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1090 "ocfs2cmt-%s", osb->uuid_str);
1091 if (IS_ERR(osb->commit_task)) {
1092 status = PTR_ERR(osb->commit_task);
1093 osb->commit_task = NULL;
1094 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1095 "error=%d", status);
1096 goto done;
1097 }
1098 } else
1099 osb->commit_task = NULL;
1100
1101 done:
1102 return status;
1103 }
1104
1105
1106 /* 'full' flag tells us whether we clear out all blocks or if we just
1107 * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1108 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1109 {
1110 int status;
1111
1112 BUG_ON(!journal);
1113
1114 status = jbd2_journal_wipe(journal->j_journal, full);
1115 if (status < 0) {
1116 mlog_errno(status);
1117 goto bail;
1118 }
1119
1120 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1121 if (status < 0)
1122 mlog_errno(status);
1123
1124 bail:
1125 return status;
1126 }
1127
ocfs2_recovery_completed(struct ocfs2_super * osb)1128 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1129 {
1130 int empty;
1131 struct ocfs2_recovery_map *rm = osb->recovery_map;
1132
1133 spin_lock(&osb->osb_lock);
1134 empty = (rm->rm_used == 0);
1135 spin_unlock(&osb->osb_lock);
1136
1137 return empty;
1138 }
1139
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1140 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1141 {
1142 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1143 }
1144
1145 /*
1146 * JBD Might read a cached version of another nodes journal file. We
1147 * don't want this as this file changes often and we get no
1148 * notification on those changes. The only way to be sure that we've
1149 * got the most up to date version of those blocks then is to force
1150 * read them off disk. Just searching through the buffer cache won't
1151 * work as there may be pages backing this file which are still marked
1152 * up to date. We know things can't change on this file underneath us
1153 * as we have the lock by now :)
1154 */
ocfs2_force_read_journal(struct inode * inode)1155 static int ocfs2_force_read_journal(struct inode *inode)
1156 {
1157 int status = 0;
1158 int i;
1159 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1160 struct buffer_head *bh = NULL;
1161 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1162
1163 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1164 v_blkno = 0;
1165 while (v_blkno < num_blocks) {
1166 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1167 &p_blkno, &p_blocks, NULL);
1168 if (status < 0) {
1169 mlog_errno(status);
1170 goto bail;
1171 }
1172
1173 for (i = 0; i < p_blocks; i++, p_blkno++) {
1174 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1175 osb->sb->s_blocksize);
1176 /* block not cached. */
1177 if (!bh)
1178 continue;
1179
1180 brelse(bh);
1181 bh = NULL;
1182 /* We are reading journal data which should not
1183 * be put in the uptodate cache.
1184 */
1185 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1186 if (status < 0) {
1187 mlog_errno(status);
1188 goto bail;
1189 }
1190
1191 brelse(bh);
1192 bh = NULL;
1193 }
1194
1195 v_blkno += p_blocks;
1196 }
1197
1198 bail:
1199 return status;
1200 }
1201
1202 struct ocfs2_la_recovery_item {
1203 struct list_head lri_list;
1204 int lri_slot;
1205 struct ocfs2_dinode *lri_la_dinode;
1206 struct ocfs2_dinode *lri_tl_dinode;
1207 struct ocfs2_quota_recovery *lri_qrec;
1208 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1209 };
1210
1211 /* Does the second half of the recovery process. By this point, the
1212 * node is marked clean and can actually be considered recovered,
1213 * hence it's no longer in the recovery map, but there's still some
1214 * cleanup we can do which shouldn't happen within the recovery thread
1215 * as locking in that context becomes very difficult if we are to take
1216 * recovering nodes into account.
1217 *
1218 * NOTE: This function can and will sleep on recovery of other nodes
1219 * during cluster locking, just like any other ocfs2 process.
1220 */
ocfs2_complete_recovery(struct work_struct * work)1221 void ocfs2_complete_recovery(struct work_struct *work)
1222 {
1223 int ret = 0;
1224 struct ocfs2_journal *journal =
1225 container_of(work, struct ocfs2_journal, j_recovery_work);
1226 struct ocfs2_super *osb = journal->j_osb;
1227 struct ocfs2_dinode *la_dinode, *tl_dinode;
1228 struct ocfs2_la_recovery_item *item, *n;
1229 struct ocfs2_quota_recovery *qrec;
1230 enum ocfs2_orphan_reco_type orphan_reco_type;
1231 LIST_HEAD(tmp_la_list);
1232
1233 trace_ocfs2_complete_recovery(
1234 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1235
1236 spin_lock(&journal->j_lock);
1237 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1238 spin_unlock(&journal->j_lock);
1239
1240 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1241 list_del_init(&item->lri_list);
1242
1243 ocfs2_wait_on_quotas(osb);
1244
1245 la_dinode = item->lri_la_dinode;
1246 tl_dinode = item->lri_tl_dinode;
1247 qrec = item->lri_qrec;
1248 orphan_reco_type = item->lri_orphan_reco_type;
1249
1250 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1251 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1252 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1253 qrec);
1254
1255 if (la_dinode) {
1256 ret = ocfs2_complete_local_alloc_recovery(osb,
1257 la_dinode);
1258 if (ret < 0)
1259 mlog_errno(ret);
1260
1261 kfree(la_dinode);
1262 }
1263
1264 if (tl_dinode) {
1265 ret = ocfs2_complete_truncate_log_recovery(osb,
1266 tl_dinode);
1267 if (ret < 0)
1268 mlog_errno(ret);
1269
1270 kfree(tl_dinode);
1271 }
1272
1273 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1274 orphan_reco_type);
1275 if (ret < 0)
1276 mlog_errno(ret);
1277
1278 if (qrec) {
1279 ret = ocfs2_finish_quota_recovery(osb, qrec,
1280 item->lri_slot);
1281 if (ret < 0)
1282 mlog_errno(ret);
1283 /* Recovery info is already freed now */
1284 }
1285
1286 kfree(item);
1287 }
1288
1289 trace_ocfs2_complete_recovery_end(ret);
1290 }
1291
1292 /* NOTE: This function always eats your references to la_dinode and
1293 * tl_dinode, either manually on error, or by passing them to
1294 * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1295 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1296 int slot_num,
1297 struct ocfs2_dinode *la_dinode,
1298 struct ocfs2_dinode *tl_dinode,
1299 struct ocfs2_quota_recovery *qrec,
1300 enum ocfs2_orphan_reco_type orphan_reco_type)
1301 {
1302 struct ocfs2_la_recovery_item *item;
1303
1304 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1305 if (!item) {
1306 /* Though we wish to avoid it, we are in fact safe in
1307 * skipping local alloc cleanup as fsck.ocfs2 is more
1308 * than capable of reclaiming unused space. */
1309 kfree(la_dinode);
1310 kfree(tl_dinode);
1311
1312 if (qrec)
1313 ocfs2_free_quota_recovery(qrec);
1314
1315 mlog_errno(-ENOMEM);
1316 return;
1317 }
1318
1319 INIT_LIST_HEAD(&item->lri_list);
1320 item->lri_la_dinode = la_dinode;
1321 item->lri_slot = slot_num;
1322 item->lri_tl_dinode = tl_dinode;
1323 item->lri_qrec = qrec;
1324 item->lri_orphan_reco_type = orphan_reco_type;
1325
1326 spin_lock(&journal->j_lock);
1327 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1328 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1329 spin_unlock(&journal->j_lock);
1330 }
1331
1332 /* Called by the mount code to queue recovery the last part of
1333 * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1334 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1335 {
1336 struct ocfs2_journal *journal = osb->journal;
1337
1338 if (ocfs2_is_hard_readonly(osb))
1339 return;
1340
1341 /* No need to queue up our truncate_log as regular cleanup will catch
1342 * that */
1343 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1344 osb->local_alloc_copy, NULL, NULL,
1345 ORPHAN_NEED_TRUNCATE);
1346 ocfs2_schedule_truncate_log_flush(osb, 0);
1347
1348 osb->local_alloc_copy = NULL;
1349
1350 /* queue to recover orphan slots for all offline slots */
1351 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1352 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1353 ocfs2_free_replay_slots(osb);
1354 }
1355
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1356 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1357 {
1358 if (osb->quota_rec) {
1359 ocfs2_queue_recovery_completion(osb->journal,
1360 osb->slot_num,
1361 NULL,
1362 NULL,
1363 osb->quota_rec,
1364 ORPHAN_NEED_TRUNCATE);
1365 osb->quota_rec = NULL;
1366 }
1367 }
1368
__ocfs2_recovery_thread(void * arg)1369 static int __ocfs2_recovery_thread(void *arg)
1370 {
1371 int status, node_num, slot_num;
1372 struct ocfs2_super *osb = arg;
1373 struct ocfs2_recovery_map *rm = osb->recovery_map;
1374 int *rm_quota = NULL;
1375 int rm_quota_used = 0, i;
1376 struct ocfs2_quota_recovery *qrec;
1377
1378 /* Whether the quota supported. */
1379 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1381 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1382 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1383
1384 status = ocfs2_wait_on_mount(osb);
1385 if (status < 0) {
1386 goto bail;
1387 }
1388
1389 if (quota_enabled) {
1390 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1391 if (!rm_quota) {
1392 status = -ENOMEM;
1393 goto bail;
1394 }
1395 }
1396 restart:
1397 status = ocfs2_super_lock(osb, 1);
1398 if (status < 0) {
1399 mlog_errno(status);
1400 goto bail;
1401 }
1402
1403 status = ocfs2_compute_replay_slots(osb);
1404 if (status < 0)
1405 mlog_errno(status);
1406
1407 /* queue recovery for our own slot */
1408 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1409 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1410
1411 spin_lock(&osb->osb_lock);
1412 while (rm->rm_used) {
1413 /* It's always safe to remove entry zero, as we won't
1414 * clear it until ocfs2_recover_node() has succeeded. */
1415 node_num = rm->rm_entries[0];
1416 spin_unlock(&osb->osb_lock);
1417 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1418 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1419 if (slot_num == -ENOENT) {
1420 status = 0;
1421 goto skip_recovery;
1422 }
1423
1424 /* It is a bit subtle with quota recovery. We cannot do it
1425 * immediately because we have to obtain cluster locks from
1426 * quota files and we also don't want to just skip it because
1427 * then quota usage would be out of sync until some node takes
1428 * the slot. So we remember which nodes need quota recovery
1429 * and when everything else is done, we recover quotas. */
1430 if (quota_enabled) {
1431 for (i = 0; i < rm_quota_used
1432 && rm_quota[i] != slot_num; i++)
1433 ;
1434
1435 if (i == rm_quota_used)
1436 rm_quota[rm_quota_used++] = slot_num;
1437 }
1438
1439 status = ocfs2_recover_node(osb, node_num, slot_num);
1440 skip_recovery:
1441 if (!status) {
1442 ocfs2_recovery_map_clear(osb, node_num);
1443 } else {
1444 mlog(ML_ERROR,
1445 "Error %d recovering node %d on device (%u,%u)!\n",
1446 status, node_num,
1447 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1448 mlog(ML_ERROR, "Volume requires unmount.\n");
1449 }
1450
1451 spin_lock(&osb->osb_lock);
1452 }
1453 spin_unlock(&osb->osb_lock);
1454 trace_ocfs2_recovery_thread_end(status);
1455
1456 /* Refresh all journal recovery generations from disk */
1457 status = ocfs2_check_journals_nolocks(osb);
1458 status = (status == -EROFS) ? 0 : status;
1459 if (status < 0)
1460 mlog_errno(status);
1461
1462 /* Now it is right time to recover quotas... We have to do this under
1463 * superblock lock so that no one can start using the slot (and crash)
1464 * before we recover it */
1465 if (quota_enabled) {
1466 for (i = 0; i < rm_quota_used; i++) {
1467 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1468 if (IS_ERR(qrec)) {
1469 status = PTR_ERR(qrec);
1470 mlog_errno(status);
1471 continue;
1472 }
1473 ocfs2_queue_recovery_completion(osb->journal,
1474 rm_quota[i],
1475 NULL, NULL, qrec,
1476 ORPHAN_NEED_TRUNCATE);
1477 }
1478 }
1479
1480 ocfs2_super_unlock(osb, 1);
1481
1482 /* queue recovery for offline slots */
1483 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1484
1485 bail:
1486 mutex_lock(&osb->recovery_lock);
1487 if (!status && !ocfs2_recovery_completed(osb)) {
1488 mutex_unlock(&osb->recovery_lock);
1489 goto restart;
1490 }
1491
1492 ocfs2_free_replay_slots(osb);
1493 osb->recovery_thread_task = NULL;
1494 mb(); /* sync with ocfs2_recovery_thread_running */
1495 wake_up(&osb->recovery_event);
1496
1497 mutex_unlock(&osb->recovery_lock);
1498
1499 if (quota_enabled)
1500 kfree(rm_quota);
1501
1502 /* no one is callint kthread_stop() for us so the kthread() api
1503 * requires that we call do_exit(). And it isn't exported, but
1504 * complete_and_exit() seems to be a minimal wrapper around it. */
1505 complete_and_exit(NULL, status);
1506 }
1507
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1508 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1509 {
1510 mutex_lock(&osb->recovery_lock);
1511
1512 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1513 osb->disable_recovery, osb->recovery_thread_task,
1514 osb->disable_recovery ?
1515 -1 : ocfs2_recovery_map_set(osb, node_num));
1516
1517 if (osb->disable_recovery)
1518 goto out;
1519
1520 if (osb->recovery_thread_task)
1521 goto out;
1522
1523 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1524 "ocfs2rec-%s", osb->uuid_str);
1525 if (IS_ERR(osb->recovery_thread_task)) {
1526 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1527 osb->recovery_thread_task = NULL;
1528 }
1529
1530 out:
1531 mutex_unlock(&osb->recovery_lock);
1532 wake_up(&osb->recovery_event);
1533 }
1534
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1535 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1536 int slot_num,
1537 struct buffer_head **bh,
1538 struct inode **ret_inode)
1539 {
1540 int status = -EACCES;
1541 struct inode *inode = NULL;
1542
1543 BUG_ON(slot_num >= osb->max_slots);
1544
1545 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1546 slot_num);
1547 if (!inode || is_bad_inode(inode)) {
1548 mlog_errno(status);
1549 goto bail;
1550 }
1551 SET_INODE_JOURNAL(inode);
1552
1553 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1554 if (status < 0) {
1555 mlog_errno(status);
1556 goto bail;
1557 }
1558
1559 status = 0;
1560
1561 bail:
1562 if (inode) {
1563 if (status || !ret_inode)
1564 iput(inode);
1565 else
1566 *ret_inode = inode;
1567 }
1568 return status;
1569 }
1570
1571 /* Does the actual journal replay and marks the journal inode as
1572 * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1573 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1574 int node_num,
1575 int slot_num)
1576 {
1577 int status;
1578 int got_lock = 0;
1579 unsigned int flags;
1580 struct inode *inode = NULL;
1581 struct ocfs2_dinode *fe;
1582 journal_t *journal = NULL;
1583 struct buffer_head *bh = NULL;
1584 u32 slot_reco_gen;
1585
1586 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1587 if (status) {
1588 mlog_errno(status);
1589 goto done;
1590 }
1591
1592 fe = (struct ocfs2_dinode *)bh->b_data;
1593 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594 brelse(bh);
1595 bh = NULL;
1596
1597 /*
1598 * As the fs recovery is asynchronous, there is a small chance that
1599 * another node mounted (and recovered) the slot before the recovery
1600 * thread could get the lock. To handle that, we dirty read the journal
1601 * inode for that slot to get the recovery generation. If it is
1602 * different than what we expected, the slot has been recovered.
1603 * If not, it needs recovery.
1604 */
1605 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1606 trace_ocfs2_replay_journal_recovered(slot_num,
1607 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1608 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1609 status = -EBUSY;
1610 goto done;
1611 }
1612
1613 /* Continue with recovery as the journal has not yet been recovered */
1614
1615 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1616 if (status < 0) {
1617 trace_ocfs2_replay_journal_lock_err(status);
1618 if (status != -ERESTARTSYS)
1619 mlog(ML_ERROR, "Could not lock journal!\n");
1620 goto done;
1621 }
1622 got_lock = 1;
1623
1624 fe = (struct ocfs2_dinode *) bh->b_data;
1625
1626 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1627 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1628
1629 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1630 trace_ocfs2_replay_journal_skip(node_num);
1631 /* Refresh recovery generation for the slot */
1632 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633 goto done;
1634 }
1635
1636 /* we need to run complete recovery for offline orphan slots */
1637 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1638
1639 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1640 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1641 MINOR(osb->sb->s_dev));
1642
1643 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1644
1645 status = ocfs2_force_read_journal(inode);
1646 if (status < 0) {
1647 mlog_errno(status);
1648 goto done;
1649 }
1650
1651 journal = jbd2_journal_init_inode(inode);
1652 if (journal == NULL) {
1653 mlog(ML_ERROR, "Linux journal layer error\n");
1654 status = -EIO;
1655 goto done;
1656 }
1657
1658 status = jbd2_journal_load(journal);
1659 if (status < 0) {
1660 mlog_errno(status);
1661 if (!igrab(inode))
1662 BUG();
1663 jbd2_journal_destroy(journal);
1664 goto done;
1665 }
1666
1667 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1668
1669 /* wipe the journal */
1670 jbd2_journal_lock_updates(journal);
1671 status = jbd2_journal_flush(journal);
1672 jbd2_journal_unlock_updates(journal);
1673 if (status < 0)
1674 mlog_errno(status);
1675
1676 /* This will mark the node clean */
1677 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1678 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1679 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1680
1681 /* Increment recovery generation to indicate successful recovery */
1682 ocfs2_bump_recovery_generation(fe);
1683 osb->slot_recovery_generations[slot_num] =
1684 ocfs2_get_recovery_generation(fe);
1685
1686 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1687 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1688 if (status < 0)
1689 mlog_errno(status);
1690
1691 if (!igrab(inode))
1692 BUG();
1693
1694 jbd2_journal_destroy(journal);
1695
1696 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1697 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1698 MINOR(osb->sb->s_dev));
1699 done:
1700 /* drop the lock on this nodes journal */
1701 if (got_lock)
1702 ocfs2_inode_unlock(inode, 1);
1703
1704 iput(inode);
1705 brelse(bh);
1706
1707 return status;
1708 }
1709
1710 /*
1711 * Do the most important parts of node recovery:
1712 * - Replay it's journal
1713 * - Stamp a clean local allocator file
1714 * - Stamp a clean truncate log
1715 * - Mark the node clean
1716 *
1717 * If this function completes without error, a node in OCFS2 can be
1718 * said to have been safely recovered. As a result, failure during the
1719 * second part of a nodes recovery process (local alloc recovery) is
1720 * far less concerning.
1721 */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1722 static int ocfs2_recover_node(struct ocfs2_super *osb,
1723 int node_num, int slot_num)
1724 {
1725 int status = 0;
1726 struct ocfs2_dinode *la_copy = NULL;
1727 struct ocfs2_dinode *tl_copy = NULL;
1728
1729 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1730
1731 /* Should not ever be called to recover ourselves -- in that
1732 * case we should've called ocfs2_journal_load instead. */
1733 BUG_ON(osb->node_num == node_num);
1734
1735 status = ocfs2_replay_journal(osb, node_num, slot_num);
1736 if (status < 0) {
1737 if (status == -EBUSY) {
1738 trace_ocfs2_recover_node_skip(slot_num, node_num);
1739 status = 0;
1740 goto done;
1741 }
1742 mlog_errno(status);
1743 goto done;
1744 }
1745
1746 /* Stamp a clean local alloc file AFTER recovering the journal... */
1747 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1748 if (status < 0) {
1749 mlog_errno(status);
1750 goto done;
1751 }
1752
1753 /* An error from begin_truncate_log_recovery is not
1754 * serious enough to warrant halting the rest of
1755 * recovery. */
1756 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1757 if (status < 0)
1758 mlog_errno(status);
1759
1760 /* Likewise, this would be a strange but ultimately not so
1761 * harmful place to get an error... */
1762 status = ocfs2_clear_slot(osb, slot_num);
1763 if (status < 0)
1764 mlog_errno(status);
1765
1766 /* This will kfree the memory pointed to by la_copy and tl_copy */
1767 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1768 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1769
1770 status = 0;
1771 done:
1772
1773 return status;
1774 }
1775
1776 /* Test node liveness by trylocking his journal. If we get the lock,
1777 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1778 * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1779 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1780 int slot_num)
1781 {
1782 int status, flags;
1783 struct inode *inode = NULL;
1784
1785 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1786 slot_num);
1787 if (inode == NULL) {
1788 mlog(ML_ERROR, "access error\n");
1789 status = -EACCES;
1790 goto bail;
1791 }
1792 if (is_bad_inode(inode)) {
1793 mlog(ML_ERROR, "access error (bad inode)\n");
1794 iput(inode);
1795 inode = NULL;
1796 status = -EACCES;
1797 goto bail;
1798 }
1799 SET_INODE_JOURNAL(inode);
1800
1801 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1802 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1803 if (status < 0) {
1804 if (status != -EAGAIN)
1805 mlog_errno(status);
1806 goto bail;
1807 }
1808
1809 ocfs2_inode_unlock(inode, 1);
1810 bail:
1811 iput(inode);
1812
1813 return status;
1814 }
1815
1816 /* Call this underneath ocfs2_super_lock. It also assumes that the
1817 * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1818 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1819 {
1820 unsigned int node_num;
1821 int status, i;
1822 u32 gen;
1823 struct buffer_head *bh = NULL;
1824 struct ocfs2_dinode *di;
1825
1826 /* This is called with the super block cluster lock, so we
1827 * know that the slot map can't change underneath us. */
1828
1829 for (i = 0; i < osb->max_slots; i++) {
1830 /* Read journal inode to get the recovery generation */
1831 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1832 if (status) {
1833 mlog_errno(status);
1834 goto bail;
1835 }
1836 di = (struct ocfs2_dinode *)bh->b_data;
1837 gen = ocfs2_get_recovery_generation(di);
1838 brelse(bh);
1839 bh = NULL;
1840
1841 spin_lock(&osb->osb_lock);
1842 osb->slot_recovery_generations[i] = gen;
1843
1844 trace_ocfs2_mark_dead_nodes(i,
1845 osb->slot_recovery_generations[i]);
1846
1847 if (i == osb->slot_num) {
1848 spin_unlock(&osb->osb_lock);
1849 continue;
1850 }
1851
1852 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1853 if (status == -ENOENT) {
1854 spin_unlock(&osb->osb_lock);
1855 continue;
1856 }
1857
1858 if (__ocfs2_recovery_map_test(osb, node_num)) {
1859 spin_unlock(&osb->osb_lock);
1860 continue;
1861 }
1862 spin_unlock(&osb->osb_lock);
1863
1864 /* Ok, we have a slot occupied by another node which
1865 * is not in the recovery map. We trylock his journal
1866 * file here to test if he's alive. */
1867 status = ocfs2_trylock_journal(osb, i);
1868 if (!status) {
1869 /* Since we're called from mount, we know that
1870 * the recovery thread can't race us on
1871 * setting / checking the recovery bits. */
1872 ocfs2_recovery_thread(osb, node_num);
1873 } else if ((status < 0) && (status != -EAGAIN)) {
1874 mlog_errno(status);
1875 goto bail;
1876 }
1877 }
1878
1879 status = 0;
1880 bail:
1881 return status;
1882 }
1883
1884 /*
1885 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1886 * randomness to the timeout to minimize multple nodes firing the timer at the
1887 * same time.
1888 */
ocfs2_orphan_scan_timeout(void)1889 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1890 {
1891 unsigned long time;
1892
1893 get_random_bytes(&time, sizeof(time));
1894 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1895 return msecs_to_jiffies(time);
1896 }
1897
1898 /*
1899 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1900 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1901 * is done to catch any orphans that are left over in orphan directories.
1902 *
1903 * It scans all slots, even ones that are in use. It does so to handle the
1904 * case described below:
1905 *
1906 * Node 1 has an inode it was using. The dentry went away due to memory
1907 * pressure. Node 1 closes the inode, but it's on the free list. The node
1908 * has the open lock.
1909 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1910 * but node 1 has no dentry and doesn't get the message. It trylocks the
1911 * open lock, sees that another node has a PR, and does nothing.
1912 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1913 * open lock, sees the PR still, and does nothing.
1914 * Basically, we have to trigger an orphan iput on node 1. The only way
1915 * for this to happen is if node 1 runs node 2's orphan dir.
1916 *
1917 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1918 * seconds. It gets an EX lock on os_lockres and checks sequence number
1919 * stored in LVB. If the sequence number has changed, it means some other
1920 * node has done the scan. This node skips the scan and tracks the
1921 * sequence number. If the sequence number didn't change, it means a scan
1922 * hasn't happened. The node queues a scan and increments the
1923 * sequence number in the LVB.
1924 */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1925 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1926 {
1927 struct ocfs2_orphan_scan *os;
1928 int status, i;
1929 u32 seqno = 0;
1930
1931 os = &osb->osb_orphan_scan;
1932
1933 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934 goto out;
1935
1936 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1937 atomic_read(&os->os_state));
1938
1939 status = ocfs2_orphan_scan_lock(osb, &seqno);
1940 if (status < 0) {
1941 if (status != -EAGAIN)
1942 mlog_errno(status);
1943 goto out;
1944 }
1945
1946 /* Do no queue the tasks if the volume is being umounted */
1947 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1948 goto unlock;
1949
1950 if (os->os_seqno != seqno) {
1951 os->os_seqno = seqno;
1952 goto unlock;
1953 }
1954
1955 for (i = 0; i < osb->max_slots; i++)
1956 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1957 NULL, ORPHAN_NO_NEED_TRUNCATE);
1958 /*
1959 * We queued a recovery on orphan slots, increment the sequence
1960 * number and update LVB so other node will skip the scan for a while
1961 */
1962 seqno++;
1963 os->os_count++;
1964 os->os_scantime = ktime_get_seconds();
1965 unlock:
1966 ocfs2_orphan_scan_unlock(osb, seqno);
1967 out:
1968 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1969 atomic_read(&os->os_state));
1970 return;
1971 }
1972
1973 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)1974 static void ocfs2_orphan_scan_work(struct work_struct *work)
1975 {
1976 struct ocfs2_orphan_scan *os;
1977 struct ocfs2_super *osb;
1978
1979 os = container_of(work, struct ocfs2_orphan_scan,
1980 os_orphan_scan_work.work);
1981 osb = os->os_osb;
1982
1983 mutex_lock(&os->os_lock);
1984 ocfs2_queue_orphan_scan(osb);
1985 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1986 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1987 ocfs2_orphan_scan_timeout());
1988 mutex_unlock(&os->os_lock);
1989 }
1990
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)1991 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1992 {
1993 struct ocfs2_orphan_scan *os;
1994
1995 os = &osb->osb_orphan_scan;
1996 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1997 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1998 mutex_lock(&os->os_lock);
1999 cancel_delayed_work(&os->os_orphan_scan_work);
2000 mutex_unlock(&os->os_lock);
2001 }
2002 }
2003
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2004 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2005 {
2006 struct ocfs2_orphan_scan *os;
2007
2008 os = &osb->osb_orphan_scan;
2009 os->os_osb = osb;
2010 os->os_count = 0;
2011 os->os_seqno = 0;
2012 mutex_init(&os->os_lock);
2013 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2014 }
2015
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2016 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2017 {
2018 struct ocfs2_orphan_scan *os;
2019
2020 os = &osb->osb_orphan_scan;
2021 os->os_scantime = ktime_get_seconds();
2022 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2023 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2024 else {
2025 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2026 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2027 ocfs2_orphan_scan_timeout());
2028 }
2029 }
2030
2031 struct ocfs2_orphan_filldir_priv {
2032 struct dir_context ctx;
2033 struct inode *head;
2034 struct ocfs2_super *osb;
2035 enum ocfs2_orphan_reco_type orphan_reco_type;
2036 };
2037
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2038 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2039 int name_len, loff_t pos, u64 ino,
2040 unsigned type)
2041 {
2042 struct ocfs2_orphan_filldir_priv *p =
2043 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2044 struct inode *iter;
2045
2046 if (name_len == 1 && !strncmp(".", name, 1))
2047 return 0;
2048 if (name_len == 2 && !strncmp("..", name, 2))
2049 return 0;
2050
2051 /* do not include dio entry in case of orphan scan */
2052 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2053 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2054 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2055 return 0;
2056
2057 /* Skip bad inodes so that recovery can continue */
2058 iter = ocfs2_iget(p->osb, ino,
2059 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2060 if (IS_ERR(iter))
2061 return 0;
2062
2063 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2065 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2066
2067 /* Skip inodes which are already added to recover list, since dio may
2068 * happen concurrently with unlink/rename */
2069 if (OCFS2_I(iter)->ip_next_orphan) {
2070 iput(iter);
2071 return 0;
2072 }
2073
2074 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2075 /* No locking is required for the next_orphan queue as there
2076 * is only ever a single process doing orphan recovery. */
2077 OCFS2_I(iter)->ip_next_orphan = p->head;
2078 p->head = iter;
2079
2080 return 0;
2081 }
2082
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2083 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2084 int slot,
2085 struct inode **head,
2086 enum ocfs2_orphan_reco_type orphan_reco_type)
2087 {
2088 int status;
2089 struct inode *orphan_dir_inode = NULL;
2090 struct ocfs2_orphan_filldir_priv priv = {
2091 .ctx.actor = ocfs2_orphan_filldir,
2092 .osb = osb,
2093 .head = *head,
2094 .orphan_reco_type = orphan_reco_type
2095 };
2096
2097 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2098 ORPHAN_DIR_SYSTEM_INODE,
2099 slot);
2100 if (!orphan_dir_inode) {
2101 status = -ENOENT;
2102 mlog_errno(status);
2103 return status;
2104 }
2105
2106 inode_lock(orphan_dir_inode);
2107 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2108 if (status < 0) {
2109 mlog_errno(status);
2110 goto out;
2111 }
2112
2113 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2114 if (status) {
2115 mlog_errno(status);
2116 goto out_cluster;
2117 }
2118
2119 *head = priv.head;
2120
2121 out_cluster:
2122 ocfs2_inode_unlock(orphan_dir_inode, 0);
2123 out:
2124 inode_unlock(orphan_dir_inode);
2125 iput(orphan_dir_inode);
2126 return status;
2127 }
2128
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2129 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2130 int slot)
2131 {
2132 int ret;
2133
2134 spin_lock(&osb->osb_lock);
2135 ret = !osb->osb_orphan_wipes[slot];
2136 spin_unlock(&osb->osb_lock);
2137 return ret;
2138 }
2139
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2140 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2141 int slot)
2142 {
2143 spin_lock(&osb->osb_lock);
2144 /* Mark ourselves such that new processes in delete_inode()
2145 * know to quit early. */
2146 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2147 while (osb->osb_orphan_wipes[slot]) {
2148 /* If any processes are already in the middle of an
2149 * orphan wipe on this dir, then we need to wait for
2150 * them. */
2151 spin_unlock(&osb->osb_lock);
2152 wait_event_interruptible(osb->osb_wipe_event,
2153 ocfs2_orphan_recovery_can_continue(osb, slot));
2154 spin_lock(&osb->osb_lock);
2155 }
2156 spin_unlock(&osb->osb_lock);
2157 }
2158
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2159 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2160 int slot)
2161 {
2162 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2163 }
2164
2165 /*
2166 * Orphan recovery. Each mounted node has it's own orphan dir which we
2167 * must run during recovery. Our strategy here is to build a list of
2168 * the inodes in the orphan dir and iget/iput them. The VFS does
2169 * (most) of the rest of the work.
2170 *
2171 * Orphan recovery can happen at any time, not just mount so we have a
2172 * couple of extra considerations.
2173 *
2174 * - We grab as many inodes as we can under the orphan dir lock -
2175 * doing iget() outside the orphan dir risks getting a reference on
2176 * an invalid inode.
2177 * - We must be sure not to deadlock with other processes on the
2178 * system wanting to run delete_inode(). This can happen when they go
2179 * to lock the orphan dir and the orphan recovery process attempts to
2180 * iget() inside the orphan dir lock. This can be avoided by
2181 * advertising our state to ocfs2_delete_inode().
2182 */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2183 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2184 int slot,
2185 enum ocfs2_orphan_reco_type orphan_reco_type)
2186 {
2187 int ret = 0;
2188 struct inode *inode = NULL;
2189 struct inode *iter;
2190 struct ocfs2_inode_info *oi;
2191 struct buffer_head *di_bh = NULL;
2192 struct ocfs2_dinode *di = NULL;
2193
2194 trace_ocfs2_recover_orphans(slot);
2195
2196 ocfs2_mark_recovering_orphan_dir(osb, slot);
2197 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2198 ocfs2_clear_recovering_orphan_dir(osb, slot);
2199
2200 /* Error here should be noted, but we want to continue with as
2201 * many queued inodes as we've got. */
2202 if (ret)
2203 mlog_errno(ret);
2204
2205 while (inode) {
2206 oi = OCFS2_I(inode);
2207 trace_ocfs2_recover_orphans_iput(
2208 (unsigned long long)oi->ip_blkno);
2209
2210 iter = oi->ip_next_orphan;
2211 oi->ip_next_orphan = NULL;
2212
2213 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2214 inode_lock(inode);
2215 ret = ocfs2_rw_lock(inode, 1);
2216 if (ret < 0) {
2217 mlog_errno(ret);
2218 goto unlock_mutex;
2219 }
2220 /*
2221 * We need to take and drop the inode lock to
2222 * force read inode from disk.
2223 */
2224 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2225 if (ret) {
2226 mlog_errno(ret);
2227 goto unlock_rw;
2228 }
2229
2230 di = (struct ocfs2_dinode *)di_bh->b_data;
2231
2232 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2233 ret = ocfs2_truncate_file(inode, di_bh,
2234 i_size_read(inode));
2235 if (ret < 0) {
2236 if (ret != -ENOSPC)
2237 mlog_errno(ret);
2238 goto unlock_inode;
2239 }
2240
2241 ret = ocfs2_del_inode_from_orphan(osb, inode,
2242 di_bh, 0, 0);
2243 if (ret)
2244 mlog_errno(ret);
2245 }
2246 unlock_inode:
2247 ocfs2_inode_unlock(inode, 1);
2248 brelse(di_bh);
2249 di_bh = NULL;
2250 unlock_rw:
2251 ocfs2_rw_unlock(inode, 1);
2252 unlock_mutex:
2253 inode_unlock(inode);
2254
2255 /* clear dio flag in ocfs2_inode_info */
2256 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2257 } else {
2258 spin_lock(&oi->ip_lock);
2259 /* Set the proper information to get us going into
2260 * ocfs2_delete_inode. */
2261 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2262 spin_unlock(&oi->ip_lock);
2263 }
2264
2265 iput(inode);
2266 inode = iter;
2267 }
2268
2269 return ret;
2270 }
2271
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2272 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2273 {
2274 /* This check is good because ocfs2 will wait on our recovery
2275 * thread before changing it to something other than MOUNTED
2276 * or DISABLED. */
2277 wait_event(osb->osb_mount_event,
2278 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2279 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2280 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2281
2282 /* If there's an error on mount, then we may never get to the
2283 * MOUNTED flag, but this is set right before
2284 * dismount_volume() so we can trust it. */
2285 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2286 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2287 mlog(0, "mount error, exiting!\n");
2288 return -EBUSY;
2289 }
2290
2291 return 0;
2292 }
2293
ocfs2_commit_thread(void * arg)2294 static int ocfs2_commit_thread(void *arg)
2295 {
2296 int status;
2297 struct ocfs2_super *osb = arg;
2298 struct ocfs2_journal *journal = osb->journal;
2299
2300 /* we can trust j_num_trans here because _should_stop() is only set in
2301 * shutdown and nobody other than ourselves should be able to start
2302 * transactions. committing on shutdown might take a few iterations
2303 * as final transactions put deleted inodes on the list */
2304 while (!(kthread_should_stop() &&
2305 atomic_read(&journal->j_num_trans) == 0)) {
2306
2307 wait_event_interruptible(osb->checkpoint_event,
2308 atomic_read(&journal->j_num_trans)
2309 || kthread_should_stop());
2310
2311 status = ocfs2_commit_cache(osb);
2312 if (status < 0) {
2313 static unsigned long abort_warn_time;
2314
2315 /* Warn about this once per minute */
2316 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2317 mlog(ML_ERROR, "status = %d, journal is "
2318 "already aborted.\n", status);
2319 /*
2320 * After ocfs2_commit_cache() fails, j_num_trans has a
2321 * non-zero value. Sleep here to avoid a busy-wait
2322 * loop.
2323 */
2324 msleep_interruptible(1000);
2325 }
2326
2327 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2328 mlog(ML_KTHREAD,
2329 "commit_thread: %u transactions pending on "
2330 "shutdown\n",
2331 atomic_read(&journal->j_num_trans));
2332 }
2333 }
2334
2335 return 0;
2336 }
2337
2338 /* Reads all the journal inodes without taking any cluster locks. Used
2339 * for hard readonly access to determine whether any journal requires
2340 * recovery. Also used to refresh the recovery generation numbers after
2341 * a journal has been recovered by another node.
2342 */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2343 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2344 {
2345 int ret = 0;
2346 unsigned int slot;
2347 struct buffer_head *di_bh = NULL;
2348 struct ocfs2_dinode *di;
2349 int journal_dirty = 0;
2350
2351 for(slot = 0; slot < osb->max_slots; slot++) {
2352 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2353 if (ret) {
2354 mlog_errno(ret);
2355 goto out;
2356 }
2357
2358 di = (struct ocfs2_dinode *) di_bh->b_data;
2359
2360 osb->slot_recovery_generations[slot] =
2361 ocfs2_get_recovery_generation(di);
2362
2363 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2364 OCFS2_JOURNAL_DIRTY_FL)
2365 journal_dirty = 1;
2366
2367 brelse(di_bh);
2368 di_bh = NULL;
2369 }
2370
2371 out:
2372 if (journal_dirty)
2373 ret = -EROFS;
2374 return ret;
2375 }
2376